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Applications of Vibration-Based Occupant Inference in Frailty
Diagnosis through Passive, In-Situ Gait Monitoring

Rafael dos Santos Gonçalves

(ABSTRACT)

This work demonstrates an application of Vibration-Based Occupant Inference (VBOI) in

frailty analysis. The rise of both Internet-of-Things (IoT) and VBOI provide new techniques

to perform gait analysis via footstep-induced vibration which can be analyzed for early de-

tection of human frailty. Thus, this work provides an application of VBOI to passively track

gait parameters (e.g., gait speed) using floor-mounted accelerometers as opposed to using a

manual chronometer as it is commonly performed by healthcare professionals.

The first part of this thesis describes the techniques used for footstep detection by measur-

ing the power of the footstep-generated vibration waves. The extraction of temporal gait

parameters from consecutive footsteps can then be used to estimate temporal features such

as cadence and stride time variation.

VBOI provides many algorithms to accurately detect when a human-induced vibration event

happened, however, spatial information is also needed for many gait parameters used in

frailty diagnosis. Detecting where an event happened is a complicated problem because

footsteps waves travel and decay in different ways according to the medium (floor system),

the number of people walking, and even the walking speed. Therefore, the second part of

this work will utilize an energy-based approach of footstep localization in which it is assumed

that footstep waves decay exponentially as they travel across the medium. The results from

this approach are then used to calculate spatial and tempo-spatial parameters.

The main goal of this study is to understand the applicability of VBOI algorithms in gait

analysis for frailty detection in a healthcare setting.



Applications of Vibration-Based Occupant Inference in Frailty
Diagnosis through Passive, In-Situ Gait Monitoring

Rafael dos Santos Gonçalves

(GENERAL AUDIENCE ABSTRACT)

Human frailty is responsible for one of the highest healthcare costs and the death of many

people every year. Although anyone suffering from frailty has a higher chance of death, it is

particularly dangerous for the elderly population and for those suffering from other comor-

bidities. Diagnosing frailty is hard because it usually happens slowly over time. However,

it has been shown that changes in some walking parameters (such as gait speed) can be

an early indication of frailty. Many technologies have been created in order to track gait

parameters, many of which either require expensive equipment (e.g., force plates) or the use

of wearable devices, which can introduce privacy concerns.

It has been proposed in the literature that Vibration-Based Occupant Inference (VBOI) tech-

niques could be used in healthcare applications. Such algorithms measure footstep-induced

vibration waves in order to detect and track footsteps. This system can provide several

advantages in frailty analysis because of its affordability, ease of use, and little impact on

patients’ privacy. Therefore, the aim of this study is to understand the applicability of VBOI

algorithms in gait analysis for frailty detection to be used in a healthcare setting. This thesis

will proceed as follows:

• First, the demonstration of an energy-based footstep detection and localization algo-

rithm in VBOI.



• Second, the application of such algorithms for gait parameters extraction with simu-

lated frail walkers.

• Finally, an analysis of the proposed VBOI techniques for deployment in a real hospital

setting.
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Chapter 1

Introduction

Frailty is a health condition that is highly prevalent in the elderly community and is respon-

sible for a significant increase in negative health outcomes such as falls, hospitalizations, and

mortality [32]. The main characteristic of frailty is the loss of the physiological reserves in

the body and a functioning decline [32, 47], however, diagnosing frailty is hard because it

depends on changes in many life factors such as health history, physical activity levels, men-

tal health, and even eating habits. Therefore, healthcare providers must constantly perform

frailty tests on patients in order to acquire enough evidence for a frailty diagnosis. Different

frailty criteria indexes were developed in the literature to detect frailty, among which the one

given by the Cardiovascular Health Study (CHS), also known as Fried’s criteria, is the most

adopted [65]. Fried’s criteria classify patients as “frail” according to five factors: slow gait

speed, low physical activity, intentional weight loss, exhaustion, and muscle weakness. How-

ever, many studies have shown that changes in gait speed are one of the strongest predictors

of frailty [29, 32, 41, 66]. That is because walking is a complex event that involves coordi-

nated work from multiple systems in the body such as the nervous, skeletal, and muscular

ones. Thus, changes in gait speed can be indicative of an underlying health condition.

One of the current methods of measuring gait speed in healthcare involves taking time

measurements with a stopwatch as a patient walks along a certain distance. This technique

is not ideal because stopwatch measurements are susceptible to variability as they rely on

the observer’s judgment of when the patient completed the walk, and on the observer’s

1



2 CHAPTER 1. INTRODUCTION

reaction time to take time measurements as accurately as possible. Tracking gait speed with

a stopwatch also has the problem that only one parameter (gait speed) can be easily tracked,

and although gait speed is an important frailty index, other gait parameters (such as cadence

and stride time variability) can also provide further evidence of a frailty status.

Multiple new technologies have been developed recently with the rise of smart structures and

internet-of-things (IoT). Particularly, vibration-based occupant inference (VBOI) has been

used in a variety of applications for passively tracking building occupants walking along an

instrumented floor system [11]. In fact, VBOI has been used before in building occupant

gait analysis and has shown potential to be used in healthcare [38]. Therefore, the focus of

this thesis will be on analyzing the performance and usability of VBOI techniques to gait

analysis in frailty detection.

1.1 Motivation and Summary of Previous Gait Moni-

toring Methods in Frailty Detection

Multiple researchers have studied ways of tracking gait parameters in the literature for frailty

analysis. These include using force plates/mats [24, 31, 45], motion capture devices [12, 41],

and wearables [28].

The motivation for using VBOI techniques in frailty detection comes from the possible

advantages of such algorithms when compared to others proposed in the literature. For

example, video-based motion capture devices are among the most accurate ways to analyze

gait [41], and they are able to track a large number of gait parameters. However, most of

them work by the time-of-flight principle that usually requires the user to wear reflective

devices at specific body locations for increased tracking accuracy. In addition, image-based
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devices require a direct line-of-sight to the patient, which means that multiple cameras may

be needed during walking trials. The methods provided by VBOI do not require the user to

wear any electronic tags and are independent of a direct line-of-sight to the target. Although

most VBOI localization algorithms require multiple sensors [10], these are more affordable

than most state-of-art motion capture devices. Also, if the researcher is only interested in

temporal gait parameters, such as cadence, Kessler et al. [38] showed that only one sensor

is capable of accurately doing so up to 50 feet away from the footstep impact location.

Another category of gait tracking devices for frailty analysis includes force mats/plates.

These surfaces are capable of measuring the pressure produced by footsteps, which can be

used to estimate other interesting gait parameters in addition to image-based devices such

as footstep force distribution. Similar to VBOI approaches, force mats do not require the

patients to wear any electronic devices during tracking but they do require the patient to

step on its surface. Therefore, force mats must cover the entire walking path. With VBOI,

on the other hand, patients do not need to step at specific spots to have their gait parameters

analyzed. However, as shown in Chapter 3, VBOI localization algorithms work best when

footsteps happen inside the convex-hull of the sensors.

Wearable technologies propose solutions to most limitations from force mats and motion

capture systems. Wearables are more affordable and have grown in popularity with the rise

in commercially available smartwatches and fitness trackers. These devices usually contain

multiple health tracking sensors, including an inertial measurement unit (IMU) that can be

used to perform gait analysis. Since wearables can be connected to the internet and the

patient’s mobile device, they can also be used to send and receive text messages and phone

calls and to localize the user via the global positioning system (GPS). These capabilities raise

privacy concerns as wearables can be used to track personal information from users such as

home location, contacts, and personal media [67]. Furthermore, as their name suggests,



4 CHAPTER 1. INTRODUCTION

wearables are active trackers when it comes to gait monitoring as they rely on the user to

remember to wear them in order to have their health features tracked. On the other hand,

VBOI algorithms do not violate the patient’s privacy as only vibration signals are captured

by accelerometers. They also work independently of the patient’s awareness, opening the

possibility of fast and effective gait tracking.

In summary, an array of vibration sensors can provide a system to passively detect and track

patients via their footstep-generated vibration waves. Such a system has the advantage of

being non-intrusive and affordable when compared to force mats or video image processing.

In addition, VBOI techniques do not require the user to carry any electronic tracking devices

nor do they need a reserved space to be set up. These techniques have been well studied in

occupant localization tracking [9, 10, 11, 21], energy conservation [48], and even in localizing

an active shooter in a building [37]. Given the proposed benefits of VBOI, it provides a

promising alternative for gait monitoring in frailty diagnosis. However, it also has some

limitations (such as floor composition, sensors placement, gait speed, among others) that

need to be addressed in order to obtain a full picture of how VBOI can be applied in frailty

diagnosis.

