
Automatic Question Answering and Knowledge Discovery from
Electronic Health Records

Ping Wang

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Chandan K. Reddy, Chair
Naren Ramakrishnan

Chang-Tien Lu
Jiepu Jiang

Sutanay Choudhury

July 13, 2021
Blacksburg, Virginia

Keywords: Electronic Health Records, Question Answering, Knowledge Discovery,
Knowledge Graph, Survival Analysis.

Copyright 2021, Ping Wang

Automatic Question Answering and Knowledge Discovery from Electronic
Health Records

Ping Wang

(ABSTRACT)

Electronic Health Records (EHR) data contain comprehensive longitudinal patient information,
which is usually stored in databases in the form of either multi-relational structured tables
or unstructured texts, e.g., clinical notes. EHR provide a useful resource to assist doctors’
decision making, however, they also present many unique challenges that limit the efficient
use of the valuable information, such as large data volume, heterogeneous and dynamic
information, medical term abbreviations, and noisy nature caused by misspelled words.

This dissertation focuses on the development and evaluation of advanced machine learning
algorithms to solve the following research questions: (1) How to seek answers from EHR for
clinical activity related questions posed in human language without the assistance of database
and natural language processing (NLP) domain experts, (2) How to discover underlying
relationships of different events and entities in structured tabular EHRs, and (3) How to
predict when a medical event will occur and estimate its probability based on previous medical
information of patients.

First, to automatically retrieve answers for natural language questions from the structured
tables in EHR, we study the question-to-SQL generation task by generating the corresponding
SQL query of the input question. We propose a translation-edit model driven by a language
generation module and an editing module for the SQL query generation task. This model
helps automatically translate clinical activity related questions to SQL queries, so that the
doctors only need to provide their questions in natural language to get the answers they need.
We also create a large-scale dataset for question answering on tabular EHR to simulate a
more realistic setting. Our performance evaluation shows that the proposed model is effective
in handling the unique challenges about clinical terminologies, such as abbreviations and
misspelled words.

Second, to automatically identify answers for natural language questions from unstructured
clinical notes in EHR, we propose to achieve this goal by querying a knowledge base constructed
based on fine-grained document-level expert annotations of clinical records for various NLP
tasks. We first create a dataset for clinical knowledge base question answering with two sets:
clinical knowledge base and question-answer pairs. An attention-based aspect-level reasoning
model is developed and evaluated on the new dataset. Our experimental analysis shows that
it is effective in identifying answers and also allows us to analyze the impact of different
answer aspects in predicting correct answers.

Third, we focus on discovering underlying relationships of different entities (e.g., patient,
disease, medication, and treatment) in tabular EHR, which can be formulated as a link
prediction problem in graph domain. We develop a self-supervised learning framework

for better representation learning of entities across a large corpus and also consider local
contextual information for the down-stream link prediction task. We demonstrate the
effectiveness, interpretability, and scalability of the proposed model on the healthcare network
built from tabular EHR. It is also successfully applied to solve link prediction problems in a
variety of domains, such as e-commerce, social networks, and academic networks.

Finally, to dynamically predict the occurrence of multiple correlated medical events, we
formulate the problem as a temporal (multiple time-points) and multi-task learning problem
using tensor representation. We propose an algorithm to jointly and dynamically predict
several survival problems at each time point and optimize it with the Alternating Direction
Methods of Multipliers (ADMM) algorithm. The model allows us to consider both the
dependencies between different tasks and the correlations of each task at different time
points. We evaluate the proposed model on two real-world applications and demonstrate its
effectiveness and interpretability.

Automatic Question Answering and Knowledge Discovery from Electronic
Health Records

Ping Wang

(GENERAL AUDIENCE ABSTRACT)

Healthcare is an important part of our lives. Due to the recent advances of data collection
and storing techniques, a large amount of medical information is generated and stored in
Electronic Health Records (EHR). By comprehensively documenting the longitudinal medical
history information about a large patient cohort, this EHR data forms a fundamental resource
in assisting doctors’ decision making including optimization of treatments for patients and
selection of patients for clinical trials. However, EHR data also presents a number of unique
challenges, such as (i) large-scale and dynamic data, (ii) heterogeneity of medical information,
and (iii) medical term abbreviation. It is difficult for doctors to effectively utilize such
complex data collected in a typical clinical practice. Therefore, it is imperative to develop
advanced methods that are helpful for efficient use of EHR and further benefit doctors in
their clinical decision making.

This dissertation focuses on automatically retrieving useful medical information, analyzing
complex relationships of medical entities, and detecting future medical outcomes from EHR
data. In order to retrieve information from EHR efficiently, we develop deep learning
based algorithms that can automatically answer various clinical questions on structured and
unstructured EHR data. These algorithms can help us understand more about the challenges
in retrieving information from different data types in EHR. We also build a clinical knowledge
graph based on EHR and link the distributed medical information and further perform the
link prediction task, which allows us to analyze the complex underlying relationships of
various medical entities. In addition, we propose a temporal multi-task survival analysis
method to dynamically predict multiple medical events at the same time and identify the
most important factors leading to the future medical events. By handling these unique
challenges in EHR and developing suitable approaches, we hope to improve the efficiency of
information retrieval and predictive modeling in healthcare.

Dedications

To my beloved family.

v

Acknowledgements

It has been an unforgettable and rewarding journey for me to pursue my PhD. I would like
to express my sincere gratitude to all the help I received over the past five years.

First of all, my deepest thanks go to my PhD advisor, Dr. Chandan K. Reddy, for his
encouragement, support and guidance in my PhD study and research. He is a very kind and
supportive advisor. He has made a lot of effort in guiding me towards exploring new research
directions, analyzing research challenges, and improving my skills in doing independent
research. It is his professional guidance and continuous encouragement that helped me build
confidence in the process of graduate study and completion of this dissertation. Also, his
wisdom, insights, and passion in doing research and being an advisor benefited me a lot and
was influential in my career choice. I can clearly feel the importance and influence of his
guidance, advice and help on my career.

I would also like to thank all my committee members: Dr. Naren Ramakrishnan, Dr. Jiepu
Jiang, Dr. Chang-Tien Lu and Dr. Sutanay Choudhury, for their important guidance and
assistance in the completion of this dissertation. Thanks to Dr. Naren Ramakrishnan and Dr.
Jiepu Jiang for their insightful and valuable suggestions from the beginning of the research
proposal to the completion of this dissertation. Their deep knowledge and expertise in the
field helped me broaden the research directions. I am also very thankful to Dr. Chang-Tien
Lu and Dr. Sutanay Choudhury for their guidance in my research. They are also very
supportive with many valuable suggestions and advice, and strong recommendation for my
future career.

Thanks to all the collaborators at Pacific Northwest National Laboratory: Dr. Sutanay
Choudhury, Khushbu Agarwal, and Colby Ham. I still remember the time that we explored
new techniques and were investigating new research projects. Special thanks to Dr. Sutanay
Choudhury for offering a great opportunity to collaborate on the knowledge graph related
projects. He spent a lot of time with me in formulating research problems, discussing technical
issues and improving the writing and presentation. I have benefited a lot from his mentoring
and support over the past two years.

I want to thank all others who collaborated and helped me in the past few years, including
Dr. Tian Shi, Dr. Yan Li, Dr. Liuqing Li, Dr. Xuchao Zhang, Dr. Bhanukiran Vinzamuri,
Dr. Mahtab J. Fard, and Karthik Padthe.

vi

In addition, I am grateful to the lab members and others at the Sanghani Center for Artificial
Intelligence and Data Analytics, including Khoa Doan, Tian Shi, Aman Ahuja, Ming Zhu,
Sindhu Tipirneni, Nurendra Choudhary, Akshita Jha, Dr. Yue Ning, Dr. Rongrong Tao,
Lijing Wang, Fanglan Chen, Dr. Tianyi Li, Dr. Xiangyu Zhang, Dr. Mengmeng Cai, to
name a few. We had valuable discussions about research problems as colleagues and happy
memories as friends. Special thanks to Dr. Yue Ning for her valuable suggestions on my
presentation and for hosting my job interview at Stevens.

Moreover, I would like to thank Juanita Victoria, Wanawsha Hawrami, Joyce Newberry,
Barbara L. Micale, Roxanne Paul, Sharon Kinder-Potter, Jessica Mullins, Corinne Julien and
Torri K. Brown for their administrative support over the years.

My gratitude to my parents is beyond words. It is their endless support, understanding, and
encouragement that makes me what I am today. I am also thankful to my sister and brother
for taking care of everything at home and allowing me to focus on my research. In addition,
I also appreciate the great support, help and encouragement from my parents-in-law.

Finally, I want to thank my husband and my daughter for their continuous support and love.
It has been more than ten years since my husband and I met on the first day of college. We
experienced ups and downs together. He is not only my partner, but also my good friend
and collaborator. It is his passion and wisdom on exploring new things, his hard work and
his encouragement over the years that motivated me to pursue my dreams. A huge Thanks
to him for always being there. I also thank my little one for making me a mom and for her
unconditional trust and love.

vii

Table of Contents

1 Introduction 1

1.1 Research Challenges . 3

1.1.1 Question Answering on Multi-relational Structured Tables 3

1.1.2 Question Answering on Unstructured Clinical Notes 4

1.1.3 Discovering Complex Relationships of Entities in EHR 5

1.1.4 Temporal Multi-task Survival Analysis 5

1.2 Contributions . 5

1.3 Organization of the Dissertation . 7

2 Text-to-SQL Generation for Question Answering on Electronic Health
Records 8

2.1 Introduction . 8

2.2 Related Work . 11

2.3 MIMICSQL Dataset Creation . 13

2.3.1 MIMIC III Dataset . 13

2.3.2 MIMICSQL Generation . 13

2.3.3 MIMICSQL Statistics . 15

2.4 A Translate-Edit Model for Question-to-SQL Query Generation 17

2.4.1 Problem Formulation . 17

2.4.2 The Proposed TREQS Model . 17

2.5 Experiments . 22

2.5.1 Experimental Settings . 23

viii

2.5.2 Experimental Results . 25

2.6 Summary . 30

3 Attention-based Aspect Reasoning for Knowledge Base Question Answer-
ing on Clinical Notes 31

3.1 Introduction . 31

3.2 Related Works . 33

3.3 The ClinicalKBQA Dataset . 34

3.3.1 ClinicalKB . 34

3.3.2 Question-Answer (QA) Pairs . 36

3.3.3 Data Analysis . 37

3.4 Modeling Knowledge Base Question Answering 39

3.4.1 Candidate Generation . 39

3.4.2 Attention-based Aspect Reasoning 40

3.5 Experiments and Analysis . 43

3.5.1 Experimental Settings . 43

3.5.2 Experimental Results . 44

3.6 Summary . 46

4 Self-Supervised Learning of Contextual Embeddings for Link Prediction
in Heterogeneous Networks 47

4.1 Introduction . 47

4.2 Related Work . 51

4.3 The Proposed Framework . 53

4.3.1 Problem Formulation . 53

4.3.2 Context Subgraphs: Generation and Representation 54

4.3.3 Contextual Translation . 55

4.3.4 Model Training Objectives . 56

4.3.5 Complexity Analysis . 58

4.3.6 Implementation Details . 59

ix

4.4 Experiments . 59

4.4.1 Experimental Settings . 60

4.4.2 Evaluation on Link Prediction . 62

4.4.3 SLiCE Model Interpretation . 63

4.4.4 Effectiveness of Contextual Translation for Link Prediction 67

4.4.5 Study of SLiCE . 69

4.4.6 SLiCE Model Complexity . 71

4.5 Summary . 73

5 Tensor-based Temporal Multi-Task Survival Analysis 74

5.1 Introduction . 74

5.2 Related Work . 76

5.2.1 Survival Analysis . 77

5.2.2 Multi-task Learning . 78

5.3 Proposed Model . 79

5.3.1 The MTMT Framework . 79

5.3.2 Constraints and Regularization Function 81

5.3.3 Optimization . 84

5.3.4 Complexity Analysis . 88

5.4 Experimental Results . 88

5.4.1 Datasets Description . 89

5.4.2 Comparison Methods . 90

5.4.3 Performance Evaluation . 91

5.4.4 Feature Selection . 93

5.4.5 Parameter Sensitivity and Convergence Analysis 95

5.5 Summary . 97

6 Conclusions and Future Work 98

6.1 Conclusions . 98

x

6.2 Future Research Directions . 99

6.2.1 Multi-modal Question-Answering Systems 99

6.2.2 Unsupervised and Weakly-supervised Learning for Medical Events
Extraction . 100

6.2.3 Contextual Recommendation in Healthcare 100

xi

List of Figures

2.1 An example from MIMICSQL. The two tables, namely, Demographics and
Diagnoses, are used to answer the question. Different colors are used to show
the correspondence between various components in source question, targeted
SQL query, and SQL template. 10

2.2 The generation framework of our MIMICSQL dataset for Question-to-SQL
task using MIMIC III dataset. 14

2.3 Distribution of questions and queries in MIMICSQL dataset. “Dist.” is used
as an acronym for “Distribution”. 16

2.4 The overall framework of the proposed TREQS model. In this figure, we do
not incorporate the temporal attention and attention on decoder mechanisms.
[PH] represents the out of vocabulary words in condition values. 18

