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Top-down Approach To Securing Intermittent Embedded Systems
Archanaa Santhana Krishnan

(ABSTRACT)

The conventional computing techniques are based on the assumption of a near constant

source of input power. While this assumption is reasonable for high-end devices such as

servers and mobile phones, it does not always hold in embedded devices. An increasing

number of Internet of Things (IoTs) is powered by intermittent power supplies which har-

vest energy from ambient resources, such as vibrations. While the energy harvesters provide

energy autonomy, they introduce uncertainty in input power. Intermittent computing tech-

niques were proposed as a coping mechanism to ensure forward progress even with frequent

power loss. They utilize non-volatile memory to store a snapshot of the system state as

a checkpoint. The conventional security mechanisms do not always hold in intermittent

computing. This research takes a top-down approach to design secure intermittent systems.

To that end, we identify security threats, design a secure intermittent system, optimize

its performance, and evaluate our design using embedded benchmarks. First, we identify

vulnerabilities that arise from checkpoints and demonstrates potential attacks that exploit

the same. Then, we identify the minimum security requirements for protecting intermittent

computing and propose a generic protocol to satisfy the same. We then propose different

security levels to configure checkpoint security based on application needs. We realize config-

urable intermittent security to optimize our generic secure intermittent computing protocol

to reduce the overhead of introducing security to intermittent computing. Finally, we study

the role of application in intermittent computing and study the various factors that affect

the forward progress of applications in secure intermittent systems. This research highlights

that power loss is a threat vector even in embedded devices, establishes the foundation for

security in intermittent computing.



Top-down Approach To Securing Intermittent Embedded Systems
Archanaa Santhana Krishnan

(GENERAL AUDIENCE ABSTRACT)

The embedded systems are present in every aspect of life. They are available in watches,

mobile phones, tablets, servers, health aids, home security, and other everyday useful tech-

nology. To meet the demand for powering up a rising number of embedded devices, energy

harvesters emerged as a solution to provide an autonomous solution to power on low-power

devices. With energy autonomy, came energy scarcity that introduced intermittent comput-

ing, where embedded systems operate intermittently because of lack of constant input power.

The intermittent systems store snapshots of their progress as checkpoints in non-volatile

memory and restore the checkpoints to resume progress. On the whole, the intermittent

system is an emerging area of research that is being deployed in critical locations such as

bridge health monitoring. This research is focused on securing intermittent systems com-

prehensively. We perform a top-down analysis to identify threats, mitigate them, optimize

the mitigation techniques, and evaluate the implementation to arrive at secure intermittent

systems. We identify security vulnerabilities that arise from checkpoints to demonstrate

the weakness in intermittent systems. To mitigate the identified vulnerabilities, we propose

secure intermittent solutions to protect intermittent systems using a generic protocol. Based

on the implementation of the generic protocol and its performance, we propose several op-

timizations based on the needs of the application to securing intermittent systems. And

finally, we benchmark the security properties using two-way relation between security and

application in intermittent systems. With this research, we create a foundation for designing

secure intermittent systems.
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Chapter 1

Introduction

The Internet of Things (IoT) is an evolving technology that fosters connectivity between

devices. The IoT supports a virtual representation of the real world through sensors and ac-

tuators, and it enables significant opportunities for optimization and analysis in smart grids,

smart homes, smart cities, smart hospitals, and others. The scale of the IoT is enormous. By

2025, the number of computing devices in the IoT is projected to increase to 75 billion, and

the data volume from these devices will exceed 79 zettabytes [18]. The number of devices

on the one hand, and the level of trust placed in them on the other hand, have important

implications for the realization of IoT devices.

Typically, IoT devices were powered by the grid or by a battery, both of which are not op-

timal power supply solutions. The placement of IoT devices is restricted by the availability

of grid power supply. To overcome this issue, small batteries were used to power certain

embedded devices to wean off the dependency on grid power. Batteries have two disad-

vantages. First, the production and disposal of batteries are harmful to the environment

including contamination of drinking water and land [46, 74]. Second, the batteries need

to be replaced periodically, depending on the battery capacity, application, and embedded

device [77]. There was a need for energy autonomous embedded devices that could operate

without restrictions from the grid power supply and periodic battery replacement. This was

answered by energy harvesters.

1
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Figure 1.1: Three components of an energy harvester: (1) a transducer to convert ambient
energy to electrical energy, (2) a power management circuit to adjust the harvested energy
based on the needs of the load, and (3) an energy storage buffer to deliver high power to the
load

1.1 Energy Harvester

Energy harvesters generate electrical energy from ambient energy sources, such as solar [45],

wind [38], vibration [104], electromagnetic radiation [23], and radio waves [33]. The ambient

energy is processed in three steps before it is consumed by the load, illustrated in Figure 1.1.

First, a transducer converts ambient energy to electrical energy. Second, a power manage-

ment circuit efficiently manages the harvested energy based on the requirements of the load.

Since the harvester typically supplies low power, third, a supercapacitor or a battery is used

as an energy storage buffer to accumulate the harvested electrical energy to supply bursts

of high power to the load. Recent advances in energy-harvesting technologies have provided

energy autonomy to low-power embedded devices [55, 80, 98].

Classical devices come equipped with volatile memory, such as SRAM [6] or DRAM [68],

which loses its state on power loss. The ambient energy sources depend on external factors,

including, but not limited to, weather, time of day, human activity, and location of the

harvester. For example, sunlight is only available during the daytime and is dependent on

the weather conditions; wind energy is similarly dependent on the weather; kinetic energy is

dependent on the machine or human motion. Based on the availability of energy, the device

is powered on/off, leading to an intermittent operation.
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Table 1.1: Comparing the features of various memory technologies such as SRAM, Flash and
EPROM with emerging non-volatile memory technologies including FRAM, MRAM, PCM,
and NRAM [95]

SRAM EPROM Flash Emerging NVM
Non-volatility No Yes Yes Yes
Write performance ↑ ↓ ↓ ↑
Read performance ↑ - - ↑
Endurance ↑ ↓ ↓ ↑
Power ↓ ↑ ↑ ↓

↓: Low, ↑: High

1.2 Non-volatile memory

Non-volatile memory retains its state even after a power loss. Several commercially avail-

able embedded devices are equipped with Flash technology as non-volatile memory [1, 2].

While Flash memory was a key technology in bringing non-volatile memory to embedded

devices, it has certain limitations that are not ideal for resource constrained devices. First,

Flash has limited endurance which restricts the number of times Flash can be erased and

re-programmed. Second, Flash has asymmetrical read and write overhead with power hun-

gry and high latency writes. In recent years, there has been a vast influx of devices with

write efficient non-volatile memory, such as Ferroelectric RAM(FRAM) [103], Phase change

memory (PCM) [5], Magnetoresistive RAM, and (MRAM) [85]. While MRAM and NRAM

technologies are only available as stand-alone memory, FRAM and PCM are available as em-

bedded memory in commercial microcontroller lines from Texas Instruments [97] and STMi-

croelectronics [5] respectively. Table 1.1 compares various non-volatile memory technologies

available to highlight the advantages of emerging non-volatile memory over traditional Flash

and EPROM.

A majority of the latest embedded devices contain both volatile and non-volatile memory.

Typically, volatile memory is used to store the system and application state as it is relatively
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Figure 1.2: Flow of intermittent computing: (1) Cause - lack of solar energy causes power
loss, (2) Statefulness - the state of volatile memory, VM, is stored as checkpoints, CKP, in
non-volatile memory, NVM, and (3) Security - checkpoints are protected in NVM.

faster than non-volatile memory. The system state includes the processor registers, such as

the program counter, stack pointer, and other general purpose registers, and settings of all

the peripherals in use. The application state includes the stack, heap and any developer

defined variables that are needed to resume program execution. And non-volatile memory

is used to store the code sections, which is non-rewritable data. In the event of a power

loss, volatile memory loses its program state, wiping both the application and system state.

Thus, it is difficult to implement long-running applications on intermittent devices with only

non-volatile memory to ensure accurate program execution.

1.3 Intermittent Computing

Intermittent computing was proposed as a cure-all for the loss of program state and to ensure

forward progress of long-running applications. Instead of restarting the device, intermittent
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computing creates a checkpoint that can be used to restore the device when power is restored.

Figure 1.2 illustrates the checkpoint generation and restoration process involved when an

intermittent system is powered by a solar energy harvester. A checkpoint contains all the

application and system state information necessary to continue the long-running application.

It involves two steps: checkpoint generation and checkpoint restoration. In the checkpoint

generation process, all the necessary information is stored as a checkpoint in non-volatile

memory. When the device is powered up again, after a power loss, instead of restarting

the application, checkpoint restoration is initiated. In the checkpoint restoration process,

the system and application state are restored using the most recently recorded checkpoint,

ensuring that the application resumes execution. There is extensive research in the field of

intermittent computing that focuses on efficient checkpointing techniques for intermittent

devices.

Several intermittent computing techniques have been proposed, among which a majority

optimize two criteria, energy efficiency and rollback minimization. The latter also ensures

that the former is achieved by preventing re-execution of completed tasks. The state-of-

the-art techniques use various techniques, such as architectural support [41], energy aware

checkpoint calls [44], kernel-oriented design [18], task based programming and execution

model [61], non-volatile processors [49], and, probabilistic algorithms [32] to obtain energy

efficient checkpoints. This research focuses on security for intermittent computing.
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1.4 Securing Intermittent Computing

Security for embedded devices is not a new concept. Many systems need security guarantees

on user identification, network security, secure communication, secure storage, availability,

etc [79]. The guarantees are usually satisfied either by cryptographic algorithms such as

symmetric, asymmetric, and hash algorithm or by a combination of these algorithms in a

dedicated security protocol. Also, several security architectures provide attestation and iso-

lation in embedded environments [31, 63, 70]. These environments provide strong guarantees

on the integrity of the code execution and the information leakage of data stored in memory,

as long as the power is available. However, when power is removed, these environments

behave as other computing systems. Hence, they may be subject to replay attacks simply

by repeated execution of power-off and power-on events. Therefore, the main research

question(main RQ) of this dissertation is formulated as:

Main RQ: How to secure embedded systems when power loss is imminent?

The main research question is divided into the following sub-questions, addressed in each

chapter of this dissertation.

1.4.1 Chapter 2: Threats and Exploits

Chapter 2 aims to identify the threats introduced by intermittent computing to embedded

systems. Until 2017, none of the intermittent computing proposals has considered checkpoint

security [14, 17, 41, 44]. In 2017, Ghodsi et al. [32] proposed to only encrypt checkpoints

which may not provide adequate protection. To date, a majority of the state-of-the-art

intermittent computing techniques fail to consider the security of checkpoints. When left
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unprotected, the sensitive data stored in a checkpoint is available to an attacker after a

power loss. This gives rise to the first research question of Chapter 2:

RQ2.1: What are the threats introduced by intermittent computing?

We analyze the security, or lack thereof, of checkpoints in the latest intermittent computing

techniques. Under the assumption that power loss is a threat vector, we identify three

security vulnerabilities that are introduced by checkpoints of intermittent computing. With

unsecured checkpoints, we formulate the second research question:

RQ2.2: How to exploit the new threats in intermittent systems?

To answer RQ 2.2, we first identify sensitive data in checkpoints of a cryptographic algorithm.

Then, we attack the algorithm using checkpoints to retrieve the secret key. To the best of

our knowledge, Chapter 2 presents the first systematic analysis of the security threats and

their exploits in the field of intermittent computing.

1.4.2 Chapter 3: Secure Design

Chapter 3 builds on the results of the previous chapter to eliminate the threats identified

in Chapter 2. It is essential to secure checkpoints to ensure the security properties are

maintained across power loss. With the shift from continuous execution to intermittent

execution, the checkpoints become vital in maintaining overall system security. We first

identify the fundamental checkpoint security objectives with the following research question.

RQ3.1: What are the additional security requirements required in the light of emerging

vulnerabilities in intermittent systems?
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We performed a detailed analysis of the state-of-the-art works in checkpoint security and the

lack of comprehensive security for checkpoints. We identified checkpoint security solutions

using memory isolation [11, 28] and using cryptographic primitives [11, 32, 53, 100]. While

isolation prevents unauthorized access of checkpoints, only cryptographic primitives encode

information security properties, such as confidentiality, integrity, and/or freshness, within

checkpoints. In this research, we focus on securing checkpoints using cryptographic prim-

itives. With the security objectives in mind, we develop solutions to answer the following

research question:

RQ3.2: How to secure intermittent systems using a generic framework?

We propose a secure checkpointing technique called the Secure Intermittent Computing Pro-

tocol (SICP). The proposed protocol has the following properties. First, it associates every

checkpoint with a unique power-on state to prevent checkpoint replay. Second, every check-

point is cryptographically chained to its predecessor, providing continuity, which enables the

programmer to carry run-time security properties such as attested program images across

power loss events. Third, SICP is atomic and resistant to power loss. Chapter 3 demon-

strates a prototype implementation of SICP on an MSP430 microcontroller and performs

preliminary analysis on the overhead of SICP for several cryptographic kernels.

1.4.3 Chapter 4: Configure and Optimize

The experiments in Chapter 3 revealed a considerable overhead in securing checkpoints using

a cryptographic solution. We need to reduce the energy consumption of securing checkpoints

and speed up the process as intermittent systems are already energy starved and need a fast

wake-up time. This gave rise to the following research question on system optimization:
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RQ4.1: How to improve the performance of secure intermittent systems?

In Chapter 4, we propose to configure security properties for different sections of a checkpoint.

The main idea is to further whittle the security objectives for different sections of checkpoints

to minimize the checkpoint security requirements and consider other security requirements as

add-on features. We propose to achieve this using configurable security levels for intermittent

systems that start with minimal security requirements and adds other security features in

an ad-hoc manner.

1.4.4 Chapter 5: Evaluate and Benchmark

Finally, Chapter 5 will study the two-way dependency between the application and check-

point security. On the one side, we believe the overhead of securing checkpoints, including

time and energy, affects the actual forward progress of the intermittent application. And on

the other side, the application also plays a major role in deciding the security requirements

of checkpoints which affect the overall overhead of securing checkpoints. The experiments

in Chapter 5 will address the following research question:

RQ5.1: What are the factors that affect the performance of secure intermittent sys-

tems?

In the first experiment, we demonstrate the effect of securing checkpoints on the duty cycle

of a secure key exchange algorithm. In the second experiment, we curate a list of benchmarks

to quantitatively evaluate the overhead of application, intermittent computing, and config-

urable secure intermittent computing. This chapter systematically evaluates the impact of

application and other factors on the performance of secure intermittent systems.
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1.5 Reading Guide

The main chapters of this dissertation (Chapters 2 - 5) have been written as individual pa-

pers, each chapter can be read as its own. As a result, there may be some overlap in related

work sections of the main chapters. An adapted version of Chapter 2 and Chapter 3 has

been published in the Journal of Hardware Architecture and System Security. An adapted

version of Chapter 4 and Chapter 5 is under review for publication in another journal. The

results in this dissertation have been presented at various conferences and workshops includ-

ing International Conference on Security, Privacy, and Applied Cryptography Engineering

(2018), International Symposium on Hardware Oriented Security and Trust (2019), Design,

Automation & Test in Europe (2019), and (2019).



Chapter 2

Exploiting Vulnerabilities in

Intermittent Computing

2.1 Introduction

Traditional embedded systems are conceived from the viewpoint that power is plentiful and

that power will only be fully removed when all tasks are completed. The power management

is adjusted to the needs of the application or to the computing load. Recent advances in

energy-harvesting technologies have provided energy autonomy to ultra-low-power embedded

devices. Since the energy is harvested depending on the availability of ambient energy, the

harvester does not harvest energy continuously. Based on the availability of energy, the

device is powered on/off, leading to an intermittent operation. In intermittent systems

where the power source is unreliable and limited, the application adapts to the available

power, including seamless and transparent turn-off and turn-on.

Intermittent systems use scavenged or harvested energy sources, which provide a nearly

inexhaustible energy supply with limited and unreliable power delivery (think of a solar

cell). Depending on the energy harvesting source, the power level can be as low as a few

microwatt. Through power conditioning, harvested energy is stored in an energy buffer,

such as a supercapacitor, which in turn has limited capacity and which may overflow. This

makes continuous operation of intermittent systems- virtually impossible; at some point, the

11
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energy buffer runs out. However, by saving critical system state as a checkpoint, system

operation can continue across power loss. The checkpoint generation is either triggered by

a system call in volatile processors or automatically triggered by a power interrupt in non-

volatile processors [49]. Non-volatile processors store a majority of their data in non-volatile

memory and place their system data, such as registers, in volatile memory. They only have

to back up the volatile state in non-volatile logic, thus have the advantage of instant state

restore on power-up with negligible energy and time overhead.

The introduction of non-volatile memory to a device changes the system dynamics by mani-

festing new vulnerabilities. Although the purpose of non-volatile memory is to retain check-

pointed data even after a power loss, the sensitive data present in a checkpoint is vulnerable

to an attacker who has access to the device’s non-volatile memory. The non-volatile memory

may contain passwords, secret keys, and other sensitive information in the form of check-

points, which are accessible to an attacker through a simple JTAG interface or advanced

on-chip probing techniques [40, 84]. As a result, non-volatile memory must be secured to

prevent unauthorized access to checkpoints.

Recent work in securing non-volatile memory guarantees confidentiality of stored data [66].

Sneak -path encryption (SPE) was proposed to secure non-volatile memory using a hard-

ware intrinsic encryption algorithm [47]. It exploits physical parameters inherent to a mem-

ory to encrypt the data stored in non-volatile memory. iNVM, another non-volatile data

protection solution, encrypts main memory incrementally [24]. These techniques encrypt

the non-volatile memory in its entirety and are designed primarily for classical computers

with unlimited compute power. We are unaware of any lightweight non-volatile memory

encryption technique that can be applied to an embedded system. Consequently, a major-

ity of the intermittent computing solutions do not protect their checkpoints in non-volatile

memory [41, 44, 78]. As far as we know, the state-of-the-art research in the intermittent
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computing field does not provide a comprehensive analysis of the vulnerabilities enabled by

its checkpoints.

In this chapter, we focus on the security of checkpoints, particularly that of intermittent

devices, when the device is powered off. We study existing intermittent computing solutions

and identify the level of security provided in their design. For evaluation purposes, we choose

Texas Instruments’(TI) Compute Through Power Loss (CTPL) utility as a representative of

the state-of-the-art intermittent computing solutions [96]. We exploit the vulnerabilities of

an unprotected intermittent system to enable different implementation attacks and extract

the secret information. Although the exploits will be carried out on CTPL utility, they

are generic and can be applied to any intermittent computing solution which stores its

checkpoints in an insecure non-volatile memory.

