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Acoustic Sampling Considerations for Bats in the Post-White-nose Syndrome Landscape 

Elaine Lewis Barr 

ABSTRACT 

 

Bat populations across North America are either facing new threats from white-

nose syndrome (WNS) and wind energy development or have already experienced 

precipitous declines. Accordingly, researchers and managers need to know how to best 

monitor bats to document population and distribution changes, as well as where to look 

for persisting populations. Landscape-scale WNS impacts to summer bat populations are 

not well understood, and although acoustic monitoring is commonly used to monitor 

these populations, there is limited information about differences among acoustic detectors 

and the implications to managers thereof. My objectives were to model the relationship 

between WNS impact, influence of available hibernacula, and environmental factors for 

summer nightly presence of three WNS-affected bats and to compare how multiple 

models of acoustic detectors perform in terms of detection probability and nightly 

recorded bat activity. I collected acoustic data from 10 study areas across Virginia, West 

Virginia, Ohio and Kentucky to describe changes in nightly presence of WNS-affected 

bat species during summer 2017. During the same period of time, I compared five types 

of acoustic detectors at Fort Knox, Kentucky. My results show the potential efficacy of 

using a WNS impact-year metric to predict summer bat presence, and highlight which 

environmental variables are relevant for large-scale acoustic monitoring. Additionally, 

my findings suggest that each of the detector types tested would suffice for most research 

and monitoring activities, but standardization of detector type within the scope of a 

project or study should be encouraged. 
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GENERAL AUDIENCE ABSTRACT 

 

Bat populations across North America are either facing new threats from white-

nose syndrome (WNS) and wind energy development or have already experienced 

devastating declines. Accordingly, wildlife biologists need to know how to best monitor 

bats to document population and distribution changes, as well as where to look for 

remaining populations. Landscape-scale WNS impacts to summer bat populations are not 

well understood, and although acoustic technology is commonly used to monitor these 

populations, there is limited information about differences among acoustic detectors and 

the implications to managers thereof. My objectives were to model the relationship 

between WNS impact, influence of available bat hibernation caves, and environmental 

factors for summer nightly presence of three WNS-affected bats and to compare how 

multiple models of acoustic detectors perform in terms of detection probability and 

nightly recorded bat activity. I collected acoustic data from 10 study areas across 

Virginia, West Virginia, Ohio and Kentucky to describe changes in nightly presence of 

WNS-affected bat species during summer 2017. During the same period of time, I 

compared five types of acoustic detectors at Fort Knox, Kentucky. My results show 

potential viability of a WNS impact-year metric to predict summer bat presence, and 

highlight which environmental variables are relevant for large-scale acoustic monitoring. 

Additionally, my findings suggest that each of the detector types tested would suit most 

research and monitoring activities, but standardization of detector type within the scope 

of a project or study should be encouraged. 
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Chapter 1: White-nose Syndrome and Environmental Correlates to Landscape-Scale Bat 

Presence in the Eastern United States 

 

Abstract 

Over the past 13 years, white-nose syndrome (WNS) has caused massive North American 

bat population declines and shifted bat community structures towards those species less or 

unaffected by the disease. Prior mist-netting, acoustic survey, and cave count data have been 

used to document changes in bat presence and activity through site-specific pre- and post- WNS 

studies. However, management and survey guidance often occur at a landscape scale and 

similarly scaled studies are needed to examine spatial as well as temporal patterns in bat 

presence. My objective was to model the relationship between WNS impact, influence of 

available hibernacula, and environmental factors for the nightly presence for three WNS-affected 

bats: the Indiana bat (Myotis sodalis), northern long-eared bat (M. septentrionalis), and big 

brown bat (Eptesicus fuscus). I used acoustic recordings from 10 study areas across Virginia, 

West Virginia, Ohio and Kentucky to describe changes in nightly bat presence during the 

summer of 2017. I found significant correlates of broad land cover type for presence of all three 

species. My findings also corroborated trends in abundance and distribution patterns found post-

WNS using traditional survey techniques, supporting the relevance of coarse land cover 

categories in an acoustic monitoring framework for large-scale monitoring. I observed a negative 

association between WNS impact-years and nightly northern-long eared bat presence, but low 

occurrence and patchy distribution reduced my ability to infer strong relationships. Big brown 

bats showed a significant positive relationship with WNS occurrence on the landscape, providing 

more evidence that these bats are maintaining populations after years of exposure. Indiana bats 

were the least-documented species, limiting conclusions, but I did observe statistically 
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significant temporal patterns in nightly presence. My results show the potential efficacy of using 

a WNS impact metric to predict summer bat presence, and highlight which environmental 

variables are relevant for large-scale acoustic monitoring.  

Introduction 

 Bat populations across the United States are currently experiencing extreme population 

declines due to the introduction and spread of the white-nose syndrome (WNS). 

Pseudogymnoascus destructans (Pd), the causative agent of WNS, is a fungus that infects the 

epithelial tissue of hibernating bats and leads to frequent arousal and then loss of fat reserves 

(Frick et al. 2010, Lorch et al. 2011). In the first six years after the disease’s arrival in New York 

hibernacula in 2006, over six million bats died in the United States due to WNS (Coleman 2014). 

WNS spread to the Pacific Coast in 2016 and diseased bats now have been found in 33 states and 

seven Canadian provinces, and an additional five states have Pd-positive bats (Michaels 2019). 

Pd-caused declines are not evenly distributed across hibernating bat communities by species or 

geographic region. For example, cave obligate gray bats (M. grisescens) have shown signs of 

disease (Holliday 2012) but without marked population declines (Powers et al. 2016). In contrast, 

the USFWS listed the northern long-eared bat (M. septentrionalis) as threatened in 2015 due to 

WNS-caused declines of up to 99% across many areas of its range (50 CFR Part 17). The little 

brown bat (M. lucifugus) and tricolored bat (Perimyotis subflavus) are also highly affected and 

averaged 91% and 75%  population declines in the first five years post WNS arrival, respectively 

(Turner et al. 2011). The endangered Indiana bat (M. sodalis) also shows high susceptibility to 

WNS (Turner et al. 2011), reversing years of population growth and potentially leading to 

localized extirpation in parts of its distribution (Thogmartin et al. 2012, 2013). Early in the WNS 

dynamic, winter cave surveys documented big brown bat (Eptesicus fuscus) declines in some 

hibernacula (Turner et al. 2011, Langwig et al. 2012). However, the species has increased in 
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other hibernacula (Frank et al. 2014) and most summer acoustic (Brooks 2011, Ford et al. 2011) 

and capture surveys (Hauer et al. 2019, Huebschman 2019) indicate a stable or increasing 

population, perhaps due to niche release following loss of other WNS-affected species 

(Jachowski et al. 2014a). Regardless of species, bat population declines appear to be more 

dramatic closer to the location of and with greater time since WNS introduction (Ingersoll et al. 

2016).  

Counts of bats in known hibernacula provide a relatively easy assessment of cave-

specific or regional winter population changes due to WNS (Ingersoll et al. 2013, Powers et al. 

2015). However, Pd or WNS detection data based off of hibernacula monitoring, where the 

fungus is most easily documented, leads to a dataset of wintertime observations (White-Nose 

Syndrome Response Team 2019) that may not accurately reflect WNS impacts on summer bat 

populations. With the exception of the gray bat that roosts in caves year-round, most WNS-

positive bat species in North America are more difficult to monitor in the summer when they 

disperse from caves to roost in trees, snags, emergent rock or anthropogenic structures during the 

maternity season (Altringham 2011). Sex, species, and region all influence widely varying 

seasonal migration distances; Indiana bats and little brown bats have been documented moving 

14 to 557 km and 35 to 554 km, respectively (Davis and Hitchcock 1965, Britzke et al. 2006, 

Norquay et al. 2013, Rockey et al. 2013, Krauel et al. 2017). Additionally, individual bats from 

the same summer site may overwinter in different hibernacula greater than 300 km apart (Kurta 

and Murray 2002). As such, declines at winter hibernacula may have far-reaching, yet non-linear 

impacts for local populations on the summer landscape. Summer mist-net capture (Moosman et 

al. 2013, Huebschman 2019) and acoustic activity monitoring (Dzal et al. 2011, Ford et al. 2011, 

Tomás Nocera et al. 2019) studies have also documented WNS-linked declines through site-
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specific pre- and post-WNS longitudinal studies, albeit rather coarsely. Researchers have 

proposed using karst area as a proxy for measuring the number of hibernacula available to a 

given summer population and therefore probability of exposure to Pd (Frick et al. 2015). 

However, no landscape-scale research has been undertaken to compare summer bat populations 

across space instead of time, thereby complicating efforts to inform larger, region-wide 

conservation and management efforts.  

Although all bat species in the temperate eastern U.S. are insectivorous, there is great 

diversity among species relative to foraging habitat selection. Wing loading (mass/wing area) 

and echolocation call structure are factors connected to foraging habitat use: bats with low wing 

loading and relatively high frequency calls are associated with higher clutter, whereas species 

with high wing loading and lower frequency calls are found in relatively open environments 

(Aldridge and Rautenbach 1987, Norberg and Rayner 1987). Accordingly, both capture and 

acoustic bat studies frequently use broad land cover categories including woodland, open water, 

agricultural, urban (Menzel et al. 2005a, Sparks et al. 2005, Johnson et al. 2008) or forest-

specific categories including mature forest, thinned forest, forested riparian, forest-edge, or forest 

interior (Humes et al. 1999, Loeb and O’Keefe 2006, Hein et al. 2009, McGowan and Hogue 

2016). Smaller-scale vegetation measurements comprising forest canopy cover, canopy height, 

tree density, and basal area impact local selection and activity patterns (Ford et al. 2005, Bender 

et al. 2015, Cox et al. 2016, Austin et al. 2019) as well as acoustic detection probability (O’Keefe 

et al. 2014).  

Both weather and day of the year affect bat presence throughout the summer. Most cave 

hibernating bats arrive in forests beginning in mid- to late April, and maternity colonies form in 

May and June (Kurta et al. 2002). Female bats generally give birth in a window from mid-June 
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to mid-July and newly volant juveniles for some species are captured as early as late June 

(Timpone et al. 2011, Francl et al. 2012, Pettit and O’Keefe 2017). As summer progresses, 

maternity colonies begin to disassociate and bats disperse towards hibernacula (Altringham 

2011). During summer when bats are foraging or navigating, rainfall can negatively affect 

echolocation feedback (Griffin 1971), and bats are less likely to switch roost trees in rainy 

conditions (Patriquin et al. 2016). Moreover, wet bats are heavier, thereby incurring higher flight 

costs from an energetics standpoint (Voigt et al. 2011). Collectively, precipitation can result in 

an overall decrease in bat activity on the local landscape (Erickson and West 2002, 

Muthersbaugh et al. 2019a). Wind speed can also negatively affect bats, with higher wind speeds 

associated with a decrease in the probability of bat presence or lower activity rates due to 

decreases in foraging efficiency and similar energetic costs to flight (Weller and Baldwin 2012, 

Muthersbaugh et al. 2019a). 