2.5 Illustration of attention techniques used in TREQS. 19

3.1 A subgraph example about diagnosed diseases and their comorbidity relation-
ships in Obesity dataset. 35

3.2 A subgraph example about prescribed medications along with their related
information in medication dataset. 36

3.3 Distributions of questions by (a) the first two words in all questions and (b)
the most common bigrams used in all questions. 38

3.4 The overall framework of AAR model. 41

3.5 Attention heatmaps generated by the cross-attention module. ASPW denotes
weights for different aspects, which are path, type, entity, and context. 45

xii

4.1 Subgraph driven contextual learning in a healthcare knowledge graph. (a)
Patient nodes diagnosed with diverse diseases (participate in diverse contexts).
(b) State-of-the-art methods aggregate global semantics for patients based
on all diagnosed diseases. (c) Our approach uses context subgraph between
patients to contextualize their node embeddings during link prediction. . . . 49

4.2 Overview of SLiCE architecture. Subgraph context is initialized using global

features for each node. Each layer in SLiCE shifts the embedding of all nodes

in gc to emphasize the local dependencies in the contextual subgraph. The �nal

embeddings for nodes in context subgraphs are determined as a function of output

from last i layers to combine global with local contextual semantics for each node. 52

4.3 An example from DBLP. Relations in DBLP include paper-author, paper-topic
and paper-conference. To predict the paper-author relationship between P28406

and A6999, five context subgraphs are generated with a beam-search strategy.
The 4th context subgraph (along with context subgraph 1, 2 and 3) contain
closely related nodes and get high scores, while path 5 containing a generic
conference node achieves lowest score. 64

4.4 Visualization of the semantic association matrix (after normalization) learnt
from different layers on a DBLP subgraph for link prediction between paper
N0 and author N1. An intense color indicates a higher association. Initially
(layer 1), nodes N0 and N1 have low association. In layer 4, SLiCE learns
higher semantic association from N1 to N0. 66

4.5 Distributions of similarity scores of both positive and negative node-pairs
obtained by node2vec, CompGCN, and SLiCE over five datasets. 68

4.6 Error analysis of contextual translation based link prediction method as a
function of degree-based connectivity of query nodes. 69

4.7 Micro-F1 scores for link prediction with different parameters in SLiCE on
four datasets. 70

4.8 Analysis of the time complexity of SLiCE on Freebase dataset by varying (a)
number of translation layers and (b) number of context subgraphs considered
for each node. 72

5.1 An illustration of various components in the proposed MTMT framework using
Employee Attrition dataset. 75

5.2 Distribution of events over time on both datasets. 89

5.3 Effect of ‘F;1 norm on feature selection for both (a) employee attrition and (b)
MIMIC III. 94

xiii

5.4 Parameter sensitivity of the four parameters used in the proposed method on
Employee Attrition dataset. 96

5.5 Convergence of MTMT model on both datasets. 96

xiv

List of Tables

2.1 Statistics of MIMICSQL dataset. The tables are in the order of Demographics,
Diagnosis, Procedure, Prescriptions, and Laboratory tests. 16

2.2 The SQL prediction performance results using logic form accuracy (AccLF)
and execution accuracy (AccEX). 25

2.3 The SQL prediction performance results and their break-down on template
testing questions with noise. 26

2.4 Accuracy of break-down matching on template questions in MIMICSQL dataset. 26

2.5 Accuracy of break-down matching on NL questions in MIMICSQL dataset. . 27

2.6 SQL Queries generated by different models on two NL questions in testing set.
The incorrectly predicted words are highlighted in red color. 29

2.7 Visualization of the accumulated attention on conditions that are used in the
proposed TREQS approach on NL questions. Different conditions are labeled
with different colors. An intense shade on a word indicates a higher attention
weight. 30

3.1 Comparisons of the answerable questions over different types of EHR, including
Clinical Notes (CN), Structured Tables (ST) and Knowledge Base (KB). The
symbol “X” indicates that the questions are answerable. 32

3.2 Comparison of ClinicalKBQA with other datasets for QA in healthcare domain. 34

3.3 Statistics of ClinicalKB and QA pairs created based on the n2c2 dataset. Here,
QuesLen, GoldAns and CandAns represent question length, gold-standard
answers and candidate answers, respectively. 37

3.4 Question types in ClinicalKBQA along with examples. 39

3.5 Performance results on ClinicalKBQA. # Ans denotes the number of answers
predicted by models on testing set. Number of ground-truth answers is 16,251. 44

xv

4.1 Comparison of representative approaches for learning heterogeneous network
(HN) embeddings proposed in the recent literature from contextual learning
perspective. Other abbreviations used: graph convolutional network (GCN),
graph neural network (GNN), random walk (RW), skip-gram (SG). N/A stands
for “Not Applicable”. 50

4.2 The basic statistics of the datasets used in this work. 60

4.3 Performance comparison of different models on link prediction task using
micro-F1 score and AUCROC. The symbol “OOM” indicates out of memory.
Here, SLiCEw=o GF and SLiCEw=o FT represent two variants of the proposed
SLiCE method by removing the Global Feature (GF) initialization and without
fine-tuning (FT), respectively. The symbol * indicates that the improvement
is statistically significant over the best baseline based on two-sided t-test with
p-value 10�10. 63

4.4 Comparisons of metapaths learned by SLiCE with predefined metapaths on
DBLP dataset for each relation type. Here, P, A, C, and T represent Paper,
Author, Conference, and Topic, respectively. 67

4.5 Estimation of the number of context subgraphs for each node in the knowledge
graph. 73

5.1 Details of the dataset used in our experiments. 90

5.2 Performance evaluation using time-dependent AUC (along with their standard
deviations) on Employee Attrition dataset. 92

5.3 Performance evaluation using time-dependent AUC (along with their standard
deviations) on MIMIC III dataset. 93

5.4 The top-10 common features selected across four tasks on the Employee
Attrition dataset. 94

5.5 The top-10 common features selected across three tasks on MIMIC III dataset. 95

xvi

Chapter 1

Introduction

Healthcare systems are rapidly evolving in the era of big data. Advances of artificial
intelligence in healthcare make it possible for healthcare providers to sift through tremendous
amounts of information efficiently, which eventually help them take care of their patients
better. There are various types of health information ranging from medical literature to
pathology reports. The goal of this dissertation is to develop machine learning methods
that can efficiently utilize Electronic Health Records (EHR) to help facilitate physicians’
decision making in their clinical practice. EHR data contain comprehensive longitudinal
patient information, which is usually stored in databases in the form of either multi-relational
structured tables or unstructured texts, e.g., clinical notes. In practice, efficient use of EHR
data can significantly benefit doctors/physicians in many different aspects, such as identifying
the most suitable medications or procedures for patients with a rare disease, predicting a
disease before it strikes, identifying patient cohort for clinical trials, and helping bio-medical
research and innovations. This dissertation focuses on two important tasks, including question
answering and knowledge discovery, to support better use of EHR data.

The task of question answering aims to automatically and efficiently retrieve clinical in-
formation from different types of data in EHR. There are mainly two types of challenges.
On the one hand, a large portion of the EHR data in a hospital is typically stored in a
relational database with multiple tables. Traditionally, doctors use rule-based systems to
interact with EHR data. These systems first turn any predefined-rule, i.e., question, to a SQL
query, and then retrieve an answer by executing it on the database. This type of systems are
complicated and require lots of training to use them. Yet, they prevent doctors from asking
any impromptu questions since they need to seek professional assistant to retrieve answers
from databases. On the other hand, besides the structured data, the unstructured clinical
note is another important type in EHR, e.g., discharge summaries, and it contains a wealth of
information. The plain-text feature makes it extremely difficult for doctors to survey clinical
notes for solutions of their problems, even if reviewing a single patient’s complete record
takes a lot of time and efforts.

1

Ping Wang Chapter 1. Introduction 2

To tackle these challenges, recently, question answering (QA) technique has attracted at lot
of attention in the healthcare domain due to its ability to automatically answer a natural
language question on structured tables [151, 30], plain-text documents [84, 26] and knowledge
graphs [150]. More specifically, in the healthcare domain, question answering methods
take natural language questions about EHR data as input and return the corresponding
information included in EHR as answers. For example, the question “How many female
patients underwent the procedure of abdomen artery incision?” can be asked against both
structured tables and unstructured clinical notes, and a count number will be returned by
the question answering methods as the answer to it. However, the methods to answer this
question on structured tables and unstructured clinical notes tend to be different. Due to the
popularity of query languages on database, the question answering on structured tables is
commonly performed by predicting the SQL query corresponding to the given question. While
for the unstructured clinical notes, there is no standard language to query the random textual
notes. In addition, different from most of the existing question answering works on textual
documents, the answer to this question is not explicitly included in the clinical notesand it
requires certain reasoning to obtain its answer. All these limitations demand a new design
of next-generation systems, which allow doctors to automatically retrieve information from
EHR data via actively asking different questions.

Another important task with EHR data is to understand how to accurately discover new
knowledge and make predictions based on the comprehensive medical history of patients.
This task presents two types of challenges. First, the medical information of different
patients is usually organized independently in EHR without much overlap. It is difficult
for doctors to discover underlying relationships between patients with similar diseases or
received similar treatment and identify the comorbidity relations between different diseases or
the co-occurrence of procedures or medications. However, in fact, there exist some complex
relations between patients with the same diagnosis, underwent the same procedures, or taking
the same medications. To provide personalized precision medical treatment, it is important
to also involve such complex underlying relationships for prediction. Second, accurately
predicting when a medical event will occur and estimate its probability based on previous
medical information of patients requires a large set of patients with the specific medical
event. However, it is difficult to collect the training data with sufficient event occurrences
in longitudinal studies since the occurrence of the event may not always be observed for
all patients during the observation due to non-occurrence of the event by the end of the
observation or losing follow-up during the observation. In addition, dynamically following up
and predicting the occurrence of multiple medical events simultaneously is also important in
the healthcare domain.

To build relationships between different patients, and also the relations between diseases,
procedures, and medications, knowledge graph has attracted considerable attentions recently
in healthcare domain due to its ability to not only incorporate data information from different
resources, but also capture their underlying higher order relationships. In this case, the link
prediction task can help us to predict the future diagnosis or recommend suitable treatment

Ping Wang Chapter 1. Introduction 3

for patients. Many of the existing methods focus on learning a static vector representation
for each entity in the knowledge graph and generally apply it to different downstream
tasks, including link prediction and question answering. However, in practice, the accurate
prediction of the medical events on a patient usually depends on the specific contextual
information, such as the current or previous medical information, medical information from
patients with similar diseases or treatment. Therefore, this motivates us to contextualize a
node’s representation based on the specific prediction tasks. In addition, survival analysis
methods are commonly used to model data with both the time and the probability of an
event of interest occurs as the outcome. They are typically designed to handle the survival
problems with a single specific event of interest at a given time point. However, most of them
are not specially developed to handle the insufficiency of event occurrences. To support for
the dynamic tracking the occurrence of multiple events of interest simultaneously, a simple
method is to apply the standard survival analysis method independently to each event at each
specific time point. However, it often leads to a sub-optimal solution since the underlying
dependencies between these events and the correlations of each single event over time are
ignored. All these limitations motivate us to develop a method that can incorporate both
types of correlations to jointly analyze multiple events by leveraging the limited number of
data information available for each single event.

Therefore, the goal of this dissertation is to tackle the challenges discussed above about
question answering and knowledge discovery in healthcare domain using the public available
datasets, including Medical Information Mart for Intensive Care III (MIMIC III) dataset and
National NLP Clinical Challenges (n2c2) dataset. The main research issues focused in this
work are summarized in Section 1.1.

1.1 Research Challenges

In this work, four research challenges related to EHR data are studied. The first two are
about question-answering tasks on multi-relational structured tables and unstructured clinical
notes, respectively. The other two research issues aim at modeling the EHR data to efficiently
discover new knowledge. We summarized these research issues as follows.

1.1.1 Question Answering on Multi-relational Structured Tables

Effectively retrieving patient-specific information or corhort based statistic information from
EHR database is significantly important to assist doctors with their decision making. One
intuitive way is to directly return the corresponding answer to a given question about the EHR
database. This will enable doctors to make complete use of the patient information flexibly
without seeking professional assistant about database. This type of question answering on
database can be effectively transformed to the Question-to-SQL generation problem, which

Ping Wang Chapter 1. Introduction 4

aims at translating a given question to its corresponding SQL query that can be easily used
to obtain the answer based on the database. Recently, the Question-to-SQL generation
problem is mainly solved with two types of methods, (1) slot-filling methods, which make use
of the table schema and the semantic and syntactic information in a question to generate a
predefined logic form; (2) language generation methods, which generate SQL queries directly
by applying language generation models on questions. However, these existing methods are
not able to handle the challenges in Question-to-SQL on EHR data, such as the abbreviation
and typos in healthcare terminology and the table unaware assumption. Therefore, one of
the goals for this research is to propose a model that can simultaneously tackle the above
challenges. In addition, to the best of our knowledge, there is no existing dataset in healthcare
domain for performing question answering on multi-relational structured tables. Therefore, we
will first create a benchmark dataset for the Question-to-SQL generation task in healthcare.