1.2 Thesis Contribution

As mentioned previously, one of the proposed applications of VBOI is in healthcare [9, 38].

Room occupant localization techniques are one of the most researched areas in VBOI, but

such methods have some limitations when running outside controlled settings. For example,

most of the gait analysis studies in VBOI have been conducted with healthy gait alone, which

indicates a need to investigate the performance and applicability of VBOI in frail gait [39].

Therefore, the main contribution of this thesis is an analysis of the applicability of current
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VBOI techniques in a healthcare setting, particularly in human frailty diagnosis which is

highly dependent on gait analysis.

1.3 Thesis Outline

In Chapter 2 a detailed review of current frailty definition and diagnosis methods is presented

along with a review of VBOI algorithms for gait parameter extraction.

Chapter 3 demonstrates an application of VBOI in extracting gait features for frailty analysis

and a discussion on their performance and limitations.

Chapter 4 presents the results from frailty gait analysis via VBOI.

Finally, Chapter 5 summarizes all contributions and discusses the future of VBOI algorithms

in assisting frailty diagnosis.

1.4 Goodwin Hall and VBOI

One of the research fields in IoT is the study of smart buildings [46]. Such buildings contain

various sensors mounted to their structure, thus creating the possibility to investigate how

they respond to changes in their environment. Virginia Tech’s campus is home to Good-

win Hall (GH), a 160,000 ft2 five-story classroom structure that is equipped with 225 high

sensitivity accelerometers permanently installed to its structure. GH’s vibration sensors can

measure vibration signals with frequencies ranging from 0.06 Hz to 10 kHz and allow for

real-time measurement of the building’s response. GH has been used in the development of

multiple VBOI algorithms [9, 10, 11, 38, 50, 51] and structural health monitoring applications

[63]. Experiments performed in Chapter 3 were conducted at GH, however, GH’s underfloor
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Figure 1.1: Picture of Goodwin Hall (left) with a picture of sensors used to measure vibration
in three dimensions (right).

sensors were not used as this study was meant to simulate a trial at a real healthcare facility

(which most likely would not have underfloor accelerometers).



Chapter 2

Literature Review

In addition to the introduction in Section 1.1, more details about the frailty criteria and gait

analysis are described here. Section 2.1 describes the relationship between gait and frailty

as well as the importance of gait parameters in frailty diagnosis. Section 2.2 deals with the

current technologies used in the literature for measuring these gait features. Lastly, Section

2.3 describes some of the most common localization algorithms in VBOI.

2.1 Frailty and Gait

Currently, there is not a unifying definition or means of measuring frailty, in spite of its

clinical significance in the healthcare sector. Defining frailty is a hard problem in the medical

community because of the variety of causes and symptoms it can inflict on a patient. Some

definitions propose that a recent decline in the cognitive functions combined with body and

behavior changes are important elements of diagnosing frailty [32], while others prefer to

take into account early- and mid-life weights on a frailty status later in life [69]. However,

many of the frailty criteria in the literature focus on 6 main domains: physical conditioning,

gait speed, mobility, nutrition, mental health, and cognitive abilities [60, 69]. This section

provides a literature review of frailty and how gait is related to it.

7
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2.1.1 Defining and Measuring Frailty

The consequences of frailty are well known in the literature. Patients who suffer from it

have a higher chance of death in five years following the diagnosis, regardless of age [68].

Also, when compared to healthy patients, frail ones who had surgery are less likely to be

discharged [55] and have a higher chance of being readmitted in the following 30 days from

hospital release [56], both of which increase healthcare costs. In fact, frail elders account for

the highest healthcare costs in developed countries [29].

One of the most used frailty definition is given by Fried et al. [32], which was based on

a study with a sample size of over 10,000 people from the Cardiovascular Health Study

(CHS). The defining frailty factors assessed by the CHS are weight loss, weak grip strength,

exhaustion, slow walking speed, and low physical activity. The authors defined as “frail”

anyone who exhibits 3 or more factors and as “pre-frail” those who exhibit 1 or 2 factors.

Frail individuals had a rise in negative outcomes such as an increase in falls, hospitalizations,

and death. Although Fried’s frailty index is widely used in research, some argue that this

frailty criteria has not been proved effective in the clinical setting because it fails to take

into consideration the patient’s cognitive functions [58]. Ávila Funes et al. [81] accounted

for this by adding a cognitive impairment assessment to Fried’s criteria. Their 4-year-study

with over 6,000 elderly community-dwelling participants improved the frailty classification

by 22% by performing the cognitive test. Rothman et al. [62] added to both studies by also

considering depression symptoms and concluded that cognitive impairment, slow gait speed,

and low physical activity as the key indicators of frailty. Similar criteria can be found in

[27, 54, 59, 71].

A deeper definition of frailty can be found in Rockwood et al. [57] where the authors devel-

oped a frailty classification index during the Canadian Study of Health and Aging (CSHA).
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Their approach relied both on a rule-based classification (just as Fried’s index does) and

on a clinical evaluation by healthcare professionals. Those participating in this study had

to perform different clinical evaluations to get their frailty scores, which include a Modified

Mini-Mental State Examination [7], indicating cognitive impairment, a Cumulative Illness

Rating Scale [23], to detect comorbidities, and a CSHA-developed test to measure the pa-

tient’s level of independence to perform daily living activities. Researchers also checked the

participants’ history of falls, delirium, or dementia. The result of this 5-year study with

over 2300 people resulted in the CSHA Clinical Frailty Scale, a list of 70 disorders to be

evaluated by a healthcare professional in order to detect a patient’s frailty score from 1 (very

frail) to 7 (very fit). Other more in-depth clinical frailty assessment criteria can be found in

[36, 52, 61].

More recently researchers have proposed classifying frailty via machine learning as it has the

potential of accelerating frailty detection [72]. A comprehensive paper is given by Tarekegn

et al. [73] in which the authors used a health database with over 1 million entries for elderly

people to run different machine learning models for frailty prediction, of which the artificial

neural network and support vector machine ones performed the best. Similar results were

obtained by Bertini et al. [16] using a regression model with socioclinical databases with over

95,000 entries representing the entire elderly population of Bologna, Italy. In Williamson

et al. [77] a frailty validation method using machine learning was created but performed

poorly, having both low sensitivity and specificity. In spite of the potential benefits of

machine learning in frailty detection, this has proven to be a hard problem to solve primarily

because of the complexities involved in frailty detection [16]. Other reasons for the low

performance of machine learning models can be attributed to the loose definition of frailty

itself [77].

However complicated defining frailty is, one thing is common in the literature: gait metrics
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are powerful predictors of negative outcomes in health [65]. This is the reason why most

of the research papers in this field include some gait-related criteria when deciding the best

way to detect and measure a frailty status [30]. The reasons why gait analysis is important

and which parameters are effective in frailty research are explored next.

2.1.2 Gait Analysis in Frailty Detection

Gait is a complex process in which different areas of the body must work continuously

and synchronously in order to be performed properly [53]. This complexity in turn can

be used as a way of representing people since no two human beings walk exactly the same

way [35]. In fact, every time someone takes a step, a vast amount of personal information

is transmitted to the environment in the form of footstep-generated vibration waves. If

this person happens to be walking in a smart building, VBOI techniques could be used to

extract the information contained in the footsteps. For example, Bales et al. [15] were able to

detect an occupant’s biological gender using underfloor accelerometer measurements, while

Alajlouni and Tarazaga [10] were able to localize and track room occupants by their footstep-

induced vibration waves. Unsurprisingly, fields such as biomechanics and kinesiology looked

at links between gait variations and health status. These studies found that the way a

person’s gait changes over time can be an indication that an underlying health condition is

present [35], making gait analysis an excellent tool for the early detection of health problems.

To facilitate the discussion of how frailty and gait are linked to each other, Table 2.1 has the

definitions of some gait parameters mentioned in the literature, and Figure 2.1 describes the

human gait cycle.
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Table 2.1: Definition of gait parameters.

