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ACADEMIC ABSTRACT 

Ambient air pollution is among the top 10 health risk factors in the US. With increasing concerns 

about adverse health effects of ambient air pollution among stakeholders including 

environmental scientists, health professionals, urban planners and community residents, 

improving air quality is a crucial goal for developing healthy communities. The US 

Environmental Protection Agency (EPA) aims to reduce air pollution by regulating emissions 

and continuously monitoring air pollution levels. Local communities also benefit from crowd-

sourced monitoring to measure air pollution, particularly with the help of rapidly developed low-

cost sampling technologies. The shift from relying only on government-based regulatory 

monitoring to crowd-sourced effort has provided new opportunities for air quality data. In 

addition, the fast-growing data sciences (e.g., data mining) allow for leveraging open data from 

different sources to improve air pollution exposure assessment. My dissertation investigates how 

new data sources of air quality (e.g., community-based monitoring, low-cost sensor platform) 

and model predictor variables (e.g., non-government open data) based on emerging modeling 

approaches (e.g., machine learning [ML]) could be used to improve air quality models (i.e., land 

use regression [LUR]) at local, regional, and national levels for refined exposure assessment.  

LUR models are commonly used for predicting air pollution concentrations at locations without 

monitoring data based on neighboring land use and geographic variables. I explore the use of 



 

crowd-sourced low-cost monitoring data, new/open dataset from government and non-

government sponsored platforms, and emerging modeling techniques to develop LUR models in 

the US. I focus on testing whether: (1) air quality data from community-based monitoring is 

feasible for developing LUR models, (2) air quality data from non-government crowd-sourced 

low-cost sensor platforms could supplement regulatory monitors for LUR development, and (3) 

new/open data extracted from non-government sponsored platforms could serve as alternative 

datasets to traditional predictor variable sources (e.g., land use and geographic features) in LUR 

models. 

In Chapter 3, I developed LUR models using community-based sampling (n = 50) for 60 volatile 

organic compounds (VOC) in the city of Minneapolis, US. I assessed whether adding area 

source-related features improves LUR model performance and compared model performance 

using variables featuring area sources from government vs. non-government sponsored 

platforms. I developed three sets of models: (1) base-case models with land use and 

transportation variables, (2) base-case models adding area source variables from local business 

permit data (government sponsored platform), and (3) base-case models adding Google point of 

interest (POI) data for area sources. Models with Google POI data performed the best; for 

example, the total VOC (TVOC) model had better goodness-of-fit (adj-R2: 0.56; Root Mean 

Square Error [RMSE]: 0.32 µg/m3) as compared to the permit data model (0.42; 0.37) and the 

base-case model (0.26; 0.41). This work suggests that VOC LUR models can be developed using 

community-based samples and adding Google POI could improve model performance as 

compared to using local business permit data. 

In Chapter 4, I evaluated a national LUR model using annual average PM2.5 concentrations from 

low-cost sensors (i.e., PurpleAir platform) in 6 US urban areas (n = 149) and tested the 



 

feasibility of using low-cost sensor data for developing LUR models. I compared LUR models 

using only the PurpleAir sensors vs. hybrid LUR models (combining both the EPA regulatory 

monitors and the PurpleAir sensors). I found that the low-cost sensor network could serve as a 

promising alternative to fill the gaps of existing regulatory networks. For example, the national 

regulatory monitor-based LUR (i.e., CACES LUR developed as part of the Center for Air, 

Climate, and Energy Solutions) may fail to capture locations with high PM2.5 concentrations and 

the within-city spatial variability. Developing LUR models using the PurpleAir sensors was 

reasonable (PurpleAir sensors only: 10-fold CV R2 = 0.66, MAE = 2.01 µg/m3; PurpleAir and 

regulatory monitors: R2 = 0.85, MAE = 1.02 µg/m3). I also observed that incorporating PurpleAir 

sensor data into LUR models could help capture within-city variability and merit further 

investigation on areas of disagreement with the regulatory monitors. This work suggests that the 

use of crowd-sourced low-cost sensor networks for LUR models could potentially help exposure 

assessment and inform environmental and health policies, particularly for places (e.g., 

developing countries) where regulatory monitoring network is limited.  

In Chapter 5, I developed national LUR models to predict annual average concentrations of 6 

criteria pollutants (NO2, PM2.5, O3, CO, SO2 and PM10) in the US to compare models using new 

data (Google POI, Google Street View [GSV] and Local Climate Zone [LCZ]) vs. traditional 

geographic variables (e.g., road lengths, area of built land) based on different modeling 

approaches (partial least square [PLS], stepwise regression and machine learning [ML] with and 

without Kriging effect). Model performance was similar for both variable scenarios (e.g., random 

10-fold CV R2 of ML-kriging models for NO2, new vs. traditional: 0.89 vs. 0.91); whereas 

adding the new variables to the traditional LUR models didn’t necessarily improve model 

performance. Models with kriging effect outperformed those without (e.g., CV R2 for PM2.5 



 

using the new variables, ML-kriging vs. ML: 0.83 vs. 0.67). The importance of the new variables 

to LUR models highlights the potential of substituting traditional variables, thus enabling LUR 

models for areas with limited or no data (e.g., developing countries) and across cities. 

The dissertation presents the integration of new/open data from non-government sponsored 

platform and crowd-sourced low-cost sensor networks in LUR models based on different 

modeling approaches for predicting ambient air pollution. The analyses provide evidence that 

using new data sources of both air quality and predictor variables could serve as promising 

strategies to improve LUR models for tracking exposures more accurately. The results could 

inform environment scientists, health policy makers, as well as urban planners interested in 

promoting healthy communities.  
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GENERAL AUDIENCE ABSTRACT 

According to the US Centers for Disease Control and Prevention (CDC), a healthy community 

aims at preventing disease, reducing health gaps, and creating more accessible options for a 

wider population. Outdoor air pollution has been evidenced to cause a wide range of diseases 

(e.g., cardiovascular diseases, respiratory diseases, diabetes and adverse birth outcome), ranking 

as the top 10 health risks in the US. Thus, improving understanding of ambient air quality is one 

of the common goals among environmental scientists, urban planners, health professionals, and 

local residents to achieving healthy communities. 

To understand air pollution exposures in different areas, US Environmental Protection Agency 

(EPA) has regulatory monitors for outdoor air pollution measurements across the country. For 

locations without these regulatory monitors, land use regression (LUR) models (one type of air 

quality models) are commonly employed to make a prediction. Usually, information including 

number of people, location of bus stops, and type of roads are shared online from government 

websites. These datasets are often used as significant predictor variables for developing LUR 

models. Questions remain on whether new air quality data and alternative land use data from 

non-government sources could improve air quality modeling. In recent years, local communities 

have been actively involving in air pollution monitoring using rapidly developed low-cost 

sensors and sampling campaigns with the help of local residents. In the meantime, advances in 



 

data sciences make open data much easier to acquire and use, particularly from non-government 

sponsored platforms. My dissertation aims to explore the use of new data sources including 

community-based low-cost monitoring data and open dataset from non-government websites in 

LUR modes based on emerging modeling techniques (e.g. machine learning) to predict air 

pollution levels in the US. 

I first built LUR models for volatile organic compounds (VOC: organic chemicals with a high 

vapor pressure at room temperature [e.g., Benzene]) based on community-based sampling data in 

the City of Minneapolis, US. I added information on number of neighboring gas stations, dry 

cleaners, paint booths, and auto shops from both the local government and Google website into 

the model and compared the model performance for both data sources (Chapter 3). Then, I used 

PM2.5 data from a non-government website (PurpleAir low-cost sensors) for 6 US cities 

evaluating an existing air quality model that used air quality data from government websites. I 

further developed LUR models using the PurpleAir PM2.5 data to see whether this non-

government source of low-cost sensor data could be as reasonable as the government data for 

LUR model development. I finally extracted new/open data from non-government sponsored 

platforms (e.g., Google products and local climate zone [LCZ: a map that describes the 

development patterns of land, such as high-rise vs. low-rise or trees vs. sands]) in the US to 

investigate if these data sources can be used to alternate the land use and geographic data often 

used in national LUR model development. 