1.1.2 Question Answering on Unstructured Clinical Notes

In EHR data, unstructured clinical notes mainly contain plain-text patient information and
tend to include more information that is not provided in structured tables, such as the
narrative description of chief complaint, allergies and history of present illness. These textual
descriptions also provide important information to guide the decision making in clinical
practice. For example, to test the safety and effectiveness of new medications or treatments
in clinical trials, this textual information can provide a comprehensive source to guide the
selection of appropriate participating patients. However, it is a challenging issue to identify
the patients who satisfy certain conditions based on the original clinical notes. In most of the
existing question answering works [76, 141], a question is only related to a single document
and the answer to the question is explicitly included in the original text. However, to identify
all qualified patients given certain conditions, it requires going through the clinical notes of all
patients and checking the matching status of each patient with a certain extent of reasoning.
Therefore, another goal of this research is to perform question answering on unstructured
clinical notes to identify answers for given questions with various conditions.

Knowledge graph makes it practical to integrate the large-scale patient information together
by building relationships between different patients and clinical notes. Therefore, to handle
the complex questions, we will create a knowledge base from clinical notes to link different
patients and clinical notes and perform knowledge base question answering (KBQA). In this
case, the unstructured clinical notes will be transformed into the structured knowledge graphs
of various patient events, and the question answering task will be performed by querying
knowledge graphs. The relationships between entities in knowledge graph are commonly
represented using a distributed triple format, which limits the application of knowledge
graph [44, 70]. Therefore, we will learn continuous low-dimensional embedding of knowledge
graph by considering various contextual information and apply the learned embedding in the
downstream tasks, including question answering and link prediction.

Ping Wang Chapter 1. Introduction 5

1.1.3 Discovering Complex Relationships of Entities in EHR

Typically, the medical information of different patients in EHR data is organized independently,
which makes it challenging to identify the complex relationships between different patients,
diseases, and treatments. However, this complex relationship information is significantly
helpful for doctors to provide personalized precision medical treatment. For example, when
predicting the treatment for a patient, besides his/her own medical information, the treatment
provided to other similar patients can also provide important guidelines. Therefore, we propose
to leverage the power of knowledge graph to link the distributed patient information in EHR
data as a heterogeneous network and further analyze their complex higher-order relationships
through link prediction task. Besides, representation learning methods for heterogeneous
networks produce a low-dimensional vector embedding (that is typically fixed for all tasks)
for each node. Many of the existing methods focus on obtaining a static vector representation
for a node in a way that is agnostic to the downstream application where it is being used.
In practice, however, downstream tasks such as link prediction require specific contextual
information that can be extracted from the subgraphs related to the nodes provided as input
to the task. To tackle this challenge, we will develop a deep learning-based framework for
bridging static representation learning methods using global information from the entire
graph with localized attention driven mechanisms to learn contextual node representations.

1.1.4 Temporal Multi-task Survival Analysis

Survival analysis aims at predicting the time to event of interest along with its probability
on longitudinal data. It is commonly used to make predictions for a single specific event
of interest at a given time point. However, predicting the occurrence of multiple events
of interest simultaneously and dynamically is needed in many real-world applications. An
intuitive way to solve this problem is to simply apply the standard survival analysis method
independently to each prediction task at each time point. However, it often leads to a
sub-optimal solution since the underlying dependencies between these tasks are ignored. This
motivates us to analyze these prediction tasks jointly to select the common features shared
across all the tasks. Therefore, the goal of this work is to formulate a temporal (multiple
time points) multi-task learning framework that allows us to involve both the underlying
dependencies between different events and the correlations of each single event over time.
It will also help handle the issue of the insufficiency of event occurrences in the single task
survival analysis problems.

1.2 Contributions

The main research contributions of this dissertation are listed below.

Ping Wang Chapter 1. Introduction 6

Question Answering on Multi-relational Structured Tables:

• Proposing a model for question-to-SQL generation model. It consists of three
main components: (1) Translating an input question to a SQL query using a Seq2Seq
based model, (2) Editing the generated query with attentive-copying mechanism, and
(3) Further editing it with task-specific look-up tables.

• Creating a large-scale dataset for Question-to-SQL task in healthcare do-
main. The new created MIMICSQL data has two subsets: (1) template questions
(machine generated), and (2) natural language questions (human annotated).

• Conducting extensive experiments for performance evaluation. The evalua-
tion was conducted on MIMICSQL dataset for both template questions and natural
language questions to demonstrate the effectiveness of the proposed model. Both quali-
tative and quantitative results indicate that it outperforms several baseline methods.

Question Answering on Unstructured Clinical Notes:

• Creating a dataset for knowledge base question answering (KBQA) in health-
care domain. This ClinicalKBQA dataset consists of two sets: (1) ClinicalKB, which
is a comprehensive clinical knowledge base created based on the expert annotations in
n2c2 dataset, and (2) QA pairs, which is a large-scale question answering dataset on
ClinicalKB.

• Developing an attention-based aspect-level reasoning model for KBQA. It
is an embedding-based method that incorporates an attention mechanism between ques-
tion representations and aspect-level answer candidate representations for calculating
matching scores of candidate answers.

• Analyzing the e�ectiveness of the proposed model and the impact of answer
aspects. We conducted experimental analysis on ClinicalKBQA dataset to demonstrate
the effectiveness of AAR model and analyzed the significance of different aspects in
providing accurate answers.

Discovering Complex Relationships of Entities in EHR:

• Proposing a self-supervised learning framework for contextual embedding
learning for graphs. It learns higher-order semantic associations between nodes
by simultaneously capturing the global and local factors that characterize a context
subgraph.

• Conducting an extensive experiments for performance evaluation. We used
several public benchmark network datasets in various applications, and introduced

Ping Wang Chapter 1. Introduction 7

a new healthcare knowledge graph from the publicly available real-world EHR data.
We compare the proposed model with the existing static and contextual embedding
learning methods using standard evaluation metrics for the task of link prediction.

• Demonstrating the e�ectiveness of the proposed model. We provided detailed
analysis about the interpretability, effectiveness of contextual translation, and the
scalability of SLiCE.

Temporal Multi-task Survival Analysis:

• Formulating a temporal multi-task learning problem using tensor represen-
tation. Given a survival dataset and a sequence of time points, which are considered
as the monitored time points for the events of interest, we reformulate the survival
analysis problem to jointly handle each task at each time point and optimize them
simultaneously.

• Proposing a model for temporal multi-task survival analysis. It can analyze
several survival problems jointly and dynamically predict the survival probability at
each time point. The model is optimized with ADMM based algorithm.

• Conducting extensive experiments for model evaluation. We evaluate the
performance of the proposed temporal multi-task learning method on important real-
world datasets, compare with several state-of-the-art methods, and demonstrate the
interpretability of the proposed model.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 introduces the large-scale
dataset for Question-to-SQL generation task in the healthcare domain, describes the proposed
translate-edit model, and provides performance evaluaiton and experimental analysis. In
Chapter 3, we introduce the clinical knowledge base question answering dataset, propose an an
attention-based aspect-level reasoning model and analyze the model’s effectiveness and impact.
Chapter 4 analyzes the complex relationships of entities in heterogeneous network. We propose
a self-supervised learning framework for contextual embedding learning, and demonstrate
its effectiveness on both healthcare network and several other public benchmark network
datasets. In Chapter 5, we propose a temporal multi-task learning model to analyze several
survival analysis problems jointly and dynamically, and we discuss the model performance
through extensive experiments. In Chapter 6, we summarize our work and discuss the future
work.

Chapter 2

Text-to-SQL Generation for Question
Answering on Electronic Health
Records

This chapter presents a novel method for Question-to-SQL generation along with the way
we created the MIMICSQL dataset based on the Electronic Health Records. First, the
introduction to this work is provided in Section 2.1. Section 2.2 describes some prior work
related to Question-to-SQL generation, and differentiate our work from other existing works.
Section 2.3 provides a comprehensive description of the MIMICSQL data generation process.
Section 2.4 provides the details of the proposed translate-edit model. Section 2.5 shows
the comparison of our proposed model with the state-of-the-art methods by analyzing both
quantitative and qualitative results. Finally, we conclude the chapter in Section 2.6.

2.1 Introduction

Due to recent advances of data collection and storing techniques, a large amount of healthcare
related data, typically in the form of electronic medical records (EMR), are accumulated
every day in clinics and hospitals. EMR data contains a comprehensive set of longitudinal
information about patients and are usually stored in structured databases with multiple
relational tables, such as demographics, diagnosis, procedures, prescriptions, and laboratory
tests. One important mechanism of assisting doctors’ clinical decision making is to directly
retrieve patient information from EMR data, including patient-specific information (e.g.,
individual demographic and diagnosis information) and cohort-based statistics (e.g., mortality
rate and prevalence rate). Typically, doctors interact with EMR data using searching and
filtering functions available in rule-based systems that first turn any predefined-rule (front-end)
to a SQL query (back-end), and then, return an answer. These systems are complicated and

8

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 9

require special training before being used. They are also difficult to manage and extend. For
example, the front-end needs to be adapted for newer functionalities. Therefore, doctors who
depend on these systems cannot fully and freely explore EMR data. Another challenge for
these systems is that the users have to first transform their questions to a combination of
rules in the front-end, which is not convenient and efficient. For instance, if a doctor wants to
know the number of patients who are under the age of 40 and suffering from diabetes, then,
he/she may have to create two filters, one for disease and the other for age. An alternate
way to solve this problem is to build a model that can translate this question directly to
its SQL query, so that the doctor only needs to type his/her question as: “Give me the
number of patients whose age is below 40 and have diabetes”, in the search box to get the
answer. Motivated by this intuition, we propose a new deep learning based model that can
translate textual questions on EMR data to SQL queries (Text-to-SQL generation) without
any assistance from a database expert. As a result, these systems can assist doctors with their
clinical decisions more efficiently. Since the textual input in our task is a clinical question,
we will refer to Text-to-SQL generation as Question-to-SQL generation from now onwards.

Recently, Question-to-SQL generation task has gained significant attention and found appli-
cations in a variety of domains, including WikiSQL [30, 151, 129] for Wikipedia, ATIS [52]
about flight-booking, GeoQuery [36] about US geography, and Spider [140] for general purpose
cross-domain applications. There are also few works in this line of research in healthcare
domain [9, 87]. Broadly speaking, various approaches for Question-to-SQL generation task
belong to one of the following two categories: (1) Semantic parsing or slot-�lling meth-
ods [129, 138, 30, 134, 41, 139]: These models make use of semantic and syntactic information
in a question and a table schema to generate a SQL logic form (parsing tree), which can be
easily converted to the corresponding executable query. However, they strongly depend on
pre-defined templates, which limits their applications in generating complex SQL queries.
(2) Language generation methods [151, 120, 146]: These models leverage the power of language
generation models and can directly generate SQL queries without building pre-defined SQL
templates [74]. Therefore, they can be easily applied to produce complex SQL queries,
regardless of the number of tables and columns involved. However, the predicted SQL queries
may not be executable due to limited and inaccurate information from questions (e.g., a
random question with typos and missing keywords). Moreover, it is difficult to interpret
language generation models and their outputs.

Many recent Question-to-SQL models have been primarily benchmarked on WikiSQL [30, 151,
129] and Spider [41, 139, 10] datasets. In WikiSQL, questions are asked against databases
with a single table, and every SQL query is composed of a “SELECT” (column/aggregation)
clause along with a “WHERE” (condition) clause that consists of one or multiple conditions.
Different from WikiSQL, the Spider dataset contains lots of complex and nested queries (e.g.,
“GROUP BY” and “HAVING”) which may involve multiple tables [140]. Some recent studies
have shown that several models which perform well on WikiSQL achieve poor results on
Spider [146, 41]. It indicates that models for Question-to-SQL generation on single-table
databases cannot be simply adapted to database with multiple relational tables. For Spider

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 10

Figure 2.1: An example from MIMICSQL. The two tables, namely, Demographics and Diag-
noses, are used to answer the question. Different colors are used to show the correspondence
between various components in source question, targeted SQL query, and SQL template.

dataset, the current Question-to-SQL generation task focuses on generating SQL queries
without actual values for “WHERE” conditions, which means models are only required to
predict SQL structures and parse corresponding table and column names. However, even if
a model can produce high quality SQL structures and columns, condition value generation
may still be the bottleneck in producing correct and executable SQL queries [134]. Another
issue with WikiSQL and Spider dataset is that most words (78% for WikiSQL and 65%
for Spider) in database schema in development/testing sets have appeared in the training
set [41]. Therefore, it is not feasible to apply the models trained on the Spider dataset to
some other domains like chemistry, biology, and healthcare. Specific to healthcare domain,
Question-to-SQL generation for EMR data is still under-explored. There are three primary
challenges: (1) Medical terminology abbreviations. Due to the wide use of abbreviation
of medical terminology (sometimes typos), it is difficult to match keywords in questions to
those in database schema and table content. (2) Condition value parsing and recovery.
It is still a challenging task to extract condition values from questions and recover them
based on table content, especially in the appearance of medical abbreviations. (3) Lack
of large-scale healthcare Question-to-SQL dataset. Currently, there is no dataset
available for the Question-to-SQL task in the healthcare domain.