Parameter Definition Reference

Gait cycle (GS) Period between two identical
events during normal walking

[53]

Single limb support Period in which only one foot is
in contact with the floor during
walking. Measured as a percent-
age of the gait cycle

[53]

Double limb support Period in which both feet are in
contact with the floor. Measured
as a percentage of the gait cycle

[53]

Gait speed Distance traveled divided by the
walking time

[13, 35]

Cadence Number of steps per minute [35, 44]
Step length Distance between consecutive toe

offs and heel strikes of opposite
legs

[35]

Step width Mediolateral distance between the
feet during double support

[35]

Stride length Distance between two consecutive
heel strikes of the same foot

[35]

Stride time Time between two consecutive
heel strikes of the same foot

[27]

Gait speed has been the most tracked gait parameter for frailty detection [65]. Because

gait speed is a quick, inexpensive, and robust measure of a patient’s health, it is widely

recorded by healthcare workers to determine the health status of individuals [75]. There is

a particular interest in the connection between slow gait speed and frailty. Pamoukdjian

et al. [47] found in their literature review that slow walking speed alone over a short distance

(about 4 meters) is better at identifying medical complications related to frailty than more

advanced walking and cognitive tests for those over 65 years old. Similarly, in their review

paper, Liu et al. [42] reported that slow gait speed was associated with a higher risk of death
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Figure 2.1: Human gait cycle [74]

for the elderly. Slow gait speed can also tell the presence of certain types of cancer [18],

cardiovascular disease [8], and chronic kidney disease [79].

However, some authors argue that gait speed should not be used as the only discriminating

gait parameter between frailty levels because it is also linked to other aging-related health

problems and does not provide, by itself, a deep insight into gait patterns [65]. Therefore,

combining gait speed with other gait parameters can increase the performance to identify

frailty. For example, Schwenk et al. [65] reported in their extensive review paper that slow

cadence was a factor to distinguish between non-frail and pre-frail individuals in many stud-

ies. da Silva et al. [24] conducted a study with 125 community-dwelling elderly participants

in Brazil and found that cadence discriminated between pre-frail to frail and between non-

frail to frail. However, when analyzing gait differences between pre-frail and frail individuals,

Freire Junior et al. [31] did not find evidence that cadence is a strong discriminating factor

but variations in gait were.

Stride-to-stride variability, measured by the Coefficient of Variation (CV) (Equation 2.1),
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measures the repeatability of coordinated steps during steady-state walking [45]. Low vari-

ability means that steps are automatic and do not require extra effort and it has been linked

to adequate gait control [34]. On the other hand, high gait variability can be a predictor of

health problems (e.g., falls) even better than gait speed in some cases [17, 45]. An excellent

study of stride variability and its association with frailty is given by Montero-Odasso et al.

[45]. In this paper, the authors measured the frailty status of 100 community-dwelling par-

ticipants using Fried’s criteria and used a multivariate linear regression model to find the

associations between frailty and gait variability. Their results show that variability in stride

time, stride width, and stride length are associated with frailty but not double support time

[45]. Interestingly, their paper also claims that variability in some gait parameters has an

association with frailty regardless of gait speed as long as patients walked as fast as they

safely could. They argue that this happens because walking at a fast pace induces a higher

degree of effort, which facilitates the measuring of gait variability due to frailty [45].

CV =
Standard Deviation

Mean ∗ 100% (2.1)

2.2 Gait Data Acquisition in Frailty Research

There are multiple ways to obtain gait data needed for frailty analysis in the literature.

Those range from simple and affordable methods (e.g., stopwatches) to more advanced and

expensive ones (e.g., force plates). This section will review some of the most commonly used

ones in both the literature and the medical community to analyze their performance based

on ease-of-use, cost, and the capability to measure different gait features.
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2.2.1 Stopwatch Measurements

Section 2.1.2 detailed the importance of measuring gait speed in frailty detection. However,

it is common practice to measure gait speed with a stopwatch over a predefined distance

during clinical evaluations in healthcare [30]. Although stopwatches are highly affordable

and easy to use, the main disadvantage over this procedure is that their time measurements

are subject to both intra- and inter-observer variability, as different health professionals

will most likely disagree on the exact moment that patients finished their walking trial

[30, 66]. Additionally, stopwatch measurements are usually limited to only obtaining gait

speed even though it would be beneficial to track other gait parameters as well to aid the

frailty diagnosis. Furthermore, many attempts have been made in the literature to develop

more robust systems to replace stopwatches during frailty evaluations.

2.2.2 Force Plates and Mats

Different studies found in [24, 31, 41, 45] used sensorized mats or plates during walking trials.

Such devices are known for their reliability and validity as mentioned by McDonough et al.

[43], where they found the commercially available pressure mat GAITRite [2] to be 99%

as accurate as motion capture devices. However, pressure mats are costly and not easy to

calibrate and use, which hinders the accessibility of such technology [30]. Another issue with

pressure sensing mats/plates is that they need to occupy a large area (Fried recommends a

walking trial of at least 4 meters in length [32]) to be effective for gait analysis in frailty,

making them nonviable in many settings [33], especially in smaller healthcare facilities or at

patients’ homes.
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2.2.3 Motion Capturing Systems

Motion capture devices provide an alternative to pressure mats while still producing highly

accurate tracking results without the need to occupy a large area. These setups are considered

the gold standard for gait analysis and have even been used in the video-game industry for

capturing more natural body movements [12, 41]. However, systems like the Vicon [5] are

expensive and require a specialized setup in a gait analysis laboratory as well as a time-

consuming marker placement on the participants [12]. More affordable options include the

Microsoft Azure Kinect [4] which can automatically detect and track up to 32 different body

parts and does not require the use of reflective markers. For this reason, the Azure Kinect

has been used in several studies for in-home gait monitoring to assess fall risks [70]. The main

disadvantage with camera-based gait analysis has to do with privacy concerns as cameras

are able to record both video and sounds from patients and those around them.

2.2.4 Wearables Systems

Wearable technologies provide benefits to many areas of healthcare monitoring since these

devices are usually easy to operate and highly affordable. They can also be used to track

patients outside healthcare facilities and share real-time health information with healthcare

providers, thus enabling continuous patient care [28]. Such devices include smartwatches,

IMU sensors, shoe pressure switches, among others. The review paper in [40] shows that in

spite of the recent growth in popularity, smartwatches have only been used a few applications

in healthcare research, most of which focused only on the feasibility of these devices in

healthcare research. Therefore, this field of study still needs to be better explored. Wearables

face a major drawback when it comes to personal privacy because they can be used to track

features unrelated to health. For example, most of the devices that communicate over the
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internet can secretly share users’ location via GPS to the internet provider or consumer

marketing agencies. Wearable technologies also rely on the patient to attach them, which

can be uncomfortable and inconvenient, assuming the user remembers to use them in the

first place.

2.2.5 VBOI in Gait Analysis

A network of floor-mounted accelerometers has been proposed as an alternative to extracting

gait features without having to access any other patient data. These devices do not need

an extensive setup process and can also be used for other applications, such as structural

health monitoring [38]. The usability of accelerometers in gait monitoring rests on their

performance to determine not only when an event happened (which is relatively easy to do),

but also where it happened (a more complicated problem). Thus an overview of common

footstep detection and localization algorithms in VBOI is presented in the following sections.

2.3 Localization Algorithms in VBOI

Localization of room occupants based on footstep-induced waves is one of the most explored

topics in VBOI. These techniques use a network of sensors to measure the vibration generated

by footsteps and use that information to estimate the footstep location. Two of the most

common types of localization algorithms include time-of-arrival and energy-based ones.

2.3.1 Time-of-Arrival Methods

Time-of-Arrival (TOA) relies on accurately measuring when a wave arrives at a sensor. If

more than one sensor is used, it is possible to calculate the time difference of arrival (TDOA)
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and thus obtain an estimate of the source location [14]. For example, assuming some footsteps

happen near an array of N sensors where the N th sensor is considered the reference one,

then the traditional TDOA algorithms work by simultaneously solving a system of N − 1

hyperbolic equations described by:

di − dN = v × (TDOA) , (2.2)

where di = ||ri − rs|| is the distance between the footstep location (rs) and the sensor

(ri, i = 1, 2, ..., N − 1), dN is the distance between the footstep and the reference sensor, and

v is the estimated wave speed. Then Equation 2.2 can be solved for the source location rs.

An efficient localization algorithm assuming constant wave speed was developed by Chan

and Ho [19]. In their study, they linearize the TDOA nonlinear system of equations by

adding an intermediate variable. The source location was then determined using a least-

squares algorithm. Results from [50, 64] show that the algorithm developed in [19] had a

range of accuracy between 2 to 10 feet in tests performed in Goodwin Hall using an impact

hammer. Chen et al. [21] proposed linearizing the localization problem by adding two extra

variables to the nonlinear problem. Localization estimates could then be obtained by an

alternative least-squares approached named constrained least-squares that required only 3

sensors for the 2-dimensional localization problem. The reduction of the number of sensors

is significant because the accuracy of the least-squares methods increases as the number of

sensors increase.