I found that: (1) adding information (e.g., number of neighboring gas stations) from non-

government sponsored sources (e.g., Google) could improve the air quality model performance 

for VOCs, (2) integrating non-government low-cost PM2.5 sensor data into government 

regulatory monitoring data to develop LUR models could improve model performance and offer 



 

more insights on the air pollution exposure, (3) new/open data from non-government sponsored 

platforms could be used to replace the land use and geographic data previous obtained from 

government websites for air quality models. These findings mean that air quality data and street-

level land use characteristics could serve as alternative data sources and are capable of 

developing better air quality models for promoting healthy communities. 
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Chapter 1: INTRODUCTION 

1.1. Overview 

Exposure to ambient air pollution is among the top 10 health risk factors in the US (WHO, 

2009). In the past decades, US agencies at national and local levels have launched various 

programs and grant opportunities to promote healthy communities (CDC, 2012; EPA, 2019; 

HUD, 2014). Improving air quality in communities is one of the common goals for developing 

healthy cities shared by urban planners, environmental scientists, and local governments 

(ISGlobal, 2018). Strategies to gain better understanding of human exposure to air pollution to 

achieve human health objectives is an evolving process (Gulia et al., 2015). For example, the US 

Environmental Protection Agency (EPA) has engaged each state to establish the national air 

quality monitoring network as required by the Clean Air Act to evaluate ambient air quality for 

major pollutants (i.e., “criteria” pollutants: Ozone [O3], Nitrogen Dioxide [NO2], Particulate 

Matter [PM], Sulfur Dioxide [SO2], and Carbon Monoxide [CO]; EPA, 1990). Local 

governments have also implemented measures that aim to reduce ambient air pollution levels 

through land uses (e.g., siting and planning through permit control; CARB, 2020), transportation 

modes (e.g., encouraging active transportation; APHA, 2010), and urban vegetation (e.g.,  

planning trees and building parks to alter urban atmosphere; USDA, 2010). However, 

information on air pollution levels and its spatial variation is still limited due to insufficient air 

monitors from the national regulatory monitoring network (EPA, 2020). This limitation in spatial 

density and coverage of monitors further hinders modeling effort to efficiently assess human 

exposure. One area which warrants further research is how to leverage the new trend in 

community-based monitoring, crowd-sourced low-cost monitoring, open data, and modeling 
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techniques to improve air pollution exposure assessment. This dissertation aims to enhance 

existing air quality models by incorporating new data of air pollution and predictor variables.  

Existing costly regulatory air quality monitors are deployed to support standards compliance, at 

limited number of locations ranging from background (e.g., away from urban areas and emission 

sources) to population centers (e.g., near roads or hospitals; EPA, 2020b). One strategy to 

improve monitoring network is through community-based effort, which mainly refers to 

monitoring activities organized or partnered with local communities (NERL, 2015). Another 

ongoing effort to supplement existing regulatory monitoring network is to leverage the crowd-

sourced low-cost sensor networks in areas of interest. The use of low-cost sensors allows for a 

relatively cheap and dense network of air quality monitors (e.g., neighborhoods; Kimbrough et 

al., 2019). While development in both community-based monitoring campaigns and the low-cost 

sensor network platforms is rapid, an understudied topic is how to integrate the new air quality 

monitoring network into modeling process for improving human exposure assessment.  

Another major trend is the fast-growing data sciences that allow for mining open data from 

different platforms (e.g., Kitchin, 2014; Monino & Sedkaoui, 2016). These platforms provide a 

wide variety of data that could potentially serve as predictor variables to improve understanding 

of air quality through population dynamics, land use, transportation, and atmospheric 

environment (Bechle et al., 2017; Engel-Cox et al., 2004; Hankey et al., 2019). For decades, one 

of the most important open data platforms is the US Census, which stores reliable demographic 

and economic facts of communities across the country (US Census Bureau, 2020). The National 

Land Cover Database (NLCD) generated by a group of federal agencies (e.g., USGS [US 

Geological Survey]) allows for tracking national land use and land cover information 

consistently over years ( MRLC, 2016). Other widely used open data platforms have provided 
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publicly available atmospheric science datasets characterizing aerosols, clouds, and tropospheric 

composition based on remote sensing (e.g., satellite and aerial imagery; NASA, 2020; NOAA, 

2020). However, these open data are mainly retrieved from government-sponsored initiatives. 

Emerging practices and data sciences (e.g., crowdsourcing and deep learning) has witnessed 

significant advances in non-government sponsored platforms. For example, Google Cloud 

provides easy access to Google Maps Platform, including rich map (e.g., Google street view 

[GSV]) and place (e.g., point of interest [POI]) details covering over 200 countries and territories 

(Google, 2011). The OpenStreetMap is a popular crowd-sourced map platform offering street 

network data across the world (OpenStreetMap, 2020). Similarly, Microsoft has released 125 

million deep learning-derived building footprints across US (Microsoft, 2018). While non-

government sponsored open datasets continue to serve the public, questions remain on whether 

some of these datasets with better consistency, coverage, and accessibility could be incorporated 

into air quality modeling to track air pollution exposures more accurately. This topic necessitates 

studies on exploring novel and open datasets for improving urban air quality models. 

1.2. Summary of Dissertation Objectives 

This dissertation aims to improve air quality models through community-based monitoring, 

crowd-sourced low-cost sensor network, new/open datasets, and emerging modeling techniques. 

The primary goal of my work includes assessing the use of these strategies in commonly used 

urban air quality models (i.e., land use regression [LUR]) at local, regional, and national scales. 

Specifically, this dissertation centers on three sets of analyses: 

1. Comparing the impacts of different types of open datasets (government vs. non-

government) on LUR models developed using a community-based sampling for 60 volatile 

organic compounds (VOC) in the city of Minneapolis, US (Chapter 3). 
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2. Evaluating the contribution of a crowd-sourced low-cost sensor network to improving 

LUR models using data from 6 urban areas in the US (Chapter 4). 

3. Exploring the potential of innovative open datasets of predictor variables based on 

emerging modeling techniques (e.g., machine learning [ML]) for the development of national 

LUR models in the US (Chapter 5). 

In the second chapter I summarize the motivation of assessing air pollution, the trend of 

community-based air quality monitoring and crowd-sourced low-cost sensing, and the 

development and opportunities of LUR models. I then present the three dissertation key analyses 

(Chapter 3 – Chapter 5). Finally, I conclude with major findings, limitations and implications of 

these LUR modeling effort.  
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Chapter 2: LITERATURE REVIEW 

2.1. Assessing Human Exposure to Ambient Air Pollution 

2.1.1. Health Effects of Air Pollution 

An increasing number of studies have reported adverse health impacts of ambient air pollution 

(Jerrett et al., 2009; Laden et al., 2006; Pedersen et al., 2013), including cardiovascular diseases 

(Hoek et al., 2001; Hvidtfeldt et al., 2019; Laden et al., 2006b), respiratory diseases (X. Chen et 

al., 2017; Hvidtfeldt et al., 2019; Jerrett et al., 2009), birth outcomes (Ballester et al., 2010; 

Pedersen et al., 2013; Stieb et al., 2016), and cancer (Cakmak et al., 2018; Villeneuve et al., 

2013). These impacts involve major air pollutants including NO2 (Ballester et al., 2010; Cesaroni 

et al., 2012; Hoek et al., 2001), O3 (Jerrett et al., 2009; Jung et al., 2013; Lin et al., 2008), PM2.5 

(particle diameter less than 2.5 micron; Cakmak et al., 2018; Laden et al., 2006b; Stieb et al., 

2016; Thurston et al., 2016), PM10 (particle diameter less than 10 micron; Hvidtfeldt et al., 2019; 

Pedersen et al., 2013), SO2 (X. Chen et al., 2017; Liang et al., 2019), and volatile organic 

compounds (VOCs; Villeneuve et al., 2013; Zhang et al., 2019). In general, different groups of 

population could be impacted by the exposure to air pollution including children (Ballester et al., 

2010; S. Lin et al., 2008) and elders (Hvidtfeldt et al., 2019; H.-W. Zhang et al., 2019). Even for 

residents living in regions with relatively low air pollution levels, health risks of air pollution 

exposure still exist (Hoek et al., 2001; Stieb et al., 2016). Developing efficient tools and models 

for assessing air pollution exposure to cover a wide range of population and areas is necessary. 