To tackle these challenges, we first generated a large-scale healthcare Question-to-SQL
dataset, namely MIMICSQL, that consists of 10; 000 Question-SQL pairs, by using the
publicly available real-world Medical Information Mart for Intensive Care III (MIMIC III)
dataset [55, 39] and leveraging the power of crowdsourcing. An illustrative example in
MIMICSQL is provided in Figure 2.1 to illustrate various components of the dataset. Based
on MIMICSQL data, we further propose a language generation based Translate-Edit model,
which can first translate a question to the corresponding SQL query, and then, retrieve

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 11

condition values based on the question and table content. The editing meta-algorithms
make our model more robust to randomly asked questions with insufficient information and
typos, and make it practical to retrieve and recover condition values effectively. The major
contributions of this work are as follows:

• Propose a two-stage TRanslate-Edit Model for Question-to-SQL (TREQS) generation
model, which consists of three main components: (1) Translating an input question to a SQL
query using a Seq2Seq based model, (2) Editing the generated query with attentive-copying
mechanism, and (3) Further editing it with task-specific look-up tables.

• Create a large-scale dataset for Question-to-SQL task in healthcare domain. MIMICSQL
has two subsets, in which the first set is composed of template questions (machine generated),
while the second consists of natural language questions (human annotated). To the best of
our knowledge, it is the first dataset for healthcare question answering on EMR data with
multi-relational tables.

• Conduct an extensive set of experiments on MIMICSQL dataset for both template questions
and natural language questions to demonstrate the effectiveness of the proposed model.
Both qualitative and quantitative results indicate that it outperforms several baseline
methods.

2.2 Related Work

Question-to-SQL generation is a sub-task of semantic parsing, which aims at translating
a natural language text to a corresponding formal semantic representation, including SQL
queries, logic forms and code generation [130, 29]. It has attracted significant attention in
various applications, including WikiSQL [151, 129] for Wikipedia, ATIS [52] about flight-
booking, GeoQuery [36] about US geography and Spider [140] about cross-domain. In the
literature of Question-to-SQL generation, a common way is to utilize a SQL structure-based
sketch with multiple slots and formulate the problem as a slot filling task [30, 151, 129, 138, 92]
by incorporating some form of pointing/copying mechanism [117]. Seq2SQL method [151] is
an augmented pointer network-based framework and mainly prunes the output space of the
target query by leveraging the unique structures of SQL commands. SQLNet method [129]
is proposed to avoid the “order-matter” problem in the condition part by using a sketch-
based approach instead of the sequence-to-sequence (Seq2Seq) based method. By further
improving SQLNet, TYPESQL method [138] captures the rare entities and numbers in
natural language questions by utilizing the type information. The two-stage semantic parsing
method named Coarse2Fine [30] first generates a sketch of a given question and then fills
in missing details based on both input question and the sketch. Recently, several semantic
parsing methods [41, 139, 10] are also proposed on Spider to tackle the problem across
different domains. One limitation of these methods is that they are highly dependent on

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 12

the SQL structure and the lexicons, and thus cannot efficiently retrieve the condition values.
Therefore, compared to other components, the performance of most semantic parsing methods
in predicting condition values tend to be relatively low and these methods primarily focus
on predicting correct SQL structures and columns, especially for the cross-domain problem
present in the recently released Spider data [140].

To overcome the disadvantage of slot filling methods, Seq2Seq based methods [102, 29, 119, 74]
are proposed to tackle this challenge by directly generating the targeted SQL queries. More
specifically, Seq2Seq based methods first encode input questions into vector representations
and then decode the corresponding SQL conditioned on the encoded vectors. A type system
of SQL expressions is applied in the deep Seq2Seq model in [119] to guide the decoder to
either directly generate a token from the vocabulary or copy it from the input question. The
table schema and the input question are encoded and concatenated as the model input. In
contrast, the column names are encoded independently from the encoding of questions in [69],
which extended the pointer-generator in SQL generation when the order of conditions in
SQL query does not matter. In [74], a unified question-answering framework was proposed to
handle ten different natural language processing tasks, including WikiSQL semantic parsing
task. To perform question answering on databases with multiple relational tables, there
are some other works that aim at guiding the SQL generation indirectly using the answers
obtained by query execution [136, 78, 135] or accomplish the goal by directly identifying the
correct table cells corresponding to the question answers [99, 42].

Both semantic parsing and language generation approaches show great efficiency in the
existing application domains. However, the Question-to-SQL generation task in healthcare
domain is still under-explored. There are some efforts in directly seeking answers from
unstructured clinical notes to assist doctors with their clinical decision making [137, 63].
However, these problems are significantly different from our task of answering natural language
questions on structured EMR data since in our task, the answers to the questions may not be
directly included in the structured data. For example, instead of directly retrieving answers,
a certain extent of reasoning is required to answer the counting questions starting with “how
many”. There are a few research efforts in solving the Question-to-SQL generation tasks in
healthcare domain using semantic parsing and named entity extraction [9, 87]. Due to the
domain-specific challenges and the lack of large-scale datasets for model training, there are
still several challenges for the Question-to-SQL generation in healthcare. For example, due to
the commonly occurring abbreviations of healthcare terminology in EMR data and potential
typos in questions, it is possible that the keywords provided in questions are not exactly
the same ones used in the EMR data. Therefore, besides predicting the SQL structure and
columns, one important task in healthcare is correctly predicting condition values in order to
ensure the accuracy of query results for input questions. These challenges motivate us to
develop a model that can tackle these issues specifically in healthcare. To train and test our
model, we also create the MIMICSQL dataset, which consists of Question-SQL pairs based
on MIMIC III dataset. This is the first work that focuses on the Question-to-SQL generation
on the healthcare databases with multiple relational tables.

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 13

2.3 MIMICSQL Dataset Creation

To the best of our knowledge, there is no existing dataset for Question-to-SQL generation task
in the healthcare domain. In this section, we provide a detailed illustration of Question-SQL
pair generation for Question-to-SQL tasks on EMR data.

2.3.1 MIMIC III Dataset

To ensure both the public availability of the dataset and the reproducibility of the results
for Question-to-SQL generation methods, the widely used Medical Information Mart for
Intensive Care III (MIMIC III) dataset [55, 39] is used in this work to create the Question-SQL
pairs. Typically, the healthcare related patient information is grouped into five categories
in healthcare literature, including demographics (Demo), laboratory tests (Lab), diagnosis
(Diag), procedures (Pro), and prescriptions (Pres). We extracted patient information and
prepared a specific table for each category separately. These tables compose a relational
patient database where tables are linked through patient ID and admission ID as shown on
the top of Figure 2.1.

2.3.2 MIMICSQL Generation

Based on the aforementioned five tables, we create the MIMICSQL dataset, including the
Question-SQL pairs along with the logical format for slot filling methods, specifically for
such Question-to-SQL generation task. Figure 2.1 provides an overview of basic components
used for MIMICSQL generation. Due to the large amount of information included in EMR
database, it is challenging and time-consuming for domain experts to manually generate the
Question-SQL pairs. It should be noted that, for machine generated questions, there exists
some drawbacks, including not being natural compared to questions provided by humans
and usually are not grammatically accurate. In this work, we take advantage of both human
and machine generation to collect the Question-SQL pairs for the MIMICSQL dataset in the
following two steps. Figure 2.2 shows the flowchart of the MIMICSQL generation.

Machine Generation of Questions

Following the question types used in [56], there are two types of questions in MIMICSQL,
including retrieval questions and reasoning questions. Following the generation of question
templates in [76], we first identify the questions that are possibly asked on the EMR data
and then normalize them by identifying and replacing the entities regarding table headers,
operations, and condition values with generic placeholders. The question templates for
retrieval and reasoning questions are finally integrated into two generic templates. These

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 14

Figure 2.2: The generation framework of our MIMICSQL dataset for Question-to-SQL task
using MIMIC III dataset.

question templates provide a guidance regarding the question topics or perspectives for the
machine generated questions.

1. Retrieval questions are designed to directly retrieve specific patient information from
tables. The two generic templates mainly used for retrieval questions include:

• What is the H1 and H2 of Patient Pat (or Disease D, or Procedure Pro, or Prescription
Pre, or Lab test L)?

• List all the Patients (or Disease, or Procedures, or medications, or lab tests) whose
H1 O1 V1 and H2 O2 V2.

2. Reasoning questions are designed to indirectly collect patient information by combining
different components of five tables. The templates mainly used for reasoning questions
include:

• How many patients whose H1 O1 V1 and H2 O2 V2?

• What is the maximum (or minimum, or average) H1 of patient whose H2 O2 V2 and
H3 O3 V3?

Here, Hi; Oi; Vi represent placeholders for the ith table column used in the question, its
corresponding operation and condition value, respectively. To avoid complicated query
structure, the number of conditions in each question cannot exceed a pre-defined threshold,
which is set to be 2 in this work.

During question generation, the corresponding SQL query for each question is also generated
simultaneously. To respond to all questions without changing the query structure and facilitate
the prediction of SQL for Question-to-SQL models, we adopt a general SQL template
SELECT $AGG OP ($AGG COLUMN)+ FROM $TABLE WHERE ($COND COLUMN
$COND OP $COND VAL)+. Here, the superscript “+” indicates that it allows one or

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 15

more items. AGG OP is the operation used for the selected AGG COLUMN and takes one
of the five values, including “NULL” (representing no aggregation operation), “COUNT”,
“MAX”, “MIN” and “AVG”. AGG COLUMN is the question topic that we are interested
in each question and is stored as the column header in tables. Since it is possible for a
given question to be related to more than one table, TABLE used here can be either a
single table or a new table obtained by joining different tables. The part after WHERE
represents the various conditions present in the question and each condition takes the form
of ($COND COLUMN $COND OP $COND VAL). During query generation, we mainly
consider five different condition operations, including “=”, “>”, “<”, “>=” and “<=”.

Natural Language Question Collection

These machine generation criteria make it practical to effectively obtain a set of Question-SQL
pairs, however, there are two main drawbacks for the machine generated template questions.
On the one hand, the questions may not be realistic in the clinical practice. For example, the
unreasonable question “How many patients whose primary disease is newborn and marital
status is married?” will also be generated. On the other hand, the template questions tend to
be not as natural as questions asked by doctors since they follow a fixed structure provided
in the question templates. To overcome these drawbacks, we recruited eight Freelancers with
medical domain knowledge on a crowd-sourcing platform named Freelancer1 to filter and
paraphrase the template questions in three steps: (1) To ensure that the generated questions
are realistic in the healthcare domain, each machine generated question is validated to ignore
the unreasonable template questions. (2) Each selected template question is rephrased as
its corresponding natural language (NL) question. (3) The rephrased questions are further
validated to ensure that they share the same meaning as the original template questions.

2.3.3 MIMICSQL Statistics

MIMICSQL dataset is publicly available at2. We include 10; 000 Question-SQL pairs in
MIMICSQL whose basic statistics are provided in Figure 2.3 and Table 2.1. Figure 2.3(a)
and Figure 2.3(b) shows the distributions of the question length for template questions and
natural language questions, respectively. The distribution of the SQL length is given in
Figure 2.3(c). Figure 2.3(d) shows the distribution of number of questions over five tables.
Note that the total number of questions in Figure 2.3(d) is more than 10; 000 since some
questions are related to more than one table.

1www.freelancer.com
2https://github.com/wangpinggl/TREQS

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 16

Table 2.1: Statistics of MIMICSQL dataset. The tables are in the order of Demographics,
Diagnosis, Procedure, Prescriptions, and Laboratory tests.

Data Value
of patients 46,520
of tables 5
of columns in tables 23/5/5/7/9
of Question-SQL pairs 10,000
Average template question length (in words) 18.39
Average NL question length (in words) 16.45
Average SQL query length 21.14
Average aggregation columns 1.10
Average conditions 1.76

(a) Dist. of length of template questions. (b) Dist. of length of NL questions.

(c) Dist. of length of SQL queries. (d) Dist. of No. of Questions.

Figure 2.3: Distribution of questions and queries in MIMICSQL dataset. “Dist.” is used as
an acronym for “Distribution”.

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 17

2.4 A Translate-Edit Model for Question-to-SQL Query

Generation

In this section, we will first formulate the Question-to-SQL query generation problem. Then,
we present our TREQS model in detail.

2.4.1 Problem Formulation

In this work, we aim to translate healthcare related questions asked by doctors to database
queries and then retrieve the answer from health records. We adapt the language generation
approach in our model, since questions may be related to a single table or multiple tables, and
keywords in the questions may not be accurate due to the healthcare terminology involved.
To tackle the challenges for general applications, we propose a translate-edit model that first
generates a query draft using a language generation model and then edits based on the table
schema.