Traditionally, managers and researchers in the eastern U.S. monitored summer bat 

populations solely via physical capture with mist-nets. However, as ultrasonic recording 

technology improved, acoustic detectors have become a non-invasive and effective tool (Murray 

et al. 1999, O’Farrell and Gannon 1999). When designing acoustic monitoring protocols for rare 

or WNS-impacted species it is critical to determine optimal sampling locations based on 

knowledge of both bat biology and acoustic technology. As a result, current federal bat 

monitoring guidelines for threatened and endangered species of interest, i.e., Indiana bats and 

northern long-eared bats, recommend placing passive acoustic detectors away from areas of high 

clutter to maximize detection, and in forest openings, forest corridors, forest edges, thinned or 

recently logged forest, and along water sources to record a diverse species composition (Loeb et 

al. 2015, USFWS 2019a). To ensure accurate acoustic documentation of resident summer bats, 
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both the North American Bat Monitoring Program (Loeb et al. 2015) and the USFWS Indiana 

Bat Summer Survey Guidance (USFWS 2019a) recommend sampling between June 1 and July 

30, although the USFWS does allow surveys from May 15 through August 15 for regulatory 

clearance. Additionally, both programs only collect data from summer nights with no or minimal 

rainfall. 

Objectives 

My research goal was to examine the effectiveness of WNS impact and karst area 

predictors alongside commonly used landscape and site-specific variables as predictors of 

summer bat population presence measured by acoustic activity. To accomplish this, I examined 

the presence of three WNS- susceptible species: big brown bats, northern long‐eared bats, and 

Indiana bats. To examine WNS impacts across space instead of through time at one location, and 

to include sites with a variety of karst landscape densities, I worked at a landscape scale and 

chose sites with varying times since WNS introduction and putative WNS impacts. I specifically 

chose to include established site-specific land cover and weather predictors that aligned with the 

USFWS Indiana bat summer survey and North American Bat Monitoring Program guidelines to 

ensure I was considering variables commonly used by land managers and to help inform future 

survey protocol.  

I hypothesized that the summer effect of WNS would vary among the three bat species, 

with greater negative impact on the more vulnerable two Myotis species than big brown bats. 

Additionally, I hypothesized that probability of nightly presence would vary throughout the 

summer and that weather variables would influence all bat species. I expected the two forest-

specialist Myotis species, especially the northern long-eared bat, would have greater probability 

of nightly presence with higher basal area and in forested canopy gaps and riparian corridors 

whereas big brown bats would be associated with edge and lower basal area sites.  
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Methods 

Study Area 

 I conducted my acoustic study over a transect across Virginia, West Virginia, Ohio, and 

Kentucky. Study areas were chosen to represent the east-west spread of WNS and within the 

known ranges of Indiana and northern-long eared bats. I selected 10 areas, with a range of 

ownership and management practices, but all with diverse forest structure, riparian corridors, and 

open fields. These areas cover five level III ecoregions (Omernik 1987, US Environmental 

Protection Agency 2013) and span a linear distance of 1,000 km (Figure 1). Quantico Marine 

Corps Base (elev. 35 – 120 m ASL) and Fort A.P. Hill (30 – 65 m ASL) are both in the Southern 

Plains ecoregion, although on the border with the Piedmont, with southern mixed hardwood 

forests. Both Canaan Valley National Wildlife Refuge (975-1100 m ASL) and the Fernow 

Experimental Forest (550- 1100 m ASL) fall within the Central Appalachians, bordering the 

Ridge and Valley, with mesophytic Appalachian oak mixed hardwood forests at lower elevations 

and mixed boreal-northern hardwood forests at higher elevations. The Jug Wildlife Management 

Area (220 – 350 m ASL) and the Edge of Appalachia Preserve (155 – 300 m ASL) are 

comprised of mesophytic mixed hardwood forests and fall within the Western Allegheny 

Plateau. Fort Knox (135 – 250 m ASL) and the Riveroak Tract (150 – 185 m ASL) are both in 

the Interior Plateau with mesophytic mixed hardwood forests, although non-native loblolly pine 

(Pinus taeda) plantations comprise much of the forest at the Riveroak Tract. Clarks River 

National Wildlife Refuge (105 – 135 m ASL) in the Mississippi Valley Loess Plains is 

dominated by bottomland hardwood forest. Forested swamps and bottomland hardwood forests 

comprise Ballard Wildlife Management Area (95 – 120 m ASL) which falls in the Interior River 

Valleys and Hills ecoregion and borders the Ohio River. 
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Data Collection 

 I monitored bat presence at permanent acoustic sites from May 15 through August 15, 

2017 encompassing the entire the USFWS bat summer survey sample period (U.S. Fish and 

Wildlife Service 2019) with Song Meter SM4BAT ZC detectors and omnidirectional SMM-U1 

microphones (Wildlife Acoustics, Maynard, MA). The USFWS recommends Indiana or northern 

long-eared bat surveyors place detectors in any of six types of sites: (1) forest-canopy openings; 

(2) water sources; (3) wooded fence lines near suitable habitat; (4) recently logged forest with 

remaining potential roost trees; (5) wooded road or stream corridors with open canopies and (6) 

woodland edges (USFWS 2019a) . I distilled these categories into three broad types: (1) forest 

canopy gap or corridor; (2) forested riparian corridor and (3) forest-field edge. I placed one 

acoustic detector at each of three sites within the 10 study areas. Within those categories, specific 

detector placement sites were chosen based on accessibility and suitability for recording high-

quality bat calls (i.e., minimal vegetation clutter or other obstructions and distant from known 

roosts). All detector sites were >80 m apart to ensure detector independence (Agranat 2014). I 

elevated microphones on 3 m poles and programmed detectors to record nightly from 30 minutes 

prior to sunset and 30 minutes after sunrise.  

I identified bat calls to species using Kaleidoscope version 4.2.0 (Wildlife Acoustics, 

Maynard, Massachusetts) and classifier 4.2.0 at the “0” setting (USFWS 2019b). When 

analyzing calls for each study area, I included species based on prior documentation through 

state lists of county occurrence or from known previous mist-netting records (Francl et al. 2012, 

St. Germain et al. 2017, De La Cruz et al. 2018, Kentucky Department of Fish and Wildlife 

2019, Virginia Department of Game and Inland Fisheries 2019). To determine nightly species 

presence, I used the conservative threshold set in USFWS Indiana and northern long-eared bat 
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survey guidelines and defined probable presence at a site-night maximum likelihood estimate p-

value < 0.05 from the software identifications.  

At each detector site, I recorded the land cover type and examined vegetative structure 

and clutter via basal area and canopy closure measurements. I estimated the basal area (m2/ha) 

around each microphone pole using a 20-factor prism (JIM-GEM®, Jackson, MS) and canopy 

closure using a concave spherical densitometer (Model-C, Forest Densiometers, Rapid City, SD) 

(Bender et al. 2015). I used Meteorological Terminal Aviation Routine records 

(https://mesonet.agron.iastate.edu/request/download.phtml) from the nearest airport to each study 

area to determine nightly rainfall amounts, which I then converted to a binary rain/no rain 

variable for each survey site-night.  

Generating WNS and Karst maps 

To understand the influence of time-since WNS and proximity to hibernacula on summer 

bat populations, I used available data of WNS detections and karst geology. Karst is geology 

with landscapes containing exposed soluble bedrock, typically limestone, and is characterized by 

sinkholes and caves (Ford and Williams 2013). Due to the presence of caves, which can serve as 

hibernacula, bats are often associated with this terrain (Furey and Racey 2016). I accessed 

county-level WNS detection data from the U.S. Geological Survey and Pennsylvania Game 

Commission (White-Nose Syndrome Response Team 2019) to generate a map of the 

spatiotemporal spread of WNS across the United States (Figure 2). The WNS arrival year in each 

county was based on the earliest date of disease detection or suspected detection (Lorch et al. 

2016). I then subtracted the arrival year from the year of our survey to generate an index of WNS 

impact-years (e.g., I coded detection in the winter of 2010-2011 as 7 years of impact in the 

summer of 2017). I chose the natural neighbor raster interpolation tool (ESRI, Redlands, CA) to 
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predict WNS impact across the U.S. because the county-level detection data was clustered and 

scattered (Childs 2004). 

To represent potential bat winter to summer dispersal distances from hibernacula, I 

averaged the WNS impact-years within 50, 100, and 150 km buffers. I calculated the percent of 

karst area in each buffer to represent the amount of potentially available hibernacula around 

summer sites (Frick et al. 2015, Christman et al. 2016) using spatial data from Tobin and Weary 

(2004) within the same three buffer sizes. 

Data Analysis 

To examine the relationship between nightly Indiana, northern long-eared, and big brown 

bat presence, WNS impact-years, amount of available or potential hibernacula, and established 

weather and land cover predictors (Table 1), I developed a set of species-specific a priori 

candidate models. I modeled nightly bat presence for each species using binary-response 

generalized linear mixed models (GLMMs) in program R version 3.6.0 (R Core Team 2019) 

with package glmmTMB (Brooks et al. 2017) with nested random effects to account for spatial 

auto-correlation of the three sampling sites within each of the 10 larger study areas. I used a two-

step information theoretic approach in building the candidate models with Akaike's Information 

Criterion corrected for small sample size (AICc from package bbmle, Bolker 2017; Burnham and 

Anderson 2002) to rank models and then considered best supported models with a ∆AICc < 2. 

  I initially used model ranking to determine the best-fitting date structure and buffer size 

from both WNS impact-years and karst area best supported models and then combined them with 

weather and vegetation data to build final comprehensive model sets. To determine the most 

species-appropriate WNS impact-year and karst area buffers, I ran GLMMs for each bat species 

and covariate type and then selected the best-performing buffers. To account for potential 

nonlinear changes in probability of nightly bat presence over the summer survey period, I 
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compared GLMMs with different polynomial structures on date for each species and selected the 

best-performing date structure. Prior to building final model sets, I assessed potential correlation 

among continuous predictors using package corrplot (Wei and Simko 2017) in program R 

version 3.6.0 (R Core Team 2019) to ensure that highly correlated (r ≥0.6) variables were not 

included in the same model. Canopy cover was highly correlated with basal area and accordingly 

these covariates were not modeled together. All continuous predictors were centered and scaled 

prior to analysis (Schielzeth 2010).  