Table 2.1 lists a sample of studies on long-term exposure to different air pollutants in multiple 

countries. 
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Table 2.1 Sample of long-term health effects studies of major air pollutants 

NO2 (per 10 g/m3 increase) 

Study Study details Health endpoint Estimates and 95% CIa 

Cesaroni et al., 

2012 

The Rome Longitudinal Study (n = 

45,006) 
total mortality 

HR = 1.04 (95% 

CI:1.03, 1.05) 

Hoek et al., 

2002 

NLCS on diet and cancer cohort study 

(n = 4,973) 

cardiopulmonary 

diseases mortality 

HR = 1.27 (95% CI: 

1.00, 1.78) 

Ballester et al., 

2010 

INMA cohort in Valencia (n = 785), 

exposures in second trimester 

small for gestational 

age 

OR = 1.37 (95% CI: 

1.01, 1.85) 

O3 (per 10 ppb increase) 

Jerrett et al., 

2009 

American Cancer Society Cancer 

Prevention Study II (CPS II) cohort (n = 

448,850) 

respiratory diseases 

mortality 

HR = 1.04 (95% CI: 

1.01, 1.07) 

Lin et al., 2008 
New York State birth cohort (n = 

1,204,396) 

asthma hospital 

admissions 

OR = 11.6 (95% CI: 

11.5, 11.7) 

Jung et al., 

2013 
cohort study in Taiwan (n = 49,833) 

autism spectrum 

disorder incidence 

HR = 1.59 (95% CI: 

1.42, 1.79) 

PM2.5 (per 10 g/m3 increase) 

Laden et al., 

2006 
Harvard Six Cities Cohort (n = 8,096) 

total mortality 
RR = 1.16 (95% CI: 

1.07, 1.26) 

cardiovascular diseases 

mortality 

RR = 1.28 (95% CI: 

1.13, 1.44) 

Stieb et al., 

2016 

Singleton live births between 1999 and 

2008 in Canada (n = 2,969,380) 

small for gestational 

age 

OR = 1.04 (95% CI: 

1.01, 1.07) 

reduced term birth 

weight 

OR = –20.5 g (95% CI: 

–24.7, –16.4) 

Thurston et al., 

2016 

NIH-AARP Study 

never smoked (n = 19,785) 
respiratory mortality 

HR = 1.27 (95% CI: 

1.03, 1.56) 

Cakmak et al., 

2017 
CanCHEC (n = 3.6 million) 

lung cancer mortality 
HR = 1.54 (95% CI: 

1.27, 1.87) 

ischemic heart disease 

mortality 

HR = 1.13 (95% CI: 

1.08, 1.19) 

PM10 (per 10 g/m3 increase) 

Hvidtfeldt et 

al., 2018 

The Danish Diet, Cancer and Health 

cohort of  50–64 yr adults (n = 49,564) 

total mortality 
HR = 1.12 (95% CI: 

1.03, 1.22) 

cardiovascular diseases 

mortality 

HR = 1.30 (95% CI: 

1.11, 1.53) 
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respiratory diseases 

mortality 

HR = 1.04 (95% 

CI:0.87, 1.24) 

Pedersen et al., 

2013 

Singleton delivery of ESCAPE (n = 

74,178) 
low birthweight at term 

OR = 1.16 (95% CI 

1.00, 1.35) 

SO2 (per 10 g/m3 increase) 

Liang et al., 

2019 

retrospective birth cohort in seven 

Chinese cities in Pearl River Delta (n =  

320,238) 

preterm birth 
HR = 1.48 (95% CI: 

1.40, 1.57) 

Chen et al., 

2017 

retrospective cohort in four cities in 

northern China (n = 39,054) 

respiratory diseases 

mortality 

HR = 1.11 (95% CI: 

1.02,1.20) 

COPD mortality 
HR = 1.15 (95% CI: 

1.05,1.25) 

VOC 

Villeneuve et 

al., 2013 
Ontario Tax Cohort study (n = 58,750) 

cancer mortality 

benzene (per IQR = 0.13 

μg/m3) 

HR = 1.06 (95% CI: 

1.02, 1.11) 

total mortality 

n-Hexane (per IQR = 

1.20 μg/m3) 

HR = 1.02 (95% CI: 

1.01, 1.05) 

cancer mortality 

total hydrocarbons (per 

IQR = 9.02 μg/m3) 

HR = 1.06 (95% CI: 

1.02, 1.09) 

Zhang et al., 

2019 

cohort study in Taiwan (n = 283,666), 

subject ≥ 40yr 

Ischemic stroke 

mortality 

total hydrocarbons (per 

0.16 ppm) 

HR = 2.69 (95% CI: 

2.64, 2.74) 

nonmethane 

hydrocarbons (per 0.11 

ppm) 

HR = 1.62 (95% CI: 

1.59, 1.66) 

aHR (hazard risk), RR (relative risk) and OR (odds ratio) are different measures of risk. HR is estimated using 

survival curves and gives instantaneous estimates; RR is estimated by averaging events over a specific time period; 

OR is the ratio of the odds of an outcome in the presence of a risk and the odds of an outcome in the absence of a 

risk. 
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2.1.2. Regulatory Air Quality Monitoring Network in the US. 

In the US, studies addressing long-term health impacts of many air pollutants (Jerrett et al., 2009; 

Laden et al., 2006b; Abbey et al., 1993; Brook et al., 2004; Daniels et al., 2000) have guided the 

EPA to regulate allowable ambient concentrations (i.e., National Ambient Air Quality Standards 

[NAAQS] for criteria pollutants) and facilitated the establishment of the air quality management 

framework (Demerjian, 2000). In particular, the EPA has initiated a national regulatory-grade 

monitoring network to track ambient air pollution concentrations over time. Table 2.2 shows the 

number of regulatory EPA monitoring sites of 6 criteria pollutants in 2000 and 2010 in the US. 

The primary purpose of the EPA network is to capture air quality trends for specific urban areas 

including background and population centers (EPA, 2020b). In this case, long-term health 

studies may be constrained by assigning residents exposure values from limited number of 

monitors for one city or even larger areas (Cohen et al., 2009; Laden et al., 2000; Pope et al., 

2004). While this practice may be enough for between-city health impact assessment of long-

term air pollution exposures, the within-city spatial variability of air pollution is often not fully 

captured particularly for cities without air quality monitors.  
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Table 2.2 Number of regulatory EPA monitoring sites of 6 criteria pollutants of 2000 and 2010 

in the continental US 

Pollutant Year Number of monitors Annual mean concentrations NAAQSa  

NO2 

(ppb) 

2000 345 15.6 
53 

2010 327 9.6 

O3 

(ppb) 

2000 768 49.4 
80 

2010 850 45.8 

PM2.5 

(µg/m3) 

2000 950 12.5 
15 

2010 934 9.0 

CO 

(ppm) 

2000 293 0.6 
9 

2010 218 0.4 

PM10 

(µg/m3) 

2000 1021 23.8 
50 

2010 829 18.6 

SO2 

(ppb) 

2000 496 4.7 
30 

2010 370 2.2 

aNAAQS: National Ambient Air Quality System. Averaging time: NO2 (1 year); O3 (8 hours); PM2.5 (1 year); CO (8 

hours); PM10 (1 year); and SO2 (1 year). 

2.1.3. Air Pollution Exposure Models 

Different models are developed to predict air pollution concentrations at unmonitored locations. 

Dispersion models are used to predict pollution concentrations at downwind locations based on 

emission and meteorological data (Bellander et al., 2001; Nafstad et al., 2003). Spatial 

interpolation creates a surface based on monitoring data and assigns values to locations without 

measurements. For example, inverse-distance weighting (IDW) uses the inverse of the distance 

to locations with monitoring data (Hystad et al., 2012; Marshall et al., 2008) while kriging 

weighted the surrounding measurements to develop continuous surfaces (Jerrett et al., 2005; 

Mercer et al., 2011). Comparatively, LUR model has been developed for two decades to provide 

air pollution predictions at finer spatial resolutions (Hoek et al., 2008). Generally, LUR accounts 

for geospatial features (e.g., traffic, land use) surrounding the monitors and predicts air pollution 
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concentrations at unmonitored locations typically using a regression approach. Up-to-date, LUR 

has been applied in countries across the globe, including North America (Hystad et al., 2011; 

Novotny et al., 2011), South America (Habermann & Gouveia, 2012), Europe (Eeftens et al., 

2012a; Fernández-Somoano et al., 2011), Australia (Dirgawati et al., 2015; Knibbs et al., 2014), 

Africa (Dionisio et al., 2010), and Asia (Hassan Amini et al., 2014; H. Xu et al., 2019). These 

LUR models have been used to assess different air pollutants (e.g., criteria pollutants; VOC; 

Hoek et al., 2008; Ryan & Lemasters, 2007; Jerrett et al., 2005). More recently, researchers have 

developed LUR models using hybrid (Kim et al., 2020; Su et al., 2008) or machine learning 

approaches (Di et al., 2016; Meng et al., 2018). According to the commonly cited review of LUR 

models, measurements with at least 40-80 locations would enable a LUR model in urban area 

(Hoek et al., 2008); however, LUR models developed for large geographies may not fully 

capture within-city spatial variability of the pollution levels in the study area. As such, methods 

to increase the density and coverage of monitors for LUR development may be helpful for 

improving exposure assessment.  