Let us denote a given question by x = (x1; x2; :::; xJ), the table schema context information
as z and the corresponding query as y = (y1; y2; :::; yT), where J and T represents the length
of the input and output, respectively. xj and yt denote the one-hot representations of the
tokens in the question and query, respectively. Then, the goal of our model is to infer y
from x based on z with probability P (yjx; z). In our approach, we assume that the table
schema information z is implicitly included in the input questions as semantic information.
Therefore, during the translation, we only need to deal with inferring y from x. However,
since the exact table schema has not appeared at this stage, the generated query can only
roughly capture this information. At the second stage, we edit the query draft based on the
table schema and look-up tables of content keywords to recover the exact information. This
two-stage strategy allows us to easily adapt our model to other general purpose tasks. In the
following sections, we will introduce our model layer-by-layer in more detail.

2.4.2 The Proposed TREQS Model

Now we introduce the details of the three components in the proposed TRanslate-Edit Model
for Question-to-SQL (TREQS) generation. Figure 2.4 shows the framework of the proposed
model.

Sequence-to-Sequence Framework

We adopt a RNN sequence-to-sequence (Seq2Seq) framework for the Question-to-SQL gen-
eration task. Our Seq2Seq framework is composed of a question encoder (a single-layer

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 18

Figure 2.4: The overall framework of the proposed TREQS model. In this figure, we do not
incorporate the temporal attention and attention on decoder mechanisms. [PH] represents
the out of vocabulary words in condition values.

bidirectional LSTM [49]) and a SQL decoder (a single-layer unidirectional LSTM). The en-
coder reads a sequence of word embeddings of input tokens and turns them into a sequence of
encoder hidden states (features) he = (he1; h

e
2; : : : ; h

e
J), where the superscript e indicates that

the hidden states are obtained from the encoder, and hej =
�!
hej �

 �
h e
J�j+1 is the concatenation

of the hidden states of forward and backward LSTM. At each decoding step t, the decoder
takes the encoder hidden states and word embedding of the previous token as an input and
produce a decoder hidden state hdt . Both word embeddings in the encoder and decoder are
taken from the same matrix Wemb. The decoder LSTM hidden and cell states are initialized
with

hd0 = tanh
�
We2dh

��!
h e
J �
 �
h e

1

�
+ be2dh

�
cd0 = tanh

�
We2dc

��!c eJ � �c e1�+ be2dc

� (2.1)

where the weight matrices We2dh, We2dc, and vectors be2dh, be2dc are learnable parameters.

Temporal Attention on Question

At each decoding step t, the decoder not only takes its internal hidden state and previously
generated token as input, but also selectively focuses on parts of the question that are
relevant to the current generation. However, the standard attention models proposed in the
literature [6, 71] cannot prevent the decoder from repetitively attending on the same part of
the question, therefore, we adopt a temporal attention strategy [75] that was demonstrated
to be effective in tackling such problem.

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 19

Figure 2.5: Illustration of attention techniques used in TREQS.

To achieve this goal, we first define an alignment score function between the current decoder
hidden state and each of the encoder hidden states as follows:

setj = (hej)
>Walignh

d
t (2.2)

where Walign are parameters. As shown in the left-hand side of Figure 2.5, to avoid repetitive
attention, we penalize the tokens that have obtained high attention scores in the previous
decoding steps with the following normalization rule:

stemp
tj =

8<:exp (setj) if t = 1
exp (se

tj)∑t�1
k=1 exp (se

kj)
if t > 1

; �tj =
stemp
tjPJ

k=1 s
temp
tk

(2.3)

where stemp
tj is the new alignment score with temporal dependency, and �tj is an attention

weight at current decoding step. With the temporal attention mechanism, we finally obtain a
context vector for the input question as follows:

zet =
JX
j=1

�tjh
e
j : (2.4)

Dynamic Attention on SQL

In our Question-to-SQL generation task, different parts of a query may not strictly have
sequential dependency. For example, switching two conditions in a query will yield the same

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 20

query. However, when generating the condition values, the decoder may need to not only
take the previously generated token, its own hidden states and encoder context vector into
consideration, but also places more attention on the previously generated table names and
headers as shown in the right-hand side of Figure 2.5. Therefore, we introduce a dynamic
attention mechanism to the decoder [93, 91], which allows it to dynamically attend on the
previous generated tokens.

More formally, for t > 1, the alignment scores (denoted by sdt� , � 2 f1; :::; t�1g) on previously
generated tokens can be calculated in the same manner as the alignment scores for the
encoder. Then, the attention weight for each token is calculated as follows:

�dt� =
exp(sdt�)Pt�1
k=1 exp(sdtk)

(2.5)

With the attention distribution and the decoder hidden states, we can calculate the decoder-
side context vector as follows:

zdt =
t�1X
�=1

�dt�h
d
� (2.6)

Controlled Generation and Copying

A Question-to-SQL generation task is very different from the general purpose language
generation tasks. First, there are strict templates for SQL queries. For example, SELECT
$AGG OP ($AGG COLUMN)+ FROM $TABLE WHERE ($COND COLUMN $COND OP
$COND VAL)+ is the template we used. Second, the aggregation and condition columns
in queries are table headers, which usually do not exactly appear in the questions. For
instance, for a given question: “How many patients who have bowel obstruction and stay in
hospital for more than 10 days?”, its corresponding query looks like “SELECT COUNT (
PATIENT ID) FROM DEMOGRAPHIC WHERE PRIMARY DISEASE = bowel obstruc-
tion AND DAYS OF STAY > 10”. Obviously, we cannot find words, like PATIENT ID,
PRIMARY DISEASE, and DAYS OF STAY, in the question. Third, the values of conditions
should be best possibly retrieved from questions, such as “bowel obstruction” and “10” in
the above example, since the questions may contain terms that are out-of-vocabulary (OOV).

Because of these characteristics, our decoder combines a generation network and a pointer
network [117] for the token generation. The pointer network has been widely used in language
modeling and generation tasks, such as abstractive text summarization [90] and question-
answering [74], due to its ability of copying OOV tokens in the source and context sequences
to the target sequences. However, in our model, it is primarily used for generating the words
in-vocabulary and putting placeholders, denoted as [PH], for OOV words. Intrinsically, it is
only used in generating condition values in SQL queries. Formally, to generate a token at
step t, we first calculate the probability distribution on a vocabulary V as follows:

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 21

h̃dt = Wz

�
zet � zdt � hdt

�
+ bz

PV;t = softmax
�
Wemb(Wd2vh̃

d
t + bd2v)

� (2.7)

where Wz, Wd2v, bz, and bd2v are parameters. We reuse the syntactic and semantic information
contained in the word embedding matrix in token generation. Then, combining with the
pointer mechanism, the probability of generating a token yt is calculated by

P (yt) = pgen;tPgen(yt) + (1� pgen;t)Pptr(yt) (2.8)

where the probability Pgen(yt) given by the generation network is calculated as follows:

Pgen(yt) =

(
PV;t(yt) yt 2 V
0 otherwise

(2.9)

The probability Pptr(yt) by the pointer network is obtained with the following attention
distribution

Pptr(yt) =

(P
j:xj=yt

�etj yt 2 X \ V
0 otherwise

(2.10)

where X is a set with all tokens in a question. pgen;t is a ‘soft-switch’ (probability) of using a
generation network for token generation

pgen;t = �(Wgenz
e
t � hdt � Eyt�1 + bgen) (2.11)

where Eyt�1 is the word embedding of the previous token yt�1. Wgen and bgen are model
parameters. Note that all OOV words in the question have been replaced with the placeholder
[PH] for the condition values. In our model, the vocabulary is a union of two sets, i.e.,
vocabulary of regular tokens and a vocabulary of template keywords as well as table names
and headers, denoted as Vschema. Since X \ Vschema = ;, the template, table names and
headers in a SQL rely only on the generation network. On the other hand, keywords of the
condition values and placeholder are obtained from both generation and pointer networks.
Note that we always switch the option of [PH] in Figure 2.4 to“No” during training.

With the final probability of generating a token yt, we are ready to define our loss function.
In this work, we adopt the cross-entropy loss which tries to maximize the log-likelihood of
observed sequences (ground-truth), i.e.,

L = � logP�(ŷjx) =
TX
t=1

logP�(ŷtjŷ<t; x) (2.12)

where � denotes all the model parameters, including weight matrices W and biases b.
ŷ = (ŷ1; ŷ2; :::; ŷT) represents a ground-truth SQL sequence in the training data and ŷ<t =
(ŷ1; ŷ2; :::; ŷt�1).

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 22

Placeholder Replacement

After a query has been generated, we replace each [PH] with a token in the source question.
For a [PH] at time step t0, the replacement probability is calculated by

Prps(yt0) =

(P
j:xj=yt0

�et0j yt0 2 X � V
0 otherwise

(2.13)

Here, we implement this technique by applying a mask (0 or 1) on the attention weights
(named as masked attention mechanism). This replacement technique can make use of
the semantic relationships (captured by attention and decoder LSTM) between previously
generated words and their neighboring OOV words. Intuitively, if the model attends word
xj at the step t� 1, it has a high chance of attending the neighboring words of xj at step t.
This meta-algorithm can be used for any attention based Seq2Seq model.

Recover Condition Values with Table Content

So far, we have used our translate-edit model to translate given questions on a table to the
SQL queries without explicitly using any table content and schema. However, we cannot
guarantee that all these queries are executable since the condition values in the questions may
not be accurate. In the aforementioned example, the doctor may ask “How many patients
who have bowel obstruct and stay in hospital for more than 10 days?”, then, one of the
conditions in the SQL is “PRIMARY DISEASE = bowel obstruct”. Obviously, we will get
a different answer since bowel obstruct does not appear in the database. To alleviate this
problem, we propose a condition value recover technique to retrieve the exact condition values
based on the predicted ones. This approach makes use of string-matching metric ROUGE-L
[66] (L denotes the longest common sub-sequence) to find the most similar condition value
from the look-up table for each predicted one, and then replaces it. In our implementation,
we calculate both word- and character-level similarities, i.e., ROUGE-L scores, between two
sequences.

2.5 Experiments

In this section, we first introduce the datasets used in our experiments, and then briefly
describe the baseline comparison methods, implementation details, and evaluation metrics.
Finally, different sets of qualitative and quantitative results are provided to analyze the query
generation performance of the proposed model.

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 23

2.5.1 Experimental Settings

Dataset Description

We use both template and natural language (NL) questions in MIMICSQL dataset (described
in Section 2.3) for evaluation. We first tokenize both source questions and target SQL queries
using Spacy package3. Then, they are randomly split into training, development and testing
sets in the ratio of 0:8=0:1=0:1. To recover the condition values, we also created a look-up
table that contains table schema and keywords, i.e., table name, header and keywords of each
column. Finally, for template questions in the testing set, we also generated a dataset that
has missing information and typos (testing with noise) to demonstrate the effectiveness of
our condition value recover technique.

Comparison Methods

We demonstrate the superior performance of our TREQS model by comparing it with the
following methods. The first two are slot filling methods and generate logic format of queries,
while the others produce SQL queries directly.

• Coarse2Fine model [30]: It is a two-stage structure-aware neural architecture for
semantic parsing. For a given question, a rough sketch of the logical form is first generated
by omitting low-level information, such as the arguments and name entities, which will be
filled in the second step by considering both the natural language input and the generated
sketch.

• Multi-table SQLNET (M-SQLNET) [129]: For SQL with multiple conditions, it may
have multiple equivalent variants by varying the order of conditions. SQLNET mainly
focuses on tackling the unordered property by leveraging the structure-based dependencies
in SQL. However, it can only handle questions on a single table under the table-aware
assumption. In this work, we implemented a multi-table version of SQLNET for comparison.

• Sequence-to-Sequence (Seq2Seq) model [71]: In this model, there is a bidirectional
LSTM encoder and a LSTM decoder. To be consistent with this work, we adopt the “general”
global attention mechanism described in [71]. The placeholder replacement algorithm is
also used in the query generation step to tackle the OOV words problem in this model.

• Pointer-Generator Network (PtrGen) [90]: The pointing mechanism is primarily
used to deal with the OOV words. Therefore, an extended vocabulary of all OOV words in
a batch is built at each training step to encourage the copying of low-frequency words in the
source questions, which is different from our model. In our pointer network, we encourage
the model to either copy tokens related to the condition values or put placeholders.

3https://spacy.io/

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 24

Note that the proposed condition value recover mechanism can be combined with different
models that directly generate SQL queries, therefore, we also apply it to the results obtained
from Seq2Seq and PtrGen to boost their performance. However, it is not applicable to
Coarse2Fine and M-SQLNET since their predicted condition values have already been in the
look-up table.