Contribution: We make the following contributions in this chapter:

• We are the first to analyze the security of intermittent computing techniques and to

identify the vulnerabilities introduced by its checkpoints.

• We implement TI’s CTPL utility and attack its checkpoints to locate the sensitive

variables of Advanced Encryption Standard(AES) in non-volatile memory.

• We then attack a software implementation of AES using the information identified

from unsecured checkpoints.

Outline: Section 2 gives a brief background on existing intermittent computing solutions

and their properties, followed by a detailed description of CTPL utility in Section 3. Sec-

tion 4 details our attacker model. Section 5 enumerates the vulnerabilities of an insecure

intermittent system, with a focus on CTPL utility. Section 6 exploits these vulnerabilities
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to attack CTPL’s checkpoints to locate sensitive information stored in non-volatile memory.

Section 7 utilizes the unsecured checkpoints to attack AES and extract the secret key. We

conclude in Section 8.

2.2 Attacker Model

To evaluate the security of the current intermittent computing solutions, we focus on the

vulnerabilities of the system when it is suspended after a power loss, and assume that the

device incorporates integrity and memory protection features when it is powered on. We

study two attack scenarios to demonstrate the seriousness of the security threats introduced

by the checkpoints of an intermittent system. In the first case, we consider a knowledgeable

attacker who has sufficient information about CTPL and the target device to attack the

target algorithm. In the second case, we consider a blind attacker who does not have any

information about CTPL or the target device but still possesses the objective to attack the

target algorithm. In both the cases, the attacker has the following capabilities.

• The attacker can access the memory via traditional memory readout ports or employ

sophisticated on-chip probing techniques [40, 84], to retrieve persistent data. This

allows unrestricted reads and writes to the data stored in the device memory, par-

ticularly the non-volatile memory, directly providing access to the checkpoints after

a power loss. All MSP430 devices have a JTAG interface, which is mainly used for

debugging and program development. We use it to access the device memory using

development tools, such as TI’s Code Composer Studio (CCS) and mspdebug.

• The attacker has sufficient knowledge about the target algorithm to analyze the mem-

ory. We assume that each variable of the target algorithm is stored in a contiguous
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memory location on the device. The feasibility of this assumption is described in

Section 2.5 using Figure 2.1

• The attacker can also modify the data stored in non-volatile memory without damaging

the device. Therefore, the attacker has the ability to corrupt the checkpoints stored in

non-volatile memory.

2.3 Security Vulnerabilities of Unsecured Checkpoints

Based on the above attacker model, we identify the following vulnerabilities, which are

introduced by the checkpoints of an intermittent system.

Checkpoint Snooping: An attacker with access to the device’s non-volatile memory has

direct access to its checkpoints. Any sensitive data included in a checkpoint, such as se-

cret keys, the intermediate state of a cryptographic primitive and other sensitive application

variables, is now available to the attacker. Since CTPL is an open-source utility, a knowl-

edgeable attacker can study the utility and easily identify the location of checkpoints, and in

turn, extract sensitive information. A blind attacker can also extract sensitive information

by detecting patterns that occur in memory. Section 6 provides a detailed description of

techniques used in this chapter to extract sensitive information. Vulnerable data, which is

otherwise private during application execution, is now available for the attacker to use at

their convenience. A majority of the intermittent computing techniques, similar to CTPL, do

not protect their checkpoints. Although encrypting checkpoints protects the confidentiality

of data, as in [32], it is not sufficient to provide overall security to an intermittent system.
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Checkpoint Spoofing: With the ability to modify non-volatile memory, the attacker

can make unrestricted changes to checkpoints. In CTPL and other intermittent computing

solutions, if a checkpoint exists, it is used to restore the device without checking if it is

indeed an unmodified checkpoint of the current application setting. Upon power off, both

the blind and knowledgeable attacker can locate the sensitive variable in a checkpoint, change

it to an attacker-controlled value. As long as the attacker does not reset ctpl_valid, the

checkpoint remains valid for CTPL. At the next power-up, unknowingly, the device restores

this tampered checkpoint. From this point, the device continues execution in an attacker-

controlled sequence. Encrypting checkpoints is not sufficient protection against checkpoint

spoofing. The attacker can corrupt the encrypted checkpoint at random, and the device

will decrypt and restore the corrupted checkpoint. Since the decrypted checkpoint may not

necessarily correspond to a valid system or application state, the device may restore to an

unstable state, leading to a system crash.

Checkpoint Replay: An attacker who can snoop into the non-volatile memory can also

make copies of all the checkpoints. Since both the blind and knowledgeable attackers are

aware of the nature of the software application running on the device, they possess enough

information to control the sequence of program execution. Equipped with the knowledge

of the history of checkpoints, the attacker can overwrite the current checkpoint with any

arbitrary checkpoint from their store of checkpoints. Since ctpl_valid is set in every check-

point, the device is restored to a stale state from the replayed checkpoint. This gives the

attacker capabilities to jump to any point in the software program with just a memory over-

write command. Similar to CTPL, the rest of the intermittent computing techniques also

restore replayed checkpoints without checking if it is indeed the latest checkpoint.
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Figure 2.1: AES variables present in a checkpoint and their contiguous placement in FRAM
identified using the Linux command nm. nm lists the symbol value (hexadecimal address),
symbol type (D for data section) and the symbol name present in the executable file
main.elf.

2.4 Experimental Setup

We used TI’s MSP430FR5994 LaunchPad development board. The target device is equipped

with 256kB of FRAM which is used to store the checkpoints. We implement TI’s software

AES128 library on MSP430FR5994 as the target application running on the intermittent

device. Figure 2.1 lists a minimum set of variables that must be checkpointed to ensure

forward progress of AES. They are declared persistent to ensure that they are placed in

FRAM. Figure 2.1 also lists the location of these variables in FRAM, identified using the

Linux nm command. All the AES variables are placed next to each other in FRAM, from

0x1029F to 0x1037E, which satisfies our assumption that the variables of the target algorithm

are stored in a contiguous memory location. The executable file, main.elf, was only used to

prove the feasibility of this assumption and is not needed to carry out the attack described

in this chapter.

2.4.1 CTPL

TI introduced CTPL [96] which provides a checkpoint on-demand solution for intermit-

tent systems, similar to QuickRecall [44]. It defines dedicated linker description files for

all its MSP430FRxxxx devices that allocates all the application data sections in FRAM
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Figure 2.2: Principle of operation of CTPL, checkpoint(CKP) generation and restoration
based on the supply voltage, Vcc, and its set threshold voltage, Vth

and allocates a storage location to save volatile state information. Figure 2.2 illustrates the

checkpoint generation and restoration process with respect to the supply voltage. A check-

point is generated upon detecting power loss, which stores the volatile state information in

non-volatile memory. Volatile state includes the stack, processor registers, general purpose

registers and the state of the peripherals in use. Power loss is detected either using the

on-chip analog-to-digital(ADC) converter or with the help of the internal comparator. Even

after the device loses the main power supply, it is powered by the decoupling capacitors for

a small time. The decoupling capacitors are connected to the power rails, and they provide

the device with sufficient grace time to checkpoint the volatile state variables. After the

required states are saved in a checkpoint, the device waits for a brownout reset to occur

as a result of power loss. A timer is configured to timeout for false power loss cases when

the voltage ramps up to the threshold voltage, Vth, illustrated in Figure 2.2. Checkpoint

restoration process is triggered by a timeout, device reset or power on, where the device

returns to the last known application state using the stored checkpoint.

Checkpoint generation: Call to ctpl_enterShutdown() function saves the volatile state

in three steps, as shown in the bottom of Figure 2.3. In the first step, the volatile periph-



2.4. Experimental Setup 19

Figure 2.3: CTPL checkpoint generation and restoration flowchart

eral state, such as a timer, comparator, ADC, UART, etc., and general purpose registers

(GPRs) are stored in the non-volatile memory. The second and third step are programmed

in assembly instructions to prevent mangling the stack when it is copied to the non-volatile

memory. In the second step, the watchdog timer module is disabled to prevent unnecessary

resets and the stack is saved. Finally, the ctpl_valid flag is set. ctpl_valid flag, which is

a part of the checkpoint stored in FRAM, is used to indicate the completion of the check-

point generation process and is set after the CTPL utility has checkpointed all the volatile

state information. Until ctpl_valid is set, the system does not have a complete check-

point. After the flag is set, the device waits for a brownout reset or timeout. CTPL defines

dedicated linker description files for all MSP430FRxxxx devices that places its application

data sections in FRAM. Application specific variables, such as local and global variables, are

retained in FRAM through power loss without explicitly storing or restoring them.

Checkpoint restoration: Upon power-up, the start-up sequence checks if the ctpl_valid

flag is set, as illustrated in Figure 2.3. If the flag is set, then the non-volatile memory contains
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a valid checkpoint which can be used to restore the device, else the device starts execution

from main(). Checkpoint restoration is also carried out in three steps. First, the stack is

restored from the checkpoint location using assembly instructions, which resets the program

stack. Second, CTPL restores the saved peripherals and general purpose registers before

restoring the program counter in the final step. Then, the device jumps to the program

counter set in the previous step and resumes execution.

In this complex mesh of checkpoint generation and restoration process of CTPL, checkpoint

security is ignored. All the sensitive information from the application that is present in

the stack, general purpose registers, local variables and global variables are vulnerable in

the non-volatile memory. In the following sections, we describe our attacker model and

enumerate various security risks involved in leaving checkpoints unsecured in a non-volatile

memory.

2.5 Exploiting CTPL’s Checkpoints

In this section, we explain our method to identify the location of checkpoints and sensitive

data in FRAM, based on the capabilities of the attacker. We show that checkpoint snooping

is sufficient to identify the sensitive data in non-volatile memory. As CTPL is a voltage-aware

checkpointing scheme, the application developer need not place checkpoint generation and

restoration calls in the software program. CTPL, which is implemented as a library on top of

the software program, automatically saves and restores the checkpoint based on the voltage

monitor output. To access the checkpoints, we use mspdebug commands memory dump (md)

and memory write (mw) to read from and write to the non-volatile memory, respectively,

via the JTAG interface. Other memory probing techniques, [40, 84], can also be utilized to

deploy our attack on AES when JTAG interface is disabled or unavailable.
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Figure 2.4: Memory dump of FRAM, where the checkpoint begins from 0x10000 and ends
at 0x103DB

2.5.1 Capabilities of a knowledgeable attacker

Armed with the information about CTPL and the target device, a knowledgeable attacker

analyzes the 256kB of FRAM to identify the location and size of checkpoints in non-volatile

memory. The following analysis can be performed after CTPL generates at least one check-

point, which is generated at random, on the target device.

Locate the checkpoints in memory: A knowledgeable attacker examines CTPL’s linker

description file for MSP430FR5994 to identify the exact location of FRAM region in the

device’s memory that hosts the checkpoints. In the linker description file, FRAM memory

region is defined from 0x10000, which is the starting address of .persistent section of mem-

ory. CTPL places all application data sections in the .persistent section of the memory.

Thus, the application specific variables required for forward progress are stored somewhere

betweem in 0x10000 and 0x4E7FF.

Identifying checkpoint size: A knowledgeable attacker has the ability to distinguish the

checkpoint storage from regular FRAM memory regions using two properties of the target

device. First, any variable stored in FRAM must either be initialized by the program or it

will be initialized to zero by default. Second, the target device’s memory reset pattern is
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0xFFFF. Based on these properties, the attacker determines that the checkpoint region of

FRAM will either be initialized to a zero or non-zero value and the unused region of FRAM

will retain the reset pattern. The knowledgeable attacker generates a memory dump of the

entire FRAM memory region to distinguish the location of checkpoints. In the memory

dump, only a small section of the 256kB of FRAM was initialized, and the majority of the

FRAM was filled with 0xFFFF, as shown in Figure 2.4. Thus, the checkpoint is stored

starting from 0x10000 up to 0x103DB, with a size of 987 bytes. In an application where the

length of input and output are fixed, which is the case of our target application, the size of

a checkpoint will remain constant. It is sufficient to observe this 987 bytes of memory to

monitor the checkpoints.

Thus, a knowledgeable attacker who has access to the device’s linker description file and

device’s properties can pinpoint the exact location of the checkpoint with a single copy of

FRAM.

2.5.2 Capabilities of a blind attacker

Unlike knowledgeable attackers, blind attackers do not possess any information about CTPL

or the device, but only have unrestricted access to the device memory. They can still analyze

the device memory to locate sensitive information stored in it. The set of capabilities of a

knowledgeable attacker is a superset of the set of capabilities of a blind attacker. Therefore,

the following analysis can also be performed by a knowledgeable attacker.

To ensure continuous operation of AES, CTPL stores the intermediate state of AES, state;

secret key, key; round counter, round and other application variables in FRAM. These

variables are present in every checkpoint and can be identified by looking for a pattern in

the memory after a checkpoint is generated. To study the composition of device memory,
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Figure 2.5: A section of the diff output of memory dumps that locates a consistent difference
of 16 bytes at the memory location 0x102B0, which pinpoints the location of the intermediate
state of AES

the blind attacker collects 100 different dumps of the entire memory of the device, where

each memory dump is captured after a checkpoint is generated at a random point in AES,

irrespective of the location and frequency of checkpoint calls. 100 was chosen as an arbitrary

number of memory dumps to survey as a smaller number may not yield conclusive results.

And a larger number will affirm the conclusions derived from 100 memory dumps. The blind

attacker uses the following technique to locate state in the memory.

Locate the intermediate state of AES: At a given point of time, AES operates on

16 bytes of intermediate state. This intermediate state is passed through 10 rounds of

operation before a ciphertext is generated. By design, each round of AES confuses and

diffuses its state such that at least half the state bytes are changed after every round. After

two rounds of AES, all the 16 bytes of intermediate state are completely different from the

initial state [26]. Thus, any 16 bytes of contiguous memory location that is different between

memory dumps is a possible intermediate state. To identify the intermediate state accurately,
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the blind attacker stores each of the collected memory dump in an individual text file for

post-processing using the Linux diff command. diff command locates the changes between

two files by comparing them line by line. The attacker computes the difference between each

of the 100 memory dumps using this command and makes the following observation. On

average, seven differences appear between every memory dump. Six of the seven differences

correspond to small changes to memory ranging from a single bit to a couple of bytes. Only

one difference, located at 0x102A2, corresponds to a changing memory of up to 16 contiguous

bytes, as shown in Figure 2.5. Based on the design of AES, the attacker concludes that any

difference in memory that lines up to a 16 bytes can be inferred as a change in state. From

the diff output highlighted in Figure 2.5, the blind attacker accurately identifies state to

begin from 0x102B0 and end at 0x102BF. It is also reasonable to assume that state is stored

in the same location in every checkpoint as it appears at 0x102B0 in all memory dumps.

The attacker can also pinpoint the location of the round counter using a similar technique.

round is a 4-bit value that ranges from 0 to 11 depending on the different rounds of AES.

Thus, any difference in memory that spans across 4 contiguous bits, and takes any value

from 0 to 11 are ideal candidates for the round counter.

2.6 Attacking AES with Unsecured Checkpoints

Equipped with the above information on checkpoints and location of sensitive variables in

FRAM, we extract the secret key using three different attacks - brute forcing the memory,

injecting targeted faults in the memory and replaying checkpoints to enable side channel

analysis. We demonstrate that when the attacker can control the location of checkpoint

generation call, it is most efficient to extract the secret key using fault injection techniques,

and when the attacker has no control over the location of checkpoint call, brute forcing the



2.6. Attacking AES with Unsecured Checkpoints 25

key from memory yields the best results.

2.6.1 Brute forcing the key from memory

Since the device must checkpoint all the necessary variables to ensure forward progress, it is

forced to checkpoint the secret key used for encryption as well. To extract the key by brute

forcing the memory, the attacker needs a checkpoint or a memory dump with a checkpoint,

a valid plaintext/ciphertext pair, and AES programmed on an attacker-controlled device

who’s plaintext and key can be changed by the attacker. The attacker generates all possible

keys from the memory, programs the attacker-controlled device with the correct plaintext

and different key guesses. The key guess that generates the correct ciphertext output on the

attacker-controlled device is the target device’s secret key. Based on the assumption that

the key stored in FRAM appears in 16 bytes of contiguous memory location, the attacker

computes the number of possible keys using the following equation:

NKeyGuess = Lmemory − Lkey + 1 (2.1)

Where, NKeyGuess is the total number of key guesses that can be derived from a memory,

Lmemory is the length of the memory in bytes and Lkey is the length of key in bytes. The

number of key guesses varies depending on the capabilities of the attacker, as detailed below.

Knowledgeable attack: Knowledgeable attackers begins with a copy of a single check-

point from FRAM. The 16-byte key is available in FRAM amidst the checkpointed data,

which is 987 bytes long. Using equation 2.1, a knowledgeable attacker computes the number

of possible key guesses to be 972. Thus, for a knowledgeable attacker, the key search space

is reduced from 2128 to 29 + 460.
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Blind Attack: Since blind attackers do not know the location or size of the checkpoint,

they start with a copy of the memory of the device that contains a single checkpoint.

MSP430FR5994 has 256kB of FRAM, which is 256,000 bytes long. Using equation 2.1,

the number of key guesses for a blind attacker equals 255,985. For a blind attacker, the

search space for the key is reduced to 218 − 6159

In both the attacker cases, all possible keys are derived by going over the memory 16

contiguous bytes at a time. These key guesses are fed to the attacker-controlled device to

compute the ciphertext. The key guess that generates the correct ciphertext is found to be

the secret key of AES. Even though a blind attacker generates more key guesses and requires

more time, they can still derive the key in less than 218 attempts, which is far less compared

to the 2128 attempts of a regular brute force attack. The extracted key can be used to

decrypt subsequent ciphertexts as long as it remains constant in checkpoints. If none of the

key guesses generate the correct ciphertext, then the secret was not checkpointed by CTPL.

When the key is not stored in FRAM, it can be extracted using the two attacks described

below.

2.6.2 Injecting faults in AES via checkpoints

Fault attacks alter the regular execution of the program such that the faulty behavior dis-

closes information that is otherwise private. Several methods of fault injection have been

studied by researchers, such as single bit faults [13] and single byte faults [7]. A major-

ity of these methods require dedicated hardware support in the form of laser [7] or voltage

glitcher [16] to induce faults in the target device. Even with dedicated hardware, it is not

always possible to predict the outcome of a fault injection. In this chapter, we focus on

injecting precise faults to AES and use existing fault analysis methods to retrieve the secret
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key.

To inject a fault on the target device, the attacker needs the exact location of the intermediate

state in memory and the ability to read and modify the device memory. They also require a

correct ciphertext output to analyze the effects of the injected fault. The correct ciphertext

output is the value of state after the last round of AES, which is obtained from a memory

dump of the device that contains a checkpoint that was generated after AES completed all

ten rounds of operation. Both the blind and the knowledgeable attacker know the location of

state in memory and have access to memory. A simple memory write command can change

the state and introduce single or multiple bit faults in AES. This type of fault injection

induces targeted faults in AES without dedicated hardware support. We describe our method

to inject single bit and single byte fault to perform differential fault analysis(DFA) on AES

introduced in [34] and [30] respectively.