2.2. Community-based Monitoring and Crowd-Sourced Low-cost Sensing of Air Pollution 

2.2.1. Benefits of Community-based Monitoring and Low-cost Sensors 

Opportunities to fill the gaps of existing monitoring network may exist in ongoing community-

based monitoring effort (involving local communities to monitoring) and crowd-sourced low-

cost sensor networks. Emerging community-based and crowd-sourced monitoring is not tied to 

siting policies and could potentially track air pollution hot spots, which may supplement existing 

regulatory monitors towards reducing exposure (Kaufman et al., 2017; Muller et al., 2015; Rada 

et al., 2016). In addition, regulatory air quality monitoring is often costly, complex, and less 

portable while low-cost monitoring could be much cheaper, user-friendly, and more compact 
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(Commodore et al., 2017; Castell et al., 2017). For example, low-cost air quality sensors are 

often referred to devices costing less than $2,500 (EPA, 2014) for the entire monitoring system 

(e.g., measuring component, battery, and data storage; Borrego et al., 2016). More importantly, 

the use of low-cost sensors is capable of covering more locations of interest (Ahangar et al., 

2019). Particularly, the monitoring network could target locations near traffic segments, 

residential areas, industrial facilities, and rural communities (Barzyk et al., 2016; EPA, 2020a; 

Hauser et al., 2015; Kinney et al., 2000; Williams et al., 2009). Another advantage of the low-

cost monitoring is that it could track air pollutants that are not regularly monitored (e.g., volatile 

organic compounds [VOC; Williams et al., 2009], elemental carbon [EC; Kinney et al., 2000], 

black carbon [EPA, 2016], and ultrafine particles [Minkler et al., 2010; Truax et al., 2013]). 

Although performance of different low-cost sensors varied widely by pollutant (especially for 

gaseous pollutants), studies have shown successful practices in applying low-cost air quality 

sensors with careful sensor calibration and data quality assurance/quality control (QA/QC; 

Malings et al., et al., 2019; Y. Wang et al., 2015; Williams, 2019). The EPA has advanced the 

development of low-cost sensors by providing Air Sensor Toolbox with operation procedures, 

performance evaluation, data interpretation and data communication (EPA, 2014). With 

increased engagement among concerned residents, environmental and social groups, and local 

institution collaborators (Whitelaw et al., 2003), crowd-sourced low-cost monitoring can play 

significant roles in achieving clean and healthy communities. 

2.2.2. Practices and Platforms of Crowd-Sourced Low-cost Monitoring 

The rapid development in low-cost sensing has witnessed revolutionary advances in air quality 

monitoring from relying only on government-operated networks to including complementary 

crowd-sourced low-cost sensors (Morawska et al., 2018; Snyder et al., 2013). The most recent 
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reviews have summarized existing development and applications of low-cost sensor networks, 

highlighting the potential of broader participation in air quality monitoring and network 

expansion ( Morawska et al., 2018; Borghi et al., 2017; Clements et al., 2017; Jova et al., 2015; 

Rai et al., 2017; Thompson, 2016). The number of sampling locations of existing community-

based monitoring could range from 4 to 400 depending on the study purpose and monitoring 

period (Barzyk et al., 2016; EPA, 2020a; Hauser et al., 2015; Kinney et al., 2000; Williams et al., 

2009; English et al., 2017). In recent years, EPA has also provided grants to initiate multiple 

projects to explore the application of low-cost sensors in local communities (EPA, 2020a). These 

local practices have facilitated crowd-sourced low-cost monitoring to search effective strategies 

to monitor and analyze air pollution. The trend in communication technology (e.g., WIFI) and 

open data (e.g., application programming interface [API]) has also witnessed open data platforms 

of crowd-sourced low-cost sensor network in the US (Air Quality Egg, 2020; AirVisual, 2020; 

PurpleAir, 2020; AirCasting, 2020). The rise of such platforms may ease monitoring air quality 

within communities and sharing low-cost sensor data online, thus improving air pollution 

exposure assessment at the national or global level. Integrating crowd-sourced monitoring with 

low-cost sensors into existing regulatory monitoring network is promising. Table 2.3 lists sample 

studies of crowd-sourced air quality monitoring with low-cost sensors in the US.  
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Table 2.3 Sample studies of crowd-sourced air quality monitoring with low-cost sensors in the US 

Study description 

Study 

area Year 

Number 

of sites Monitoring type 

Approximate 

cost Study purpose Pollutant Reference 

Air monitoring on 

Harlem sidewalks 

Harlem, 

NY 1996 4 

Gravimetric 

monitoring (pumps 

and Teflon filters) NA 

Assessing street-level air 

pollution and relationship 

with diesel sources 

PM2.5 and 

elemental 

carbon 

(EC) 

(Kinney et 

al., 2000) 

Detroit Exposure and 

Aerosol Research 

Study 

Wayne 

County, 

MI 

2004-

2007 140 

Multiple monitoring 

types (e.g., 

gravimetric 

monitoring [PEM], 

Ogawa passive 

monitor) for 

personal, indoor, 

outdoor and 

community:  

e.g., PEM: 

2,000$; 

Ogawa: 200$ 

Investigating residential area 

near air pollution sources 

VOC, 

PM2.5, 

PM10, EC 

and 

organic 

carbon 

(OC) 

(Williams 

et al., 2009) 

Community-based 

monitoring for 

education and 

communication 

Multiple 

counties 

in NC 2011 7 

Ogawa passive 

monitor (NOx, O3) 200$/device 

Monitoring counties without 

air monitors and comparing 

results to counties with 

regulatory monitors 

NOx and 

O3 

(Hauser et 

al., 2015) 

Air monitoring in the 

Ironbound 

community 

Newark, 

NJ 2015 21 

PM2.5: 

Nephelometer;  

NO2: 

electrochemical 

sensors (CairClip 

NO2) NA 

Community-based 

monitoring example on 

borders with highways, 

waterways, railroads, and 

airport. 

PM2.5 and 

NO2 

(Barzyk et 

al., 2016) 

The Hawai’i Island 

Volcanic Smog 

Sensor Network (HI-

Vog) 

Island of 

Hawai'i  

2016-

2021 40 

PM2.5: Optical 

Particle Counter; 

SO2: 

Electrochemical 

sensors (e.g., 

Alphasense) 

SO2: 

300$/device 

Tracking volcanic smog 

with high spatial and 

temporal resolution 

PM2.5 and 

SO2 

(EPA, 

2020) 

Engage, Educate, and 

Empower California 

Communities on the 

Use and Applications 

of “Low-cost” Air 

Monitoring Sensors 

Southern 

CA 

2016-

2021 400 

Multiple monitoring 

types (e.g., 

Nephelometer, 

gravimetric) NA 

Informing selection, use, 

maintenance, and 

interpretation of low-cost 

sensors 

PM2.5 and 

PM10 

(EPA, 

2020) 
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Imperial County 

Community Air 

Monitoring Network 

Imperial 

County, 

CA 2017 40 

Optical Particle 

Counter (e.g., Dylos 

DC1700) 200$-300$ 

Filling more detailed data on 

PM using low-cost sensors 

with collaboration from 

community, academic, 

nongovernmental, and 

governmental partners.  