Implementation Details

We implemented the proposed TREQS model and M-SQLNET with Pytorch [79]. For all
language generation models, the dimension of word embeddings and the size of hidden states
(both encoder and decoder hidden states) are set to be 128 and 256, respectively. Instead of
using pre-trained word embeddings [80], we learn them from scratch. ADAM optimizer [59]
with hyper-parameter �1 = 0:9, �2 = 0:999 and � = 10�8 is adopted to train the model
parameters. The learning rate is set to be 0:0005 with a decay for every 2 epochs and
gradient clipping is used with a maximum gradient norm of 2.0. During the training, we set
the mini-batch size to be 16 in all our experiments and run all models for 20 epochs. The
development set is used to determine the best model parameters. During the testing, we
implement a beam search algorithm for the SQL generation and the beam size is set to be 5.
To build the vocabulary, we keep the words with a minimum frequency of 5 in the training
set. Thus, the vocabulary size is 2353 and it is shared between the source question and target
SQL. In our experiments, both the source questions and SQL queries are truncated to 30
tokens. The implementation of our proposed TREQS method is made publicly available at4.

Evaluation Metrics

To evaluate the performance of different Question-to-SQL generation models, we mainly
adopt the following two commonly used evaluation metrics [151]. (1) Execution accuracy
is defined as AccEX = NEX=N , where N denotes the number of Question-SQL pairs in
MIMICSQL, and NEX represents the number of generated SQL queries that can result in the
correct answers [151]. Note that execution accuracy may include questions that are generated
with incorrect SQL queries which lead to correct query results. (2) In order to overcome the
disadvantage of execution accuracy, logic form accuracy [151], defined as AccLF = NLF=N ,
is commonly used to analyze the string match between the generated SQL query and the
ground truth query. Here, NLF denotes the number of queries that match exactly with the
ground truth query.

4https://github.com/wangpinggl/TREQS

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 25

Table 2.2: The SQL prediction performance results using logic form accuracy (AccLF) and
execution accuracy (AccEX).

Template Questions NL Questions

Method Development Testing Development Testing

AccLF AccEX AccLF AccEX AccLF AccEX AccLF AccEX
Coarse2Fine 0.298 0.321 0.518 0.526 0.217 0.309 0.378 0.496

M-SQLNET 0.258 0.588 0.382 0.603 0.086 0.225 0.142 0.260

Seq2Seq 0.098 0.372 0.160 0.323 0.076 0.112 0.091 0.131

Seq2Seq + recover 0.138 0.429 0.231 0.397 0.092 0.195 0.103 0.173

PtrGen 0.312 0.536 0.372 0.506 0.126 0.174 0.160 0.222

PtrGen + recover 0.442 0.645 0.426 0.554 0.181 0.325 0.180 0.292

TREQS (ours) 0.712 0.803 0.802 0.825 0.451 0.511 0.486 0.556

TREQS + recover 0.853 0.924 0.912 0.940 0.562 0.675 0.556 0.654

2.5.2 Experimental Results

Query Generation Performance

Table 2.2 provides the quantitative results on both template questions and NL questions for
different methods. The best performing methods are highlighted in bold and the second best
performing methods are underlined. It can be observed from Table 2.2 that the Seq2Seq
model is the worst performer among all the compared methods due to its poor generating
behavior, including factual errors, repetitions and OOV words. PtrGen performs significantly
better than Seq2Seq model since it is able to copy words from the input sequence to the target
SQL. As seen from the results, it can capture the factual information and handle OOV words
more accurately. It works well when most words in the target sequence are copied from the
source sequence, which is similar to other problems such as abstractive text summarization
task [90, 38]. However, in Question-to-SQL task, most tokens (template, table names and
headers) are obtained from generation and only condition values are copied from questions to
queries. Therefore, the task discourages copying in general, which causes PtrGen model to
produce the condition values by generation instead of copying, thus increasing the chances of
making mistakes. Coarse2Fine achieves outstanding performance for the questions on a single
table. The limitation of Coarse2Fine is that it cannot handle complex SQL generation, such
as queries including multiple tables. However, it still outperforms both Seq2Seq and PtrGen
in most of the cases. Compared to Coarse2Fine, the M-SQLNET method considers the
dependencies between slots using a dependency graph determined by the intrinsic structure
of SQL. It performs significantly better than Seq2Seq and PtrGen on both testing and testing
with noise set (in Table 2.3). It also significantly outperforms Coarse2Fine based on the
execution accuracy. Compared to all the aforementioned baseline methods, our proposed
TREQS model gains a significant performance improvement on both development and testing

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 26

Table 2.3: The SQL prediction performance results and their break-down on template testing
questions with noise.

Method Overall Break-down

AccLF AccEX Aggop Aggcol Table Concol+op Conval Average

Coarse2Fine 0.444 0.526 0.528 0.528 0.528 0.520 0.444 0.510

M-SQLNET 0.356 0.606 1.000 0.953 0.998 0.875 0.376 0.840

Seq2Seq 0.157 0.320 0.997 0.862 0.967 0.817 0.206 0.770

Seq2Seq + recover 0.225 0.389 0.999 0.862 0.967 0.817 0.290 0.787

PtrGen 0.301 0.451 0.999 0.988 0.991 0.970 0.309 0.851

PtrGen + recover 0.353 0.498 0.999 0.988 0.991 0.970 0.360 0.862

TREQS (ours) 0.699 0.756 1.000 0.996 0.995 0.976 0.706 0.935

TREQS + recover 0.872 0.907 1.000 0.996 0.995 0.976 0.877 0.969

Table 2.4: Accuracy of break-down matching on template questions in MIMICSQL dataset.

Method Development Testing

Aggop Aggcol Table Concol+op Conval Average Aggop Aggcol Table Concol+op Conval Average

Coarse2Fine 0.321 0.321 0.321 0.321 0.298 0.316 0.528 0.528 0.528 0.520 0.518 0.524

M-SQLNet 1.000 0.978 0.994 0.876 0.274 0.824 1.000 0.956 0.996 0.881 0.401 0.847

Seq2Seq 0.999 0.950 0.972 0.761 0.119 0.760 0.999 0.865 0.963 0.818 0.210 0.771

Seq2Seq + recover 0.999 0.950 0.972 0.761 0.163 0.769 0.999 0.865 0.963 0.818 0.296 0.788

PtrGen 0.999 0.991 0.992 0.979 0.325 0.857 1.000 0.988 0.992 0.985 0.381 0.869

PtrGen + recover 0.999 0.991 0.992 0.979 0.449 0.882 1.000 0.988 0.992 0.985 0.433 0.880

TREQS (ours) 1.000 0.999 0.995 0.924 0.719 0.927 1.000 0.995 0.996 0.980 0.810 0.956

TREQS + recover 1.000 0.999 0.995 0.924 0.859 0.955 1.000 0.996 0.996 0.984 0.918 0.979

dataset and 30 percent, on average, more accurate than others.

We have also applied the proposed condition value recover technique to three language
generation models. It can be observed that such a heuristic approach can significantly boost
the performance of these models. From our experiments, we found that language models fail
in many cases because they cannot capture all keywords of condition values. As a result, they
are not executable or may yield different answers. Hence, the recover mechanism can correct
these errors in the conditions of SQL by making the best use of the look-up table. Moreover,
as shown in Table 2.3, after applying some noise to the template testing questions by removing
partial condition values or using abbreviations of words, the performance of different models
drops. Our TREQS model is affected significantly because it strongly relies on the pointing
mechanism to copy keywords of condition values from questions to queries. However, as
we can see, the recover mechanism can still correct most of the errors, thus improving the
accuracy by more than 20%, which is 13% for the testing set without introducing noise.

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 27

Table 2.5: Accuracy of break-down matching on NL questions in MIMICSQL dataset.

Method Development Testing

Aggop Aggcol Table Concol+op Conval Average Aggop Aggcol Table Concol+op Conval Average

Coarse2Fine 0.319 0.313 0.321 0.260 0.214 0.285 0.524 0.490 0.528 0.448 0.413 0.481

M-SQLNet 0.994 0.939 0.933 0.722 0.080 0.734 0.989 0.873 0.941 0.749 0.140 0.738

Seq2Seq 0.978 0.872 0.926 0.466 0.137 0.676 0.970 0.696 0.892 0.563 0.239 0.672

Seq2Seq + recover 0.978 0.872 0.926 0.471 0.174 0.684 0.970 0.696 0.892 0.565 0.296 0.684

PtrGen 0.987 0.917 0.944 0.795 0.172 0.766 0.987 0.830 0.926 0.824 0.214 0.757

PtrGen + recover 0.987 0.917 0.944 0.795 0.236 0.776 0.987 0.830 0.926 0.824 0.235 0.760

TREQS (ours) 0.990 0.912 0.942 0.834 0.574 0.850 0.993 0.827 0.941 0.841 0.679 0.856

TREQS + recover 0.990 0.912 0.942 0.834 0.694 0.873 0.993 0.827 0.941 0.844 0.763 0.874

Break-down Generation Performance

In order to further evaluate the performance on each component of SQL query, in Tables 2.3,
2.4 and 2.5, we provide the break-down accuracy results based on SQL query structure,
including aggregation operation (Aggop), aggregation column (Aggcol), table (Table), condition
column along with its operation (Concol+op), and condition value (Conval). The results of
Coarse2Fine are not provided due to its table-aware assumption and its inability in handling
multi-table questions. We can observe that there is no significant difference between these
methods on predictions of both aggregation operation and table. Seq2Seq model performs
relatively worse on aggregation column and condition column and its operation.

It is easy to observe from Tables 2.2 to 2.5 that the performance of condition value dominates
the overall SQL generation performance. Seq2Seq is not able to capture the correct condition
values due to its limitation in handling the OOV words. PtrGen performs slightly better
since it is able to copy OOV words directly from the input questions, however, it still cannot
capture the condition values as accurately as our proposed TREQS model. We believe that
this is due to the fact that we consider temporal attention on questions, dynamic attention
on SQL and the controlled generation and copying techniques in the proposed model. We can
also observe that the proposed recover technique on the condition values can also improve
the model performance significantly on both template questions and NL questions. As
shown in Table 2.3, the condition values can also be recovered effectively even if only partial
condition value information is provided in the input questions. More analysis about the
recover technique will be provided.

Also, the better performance on the template questions indicates that the template questions
are easier to be translated to the correct SQL queries compared to the NL questions. The
reason is that the template questions are generated based on the pre-defined patterns, which
is easier for the model to capture during learning. Therefore, this provides us the guidance to
ask the questions following the predefined templates to obtain more accurate SQL queries. In

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 28

addition, we can also consider the predicted SQL queries as the model feedback and further
refine the input questions accordingly.

Analysis of the Generated SQL Query

In addition to the quantitative evaluations, we have also conducted an extensive set of
qualitative case studies to compare the SQL queries produced by various models. Two
examples on NL questions are provided in Table 2.6. For both examples, different comparison
models have given correct answers for the template, table name, and columns. Note that
the Coarse2Fine model cannot handle questions on two tables. For example 1, M-SQLNET
provides a wrong procedure short title “parent infus nutrit sub” due to the mis-classification
error. Seq2Seq and Ptr generate a partially correct procedure short title “other abdomen”
and “spinal abdomen artery”, respectively. In addition to their inability to obtain the correct
condition values, these baseline methods do not even have the ability to correctly predict the
condition column “procedures.short title” in example 1. Similarly, in example 2, the generated
SQL query by Seq2Seq model is not executable even if it correctly predicts the value “ferritin”
for the second condition, since it predicts an incorrect condition column “lab.itemid”. In
this case, the recover technique can only recover the condition value “51200 ” for “lab.itemid”
instead of keeping the condition value “ferritin” that is correctly generated. These predicted
results indicate that successfully recovering the condition values still requires the language
generation models to produce correct condition columns and sufficiently relevant keywords.
Note that it is unable to recover the condition values for M-SQLNET since its predicted
values are already in the look-up table. Different from these baseline methods, our proposed
TREQS model is able to generate totally correct SQL queries for both examples even without
applying the recover technique. This shows the ability of our TREQS method to predict the
correct condition values without affecting the performance of other components in the SQL
query.

Accumulated Attention Visualization

Visualization of attention weights can help in interpreting the model and explaining exper-
imental results by providing an intuitive view about the relationships between generated
tokens and source context, i.e., input questions. In Table 2.7, we show seven natural language
examples with reasoning questions and SQL queries that are generated using the proposed
TREQS method. The goal here is to investigate if TREQS can successfully detect important
keywords in a question when generating conditions in its corresponding SQL query. Therefore,
we choose to visualize the accumulated attention weights instead of the weights for each of
the generated tokens. For example, for the question “get me the number of elective hospital
admission patients who had coronary artery primary disease”, the model mainly focuses
on “elective” and “admission” when generating condition “demographic.admission type =
elective”, and on “coronary artery” when generating “demographic.diagnosis = coronary

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 29

Table 2.6: SQL Queries generated by different models on two NL questions in testing set.
The incorrectly predicted words are highlighted in red color.

Method Example 1 Example 2

Question
how many female patients underwent the proce-
dure of abdomen artery incision?

how many patients admitted in emergency were
tested for ferritin?