Inducing single bit faults: To implement the single-bit DFA described in [34], the at-

tacker requires a copy of the memory that contains a checkpoint that was generated just

before the final round of AES. This memory contains the intermediate state which is the

input to the final round. The attacker reads state from 0x102B0, modifies a single-bit at an

arbitrary location in state and overwrites it with this faulty state to induce a single-bit fault.

When the device is powered-up, CTPL restores the tampered checkpoint and AES resumes

computation with the faulty state. The attacker then captures the faulty ciphertext output

and analyzes it with the correct ciphertext to compute the last round key and subsequently

the secret key of AES using the method described in [34]. With the help of the unsecured

checkpoints from CTPL, both blind and knowledgeable attackers can inject targeted faults

in AES with single bit precision, enabling easy implementation of such powerful attacks.
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Inducing single byte faults: To induce a single byte fault and implement the attack

described in [30], the attacker requires a copy of the memory that contains a checkpoint that

was generated before the Mix Column transformation of the ninth round of AES. Similar to

a single bit fault, the attacker overwrites state with a faulty state. The faulty state differs

from the original state by a single byte. For example, if state contains 0x0F in the first

byte, the attacker can induce a single byte fault by writing 0x00 to 0x102B0. When the

device is powered-up again, CTPL restores the faulty checkpoint. AES resumes execution

and the single byte fault is propagated across four bytes of the output at the end of the tenth

round of AES. The faulty ciphertext differs from the correct ciphertext at memory locations

0x102B0, 0x102B7, 0x102BA and 0x102BD. Using this difference, the attacker derives all

possible values for four bytes of the last round key. They induce other single byte faults

in state and collect the faulty ciphertexts. They use the DFA technique described in [30]

to analyze the faulty ciphertext output and find the 16 bytes of AES key with less than 50

ciphertexts. Thus, the ability to modify checkpoints aids in precise fault injection which can

be exploited to break the confidentiality of AES.

2.6.3 Replaying checkpoints to enable side channel analysis

The secret key of AES can also be extracted by using differential power analysis (DPA) [50].

In DPA, several power traces of AES are needed, where each power trace corresponds to the

power required to process a different plaintext using the same secret key. These power traces

are then analyzed to find the relation between the device’s power consumption and secret

bits, to derive the AES key.

Similar to DFA, to extract the secret key using DPA, the attacker needs the correct location of

state of AES, which is known by both the blind and knowledgeable attacker. With access to
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the device memory, the attacker can read and modify state to enable DPA. To perform DPA

on the target device, they need a copy of the device memory that contains a checkpoint that

was generated just before AES begins computation. The state variable in this checkpoint

contains the plaintext input to AES. It is sufficient to replay this checkpoint to restart AES

computations multiple times. To obtain useful power traces from each computation, the

attacker overwrites state with a different plaintext every time. Upon every power-up, CTPL

restores the replayed checkpoint and AES begins computation with a different plaintext each

time. The target device now encrypts each of the plaintext using the same key. The power

consumption of each computation is recorded and processed to extract the secret bits leaked

in the power traces, and consequently, derive the secret key. Even though this attack also

requires a copy of memory and modifications to state, it requires other hardware, such as

an oscilloscope, to collect and process the power traces to derive the secret key.

2.6.4 Attack Analysis

If it is feasible to obtain a copy of the memory that contains a checkpoint from a specified

round of AES, then extracting the secret key by injecting faults in checkpoints and performing

DFA is the most efficient method for two reasons. First, DFA can extract secret key with

less than 50 ciphertexts and an existing DFA technique, such as [30, 34], but DPA requires

thousands of power traces. Second, unlike DPA, DFA does not require hardware resources

such as an oscilloscope to extract the secret key. Thus, injecting faults in checkpoints breaks

the confidentiality of AES with the least amount of time and resources, compared to replaying

checkpoints. If it not possible to determine when the checkpoint was generated, brute forcing

the memory to extract the secret key is the only feasible option. All the attacks described

in this chapter can be carried out without any knowledge of the device or the intermittent

computing technique in use. The attacker only needs unrestricted access to the non-volatile
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memory to extract sensitive data from it.

Apart from AES, the attacks explored in this chapter are also effective against other cryp-

tographic algorithms and security features, such as control flow integrity protection [27] and

attestation solutions [31], that maybe implemented on an intermittent device. Thus, unpro-

tected checkpoints undermine the security of the online protection schemes incorporated in

intermittent devices.

2.7 Conclusions

Intermittent computing is emerging as a widespread computing technique for energy har-

vested devices. Even though several researchers have proposed efficient intermittent com-

puting techniques, the security of such computing platforms is not a commonly explored

problem. In this chapter, we study the security trends in the state-of-the-art intermittent

computing solutions and investigate the vulnerabilities of the checkpoints of CTPL. Using

the unsecured checkpoints, we demonstrate several attacks on AES to retrieve the secret key.

This calls for intermittent computing designs that address the security pitfalls introduced

in this chapter. Since security is not free, resource constrained devices require lightweight

protection schemes for their checkpoints. Hence, dedicated research is needed to provide

comprehensive, energy efficient security to intermittent computing devices.
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Securing Intermittent Computing

3.1 Introduction

Computers including servers, personal computers (PCs), laptops, and embedded devices,

run on electric power, which is typically supplied by the grid. Power loss, a fact of life,

is a short-term or long-term shortage of power which causes computer shut downs. Upon

power loss, the device transitions from ON-state to OFF-sate, losing its volatile computer

state. Upon the next power-up, it transitions to ON-state and re-initializes the volatile

state, thus power loss re-initializes the system on every power-up. The transition between

ON, OFF, and ON-state is called power transition. The computer copes with power loss by

storing checkpoints of the intermediate volatile state in non-volatile memory, illustrated in

Figure 1.2. Non-volatile memory ensures that checkpoints remain persistent across power

transitions. Upon power up, the computer is restored to the most recent checkpointed state

and resumes its tasks.

In this chapter, we focus on the power transitions of a secure embedded system. Energy

harvesting technology converts ambient energy to electrical energy, which is sufficient to

power resource constrained embedded devices. Figure 1.2 illustrates a device powered by a

solar energy harvester. Since the availability of solar energy depends on the weather and time

of the day, a solar energy harvester is a transient power source. Transient power supplies

do not provide continuous power which causes power loss in embedded systems. To cope

31
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Table 3.1: Comparison of the essential checkpoint security properties among various state-
of-the-art related work in the field of both emebdded devices and conventional computer

Type of
solution

Related
Work

Essential properties Target
Platform

C I Auth F Cont Atom
Intermittent
computing

[14, 17, 41, 44] - - - - - - Embedded
deviceGhodsi [32] ✓ - - - - -

NVM memory
encryption iNVM [24], SPE [47] ✓ - - - - - Conventional

computer

State
continuity

ICE [91] ✓ ✓ - ✓ ✓ - Conventional
computer with
protected module

Ariadne [90] ✓ ✓ - ✓ ✓ ✓
Memoir [73] ✓ ✓ - ✓ ✓ ✓

Secure
checkpoints

SECCS [100] ✓ ✓ ✓ - - - Embedded
devicesAsad [11] ✓ ✓ - - - -

SICP(this work) ✓ ✓ ✓ ✓ ✓ ✓
C: Confidentiality, I: Integrity, Auth: Authenticity, F: Freshness, Cont: Continuity, Atom: Atomicity.

with power loss, the device is equipped with non-volatile memory. Although the device’s

non-volatile memory retains its data during power-off, the volatile state information is lost.

Non-volatile memory by itself is insufficient to ensure forward progress of the application [61].

Intermittent computing is a stateful power transition technology, where the device stores a

snapshot of the volatile state information in non-volatile memory, as a checkpoint (CKP).

The checkpoint is used to restore the device to the last known state to ensure forward progress

of the application. The state-of-the-art intermittent computing techniques provide efficient

checkpoint generation and restoration solutions to ensure forward progress with minimum

overhead [41, 61, 65, 101]. As the checkpoints contain intermediate state of the device, they

must be secured to protect power transitions.

Related Work Table 3.1 compares the essential properties of some of the latest work

related to checkpoints. So far, none of the intermittent computing proposals has considered

checkpoint security [14, 17, 41, 44], except one [32], which only considers confidentiality and

does not detect checkpoint replay. In-band memory encryption techniques have been pro-
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posed for conventional computers [24, 47], which introduce a constant encryption overhead

that is less suited for embedded devices.

Current conventional computers are equipped with module isolation mechanisms, such as

Intel SGX and ARM TrustZone, that also require state continuity guarantees in case of

system crashes and power loses. ICE [91], Ariadne [90] and Memoir [73] were designed to

provide state continuity to these computers. Although these solutions guarantee most of the

essential properties, they are not designed for resource constrained embedded devices.

SECCS, a secure context saving solution, only provides confidentiality and integrity of check-

points in non-volatile memory using a hardware module [100]. It does not consider replay of

checkpoints or availability of the intermittent device, similar to Asad et al. [11]. As a result,

both SECCS and Asad et al. do not ensure freshness and authenticity of checkpoints and is

not an atomic solution.

Figure 1.2 illustrates the three facets of power transitions - cause, statefuleness, and security.

In general purpose computers, such as servers, PCs and laptops [35, 67], all three facets of

power transitions are on-going research problems. Whereas in embedded systems, only the

cause [58, 89] and statefulness [41] are commonly explored. Although security for embedded

systems is an on-going research problem [70], the security of power transitions is widely

ignored. In this chapter, we highlight the need for secure power transitions in embedded

systems through the following contributions:

• We study the security vulnerabilities introduced by stateful power transitions and

analyze the need for secure power transitions.

• We propose the Secure Intermittent Computing Protocol (SICP) to overcome these

vulnerabilities. We describe a real-life application that requires checkpoint security,

which can benefit from SICP.
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• We quantify power transitions in embedded systems by computing the overhead of

checkpoint generation and restoration process, and the overhead incurred to secure

stateful power transitions. We demonstrate that secure and stateful power transitions

are expensive but achievable in embedded systems.

Organization The rest of the chapter is organized as follows. Section 3.2 provides a brief

background on the different facets of power transition and their effects on embedded systems.

Section 3.3 discusses our attacker model, locates checkpoint vulnerabilities, and provides a

set of security requirements for checkpoints. Section 3.4 proposes SICP to satisfy these

security requirements followed by our implementation of SICP in Section 4.4. Section 3.6

evaluates SICP by introducing the need for checkpoint security to a real-life application and

by studying the overhead of statefulness and security in power transition and followed by

our conclusions in Section 3.7.

3.2 Background in Power Transitions

In this section, we define the different facets of power transitions and analyze their effects

on embedded systems. The three facets of power transition are defined as follows:

1. Cause: The root cause of power loss helps identify the frequency, period of power

loss, and other characteristics which help design coping mechanisms for the computer

system.

2. Statefulness: A stateful power transition is aware of the intermediate state of the

computer system. Through statefulness, the computer maintains its state during power

loss which is used in future computations. It ensures the forward progress of the

application.
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3. Security: The security of a power transition is the guarantee that the state of the com-

puter system is protected from data corruption and unauthorized access even during

power loss. It preserves the security features of both the device and application across

power loss.

We analyze the problems introduced by transient power supplies, describe the use of state-

fulness to cope with these problems and demonstrate the need for security in stateful power

transitions.

3.2.1 Cause

Energy harvesters extract energy from ambient energy sources, such as heat [89], vibra-

tion [104], and radiation [60], and convert it to electrical energy to power embedded devices.

Since the ambient energy is not always available, energy harvester provide intermittent power

supply to embedded devices. The embedded device turns-on and turns-off based on the avail-

ability of input energy. Conventionally, after each power cycle the device is reinitialized and

loses the progress made during the previous power on state, restarting the application every

time. Stateful power transitions are needed to avoid re-initialization after every power loss.

The intermittent computing model, a stateful power transition technique, was introduced

to guarantee forward progress of long-running applications when powered by an intermit-

tent power supply. All the state information necessary to restore the device is stored as

a checkpoint in non-volatile memory. A checkpoint consists of the system state, such as

processor registers, peripheral registers, and application state, such as stack, heap, and de-

veloper defined variables that are required to resume program execution. After a power

cycle, the device is restored to the last known checkpointed state. Several intermittent com-

puting techniques have been proposed, among which a majority optimize two criteria, energy
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efficiency and rollback minimization.

Irrespective of the checkpointing technique in use, the device transitions through two states,

ON-state and OFF-state. During the ON-state, the device performs its regular tasks. It

may employ protection features such as control flow integrity [27], attestation and isola-

tion [70], and protection against cold-boot attacks [36]. The variables required to implement

these security features must also be checkpointed to ensure the continuation of these se-

curity properties in future ON-states. During the OFF-state, the checkpoint remains in

non-volatile memory. The checkpoint contains the intermediate state of the application,

which may be a cryptographic algorithm, and the critical settings of the security features

employed during ON-state, such as kernel privileges and memory access rights. A majority

of the intermittent computing techniques store their checkpoints as plaintext in non-volatile

memory. A few techniques explore security in power transitions [32, 100] but they do not

provide a comprehensive security solution. The existing secure power transition solutions

from general purpose computers [21, 22, 35] cannot be used in embedded systems because

they were not designed for resource constrained devices.

3.3 Problem Description

Checkpoints, which are generated to provide stateful power transitions, introduce vulnera-

bilities to an embedded device which may otherwise be secure when it is powered on. In this

section, we define our attacker model, describe the risks introduced by unprotected check-

points, and list a set of minimum security requirements to protect power transitions against

the assumed attacker model.
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Figure 3.1: The architectural assumptions and memory model for SICP illustrating the
assumed attacker model with two capabilities - (1) control power supply to the device and
(2) view and modify tamper sensitive non-volatile memory during power-off periods.

3.3.1 Attacker model

The attackers aims to gain useful information from the intermittent execution model. We

define an attacker model with the following capabilities, illustrated in Figure 3.1, to study

the security vulnerabilities introduced by checkpoints.

1. The attacker has complete control over the power supplied to the device. The attacker

can arbitrarily stop the application on the target device, for example, the attacker can

tamper with the energy harvester input to control the input to the target device. The

aim of the attacker is not to completely stop the application on the target device, but

to stop the target device at strategic points in the application to gain information from

the checkpoints. Thus, denial of service by cutting off power supply is out of scope of

this attacker model.

2. The attacker has access to the majority of the device memory when it is powered

off. The attacker can read from and write to the unprotected non-volatile memory,

which we call tamper-sensitive non-volatile memory. In this scenario, even though the

device must be powered on to access the contents of memory, the CPU is still not

powered-on, i.e, the processor is in idle state. For example, the attacker can access
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the memory by providing read/write commands to Direct Memory Accessc(DMA) via

debug probes. Since DMA is independent of the processor, the attacker need not

power-on the processor to access memory [75].

3. The attacker cannot tamper with secure non-volatile memory and residual capacitors

on board. The secure non-volatile memory is used to store the secret key and parts of

secure checkpoint. A few of the on-board capacitors are used as residual energy source

for certain protocol operations such as atomic write and erase operations.

We assume that the device is equipped with a tamper-free non-volatile memory, which is

secure from the assumed attacker model. This requirement can be satisfied by using an off-

the-shelf microcontroller with secure non-volatile memory, such as Maxim’s ZA9L1 [3]. For

example, the secure memory may only be accessible from authorized code and unauthorized

access may lead to zeroization of secure memory. In the event of power loss, we assume

that the device is equipped with residual capacitance, which provides sufficient power to

the device to complete a 128-bit write without interruptions. We assume that the device is

physically protected from the attacker, including the CPU and other components on-board.

The attacker cannot access the device memory during ON-state, the volatile and non-volatile

system states are inaccessible to the attacker when the device is powered on. We assume

that the device’s execution integrity and memory protection during power-on states are

guaranteed by a protected embedded software execution environment [70]. The mitigation

of side channel and fault injection attacks on the checkpointing system are beyond the scope

of this work.
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3.3.2 Checkpoint vulnerabilities

Non-volatility of persistent memory compromises the privacy of unsecured persistent data.

The state-of-the-art non-volatile memory protections are not designed for resource con-

strained devices [47, 94]. The state-of-the-art intermittent computing techniques also fail

to secure their checkpoints. Checkpoints consist of the volatile and non-volatile state of a

device, which may contain sensitive data. When left unsecured, they introduce the following

vulnerabilities to an intermittent system.

• Checkpoint snooping: The attacker can read the non-volatile memory, and in turn

read the checkpoints to extract sensitive information stored in them as the checkpoints

are stored as plaintexts. Non-volatile data, which is otherwise private during power-

on, is now open to attackers in checkpoints. The attacker can study the checkpoints

to identify the location of sensitive information [83]. While checkpoint encryption

may provide protection against snooping [32], it does not protect against the other

vulnerabilities.

• Checkpoint spoofing: The state-of-the-art intermittent computing techniques simply

restore a checkpoint, if one exists, without checking its integrity. With the knowledge

of the location of sensitive variables, the attacker can spoof checkpoints by modifying

them in non-volatile memory. Unknowingly, the device restores itself with a modi-

fied checkpoint from where it resumes execution in an attacker controlled sequence.

Encrypted checkpoints [32] are also vulnerable to spoofing as they do not guarantee

integrity. The attacker can modify an encrypted checkpoint, which may not corre-

spond to a valid checkpointed state upon decryption. When the device is powered up,

it is restored with the decrypted modified encrypted checkpoint, which may lead to a

system crash.
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• Checkpoint replay: The attacker can combine snooping and spoofing to replay check-

points. The attacker can store a copy of all the checkpoints of an intermittent system,

where each checkpoint corresponds to a state of the application, to create a pool of

checkpoints. The state-of-the-art intermittent computing techniques do not check if

the checkpoint to be restored is indeed the latest checkpoint, which enables checkpoint

replay. The attacker can overwrite the current checkpoint with any checkpoint from

their pool; upon power-up, the device is restored to a stale state. A checkpoint se-

curity solution which only protects checkpoint confidentiality and integrity, such as

SECCS [100], will not detect checkpoint replay.

3.3.3 Exploiting unsecured checkpoints

The attacker can exploit these vulnerabilities to gain access to sensitive information about

the application on the device. If a device is programmed with a cryptographic algorithm,

such as Advanced Encryption Standard(AES) [26], the application variables must be included

in its checkpoint to ensure forward progress of the algorithm in the event of power loss. The

attacker can identify the sensitive variables in a checkpoint [83], such as the intermediate

state and round counter of AES. The ability to spoof checkpoints enables the attacker to

replace sensitive variables of AES with attacker controlled variables and extract the secret

key using cryptanalysis.