Lastly, after building final candidate model sets, I used the same information theoretic 

approach to rank models for the separate nightly Indiana, northern long-eared, and big brown bat 

presence data. Of the 10 study areas, the Quantico Marine Corps Base study area was outside of 

the documented Indiana bat maternity colony range (USFWS 2015, St. Germain et al. 2017), 

therefore I removed it from Indiana bat analyses.  

Results  

 During the summer of 2017, I sampled 2,430 site-nights across 30 survey-sites 

collectively over all 10 areas for northern long-eared bats and big brown bats and 2,252 nights 

across 27 sites over 9 of the areas for Indiana bats (Table 2). A staggered deployment across four 

states and two detector failures led to uneven sampling periods among sites. Over the entire 

effort, Kaleidoscope identified 249,990 call files to bat species.  

WNS and Karst results  

Study areas varied in WNS impact-years. I calculated 3.1 years of impact in western 

Kentucky and 3.7 years of impact in the northwestern West Virginia site. Both Virginia sites and 

the mountainous sites in east-central West Virginia had highest WNS-impact years with values 

ranging from 7.8 to 6.6. The amount of karst landscape also varied among study areas. Central 
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Kentucky buffers contained up to 76% karst area, whereas the Virginia and northwestern West 

Virginia sites had only 0.05 to 0.15% karst area. 

Indiana bat 

I recorded Indiana bat presence at 24 out of 27 sites where it potentially could occur and 

for 254 nights out of 2,252 site-nights. There were seven competing models within two AICc 

units of the best supported model (Table 3). The most parsimonious competing model was the 

date-only model with a 3rd order polynomial term. Indiana bat presence was highest in early 

June, and then declined throughout the summer until an upward trend in mid-August (Figure 3). 

Although adding land cover minimally improved the model ranking, it was the only other 

significant variable among the seven competing models. Indiana bats were significantly more 

likely to be present in forested riparian corridors than in forest-field edges (Table 4).  

Northern long-eared bat 

I recorded northern long-eared bat presence at 19 out of 30 sites and for 321 nights out of 

2,430 site-nights. There were eight competing models within two AICc of the best supported 

model (Table 3). The best supported and most parsimonious model contained date and land 

cover, although the model adding a 50 km WNS impact year buffer was within 0.04 AIC units of 

the best supported model. Land cover type was the only statistically significant variable among 

all competing models (Table 5). Northern long-eared bats were more likely to be present in forest 

and riparian sites than forest-field edge sites. Although the years of WNS impact variable was 

not statistically significant, 65% of all northern long-eared bat detections were at the two study 

areas with less than four years of WNS impact (Figure 4).  

Big brown bat 

I recorded big brown bat presence at 29 out of 30 sites and for 725 nights out of 2,430 

site-nights. There were two competing models within two AICc of the best supported model. The 

best supported and most parsimonious model contained a 3rd order polynomial on date, land 
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cover type, and the 150 km buffers for both WNS impact-years and proportion of karst (Table 3). 

Big brown bats were significantly less likely to be present in forest and riparian sites than edge 

sites, although the effect size for riparian sites was smaller, and significantly more likely to be 

present at sites with greater karst area and WNS impact-years in 150km buffers (Table 6). The 

probability of detecting big brown bat presence varied across the summer. Probability of 

detection decreased from mid-May through mid-June, and then increased until a peak in late July 

(Figure 6).  

Discussion  

This large, landscape study provided an opportunity to examine a myriad of fine, broad, 

and landscape-level influences on WNS-impacted bat populations. Consistent with my 

expectations, nightly bat presence across the study area varied by the three species examined, 

with time over the summer survey period and generally tied to broad-scale land cover categories. 

Most northern long-eared bat presences were documented at study areas with the fewest WNS 

impact-years. Contrary to my expectation, I observed more big brown bats at older WNS impact 

areas, supporting the recent observations of Deeley (2019) that big brown bat activity and 

capture rates increased post-WNS. However, I did not find support for basal area, a finer-scale 

vegetation structure measure and surrogate for forest clutter, or nightly precipitation as useful 

predictors of nightly bat presence across this long term and large-scale acoustic bat survey. 

Overall, the WNS impact-year metric I developed showed some utility, and could help identify 

areas with likely remnant populations of WNS-impacted bats, such as The Jug WMA.  

My results suggest that for all three species, broad categorization of vegetation structure 

or land cover type is a useful predictor of site-specific presence. Both northern long-eared and 

Indiana bats were more likely to be found in forested riparian corridors than forest-field edge 

sites, whereas northern long-eared bats were also more likely to be found in forested corridors 
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and canopy gaps than forest-field edges. This aligned with my initial predictions that Myotis 

species with more maneuverability to navigate forested areas and glean prey off of vegetation 

would be found in forest-interior sites (Patriquin and Barclay 2003, Lacki et al. 2007, Starbuck et 

al. 2015). Riparian areas are important for bat foraging (Grindal et al. 1999, Jachowski et al. 

2014b) due to the abundance of insect prey (Fukui et al. 2006) and also serve as a water source 

(Seibold et al. 2013). Acoustic surveys have consistently documented the importance of forested 

riparian areas, particularly relatively closed forests, for both northern long-eared and Indiana bats 

(Owen et al. 2004, Schirmacher et al. 2007, Johnson et al. 2010) and this pattern was consistent 

across my large overall study areas. Conversely, as expected, big brown bat presence was less 

likely at forested riparian corridors and forest corridors than at forest-field edge sites. Larger 

bodied, less maneuverable bats including the big brown bat use open areas more than cluttered, 

interior forests (Brooks and Ford 2005, Ford et al. 2005). The persistence of these trends across a 

landscape-scale study emphasizes the importance of forest-field edges (Wolcott and Vulinec 

2012, Jantzen and Fenton 2013) and forested riparian corridors (Owen et al. 2004) and the need 

to maintain a diverse landscape.  

 For all species, finer scale vegetation measurements and precipitation had no measurable 

effect on nightly presence. I expected basal area to be relevant for nightly presence, because 

increasing basal area has been linked to a decrease in detection for some less clutter adapted 

species (Bender et al. 2015) and the opposite is true for clutter adapted species (Blakey et al. 

2019). However, other acoustic studies have documented a similar lack of relationship between 

basal area and bat detection (Hein et al. 2009). Precipitation often has a negative impact on 

nightly bat activity and detection (Erickson and West 2002, Yates and Muzika 2006, 

Muthersbaugh et al. 2019b), however in this study, I generally found no effect. Bats are known 
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to forage in light rain (Erkert 1982) and only delayed emergence minimally when rain noises 

were played outside roosts (Geipel et al. 2019). Austin et al. (2019) similarly found no 

relationship between precipitation and bat detection, indicating that precipitation may have more 

of an impact on bat activity than presence or detection.  

Consistent with my expectation, date had a significant effect on the probability of bat 

presence throughout the summer survey period. I observed an increase in the probability of big 

brown bat presence later in the summer, peaking in mid- July, which could be consistent with 

successful reproduction and subsequent addition of newly volant juveniles to the landscape (Ford 

et al. 2011, Tomás Nocera et al. 2019) or lactating females increasing localized foraging effort to 

support higher energetic demands of nursing pups (Deeley 2019). There is evidence that big 

brown bats may maintain similar levels of reproductive output post-WNS (Francl et al. 2012) 

and thus pre-WNS trends persist. Conversely, the trend for probability of Indiana bat presence 

was lower in the second half of the summer; however, the overall probability remained relatively 

low throughout the entire survey period. Overall, Indiana bat activity declines after WNS, but no 

changes to the within-summer patterns have been documented between pre- and post-WNS 

acoustic survey datasets in the Northeast (Ford et al. 2011, Nocera et al. 2019). In a post-WNS 

landscape, overall Indiana bat capture rates decline, but the proportion of non-reproductive adult 

female captures increases, perhaps indicating that fewer WNS-affected individuals are able to 

reproduce (Pettit and O’Keefe 2017).  

My results were partially consistent with the hypothesis that Myotis species presence 

would show a negative response to increased years of WNS impact. I documented the majority 

of northern long-eared bats at the two study areas with less than four WNS impact-years. Bat 

populations decline rapidly for two-four years after WNS detection and may stabilize at low 
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levels (Langwig et al. 2012) which supports the accuracy of my WNS impact-year calculation 

and explains the rapid decline in nightly northern long-eared bat presence after between three 

and four WNS impact-years. There was an unexpected small increase in northern long-eared bat 

presence at the higher end of the WNS impact-year scale, potentially explaining why the variable 

was not significant in the overall model. Two of the sites with > 7 WNS impact-years were in 

eastern Virginia, an area with no natural hibernacula to survey and limited WNS documentation 

(White-Nose Syndrome Response Team 2019). The low resolution of data points in central and 

eastern Virginia may have limited my WNS impact interpolation, thus limiting the conclusions. 

However, coastal populations of northern long-eared bats in nearby northeastern North Carolina 

(Grider et al. 2016) and also in coastal Massachusetts (Dowling and O’Dell 2018) continue to 

persist despite documented WNS in those states. Without natural hibernacula close-by, these 

surviving bats overwinter in houses (Dowling and O’Dell 2018) and trees, and with only periodic 

bouts of torpor, leave roosts to forage and have the ability to groom (Hawkins et al. 2017), thus 

limiting WNS exposure and impact. As a result, the WNS impact-years metric may not be as 

relevant in coastal areas where northern long-eared bats may use alternative hibernacula. 

Unexpectedly, I found no relationship between WNS impact and Indiana bat presence. 

This does not align with prior site-specific pre and post-WNS summer studies that show activity 

rate declines in New York through acoustic monitoring (Ford et al. 2011, Tomás Nocera et al. 

2019), and capture rate declines in Wisconsin (Huebschman 2019), Indiana (Pettit and O’Keefe 

2017) and West Virginia (Francl et al. 2012). This discrepancy may be a result of the fact that 

Indiana bats were the least-documented of the three species that I examined and were considered 

rare on the landscape even prior to the advent of WNS. Although Indiana bat winter hibernacula 

are monitored with biennial surveys (USFWS 2009), summer populations are difficult to find, in 
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fact, it is estimated that only 10% of extant maternity colonies relative to known overwintering 

populations have been documented (USFWS 2009). My landscape-scale study may not have 

been detailed or targeted enough to document the association between WNS and summer Indiana 

bat populations that exist at low densities.  