PM2.5 and 

PM10 

(English et 

al., 2017) 

Real-time Affordable 

Multi-Pollutant 

(RAMP) 

Pittsburg

h, PA 

2016-

2020 > 70 

Electrochemical 

sensors (e.g., NO2: 

Alphasense ID: 

NO2-B43F)  NA 

Supplementing sparse 

regulatory-grade monitoring 

network through low-cost 

sensors to track exposures 

from restaurants, truck 

traffic, and environment 

justice communities 

PM, CO, 

SO2, NO2, 

O3, and 

VOC 

(EPA, 

2020) 

Shared Air/Shared 

Action (SA2): 

Community 

Empowerment 

through Low-cost Air 

Pollution Monitoring 

Chicago, 

IL 

2016-

2020 40 

PM2.5, PM10: 

Optical Particle 

Counter (e.g., 

PurpleAir, 

AirBeam, and MET 

One);  

NO2, O3: 

Electrochemical 

sensors (e.g., 

Terrier, Aeroqual 

500) 

PM: 200$-400$; 

NO2, O3: 

1,500$-2,000$ 

Developing effective 

strategies to monitor and 

analyze air pollution; 

monitoring in four 

communities using low-cost 

portable sensors 

PM2.5, 

PM10, O3, 

and NO2, 

(EPA, 

2020) 

Monitoring the Air in 

Our Community: 

Engaging Citizens in 

Research 

Denver, 

CO 

2016-

2020 17 

PM2.5: gravimetric 

monitoring (PEM); 

NO2: 

electrochemical 

sensors (CairClip 

NO2) PEM: 2,000$; 

Identifying the needs and 

interpretation of community-

based air pollution data 

among stakeholders; 

approaches to modify 

behaviors of reducing air 

pollution exposure 

PM2.5 and 

NO2 

(EPA, 

2020) 

Putting Next 

Generation Sensors 

and Scientists in 

Practice to Reduce 

Wood Smoke in a 

Highly Impacted, 

Multicultural Rural 

Setting (NextGenSS) 

Yakama, 

WA 

2016-

2020 8 

PM2.5: Optical 

Particle Counter; 

Black carbon: 

Micro-aethalometer 

(Aethlabs MA200) NA 

Deploying next-generation 

low cost sensors on heavy 

wood impacts on rural 

community 

PM and 

black 

carbon 

(EPA, 

2020) 
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2.2.3. Integrating Community-based and Crowd-Sourced Low-cost Monitoring into LUR 

Models 

One research question is how low-cost sensors could be integrated to improve air quality 

modeling. A few recent studies have developed LUR models using monitoring data from low-

cost sensors (Bi et al., 2020a; Carvlin et al., 2019; Huang et al., 2019; Lim et al., 2019; Masiol et 

al., 2018; 2019; Miskell et al., 2018; Weissert et al., 2018). In general, model performance in 

these studies varied by pollutant, study area, and modeling approach, with R2/adj-R2 ranging 

from 0.47 to 0.83. While most models were developed using only the low-cost sensors, few 

studies have used data from both low-cost sensors and regulatory monitors (Bi et al., 2020b; 

Huang et al., 2019). For example, Bi et al. (2020) found that the hybrid machine learning-based 

LUR model using both the regulatory and the low-cost sensors monitoring data outperformed 

that with only the regulatory monitors (CV R2: 0.73 vs. 0.53). However, in another study using 

the same LUR approach, the model with hybrid datasets performed worse than the regulatory 

monitor-only models (CV R2: 0.73 vs. 0.85; Huang et al., 2019). Further studies are warrented to 

explore the contribution of the low-cost sensors to LUR models. Existing low-cost sensor-based 

LUR models often focused on specific areas or single cities, use of low-cost sensor data for 

multi-city or national-level LUR modeling is questionable. Table 2.4 lists a sample of recent 

studies on LUR models using low-cost sensors. 
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Table 2.4 Recent sample studies of LUR models using low-cost sensors 

Pollutant Study area 

Number 

of sites Model type Model R2 Major predictors Reference 

NO2 

Auckland, 

New 

Zealand 40 

LUR (stepwise 

regression) Adjusted R2 = 0.66 

Distance to major road, number of bus 

stops, street width, and awnings 

(Weissert et al., 

2018) 

NO2 

Vancouver, 

BC, Canada 

mobile 

monitoring 

LUR (stepwise 

regression) Adjusted R2 = 0.53 

high-rise urban land use, sum of bus stops, 

speed limit 

(Miskell et al., 

2018) 

PM2.5 

Imperial 

County, 

Southern 

CA, US 39 LUR (random forest) 

CV R2 =0.74 (low-

cost only); 0.73 

(hybrid model) 

Land use, PM2.5-ancillary variables, AOD, 

and meteorological inputs 

(Bi et al., 

2020) 

PM2.5 

New York 

City, NY, 

US 63 LUR (random forest) 

CV R2 = 0.73 (hybrid 

model); 0.85 

(regulatory model) 

Land use, impervious surface, AOD, and 

meteorological inputs 

(Huang et al., 

2019) 

PM2.5 

Seoul, South 

Korea 

mobile 

monitoring LUR (machine learning) CV R2 = 0.63-0.80 Land cover and land use 

(Lim et al., 

2019) 

PM2.5 and 

PMcoarse 

Imperial 

County, 

Southern 

CA, US 35 

LUR (Bayesian additive 

regression trees, lasso, 

partial least squares) 

CV R2 = 0.47-0.54 

(PM2.5); 0.55-0.65 

(PMcoarse) 

Geolocation, proximity to the border, land 

cover, road, satellite measurement, and 

meteorological inputs 

(Carvlin et al., 

2019) 

PM 

Monroe 

County, NY, 

US 23 LUR (D/S/A algorithm) Adjusted R2 = 0.70 

Land use, elevation, housing, population 

density, and roadways 

(Masiol et al., 

2018) 

O3 

Monroe 

County, NY, 

US 10 LUR (D/S/A algorithm) Adjusted R2 = 0.83 

Land use, elevation, housing, population 

density, and roadways 

(Masiol et al., 

2019) 
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2.3. LUR Model Improvement: Alternative/New Variables and Modeling Approaches 

2.3.1. Traditional land use and geographic variables used in national LUR models  

While increasing the monitoring density and coverage using community-based low-cost sensor 

networks may improve LUR models, other strategies may be used to seek for alternative/new 

variables, particularly for developing national models. Existing national-level LUR studies have 

used significant predictors including (1) traffic intensity/road features, (2) land use/land cover, 

(3) population dynamics, and (4) geographical characteristics (Beelen et al., 2013; de Hoogh et 

al., et al., 2016; Di et al., 2016; Hoek et al., 2015; Kerckhoffs et al., 2015; Kryza et al., 2011; 

Stedman et al., 1997). Some studies have found that meteorological, temporal information, and 

emission estimates were also significantly associated with air pollution concentrations (de Hoogh 

et al., 2016; Di et al., 2016; Kim et al., 2020; Knibbs et al., 2014; Z. Zhang et al., 2018). 

Assembling and calculating hundreds of variables may be time-consuming and computational-

intensive for LUR model development. Another limitation is that the data used for national LUR 

models may be retrieved from various jurisdictions, making it difficult to generalize models 

across regions. Countries (e.g., developing countries) with limited and no data of these kinds 

would also suffer from lack of variables for developing air pollution LUR models. Further 

studies are needed to explore new/alternative variables that potentially improve LUR models in 

terms of data consistency, variable-reduction, and model generalizability. Table 2.5 shows 

existing major national LUR models. 
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Table 2.5 Existing major national LUR models  

Pollutant Study country Number of sites Model type Major predictors Reference 

PM2.5, PM10, 

NO2, CO, O3, 

SO2 US ~ 1,000  LUR (PLS-UK) 

Traffic, population, land use/land cover, elevation, 

and satellite measurements 

(Kim et al., 

2020) 

PM2.5 US 1,928 

LUR (convolutional 

neural network) 

Satellite AOD, chemical transport model estimates, 

meteorological data, aerosol index data, and land use 

(Di et al., 

2016) 

NO2 US 423 

LUR (stepwise 

regression) 

Satellite measurements, impervious, tree canopy, 

roads, and elevation 

(Novotny et 

al., 2011) 

NO2, PM2.5, 

VOC Canada 53-177 

LUR (stepwise 

regression) 

Satellite measurement, emissions, industrial area, 

and road length 

(Hystad et 

al., 2011) 

NO2, NOx, 

PM2.5, PM10, 

PMcoarse, etc. 