Checkpoint security is essential to ensure that the security properties of ON-states are

maintained across power transitions, without any compromise. The continuous execution

paradigm is shifting to an intermittent execution paradigm, which makes checkpoints an

integral part of the execution environment. The existing secure software execution environ-

ments are only designed for ON-states based on the assumption that the power supply is
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continuous [27, 31, 70]. They propose to restart their system, including the security modules

and features, when they encounter a power failure. These assumptions do not apply to a

system powered by a transient power supply. Secure software execution must consider the

security of both its ON-state and OFF-state, which includes checkpoint security.

3.3.4 Checkpoint Security Requirements

Although the security requirements may vary depending on the application and device, we

must consider the following as a set of minimum requirements to overcome the vulnerabilities

discussed above.

• Information security: The checkpoint’s confidentiality, integrity, authenticity, and

freshness must be ensured to protect against checkpoint snooping, spoofing, and re-

play.

• Availability: The checkpoint generation and restoration process must be atomic to

ensure a valid checkpoint is always available. This guarantees that the checkpoints

will not be corrupted even if a power loss occurs during the checkpointing process.

• Continuity: Secure application continuity maintains the order of checkpoints, to pro-

vide assurance that the device is at the current state because it executed the previous

states without any attacker intervention.

3.3.5 Architectural Assumptions

Secure and stateful power transitions require certain architectural features and protection

guarantees, illustrated in Figure 3.1. The device must have three types of memory. First,

volatile memory to store the runtime program state, which is erased upon power loss. Second,
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tamper sensitive non-volatile memory, which does not possess any tamper resistance. Third,

tamper-free non-volatile memory, which is secure against the assumed attacker model. The

size of tamper free memory must be minimized to reduce hardware cost and complexity. We

only place necessary variables in tamper-free memory, including the secret key and nonce,

instead of placing the entire secure checkpoint in it. The rest of the secure checkpoint is

placed in the tamper sensitive non-volatile memory, which is unprotected.

Apart from the different types of memory, the device must have a residual power source to

provide a small, finite source of energy. For example, an on-chip or on-board capacitor may

act as a residual source to power the device for a small period even after the main power

supply is powered-off. Since power loss is considered a threat, sensitive variables must be

wiped as soon as the device encounters a power loss. We assume that the residual power

source is sufficient to wipe sensitive variables and to finish writing a 128-bit value in non-

volatile memory. Since the device is physically protected from the attacker, the assumed

physical protection also extends to the residual source.

3.4 Secure Intermittent Computing Protocol

Checkpoint security is essential, without which the security features from ON-state are lost

during OFF-state. Intermittent computing techniques only ensure the forward progress of

the application, the continuity of the security properties require a set of rules to detect and

prevent tampering. This introduces a need for a protocol or a frame of reference to describe

and achieve the security requirements discussed in Section 3.3.4.

We define the Secure Intermittent Computing Protocol (SICP) to protect the checkpoint

vulnerabilities introduced in Section 3.3.2 and to ensure forward progress of the application

and continuity of security properties. SICP defines a set of rules among the different states of
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Figure 3.2: A protocol scenario for secure power transitions, depicting a sequence of ON-
states, OFF-states, and the corresponding state of non-volatile memory of the device. The
protocol provides rules for (1) creating secure checkpoints, CKP, during ON1 and for (3)
restoring an unmodified CKP. It also ensures the protection of plaintext state by (2) over-
writing it with zeros upon power loss.

the device, illustrated in Figure 3.2. The non-volatile memory, which holds the checkpoints,

is the prover and the device verifies the validity of these checkpoints. During power-on,

the device creates a secure checkpoint and stores it in non-volatile memory (Step 1). After

a power cycle, the device verifies if the checkpoint to be restored is indeed the latest and

unmodified checkpoint (Step 3). With SICP, the device can differentiate between a malicious

and valid checkpoint in memory. It detects malicious checkpoints and prevents restoring the

device to an attacker controlled state.

3.4.1 Satisfying the security requirements

We start with a device that has gone through factory_reset() which restores the device to

manufacturer settings and programs the tamper-free non-volatile memory with a secure key,

K . With the unsecured checkpoint, STATE , which contains the application and microcon-

troller data, we create a secure checkpoint in several steps, illustrated in Figure 3.3.

First, the freshness requirement is satisfied by associating each STATE with a nonce, Ri,

which is stored in tamper-free non-volatile memory. nonce() generates a unique and fresh Ri.

Second, the confidentiality, integrity and authenticity requirements are satisfied by encrypt-
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Figure 3.3: An example SICP scenario. (1) The system is cleared by the factory_reset()
operation. (2) A fresh nonce, Ri is associated with each power-on state. The first valid
state save packet, SS1 , is created by INITIALIZE. On power loss, (3) WIPE clears the volatile
STATE and upon subsequent power up, (4) RESTORE validates the latest state save packet,
SS1 , restores the program state, and generates a new state save packet SS2 . (5) During
program execution, REFRESH is called to create a new checkpoint SS3 , overwriting the oldest
state save packet, SS1 .

ing STATE and Ri using Authenticated Encryption with Associated Data (AEAD) [81].

AEADencr() takes the plaintest STATE, Ri, and the non-confidential associated data as

input to generate the encrypted checkpoint, Si. AEADauth() generates an authentication

tag, Ti, over the newly encrypted checkpoint along with the nonce and associated data1.

After a power cycle, if a valid authentication tag exists, it decrypts Si using AEADdecr(). If

the authentication tag check fails, abort() is called to raise a violation of the protocol. At a

1The encryption and tag calculation in AEAD operations are separated here to provide clarity in protocol
operations
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Algorithm 1 INITIALIZE
Require: K
1: Q← nonce()
2: TB ← nonce()
3: STATE ← 0
4: RA ← Q
5: SA ← AEADencr (STATE ,TB ,RA,K )
6: TA ← AEADauth(SA,TB ,RA,K )

minimum, abort() must either halt the device or clear the device memory and restart it. A

secure checkpoint is a tuple of Si, Ri, and Ti, which is called a state save packet, SSi.

Third, the atomicity requirement is satisfied by storing the state save packets in a two-state

buffer, SSA and SSB. They are updated in an alternating manner to ensure one packet is

kept valid at all times. At a given point of time, the non-volatile memory will contain the

latest packet, SSi, and the previous packet, SSi−1, illustrated in Figure 3.3. Fourth, the

continuity requirement is satisfied by tag-chaining, which is the process of cryptographically

chaining the authentication tags of the checkpoints in chronological order. It is achieved by

using the authentication tag from the previous packet, Ti−1 as associated data to generate

the latest packet, SSi. For example, in Figure 3.3, T1 is used to compute SS2, from which

T2 is used to compute SS3. The authentication tags protect the integrity and authenticity

of checkpoints as well as its chronological order.

3.4.2 Protocol

We define SICP as a collection of four algorithms described below.

INITIALIZE : The device is initialized with the first packet, SS1, with Algorithm 1. Upon

power-up, INITIALIZE is called if the device has gone through a factory_reset(), which is

identified by a unique reset memory pattern. INITIALIZE is called only once to create
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Algorithm 2 Original REFRESH and RESTORE
Require: K ,STATE ,Si ,Ri ,Ti , where i ∈ {A,B}

operation ∈ {REFRESH, RESTORE}
1: Q← nonce()
2: if TA = AEADauth(SA,TA,RA,K ) then
3: if operation = RESTORE then
4: STATE ← AEADdecr (SA,TA,TB ,RA,K )
5: end if
6: RB ← Q
7: SB ← AEADencr (STATE ,TA,RB ,K )
8: TB ← AEADauth(SB ,TA,RB ,K )
9: else

10: if TB = AEADauth(SB ,TA,RB ,K ) then
11: if operation = RESTORE then
12: STATE ← AEADdecr (SB ,TB ,TA,RB ,K )
13: end if
14: RA ← Q
15: SA ← AEADencr (STATE ,TB ,RA,K )
16: TA ← AEADauth(SA,TB ,RA,K )
17: end if
18: else
19: abort()
20: end if

SS1, which is stored in buffer SSA. Since the first packet has no previous authentication

tag to be used as associated data, a nonce is used as associated data, TB. This ensures

a unique chain of tags are generated after every factory_reset(). Next, STATE, where the

plaintext checkpoint is collected, is zeroized to overwrite the reset memory pattern to prevent

future calls to INITIALIZE. A valid state save packet, SSA, is created by encrypting and

authenticating STATE, RA, and TB using AEAD to generate SA and TA. A state save

packet, SSi, is valid if it satisfies two conditions. First, its nonce, Ri, must match the nonce

used in AEAD operations. Second, its associated data in the AEAD operations must match

the authentication tag of the previous state save packet. It ensures only one packet is valid

between the two buffers, SSA and SSB.

REFRESH : Algorithm 3 defines both the secure checkpoint generation and restoration

process, as they involve similar cryptographic operations with the difference listed on line
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Figure 3.4: An example REFRESH of state save packet, SSB, based on Algorithm 3. (1)
Update RB with the latest nonce, Q (line 6), (2) encrypt the checkpoint with the nonce and
authentication tag from previous packet, TA, and update SB (line 7), and (3) last, update
the authentication tag, TB, which invalidates SSA and validates SSB as the most recent
valid packet (line 8).

4 and 12. During power-on, REFRESH is called to generate the latest state save packet.

It determines which is the valid buffer, between SSA and SSB to update the alternate

buffer. For example, when REFRESH is called, if SSA is valid, line 2 in Algorithm 3 is true.

Correspondingly, SSB is updated with the latest checkpointed state by first updating RB

and then SB, as illustrated in Figure 3.4. SSA remains valid until TB is updated. As soon

as TB is updated with the latest authentication tag, in line 8, SSA is invalidated and SSB

is the latest valid packet. This update to the authentication tag, TB in line 8 and TA in line

16, makes REFRESH atomic. SICP makes an explicit assumption that this tag update is

an atomic operation. This assumption is satisfied using the residual power source, explained

further in Section 3.5.4.

RESTORE : RESTORE is called upon every power-up, except immediately after a fac-

tory_reset(), to decrypt and restore the most recent valid STATE of the device. The au-

thentication tags of both the buffers are checked to identify the valid packet. If both authen-

tication tag checks fail, abort() is called to indicate checkpoint tampering, which prevents

restoring the device with a malicious state.

If the authentication tag check is passed on either line 2 or 10 in Algorithm 3, a valid state
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save packet exists which is decrypted and used to restore the device STATE. RESTORE

documents each power-on event in the sequence of checkpoints by generating a new state

save packet upon every power-up. For example, if SSA is valid, SA is decrypted and restored

in STATE. SSB is updated with this STATE, new nonce, Q and TA. Now, SSB is made

valid, invalidating SSA. SICP ensures that every power cycle is documented in the series of

checkpoints.

Figure 3.5: The control and data flow for the creation of a checkpoint and subsequent state
save packet. REFRESH() is only called when a checkpoint is created.

WIPE Power loss is an adversarial event, based on our attacker model. WIPE must be

called as soon as the device detects a power loss to clear sensitive information. It wipes all

transient information, such as program variables, stored as plaintext using the residual power

source in two steps. First, STATE is overwritten with zeros to clear persistent plaintext

information. Second, volatile memory is also wiped to prevent cold boot style attacks []. The

residual power source must have sufficient power to completely wipe transient information

and maintain the confidentiality of checkpointed data.
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3.5 Implementation

In this section, we describe our choice of target device, stateful power transition technique,

and several design choices and device specific features used in implementing SICP.

3.5.1 Target device

The embedded device used with energy harvesters plays an important role in utilizing the

harvested energy and is selected based on several criteria. First, on-chip non-volatile memory

is required to store checkpoints. The use of off-chip non-volatile storage in the absence of on-

chip non-volatile storage is not a secure solution, as the communication to off-chip memory

and the memory itself is vulnerable to attackers as it can be easily monitored/removed.

Second, the device must consume low power to judiciously use the available resources. The

choice of device determines the overhead incurred by secure and stateful power transition.

We implement SICP on Texas Instruments’(TI) MSP430FR5994 Launch Pad Development

Kit to demonstrate the feasibility of and to evaluate secure and stateful power transitions. We

chose TI’s MSP430FR5994 for several reasons. First, it is a low power device, only consuming

120µA/MHz of active current [87]. Second, it is equipped with 256kB of ferroelectric random

access memory(FRAM), which is known for its ultra-low power consumption, high endurance,

and fast read/write speeds. Third, it operates in a unified memory model, where SRAM,

FRAM, and all the peripherals are mapped in a single global memory, which provides a

common interface for all the data that must be secured and checkpointed. Fourth, it contains

an on-chip AES accelerator, which can be used to speed-up the cryptographic primitives in

SICP.
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3.5.2 Three facets

Cause

In our proof-of-concept implementation, the microcontroller is powered by a constant DC

power supply. We use a switch to power cycle the microcontroller at arbitrary time intervals

to cause power loss.

Statefulness

During the ON-state, the microcontroller stores its general purpose registers, such as program

counters (PC), in SRAM and application variables in FRAM. The application variables,

found in .data and .bss sections, are placed in FRAM using the linker description file.

After power loss, only FRAM data remains persistent, whereas the SRAM data is lost,

leading to memory inconsistency between the volatile and non-volatile program state. We

implement a modified version of TI’s Computer Through Power Loss(CTPL) utility [96] to

maintain a consistent checkpoint across all types of memory. The CTPL utility is designed

for TI’s cl430 compiler. It was ported to compile on msp430-elf-gcc with changes to

preprocessing references and to compile specific assembly code. It was further modified to

support user declarable checkpoint functions, to invoke SICP functions within checkpoint

calls and to incorporate SICP functions at system startup.

Checkpoint Location and Contents : The memory section containing STATE is sepa-

rately declared as .checkpoint section in the device linker file, enabling easy identification

of the data to be checkpointed and forcing its location within tamper sensitive memory.

It provides a single known location for the WIPE() operation to target, discussed in detail

later in this section. A guaranteed memory location also allows a straightforward check on
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Figure 3.6: Startup sequence for MSP430FR5994 with SICP. (1) Checks for factory_reset()
and calls (2) INITIALIZE() or (3) RESTORE() to populate STATE in non-volatile memory.
(4) the device inspects STATE for a valid checkpoint, restoring the checkpoint (6) if one is
found or invoking main() (5) if one does not exist. Program execution will then continue
normally until power is lost or another checkpoint is created.

the existence of a factory_reset() operation. It provides the application developer a sim-

pler declaration interface, enabling the use of GCC’s variable attributes, marked with the

__attribute__ keyword, instead of a complex variable registration interface and tracking

data structure. We define secureCheckpoint() to generate a checkpoint in this dedicated

location and create a state save packet using the SICP algorithms. Figure 3.5 illustrates the

control flow involved in creating a checkpoint and subsequent state save packet. First, the

volatile peripherals in use are saved on the stack, such as a timer and a comparator. Second,

the general purpose registers are pushed on the stack. Since the first two steps mangle the

stack and peripheral states, they must be restored to their original state after checkpoint

generation. Third, the stack is saved in the .checkpoint section. Fourth, the non-volatile

data which is to be secured is also stored in the checkpoint along with the volatile state.

The checkpoint is ready to be secured by SICP. To create a state save packet, REFRESH() is

called to wrap the segment up in a valid state save packet.

Security

The four algorithms of the protocol are defined as functions to create and restore the state

save packet. We define REFRESH() to generate the latest state save packet, RESTORE() to

restore the latest unmodified state save packet, INITIALIZE() to create the first state save
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packet, and WIPE() to wipe sensitive data using the residual power source. INITIALIZE()

and RESTORE() are called automatically during system startup, as shown in Figure 3.6.

WIPE() is also automatically triggered upon power loss.

3.5.3 System Integration

The modified checkpointing system is wrapped with the SICP function calls to enable se-

cure and stateful power transitions. The device specific implementation of system start-up,

cryptographic primitives, and WIPE() are as follows:

Startup : Figure 3.6 illustrates the startup sequence for a system employing SICP. A

portion of the non-volatile memory region containing STATE is first checked for the fac-

tory reset bit pattern. This is used to determine if a factory_reset() has occurred and

INITIALIZE() must be invoked, or a normal boot sequence with RESTORE() must occur. In

either case, the appropriate SICP function is executed overwriting STATE with either zeros,

for INITIALIZE(), or the authenticated and decrypted system state, for RESTORE(). If the

checkpointing system determines that no valid checkpoint exists, such as on the first boot

after a factory_reset(), it will invoke main() as would be expected in a standard system

startup.

nonce() : A majority of the nonces used in this protocol are provided via a 128-bit counter

that is initialized to zero during INITIALIZE() and incremented each time a new nonce is

requested. The exception is for the nonce for TB used in INITIALIZE(), which is generated

randomly. This nonce is generated randomly to ensure that no two different uses of a

device create the same pattern of tags, even if the exact same code is executed following a

factory_reset() [42, 76].
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AEAD Integration : he development of the SICP API is agnostic of the underlying

AEAD scheme used to enforce the protocol’s security guarantees. We use a hybrid imple-

mentation of EAX [15], provided by the Cifra [20] cryptographic library. EAX is a well

established two-pass AEAD scheme which avoids unnecessary decryption operations when a

tag fails authentication in REFRESH() or RESTORE(). Tag failure occurs on half of the calls

to these two functions since the state save packet authentication is used to determine which

packet is valid and which is to be overwritten/restored. The block-cipher based nature of

EAX enabled hardware acceleration by modifying the code to employ the MSP430FR5994’s

AES accelerator.

Tamper free memory : The secure memory is emulated using the Intellectual Property

Encapsulation segment (IPE) available in MSP430FR5994 [28]. IPE is used to program a

section of FRAM as secure memory, .secure, by setting the memory boundaries in the

IPE registers. .secure section of the memory is programmed with read, write, and execute

access. It is used to store the nonce used in SICP and the functions used to read and update

the nonce. The variables stored in .secure section, and in turn the nonce, can only be read

and updated by executing code stored in .secure of the memory. The code in .secure

section can be executed by branching into the IPE segment or by calling a function stored in

IPE segment. A read access to .secure section from outside the IPE segment will at least

return 0x3FFF.

3.5.4 Residual energy use

A residual energy source, which was an architectural requirement, is required to ensure

atomicity and to wipe unprotected data after a power loss is detected.
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Atomicity Support : The atomicity of secureCheckpoint() is ensured by using two

state save packet buffers. All changes in non-volatile memory are made to the alternate

buffer, such that the most recent packet remains unmodified. Once the new tag computa-

tion is complete and stored in a temporary buffer, the sic_copyTag() function is called to

overwrite the previous tag and set the newly created checkpoint as the only valid checkpoint

in an atomic operation. This copy function is made atomic by disabling all interrupts for

the copy duration of 48 cycles and relying on the residual energy of the device and the

FRAM’s atomic byte write capability to ensure that even if power is lost, the copy operation

will complete before the system stops operating. secureCheckpoint() either has no effect

on the system, if power is lost before the tag update, or completes the checkpoint creation

without incident.