A major assumption in TDOA algorithms is that the wave speed is constant, which means

that the wave travels through non-dispersive media. However, Chen et al. [20] indicate that

seismic waves decay rapidly, and [14] reports that the floor’s dominant flexural mode is

distorted as the wave travels the floor. This means that the footstep wave components with
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higher frequency will travel at nonlinear speeds, thus distorting the wave [11]. The result is

a loss of accuracy when detecting footsteps with traditional TDOA algorithms as different

frequency components arrive at the sensors at different times [14, 51, 64].

Algorithms addressing wave dispersion and distortion have been proposed. Ciampa and Meo

[22] utilize the continuous wavelet transform to increase the TDOA localization accuracy in

dispersive media. This analysis looks at the TOA of the dominant frequency component of

the seismic wave, rather than considering its entire spectrum. This method was reported to

give location estimates within 5 millimeters of the true source location, but it is computation-

ally expensive and the authors only tested it in controlled environments. In [14] a perceived

wave propagation velocity variable is introduced and an algorithm was created based on the

sign of the time difference of arrival (which splits the floor into different searching regions)

to obtain better TDOA estimates. The proposed algorithm assumes that the order of wave

arrival between sensors is the same independently of the dispersion to choose a region that

is more likely to be the event origin.

2.3.2 Energy-Based Methods

Energy-based methods assume that the wave energy decays with distance, thus a sensor

network could be used to estimate the event source location [10]. Advances in energy-

based algorithms were first developed in acoustics as researchers proposed that the energy

of acoustic waves advancing in free space decays proportionally to the inverse of the squared

distance [49]. Other authors developed models in wireless communication based on the

received signal strength (RSS), which is comparable to the amplitude of an accelerometer

measurement. RSS-based localization algorithms have been well-studied in the literature,

particularly in indoor localization using the Wi-Fi network [76]. RSS methods assume an
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exponential energy decay, which means that the energy would be infinite if the source’s

location is the same as the sensor’s. For example, in [49] an RSS model was created according

to:

E(d) = E(d0)

(
d

d0

)β

, (2.3)

where E(d) is the average RSS power, measured over a time interval, d is the distance to the

source, the unknown RSS value at a distance d0 from the source is represented by E(d0), and

β < 0 is the power attenuation parameter. It can be seen from Equation 2.3 that if the source

shares the exact location with the sensor, then E(d = 0) = ∞, which is undefined. Alajlouni

et al. [11] proposed an alternative decay model to overcome this limitation presented as

E(d) = E0e
βd where E0 > 0 is a scalar parameter.

Furthermore, in [10] a new algorithm for indoor footstep localization was proposed based on

the decay model in Equation 2.3 as follows:

Qi = Qse
β(||∆ri||), (2.4)

where Qi is the measured wave power at sensor i = 1, 2, ..., N , Qs represents the average

power produced by the source, which is unknown, ||∆ri|| is the Euclidean distance between

the ith sensor and the source, that is, ||∆ri|| = ||ri − rs||, where ri is the known location of

for the ith sensor and rs = [xs ys]
T is the unknown source location. Lastly, β is the wave’s

attenuation rate which has to be estimated during the calibration phase. Since it is hard to

estimate Qs in practice, the authors introduce a reference sensor quantity to replace it as

shown in Equation 2.5:

QiR ≡ Qi

QR

= eβ(||∆ri||−||∆rR||), (2.5)

where QR is the average power measured by a reference sensor, chosen to be the sen-

sor with the largest calculated power for each footstep, and the Euclidean distance be-
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tween the reference sensor and the source is given by ∆rR. Then, a system of N − 1

nonlinear equations is generated from Equation 2.5 of the form f(rs) = 0, where f(rs) =

[f1(rs), f2(rs), ..., fN−1(rs)]T , and an estimate of rs (represented as r̂s) can be obtained by

solving the following optimization problem:

r̂s = arg min
rs∈R2

||f(rs)| |22. (2.6)

This work uses this algorithm in frailty gait analysis because of its proposed performance

and simplicity. A more detailed study of its methods is provided in the following chapter.

2.3.3 Model-Based and Data-Driven Methods

Model-based and data-driven approaches are among the most recently developed techniques

to detect and localize vibration events in a structure. One of the advantages of a model-

based approach is the possibility to include the dynamics of the structure into the model,

thus improving the robustness of the localization algorithms. However, model-based ap-

proaches increase computational power as models become larger and more complex. They

can also introduce sources of uncertainties when combined with data from vibration sen-

sors due to sensor resolution and precision, and model imperfections. In Drira et al. [26] a

vibration-based model is used to localize and track room occupants. Their approach consists

of a finite element floor model in which all possible walking trajectories are simulated. Real

measurements are also taken by using vibration sensors. Both real and simulated footsteps

go through a wavelet decomposition so that their low-and-high frequency components are

extracted. Footsteps can then be localized by comparing the similarities between the fre-

quency components of both the real and simulated footsteps. However, this algorithm is more

focused on accurately tracking the walking direction than localizing individual footsteps.
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Data-driven approaches usually rely on a previously acquired database of vibration events at

different locations on the floor. An interesting localization algorithm is the Force Estimation

and Event Localization (FEEL) algorithm developed by Davis et al. [25]. This algorithm

utilizes the floor vibration due to an impact and a transfer function to estimate the force

released by the vibration source at the impact location. The force estimate is given by:

f̂ij = IFFT
(
Sj(f)

T̂ij

)
, (2.7)

where f̂ij is the force estimate at impact location i, IFFT() is the inverse Furrier transform,

Sj(f) is the floor vibration measured at position j, and T̂ij is the transfer function.

Therefore, it is possible to localize a vibration source by comparing its force estimate f̂ij to

the ones obtained during the calibration phase at different points on the floor. The advantage

of the FEEL algorithm is that it does not depend on the distance between the impact point

and the sensor location, thus eliminating the need to synchronize the sensors. However,

this algorithm relies on a database of force estimates obtained during the calibration phase.

Thus, it will give unreliable estimates for events that occur in locations not tested during

calibration.
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VBOI-Based Footstep Localization

This chapter provides an experimental application of the energy-based footstep localization

algorithm described in Section 2.3 in gait analysis for frailty diagnosis.

3.1 Methodology

The experiment described in this chapter took place in Goodwin Hall (GH) at Virginia Tech’s

campus. There are 225 high sensitivity accelerometers permanently mounted to the structure

of GH which continuously monitor the building vibrations due to its occupants and the envi-

ronment. Many of the previous VBOI algorithms mentioned in this study have been tested

at GH [11, 50, 51, 78]. However, since this study was supposed to simulate a real hospital

setting, it was decided to manually mount 6 PcB Piezotronics model 393B04 accelerometers

on a hallway on the 4th floor of GH. These accelerometers can measure accelerations within

the bandwidth of 0.06-450 Hz, and have a sensitivity of 1,000 mV/g (g = 9.81m/s2) [6]. A

schematic of the sensors’ layout is shown in Figure 3.1.

A Microsoft Azure Kinect, capable of performing body tracking as mentioned in Section 2.2,

was used for reference. The camera was mounted approximately 1 meter above Sensor 1,

facing the remaining accelerometers as shown in Figure 3.2. The Azure Kinect contains a

1 MP infrared depth camera based on the time-of-flight principle and is capable of taking

depth measurements accurately up to 5.46 meters away [4]. It also contains a 12 MP RGB

22
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camera, a 7-microphone array, and an integrated IMU. An app was created using the Body

Track SDK version 1.0.1 developed by Microsoft [4] to track test participants at 30 frames-

per-second using only the depth camera in the narrow field-of-view settings, which allows

for the greatest tracking distance from the camera.

Figure 3.1: Floor section in Goodwin Hall where the experiment took place. Dots represent
accelerometers mounted on top of the floor, the Azure Kinect is represented by a square, the
starting/ending walking points are shown by green lines. Note: image not to scale.

Figure 3.2: Photo of the sensors’ layout during the experiment.

A total of 2 healthy male individuals wearing regular shoes, and 1 healthy male individual

wearing soft-sole shoes participated in this experiment. Before each trial, participants were
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briefed to start walking down the hallway only after receiving a vocal command and to start

with the left leg first. They were also told to stop walking as soon as they reached the

finishing line to not inadvertently excite the accelerometers with extra steps. Two walking

scenarios were tested at both usual and fast gait speeds: one at body weight and another

with a 5 pound (2.268 kg) weight added to one of the participants’ ankles. Adding the

extra weight only to one leg made it harder to walk along the hallway, thus it was found to

be an adequate method of simulating frailty. “Fast gait” was defined as a brisk walk but

without running, while “usual gait” or “regular gait” was the normal walking speed for each

participant. Once completing the walk in one direction, participants lined up again at the

finish line and the process was repeated. A total of 4 walking trials for each walking scenario

(regular and fast gait at body weight, and regular and fast gait with added weight) were

completed, totaling 12 walking trials for each scenario.