More than 30 

European 

countries 40-80 per country 

LUR (stepwise 

regression) 

Land use, road, population density, altitude, and 

local data 

(Beelen et al., 

2013) 

NO2, PM2.5 Western Europe 

1426 for NO2; 

436 for PM2.5 

LUR (stepwise 

regression) 

Satellite measurements, chemical transport model 

estimates, roads, land cover, altitude, and north-south 

trend 

(de Hoogh et 

al., 2016) 

O3 The Netherlands 90 

LUR (stepwise 

regression) 

Traffic intensity, low density residential land, road 

length, and urban green space 

(Kerskhoffs 

et al., 2015) 

NO2 The Netherlands 144 

LUR (stepwise 

regression) 

Satellite measurements, industry, population, port, 

region indicators, traffic, and road 

(Hoek et al., 

2015) 

NO2, NOx UK 37 

LUR (stepwise 

regression) Land cover, NOx emissions 

(Stedman et 

al., 1997) 

NOx Poland 58-104 

LUR (stepwise 

regression) 

Road length, traffic intensity, urban fabric, 

population density, and elevation 

(Kryza et al., 

2011) 

NO2 Australia 68 

LUR (stepwise 

regression) 

Satellite measurements, land use, road, population 

density, and elevation 

(Knibbs et 

al., 2014) 

PM2.5, PM10, 

NO2 China 1,382 

LUR (generalized 

additive mixed models) 

Satellite AOD, meteorological data, and geographic 

data (e.g., roads, population density, proximity to 

emissions). 

(Z.Zhang et 

al., 2018) 

PM2.5 China 1,452 

LUR (stepwise 

regression, Bayesian 

maximum entropy) 

Industrial area, road length, population density, and 

wind speed 

(Chen et al., 

2018) 

PM2.5, NO2 China ~900 LUR (PLS-UK) 

Road, land cover, POI, fire count data, elevation, 

meteorology, and satellite measurements 

(H. Xu et al., 

2019) 
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2.3.2. Satellite Data for LUR Models 

Increasing studies have used satellite-derived measurements/estimates in LUR model 

development. The advanced image processing and sensor technologies of satellites have 

provided avenues to estimate ground-level concentrations and column abundance (i.e., the 

amount of trace gas in vertical atmosphere) for a wide range of species including aerosols, O3, 

NO2, CO, HCHO, and SO2 (Martin, 2008a). The key advantage of satellite-derived air pollution 

estimates is the data consistency and wide spatial coverage across cities, regions, and countries 

beyond political boundary, thus being used to improve LUR models (Tulloch & Li, 2004; 

Lamsal et al., 2008). One of the commonly used satellite products is the aerosol optical depth 

(AOD), which estimates the amount of aerosol in the atmosphere by measuring the light 

extinction in the vertical direction (Kloog et al., 2011). Multiple studies have used various AOD 

products (e.g., moderate resolution imaging spectroradiometer [MODIS]) to predict ground-level 

concentrations of PM2.5 based on their good agreement (Donkelaar et al., 2010; Donkelaar et al., 

2006; C. Lin et al., 2015). Likewise, satellite-derived column abundance (e.g., ozone monitoring 

instrument [OMI]) of NO2 is found to be significantly correlated with ground-level observations 

(Bechle et al., 2013; Lamsal et al., 2008) and has been successfully used in LUR models to 

predict NO2 concentrations (Kim et al., 2020; Novotny et al., 2011). In summary, these satellite-

based tropospheric column and ground-level measurements/estimates along with traditional land 

use and geographic variables could be used in LUR models (de Hoogh et al., 2016; Yang et al., 

2017; Vienneau et al., 2013; H. Xu et al., 2019; Z. Zhang et al., 2018; Hoek et al., 2015). An 

understudied topic is how the satellite-derived estimates contribute to LUR models with different 

variable inputs and modeling approaches for multiple air pollutants.  
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2.3.3. Potential New Variables for LUR Models 

2.3.3.1. Google Point of Interest (POI)  

Emerging data sciences (e.g., data mining) allow for extracting information from new data 

sources sponsored by non-government bodies to develop LUR models. For example, as one of an 

important place-based products, Google POI represents a geolocation of a point with attributes 

(e.g., coordinates, ratings) that falls into different categories (e.g., restaurants, bus stations); these 

categories could characterize potential emission sources of air pollutants (e.g., land use, 

transportation). Traditionally, land use and traffic variables used in LUR models have several 

limitations. First, data inconsistency and incompleteness are often barriers in cross-region LUR 

studies. Another limitation is that existing national land use datasets (e.g., national land cover 

database [NLCD]) generally delineate area of interest rather than point of interest, which may 

fail to capture some local emission sources (e.g., restaurants, gas stations). Comparatively, 

Google POI data may serve as alternative or supplemental variables in LUR models. To date, 

only few studies have explored the contribution of categorized POI data to air quality modeling 

(Wu et al., 2017; H. Xu et al., 2019; Zheng et al., 2013). Google POI could provide more 

consistent and detailed point-based local indicators as compared to traditional dataset, allowing 

for developing LUR models to assess multi-city and intra-urban spatial variability of air 

pollution exposure (French et al., 2015; Madaio et al., 2016). Further studies are needed to 

explore whether the Google POI data can be used to replace or supplement traditional land use 

data sources in LUR models.  

2.3.3.2. Google Street View (GSV)  

As another popular non-government sponsored open dataset, GSV data is also a potential new 

variable to be applied for LUR models, which consists of street-level georeferenced panorama 
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images regarding natural environment (e.g., tree, water) and built environment (e.g., sidewalk, 

building; Rzotkiewicz et al., 2018). GSV imagery has been used in identifying greenness (Li et 

al., 2016), assessing walkability (Yin set al., 2015), tracking traffic crashes (Hanson et al., 2013), 

evaluating aesthetics (Lafontaine et al., 2017), and informing other physical and mental health-

related research (Rzotkiewicz et al., 2018). Other applications include land use mapping 

(Mitraka et al., 2015), housing price estimation (Law et al., 2018), and even political election 

prediction (Gebru et al., 2017). To my knowledge, for air quality application, no study has been 

found to explore how GSV imagery data could be used in air quality modeling. Improvement in 

image processing algorithms (e.g., machine learning, deep learning) has made it possible to 

extract rich contextual and microenvironment features from GSV imagery for characterizing air 

pollution exposure (e.g., vehicle and pedestrian traffic, street greenness; Li et al., 2017; Larkin & 

Hystad, 2017; 2019), questions remain on how these GSV-derived variables could be used in 

LUR models and whether this consistent and large dataset could alternate traditional land use and 

geographic variables. 

2.3.3.3. Local Climate Zones (LCZ) 

A limitation of existing LUR studies is that input variables are often collected from the US 

Census (e.g., population density, mixing of jobs) and land use surfaces (e.g., NLCD), but do not 

characterize urban morphology (e.g., building height, form). Lack of accounting for this 

information may underestimate its impact on air quality at street level (e.g., urban heat island, 

street canyon effect; McCarty & Kaza, 2015; Stone, 2005; Yuan et al., 2017). One recently 

developed urban form metric called LCZ classifies built and natural environment based on 

climate-relevant surface properties (Stewart & Oke, 2012a). Compared to traditional dataset, 

LCZ provides consistent method to measure urban form and functions including vertical 
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characteristics of buildings (Bechtel et al., 2015; Mills et al., 2015). Due to its detailed and 

climate-based classification of urban areas, LCZ has gained popularity in temperature and 

climate studies (Alexander et al., 2015; Z. Lin et al., 2016; Middel et al., 2014; Petralli et al., 

2014; Quan et al., 2017; C. Wang et al., 2018; Y. Xu et al., 2017). Only a few studies have 

explored LCZ in urban air quality models for specific study area (Steeneveld et al., 2016; Ching, 

2013). To date, no study has tested the use of LCZ in empirical air quality models across regions. 

Questions remain on how LCZ data could serve as alternative and supplemental variables for 

LUR models at the national level.  

2.3.3. Emerging Modeling Approaches for LUR Models 

Aside from the increasing new data sources and types that could be integrated to improve LUR 

models, emerging modeling approaches may be applied to more efficiently handle these data. 