WIPE() : The implementation of the WIPE operation requires detection of power loss

by monitoring the device’s Vcc. MSP430FR5994’s ADC12_B analog-to-digital converter is

used to measure Vcc against the system’s Vref as described in TI’s FRAM Utilities [96].

The MSP430FR5994 development board’s unmodified implementation, including one 10µF

capacitor and three 100nF capacitors, has sufficient residual energy to consistently overwrite

up to 16kB of memory using direct-memory-access (DMA) following the trigger for power

loss. When Vcc falls below Vref ADC12_B triggers overwrite of STATE and SRAM via DMA

using the residual energy.
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Table 3.2: Executable size overhead of just intermittent computing vs SICP with hardware
accelerated EAX and lightweight software only Ketje Sr

Component Size (B)
Checkpoint Support 2532
EAX (HW) 3938
Ketje Sr 3336

3.6 Preliminary Evaluation OF SICP

Results

We demonstrate SICP’s feasibility and measure the cost in terms of energy, time and code

size overhead incurred to protect a sequence of checkpoints. We have utilized reference

implementations for both AEAD designs. EAX(HW), which is a hybrid hardware AEAD

primitive, is obtained by substituting the software block cipher operations within EAX with

the MSP430FR5994’s AES hardware accelerator [4]. The comparison between the perfor-

mance of the different AEAD schemes is specific to our protocol implementation and is not

an evaluation of the different AEAD constructions themselves. All measurements were taken

when the microcontroller was operating at 1 MHz and use a state size of 2kB, a reasonable

region for applications on a resource constrained device. The energy and time overhead of

SICP functions must be measured separately when SSA and when SSB are the valid state be-

cause the authenticity of SSA is always checked first in the protocol. The two measurements

are then averaged to present the following results.

Overhead Table 3.2 provides an estimate of the expected growth of a program’s memory

footprint when support for each component is added to the system. EAX(HW) and Ketje

SR represent the executable size overhead for SICP functions along with their respective

cryptographic kernels. The energy and time overhead are listed in Table 3.3. SICP with
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Table 3.3: Energy and time overhead for various algorithms SICP for securing 2kB of check-
points

Method INITIALIZE REFRESH RESTORE
Time
(ms)

Energy
(µJ)

Time
(ms)

Energy
(µJ)

Time
(ms)

Energy
(µJ)

Checkpoint Support 0.032 0.033 14.4 12.6 14.1 12.8
EAX(HW) 0.061 0.039 355.2 263.2 455.2 332.3
Ketje Sr 0.073 0.044 1912.1 15433.3 1301.4 10011.2

EAX(HW) achieves lower overhead compared to Ketje Sr because of its two-pass structure

and the use of hardware accelerated AES module. In all cases, the overhead incurred by the

checkpointing system is constant and is listed under Checkpoint Support in Table 3.2 and

3.3.

Analysis Even though Ketje Sr is a lightweight AEAD scheme, it still generates sig-

nificant overhead within SICP compared to a hardware accelerated version of EAX both

in terms of energy and time. This highlights the advantage of hardware accelerated cryp-

tographic modules within SICP. Even with a hardware accelerated AEAD primitive, SICP

takes considerable time and energy to secure the checkpointed state, which highlights the

need for efficient, lightweight AEAD primitives. The latest advantages in technology scaling

does not apply to non-volatile memories. FRAM, one of the most energy efficient non-

volatile memories, is only available in 130nm technology. Advances in non-volatile memory

technologies will help improve the performance of the protocol.

SICP does not provide any backdoor for the attacker. For example, if an adversary tries to

repeatedly cut power to the device during protocol operations, the device continues operation

without any glitches because of the atomicity guarantees of the protocol. Similarly, if an

adversary tries to emulate a factory_reset(), they will be left with a device with a clean

memory and newly loaded key. Since a factory_reset() wipes all the device memory, any
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sensitive information the adversary wishes to recover will be unavailable to the attacker.

3.7 Conclusion

We presented the Secure Intermittent Computing Protocol to bridge the gap between stateful

power transitions and secure embedded systems. It is the first secure intermittent solution to

provide comprehensive security to the power transitions of an embedded system. It is a fail-

safe and generic protocol that can be used with existing stateful power transition solutions to

enhance their security. We provide a proof-of-concept implementation of secure and stateful

power transitions on an MSP430FR5994 to demonstrate the feasibility of secure checkpoints.

Several low power microcontrollers are equipped with cryptographic hardware, mostly for

encryption. In the future, we must consider including hardware accelerated authenticated

encryption engine, low power non-volatile memory, and secure storage capabilities to mi-

crocontrollers to improve the duty cycle of the application to facilitate secure and stateful

power transitions.



Chapter 4

Optimization Using Configurable

Security Levels

4.1 Introduction

Traditionally, IoT devices were powered through a managed power infrastructure, such as

a mains connection or a battery. However, this is not scalable; wireline connections pre-

vent IoT devices from becoming truly pervasive, and batteries require periodic replacement.

Hence, the rise of IoT devices to truly large scale will go hand in hand with novel ad-hoc

power infrastructure in the form of energy harvesting of ambient sources such solar [82],

wind [57], RF [82], and vibration [59]. Using a transducer, the ambient energy is converted

into electrical energy. The power output from energy harvesters is limited from a few µW

to a few W for typical harvesters and therefore has to be accumulated in an energy buffer

before the IoT device can be powered up. The use of energy harvesters potentially liberates

IoT devices from externally managed energy dependencies.

Although energy harvesters ensure the autonomous operation of IoT devices, they do not

guarantee the continuous operation of the IoT device for two reasons. First, the source of

ambient energy itself may be discontinuous. Solar cells don’t deliver power at night, and

vibration energy harvesters don’t deliver power when they are at rest. Second, the IoT device

itself may consume more power than what can be delivered through energy harvesting. Both

58
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of these conditions manifest themselves with the same effect: the energy buffer is depleted

and the IoT device needs to power off.

To protect long-running software applications from premature termination through power

loss, the IoT device will compute and store a checkpoint in non-volatile memory [78]. The

checkpoint will enable the state of the IoT device to be restored after the energy buffer is

replenished. The checkpoint includes all the information needed for forward progress in-

cluding but not limited to microcontroller state, program variables, and peripheral settings.

Intermittent computing is a collection of techniques that help to create a checkpoint while

minimizing the overhead needed to create the checkpoint [62]. The creation and restora-

tion of a checkpoint require energy and clock cycles, which impact the overall performance

of the application. Researchers have extensively studied the effects of intermittent power

delivery on the application and the IoT device with a primary focus on the efficient and

accurate recovery of the application after power loss. Their main focus has been on what

to checkpoint, when to create a checkpoint, and how to efficiently generate and restore

checkpoints. Typically, they aim to achieve a subset of the following features - continuity

of control flow [41, 61, 93, 102], continuity of data flow [44, 61], retention of peripheral

state [10, 17, 19, 64], processing time sensitive data [51, 93], and optimizing checkpoint

size [8]. While the above features ensure the statefullness of the application, the security of

the energy harvested IoT device has been largely ignored.

Motivation Besides the power delivery challenges, IoT devices have to operate correctly

and securely. The IoT devices must protect sensitive data either when stored on the device or

else when transmitted over the network, they must only accept commands from authorized

users, and their operation must be correct and protected from malicious control. Security

is not an optional feature; rather it is a fundamental requirement for the promise of IoT
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to succeed [79]. A broad class of cryptographic algorithms and dedicated security protocols

provide the tools and mechanisms to build trust [48]. In addition, security architectures

ensure that these cryptographic algorithms themselves operate as expected, free from tam-

pering and malicious influence [31, 63, 70]. However, all of our known cryptographic tools

and architectures were created with the basic assumption that power is available and un-

interrupted. While there is a trustworthy procedure known as secure boot to describe the

initialization activities upon power restoration, there is no equivalent set of activities to de-

scribe how to create a checkpoint or how to power down a system. Hence, the unique power

model of energy harvesting devices presents a novel challenge for our existing solutions to

secure architecture.

The challenges of maintaining security across power loss [52], which was often ignored, is

an emerging research area in intermittent computing. The security challenges are caused

by the intermittent power supply and the non-volatile nature of checkpoints. We broadly

classify checkpoint security solutions based on memory isolation [11, 28] and cryptographic

primitives [11, 32, 53, 100]. The isolation based techniques use off-the-shelf microcontroller

features such as ARM TrustZone and other memory protection units to make the checkpoint

inaccessible to the attacker. They use the architectural and hardware properties of the mi-

crocontroller to secure checkpoints by controlling access rights to certain memory sections

that store the checkpoints. While isolation prevents unauthorized access of checkpoints, only

cryptographic primitives encode information security properties, such as confidentiality, in-

tegrity, and/or freshness, within checkpoints. In our work, we focus on securing checkpoints

using cryptographic primitives [11, 32, 53, 100]. Our work resides at the crossing of inter-

mittent computing and the security challenges required for a secure IoT. In particular, we

investigate how application-level security concerns map into the security primitives developed

for secure checkpointing. The key contributions of our work are as follows:
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• We propose different security levels to configure checkpoint security based on applica-

tion needs instead of a one-size-fits-all solution.

• We optimize an existing checkpoint security solution based on cryptographic primi-

tives [53] and incorporate the proposed configurable checkpoint security in its imple-

mentation.

Organization In the following section, we provide a brief overview of intermittent com-

puting, its security requirements, and the state-of-the-art checkpoint security solutions. In

Section 4, we propose a configurable checkpoint security setting that leverages the application

to reduce the overhead of securing checkpoints. In Section 5, we describe our implementa-

tion of the configurable checkpoint security using a secure checkpoint protocol followed by

conclusions in Section 6.

4.2 Background on Intermittent Computing

We briefly provide a background on the minimum security requirements of checkpoints and

their design in state-of-the-art checkpoint security solutions. We introduce intermittent

computing and its security properties using Cyclic Redundancy Check (CRC) as an example

intermittent application. CRC is widely used in several protocols, such as BLE [99] and

IEE 802.15.4 [43], to detect erroneous input data. We consider a microcontroller powered

by an energy harvester which operates in an intermittent computing model, as illustrated in

Figure 4.1. The microcontroller receives the input data, CRCInput, and its expected 32-bit

code, CRC32Expected, which is verified by CRC32Calculate() function.

When the microcontroller loses power before CRC verification, it creates a checkpoint of the

necessary state required for the forward progress of the application using refresh operation.
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Figure 4.1: CRC32 verification as an example intermittent application running on a mi-
crocontroller with non-volatile memory(NVM). (a) Unsecure intermittent computing that
stores plaintext checkpoints(CKP) and restores checkpoints without any security checks.
(b) Secure intermittent computing using AEAD to encode security properties such integrity,
authenticity, confidentiality, and freshness into secure checkpoints (SECURE CKP) which
are verified before restoring the decoded checkpoint (CKP).

In the top half of Figure 4.1, the checkpoint (CKP) contains program variables, periph-

eral settings, and microcontroller state. We elaborate on the contents of a checkpoint in

Section 5.3.3. When there is sufficient harvested energy, the microcontroller is powered-on

again and the checkpointed state is restored from non-volatile memory (NVM). The CRC

verification resumes with the checkpointed input and is completed, provided the input power

supply is not interrupted. The number of checkpoints required to complete this CRC verifi-

cation depends on the frequency of power losses, where a new checkpoint is generated with

every power loss. We identify forward progress as a minimum requirement for the meaning-

ful and practical application of intermittent computing. In between two power-loss events,

there should be enough energy available to restore a checkpoint, to execute at least one

instruction of the CRC application, and to re-save the latest progress in a new checkpoint.

If this requirement is not met, then the intermittent computing scenario is not able to make

forward progress in the application; the entire available energy budget is used to save and
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restore checkpoints.

4.2.1 Security In Intermittent Computing

In intermittent computing without security, the microcontroller creates a checkpoint when

needed and restores the most recent valid checkpoint, as illustrated in the top half of Fig-

ure 4.1. While this is a stateful computation model, it does not guarantee the statefullness

of security properties. The checkpoint may be tampered in non-volatile memory and the

microcontroller will restore to a malicious state when using the tampered checkpoint. If the

attacker can read from and write to non-volatile memory, they can snoop, spoof, and replay

checkpoints [52]. Unsecure intermittent computing not only introduces vulnerabilities to the

application using checkpoints, it also weakens the security architectures and algorithms used

to secure the application.

Checkpoint security requirement: At a minimum, intermittent computing must ensure

the statefulness of a few security properties along with the forward progress of the application.

First, the checkpoint integrity and authenticity must be protected to prevent unauthorized

modifications to the checkpoint and to ensure that checkpoints cannot be replayed on an

attacker controlled device, respectively. Second, the freshness of the checkpoint must be

guaranteed to prevent the replay of a stale checkpoint on the same microcontroller which

may affect the control flow of the application. Third, the availability of a valid checkpoint

must always be guaranteed to ensure the microcontroller does not restart the application

because of the lack of a valid checkpoint. Finally, the checkpoint may require confidentiality

guarantees based on the contents that require protection from unauthorized access.
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Checkpoint security
properties Ghodsi et al [32] SECCS [100] Asad et al [11] SICP [53]

Integrity &
Authenticity − ✓ ✓ ✓
Freshness − − − ✓
Availability − − − ✓
Confidentiality ✓ ✓ ✓ ✓

Table 4.1: Checkpoint security properties satisfied by the state-of-the-art related work

Related work: Table 4.1 lists a few state-of-the art solutions for secure intermittent com-

puting that satisfy a subset of the above security requirements. Ghodsi et al. [32] only

encrypt the checkpoint without considering the other requirements. SECure Context Saving

(SECCS) [100] and Asad et al. [11] ensure the information security of checkpoint, including

confidentiality, integrity, and authenticity, using encryption and authentication algorithms

such as Authenticated Encryption with Associated Data(AEAD) [81]. The Secure Inter-

mittent Computing Protocol (SICP) [53] satisfies all the minimum security requirements.

SICP also uses AEAD to ensure the information security properties of the checkpoint and

its freshness. SICP is the only solution that ensures the availability of checkpoints by always

storing two checkpoints, i.e., the latest and the previous checkpoint.

Common cryptographic primitive for securing checkpoints: A majority of crypto-

graphic checkpoint security solutions [11, 53, 100] use AEAD or a combination of encryption

and authentication to protect checkpoints. We capitalize on the versatility of AEAD in

Section 4.3 to implement configurable checkpoint security. Here, we explain how the se-

curity properties are encoded into the checkpoints with AEAD using the bottom half of

Figure 4.1. AEAD uses a secret key (authenticity) and a unique nonce (freshness) to en-

crypt and authenticate checkpoints. AEAD also takes in associated data as input which

is plaintext information that only needs integrity and authenticity, but not confidentiality.

The refresh operation encrypts (confidentiality) and authenticates (integrity) the checkpoint
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using AEAD to generate ciphertext, and to generate authentication tag over ciphertext and

associated data if provided. The ciphertext, authentication tag, associated data, and nonce

are stored in non-volatile memory as a secure checkpoint. The restore operation verifies the

authenticity and integrity of the ciphertext, associated data, and authentication tag using

AEAD before restoring the microcontroller with the decrypted checkpoint.

4.3 Configurable Mulli-level Checkpoint Security

A checkpoint contains a snapshot of all the data necessary to resume the progress of the

application. As described in the previous section, the contents of the checkpoint are largely

dependent on the application. Let us consider CRC32-HW benchmark. Apart from device

specific data such as the stack and general purpose registers, the checkpoint also contains

the incoming data frame and the registers of the CRC peripheral in program variables.

The existing checkpoint security solutions incorporates a single security policy to the entire

checkpoint. For example, if a programmer decides to use SECCS [100] to secure their check-

points, then the entire checkpoint will be encrypted and authenticated. Similar to SECCS,

the other solutions listed in Table 4.1 follow the same one-size-fits-all policy to secure its

checkpoints. Even if the application does not require encryption of the entire checkpoint,

the programmer ends up encrypting the entire checkpoint because of the nature of existing

checkpoint security solutions. This is detrimental to the forward progress of the application

as the encryption consumes a portion of the harvested energy which may otherwise be used

by the application.

By being more selective in deciding what parts of the program state and device specific

state should be encrypted, considerable performance trade-offs can be made. We propose

four security levels (SL) for checkpoints based on a combination of the security requirements
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Figure 4.2: Proposed levels for checkpoint security with an decreasing overhead for securing
checkpoint and decreasing guarantees for security properties from SL1 to SL4. The decreas-
ing overhead corresponds to the decreasing size of plaintext input in checkpoint partition,
where larger plaintext input to AEAD increases overhead from encryption and decryption.

provided by the state-of-the-art in checkpoint security. In this section, we demonstrate

how to achieve the generic optimizations involved in multi-level checkpoint security using a

select solution from Table 4.1. We also propose certain optimizations specific to the selected

solution to minimize the overhead from securing checkpoints.

4.3.1 Multi-level Checkpoint Security

Our multi-level checkpoint security involves four levels, illustrated in Figure 4.2. We leverage

the design of AEAD described in Section 4.2 to realize the security properties in each level.

The security properties of SL(i) are a subset of the security properties of SL(i+1).

SL4: No security

With the least overhead incurred, SL4 does not guarantee any security properties for the

checkpoints of an intermittent system. It incurs the least overhead as no cryptography

is involved in the encoding of a checkpoint. SL4 is equivalent to unsecured intermittent

computing systems.
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SL3: No confidentiality

If an application does not generate checkpoints with sensitive content that require confiden-

tiality, SL3 is sufficient to ensure the forward progress of the application’s security features.

We propose checkpoint integrity, authenticity, freshness, and availability as the minimum

requirement in checkpoint security irrespective of the contents of checkpoints, which is satis-

fied by using SL3. These three requirements are guaranteed for any associated data input to

the AEAD algorithm. With AEAD, we consider the entire checkpoint to be associated data

and with no plaintext as the checkpoint in SL3 does not require confidentiality guarantees.

SL2: Partial confidentiality

A few applications may contain sensitive data of long running applications such as key ex-

change, for which it suffices to only encrypt sensitive sections of checkpoint while maintaining

the SL3 properties for the rest of the checkpoint and encrypted sensitive data. We achieve

SL2 by partitioning the checkpoint into public and private sections. For example, we may

consider all the program variables in Table 5.3 to be private and the device specific state

to be public. Both the public and private sections require SL3 level security guarantees,

whereas, the private section also requires confidentiality guarantees. The private section is

input as plaintext to AEAD and the public section is used as associated data.