I found that both greater WNS impact-years and percent karst area were associated with a 

higher probability of big brown bat presence. The relationship between my WNS impact metric 

and big brown bat presence is consistent with summer work documenting capture rate increases 

of 17% from pre to 1-year post WNS in West Virginia (Francl et al. 2012) and 12% from pre to 

2-3 years post WNS in Indiana (Pettit and O’Keefe 2017). Big brown bats show a resistance to 

WNS, potentially due to their larger body size and associated higher fat stores (Frank et al. 

2014). It follows that these less-impacted bats would still be prevalent and associated with areas 

with more potential hibernacula if they are not negatively affected by WNS in these areas. Big 

brown bat increases in a post-WNS summer landscape could be tied to a reduction in interspecies 

competition, whereby optimal foraging habitat is more available to the remaining individuals 

(Jachowski et al. 2014a). However, despite an overall increase in big brown bat capture rates, the 

proportion of reproductive females captured decreased post-WNS in Indiana (Pettit and O’Keefe 

2017). Although these data support a broad-scale increase in big brown bat presence post-WNS 

there may be site-specific factors contributing to local population changes.  

Survey Implications 

Overall, I detected far fewer Myotis species than big brown bats, reinforcing the fact that 

remaining individuals in WNS–impacted populations are now even more patchily distributed on 

the landscape. Even with this limited dataset, I documented low WNS impact sites in Kentucky 

and West Virginia with potential residual northern long-eared bat colonies. My WNS impact 

map could serve as a tool to guide future summer monitoring efforts by highlighting those areas 
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with a greater likelihood to host remaining northern long-eared bat populations or at minimum 

provide areas where remaining natural history and ecology information about the species can be 

obtained prior to WNS caused declines (Hyzy et al. in press). Given the rarity of Myotis species 

across the landscape, summer sampling needs to be optimized to maximize chances of detection 

when actually present. Forest-field edge sites are important to include in sampling when the goal 

is to document a wide range of species, such as in the North American Bat Monitoring Program. 

However, when the goal is to document presence or absence of northern long-eared or Indiana 

bats, edge or open sites should be minimized in favor of forested corridors, canopy gaps, and 

riparian corridors. In these forested environments, clutter may not be a determinant for 

documenting presence. Once researchers follow best practices for deploying acoustic detectors 

and avoid areas of dense clutter that would affect recordings, land cover or other larger scale 

predictors may be more relevant.    

In light of my results, current standards that allow up to 30 minutes of rain (USFWS 

2019a) for Indiana bat presence surveys or little or no rain for North American Bat Monitoring 

Program surveys (Loeb et al. 2015) may be conservative, but undoubtedly help minimize the risk 

of false negative results. Longer-term surveys with many nights at each site may not need the 

same level of caution. Additionally, sampling for summer presence as late as August 15th as 

accepted in current standards may be too late for some areas where maternity colony formation, 

parturition, juvenile volancy and colony disaggregation occur earlier rather than later. Although I 

had a small number of detections, the decline in probability of nightly Indiana bat presence later 

in the summer aligns with other work (Francl et al. 2012, Pettit and O’Keefe 2017), possibly 

documenting a shift in reproduction that could shift the ideal survey window earlier. From my 

results, for example, ending the survey period at the end of July may have conveyed the same 
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information as continuing work through mid-August. This study provides some support for my 

WNS impact - year metric, but I was limited by only having sites with three to eight impact-

years and already declining Myotis populations. Once the four WNS impact-year threshold was 

crossed, there was no discernable effect of WNS impact-years on nightly northern long-eared bat 

presence. More sites or sites in non-WNS impacted areas could have increased robustness and 

potentially improved model performance. Additionally, this study adds more evidence to support 

the conclusion that northern long-eared bats in coastal areas without traditional hibernacula do 

not follow the expected population decline patterns. More year-round study is needed in coastal 

areas without associated karst landscapes to understand WNS-impacted populations. Critically, 

more monitoring is needed prior to WNS impacts as the Pd fungus spreads west across North 

America. 
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Table 1: Variables used in candidate models for bat presence from 2,430 site-nights at 30 

acoustic sampling sites across Virginia, West Virginia, Ohio, and Kentucky, May - August 2017. 

See text for complete study site descriptions. 

Variable Abbreviation Description Type 

Day number date Day of the year Continuous 

Precipitation precip Binary nightly precipitation Binary 

Basal area basal Basal area around detector in m2/ha Continuous 

Canopy closure canopy % of sky covered by overstory 

vegetation 

Continuous 

Land cover type  land Forest-field edge (E), forest corridor (F), 

or riparian corridor (R) 

Categorical 

WNS impact-years 

in 50 km buffer 

w50 Mean WNS impact-years in 50 km 

buffer around study area 

Continuous 

WNS impact-years 

in 100 km buffer 

w100 Mean WNS impact-years in 100 km 

buffer around study area 

Continuous 

WNS impact-years 

in 150 km buffer 

w150 Mean WNS impact-years in 150 km 

buffer around study area 

Continuous 

Karst area in 50 km 

buffer 

k50 % of 50 km buffer with karst topography Continuous 

Karst area in 100 km 

buffer 

k100 % of 100 km buffer with karst 

topography 

Continuous 

Karst area in 150 km 

buffer 

k150 % of 150 km buffer with karst 

topography 

Continuous 

Study site site One of the 30 acoustic detector sites Categorical 

Study area area One of the 10 study areas Categorical 
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Table 2. Total number of call files (calls), recorded and number of nights with presence (Nights) 

for big brown (Eptesicus fuscus), Indiana (Myotis sodalis), and northern long-eared (Myotis 

septentrionalis) bats from 2,430 site-nights at 30 acoustic sampling sites across Virginia, West 

Virginia, Ohio, and Kentucky, May - August 2017. See text for complete study site descriptions. 

Study Area Sites 
Sample 

Nights 
Big brown Indiana 

Northern long-

eared 

Calls Nights Calls Nights Calls Nights 

MCB Quantico 3 178 5295 111 NA NA 129 28 

Fort A.P. Hill 3 251 1771 77 465 22 88 0 

Canaan NWR 3 273 1224 77 174 45 101 50 

Fernow 3 276 6126 127 257 32 26 5 

The Jug WMA 3 251 1555 64 195 11 2303 133 

Edge of 

Appalachia 3 209 428 25 70 4 84 13 

Fort Knox 3 251 23307 167 92 4 23 2 

Riveroak Tract 3 249 719 52 202 15 13 4 

Clarks River 

NWR 3 246 369 16 471 27 149 11 

Ballard WMA 3 246 114 9 1852 94 762 75 
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Table 3. Competing models predicting Indiana bat (Myotis sodalis), northern long-eared bat 

(Myotis septentrionalis), and big brown bat (Eptesicus fuscus) presence from 2,430 site-nights at 

30 acoustic sampling sites across Virginia, West Virginia, Ohio, and Kentucky, May - August 

2017. See text for complete variable descriptions. 

Model K AICc ∆AICc ωi 

Indiana bat     

 date + date2 + date3 + land 8 1260.59 0.00 0.14 

 date + date2 + date3 6 1260.85 0.25 0.12 

 date + date2 + date3 + basal  7 1261.43 0.84 0.09 

 date + date2 + date3 + land + precip 9 1261.93 1.33 0.07 

 date + date2 + date3 + precip 7 1262.18 1.58 0.06 

 date + date2 + date3 + land + basal  9 1262.39 1.80 0.06 

 date + date2 + date3 +  land + k150 9 1262.48 1.89 0.05 

Northern long-eared bat     

 date + land 6 1173.88 0.00 0.14 

 date + land + w50  7 1173.92 0.04 0.13 

 date + land + w50 + k50 8 1174.10 0.22 0.12 

 date + land + basal 7 1174.26 0.38 0.11 

 date + land + k50 7 1174.66 0.78 0.09 

 date + land + w50 + basal  8 1174.81 0.93 0.09 

 date + land + precip 7 1174.95 1.07 0.08 

 date + land + w50 + precip 8 1175.00 1.12 0.08 

 date + land + basal + precip 8 1175.33 1.45 0.07 

Big brown bat     

 date + date2 + date3 + land + w150 + k150 10 2228.46 0.00 0.32 

 

date + date2 + date3 + land + w150 + k150 

+ precip 11 2229.29 0.83 0.21 

 

date + date2 + date3 + land + w150 + k150 

+ basal  11 2230.03 1.57 0.15 
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Table 4. Estimates and 95% confidence intervals (CI) from the best supported two models 

predicting nightly Indiana bat (Myotis sodalis) presence from 2,430 site-nights at 30 acoustic 

sampling sites across Virginia, West Virginia, Ohio, and Kentucky, May - August 2017. See text 

for complete variable descriptions. 

Model and variables Estimate Lower CI Upper CI 

Date only    

 (Intercept)  -2.97 -3.75 -2.19 

 Date -0.72 -1.08 -0.37 

 Date2 0.10 -0.06 0.26 

 Date3 0.25 0.08 0.42 

Date and land cover type    

 (Intercept)  -3.61 -4.64 -2.59 

 Date -0.72 -1.08 -0.36 

 Date2 0.10 -0.06 0.26 

 Date3 0.25 0.08 0.42 

 forested 0.72 -0.42 1.86 

  riparian 1.30 0.17 2.43 
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Table 5. Estimates and 95% confidence intervals (CI) from best supported two models predicting 

nightly northern long-eared bat (Myotis septentrionalis) presence from 2,430 site-nights at 30 

acoustic sampling sites across Virginia, West Virginia, Ohio, and Kentucky, May- August 2017. 

See text for complete variable descriptions. 

Model and variables Estimate Lower CI Upper CI 

Date and land cover    

 (Intercept) -5.55 -7.33 -3.77 

 date -0.12 -0.28 0.03 

 forested 3.28 2.03 4.53 

 riparian 2.63 1.39 3.87 

Date, land cover and WNS    

 (Intercept) -5.55 -7.24 -3.86 

 date -0.12 -0.28 0.03 

 forested 3.28 2.03 4.52 

 riparian 2.63 1.40 3.86 

  w50 -0.98 -2.32 0.36 

 

 

 

 

 

 

Table 6. Estimates and 95% confidence intervals (CI) from best supported model predicting 

nightly big brown bat (Eptesicus fuscus) presence from 2,430 site-nights at 30 acoustic sampling 

sites across Virginia, West Virginia, Ohio, and Kentucky, May- August 2017. See text for 

complete variable descriptions. 