Traditional LUR models typically use the stepwise regression approach (Table 2.5; Beelen et al., 

2013; de Hoogh et al., et al., 2016; Hoek et al., 2015; Kerckhoffs et al., 2015; Kryza et al., 2011; 

Stedman et al., 1997; Knibbs et al., 2014; Hystad et al., 2011). Other recent studies have 

developed hybrid models including combining universal kriging (UK), stepwise regression, and 

partial least squares (PLS; H. Xu et al., 2019; Kim et al., 2020), as well as chemical transport 

modeling (CTM) and stepwise regression (M. Wang et al., 2017). Particularly, some studies have 

successfully developed machine learning (ML)-based LUR models to predict air pollution 

concentrations with the goal of treating data-intensive process and non-traditional dataset, such 

as convolutional neural networks (Di et al., 2016), random forest (Bi, Stowell, et al., 2020b; 

Zhan et al., 2018), and gradient boosting (Reid et al., 2015). Best practices for predicting urban 

air pollution using emerging modeling approachs and new, large, and open datasets have yet to 

be developed.  
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2.4. Organization of Dissertation 

In summary, for air quality data, existing LUR models may be constrained by the limited 

monitoring density and coverage of regulatory air pollution monitors. As a promising strategy to 

improve the monitoring network, community-based monitoring has a potential to track both 

ambient criteria pollutants and pollutants that are less frequently monitored (e.g., VOC). In 

addition, the rising non-government open platforms of low-cost sensor data (e.g., PurpleAir) 

could benefit local communities and supplement regulatory monitoring network to improve LUR 

models for air quality. This improvement could be represented by providing independent air 

quality data for model evaluation and serving as dependent data to increase number of monitors 

used in LUR models. For new predictor variables, traditional land use and geographic data 

sources may fail to capture the street-level features in a uniform way, which hinders the effort to 

generalize LUR models across cities. Seeking for new/alternative and non-government 

sponsored data (e.g., Google products) could serve as effective avenues to develop refined local 

and national LUR models. Emerging modeling approaches (e.g., ML) may also serve as efficient 

measures to deal with such types of big and open datasets for LUR models. 

I explore these issues in Chapter 3 to Chapter 5: 

Chapter 3 entitled “Land Use Regression Models for 60 Volatile Organic Compounds: 

Comparing Google Point of Interest (POI) and City Permit Data” presents the development 

of LUR models for VOC using different sets of predictor variables based on a community-based 

effort in a single city (i.e., City of Minneapolis) in the US. 

Research questions:  
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1. Whether community-based air quality monitoring could be used to develop LUR 

models? 

2. Should area sources be incorporated into models to characterize local emission sources 

for VOCs.  

3. Whether non-government data sources could serve as feasible predictor variables for 

LUR models? 

Chapter 4 entitled “Using A Crowd-Sourced Low-cost Sensor Network in National Land Use 

Regression Models for PM2.5” explores the contribution of a crowd-sourced low-cost air quality 

sensor network to the evaluation and development of LUR models based on the data from 6 

urban areas in the US. 

Research questions:  

1. Whether air quality data from non-government crowd-sourced platforms could provide 

a promising data source for LUR model development?  

2. Whether adding the low-cost sensor data could improve existing LUR models that are 

developed based only on regulatory monitors?  

3. Whether the open data of air quality could offer more insights to capture within-city 

spatial variability for exposure assessment? 

Chapter 5 entitled “Exploring New Predictor Data Sources to Develop National Land Use 

Regression Models for Criteria Air Pollutants” examines the use of new predictor variables 

for improving national LUR models for criteria pollutants in the US. 

Research questions:  
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1. Whether predictor data from non-government open platforms could be used to 

alternate traditional land use and geographic variables for LUR models? 

2. Whether adding the new variables into existing traditional variables could improve 

national LUR model performance?  

3. How LUR model performance varies by pollutant and modeling approach? 

4. Are there some new insights that the new variables could offer for characterizing 

different air pollutants and for improving future LUR modeling? 
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Chapter 3. LAND USE REGRESSION MODELS FOR 60 VOLATILE 

ORGANIC COMPOUNDS: COMPARING GOOGLE POINT OF 

INTEREST (POI) AND CITY PERMIT DATA 

ABSTRACT  

Land Use Regression (LUR) models of Volatile Organic Compounds (VOC) normally focus on 

land use (e.g., industrial area) or transportation facilities (e.g., roadway); here, I incorporate area 

sources (e.g., gas stations) from city permitting data and Google Point of Interest (POI) data to 

compare model performance. I used measurements from 50 community-based sampling 

locations (2013-2015) in Minneapolis, MN, USA to develop LUR models for 60 VOCs. I used 

three sets of independent variables: (1) base-case models with land use and transportation 

variables, (2) models that add area source variables from local business permit data, and (3) 

models that use Google POI data for area sources. The models with Google POI data performed 

best; for example, the total VOC (TVOC) model has better goodness-of-fit (adj-R2: 0.56; Root 

Mean Square Error [RMSE]: 0.32 µg/m3) as compared to the permit data model (0.42; 0.37) and 

the base-case model (0.26; 0.41). Area source variables were selected in over two thirds of 

models among the 60 VOCs at small-scale buffer sizes (e.g., 25m-500m). My work suggests that 

VOC LUR models can be developed using community-based sampling and that models improve 

by including area sources as measured by business permit and Google POI data.  

Keywords: 

Hazardous air pollutants; volunteer-based monitoring; local emissions; exposure assessment 
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3.1. Introduction 

Land use regression (LUR) is commonly used to model air pollutants using regulatory 

monitoring networks (e.g., NO2, particulate matter) with the goal of estimating pollutant 

concentrations at unmonitored locations (Brauer et al., 2003; Jerrett et al., 2005; Marshall et al., 

2008; Ross et al., 2007). Volatile organic compounds (VOCs) are precursors to ozone formation 

(WHO, 2000) and may pose long-term health risks (e.g., lung cancer, blood disorders) even at 

low concentrations (Glass et al., 2003; M. Lin et al., 2004; Villeneuve et al., 2014) suggesting a 

need to also properly characterize spatial patterns of VOCs using LUR models. However, 

ambient VOCs are less frequently monitored, thus reducing the possibility to model VOCs using 

LUR for exposure assessment studies (Guerreiro et al., 2014; Pankow et al., 2003). A variety of 

factors have limited the ability of previous studies to monitor and model VOCs including: (1) 

fewer than the commonly recommended 40-80 sampling locations for model development (Hoek 

et al., 2008), (2) complex emission sources for many VOC species (Brown et al., 2007; Kim et 

al., 2001; Piccot et al., 1992), and (3) limited and inconsistent data availability for small-scale 

local emission sources (e.g., area sources; Hochadel et al., 2006; Madsen et al., 2007).  

Existing studies (see Table A3.1) have used LUR to model VOCs based on monitors at traffic 

segments (Carr et al., 2002), schools (Chang et al., 2006; Mukerjee et al., 2009; Smith et al., 

2006), fire stations (Smith et al., 2011), airports (Gaeta et al., 2016) and across cities in North 

America (Atari & Luginaah, 2009; Johnson et al., 2010; Kheirbek et al., 2012; Oiamo et al., 

2015; Poirier et al., 2015; Su et al., 2010; Wheeler et al., 2008), Europe (Aguilera et al., 2008; 

Carr et al., 2002; Fernández-Somoano et al., 2011; Gaeta et al., 2016) and Asia (Amini et al., 

2017); only one existing LUR model (in Canada) has successfully assessed national VOC 

concentrations (Hystad et al., 2011). Previous VOC LUR models are often limited by the (1) 
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number of monitors (n < 40; Atari & Luginaah, 2009; Mukerjee et al., 2009; Smith et al., 2006, 

2011), (2) sampling period (a few weeks or seasons; Fernández-Somoano et al., 2011; Gaeta et 

al., 2016; Mukerjee et al., 2009; Oiamo et al., 2015; Su et al., 2010) and (3) number of VOC 

species monitored (n < 10; Aguilera et al., 2008; Amini, et al., 2017; Atari & Luginaah, 2009; 

Carr et al., 2002; Fernández-Somoano et al., 2011; Gaeta et al., 2016; Hystad et al., 2011; 

Johnson et al., 2010; Kheirbek et al., 2009, 2012; Oiamo et al., 2015; Poirier et al., 2015; Su et 

al., 2010; Wheeler et al., 2008). These limitations often hinder development of robust models to 

characterize a wide range of VOC species for long-term concentrations (e.g., annual averages). 