SL1: Full confidentiality

SL1 guarantees the confidentiality of the entire checkpoint and guarantees SL3 properties for

the encrypted checkpoint. The security properties of SL1 are also guaranteed using AEAD,

by using the entire checkpoint as plaintext data. SL1 provides a comprehensive solution to

secure checkpoints, and at the same time, provide us with a base metric to compare the
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advantage of SL2 and SL3 over SL1, which is similar to the state-of-the-art solutions in

Table 4.1 that employ one-size-fits-all security policy to the entire checkpoint.

4.3.2 Configuring And Optimizing Checkpoint Security Using SICP

Selecting A Checkpoint Security Solution

We chose the Secure Intermittent Computing Protocol (SICP) [53], described in Chapter 3,

to demonstrate multi-level checkpoint security for three reasons. First, it satisfies all the

minimum security guarantees required for protecting the checkpoints of an intermittent sys-

tem, which ensures that our multi-level secure intermittent computing is incorporated into

SICP without modifying the original cryptographic protocol. In particular, it is the only

solution in Table 4.1 that ensures the availability of a secure checkpoint which is important

as the threat of power loss is imminent in intermittent systems. Second, it is a generic soft-

ware solution that can be easily adapted to any intermittent computing technique, which

helps demonstrate that multi-level checkpoint security is also accessible to any intermittent

computing technique. We demonstrate this advantage using an implementation on a com-

mercial off-the-shelf device in the next section. Third, SICP also uses an AEAD scheme at

the core to achieve its security properties which easily guarantees selected security properties

for different sections of the checkpoint, as discussed in Section 4.3.1.

SICP Review

We provide a brief overview of the protocol to help understand the techniques used to im-

plement multi-level security and the protocol specific optimizations proposed below. The

freshness requirement is guaranteed using a 128-bit nonce, R, associated with each check-

point which is passed onto AEAD as an input. The information security requirements are
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Figure 4.3: A flow chart of the original SICP algorithm REFRESH and RESTORE using state save
packet, SSi , to store secure checkpoints in alternating buffers A and B. Both the algorithms
detect the latest unmodified buffer cryptographically using AEAD. RESTORE creates a new
state save packet with a new nonce and the latest checkpoint without any forward progress
in the application.

guaranteed by using the checkpoint as plaintext input to AEAD encryption to generate en-

crypted checkpoint and authenticated tag, T . The nonce and the secret key used by AEAD

are stored in tamper-free non-volatile memory, which is protected from malicious access.

One may argue that placing the entire checkpoint in tamper-free memory may prevent the

attacker from tampering with checkpoints. While this may be a potential checkpoint secu-

rity solution, it is not applicable for all benchmarks and devices. The size of the checkpoint

varies based on the benchmark, as listed in Table 5.3, and the size of tamper-free memory

is dependent on the platform. SICP uses a two-state secure checkpoint buffer, A and B,

and updates them alternatively to maintain availability guarantees. The authentication tag

from the previous checkpoint is used as associated data input for the latest checkpoint to

ensure only one of the buffers contains a valid checkpoint. Figure 4.3 illustrates the flow

of generation and restoration of a secure checkpoint, also known as state save packet, SS,

with encoded security properties which contain the encrypted checkpoint, authentication
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AEAD mapping Section mapping
SL4 SL3 SL2 SL1 SL4 SL3 SL2 SL1

Program
Variables - AD AD+P P - Pub Pub+Pri Pri

Device Specific
State - AD AD P - Pub Pub Pri

Table 4.2: Mapping of checkpoint partitions, program variables and device specific state, as
inputs to AEAD and as different memory sections at the proposed levels of security. The
plaintext (P) input is the .private (Pri) section of memory and the associated data (AD)
input is the .public(Pub) section of memory. The size of each section of memory depends
on the size of checkpoint partitions. SL4 does not require partitioning of checkpoint as there
are no security properties. In SL2, the program variables are divided between Pri and Pub
to apply confidentiality properties to S section.

tag, and the nonce. Both REFRESH and RESTORE identifies the latest checkpoint between A

and B by first verifying the integrity and authenticity of checkpoint A. If buffer A is the

latest unmodified checkpoint, REFRESH directly generates a new checkpoint in buffer B and

RESTORE decrypts checkpoint A before generating a new checkpoint in buffer B with the

restored state and a new nonce. If buffer A is not the latest unmodified checkpoint, buffer

B is checked for the same, and buffer A is updated.

Algorithm 3 defines the two most important SICP primitives, REFRESH and RESTORE. The

encryption and decryption operations of AEAD are divided into AEADencr+AEADauth and

AEADdecr+AEADauth for clarity. SICP always stores the latest and the previous checkpoint

to ensure the availability of a secure checkpoint even if the latest checkpoint is incomplete.

Apart from REFRESH and RESTORE described in Algorithm 3, SICP also performs INITIALIZE,

which creates the first secure checkpoint, and WIPE, which is automatically triggered upon

power loss to erase secure sensitive sections of volatile and non-volatile memory. We refer

readers to the detailed implementation of these protocol steps [53].
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Partitioning Checkpoints For Multi-level Security

SICP originally ensured freshness, authenticity, integrity, and confidentiality of the entire

checkpoint. We identified the contents of checkpoints and defined their security properties

to incorporate different security properties for each part of the checkpoint. Since the contents

are specific to an application, we assume the programmer defines the security requirements

for the contents of the checkpoint. If the programmer chooses either SL1 or SL3, they

will apply the same security properties across the entire checkpoint. Whereas selecting SL2

involves partitioning the checkpoint into public, Pri, and public sections, Pub, as described

under section mapping in Table 4.2.

Now, the checkpoint is divided into a public section, Pub, which requires integrity, authen-

ticity, and freshness, and a private section, Pri, which additionally requires confidentiality

guarantees. By design, SICP uses AEAD to secure checkpoints. In SICP, the plaintext

was the entire checkpoint and associated data was just the authentication tag from previous

checkpoints. With configurable checkpoint security, the plaintext provided to AEAD is only

the private section of the checkpoint. The rest of the checkpoint, which is in the public

section, is provided to AEAD as associated data along with the authentication tag from

the previous checkpoint, as in the original SICP. Table 4.2 states the one-to-one mapping

between associated data and public section, and plaintext and private section.

After partitioning the checkpoint, to achieve each of the different security levels, the pro-

grammer needs to modify the following inputs to AEAD in the original SICP, as illustrated

in Algorithm 3. Table 4.2 uses the broad partition of checkpoints to map the contents to

security properties using AEAD inputs and memory sections for each level of security. SL4

does not require partition of checkpoint or use of AEAD as there are no security properties

encoded at this level. In SL3, since no part of the checkpoint is encrypted, the entire check-
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Algorithm 3 Optimized SICP: REFRESH and RESTORE

Require: K ,STATE ,Si ,NSi ,Ri ,Ti , fi where i ∈
{A,B}

operation ∈ {REFRESH, RESTORE}
1: Q← nonce()
2: if fA = 1 and fB = 0 then
3: if operation = RESTORE then
4: if TA = AEADauth(SA,TB |NSA,RA,K )

then
5: STATE ← AEADdecr (SA,TA,TB |NSA,RA,K )
6: end if
7: end if
8: if operation = REFRESH then
9: RB ← Q

10: SB ← AEADencr (STATE ,TA|NSB ,RB ,K )

11: TB ← AEADauth(SB ,TA|NSB ,RB ,K )
12: fA, fB ← (0, 1)
13: end if

14: else if fB = 1 and fA = 0 then
15: if operation = RESTORE then
16: if TB = AEADauth(SB ,TA|NSB ,RB ,K )

then
17: STATE ← AEADdecr (SB ,TB ,TA|NSB ,RB ,K )
18: end if
19: end if
20: if operation = REFRESH then
21: RA ← Q
22: SA ← AEADencr (STATE ,TB |NSA,RA,K )

23: TA ← AEADauth(SA,TB |NSA,RA,K )
24: fB , fA ← (0, 1)
25: end if
26: else
27: abort()
28: end if

point is considered public and passed as associated data. In SL1, the entire checkpoint is in

Pri and provided as plaintext input to AEAD as in the original SICP. In SL2, Pri and Pub

are inputs for plaintext and associated data, respectively, in AEAD operations.

SICP Optimizations

We studied SICP design to reduce overhead from the security operations to perform de-

sign specific optimizations. We propose two optimizations that avoid unnecessary encryp-

tion/authentication (OPT1) and decryption/verification (OPT2) operations, illustrated in

Algorithm 3.

OPT1 Avoid re-encrypting the checkpoint in RESTORE: SICP creates a new secure check-

point upon every power up to keep track of the number of power cycles using the

nonce (counter), which creates a new secure checkpoint without any forward progress

in the application. We propose not to re-encrypt the checkpoint after restoring the
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microcontroller with the latest checkpoint. While re-encryption may be useful for cer-

tain applications, it consumes extra energy and time for securing a checkpoint without

any progress in the application. With our optimizations, we resume forward progress

of the application after verification and restoring the decrypted checkpoint.

OPT2 Identify the latest checkpoint using a 1-bit flag: Both RESTORE and REFRESH origi-

nally decrypted/verified one of the checkpoints first to identify the latest checkpoint,

which was either restored or left unchanged to update the other checkpoint buffer,

respectively. This verification failed half the time because checkpoint A was always

checked for newness before checkpoint B. We propose to avoid this failed cryptographic

verification step by using a single-bit flag to indicate newness. fA is set and fB is reset

to indicate A is the latest checkpoint and vice versa, as listed in lines 12 and 24 in

Algorithm 3. The flags are stored in the secure non-volatile memory to prevent the

attacker from invalidating both the checkpoints and triggering unnecessary decryp-

tion/verification. The optimized SICP always checks for the secure checkpoint with

a set flag to either restore the decrypted checkpoint if it passes the verification check

or updates the other checkpoint buffer with the latest checkpoint. This flag check is

added on lines 3 and 15 in Algorithm 3.

4.4 Implementation

In this section, we present a detailed overview of implementing our proposed configurable

multi-level checkpoint security using SICP. We utilize MSP430FR5994, described in Sec-

tion 5.3.1, to present the details of selecting an AEAD primitive used to secure checkpoints,

implementing SICP optimizations, incorporating multi-level security in SICP, and evaluating

our implementation.
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AEAD Primitive Energy (uJ) Time (ms)
EAX (AES-HW) 23.4 9.3

Ascon 90.9 33.9
GIFT-COFB 633.6 233.6

Table 4.3: Selecting an AEAD primitive among three ciphers - EAX implemented using
on-chip hardware accelerator, 16-bit optimized Ascon implementation, and reference imple-
mentation of GIFT-COFB. The overhead listed is measured for encrypting and authenticating
16B each of plaintext and associated data using 16B key and nonce.

4.4.1 Cryptographic Primitive

We evaluated the performances of several AEAD schemes on MSP430FR5994 to chose the

least energy hungry primitive for securing checkpoints. First, we evaluated the finalists from

NIST LWC competition[69]. In Table 4.3, we present performance overhead of two selected

ciphers, Ascon [29] and GIFT-COFB [12]. Ascon was the only cipher with 16-bit optimized

submission which was suitable for our 16-bit target platform. We present the performance

overhead of 16-bit optimized Ascon as a representative of optimized software implementa-

tions of a lightweight cryptographic scheme. GIFT-COFB was chosen as a representative of

the rest of the submissions with reference, 32-bit optimized or 64-bit optimized implementa-

tions. We present the results of the reference implementation provided with the GIFT-COFB

submission. Next, we also selected EAX [15] as a representative of hardware accelerated

AEAD schemes. Our target device is equipped with AES256 accelerator for encryption and

decryption.

Table 4.3 provides the energy and time required to encrypt/authenticate fixed inputs across

the three selected ciphers. The overhead presented includes AEAD encryption operation for

each cipher processing 16B of plaintext and 16B of associated data using a 16B key and

nonce to generate 16B of ciphertext and 16B of the authentication tag. A similar overhead

was observed for decryption and verification. We are not comparing EAX, Ascon, and

GIFT-COFB in our experiments, rather, we are evaluating the performance of a hardware
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accelerated cipher, target architecture optimized software implementation of a cipher, and

a reference implementation of a cipher. Our target architecture and application are both

resource hungry, thus it was imperative to choose an AEAD scheme with minimal overhead

in both energy and time. As expected, from Table 4.3, hardware accelerated EAX consumes

the least amount of energy and time. We conclude that when EAX (HW-AES) is used as

AEAD cipher to secure checkpoints of benchmark applications, it will consume less harvested

energy for securing checkpoints when compared to optimized and referenced implementations

of Ascon and GIFT-COFB, respectively.

4.4.2 Implementing Optimized SICP

SICP was originally implemented as a library on top of CTPL. We utilize the same approach

and add optimization to SICP library. We modified CTPL to add user defined SICP func-

tions that can be called to initialize the protocol, generate secure checkpoints, wipe secure

state, and restore unmodified secure checkpoints. SICP uses a 128-bit counter initialized

to a random number as the nonce for maintaining checkpoint freshness. SICP collects the

checkpoint data provided by CTPL and the nonce, processes them using hardware acceler-

ated EAX to encode the security properties into the secure checkpoint, and stores the output

(which is the secure checkpoint) in non-volatile memory. Upon power loss, SICP zeroises

all memory sections containing sensitive plaintext data to prevent unauthorized access [39].

In our implementation, we emulate tamper-free memory using Intellectual Property En-

capsulation (IPE) feature provided by TI. Upon power-up, the latest checkpoint is verified

and decrypted using the secret key from tamper-free memory and the benchmark resumes

execution.
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Figure 4.4: Availability of a valid checkpoint when atomic vs non-atomic memory write op-
erations are used to update authentication tag and flags using residual capacitance. The
microcontroller performs a series of operations during a time interval. (0) executes bench-
mark at the end of which REFRESH is triggered, identifies B as the latest buffer, and updates
A .(1) Write nonce, (2) Write encrypted checkpoint, (3) Write authentication tag, (4) Write
flags, and (6) microcontroller is idle until powered off. The write operations in 1-4 are
non-atomic and power loss during (3) and (4) leaves the microcontroller without a valid
buffer. Alternatively, atomically writing tag and flags using (5) ensures the write operation
is completed and A is the latest buffer even if the device loses power.

Atomic operations Since our input source is intermittent, we must ensure that certain

memory writes are performed atomically. Figure 4.4 illustrates the need for atomic update

of the authentication tag and flags in step 11, 12 and 23, 24. We disable all interrupts during

these writes, to ensure the write operations are completed using the residual capacitors even

if the microcontroller experiences a power loss. The atomic write implementation ensures

the availability feature provided by the two-state checkpoint buffer in SICP is implemented

correctly. A single secure checkpoint buffer might satisfy the availability requirement if the

residual on-chip capacitors provided sufficient energy to write checkpoints of varying sizes.

But the size and availability of residual capacitance are platform dependent. For example,

MSP430FR5994 LaunchPad Development Kit contains one 10µF capacitor and three 100nF

capacitors which provide sufficient residual energy to consistently overwrite up to 16kB of
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memory after detecting a power loss. To provide a generic implementation, we use a two-

state secure checkpoint buffer and implement the availability feature with atomic writes

using residual capacitance. At a minimum, the residual capacitance must provide sufficient

energy to power-up the device to finish writing 130-bits of data to non-volatile memory, i.e.,

128-bits of authentication tag and 2-bits of flags. We also use the residual capacitance to

zeroise unencrypted sensitive sections of checkpoints to prevent unauthorized access.

Optimizations OPT1 is simple, it avoids re-encryption after restoring. In our implemen-

tation, we resume the benchmark after the latest, verified benchmark is restored by the

microcontroller. OPT2 adds a 1-bit flag to identify the latest checkpoint. We associate a

1-bit tag with each checkpoint buffer A and B, apart from the nonce and the checkpoint

itself. This tag is updated atomically to ensure at all times, only one flag is set between fA

and fB.

4.4.3 Multi-level Checkpoint Security

We use MSP430FR5994’s linker description file to define two new sections of non-volatile

memory. First, we define the private section, .private, from 0x10000 to 0x10FFF. Second,

we define the public section, .public, from 0x11000 to 0x11FFF. We chose 4kB for each

section but the size can be varied depending on the application needs. Among our selected

benchmarks, the floating point benchmark generated the largest checkpoint with 3198 bytes,

which fits in 4kB of secure or non-secure memory. With well-defined memory sections, the

programmer has control of the location of checkpoints which in turn controls the security

properties of the contents. We use __attribute__((section (".private"))) to place

sensitive checkpoint data in private memory, as illustrated using the following code snippet

from floating point benchmark. All the other checkpoint data is placed in public memory
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using __attribute__((section (".public"))). For ease of use, we define preprocessor

directives, such as PUBLIC_BENCH to place each part of the checkpoint, including the program

variables, microcontroller data, and peripheral data, in either private or public sections.

#ifdef PUBLIC_BENCH

__attribute__ ((section (".public")))

#else

__attribute__ ((section (".private")))

#endif

float output[15][15];

During REFRESH, we first check for the size of used private and public sections which provides

the size of plaintext and associated data provided to AEAD. We then provide the plaintext

(Pri) and associated data (PubS) as input to AEADencr() and AEADauth(). The size of

each memory section varies depending on the security level and the size of the checkpoint,

as described in Table 4.2. From Table 5.3, we can see the varying checkpoint memory

requirement of each benchmark. In all our implementations, SL1 and SL3 contains the

entire checkpoint in either public or a private section. We place the peripheral registers as a

part of device specific state in public memory in SL2.

4.5 Quantizing Checkpoint Security Levels

In this Chapter, we provide a preliminary estimation of performance improvements achieved

using the optimizations proposed in this dissertation. We use the CRC32 example described

in Section 4.2 to demonstrate the advantages of selecting checkpoint security requirements
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Table 4.4: Performance improvements achieved using configurable security levels, OPT1 and
OPT2 when compared to unpotimized SICP (last column)

SL4 SL3 SL2 SL1 SICP
E

(uJ)
T

(ms)
E

(uJ)
T

(ms)
E

(uJ)
T

(ms)
E

(uJ)
T

(ms)
E

(uJ)
T

(ms)
CRC32 2.2 0.7 202.3 72.5 642.7 240.0 727.8 274.1 1580.4 605.5

E: Energy, T: Time

based on the needs of the application. In our experiment, we compute and verify CRC32

code using a software implementation [72]. The net checkpoint size for CRC32 is 1976B..

The program state consumes 78% (1544B) of the checkpoint and the device specific state

occupies the rest (432B) of the checkpoint. If we use the unoptimized SICP, without config-

uring security levels, OPT1, and OPT2 optimizations, secure intermittent implementation of

CRC32 would encrypt and authenticate the entire checkpoint. Whereas, if CRC32 does not

require confidentiality then we can avoid the overhead of encrypting 1976B by selecting SL3.