Variable Estimate Lower CI Upper CI 

(Intercept) -0.30 -0.97 0.38 

date 0.56 0.30 0.81 

date2 -0.05 -0.16 0.07 

date3 -0.23 -0.35 -0.11 

forested -1.72 -2.56 -0.88 

riparian -0.89 -1.71 -0.06 

w150 1.26 0.71 1.80 

k150 0.83 0.29 1.37 
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 Figure 1. Location of 10 bat acoustic sampling study areas and associated U.S. EPA level III 

ecoregions, May-August 2017. Study area abbreviations are as follows: BALL, Ballard 

WMA; CLRI, Clarks River NWR; RIOA, Riveroak Tract; KNOX, Fort Knox; EDGE; Edge 

of Appalachia Preserve; TJUG, The Jug WMA; FERN, Fernow Experimental Forest; CANA, 

Canaan Valley NWR; FAPH, Fort A.P. Hill; MCBQ, Marine Corps Base Quantico.  
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Figure 2. Interpolated white-nose syndrome (WNS) impact-year metric generated using the 

natural neighbor raster interpolation tool (ESRI, Redlands, CA). County-level WNS detection 

data accessed from the U.S. Geological Survey, Pennsylvania Game Commission, and 

https://www.whitenosesyndrome.org. WNS impact-years calculated based on summer 2017 

monitoring.  
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Figure 3. Modeled effect of date on nightly Indiana bat (Myotis sodalis) presence with 95% 

confidence intervals from acoustic sampling with 2,430 site-nights at 30 sites across Virginia, 

West Virginia, Ohio, and Kentucky, May - August 2017. 
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Figure 4. Relationship between the proportion of nights with northern long-eared bat (Myotis 

septentrionalis) presence and number of WNS impact-years from 2,430 site-nights at 30 acoustic 

sampling sites across Virginia, West Virginia, Ohio, and Kentucky, May - August 2017. 
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Figure 5. Partial effect plot of land cover type on the predicted probability of nightly northern 

long-eared bat (Myotis septentrionalis) presence with 95% confidence intervals from 2,430 site-

nights at 30 acoustic sampling sites across Virginia, West Virginia, Ohio, and Kentucky, May - 

August 2017. 
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Figure 6. Partial effect plot of date and land cover type on the predicted probability of nightly big 

brown bat (Eptesicus fuscus) presence with 95% confidence intervals from 2,430 site-nights at 

30 acoustic sampling sites across Virginia, West Virginia, Ohio, and Kentucky, May - August 

2017. 
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Chapter 2: Bat Acoustic Detector Type Influences Recorded Activity Rates and Detection 

Probabilities 

 

Abstract 

Bat populations across North America currently are threatened by the devastating effects 

of both White-nose syndrome and wind energy development. Although there are a plethora of 

available full spectrum and zero-crossing acoustic bat detectors to monitor these declining 

populations, performance comparisons and the implications to managers thereof are limited. To 

assess this, I compared five types of acoustic detectors (Pettersson D500X, Anabat Swift, and 

Wildlife Acoustics SM3BAT in full spectrum and Wildlife Acoustics SM3BAT and Anabat SD2 

in zero-crossing) during the summer of 2017 at Fort Knox, Kentucky where the endangered 

Indiana bat (Myotis sodalis), endangered gray bat (M. griscesens) and threatened northern long-

eared bat (M. septentrionalis) occur. I operated all detector types simultaneously at eight sites for 

799 detector nights, identified all acoustic data to species or phonic group using Kaleidoscope 

Pro, and compared all detectors with respect to detection probability and recorded nightly 

activity. I found that detector type had a significant effect on detection probabilities for all 

species modeled, however, for common bat species, i.e., eastern red (Lasiurus borealis) and big 

brown (Eptesicus fuscus) bats, detectors reached the same 90% detection probability threshold 

within 2-3 nights of sampling. However, I observed that this level of agreement dropped when 

comparing detection probability for the more rare Indiana bat. Similarly, I found the highest 

levels of disagreement for nightly activity of high-frequency bats, whereas mid- and low-

frequency bat calls showed moderate levels of disagreement. My findings suggest that each of 

the detector types tested would suffice for most research and monitoring activities, but 

standardization of detector type within the scope of a project or study should be encouraged. 
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Introduction 

 Bat populations across the United States are currently facing extreme population declines 

due to the introduction and spread of white-nose syndrome (WNS) and the impacts of wind-

energy development. Mist-netting efficiency has declined in WNS-impacted regions, and 

acoustic detectors use is on the rise (Robbins et al. 2008, Niver et al. 2014). Acoustic monitoring 

is used for bat surveys investigating research questions such as  distributional work, foraging 

ecology, habitat associations, responses to land management, and the impacts from WNS as well 

as wind energy development (Johnson et al. 2011, Erickson and West 2003, Austin et al. 2018, 

Ford et al. 2011, Millon et al. 2018, Menzel et al. 2005b). In response to increasing use of 

acoustic detectors and improved analytical capabilities due to automated analysis and 

identification software, the U.S. Fish and Wildlife Service (USFWS) has developed acoustic 

monitoring guidelines to determine presence or absence of two federally listed species: the 

endangered Indiana bat (Myotis sodalis) and the threatened northern long-eared bat (M. 

septentrionalis) using zero-crossing (ZC) or full spectrum (FS) equipment (USFWS 2019a). 

Likewise, the North American Bat Monitoring Program (NABat) provides protocols to 

acoustically monitor the distribution and abundance of bat populations across the U.S. and 

Canada with ZC or FS detectors via mobile transect or passive survey approaches (Loeb et al. 

2015).  

The variety of acoustic detector types available to users has grown concomitant with the 

increase in acoustic monitoring. For example, NABat provides protocols for using three brands 

and 11 different models of acoustic detectors (Reichert et al. 2017). Recordings from acoustic 

detectors may differ due to hardware, i.e., type of microphone, or due to programming or 

technical differences affecting sensitivity (Waters and Walsh 1994, Fenton et al. 2001, Limpens 
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and McCracken 2002). For example, the ZC detector Anabat SD2 (Titley Scientific, Columbia, 

MO) detector uses a single setting to determine sensitivity and has options for different 

frequency division ratios, although using the CFCread program (Titley Scientific, Columbia, 

MO) users can define the maximum time between calls, smooth parameter, and the minimum 

line length (Broken-Brow 2018). In contrast, the FS Pettersson D500X (Pettersson Elektronik 

AB, Uppsala, Sweden), has two options for ultrasonic sampling frequencies, as well as options to 

set pre-trigger times, recording length, a high pass filter, sampling rate, and trigger sensitivity 

levels (D500X user’s manual 2017).  

Regardless of study animal, understanding differences between observation methods is a 

common need. Often, researchers examine differences in observation methods in terms of 

variation in detection probability. Defined as the probability of detecting an animal given that it 

is present in the study area, detection probability is used in occupancy modeling, survival 

modeling, and abundance estimation to account for imperfect detection (MacKenzie et al. 2002). 

Studies across taxa, from salamanders, to minnows, to mammals, have demonstrated that 

different observation methods can result in widely varying detection probabilities, with some 

differences as great as 80% (Otto and Roloff 2011, Pregler et al. 2015, Moore et al. 2017, 

O’Connor et al. 2017). Relative to bat monitoring, research has shown that passive acoustic 

monitoring provides higher detection probabilities than active monitoring in the post-WNS 

environment (Coleman et al. 2014, Teets et al. 2019) and using two detectors at a study site can 

improve detection probabilities relative to use of a single detector (Duchamp et al. 2006). In 

controlled laboratory settings with synthetic ultrasonic calls, detector brands varied in their 

abilities to record similar numbers of call files based on the distance, angle, and frequency of the 

sound (Adams et al. 2012, Sprong et al. 2012). Acoustic detectors often record varying numbers 
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and quality of call files of free-flying bats (Waters and Walsh 1994, Adams et al. 2012, Kaiser 

and O’Keefe 2015). However, even the most recent studies comparing multiple detector types 

(Adams et al. 2012, Kaiser and O’Keefe 2015) have not included detectors commercially 

available in the past five years, leaving a critical data gap for managers and researchers.  

In addition to detector type effects, bat echolocation frequencies and environmental 

variables can affect bat detectability and recorded nightly activity. High-frequency echolocation 

calls attenuate at a higher rate than lower frequency calls as they pass through the atmosphere 

(Lawrence and Simmons 1982), and accordingly, high-frequency calls are only recorded when 

bats are relatively close to microphones (Adams et al. 2012). Precipitation can negatively affect 

echolocation feedback when bats are foraging or navigating through increased attenuation 

(Griffin 1971) and bats are less likely to switch roosts on nights with increasing rain (Patriquin et 

al. 2016). These negative impacts and others can result in an overall decrease in bat activity on 

rainy nights (Erickson and West 2002, Muthersbaugh et al. 2019a) or a negative relationship 

between precipitation and detection probability (Yates and Muzika 2006). Wind speed also can 

decrease bat presence and lower activity rates due to decreases in foraging efficiency and similar 

energetic costs to flight (Weller and Baldwin 2012, Muthersbaugh et al. 2019a).  

Objectives 

My objective was to evaluate how acoustic detector type influences bat detection 

probability and recorded bat nightly activity to inform future monitoring guidelines and provide 

a resource to examine results across detector types. I additionally examined how nightly wind 

and precipitation affects both detection probability and recorded nightly activity. I included a 

variety of older and newer bat acoustic detector models to examine how or if results from past 

work can be compared to more current work with newer acoustic detector models. I included bat 

species and phonic groups that covered the spectrum of common eastern U.S. bat species to 
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examine if either detection probability or activity varied by echolocation frequency. I 

hypothesized that detector type would have a significant impact on both detection probability 

and recorded bat nightly activity. However, I expected that detectors would reach the same 

detection probability with cumulative survey nights. I hypothesized that nightly wind and 

precipitation would have a negative effect on both detection probability and nightly activity. 

Lastly, I hypothesized that nightly activity of high-frequency bat calls would vary the most 

among detectors due to attenuation.  

Methods 

Study Area 

I conducted my study at Fort Knox, an U.S. Army military reservation of approximately 

44,000 ha located in Meade, Bullitt, and Hardin counties in north-central Kentucky. The Ohio 

River borders the reservation to the north, with associated midwestern/mid-south bottomland 

hardwood forest types (Cranfill 1991) and beaver (Castor canadensis) ponds. In the upland 

areas, karst geology with abundant cave resources underlie a western mixed-mesophytic forest 

type (Dyer 2006). Depending on site quality and past land use, common overstory tree species 

include white oak (Quercus alba), black oak (Q. velutina), red oak (Q. rubra), shagbark hickory 

(Carya ovata),  sugar maple (Acer saccharum), yellow poplar (Liriodendron tulipifera), white 

ash (Fraxinus americana), and American beech (Fagus grandifolia) (Cranfill 1991).  