Participants were also asked to perform walking trials in which they had to step at specific

spots down the hallway so that the accuracy of the localization algorithm could be measured.

Marked footsteps had a length of approximately 0.70 meter, or 20 footsteps for the entire

walk. Finally, 4 stopwatch measurements were taken for each trial (every time the participant

passed by a sensor and when he reached the finish line) using a stopwatch from an iPhone XS

running iOS 14 from Apple [1]. It was hypothesized that the added weight would produce

a significant difference in the tracked gait parameters when compared to walking at body

weight.

It is worth mentioning that this experiment was conducted later in the day to prevent

sources of noise and uncertainty during the trials. These include other people walking near

the hallway, doors opening/closing, printers working, and even heavy traffic in the road next

to GH.
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3.2 Footstep Localization

This section describes the techniques used for localizing footsteps using an energy-based

algorithm. First, the time-varying power of the vibration signal is calculated in order to

detect footsteps. Once detected, footsteps are localized according to the algorithm described

in Section 2.3.2. Finally, a technique for detecting and localizing footsteps from the Azure

Kinect is discussed.

3.2.1 Footstep Detection Using Accelerometers

Although there are multiple methods for detecting acceleration signals that look like a heel

strike, the one used in this study is similar to the one proposed in [38], which detects heel

strikes as peaks in the energy of the acceleration signal. First, the acceleration signal is

broken into time windows of approximately 0.02 second, then the average power of each

window is computed according to:

Qi(t0i, tpi) =
1

tpi − t0i

∫ tpi

t0i

Zi(t)
2dt. (3.1)

Let Qi be a vector of length M containing the average power of every window, in sequence,

at sensor i during a measurement period. The signal-to-noise ratio (SNR) is defined as the

ratio between two consecutive elements of Qi as described by Equation 3.2:

SNRi(n) =
Qi(n+1)

Qi(n)

, (3.2)

where n = 1, 2, 3, ...,M − 1. Since the power of random noise in the measurement is close to

0, the SNR will peak when a footstep happens. Therefore, it is possible to detect a footstep
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by searching for peaks in the SNR that are above a certain threshold as shown in Figure 3.3.
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Figure 3.3: Example of three detected footsteps based on peaks in the SNR.

It is interesting to note that this algorithm is more effective when participants walked at fast

gait speed. This happens because there is an increase in footstep energy when participants

walk faster [38], thus making their detection easier when compared to noise in the accelera-

tion signal as shown by Figures 3.4 and 3.5.

3.2.2 Energy-Based Footstep Localization

The amplitude of the acceleration signal increases as a participant continually moves towards

a vibration sensor. In fact, the measured floor acceleration will reach its maximum when

the participant is the closest to the sensor. For example, if a person walks the closest

to the ith sensor, then that sensor will have the highest calculated average power. Using

this information, Alajlouni and Tarazaga [9] developed a fast technique to roughly locate
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Figure 3.4: Example of acceleration signal at fast gait. It can be seen that the detected
footsteps have clearer peaks above the noise level. This does not happen in Figure 3.5 where
the algorithm was not able to accurately differentiate between noise and footsteps.
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Figure 3.5: Example of acceleration signal at slow gait. This is an example of the worst-case
scenario for the footstep detection algorithm, which is when the walker is wearing soft-sole
shoes and walking relatively slowly.
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footsteps by weighing each sensor location to the corresponding footstep average power Qi

and then summing the sensor-weighted locations as shown in Equation 3.3:

r̂s =
∑N

i=1Qiri∑N
i=1 Qi

, (3.3)

where r̂s = [x̂s ŷs] is the estimated 2-dimensional footstep location, ri is the sensor location,

and Qi (i = 1, 2, ..., N) is the calculated footstep average power. Figure 3.6 shows an example

of the rough localization results.
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Figure 3.6: Example of a footstep localization trial using the heuristic sensor-weighted ap-
proach.

An important limitation of the heuristic algorithm can also be seen in Figure 3.6: the

estimated position footsteps are more accurate for the ones that happened inside the convex-
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hull of the sensor location points. The convex-hull is the smallest convex geometry that

contains all sensors as seen in Figure 3.7.
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Figure 3.7: Convex-hull of sensors.

The results from the heuristic localization algorithm can be used as starting points for the

nonlinear optimization problem from Equation 2.5. The algorithm chosen to optimize the

N−1 nonlinear system of equations described by Equation 2.6 was the trust-region-reflective

provided by MATLAB version R2020b [3]. The boundaries given for the nonlinear solver

were from 0 to 1.50 m in x and from -3.5 to 10.5 m in y (Figure 3.6). The accuracy of

the localization algorithm can be measured by the mean absolute error (MAE) given by

MAE =

√∑N
k=1 ||ϵk||

N
, where ϵ is the error or difference between the true and estimated

footstep position and N is the total number of footsteps.
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Figure 3.8: Plot of the estimated footstep localization using the heuristic sensor-weighted
algorithm in the walking direction. The MAE for the entire walk is 2.20 meters while the
MAE in the convex-hull is 0.98 meter.

As mentioned previously, the introduction of a reference sensor in Equation 2.5 replaced the

need to estimate Qs. However, the energy decay parameter β still needs to be calibrated

on-site. The calibration process takes into consideration that higher frequency components

of the footstep acceleration signal decay faster (e.i, β has a lower value) [14]. Alajlouni et al.

[11] showed that hammer impacts proved to be an adequate method of obtaining a lower

bound for β because such impacts contain higher frequencies components than footsteps.

Their results provided an appropriate range for β on the 4th floor of GH is −0.75 < β < 0.

These were the values used for the decay parameter in this study. An example of an improved

localization trial is shown in Figure 3.9 while Figure 3.10 plots the estimated and true footstep

positions for comparison.

Given the algorithm’s limitations to localize footsteps outside the convex-hull, it was decided

to only use detected footsteps inside of it when calculating gait features. Doing so not only
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Figure 3.9: Localization results the same walking trial in Figure 3.6.

improves the spatial accuracy but also makes sure that such parameters are obtained during

the steady-state walking phase as different studies proposed [32, 41, 47, 65]. Finally, a

summary of the energy-based footstep localization algorithm is provided by Figure 3.11.
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Figure 3.10: Improved footstep localization plot in the walking direction. The MAE for the
entire walk and the convex-hull are 1.57 meters and 0.50 meter, respectively.

Figure 3.11: Summary of the localization algorithm used in this study [10].
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3.2.3 Footstep Localization Results

As mentioned previously, a total of 20 footsteps (each with approximately 0.70 meter in

length) were marked along the hallway. Participants were asked to walk at a regular speed

while trying to step on each mark as accurately as possible, totaling 560 steps. The calculated

MAE’s for the entire walk were 0.74 m and 1.60 m in the x and y directions, respectively.

Considering only footsteps in the convex-hull, the MAE becomes 0.75 m in the x-direction

and 0.85 m in the y-direction. Figures 3.12 and 3.13 show the localization errors per footstep

location.
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Figure 3.12: Localization errors in x at each footstep location.

It can also be seen that footsteps in the x-direction were biased towards the sensors placed

further away from the structural wall of the hallway. By being closer to the structural joint

between the wall and the floor, sensors 1, 3, and 5 could have been placed in a stiffer floor

section than the remaining sensors. The disparity in floor stiffness could distort the seismic

waves differently, causing signals arriving at sensors closest to the wall to have less energy

than those arriving at sensors further away. Furthermore, the mean Euclidean norm of the

error ||ϵ|| = ||r̂−rtrue|| (error distance) between the estimated footstep location and the true

one is 1.23 meters.
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Figure 3.13: Localization errors in y at each footstep location.

3.2.4 Footstep Detection and Localization Using the Azure Kinect

The Azure Kinect camera can simultaneously track the position of up to 32 different points

(named joints) in the body as shown in Figure 3.14a. The camera’s coordinate system is

defined in Figure 3.14b. Since the camera was positioned at an angle in relation to the

walking direction, it was necessary to adjust the camera’s depth measurements in the z-

direction to the true walking distance vector located in the middle of the hallway. This was

done by projecting the camera measurements in the z-direction according to the Pythagorean

Theorem as shown in Figure 3.15.

If the participant is traveling away from the camera, the distance between the camera and

the ankle joints will steadily increase during the swing phase of the gait cycle. However,

once a heel strike happens and a foot is in contact with the floor, its distance to the Kinect

camera will remain unchanged. Therefore, it is possible to roughly estimate when a footstep

happened by plotting the position of the ankle joints in the direction of travel vs. time as

shown by Figure 3.16.