Ground truth

select count (distinct demo-
graphic.”subject id”) from demographic inner
join procedures on demographic.hadm id = pro-
cedures.hadm id where demographic.”gender”
= ”f” and procedures.”short title” = ”abdomen
artery incision”

select count (distinct demo-
graphic.”subject id”) from demographic inner
join lab on demographic.hadm id = lab.hadm id
where demographic.”admission type” = ”emer-
gency” and lab.”label” = ”ferritin”

M-SQLNET

select count (distinct demo-
graphic.”subject id”) from demographic inner
join procedures on demographic.hadm id = pro-
cedures.hadm id where demographic.”gender”
= ”f” and procedures.”short title” = ”parent
infus nutrit sub”

select count (distinct demo-
graphic.”subject id”) from demographic inner
join lab on demographic.hadm id = lab.hadm id
where demographic.”admission type” = ”emer-
gency” and lab.”label” = ”po2”

Seq2Seq

select count (distinct demo-
graphic.”subject id”) from demographic inner
join procedures on demographic.hadm id = pro-
cedures.hadm id where demographic.”gender”
= ”m” and procedures.”long title” = ”other
abdomen”

select count (distinct demo-
graphic.”subject id”) from demographic inner
join lab on demographic.hadm id = lab.hadm id
where demographic.”admission location” =
”phys referral/normal deli” and lab.”itemid” =
”ferritin”

Seq2Seq+recover

select count (distinct demo-
graphic.”subject id”) from demographic inner
join procedures on demographic.hadm id = pro-
cedures.hadm id where demographic.”gender”
= ”m” and procedures.”long title” = ”other
bronchoscopy”

select count (distinct demo-
graphic.”subject id”) from demographic inner
join lab on demographic.hadm id = lab.hadm id
where demographic.”admission location” =
”phys referral/normal deli” and lab.”itemid” =
”51200”

PtrGen

select count (distinct demo-
graphic.”subject id”) from demographic inner
join procedures on demographic.hadm id = pro-
cedures.hadm id where demographic.”gender”
= ”f” and procedures.”long title” = ”spinal
abdomen artery”

select count (distinct demo-
graphic.”subject id”) from demographic inner
join lab on demographic.hadm id = lab.hadm id
where demographic.”admission type” = ”emer-
gency” and lab.”label” = ”troponin i”

PtrGen+recover

select count (distinct demographic.”subject id”
) from demographic inner join procedures on
demographic.hadm id = procedures.hadm id
where demographic.”gender” = ”f” and pro-
cedures.”long title” = ”spinal tap”

select count (distinct demo-
graphic.”subject id”) from demographic inner
join lab on demographic.hadm id = lab.hadm id
where demographic.”admission type” = ”emer-
gency” and lab.”label” = ”troponin i”

TREQS

select count (distinct demo-
graphic.”subject id”) from demographic inner
join procedures on demographic.hadm id = pro-
cedures.hadm id where demographic.”gender”
= ”f” and procedures.”short title” = ”abdomen
artery abdomen”

select count (distinct demo-
graphic.”subject id”) from demographic inner
join lab on demographic.hadm id = lab.hadm id
where demographic.”admission type” = ”emer-
gency” and lab.”label” = ”ferritin”

TREQS + re-
cover

select count (distinct demo-
graphic.”subject id”) from demographic inner
join procedures on demographic.hadm id = pro-
cedures.hadm id where demographic.”gender”
= ”f” and procedures.”short title” = ”abdomen
artery incision”

select count (distinct demo-
graphic.”subject id”) from demographic inner
join lab on demographic.hadm id = lab.hadm id
where demographic.”admission type” = ”emer-
gency” and lab.”label” = ”ferritin”

Ping Wang Chapter 2. Text-to-SQL Generation for Question Answering on EHR 30

Table 2.7: Visualization of the accumulated attention on conditions that are used in the
proposed TREQS approach on NL questions. Different conditions are labeled with different
colors. An intense shade on a word indicates a higher attention weight.

artery disease”. In this example, the condition values are mainly obtained by directly copying
from the input question since they are explicitly included. On the other hand, the condition
value “f ” in the SQL query for question “among patients treated with amitriptyline, calculate
the number of female patients” is mainly obtained through the controlled generation and
copying technique since “f ” is not explicitly provided in the input question. Similarly, TREQS
model is able to capture relevant keywords for each condition in other examples.

2.6 Summary

Large amounts of EMR data are collected and stored in relational databases at many clinical
centers. Effective usage of the EMR data, such as retrieving patient information, can assist
doctors in making future clinical decisions. Recently, the Question-to-SQL generation methods
have received a great deal of attention due to their ability to predict SQL query for a given
question about a database. Such an automated query generation from a natural language
question is a challenging problem in the healthcare domain. In this work, based on the publicly
available MIMIC III dataset, a Question-SQL pair dataset (MIMICSQL) is first created
specifically for the Question-to-SQL generation task in healthcare. We further proposed a
TRanslate-Edit Model for Question-to-SQL (TREQS) generation task on MIMICSQL by first
generating the targeted SQL directly and then editing with both attentive-copying mechanism
and a recover technique. The proposed model can handle the unique challenges in healthcare
and is robust to randomly asked questions. Both the qualitative and quantitative results
demonstrate the effectiveness of our proposed method.

Chapter 3

Attention-based Aspect Reasoning for
Knowledge Base Question Answering
on Clinical Notes

This chapter presents a novel way of retrieving medical information from unstructured clinical
notes. First, we discuss the motivation and background of this work in Section 3.1. Section 3.2
provides the related work about question answering. In Section 3.3, we describe the detailed
steps to create the dataset for clinical knowledge base question answering. Section 3.4 provides
the details of the proposed attention-based aspect reasoning model, and Section 3.5 shows the
effectiveness of the model and analyzes the impact of different aspects on predicting correct
answers. We conclude the chapter in Section 3.6.

3.1 Introduction

Electronic Health Records (EHR) provide comprehensive information that can assist doctors
with their clinical decision making. Traditionally, doctors retrieve the information of patients
via accessing structured databases with rule-based systems and reading their clinical notes.
Recently, several attempts have been made to build Question-Answering (QA) systems on
EHR [76, 101, 125], so doctors can get answers for their questions more efficiently. Generally
speaking, QA systems can be grouped into several categories according to the format of data
sources. For example, machine reading comprehension (MRC) performs QA on plain text
data [84]. Text-to-SQL problem performs QA on database [140, 151]. Knowledge Base QA
(KBQA) [14] aims at finding answers from the underlying Knowledge Base (KB), such as
Freebase [11]. Wang et al. introduced a MIMICSQL dataset for Text-to-SQL generation
on MIMIC III database [125]. However, their system is limited to retrieving answers from a
database, which does not have information that cannot be quantified, such as family history

31

Ping Wang Chapter 3. Attention-based Aspect Reasoning for Clinical KBQA 32

Table 3.1: Comparisons of the answerable questions over different types of EHR, including
Clinical Notes (CN), Structured Tables (ST) and Knowledge Base (KB). The symbol “X”
indicates that the questions are answerable.

Questions CN ST KB
Q1: What medications has patient P939003 ever been prescribed? X X X
Q2: For patient P164, what are the comorbidities associated with Asthma? X X X
Q3: What does patient P961115 take ibuprofen for? X X
Q4: Give me all diseases that are revealed by non contrast head CT scan on patient P0126. X X
Q5: Which patients have been diagnosed with both Gout and GERD? X X
Q6: Give me all patients who have been prescribed with propofol. X X
Q7: Which medications can be prescribed for reducing creatinine levels? X
Q8: What are the obese indicators of heart disease in all medical records of patient P258? X

and discharge conditions. Pampari et al. proposed an emrQA dataset for MRC on clinical
notes [76]. However, their model can only access information from a single block of texts,
which is not practical for doctors who may need information from a collection of clinical
notes.

In this work, we present ClinicalKBQA, a dataset for QA on clinical KB (ClinicalKB)
constructed from clinical notes, which alleviates the problems encountered with emrQA by
allowing doctors to access information across different notes. ClinicalKBQA is composed of
two subsets, namely, Clinical Knowledge Base (ClinicalKB) and Question-Answering (QA)
pairs, both of which are constructed by leveraging existing annotations of clinical notes that
are available for various NLP tasks in n2c21 (previously known as i2b2).

ClinicalKB integrates advantages of both structured database and unstructured clinical notes.
On the one hand, the intrinsic graph structure of ClinicalKB connects the information of
different patients and clinical notes via relations/edges, which allows it to answer questions
associated with many patients and clinical notes (e.g., Q5-Q8 in Table 3.1). On the other
hand, ClinicalKB includes comprehensive patient information as in clinical notes, which
makes it possible to answer questions not covered in database (e.g., Q3, Q4, Q7, and Q8
in Table 3.1).

To tackle the KBQA challenges in ClinicalKBQA dataset, we proposed an attention-based
aspect reasoning (AAR) approach. Specifically, for each input question, we represent each
candidate answer as four aspects, including entity, type, path, and context, and analyze the
matching scores between the input question and candidate answers based on their embeddings.
Through the results analysis, we found that the impact of different candidate aspects on
retrieving final answers tends to be different. Two aspects, entity and context, provides the
node specific information, which helps to retrieve nodes that satisfy the constraints specified
in the questions. While the general information included in the other two aspects, type and
path, are helpful for the model to filter out more nodes that satisfy the constraints of the
node type and path.

1https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

Ping Wang Chapter 3. Attention-based Aspect Reasoning for Clinical KBQA 33

In summary, the major contributions of this work are as follows.

• Created a dataset for knowledge base question answering task in healthcare domain,
namely ClinicalKBQA, which consists of two sets: (i) ClinicalKB: which is a compre-
hensive clinical knowledge base created based on the expert annotations in n2c2 dataset,
and (ii) QA pairs: a large-scale question answering dataset on ClinicalKB.

• Proposed an attention-based aspect-level reasoning (AAR) method for KBQA.

• Conducted experimental analysis on ClinicalKBQA dataset to demonstrate the effec-
tiveness of AAR model and analyzed the significance of different aspects in providing
accurate answers. We aim at improving current KBQA models in healthcare QA sys-
tems via addressing challenges presented by ClinicalKBQA and provide more efficient
assistance for doctors to retrieve, understand, and utilize the clinical information in
clinical notes.

3.2 Related Works

Question-Answering (QA) aims at automatically answering natural language questions about
data sources in a variety of formats, including free text [84], knowledge base [22], and
database [151]. Knowledge base question answering (KBQA) has gained a lot of attention
in recent years with the rapid growth of large-scale knowledge bases, such as YAGO2 [50]
and Freebase [11]. Advances in deep neural networks also allowed KBQA models to be
trained in an end-to-end manner [12, 45, 21] and achieve competitive performance compared
to traditional semantic parsing based methods [2, 61].

QA in the healthcare domain is still an underexplored research topic, especially due to the
lack of large-scale annotated datasets and patient privacy issues [54]. Traditional biomedical
QA depends on rule-based or heuristic feature-based methods [5]. Recently, several datasets
have been created for machine reading comprehension (MRC), including BioASQ for semantic
indexing and QA [107], CliCR for MRC on clinical case reports [101], PubMedQA for MRC on
biomedical research texts [53] and emrQA for MRC on clinical notes [76]. MIMICSQL [125]
was presented for QA on structured EMR data by translating questions to SQL queries.
These datasets allow researchers to handle unique challenges present in the healthcare domain.
Table 3.2 shows a comparison of our ClinicalKBQA to these datasets for QA in healthcare.
There are only a few works on KB in healthcare. SNOMED [32] is a KB with standard clinical
terminologies for healthcare documentation. Rotmensch et al. [88] learnt a knowledge graph
of symptom and disease from EMR by considering the importance measure between terms.

Ping Wang Chapter 3. Attention-based Aspect Reasoning for Clinical KBQA 34

Table 3.2: Comparison of ClinicalKBQA with other datasets for QA in healthcare domain.

Dataset Data Source QA Task Answer Type
BioASQ Biomedical Articles MRC Text Span
CliCR Clinical Reports MRC Text Span
PubMedQA Biomedical research MRC Text Span
emrQA Clinical Notes MRC Text Span
MIMICSQL Structured Clinical Tables Text-to-SQL SQL Query
ClinicalKBQA Clinical Notes KBQA KB Entity

3.3 The ClinicalKBQA Dataset

ClinicalKBQA consists of two subsets, i.e., ClinicalKB and QA pairs. In this section, we will
explain how we created the clinical knowledge base and the question answering dataset.

3.3.1 ClinicalKB

The n2c2 challenge data provide �ne-grained document-level expert annotations of clinical
records for various NLP tasks in clinical domain. We leverage the annotations about seven
tasks to build the clinical knowledge base.

ˆ Smoking status classi�cation [110]: Each clinical record is annotated with the
smoking status from �ve possible categories (including current smoker, past smoker,
non-smoker, smoker and unknown) along with the smoking-related facts mentioned in
the records.

ˆ Identi�cation of obesity and its co-morbidities [108]: Each clinical record is
annotated with obesity and co-morbidities using both textual judgments (explicitly)
and intuitive judgments (implicitly).

ˆ Medication extraction [111]: The medication-related information including med-
ication name, dosage along with the mode, frequency, duration and reason of the
administration, is annotated in each clinical record.