But if CRC32 program variables require confidentiality, then we can avoid the overhead of

encrypting 432B by selecting SL2.

Table 4.4 lists the energy and time overhead of securing the checkpoints of CRC32 software

implementation at different levels of security. We compare the overhead incurred from se-

curing checkpoints at each level of security and unoptimized SICP presented in Chapter 3.

The results presented in this section were measured on an MSP430FR5994 LaunchPad De-

velopment kit from Texas Instruments [97]. The measurements were collected using Digilent

Analog Discovery 2 USB Oscilloscope across a 1 kΩ shunt resistor. The LaunchPad was

operated at 8MHz and powered using an external DC power supply of 3.5V.

The measurements listed under SL1 and SICP encrypt and authenticate the entire checkpoint

but SL1 utilizes OPT1 and OPT2 described in this chapter. OPT1 avoids re-encrypting the

checkpoint after restoring which saves encryption overhead from 1976B of checkpoint data.

OPT2 avoids unnecessary decryption and verification before generating a new checkpoint
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using flags to indicate the latest checkpoint. SL1, with OPT and OP2, performs approxi-

mately 50% better than unoptimized SICP. SL3 consumes approximately 72% less energy

and time when compared to SL1 to provide the necessary checkpoint security if CRC32 does

not require any checkpoint confidentiality. Similarly, SL2 consumes 12% less energy and

time when compared to SL1 by not encrypting non-confidential sections of the checkpoint.

4.6 Conclusion

We proposed a configurable checkpoint security solution based on four different levels of

security, SL4 to SL1, which leverages AEAD to customize checkpoint security needs of

the benchmarks. We partitioned the checkpoints into public and private sections to avoid

unnecessary encryption/decryption of the public section of the checkpoint while ensuring

other checkpoint security properties are still full-filled. We provide a proof-of-concept imple-

mentation of our multi-level security using a secure checkpointing protocol on a low power

microcontroller. In this work, we performed a coarse grained partition of checkpoints based

on two broad types of checkpoint content - program variables and device specific state, where

all details about the partition are provided by the programmer. In the future, we plan to

delve further into the contents of checkpoints to perform fine-grain analysis of checkpoint

security properties and automate the partition with minimum input from the programmer

using a compiler.



Chapter 5

Benchmarking Secure Intermittent

Systems

5.1 Introduction

Unlike conventional computing with near unlimited input power, intermittent computing

operates on a limited input power budget that needs to be used judiciously towards forward

progress of the intermittent application. While security is not free, it is important to inter-

mittent systems, as described in Chapter 2 and Chapter 3. There are several components

in intermittent systems that consume the energy harvested from ambient sources such as

the embedded device, intermittent application, hardware peripherals, non-volatile memory,

intermittent computing, and security. The amount of input energy consumed by each of the

above components determines the energy available for forward progress of the intermittent

application.

First, the energy consumed by the embedded device or microcontroller to operate its CPU

is dependent on architecture and ultra low power design. Second, the intermittent applica-

tion, which is programmed on the embedded device, consumes either a small amount or a

majority of the input energy depending on the type of application. Third, the intermittent

application may utilize hardware accelerated peripherals to reduce the net energy used by

the application and to speed-up its computation. Fourth, the type of non-volatile memory

81
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used by intermittent systems determines the energy used for reading from and writing to

non-volatile memory. Fifth, the type of intermittent computing technique used determines

the amount of energy used for generation and restoration of checkpoints to complete the

intermittent application. And finally, the type of checkpoint security employed by inter-

mittent systems also determines the overhead incurred in securing checkpoints which limits

energy available for forward progress of the application. In this chapter, we primarily study

the two-way dependency between checkpoint security and intermittent application.

On the one hand, we study the effect of adding checkpoint security to forward progress of the

application. We investigate the effect of intermittent computing and checkpoint security on

a real-life application. We selected Elliptic Curve Diffie Hellman Key Exchange (ECDH) as

the intermittent application. We use duty cycle of the load as a metric to evaluate the effects

of secure intermittent computing on the application’s forward progress. We also investigate

the effect of other factors such as non-volatile memory on the duty cycle of the application.

On the other hand, we study the role of application in determining the checkpoint security

properties. We investigate how applications impact the security requirement which in turn

affects forward progress of the applications. Because securing a checkpoint requires energy

and time (clock cycles), less harvested energy remains for the application. Hence, secure

checkpoints will further reduce the performance of the application. We aim to quantify the

impact of security on the overhead of intermittent computing applications. It is important

to perform this cost analysis on applications for two reasons. First, the checkpoint size

is determined by the application. It is a major factor in analysing the overhead of secure

checkpoints. Second, the contents of the checkpoints are also dependent on the application.

This determines the security properties required for checkpoints. We make the following

contributions in this Chapter:
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• We study the change in duty cycle based of ECDH in a secure intermittent system.

• We analyze factors such checkpoint size, non-volatile memory, and cryptographic prim-

itives that also affect application duty cycle.

• We analyse the role of application in the overhead of intermittent computing and its

security using a curated list of IoT benchmark applications.

5.2 Effect of Checkpoint Security on Application

In this section we evaluate SICP based on a real-life application. We introduce our perfor-

mance metric, our target application, our implementation of the application, its checkpoints

and the need for checkpoint security, and the effect of each facet on the application.

5.2.1 Duty Cycle

Equation 5.1 states the relation between the load duty cycle, Dload, the average power avail-

able from the harvester, PEH , and the net power required by the load Pload. If the load was

supplied by a constant power supply, the supply and demand will match, i.e., PEH would

equal Pload, in which case the device would operate at 100% duty cycle. The harvested power

typically does not match the power required by the load. For example, consider a load which

performs a cryptographic signature [71] powered by a kinetic energy harvester [25]. Each

signature requires 7.3 mW (Pload), whereas the harvester only supplies an average of 2 mW

(PEH). The load can only operate at a 27% duty cycle to compute signatures. Thus, the

duty cycle is determined by the power budget available from the energy harvester.
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Figure 5.1: ECDH key-exchange between Alice(MSP430FR5994) and Bob: a flow chart and
pseudo-code.

DLoad =
PEH

PLoad

× 100 (5.1)

Since the load may require more power than the harvester’s output, it is bound to lose

power during its computation unless the energy storage buffer is large enough to satisfy its

requirements. The storage buffer, which is usually a battery or supercapacitor, accumulates

the energy until it can deliver sufficient power to the load. Supercapacitors are well suited

for energy harvesting applications, as they provide infinite charge/discharge life cycles, fast

recharge rate and high power density compared to batteries. In the above example, the

load requires 7.3mW in 12.5s to compute a cryptographic signature, which requires 91mJ

of energy. When the load is supplied by a 3V input voltage, it requires a minimum of

0.02F supercapacitor to supply the power required to compute one signature. The number

of signatures that can be computed before a power loss occurs depends on the size of the

energy buffer which is typically small to reduce the size of the energy harvesting circuit and

capacitor charge time. The load experiences a power loss after it exhausts its energy buffer.
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Table 5.1: Breakdown of the contents of the checkpoints of our ECDH implementation

Variable Size
(B) Comments

System data 763 Device specific data
Generator(G) 96 Memory required to

store an elliptic
curve point as a
Jacobian coordinate

Shared secret(sAB) 96
Bob’s public key (qB) 96
Alice’s public key (qA) 96
Alice’ private key (dA) 32 256-bit integerOrder of generator (n) 32

Total 1211

5.2.2 Target application

We chose Elliptic Curve Diffie Hellman key exchange (ECDH) as a representative of an ap-

plication that needs secure checkpoints. ECDH can be used to exchange keys between two

entities, Alice and Bob, via an unsecured channel to secure the communication channel in

several steps, illustrated in Figure 5.1. First, they agree upon an elliptic curve, E; a base

point, G, in E whose order is n. The order n is the smallest integer such that n.G = 0.

Second, they each chose an integer, Ni, less than n as their corresponding private key, di.

Third, they compute the product Ni.G as their public key, qi. Last, each entity generates the

shared secret by multiplying its secret with the other entity’s public key, which is then used

to derive the secret key, KEY. We implement ECDH on MSP430FR5994 using the NIST

curve P-256, which provides 128-bits of security, with the help of the RELIC cryptographic

library [9]. We consider Alice to be the target microcontroller. ECDH involves long running

arithmetic operations on the elliptic curve, such as generating integer and point multipli-

cations. We place secureCheckpoint() calls after long running arithmetic operations to

ensure the availability of the intermediate results in the event of power loss, as illustrated in

Figure 5.1.
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Table 5.2: Energy and time overhead of different technology and corresponding duty cycle,
Dload, when input power is 2 mW

Technology Operation Time
(ms)

Energy
(µJ)

Pload

(mW)
Dload

(%)
Application ECDH 7800 48300 6.2 33

CTPL
Initialize 0.02 0.03

8.0 25Refresh 13.8 12.1
Restore 13.5 12.3

SICP
INITIALIZE() 0.06 0.04

9.5 21REFRESH() 216.2 160.2
RESTORE() 277.1 202.3

Checkpoint Location and Contents :

The application specific variables that are required to ensure forward progress of ECDH are

listed in Table 5.1. All the variables listed in Table 5.1 are placed in the .checkpoint section

of tamper-sensitive non-volatile memory using the __attribute__ keyword, as described in

Chapter 3. The generator, G, of the curve is a point on the 256-bit elliptic curve, consisting

of three Jacobian coordinates, X,Y , and Z, where each coordinate is 256-bit long. Thus,

each point on the elliptic curve, such as the shared secret, sAB, and public keys, qA and qB

are 96 B. The shared secret, sAB, and Alice’s private, dA, are also checkpointed to maintain

secure sessions across power losses. Since dA and n are 256-bit integers, they only occupy

32 B each. Of the 1211 B of checkpointed data, only G, n, and the public keys, qA, and qB,

are global public elements, the rest of the variables must be protected from the attacker to

maintain the security of the communication channel. Thus, checkpoints of ECDH require

SICP to maintain the security properties of its application across stateful power transitions.
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5.2.3 Overhead Analysis

The device under test was operated at 1 MHz and was powered by an external power supply.

The energy and time measurements reported in this section were measured across a 1 kΩ

shunt resistor using a Tektronix DPO3034 oscilloscope operating at 50 kS/s. Table 5.2 lists

the energy and time overhead of ECDH, CTPL, and SICP. It computes the net load power

after introducing each facet based on the assumption that the initialize operations occur

only once and are ignored and only one checkpoint generation operation is performed during

each ON-state.

Energy harvesters : In the continuous execution paradigm, the microcontroller consumes

48.3 mJ of energy in 7.8 s to arrive at the shared secret of an ECDH operation, which requires

6.2 mW of power. Energy harvesters do not always provide the peak power required by the

microcontroller, they typically provide a few µW to mW of power [54]. We assume that

the microcontroller is powered by a kinetic energy harvester [25], which provides an average

power of 2 mW. In the intermittent execution paradigm, the microcontroller still requires

6.2 mW of power to arrive at the shared secret but it operates at only 32% duty cycle as

Pload is greater than PEH . The microcontroller repeatedly experiences power loss for every

2 mW of power it consumes.

Statefulness : CTPL stores the volatile state information in non-volatile memory as a

checkpoint and retrieves it to restore the microcontroller after a power cycle, which intro-

duces overhead. Table 5.1 lists the checkpoint size of our target application as 1211 B,

which is calculated by studying the memory section containing STATE [83]. The checkpoint

generation and restoration operations combined introduce an overhead of 1.8 mW, listed in

Table 5.2. In addition to the power requirements of ECDH operations, the checkpointing
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‘
Figure 5.2: Facets of power transition and corresponding effect on duty cycle, Dload

overhead increases the net load power, Pload, to 8 mW. The microcontroller duty cycle is

reduced to 25% to arrive at the shared secret, sAB, assuming that the device is still powered

by the same kinetic energy harvester.

Overhead from security : Table 5.2 lists the additional overhead SICP introduces to

stateful power transitions. It presents the amount of energy and time required to secure

the generation and restoration of 1211 B of checkpointed data. The overhead measurements

correspond to INITIALIZE, REFRESH, and RESTORE operations of the protocol. The micro-

controller requires an additional 1.4 mW to secure 1211 B of checkpoint. This increases the

net load power, Pload, to 9.5 mW. The microcontroller must operate at 21% duty cycle to

finish its ECDH operations while ensuring that its security properties and that of ECDH are

maintained across power transitions.

Checkpoint size and non-volatile memory In our implementation of secure and state-

ful power transition, we observe that each facet, including the kinetic energy harvester,

CTPL, and SICP, introduces a limiting factor that progressively reduces the duty cycle of

the device, illustrated in Figure 5.2. We studied the effects of energy influx, type of non-

volatile memory, and checkpoint size on the duty cycle of the load. Figure 5.3 illustrates the
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Figure 5.3: Changes to the duty cycle of load, Dload, based on the energy influx [25, 56], size of
checkpoint, and type of non-volatile memory. The duty cycle measurements were calculated
based on the ratings of flash memory and FRAM available in the device datasheet [86, 87]

change in duty cycle based on the energy influx for different checkpoint sizes and non-volatile

memories. The data points on each line graph correspond to the duty cycle of the device

based on the energy influx from three types of sources, including kinetic, vibration, and

thermal harvesters, which provide 2 mW, 4.5mW, and 5.2 mW, respectively [25, 56]. The

energy influx varies, between a few µW to a few mW, depending on the choice of the har-

vester [54]. We chose two types of non-volatile memory commonly available in off-the-shelf

devices. First, we studied the flash memory available in TI’s MSP432P401R [86]. Second,

we studied FRAM available in MSP430FR5994 [87]. Since FRAM consumes low power when

compared to flash, the duty cycle of FRAM devices is higher than that of flash devices. While

Flash memory is widely available in low-power microcontrollers, it is not suitable for energy

harvesting applications because of its additional wait states at higher clock frequency, its low
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endurance, and its power hungry write operations. We also considered two checkpoint sizes,

1kB and 4kB, to account for applications whose checkpoints may be larger than ECDH’s

1.2kB checkpoint. Figure 5.3 illustrates that larger checkpoints reduce the duty cycle of

the load, irrespective of the energy influx and type of non-volatile memory in use. The duty

cycle reported in Figure 5.3 will reduce further when secure checkpoints are employed. Thus,

we must consider the various technologies involved in an energy harvested node, including,

but not limited to the energy influx, type of non-volatile memory, application, frequency of

checkpoints, and type of device, to achieve the required duty cycle of the target device.

5.3 Effect of Application on Checkpoint Security

The checkpoint properties, such as size, content, and frequency, determine the overhead of

securing checkpoint refresh and restore operations. The checkpoint properties are largely

determined by the application, microcontroller, and intermittent computing technique used

by an IoT device. In this section, we focus on how the contents of the checkpoint are par-

tially dependent on the application and we leverage this dependency to reduce the overhead

of securing checkpoints. In this section, we analyze the common checkpoint content and

differentiate them with application specific checkpoint content using a curated list of em-

bedded benchmarks. We also briefly describe our experimental setup with the choice of

microcontroller and intermittent computing technique used in this work.

5.3.1 System Overview

Target platform: We use Texas Instruments’ (TI) MSP430FR5994 LaunchPad Develop-

ment Kit as a representative of an energy harvested device. MSP430FR5994 is a 16-bit
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Figure 5.4: Block diagram of the experimental setup. PC is used to load benchmark binaries
onto MSP430FR5994 LaunchPad Development Kit which is powered using a 3.5V (VCC)DC
power supply via a 1kΩ(R) shunt resistor. A Digilent Analog Discovery 2 USB Oscilloscope,
which is triggered using the GPIO pins on-chip, is used to capture the voltage across the
resistor. Energy measurements computed using Equation 5.2 are sent to PC for logging.

ultra-low power microcontroller that only consumes 120µA/MHz of active current [88]. It is

equipped with 256kB of Ferroelectric RAM (FRAM) and 8kB of SRAM. FRAM is a non-

volatile storage that retains data even after power loss. When compared to Flash, FRAM has

faster write times, lower power consumption, and higher endurance. Apart from its suitabil-

ity for energy harvesting applications, MSP430FR5994 is equipped with several peripherals,

such as CRC32 and AES256, that are useful to accelerate applications. In our evaluation, we

use the CRC32 peripheral in a benchmark application to demonstrate the change in security

properties based on peripherals used by the application.

E =
VCC

R

∫ t2

t1

v(t) dt (5.2)

Experimental setup The measurements were collected on MSP430FR5994 LaunchPad

Development Kit across a 1 kΩ shunt resistor using Digilent Analog Discovery 2 USB Os-

cilloscope. The scope was operated at 1MHz and triggered using on-chip GPIO to identify

measurements for target functions. The microcontroller was powered using an external DC

power supply at VCC = 3.5V , as illustrated in Figure 5.4, and operated at 8MHz using

on-chip clock source. The energy consumption of a function’s execution is computed using
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(a) Checkpoint partition across benchmarks.
The device specific space is stored in SRAM or
volatile memory at run-time. The program vari-
ables are already stored in FRAM. During check-
point refresh, CTPL only stores the device spe-
cific state in FRAM

(b) Variation in individual partitions of CTPL’s
checkpoint content for square root, CRC32-HW,
floating point, and CRC32-SW benchmarks with
468B, 1984B, 3198B, and 1976B of checkpoint
data, respectively.

Figure 5.5: Similarities in checkpoint partitions and differences in checkpoint content across
benchmarks

equation 5.2, which is a function of the integral of changing voltage across the shunt resistor,

R. The difference between t2 and t1 is the time taken to execute the target function. The

benchmarks were compiled using msp430-gcc 9.2.0 with -O3 optimization.

Intermittent computing: We use TI’s Compute Through Power Loss (CTPL) utility for

system state restoration after power failure [96]. It is a software utility that triggers check-

point generation by monitoring Vcc using the on-chip analog-to-digital converter (ADC). If

CTPL is enabled, the checkpoint, which contains CPU and peripheral states, is automati-

cally saved in FRAM and used for a faster wake-up upon power-up. CTPL takes advantage

of the unified memory model of FRAM to directly place constant data and program variables

in FRAM.

5.3.2 Benchmark Applications

In our work, the purpose of a benchmark suite is not to evaluate the target platform’s

performance. Rather, we use the benchmarks to evaluate the different characteristics an
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application introduces to secure intermittent computing. The characteristics include check-

point size, checkpoint contents, security level, and energy requirements of both application

and secure intermittent computing. The checkpoint size, the number of bytes that must be

secured and verified, also determines the overhead of securing checkpoints. The contents of

the checkpoint vary based on the application and checkpoint security properties. The net

energy consumed just by the application also determines the amount of energy left for secure

intermittent computing and the number of checkpoints required to complete the application.