Then the challenge becomes precisely knowing when heel strikes (HS) and toe-offs (TO)
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(a) Depth camera image. (b) Azure Kinect coordinate system [4]

Figure 3.14: Example of the tracked Azure Kinect body joints (circles) and the coordinate
system of the Azure Kinect. The black dotted lines in 3.14b are the coordinates of the RGB
camera, which was not used in this study.

happened. In [80] a simple algorithm was created to determine gait events during treadmill

and overground walking using a camera-based motion analysis system. In their experiments,

participants were asked to walk at a constant speed on a treadmill, meaning that the relative

distance between the participants’ center of mass and the cameras was relatively constant.

Thus, a plot of a foot marker in the direction of travel versus time will produce a sinusoidal

curve where peaks and troughs represent HS’s and TO’s, respectively. In order to have the

same effect during overground walking, the authors proposed subtracting the z-coordinate

(direction of walk) of the sacral body marker from the z-coordinate of the heel marker at

each captured frame. This process changes the coordinate system of the body markers so

that they appear to be moving relative to a stationary sacral point, as if the floor was a

treadmill as shown by Figure 3.17. Finally, HS’s and TO’s are detected according to

tHS = (Zheel − Zpelvis)max tTO = (Zheel − Zpelvis)min (3.4)

The authors in [80] also claim that such a simple method detects gait events with a mean
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Figure 3.15: Example of adjusting the Azure Kinect’s depth measurements. Accelerometers
are represented by red circles while the Kinect camera and the participant are represented
by a purple square on top of sensor 1 and a light blue circle, respectively.
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Figure 3.16: Depth camera measurements of the ankle joints. A positive slope means that
the foot is in the swing phase of the gait cycle. Flat regions indicate when the feet are in
contact with the floor (constant distance to the camera). As expected, it can also be seen
that the Azure Kinect struggles when the distance is over 5 meters.

difference of 0.057 second from results obtained with a force plate when using 6 Azure Kinect

cameras. This approach was used in this work for detecting HS’s and TO’s in this thesis

thanks to its performance and ease of use.
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Figure 3.17: Plot of the feet position in relation to the pelvis and the detected HS’s and
TO’s. The final footsteps were not counted because of the range limitations of the depth
camera.

3.3 Discussion on Footstep Localization Trials

In addition to the discussion in Section 3.2, more observations are made here based on the

results of the footstep localization experiment in GH.

3.3.1 Footstep Localization Accuracy

Although the vibration-based localization results in the x-direction were not reliable, they did

not affect the results in the y-direction, thus allowing for the tracking of gait parameters in

the direction of walking. The results also confirmed that the position estimates for footsteps
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inside the convex-hull were more accurate than for those outside. Therefore, only footsteps

that happened inside the convex-hull will be used to calculate spatial and temporal-spatial

gait parameters. A simple solution for this limitation would be to position the start and end

walking points inside the convex-hull.

It is also important to note that this algorithm requires a calibration phase to properly

estimate the energy attenuation rate β. Using a fixed value for β has been proposed in

[9], but the author mentions that this approach would almost always not yield the smallest

possible localization MAE. It was shown in [12] that allowing β to vary during the nonlinear

optimization solver will give the lowest error estimates, but finding the proper lower bound

for β still needs to be done on-site because seismic waves travel differently depending on the

floor system.

3.3.2 Localization Algorithm Computational Performance

The algorithms used in this study provided an adequate balance between accuracy and

performance when compared to others described in Chapter 2. It took on average 0.07

second to obtain each footstep position estimate using the energy-based approach with a

regular laptop without parallel computing, allowing this technique to be used in real-time

footstep detection and position tracking. On the other hand, the Azure Kinect requires a

powerful GPU to capture depth images, but detecting footsteps from them is fast and does

not require a powerful computer if using the approach described in Section 3.2.4.



Chapter 4

Frailty Analysis via VBOI

Chapter 3 described the methods used to detect and localize footsteps using both the passive,

vibration-based approach and using the Azure Kinect. This chapter presents gait analyzes

results performed after the footstep detection and localization phases. To reiterate, walking

trials were performed at both regular and fast walking speeds, and with and without added

ankle weights for frailty simulation. For simplicity, let the walking trials without added

weights be defined as “healthy gait trials (HGT)” and the ones with the added weights

as “frail gait trials (FGT)”. A total of 12 walking trails were conducted for each scenario,

totaling 48 walking trials. Finally, paired two-sample t-tests for means were performed to

compare results from both healthy and frail walking trials. The null hypothesis was that

there would be no significant difference (p-value ≤ 0.05) between the different frailty groups.

4.1 Gait Speed

Three different methods were used to estimate gait speeds. Using the results from the

vibration-based footstep localization algorithm, gait speeds for each walking trial were cal-

culated as the average of the distance between consecutive steps divided by the difference in

time. The Azure Kinect gait speed was calculated by dividing the distance traveled by the

Pelvis joint in the z-direction by the total walking time. Gait speeds were also calculated

by dividing the total walking distance by the walking time taken with a stopwatch, as it

39
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is currently done in healthcare facilities. According to the literature, people suffering from

frailty have significantly slower gait speed than healthy ones, therefore it was expected a

decrease in gait speed during FGT [32, 47, 65].

Figure 4.1 shows the overall distributions of calculated gait speeds during the regular walking

scenarios. It can be seen that the vibration approach was the least precise one but had

small mean-absolute-differences (MD =
∑N

k=1 ||ϵk||
N

) relative to the Azure Kinect (0.49 m/s

for healthy walks and 0.42 m/s for frail ones). The stopwatch method was more precise

and had even smaller MD’s of 0.07 m/s and 0.09 m/s during regular and fast walk trials,

respectively. However, only the Kinect-based method provided enough evidence to reject the

null hypothesis at usual walking speed as shown in Table 4.1.
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Figure 4.1: Gait speed distributions from walking trials at usual speed.

Since participants walk at different speeds, overall gait speed results can suffer from intra-

participant variability. Thus, in order to obtain a fuller gait speed analysis, Figure 4.2

presents the results for each participant separately at usual gait speed. It can be seen that

the vibration approach struggled the most to measure Participant 2’s gait speed, probably

because of light stepping and soft-soled shoes, which hinders the performance of the foot-
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step detection algorithm as shown in Section 3.2. The vibration-based results also show

that Participants 1 and 3 had similar mean gait speeds compared to the Kinect-based and

stopwatch-based approaches, however, their range of calculated gait speeds was greater using

the vibration approach. This is a consequence of the footstep localization algorithm perfor-

mance which can be affected by different sources of variability such as walking speed, shoe

type, and sensors position.
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Figure 4.2: Plot of mean gait speed and gait speed ranges (black whiskers) for each partici-
pant. “HG” and “FG” stand for “healthy gait” and “frail gait”, respectively.

Furthermore, almost all participants had faster mean gait speeds during FGT using the

Kinect-based and stopwatch-based approaches, which goes against what is found in the lit-

erature as frailty should slow down gait speed. However, this could mean that the increased

walking effort due to added weights inadvertently also increased the Participants’ walking

speed, especially when all participants were healthy and the added weights were only meant

to simulate frailty. Given the participants’ health and physical conditioning, it is possible

that extra weight or other techniques were needed to better simulate a frailty status. Par-
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ticipant 2 also had a higher mean gait speed during FGT using the vibration approach, but

not Participants 1 and 3. Finally, given that the person using the stopwatch had to take 4

measurements per walking trial (as described in Section 3.1), it is possible that this person

unconsciously took measurements based on a stopwatch clicking rhythm, rather than when

the walking participant actually crosses specific checkpoints, which could explain the low

variability within the stopwatch measurements.

At fast gait speeds, the difference between the three methods was smaller as shown in Figure

4.3. The vibration approach had an overall MD’s of 0.38 m/s at HGT and 0.32 m/s during

frail walking, while the stopwatch differences were 0.25 m/s and 0.17 m/s for both walking

scenarios, respectively. By comparing Figure 4.3 to Figure 4.1 it can be seen that both the

Kinect and the stopwatch methods had higher overall variability at fast walking trials and

during trials at regular gait speed. On the other hand, the vibration results were less variable

at fast walk when compared to results at usual walk and provided enough evidence to reject

the null hypothesis.

Accel. Kinect Stopwatch

1.5

2

2.5

3

G
a

it
 S

p
e

e
d

 (
m

/s
)

(a) Healthy walk.