ˆ Analysis of relations of medical problems, tests and treatments [112, 113]:
The annotations for concept, assertion, and relation information are provided in each
clinical record.

ˆ Co-reference resolution [109]: Each clinical record is annotated with concept men-
tions that are referring to the same entity.

Ping Wang Chapter 3. Attention-based Aspect Reasoning for Clinical KBQA 35

Figure 3.1: A subgraph example about diagnosed diseases and their comorbidity relationships
in Obesity dataset.

ˆ Temporal information extraction and reasoning [100]: The clinically signi�cant
events and temporal expressions are annotated along with the temporal relation between
them in each clinical record.

ˆ Risk factors identi�cation of heart disease [97]: Each clinical record provides the
annotation of medically relevant information about heart disease risk factors including
the status of smoking, obesity, medication and hypertension.

The narrative blocks in clinical notes, such as family history, provide more detailed clinical
information from di�erent aspects and can be e�ciently extracted with rule-based methods
as additional annotations.

Grounded on domain expert annotated clinical notes in the n2c2 challenge data, we construct
clinical KB by following two steps: (1) Identify entities. An entity is represented by its name
and type. For example,f name: \ibuprofen", type: \medication" g. (2) Build triples, i.e.,
(subject, predicate, object). Here, both subject and object are entities, and predicate is a
relation between them. For example, we can construct a triple (\P961115", \prescribed with",
\ibuprofen") based on \a patient with ID P961115 has medication ibuprofen". In addition, we
have also �xed some problems in the annotations during pre-processing, such as pronouns
like \this/a/his/her" and irrelevant punctuation.

Subgraph Examples in ClinicalKB

We provide a subgraph example in Obesity dataset about diagnosed diseases for patient P1054
and their comorbidity relationships in Figure 3.1. Based on the clinical note of patient P1054,
he/she has been diagnosed with three diseases, including CAD, Diabetes and Hypertension.
Since the annotations in Obesity dataset focus on the comorbidities relations of di�erent
diseases, we include such comorbidity relation between these three diseases.

Figure 3.2 shows the relationships between patient P961115 and the prescribed medications

Ping Wang Chapter 3. Attention-based Aspect Reasoning for Clinical KBQA 36

Figure 3.2: A subgraph example about prescribed medications along with their related
information in medication dataset.

along with other detailed attribute information including dosage, frequency, duration, and
reason. We observe that not all attribute information is available for each medication.
For example, the duration is only mentioned for albuterol, while the mode and dosage are
mentioned only for ibuprofen. We hope that these two subgraph examples can provide
an overview for understanding about patient information covered in ClinicalKB. Detailed
statistics about ClinicalKB are summarized in Table 3.3.

3.3.2 Question-Answer (QA) Pairs

Question Collection: We �rst collect a set of questions by polling real interests of physicians
and considering existing clinical question resources, including emrQA and MIMICSQL, and
further identify questions that can be answered by ClinicalKB. Compared with QA on
structured tables [125] and clinical notes [76], we found that questions on ClinicalKB cover
a wide range of topics (see Table 3.1). Some questions are not answerable by structured
tables or a single clinical note. TakeQ8 as an example, \indicators of diseases" is usually not
included in structured tables, and \all medical records" indicates answers cannot be found in
a single note.

We then manually identi�ed speci�c entities in the selected questions and replace them with
generic placeholders to normalize and form question templates. In total, we generated a
set of 322 question templates, including various paraphrases of questions with the same
meanings. For example, the template forQ3 in Table 3.1 is \What does patientjPatientj take
jMedicationj for ?", where the generic placeholdersjPatientj and jMedicationj are the topic

Ping Wang Chapter 3. Attention-based Aspect Reasoning for Clinical KBQA 37

Table 3.3: Statistics of ClinicalKB and QA pairs created based on the n2c2 dataset. Here,
QuesLen, GoldAns and CandAns represent question length, gold-standard answers and
candidate answers, respectively.

Metric Smoking Obesity Medications Relations Co-reference Temporal Risk
Patients 502 1,103 261 426 424 310 119
Entities 6,160 17,861 28,821 20,031 1,581 127,772 6,984
Entity types 49 42 46 7 7 20 15
Triples 9,730 42,474 53,519 30,401 1,378 276,513 24,553
Relations 5 8 14 11 7 13 11
Question Templates 26 37 59 74 18 29 79
QA pairs 600 1,126 1,847 2,389 444 626 1,920
Min/Max/Avg QuesLen 4/10/8 5/14/9 5/17/10 6/21/11 8/17/12 8/19/11 8/21/17
Min/Max/Avg # GoldAns 1/82/5 1/816/27 1/111/10 1/29/3 1/2/2 1/239/19 1/69/5
Min/Max/Avg # CandAns 5/2,665/999 3/8,686/2,261 2/6,240/68 4/679/79 3/6/4 5/1,543/175 2/74/17

entities of the question that need to be replaced by the corresponding ClinicalKB entities
during question generation. We hope that the questions we collected from domain experts
and the existing clinical question sources recognized by the community can provide a helpful
resource of QA for researchers in both the medical domain and NLP community.

QA Pairs Generation: This step focuses on populating question templates and identifying
corresponding answers. Since patient private information is de-identi�ed in n2c2, we use
patient IDs instead of names in patient-speci�c questions. Each question template may have
multiple ways to populate. For example, the template ofQ3 mentioned previously can be
populated with di�erent combinations of jPatientj and jMedicationj. However, we do not
need to enumerate all possible questions for it. In practice, we applied two constraints to
limit repetitions: (1) Set a threshold to the total number of questions generated for each
template. (2) Remove questions without answers. The corresponding answers to each question
is simultaneously extracted from clinical notes when generating questions.

3.3.3 Data Analysis

Basic Statistics: The statistics of ClinicalKB and QA pairs are presented in Table 3.3.
From this table, we can observe that our ClinicalKB covers seven important medical topics in
n2c2. The total number of QA pairs is 8,952. We created more question templates and QA
pairs for Medications, Relations and Risk because their annotations are more comprehensive.
The average question length is 12 in terms of tokens. Each question has at least one gold-
standard answer and a lot of questions have multiple answers. In this work, we refer to the
collection of ClinicalKB and QA pairs as the ClinicalKBQA dataset. The number of entities
in golden and candidate answers are 9 and 402 in average, respectively. The number of golden
and candidate answers for questions inCo-referenceis relatively small since the variety of
annotated terms with the same meaning are small. More details about ClinicalKBQA are
provided in Table 3.3.

Ping Wang Chapter 3. Attention-based Aspect Reasoning for Clinical KBQA 38

(a) (b)

Figure 3.3: Distributions of questions by (a) the �rst two words in all questions and (b) the
most common bigrams used in all questions.

Question Types: Our primary goal of knowledge base question answering on clinical notes
is to extract patient information from unstructured clinical text. Therefore, all questions
included in our ClinicalKBQA dataset are factoid questions which aim to seek reliable and
concise medical history information about patients. We group the questions in ClinicalKBQA
dataset into di�erent types based on the starting words. The distributions of question
types showed in Figure 3.3(a) are generated based on the most common �rst two starting
words in all questions. Table 3.4 provides the quantitative percentage of various question
types along with speci�c examples. It can be observed that the questions starting with
\What", \List/Search/Give/Provide" and \Which" account for a large proportion of the
dataset and aim to ask for detailed medical facts, such as prescribed medications and the
smoking status. The questions starting with \Why" and \How" tend to be open-ended in
many open-domain question answering datasets. However, in the ClinicalKBQA dataset,
the \Why" and \How" types of questions are mainly included for retrieving attribute facts
about medication, including prescribed reason, dosage, frequency, and duration. In addition,
the question type \When" are included for extracting the admission and discharge time of
patients.

In Figure 3.3(b), we also show a distribution of the most common bigrams used in all questions
in ClinicalKBQA dataset. It provides an overview about the speci�c patient information that
various questions aim to extract from clinical notes.

Question Coverage: Table 3.1 provides a comparison of questions that can be answered
on di�erent types of EHR data including clinical notes (CT), structured tables (ST) and

Ping Wang Chapter 3. Attention-based Aspect Reasoning for Clinical KBQA 39

Table 3.4: Question types in ClinicalKBQA along with examples.

Question type Examples Percentage
What medications has patient P939003 ever been prescribed?

What What is the smoking status of patient P164? 38.29%
What is the dosage of colacefor patient P11995?
List all comorbilities of Asthma for patient P1225.

List/Search/Give/Provide Search for all the coreferenced tests of blood cultureon P727. 35.21%
Give me all patients whose smoking status is current smoker.
Provide me the discharge time of patient P76.
Which tests are conducted on patient P0161?

Which Which tests are conducted on patient P0161? 20.81%
Which medications can be prescribed for preventing creatinine?
Why is patient P74976 prescribed glucotrol?

Why Why is patient P280639 on coumadin? 2.21%
Why was ibuprofen originally prescribed for patient P961115?
How much aspirin does patient P920102 take per day?

How much/often/long How often does patient P439766 take regular insulin? 2.13%
How long has patient P652612 been taking levooxacin?

When When was patient P130 admitted? 1.34%
When was patient P32 discharged?

knowledge base (KB). We can observe that knowledge base of patient clinical information
is able to answer the basic questions that are answerable by QA on both clinical notes and
structured tables. In addition, it has the ability to combine the advantages of free-text
clinical notes and structured tables to handle more complex questions. For example, questions
Q7 in Table 3.1 cannot be answered based on structured data since the reason for taking
medications are not clearly provided. For questionsQ8, even if there are lab test information
included in the structured data, the diseases that are actually revealed by each test are not
speci�ed. While for questionsQ5 and Q6, the machine reading comprehension on emrQA
cannot provide answers since these questions are related to multiple clinical notes. ClinicalKB
is able to integrates the information in di�erent clinical notes or about di�erent patients into
a general network structure, which makes it feasible to handle more complexed questions
about patients.

3.4 Modeling Knowledge Base Question Answering

3.4.1 Candidate Generation

Based on the statistics of ClincialKB provided in Table 3.3, we can see that the total number
of entities and triples in ClincialKB is large and there are various entity types included.
It will be computationally expensive for KBQA models to directly search answers from
ClinicalKB. Candidate generation is commonly used in the open-domain problems to reduce

Ping Wang Chapter 3. Attention-based Aspect Reasoning for Clinical KBQA 40

the candidate space for the input questions. Therefore, we �rst generate a candidate subgraph
for each question in two steps: (1) We identify one of the entities in the question template as
the topic entity (root), and collect all entities connected to it within 3-hop as a candidate
subgraph. Each entity in the subgraph except the root is viewed as a candidate answer.
For the ClinicalKBQA dataset, the answers to all questions are reachable within 3-hop of
their topic entities. (2) We treat the remaining entities in the question as constraints to the
candidate sub-graph, and further prune the graph to ensure that paths to the topic entity
satisfy the constraints and include entities with expected answer type. For example, the
answer type forQ3 is \disease". Topic entities are \P961115" and \ibuprofen". If we treat
\P961115" as root, then, one possible path is [\P961115", \prescribed with", \ibuprofen", \ has
reason", \right leg pain", \ has comorbidity", \pain control"] since it has \ibuprofen". This
path is further pruned to [\P961115", \prescribed with", \ibuprofen", \ has reason", \right
leg pain"] because answer type is \disease". We show the statistics of candidate answers in
Table 3.3.

3.4.2 Attention-based Aspect Reasoning

Generally speaking, there are two groups of methods for KBQA task, i.e., semantic parsing-
based [135] and information retrieval-based (IR-based) [133] methods. As an important
category of information retrieval-based KBQA methods, embedding-based approaches [12,
45] usually map questions and answer candidates onto a common embedding space and
directly calculate their matching scores. Then, ranking techniques are adopted to search
answers from KB for given questions. We proposed an embedding-based End-to-End model
on ClinicalKBQA dataset that incorporates an attention mechanism between question
representations and aspect-level answer candidate representations to calculate matching
scores. We will introduce this Attention-based Aspect Reasoning (AAR) approach for
knowledge base question answering with more details as follows. Speci�cally, there are mainly
four components in the AAR model: (1) Question Representation: the vector representations
of the input question are obtained by a single-layer bidirectional Long short-term memory
(LSTM). (2) Graph Representation: for each candidate answer, we considered four aspects
based on the answer subgraph, including entity, entity type, path to topic entities, and context
entities. Hereafter, we refer them as entity, type, path, and context, respectively. (3) Attention
Mechanisms: this reasoning process allows us to capture the underlying dependencies between
input question and di�erent aspects of the candidate answers. (4) Scoring: �rst, distances
(i.e., similarity scores) between the input question and the candidate answers in the hidden
space are calculated; and then, predicted answers are selected via re-ranking based on the
scores. Figure 3.4 shows the framework of our AAR model. In the following section, we will
introduce more details of each component.

Question Representations: The question encoder is composed of a word-embedding layer
followed by a bi-directional LSTM layer, which encodes a questionq = (q1; q2; : : : ; qjqj) into a
sequence of hidden statesH q = (hq

1; hq
2; : : : ; hq

jqj), where qi and hq
i represent thei th token and