Data Collection 

I acoustically surveyed bats at Fort Knox from May 23 - August 16 2017 during the 

USFWS Indiana bat summer survey sampling period (USFWS 2019a). To test for differences 

among detector types, I operated four different detector models, the Song Meter SM3BAT 

(SM3BAT) (Wildlife Acoustics Inc., Maynard, MA), Pettersson D500X, AnaBat SD2 (SD2), 

and AnaBat Swift (Swift) (Titley Scientific, Columbia, MO) in the field at nine different sites. In 
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total, I had five unique detector model/recording style pairs as the Song Meter SM3BAT can 

record in both FS and ZC file types simultaneously and independently. At each site, I deployed 

all four detectors simultaneously to record free flying bat echolocation calls for three to four 

weeks to encompass the eight rain-free nights required in Indiana bat survey protocols (USFWS 

2019a) and to mimic the longer passive deployments common in more recent studies (Grider et 

al. 2016, Smith and McWilliams 2016, Muthersbaugh et al. 2019a, b). I rotated the three 

detector-comparison groups among sites every three to four weeks resulting in a total of nine 

sampling locations over the whole summer at Fort Knox. I chose sampling locations based on 

range accessibility and followed recommended guidelines to ensure sites were suitable for 

recording high-quality bat calls (i.e., minimal vegetation or other obstructions near the 

microphone and distant from known day-roosts; Loeb et al. 2015, USFWS 2019a).  

I based the deployment protocol for each type of detector (Table 7) on methods described 

in literature and/or manufacturer recommendations (Hourigan and Corben 2012, Loeb et al. 

2015, Reichert et al. 2017, D500X user’s manual 2017, Song Meter SM3BAT bioacoustics 

recorder user guide 2018, Broken-Brow 2018). I waterproofed SD2 units using plastic boxes 

with polyvinyl chloride tubes attached and placed on 1.5 m tripods with a 45⁰ angle (Britzke et 

al. 2010). I attached all other detector types to trees and placed all omnidirectional, weather-

proof microphones away from clutter, elevated on 3.5 m poles, and positioned in the same 

direction. I deployed omnidirectional microphones within 0.5 m of each other and randomly 

chose their positions relative to each other at each site. I used eight internal AA batteries to 

power Swift detectors, and used external power to ensure one month of continued monitoring for 

all other detectors. At sites with enough solar exposure, I used one 30-watt solar panel (Solartech 

Power, Inc. Ontario, CA) and three 12 volt, 12 amp-hour batteries to continuously power the 
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SM3BAT, SD2 and D500x. At sites with limited solar exposure, I used 12 volt, 36 amp-hour 

batteries to power the three detectors and swapped out recharged batteries between month-long 

deployments. I programmed detectors to record nightly from 30 minutes before sunset to 30 

minutes after sunrise. Because SD2 detectors do not have a variable schedule, I set those to 

record according to the longest night of the survey period. I used Meteorological Terminal 

Aviation Routine records from the Fort Knox airport station 

(https://mesonet.agron.iastate.edu/request/download.phtml) to access hourly weather data. From 

the downloaded hourly data, I determined average nightly wind speeds and represented nightly 

precipitation as the proportion of nightly hours with measurable precipitation (Smith and 

McWilliams 2016).  

Data analysis 

Following summer recording and compilation of each full site/detector type dataset, I 

identified bat calls to species using Kaleidoscope version 5.1.0 (Wildlife Acoustics, Maynard, 

Massachusetts) and classifier 4.2.0 at the “0” setting as recommended by USFWS (USFWS 

2019b). I used Kaleidoscope because it is the only USFWS approved bat acoustic identification 

program that can analyze both full spectrum and zero-crossing recordings. When analyzing calls, 

I included species based on prior documentation through county lists for Kentucky and available 

data (Silvis et al. 2012, Kentucky Department of Fish and Wildlife 2019). To determine nightly 

species presence to use in detection probability modeling, I used the threshold set in USFWS 

Indiana and northern long-eared bat survey guidelines and defined probable presence when 

identified by the software at a site-night maximum likelihood estimate p-value < 0.05  (USFWS 

2019a). Because bat acoustic identification programs may incorrectly identify bat species for 

individual call files (Lemen et al. 2015, Russo and Voigt 2016, Nocera et al. 2019) and to 

minimize the effects of individual call file misidentification on comparisons among detectors, I 
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also grouped activity data into three species groups: high, medium, and low frequency phonics 

groups (Kaiser and O’Keefe 2015) for a broader examination of detector comparison. The high 

frequency group included all Myotis species: northern long-eared, Indiana, gray (M. grisescens), 

eastern small-footed (M. leibii), and little brown (M. lucifugus). The mid-frequency group 

included eastern red, evening (Nycticeius humeralis), and tri-colored bats (Perimyotis subflavus). 

The low frequency group included big brown (Eptesicus fuscus), hoary (Lasiurus cinereus), and 

silver-haired bats (Lasionycteris noctivagans). I defined nightly activity as the number of call 

files per species group, per night.  

 To examine potential differences in detection probability between acoustic detectors, I 

created single-season, single-species, occupancy models for three commonly detected bat species 

from different phonic groups. I chose the Indiana bat to represent high frequency calls, the 

eastern red bat to represent mid-frequency calls, and the big brown bat to represent low 

frequency calls. Each phonic group represents a different degree of presumed detectability. I 

limited analysis to sites with detections and assumed species presence (i.e., occupancy = 1) at 

each site if at least one detector documented presence. I assessed potential correlation among 

predictors (Table 8) in both detection probability and activity models using R package corrplot 

(Wei and Simko 2017) to ensure that highly correlated (r ≥0.6) variables were not included in the 

same model. I centered and scaled all continuous covariates prior to analysis (Schielzeth 2010). I 

used the SD2 as the reference in both detection probability and recorded nightly activity 

modeling to enable comparisons between newer acoustic detectors and the older model used in 

most early passive bat acoustic studies. 

I developed seven a priori detection probability models for each bat species with weather 

variables and detector types to address hypotheses about factors that might impact acoustic 
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detection probabilities. I treated each site-detector type combination as a unique detection 

history, treated detector type as a site-level covariate and nightly weather as an observation level 

covariate. I built models in package unmarked (Fiske and Chandler 2011) in program R version 

3.6.0 (R Core Team 2019) and used an information theoretic approach to compare models, with 

Akaike's Information Criterion (AIC) corrected for small sample size and considered those 

competing models with a ∆AICc < 2 (Burnham and Anderson 2002). When developing the 

USFWS Indiana bat survey design, researchers examined the level of survey effort needed to 

reach 90% confidence in any negative result (Niver et al. 2014). I used detection probabilities 

predicted from best supported models for each species to generate cumulative detection curves 

(Moore et al. 2017) and determined how many sample nights each detector type needed to reach 

the 90% detection probability threshold.  

To examine potential differences in recorded nightly bat activity between acoustic 

detectors, I developed a set of a priori models including weather variables, day of the year, and 

detector type to represent hypotheses about what might influence phonic-group recordings. After 

testing for overdispersion, I modeled nightly activity separately for each phonic group using 

negative binomial generalized linear mixed models (GLMMs) in program R version 3.6.0 (R 

Core Team 2019) with package glmmTMB (Brooks et al. 2017) with a random effect of site. I 

used an information theoretic approach to compare models, with Akaike's Information Criterion 

(AIC) corrected for small sample size (AICc from package bbmle, Bolker 2017; Burnham and 

Anderson 2002) and considered those best supported models with a ∆AICc < 2. If detector type 

was significant in best supported models, I conducted post-hoc pairwise comparisons of 

estimated marginal means using a Tukey’s test adjusted for multiple comparisons with R 

package emmeans (Lenth et al. 2019). 
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Results  

During the summer of 2017, I sample nine sites, but removed one because of high 

volumes of insect and other extraneous ultrasonic noise, leaving eight sites with 799 detector 

site-nights (Table 9). Detector failures and full SD cards led to uneven sampling periods for 

detectors. Kaleidoscope identified 82,625 call files to species across all recording types. I 

documented big brown and eastern red bat presence at all eight sites. I detected Indiana bats at 

five out of the eight sites at Fort Knox, and restricted my detection probability analysis to those 

five sites to avoid introducing a negative bias in the data.  

Detection probability 

Although there were multiple competing models within ∆AICc < 2 for both Indiana and 

eastern red bats, detector type alone was the most parsimonious model (Table 10). Additionally, 

for Indiana and eastern red bats, detection models including only weather variables were no 

better than the null model. For Indiana bats, all detector types had significantly higher detection 

probabilities than the SD2 (Table 11). Only the SM3BAT in FS had significant higher detection 

probabilities of eastern red bats relative to the SD2 (Table 12). In contrast, wind, precipitation, 

and detector type were significant factors influencing big brown bat detection probability; both 

wind and precipitation had negative associations with small effect sizes. All detector types had 

significantly higher big brown bat detection probabilities compared to the SD2 (Table 13). The 

differences in cumulative detection probabilities among detector types were greatest for the 

Indiana bat; the number of survey nights needed to reach a 90% detection probability threshold 

ranged from two to 15 (Figure 7). Detection probabilities for the eastern red bat varied the least; 

all detectors reached a 90% threshold in two to three nights (Figure 8). Although the SD2 had a 

lower big brown bat detection probability relative to the other four detector types, the difference 
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was not as large compared to the Indiana bat results and all detectors reached 90% detection 

probability within four nights (Figure 9). 

Call file comparison  

 Detector type was a significant factor in predicting nightly recorded bat activity for all 

three phonic groups. For high-frequency bats, the best supported model included detector type, 

average nightly wind speed and day of the year (Table 14). All three variables were significant, 

and both date and wind had positive relationships with nightly activity, although the effect size 

for wind was small (Table 15). The SM3BAT in FS recorded significantly higher nightly activity 

compared to the SD2, whereas the other three detector styles recorded significantly lower nightly 

activity. Post-hoc pairwise comparisons showed that the Swift did not record significantly 

different high-frequency bat activity levels from the SM3BAT in ZC, but that all other pairwise 

comparisons were significantly different (Figure 10). 

For mid-frequency bats, there were five competing models, although the detector type 

and wind model was the most parsimonious of the competing models (Table 14). Detector type 

and wind were the only significant variables and wind had a significant positive relationship with 

nightly activity, although again the effect size was small (Table 16). The SM3BAT in both FS 

and ZC recorded significantly more calls than the SD2, but the D500X and Swift showed no 

significant difference from the SD2 reference. Post-hoc pairwise comparisons showed the 

SM3BAT in FS recorded significantly higher activity levels from all other detectors and the 

SM3BAT in ZC recorded significantly higher activity levels than the SD2, but all other 

comparisons were not significantly different (Figure 10). 