Accel. Kinect Stopwatch

1.5

2

2.5

3

G
a

it
 S

p
e

e
d

 (
m

/s
)

(b) Frail walk.

Figure 4.3: Gait speed distributions from walking trials at fast speed.

Figure 4.4 shows the mean gait speeds for each participant during the fast walking trials.
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Across all 3 measuring methods, Participant 1 had similar mean gait speeds between frailty

groups, while Participant 3 had slower mean gait speeds between HGT and FGT. Participant

2 had a slower mean gait speed between HGT and FGT only via the vibration approach and

had a smaller range gait speeds as well compared to walking at usual speed. The vibration

approach had more similar results to both the Azure Kinect and the stopwatch at fast gait

speeds than at regular speed. This is a result of the increased performance of the footstep

localization algorithms as footsteps are easier to detect during fast walking.
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Figure 4.4: Plot of mean gait speed and gait speed ranges (black whiskers) for each partici-
pant at fast walking. “HG” and “FG” stand for “healthy gait” and “frail gait”, respectively.

It is important to notice that although the vibration-based approach showed a significant

difference at fast walking, the sample size was relatively small (only 12 trials), which could

affect the power of the hypothesis test. When combined with the results from the other gait

parameters, which will be discussed in the following sections, it is unlikely that only gait

speed results would be significant when no other parameter was. Tests with a larger sample

size are needed to increase the power of the hypothesis tests.
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Lastly, Table 4.1 presents the summary statistics from gait speed results.

Table 4.1: Summary Statistics For Gait Speed Results.

Usual Gait Fast Gait
VBOI Kinect Stopwatch VBOI Kinect Stopwatch

Healthy 1.69± 0.52a 1.23± 0.08 1.19± 0.04 2.05± 0.47 2.02± 0.32 1.77± 0.19

Frail 1.59± 0.72 1.30± 0.10 1.21± 0.05 1.81± 0.40 1.96± 0.30 1.81± 0.20

Diff.b −0.10 0.07 0.02 −0.24 −0.06 0.04

p-value 0.388 0.034∗ 0.230 0.050∗ 0.360 0.388
∗ - Significant (p ≤ 0.05); a - Mean gait speed ± standard deviation in m/s;

b - Mean gait speed difference between frailty groups.

4.2 Cadence

Cadence was calculated according to Equation 4.1, but only with the vibration and Kinect

methods as there were no simple ways to obtain it from stopwatch measurements. Just as

with gait speed, a frail gait has usually a lower mean cadence than a healthy one [65, 66].

Results for walking at regular gait speed are shown in Figure 4.5 and at fast gait in Figure

4.6. Table 4.2 shows the summary statistics for walking trials at both speeds.

Cadence =
Number of Detected Footsteps

Time Between 1st and last detected footstep (s)
∗ 60 s

min (4.1)

As mentioned previously, accelerometers are more effective for detecting when a vibration

event happened than where it happened. Thus, as cadence does not depend on the footstep

localization but only on footstep detection, the results from the vibration approach were

more precise than the Kinect-based one. However, no overall significant differences were

found for walking trials at both speeds, which could mean that the added weight did not

significantly affect the participants’ estimated cadence.
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The MD values for walking trials at usual gait speed were 7.84 steps/min for healthy walks

and 7.72 steps/min for frail walks. At fast gait the MD’s increase to 20.41 steps/min and

17.96 steps/min at both HGT and FGT, respectively.
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Figure 4.5: Cadence distributions from walking trials at usual walking speed.
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Figure 4.6: Cadence distributions from walking trials at fast walking speed.

One advantage of the vibration approach was detecting most footsteps throughout the entire
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walk, while the Kinect could only accurately detect footsteps inside its depth camera range.

Thus, as expected, the vibration approach was overall more effective at calculating cadence

given its performance to detect heel strike events, particularly at fast walking speeds, in

comparison to the Kinect.

Table 4.2: Summary Statistics For Cadence Results.

Usual Gait Fast Gait
VBOI Kinect VBOI Kinect

Healthy 112.22± 2.42a 117.37± 7.68 133.57± 9.17 150.75± 23.16

Frail 113.90± 4.22 120.16± 10.16 131.57± 9.91 149.53± 16.43

Diff.b 1.68 2.79 −2.00 −1.22

p-value 0.299 0.378 0.190 0.743
a - Mean cadence ± standard deviation in steps/min; b - Mean cadence difference between frailty groups.
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Figure 4.7: Mean cadence at usual gait for each participant with their corresponding cadence
range (black whiskers).

Figures 4.7 and 4.8 show each participant’s estimated cadence using both measuring methods.

At usual walking, participants did not have large differences in mean cadence between frailty

groups. A more observable difference can be seen during fast walking trials in which almost
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every participant had a lower mean cadence between frailty groups. Results from the Kinect

were significantly less precise than the ones from the accelerometers, therefore, the vibration-

based approach is better at estimating cadence thanks to its capabilities of detecting temporal

events.
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Figure 4.8: Mean cadence at fast gait for each participant with their corresponding cadence
range (black whiskers).

4.3 Stride Variability

Stride length and time variability were also obtained from the vibration and Kinect methods.

Stride variability is described by the coefficient of variation (CV) as shown in Equation 2.1.

Low stride variability is linked to automatic and effortless walking, thus frail gait will most

likely have higher variability than healthy ones [45, 65].
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4.3.1 Stride Length

Stride length variability is a spatial gait parameter that measures distance changes between

strides. It was calculated using the results from the vibration-based footstep localization

algorithm and Kinect method. A range of stride length CV’s from healthy to frail gait

is around 2-10% according to previous research [65, 66], where the higher the variability,

the worse the frailty status. Therefore, it can be seen from Figures 4.9 and 4.10 that the

vibration-based algorithm was not able to accurately obtain the stride length variability, as

the real stride lengths were unlikely to have varied more than 10%, especially during healthy

walking trials.
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Figure 4.9: CV distributions from walking trials at usual walking speed.

The reason for such large CV values from the vibration approach is that, at its current state,

the footstep-localization algorithm is not precise enough at localizing individual footsteps.

Differently from gait speed, which also takes into account when a footstep happens, stride

length depends exclusively on the spatial results of the vibration method. Although the

algorithm is capable of, on average, performing to a sub-meter error (as shown in Section
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3.2.3), individual estimations of the footsteps locations suffer from high variability, therefore

affecting the stride length CV. Figure 3.10 is an example of the high variability of the energy-

based algorithm, where the algorithm estimated the location of footstep number 7 to be lower

than footsteps 8 and 9, meaning that the participant momentarily walked back towards the

starting position when this did not actually happen. Such inconsistencies in the localization

detection result in high CV’s for stride lengths. However, an increase in stride variability

during the frail walking trials can still be observed, particularly for usual walking. This

could indicate that even though the mean CV was too large, the vibration approach is still

capable of detecting an increase in stride length variability during FGT, but improvements

to the localization algorithm are needed to obtain meaningful results.
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Figure 4.10: CV distributions from walking trials at fast walking speed.

The Kinect performed better than the accelerometers, especially at regular walking speeds,

but not by much. Its CV distributions were also larger than those described in the literature

at both walking speeds and close to the vibration-based ones. This is again probably a

result of only being able to track a few strides in each trial, especially at fast walking speed.

The most interesting conclusions from the stride length variability are that both types of
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sensors were not capable of accurately measuring it and that the vibration-based approach

performed only slightly worse than the Kinect.

Finally, Table 4.3 describes the summary statistics for stride length variability, where no

significant difference between frailty groups was observed in any walking scenario.

Table 4.3: Summary statistics for stride length variability results.

Usual Gait Fast Gait
VBOI Kinect VBOI Kinect

Healthy 65.28± 21.15%a 15.75± 27.41% 45.62± 21.66% 29.21± 25.78%
Frail 71.89± 15.75% 16.83± 24.45% 44.32± 20.17% 16.97± 10.89%
Diff.b 6.61% 1.08% −1.30% −12.24%
p-value 0.409 0.920 0.863 0.156

a - Mean CV ± standard deviation; b - Mean stride length variability difference between frailty groups.

4.3.2 Stride Time Variability

Similar to cadence, stride time variability (also measured by the CV) only depends on the

footstep detection in time, where accelerometers perform the best. It should come as no

surprise that tracking stride time was better using accelerometers than the Kinect as the

vibration CV results were compatible with those given in the literature and more precise.