Since our application domain is in energy harvesting devices, we focus on benchmarks for

energy measurements, particularly for embedded platforms. We selected ten benchmarks

listed in Table 5.3 from MiBench [37] and BEEBS [72] benchmark suites. The set contains a

combination of security, mathematical, and signal processing applications. They were orig-

inally used to stress the integer, floating point, and memory pipelines; test memory access;

and test data caching effects on an embedded platform. Although each benchmark is unique

and introduces certain variations to intermittent computing, we first discuss the similarities

among them and then focus on the differences. We use the differences to demonstrate the

variation in performance cost, checkpoint size, and checkpoint contents across benchmarks,

which provides a foundation for configuring checkpoint security based on the needs of the

application.

5.3.3 Similarities Among Benchmarks

Checkpoint partition We broadly partition the contents of checkpoints in all benchmarks

into device specific state and program variables. Figure 5.5a illustrates each partition and

its contents. The device specific state includes peripheral settings and microcontroller state.

The peripheral settings contain the control registers, which are stored in SRAM at run-time,



94 Chapter 5. Benchmarking Secure Intermittent Systems

that are required for the forward progress of peripherals used by the microcontroller, CTPL,

and the benchmark. The microcontroller state, also known as CPU state, contains the stack

which is stored in SRAM at run-time, which generates approximately 174B of checkpoint

data. The stack includes general purpose registers and the application stack. Since the

program variables are already stored in FRAM at run-time, CTPL only stores the device

specific state in FRAM during checkpoint generation. For simplicity, we only consider the

global variables used by benchmarks as program variables in checkpoints.

Peripheral settings We list the peripherals that require checkpointing based on their

usage and their contribution to checkpoint size in bytes for MSP430FR5994. The peripherals

that require checkpointing for the regular operation of the microcontroller include memory

protection unit (14B), system control state (4B), clock system (12B), FRAM controller (4B),

special function reset (4B), GPIO ports (58B) and watch dog timer (2). The peripherals

used by CTPL that require checkpointing are analog-to-digital converter (82B), reference

voltage generator (2B), and direct memory access (78B). The required peripheral settings

for microcontroller and CTPL operation are the same for all benchmarks and sums up to

260B of checkpoint data. The peripherals needed by the benchmark depend on the needs of

the application and may contribute a few bytes to the checkpoint.

CTPL overhead CTPL uses a unified memory model where a majority of data required

for forward progress is always stored in non-volatile memory. At run-time, only the device

specific state, which is volatile, requires to be checkpointed, i.e., written into non-volatile

memory. As the name suggests, the device specific state mostly contains checkpoint data re-

quired for restoring the microcontroller, peripherals, and a few volatile application variables.

Table 5.3 lists the size of device specific state for all benchmarks and the energy and time re-

quired to create and restore a checkpoint of device specific state under CTPL overhead. The
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Table 5.3: The variation in benchmark cost, checkpoint size, and contents; and the similari-
ties in CTPL overhead and device specific state across different benchmark applications. The
benchmark cost includes the energy and time taken to execute one iteration of a benchmark
function. The CTPL overhead presents the energy and time taken to refresh and restore an
unsecure checkpoint using CTPL. Checkpoint size is partitioned into program variables and
device specific state, which typically consists of microcontroller state and peripheral settings.

Benchmark cost CTPL overhead Checkpoint size

Benchmark Energy
(µJ)

Time
(ms)

Energy
(µJ)

Time
(ms)

PV
(B)

DSS
(B) Total(B)

Binary Search 10.66 3.98 2.6 0.9 200 436 636
Dijkstra 507.60 178.00 2.2 0.9 253 434 687

Exponent 0.01 0.02 2.3 0.9 60 492 552
Hash Table 0.18 0.06 1.8 0.6 2416 432 2848

Floating Point 6986.00 2605.00 1.3 0.5 2700 498 3198
Square Root 1.51 0.59 2.5 0.9 36 432 468
Binary Tree 6.81 2.53 2.4 0.9 380 432 812

SHA-2 388.60 147.52 2.6 0.9 100 532 632
CRC32-SW 54.91 20.05 2.2 0.7 1544 432 1976
CRC32-HW 1.38 0.49 2.5 0.9 1810 174 1984

PV: Program Variables, DSS: Device Specific State

measurements were computed by placing checkpoint calls at the boundaries of benchmark

functions to capture necessary global variables in checkpoints. The checkpoint calls may also

be placed within benchmark functions to capture local variables in the checkpoint which may

change the frequency, and overhead of generation and restoration of checkpoints. We ob-

served similar overhead for checkpointing across all the benchmarks which are attributed to

the similarity in device specific state sizes. In our experiments, on average, the checkpoint

generation and restoration for benchmarks consumed 2.2mJ of energy and introduced 0.8s

latency.
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5.3.4 Differences Among Benchmarks

Device specific state Even though peripheral settings and microcontroller state are de-

vice specific, they also contain application specific content such as the application stack

and peripherals required by benchmarks. Thus, there may be variations in device specific

state depending on the benchmarks. For example, an application may use a larger stack

or use other peripherals such as the CRC32 peripheral used in the CRC32-HW benchmark

which adds an additional 6B to the total checkpoint size when compared to CRC32-SW

benchmark. Figure 5.5b illustrates the variation in checkpoint content for a few selected

benchmarks using the data provided in Table 5.3. The peripheral settings contribute to

the majority of checkpoint content in the square root benchmark, whereas, the program

state makes up for over 75% of the checkpoint content for CRC32-HW, floating point, and

CRC32-SW benchmarks. The small variation in device specific state measurements in Ta-

ble 5.3 were only caused by microcontroller state, i.e. application stack, in all benchmarks

except CRC32-HW, which is described below.

Program variables In CTPL, the checkpoints only contain device specific state. Although

the program variables are not checkpointed by CTPL upon detecting power loss, they are a

part of the checkpointed state and need security guarantees. Table 5.3 lists the size of the

overall checkpoint and its broad partitions which helps visualize the dependency between

checkpoint size and benchmarks. While the device specific checkpoint state is mostly similar

across benchmarks, the program variables content vastly varies among benchmarks. For

example, the square root benchmark only checkpoints 36B of program variables, whereas

the floating point benchmark checkpoints 2700B of program variables. For CRC32-HW

benchmark, we consider the peripheral settings to be part of the program variable as the

CRC32 peripheral processes inputs from the benchmark. This reduces the device specific
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SL4 SL3 SL2 SL1

Benchmark Energy
(µJ)

Time
(ms)

Energy
(µJ)

Time
(ms)

Energy
(µJ)

Time
(ms)

Energy
(µJ)

Time
(ms)

Binary Search 2.6 0.9 98.9 35.9 163.4 61.3 243.2 91.5
Dijkstra 2.2 0.9 64.8 23.2 135.6 68.3 263.5 98.3

Exponent 2.3 0.9 85.6 29.9 138.6 49.1 183.6 67.9
Hash Table 0.8 0.6 181.2 65.5 836.6 313.6 911.8 346.2

Floating Point 1.3 0.5 94.0 38.7 895.9 336.5 1014.0 379.9
Square Root 2.5 0.9 132.1 48.9 140.6 51.8 526.7 200.5
Binary Tree 2.4 0.9 117.9 42.5 241.5 89.2 319.5 120.9

SHA-2 2.6 0.9 54.8 19.9 164.6 58.6 268.6 101.2
CRC-SW 2.2 0.7 202.3 72.5 642.7 240.0 727.8 274.1

CRC32-HW 2.5 0.9 153.8 72.4 721.8 270.0 728.6 273.5

Table 5.4: Performance overhead of generating and restoring checkpoints securely using
multi-level security based optimized SICP implementing in various benchmarks

state to just the microcontroller state. The partition in checkpoint size also highlights the

need for individualized security properties required by different sections of checkpoints.

Benchmark cost Table 5.3 lists the energy and time required to complete one iteration of

each benchmark under benchmark cost. The energy consumed by each benchmark function

depends on certain application specific features, such as the type of input (integer/float),

the size of the input, the number of iterations performed by each benchmark, and the bench-

mark itself. We added CRC32-HW benchmark to demonstrate the variation in benchmark

overhead when on-chip peripherals are in use. CRC32-HW uses the CRC32 peripheral on

MSP430FR5994 to improve the performance of software-only CRC verification (CRC32-SW).

As expected, the hardware accelerated benchmark outperforms the software-only benchmark

for CRC32 with 40x improvement. The variation in the performance overhead of each bench-

mark demonstrates the change in energy requirement for each application which is elaborated

in Section 5.3.5.
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5.3.5 Results

The measurements reported in this section were measured on the same experimental setup

described in Section 5.3.1. We use energy and time as metrics to evaluate the overhead of

different levels of security. The energy overhead helps understand the overall energy re-

quired in securing an energy harvested application where the input energy is limited. The

time overhead helps understand the latency that secure checkpoints may introduce to the

application. We measure the overhead of generating and restoring one checkpoint at all

four security levels. Table 5.4 lists the energy and time overhead of securely generating and

restoring checkpoints using SL4, SL3, SL2, and SL1. In all implementations but CRC32-

HW, we place the peripheral registers as a part of device specific state in public memory

in SL2. For CRC32-HW, we place the peripheral registers as a part of program variables.

The program variables of all the benchmarks are placed in the private section for SL1 and

SL2, whereas in SL3 there is no private section as there is no confidentiality guarantee. The

overhead of checkpointing at SL4 is also listed in Table 5.3, as SL4 is equivalent to unse-

cure intermittent computing. The overhead listed for each level includes secure checkpoint

generation and restoration.

Improvements With Multi-level Security

Figure 5.6 illustrates the n-fold increase in energy required to securely generate and restore

one checkpoint at different security levels for our benchmarks. The increase was calculated

with the unsecured checkpointing overhead listed under SL4 in Table 5.3 as baseline energy

consumption. A similar trend in the n-fold increase in time for securing checkpoints was ob-

served across the benchmarks. SL3 has the least increase in energy consumption as there is

no encryption/decryption involved in securing checkpoints. Mostly, benchmarks with larger
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Figure 5.6: N-fold increase in energy required to secure checkpoints of various benchmarks
when operated at different security levels (SL1-3) with respect to (w.r.t.) the energy required
for unsecure checkpoints (SL4)

checkpoints, such as floating point, CRC32, and hash table, consume significantly more en-

ergy across all levels of security when compared to benchmarks with smaller checkpoints(

smaller than 1000B). Also, in large checkpoint benchmarks, there is a significant increase

in energy consumption at SL2 and SL1 as the size of secure memory (program variables)

is correspondingly large. This illustrates that the overhead of checkpoint security is vastly

dependent on the application and the programmer needs to carefully select security lev-

els based on the contents of the checkpoint to avoid unnecessary overhead incurred from

encryption/decryption.

Number Of Checkpoints

The number of checkpoints required for each benchmark varies depending on the size of the

energy buffer, input power, security level, and benchmark itself. We hypothesize the charge-
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Figure 5.7: A hypothetical power cycle graph of an ideal 470 µF supercapacitor buffer
used to complete one iteration of the floating point arithmetic benchmark. Emax=2.1mJ,
ESL4=1.3µJ, ESL3=0.09mJ, ESL2=0.9mJ, and ESL1=1.01mJ. With the increase in security
level from SL4 to SL1, the amount of energy available for the forward progress of the bench-
mark during each power cycle is reduced to accommodate securely refreshing and restoring
checkpoints, which in turn increases the number of checkpoints required to complete one
iteration of the benchmark. This graph does not consider the idle time spent by the super-
capacitor in waiting for input from the energy harvester.

discharge cycles of an ideal 470 µF supercapacitor in Figure 5.7 to demonstrate the change

in input energy requirement with change in security levels for intermittent computing. If we

consider a 470 µF supercapacitor as an energy buffer [92], it can provide 2.1 mJ of energy

in one power cycle when the input voltage to the supercapacitor is 3V. Let us consider the

floating point and SHA-2 benchmark. For SHA-2, 470 µF supercapacitor provides sufficient

input energy to complete more than one iteration of the benchmark without power loss, as

SHA-2 only consumes 0.38 mJ of energy. Whereas, the floating point benchmark consumes

6.9 mJ of energy for one iteration and the microcontroller may require at least four check-

points to complete the benchmark if the supercapacitor is not continuously charged. Apart
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from the checkpointing overhead and benchmark cost, the different levels of checkpoint secu-

rity incur additional overhead based on the level, i.e, from SL3 to SL1 each secure checkpoint

generation and restoration consumes an additional 0.09, 0.89, and 1.1 mJ of energy. And,

there is a corresponding increase in the number of checkpoints or power cycles across differ-

ent levels. Figure 5.7 illustrates that customizing checkpoint security policy based on the

contents of the checkpoint may help reduce the number of checkpoints required to securely

finish a benchmark, which ultimately improves the performance of the benchmark. It also

illustrates that an energy harvesting system must be designed with careful consideration to

the choice of energy buffer and energy harvester to ensure forward progress of the application

with minimum latency. The energy harvester determines the amount of energy available to

charge the energy buffer. And, the energy buffer limits the amount of energy available to

the microcontroller in the event of power loss from the energy harvester.

Estimation of energy and time requirement

Based on our experiments, we estimate the amount of time and energy required per byte

to add security to checkpoints. The following average values were computed for our experi-

mental setup. A similar estimate may be derived for a different operating frequency, input

voltage, and device under test. To provide authenticated encryption that satisfies SL1 secu-

rity properties using optimized SICP, the microcontroller requires approximately 0.18µJ of

energy and 0.06ms of time per byte of the checkpoint. Whereas, to only provide SL3 security

properties, each byte of checkpoint approximately requires 0.07µJ of energy and 0.03ms of

time. One can estimate the energy and time required for providing SL2 security properties

by combining the overhead of SL1 and SL3 level security properties for the Pri and Pub

sections of the checkpoint, respectively.
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5.4 Conclusions

As energy harvested IoT devices become increasingly common, we need to systematically

evaluate the requirement and overhead of secure intermittent computing based on the needs

of the application. The introduction of intermittent computing and its security affects the

duty cycle of the target application. Our evaluation of ECDH demonstrates the need for

careful design choices, including but not limited to non-volatile memory, low power device,

cryptographic hardware, and secure memory, to improve the performance of the applica-

tion. We compiled a benchmark of ten embedded applications to demonstrate the need for

customized checkpoint security solutions that is not available in the state-of-the-art secure

intermittent computing solutions. Based on our results, we conclude that application plays

a vital role in deciding, both, the security properties of the checkpoints and the overhead of

secure intermittent computing.
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Conclusions and Future Work

This dissertation presents a top-down approach to designing secure intermittent systems.

Foremost, in Chapter 2 we identified the threats involved in intermittent computing and its

checkpoints. We identified vulnerabilities that arise from power loss, which was originally not

considered a threat to embedded systems. We demonstrated risks and attacks that exploit

the risks to show the need for employing secure power transitions in embedded systems.

In our research, we identify three key checkpoint vulnerabilities - snooping, spoofing, and

replay, which were used to exploit software AES to extract the secret key from memory.

On the same line, checkpoints of intermittent systems may be used to attack other energy

harvested systems.

In Chapter 3, we identified checkpoint security requirements to overcome security vulnera-

bilities. At a minimum, the checkpoint needs freshness and authenticity guarantees to detect

replay and integrity guarantees to detect checkpoint modifications. Apart from information

security guarantees, the availability of checkpoints is an important security requirement that

ensures the intermittent system is always left with a valid secure checkpoint. The availability

of a checkpoint prevents an attacker from arbitrarily restarting the intermittent application.

Originally, the confidentiality of checkpoints was a minimum security requirement. Later,

the confidentiality of checkpoints was included as an optional security requirement. Based

on these requirements, we designed the Secure Intermittent Computing Protocol as a fail

safe way to incorporate security into a checkpoint.
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Based on preliminary evaluation, we identify optimizations for secure intermittent systems

in Chapter 4. The intermittent application plays an important role in defining security

requirements for checkpoints. As the contents of checkpoints change based on the application,

we believe the checkpoint security requirements must also change based on the application.

While the minimum security requirement remains the same across the entire checkpoint, we

propose to add-on checkpoint encryption based on the needs of confidentiality for different

parts of checkpoints. We propose to configure checkpoint security into multiple levels, SL1-

SL4, based on the needs of the application. We also propose protocol specific optimization

to improve the performance of the first iteration of SICP.

Finally, we identify various factors that must be considered in designing a secure intermittent

system in Chapter 5. In particular, we study the interdependency between application and

checkpoint security. Apart from the application, we study other factors, including the type

of energy harvester which controls the input power, the type of non-volatile memory which

determines the overhead of reading from and writing to non-volatile memory, and the type

of intermittent computing technique to determine the contents and frequency of checkpoints.

We demonstrate their importance using the application duty cycle as a metric of performance.

We curated a list of benchmarks that were used to evaluate the advantages of multi-level

security in secure intermittent systems. Based on the results of this study, we conclude that

application plays a major role in the design of intermittent systems.

In this dissertation, we provided a foundation for designing secure intermittent systems

starting from threat discovery, followed by secure design, system optimization, and ending

in the evaluation of factors that affect the performance of intermittent systems. While

the conclusion of each chapter of this dissertation provides incremental future work, here

we consolidate a few of the future work and provide tentative directions towards securing

intermittent systems beyond this dissertation:
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• Optimization: There are several avenues for optimization of security in intermittent

systems. First, we may consider automation of classifying secure sections of check-

points. In this dissertation, we provided a high-level division of checkpoints using

programmer intervention to identify checkpoint security properties. In the future, an

automatic tool may be built using, for example using LLVM, to identify all uses of

a secure variable to ensure only necessary variables are encrypted to prevent unnec-

essary encryption overhead. Second, we may consider hardware acceleration for both

the latest lightweight cryptographic algorithms such as the NIST LWC candidates and

for DMA assisted checkpoint generation and restoration process. Such hardware ac-

celeration will reduce the overhead of intermittent computing and its security which

allocates more of the input power towards the forward progress of the application.

• Secure Energy Estimation: The intermittent systems understand power loss based

on external input from the energy harvester. So far, the estimation of energy available

in the energy buffer is assumed to be trusted. But since this input is external to the

system, it may be tampered by an attacker with access to the intermittent system. To

comprehensively secure energy harvester devices, we must identify threats present in

communicating the energy estimation from energy harvester and arrive at solutions to

ensure intermittent systems are provided with secure energy estimation.

We proposed a few potential research directions based on our research questions and our

results. There may be other research directions that could provide additional features to

secure intermittent systems, such as designing a hardware interface with secure energy es-

timation to trigger the generation of secure checkpoints upon detecting power loss from a

trusted source. This dissertation may be considered as a stepping stone to designing and

utilizing secure intermittent systems.
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