 There were three competing models predicting low-frequency bat activity, and detector 

type alone was the most parsimonious competing model (Table 14). Although both date and 

wind were in competing models, neither variable had a significant effect on low-frequency bat 
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activity (Table 17). There was no significant difference in nightly activity between the SM3BAT 

in FS and the SD2, but the SM3BAT in ZC, the D500X and the Swift all recorded significantly 

fewer low-frequency nightly call files than the SD2. Post-hoc pairwise comparisons showed that 

the SM3BAT in FS recorded significantly higher activity levels from all other detectors except 

the SD2, and the SD2 recorded significantly higher activity levels than the Swift and D500x, but 

all other comparisons were not significantly different (Figure 10). 

Discussion  

This study allowed me to compare a novel range of newer and older bat detector models 

in the field with both FS and ZC recording styles and examine how they performed with respect 

to detection probability and recorded nightly activity. Consistent with my expectations, detector 

type significantly influenced both detection probability and recorded nightly bat activity for all 

species and phonic groups. Although I found differences in the number of nights acoustic 

detectors needed to reach a 90% detection probability threshold, taken as a group, there were 

more similarities than differences. For example, the SM3BAT ZC and the Swift FS were 

consistently similar in both nightly call file numbers and detection probability, despite different 

manufacturers and recording styles. However, I found the greatest differences among detectors 

when examining high-frequency recorded bat activity and detection probability for Indiana bats. 

 Although all four detector types varied in detection probability relative to the SD2, with 

multiple sampling nights the discrepancies lessened. For the relatively common eastern red and 

big brown bats, all detector types reached the 90% detection probability threshold within two or 

three nights. However, with the more rare Indiana bat, there was greater variability in the 

duration of nights detectors needed to reach the 90% detection probability threshold. This result 

aligned with my hypothesis that after multiple sample nights, detectors would reach the same 

detection probability. O’Connor et al. (2017) found similar results in that camera arrays varying 
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from 2-10 detectors reached the same threshold after multiple survey nights, although the 

number of surveys needed to reach the same detection probability varied by the detectability of 

the animal surveyed, with harder to detect Virginia opossums (Didelphis virginiana) needing 

more survey nights than white-tailed deer (Odocoileus virginianus). Similarly, Moore et al. 

(2017) found that although electrofishing had higher detection probabilities than minnow traps, 

the two methods reached the same 95% detection probability after six survey attempts.  

Consistent with my expectations, the high-frequency phonic group showed the greatest 

difference in pairwise comparisons of recorded activity between detectors. High-frequency 

sounds attenuate through the atmosphere (Lawrence and Simmons 1982) and the greatest 

differences between detectors are often tied to high- frequency calls (Adams et al. 2012, Kaiser 

and O’Keefe 2015). However, these differences could be due to even minor differences in 

microphone placement: Weller and Zabel (2002) found that relatively small variance in 

microphone positioning led to significant differences in recorded bat activity and call quality at 

the same survey site. Although recorded nightly activity from mid- and low-frequency phonic 

groups showed more agreement, there were still significant differences. Such differences for 

monitoring low-frequency bats might be a concern to managers, as species such as the hoary bat 

are most impacted by wind energy and therefore are a highlighted species to monitor (Arnett and 

Baerwald 2013). Echolocation activity often is used to provide a more nuanced insight into bat 

associations than presence-absence studies, including examining responses to land management, 

disturbance, or weather associations (Menzel et al. 2005b, Johnson et al. 2008, Austin et al. 

2018, Muthersbaugh et al. 2019a). Habitat, habitat and/or specific species use distinctions could 

be lost if multiple detector types are used in a study due to differences in detector recording 

capabilities, thereby producing biased or erroneous conclusions. 
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Unexpectedly, nightly precipitation and wind had a statistically significant negative effect 

only on detection probability of big brown bats. In all other models, weather variables had either 

no significant effect or a small positive effect on both detection probability and nightly activity. 

However, average nightly wind speeds recorded at Fort Knox rarely exceeded the 10 mph 

threshold that may be indicative of when wind has a negative impact on activity (Arnett et al. 

2011). Similarly, very few nights during my survey had precipitation recorded for more than 

80% of the night hours and most nights recorded with rain had less than 35% of the night hours. 

Light rain has less effect on bat foraging activity (Erkert 1982), and other studies examining 

detection probability found no significant effect of precipitation (Austin et al. 2019, Teets et al. 

2019). Thus, weather may only be a concern in bat acoustic monitoring when wind or rain 

surpass biologically or acoustically relevant thresholds. 

Survey implications 

Although there was significant variation among detectors with respect to recorded nightly 

activity, all five detector types reached the same 90% detection probability threshold within five 

nights for all three species analyzed, with the exception of the SD2 for Indiana bats. My results 

indicate that most detectors would be adequate for use in USFWS presence/absence surveys for 

Indiana and potentially for northern long-eared bats (USFWS 2019a). However, the low SD2 

Indiana bat detection probability is of concern for monitoring efforts going forward and warrants 

further examination in that historic data collected with this equipment may be biased towards 

false negative findings. 

Regardless of detector type, no detector inerrantly records all bat echolocation calls 

within its putative sampling cone. Adams et al. (2012) found that even the best-performing 

detector only recorded 25% of calls in a lab-based playback experiment. When comparing results 

from two of same model of detector deployed 10m apart in the field, Kubista and Bruckner 
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(2017) observed differences in in bat species richness and activity. Even when using the same 

detector type, surveyors need to sample multiple sites (Deeley 2019) and across multiple nights 

(Law et al. 2015). Weather variables may be important to take into account when conducting 

short acoustic deployments or surveying to determine presence or absence of a federally listed 

species (Loeb et al. 2015, USFWS 2019a), however my results show that multi-week or month 

surveys may not need the same level of  concern.  
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Table 7. Recording settings for bat acoustic detectors used when comparing detector types at 

Fort Knox, KY, May-August 2017.  

Setting 
Song Meter 

SM3BAT FS 

Song Meter 

SM3BAT ZC 

Pettersson 

D500X FS 

AnaBat 

SD2 ZC 

AnaBat Swift 

FS 

Sampling Rate 384 kHz NA 500 kHz NA 320 kHz 

Division Ratio -- 8 -- 8 -- 

Gain Automatic Automatic 80 6 -- 

Min frequency 16 kHz 16 kHz -- -- 16 kHz 

Max frequency 192 kHz 192 kHz -- -- 250 kHz 

High pass filter 16 kHz 16 kHz ON -- -- 

Trigger level Automatic Automatic 80 -- Sensitivity: 12 

Trigger min Dmin: 1.5 ms Dmin: 1.5 ms TS: Med -- 1 ms 

Trigger max Dmax: off Dmax: off -- -- -- 

Recording 

window 

Trgwin: 3 s Trgwin: 3 s LEN: 3 s -- 3 s 

Max file time Trgmax: 15 s Trgmax: 15 s  -- 15 s 

File interval -- -- 0 -- -- 

Pretrigger -- -- OFF -- -- 

Auto Record -- -- YES -- -- 

Installed 

memory capacity 

128 GB 8 GB 128 GB 4 GB 128 GB 

 

 

 

 

Table 8. Variables used in candidate models for nightly bat activity and detection probability 

from acoustic sampling sites at Fort Knox, KY, May- August 2017. Date only used in bat 

activity models.  

Variable Description  Type 

Wind Mean nightly wind speed Continuous 

Precipitation Proportion of night hours with measureable precipitation Continuous 

Detector Type of acoustic detector and recording method Categorical 

Site One of nine  Categorical 

Date Day of the year Continuous 
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Table 9. Summary of data collected by five bat acoustic detector- recording style combinations 

including total number of number of nights with presence for Indiana (Myotis sodalis; MYSO), 

eastern red (Lasiurus borealis; LABO) and big brown (Eptesicus fuscus; EPFU) bats and total 

call files for high-, mid-, and low-frequency phonic groups from acoustic sampling sites at Fort 

Knox, KY, May- August 2017. 

      Nights with presence Number of call files 

Detector Sites Nights MYSO LABO EPFU High Mid Low 

Anabat SD2 6 153 13 102 56 4077 4236 6047 

SM3BAT FS 8 161 65 139 138 5145 9997 13561 

SM3BAT ZC 8 161 42 99 117 2168 4465 8392 

D500X 6 107 26 68 62 1065 3793 2156 

Anabat Swift 8 217 52 132 146 2440 6174 8909 
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Table 10. Rankings of single-season occupancy models predicting Indiana bat (Myotis sodalis), 

eastern red bat (Lasiurus borealis), and big brown bat (Eptesicus fuscus) detection probability 

from eight acoustic monitoring sites with 799 detector nights at Fort Knox, KY, May- August 

2017. 

Model K AICc ∆AICc ωi 

Indiana bat     

 Detector + Wind 7 565.32 0.00 0.40 

 Detector 6 565.75 0.43 0.33 

 Detector + Precipitation + Wind  8 567.31 1.99 0.15 

 Detector + Precipitation 7 567.75 2.43 0.12 

 Null 2 643.60 78.28 0.00 

 Wind 3 644.74 79.42 0.00 

 Precipitation 3 645.50 80.18 0.00 

Eastern red bat     

 Detector 6 960.38 0.00 0.31 

 Detector + Wind 7 960.54 0.16 0.29 

 Detector + Precipitation 7 961.00 0.62 0.23 

 Detector + Precipitation + Wind 8 961.53 1.15 0.18 

 Null 2 990.08 29.70 0.00 

 Precipitation 3 990.69 30.31 0.00 

 Wind 3 990.87 30.49 0.00 

Big brown bat     

 Detector + Precipitation + Wind 8 901.90 0.00 0.59 

 Detector + Wind 7 904.12 2.22 0.19 

 Detector + Precipitation 7 904.25 2.35 0.18 

 Detector 6 907.62 5.72 0.03 

 Precipitation 3 965.97 64.07 0.00 

 
Wind 3 967.88 65.98 0.00 

 Null 2 968.94 67.04 0.00 
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Table 11. Model coefficients, standard errors (SE), and 95% upper and lower confidence 

intervals (CI) for variables in competing occupancy models predicting detection probability of 

Indiana bats (Myotis sodalis) from eight acoustic monitoring sites with 799 detector nights at 

Fort Knox, KY, May-August 2017.  