In fact, the opposite scenario to stride length variability (where the Kinect was slightly

more precise) occurs with stride time variability. Figures 4.11 and 4.12 show the calculated

stride time CV for each participant at both usual and fast walking trials, respectively. The

vibration approach performed best during fast walking trials as it was more precise. An

interesting observation is that stride time variability went down during FGT, indicating

that the added ankle weight reduced stride variability instead of increasing it. As mentioned

in Section 4.1, it is possible that the added weights did not simulate frailty well, thus the
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reason for a reduction in stride time variability during FGT.
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Figure 4.11: Mean stride time variability at usual gait for each participant with their corre-
sponding CV’s range (black whiskers).

3.3 3.1

13.5

12.9

5.1

4.9

18.2

10.9

4.0 4.1

23.6

10.2

Accel. HG Accel. FG Kinect HG Kinect FG
0

10

20

30

40

50

S
tr

id
e
 T

im
e

 V
a
r.

 C
V

 (
%

)

Person 1

Person 2

Person 3

Figure 4.12: Mean stride time variability at fast gait for each participant with their corre-
sponding CV’s range (black whiskers).

Furthermore, it can be seen from Table 4.4 that there were no overall significant differences

between frailty groups during any walking scenario.
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Table 4.4: Summary statistics from stride time variability results.

Usual Gait Fast Gait
VBOI Kinect VBOI Kinect

Not Frail 6.49± 3.13%a 10.81± 7.82% 4.14± 1.12% 18.42± 13.10%
Frail 5.01± 1.26% 11.64± 6.43% 4.03± 1.75% 11.34± 3.75%
Diff.b −1.48% 0.83% −0.11% −7.08%

p-value 0.190 0.778 0.828 0.083
a - Mean CV ± standard deviation; b - Mean stride time variability difference between frailty groups.

4.4 Discussion

The results presented in this Chapter indicate that detecting frail gait parameters through

current VBOI methods is possible to some extent. Temporal gait parameters were the

easiest to track, followed by spatial-temporal ones. Thus, the vibration-based approach

could be useful in real healthcare facilities considering that it was possible to track gait

speed, the most important frailty predictor, within relatively small differences to the Kinect.

The vibration approach also outperformed the Kinect when measuring gait cadence and

stride time variability, while performing slightly worse than the Kinect when measuring

stride length variability. The versatility of VBOI, combined with its passive nature and low

patient privacy infringement, makes it an interesting alternative method for gait analysis in

healthcare.

It is important, though, to address some of the limitations of the proposed VBOI system.

Footstep localization is well-researched in VBOI and at its current state, such techniques are

capable of sub-meter footstep localization and tracking of the direction of travel. However,

more precision is needed in order to track spatial gait variations in frailty diagnosis. Increased

performance of the localization algorithm would be beneficial in estimating gait speed, for

example. In fact, Figure 4.13 provides an interesting example of what would happen if the
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temporal parameter of footsteps (when they happened, measured with accelerometers) was

combined with the average step length (measured with the Kinect) to calculate gait speed.

The results are more precise (with MD from the Kinect of 0.19 m/s) than only using VBOI

alone.
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Figure 4.13: Gait speed results from using VBOI alone and the gait speed obtained from
using improved step length from the Kinect combined with temporal information from the
accelerometers.

As described in Chapter 3, conducting trials at a fast walking speed positively affects the

detection of footsteps. Given that the vibration-based footstep detection and localization

algorithm performed better at fast walking, combined with the fact that patients tend to

show clearer signs of underlying health issues when walking at a faster pace [45], makes

conducting clinical trials at a fast gait speed more beneficial when using VBOI.

The number of accelerometers used and their mounting position also affect the footstep

localization accuracy. In tracking spatial gait parameters, the localization accuracy tends
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to increase as the number of sensors increases [11]. That is why most of the energy-based

footstep detection and localization algorithms researched in GH used more than 10 underfloor

accelerometers, distributed not only at the boundaries of the hallway but also directly in

the middle of it [9, 10, 11, 38]. Therefore, increasing the sensor density could improve the

footstep localization performance and increase the precision in stride time variability.

Nevertheless, as shown in this Chapter, VBOI can provide a new and exciting method of

gait frailty analysis that is non-intrusive, fast, and does not affect patient privacy as long as

its limitations are taken into consideration.



Chapter 5

Conclusions

This thesis will conclude by summarizing the contributions of this work and discuss future

improvements in frailty gait analysis via VBOI.

5.1 Thesis Summary

In Chapter 2 a review of current frailty definitions and diagnosis techniques has been pro-

vided. It was demonstrated that although frailty is an important public health issue, diag-

nosing it early is a difficult task in healthcare. However, gait parameters such as gait speed,

are strong indicators of a patient’s frailty status, and different methods of tracking them

have been proposed in the literature. In addition to a review of human frailty, Chapter 2

also provided a review of current VBOI techniques and their proposed advantages in gait

analysis that could aid healthcare providers in frailty diagnosis.

Chapter 3 provided an in-depth look at the vibration-based footstep detection and local-

ization techniques used in this work, as well as the algorithms used with the Azure Kinect.

It was shown that footstep detection was easier for participants walking at fast gait speed

and not wearing soft-sole shoes. The localization algorithm had sub-meter overall accuracy

for footsteps inside the sensors convex-hull. The Azure Kinect performed better at regular

walking speeds trials because of its limited sensor range and the number of cameras used.

55
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In Chapter 4 the results from frailty diagnosis via VBOI were presented. The vibration-

based approach obtained comparable gait speed results to the Kinect, especially at fast gait

trials. It was also more precise in measuring cadence and stride time variability. The only

parameter that the vibration approach did not perform well was stride length variability,

where results were highly affected by the different sources of uncertainties in the VBOI

method, but were close to results from the Kinect. Finally, a discussion on the gait analysis

results and possible algorithm improvements was provided.

5.2 Deployment Considerations

Based on the results from this work, there are a few recommendations for deploying and

using the VBOI method for frail gait analysis in the field. These include:

• Sensor Position and Density - It is beneficial to place sensors in a calm region,

with as few sources of vibration noise as possible, e.g., constant opening and closing

of doors, people walking, or machine running. It is important to place sensors as far

away as possible from structural walls to avoid wave distortions and reflections as was

experienced during this work. Increasing the sensor density could also increase the

accuracy of the detection and localization algorithm.

• Walking Path - The total walking area should be enclosed by the convex-hull of the

sensors so that every footstep can be properly localized and used in the gait parameter

calculations.

• Walking Speed - As discussed previously in Chapter 4, there are multiple benefits

from conducting trials at a fast gait speed. However, this walking scenario might

introduce safety concerns, particularly if the participants are suffering from severe
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frailty, therefore the test conductor must carefully evaluate all safety factors before

running trials at fast gait speeds.

5.3 Future Work in VBOI Gait Analysis

The contribution in Chapter 4 demonstrated that VBOI gait analysis provides promising

new techniques for gait parameters measurement in healthcare. However, an increased foot-

step localization precision is needed so that VBOI could be fully utilized in frailty analysis.

This could be reached if VBOI techniques also took into consideration a more detailed un-

derstanding of the fundamental dynamics of structural buildings, which would reduce the

number of assumptions made, and ensure that these techniques could be universally applied

in different structures. Such a limitation was experienced during this work as the placing of

floor-mounted accelerometers affected the localization results, by limiting the algorithm per-

formance in localizing footsteps in the x-direction of the hallway (along its width). Therefore,

acquiring more information about the structure, as it is done with data and model-driven

techniques [25], could help improve the footstep localization accuracy. As discussed in [39],

VBOI has currently benefited from individual works where some occupant inference pa-

rameter is measured and validated within one testing scenario and utilizing specific floor

dynamics assumptions (such as infinite plate or no wave reflections). This results in the

development of individual algorithms that have different floor dynamics assumptions and

little overlap. Perhaps VBOI would benefit better from algorithms that are more integrated

with each other thus having a more robust understanding of the vibration dynamics in the

testing area.

Lastly, the author believes that VBOI research is still too focused on the development of

algorithms and their validation with experimental data from controlled settings, rather than
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their deployment and applications in real-world scenarios. For example, most footstep lo-

calization algorithms described in Chapters 2 and 3 have been thoroughly tested in optimal

conditions, where there is usually only one person walking at a time and there are little build-

ing activities (other people walking or doors closing) that could introduce vibration noise in

their measurements, and using specific accelerometers at specific spots. However, there is no

guarantee that those conditions will be met outside the lab. Hospitals, for example, are usu-

ally busy places where there are constant sources of human, equipment, and object-induced

vibrations, so if vibration-based gait analysis is to be applied in healthcare, there is the need

for a greater understanding of how VBOI techniques perform outside the lab. Studying the

limitations of VBOI, and where it fails, would provide not only new research opportunities,

but also a greater understanding of exactly where and how these techniques can be applied.
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