Model and variables Coefficient SE Lower CI Upper CI 

Detector + Wind     

 Intercept (Anabat SD2) -1.94 0.32 -2.56 -1.32 

 Song Meter SM3BAT FS 3.18 0.41 2.38 3.99 

 Song Meter SM3BAT ZC 1.90 0.39 1.15 2.66 

 Petterson D500X 1.33 0.40 0.55 2.11 

 Anabat Swift 1.80 0.37 1.08 2.52 

 Wind -0.17 0.11 -0.38 0.04 

Detector     

 Intercept (Anabat SD2) -1.91 0.31 -2.52 -1.29 

 Song Meter SM3BAT FS 3.14 0.41 2.34 3.94 

 Song Meter SM3BAT ZC 1.86 0.38 1.11 2.61 

 Petterson D500X 1.30 0.40 0.52 2.07 

 Anabat Swift 1.78 0.37 1.06 2.50 

Detector + Precipitation + Wind     

 Intercept (Anabat SD2) -1.94 0.32 -2.56 -1.32 

 Song Meter SM3BAT FS 3.19 0.41 2.38 4.00 

 Song Meter SM3BAT ZC 1.90 0.39 1.15 2.66 

 Petterson D500X 1.33 0.40 0.55 2.11 

 Anabat Swift 1.80 0.37 1.08 2.52 

 Wind 0.01 0.12 -0.22 0.25 

  Precipitation -0.17 0.11 -0.38 0.04 
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Table 12. Model estimate, standard errors (SE), and 95% upper and lower confidence intervals 

(CI) for variables in competing occupancy models predicting detection probability of eastern red 

bats (Lasiurus borealis) from eight acoustic monitoring sites with 799 detector nights at Fort 

Knox, KY, May-August 2017.  

Model and variables Coefficient SE Lower CI Upper CI 

Detector     

 Intercept (Anabat SD2) 0.69 0.17 0.36 1.03 

 Song Meter SM3BAT FS 1.15 0.29 0.59 1.71 

 Song Meter SM3BAT ZC -0.23 0.24 -0.69 0.24 

 Petterson D500X 0.27 0.29 -0.29 0.84 

 Anabat Swift -0.25 0.22 -0.69 0.18 

Detector + Wind     

 Intercept (Anabat SD2) 0.69 0.17 0.35 1.02 

 Song Meter SM3BAT FS 1.17 0.29 0.61 1.73 

 Song Meter SM3BAT ZC -0.21 0.24 -0.67 0.25 

 Petterson D500X 0.28 0.29 -0.29 0.84 

 Anabat Swift -0.25 0.22 -0.69 0.18 

 Wind -0.11 0.08 -0.26 0.05 

Detector + Precipitation     

 Intercept (Anabat SD2) 0.69 0.17 0.36 1.03 

 Song Meter SM3BAT FS 1.15 0.29 0.59 1.71 

 Song Meter SM3BAT ZC -0.23 0.24 -0.69 0.23 

 Petterson D500X 0.26 0.29 -0.30 0.83 

 Anabat Swift -0.26 0.22 -0.69 0.18 

  Precipitation -0.09 0.08 -0.24 0.06 

 

 

Table 13. Model coefficients, standard errors (SE), and 95% upper and lower confidence 

intervals (CI) for variables in best supported occupancy model predicting detection probability of 

big brown bats (Eptesicus fuscus) from eight acoustic monitoring sites with 799 detector nights 

at Fort Knox, KY, May-August 2017. 

Variables Coefficient SE Lower CI Upper CI 

Intercept (Anabat SD2) -0.25 0.18 -0.60 0.11 

Song Meter SM3BAT FS 2.07 0.29 1.50 2.64 

Song Meter SM3BAT ZC 1.57 0.27 1.04 2.10 

Petterson D500X 0.57 0.27 0.05 1.10 

Anabat Swift 0.96 0.23 0.51 1.42 

Precipitation -0.17 0.08 -0.33 -0.01 

Wind -0.17 0.08 -0.33 -0.01 
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Table 14. Competing, best supported, and null generalized linear mixed models predicting high 

frequency, mid frequency, and low frequency acoustically recorded nightly bat activity from 

eight monitoring sites with 799 detector nights at Fort Knox, KY, May- August 2017. 

Model K AICc ∆AICc ωi 

High frequency     

 Detector + Wind + Date 9 5356.27 0.00 0.64 

 Null 3 5605.52 249.25 <0.001 

Mid frequency     

 Detector + Wind + Precipitation 9 6660.68 0.00 0.24 

 Detector + Wind 8 6660.74 0.06 0.23 

 Detector + Wind + Date + Precipitation 10 6661.06 0.38 0.20 

 Detector + Wind + Date 9 6661.85 1.18 0.13 

 Detector + Date + Precipitation 9 6662.28 1.61 0.11 

 Null 3 6900.43 239.75 <0.001 

Low frequency     

 Detector 7 7137.90 0.00 0.35 
 Detector + Date 8 7138.97 1.08 0.20 
 Detector + Wind 8 7139.73 1.83 0.14 

  Null 3 7183.37 45.48 <0.001 

 

 

 

Table 15. Model estimates, standard errors (SE), and 95% upper and lower confidence intervals 

(CI) for variables in best supported model predicting recorded nightly activity of bats in the high 

frequency phonic group from eight acoustic monitoring sites with 799 detector nights at Fort 

Knox, KY, May-August 2017. 

Variables Estimate SE Lower CI Upper CI 

Intercept (Anabat SD2) 2.35 0.37 1.63 3.08 

Day 0.40 0.10 0.20 0.60 

Song Meter SM3BAT FS 0.64 0.10 0.44 0.84 

Song Meter SM3BAT ZC -0.37 0.10 -0.57 -0.17 

Pettersson D500X -0.94 0.11 -1.16 -0.73 

Anabat Swift -0.57 0.09 -0.75 -0.39 

Wind 0.08 0.03 0.01 0.14 
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Table 16: Model estimates, standard errors (SE), and 95% upper and lower confidence intervals 

(CI) for variables in selected competing models predicting recorded nightly activity of bats in the 

mid frequency phonic group from eight acoustic monitoring sites with 799 detector nights at Fort 

Knox, KY, May-August 2017.  

Model and variables Estimate SE Lower CI Upper CI 

Detector + Wind     

 Intercept (Anabat SD2) 2.51 0.45 1.63 3.40 

 Song Meter SM3BAT FS 1.44 0.11 1.23 1.66 

 Song Meter SM3BAT ZC 0.35 0.11 0.14 0.57 

 Petterson D500X 0.02 0.13 -0.23 0.27 

 Anabat Swift 0.12 0.10 -0.08 0.32 

 Wind 0.08 0.03 0.01 0.14 

Detector + Wind + Date + Precipitation     

 Intercept (Anabat SD2) 2.54 0.44 1.68 3.39 

 Date -0.15 0.11 -0.37 0.07 

 Song Meter SM3BAT FS 1.42 0.11 1.20 1.64 

 Song Meter SM3BAT ZC 0.33 0.11 0.11 0.55 

 Petterson D500X 0.01 0.13 -0.24 0.26 

 Anabat Swift 0.12 0.10 -0.08 0.33 

 Wind 0.06 0.03 -0.01 0.13 

  Precipitation 0.06 0.04 -0.01 0.13 
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Table 17. Model estimates, standard errors (SE), and 95% upper and lower confidence intervals 

(CI) for variables in competing models predicting recorded nightly activity of bats in the low 

frequency phonic group from eight acoustic monitoring sites with 799 detector nights at Fort 

Knox, KY, May – August 2017.  

Model and variables Estimate SE Lower CI Upper CI 

Detector      

 Intercept (Anabat SD2) 3.55 0.39 2.80 4.31 

 Song Meter SM3BAT FS 0.22 0.16 -0.09 0.53 

 Song Meter SM3BAT ZC -0.40 0.16 -0.71 -0.09 

 Petterson D500X -0.79 0.19 -1.15 -0.42 

 Anabat Swift -0.51 0.15 -0.81 -0.21 

Detector + Date     

 Intercept (Anabat SD2) 3.60 0.36 2.88 4.31 

 Date -0.13 0.13 -0.40 0.13 

 Song Meter SM3BAT FS 0.18 0.16 -0.14 0.50 

 Song Meter SM3BAT ZC -0.44 0.16 -0.76 -0.11 

 Petterson D500X -0.82 0.19 -1.19 -0.45 

 Anabat Swift -0.54 0.15 -0.84 -0.23 

Detector + Wind      

 Intercept (Anabat SD2) 3.55 0.39 2.79 4.30 

 Song Meter SM3BAT FS 0.23 0.16 -0.09 0.54 

 Song Meter SM3BAT ZC -0.38 0.16 -0.70 -0.07 

 Petterson D500X -0.78 0.19 -1.14 -0.42 

 Anabat Swift -0.51 0.15 -0.80 -0.21 

  Wind -0.02 0.04 -0.10 0.06 
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Figure 7. Predicted cumulative detection probability curves for Indiana bats (Myotis sodalis) 

with standard errors for four different acoustic detector brands and both full spectrum (FS) and 

zero crossing (ZC) recording styles. Red line represents a 90% probability of detecting a bat 

given that it is present at an acoustic monitoring site. Data from five acoustic monitoring sites 

with 529 detector nights at Fort Knox, KY, May – August 2017.  
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Figure 8. Predicted cumulative detection probability curves for eastern red bats (Lasiurus 

borealis) with standard errors for four different acoustic detector brands and both full spectrum 

(FS) and zero crossing (ZC) recording styles. Red line represents a 90% probability of detecting 

a bat given that it is present at an acoustic monitoring site. Data from eight acoustic monitoring 

sites with 799 detector nights at Fort Knox, KY, May – August 2017. 
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Figure 9. Predicted cumulative detection probability curves big brown bats (Eptesicus fuscus) 

with standard errors for four different acoustic detector brands and both full spectrum (FS) and 

zero crossing (ZC) recording syles. Red line represents a 90% probability of detecting a bat 

given that it is present at an acoustic monitoring site. Data from eight acoustic monitoring sites 

with 799 detector nights at Fort Knox, KY, May – August 2017. 
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Figure 10. Results of post-hoc pairwise comparisons of estimated marginal means from GLMM predicting bat acoustic call files per 

night by detector type: Anabat SD2 (SD2), Song Meter SM3BAT in full spectrum (3FS) and zero-crossing (3ZC), Pettersson D500X 

(D5X), and Anabat Swift (SWI). Grey bars represent confidence intervals, and arrows illustrate pairwise post-hoc comparisons among 

detectors. If an arrow from one detector overlaps an arrow from another, the difference is not statistically significant. Total site-nights 

surveyed by detector type ranged from 107-217 detector-nights across eight acoustic monitoring sites with 799 total detector nights at 

Fort Knox, KY, May – August 2017. 

 