Community-based sampling offers an opportunity to gather sampling data for many VOC species 

and many time periods that would otherwise be difficult to collect (Conrad & Hilchey, 2011; 

Smith et al., 2007). Collaborative sampling efforts among local agencies and communities may 

facilitate more effective LUR modeling for pollutants that are otherwise less commonly 

monitored (e.g., VOCs) by approximating traditional fixed-site sampling for LUR.  

To account for VOC emission sources, existing VOC LURs mainly include variables for 

transportation facilities (e.g., proximity to roads; Kheirbek et al., 2012) and land uses (e.g., 

industrial; Wheeler et al., 2008). Studies including source apportionment (Baldasano et al., 1998; 

Brown et al., 2007; Watson et al., 2001) and targeted measurements at specific locations (Kwon 

et al., 2006) found that ambient VOCs may be linked to area sources (e.g., dry cleaners, gas 

stations) that are often neglected due to their low (yet collectively high) individual emissions. A 

recent VOC review calls for critical evaluation of VOC-specific local characteristics and sources, 

which may be significant contributors to the spatial distribution of VOCs (Amini et al., 2017). 

Few VOC LUR studies attempt to account for the emissions from area sources (Amini et al., 

2017; Hystad et al., 2011), partly due to a lack of such data that are often difficult to acquire 
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(Aguilera et al., 2008). Often, LUR models may be limited by inconsistent land use, emission 

source, or transportation data across political boundaries, making it difficult to generalize 

concentration estimates across jurisdictions (Amini et al., 2017). Google Point of Interest (POI) 

data offers rich information on land use patterns that may provide an alternative to traditional 

data sources (French et al., 2015; Madaio et al., 2016). A potential advantage of using POI data 

in LUR models is the ability to consistently assess the contribution of area sources to VOCs 

across different regions or countries which traditional city-level land use data cannot (details 

regarding the Google POI data is below).  

In this paper, I developed LUR models for concentrations of 60 VOC species using community-

based sampling data collected at 186 total locations (50 locations had sufficient data for model 

building) from November 2013 to August 2015 in Minneapolis, MN (Lansing et al., 2016). 

Specifically, my goals were to: (1) assess the feasibility of LUR modeling using data from 

community-based sampling, (2) explore whether information on area sources improves LUR 

models, and (3) investigate whether Google POI data could serve as an alternative data input in 

LUR modeling. I developed LUR models with and without information on area sources to 

compare how different data inputs could improve LUR model performance for a wide range of 

VOC species and explore their various spatial patterns.  

3.2. Materials and Methods 

3.2.1. Community-based Sampling Campaign for LUR Development 

I developed LUR models using data collected as part of a community-based VOC sampling 

effort (Lansing et al., 2016). The sampling campaign was implemented by Minneapolis health 

department employees and volunteers (e.g., local residents) trained by local agencies. The City 



30 

 

of Minneapolis was divided into 34 grid cells and sampling locations were selected so that at 

least two locations were in each grid cell. The campaign resulted in 186 sampling locations 

across Minneapolis including residential locations (56%), participating businesses that may emit 

VOCs (20%), Minneapolis Park and Recreation Board (MPRB) properties (17%), Minnesota 

Pollution Control Agency (MPCA) monitoring locations (2%), and others (e.g., formaldehyde 

collocated samples and residents who sponsored canisters: 5%; Lansing et al., 2016). The 

campaign measured 61 VOC species (e.g., benzene, toluene, and naphthalene) using a 

performance-based air sampling method (TO-15) and passivated stainless steel (Summa) passive 

sampling canisters. Specifically, TO-15 is a method developed by the US EPA for monitoring 

the 97 VOCs included in the 189 hazardous air pollutants (HAPs). The sampling campaign used 

1-liter Summa canisters (a spherical container interiorly rendered inactive to most organic 

compounds) to collect air samples over a 72-hour period. All samples were sent to the lab (Pace 

Analytical Services) to analyze 60 VOCs (out of original 61; formaldehyde was not modeled due 

to the use of a different sampling strategy). The VOC measurements were collected across eight 

sampling events during November, February, May, and August of each year; the campaign 

started in November 2013 and ended in August 2015. Detailed information regarding how 

measurements were collected, analyzed, and processed as well as QA/QC methods can be found 

in the City of Minneapolis report (Lansing et al., 2016). I compared the community-based 

sampling measurements at the four MPCA monitoring stations (2%) to the MPCA data. 

Generally, there was a slight mismatch between the two different sampling campaigns; for 

example, the average normalized measurement gap was 23% for priority VOCs (BTEX: 21%, 

naphthalene: 26%; see Figure A3.1).  
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3.2.2. Dependent Variables for LUR 

3.2.2.1. VOC species 

Previous LUR studies model a limited number of VOC species (e.g., aromatic alkylbenzenes 

[mainly derivatives of benzene]) and fail to capture concentrations of other species (Amini et al., 

2017). I developed LUR models of annual-average concentrations for the 60 VOC species 

sampled in the community-based sampling campaign. In the main text of this article I describe 

four VOC species that were of interest to the City of Minneapolis (hereafter referred to as 

priority VOCs), partly due to the fact that these VOC species exceeded the chronic health 

benchmarks in the initial study by the Minneapolis Health Department (MHD; Lansing et al., 

2016); all LUR results for other VOC species are in the Appendix. The four priority VOCs 

include BTEX (benzene, toluene, ethylbenzene, m&p-xylene and o-xylene), naphthalene, 

tetrachloroethene, and TVOC (total VOCs-sum of all VOC species monitored as an overall 

measure of VOCs; Hodgson, 1995; Singh et al., 2016). I replaced all non-detects with half of the 

method detection limit of the sampling approach following U.S. EPA guidance (EPA, 1991).  

3.2.2.2. Sampling periods for modeling. The community-based sampling campaign resulted in 

VOC measurements at 186 locations; however, only a small number of locations (n=24) were 

sampled during all eight events. Also, many locations did not have four consecutive sampling 

events to estimate annual averages for a single year. The average number of sampling events per 

site was 3.8. Using the second year of the sampling campaign (seasons 5-8 [November 2014 to 

August 2015] of the 8-season campaign) yielded the largest number of locations to model annual 

averages (n=50); thus, I report LUR model results of annual-average VOC concentrations for the 

second year as my core model scenario. I also developed a number of alternative modeling 

scenarios as described in the sensitivity analysis 2.5.1. Table 3.1 shows the summary statistics 
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for my core modeling scenario for the four priority VOCs. A map of sampling locations and 

summary statistics for all 60 VOCs are shown in Figure A3.2 and Table A3.2. 

Table 3.1 Summary statistics of the priority VOC measurements 

VOC Arithmetic Meana Geometric Meana Mediana Maxa Mina IQRb 

BTEX 5.02 4.12 3.64 27.61 1.97 2.88-5.01 

Naphthalene 0.73 0.56 0.54 6.12 0.19 0.35-0.84 

Tetrachloroethene 5.19 0.62 0.36 184.14 0.16 0.19-1.23 

TVOC 61.76 53.81 45.91 228.82 30.68 36.37-69.29 
aAll units are in µg/m3.  
bInterquartile range; number of locations is 50. 

 

3.2.2.3. Correlation matrix for all VOCs 

I developed a correlation matrix using the measurements among VOC species. I identified 

comparatively high correlation among some of the VOC species (e.g., 1,3-Butadiene, 1,2-

Dichlorobenzene); however, many of the 60 VOC species presented very low correlation. I 

decided to model the 60 VOCs separately in this paper; however, future work might assess when 

it is appropriate to model species together. I aggregated BTEX species for modeling due to the 

known high correlation (Pankow et al., 2003) and to compare to other LUR studies (Aguilera et 

al., 2008; Amini et al., 2017; Atari & Luginaah, 2009; Kheirbek et al., 2012; Mukerjee et al., 

2012). The correlation among the priority VOCs was below 0.32. Figure A3.3 shows the 

correlation matrix for all VOCs.  

3.2.3. Independent Variables for LUR 

I assembled four subsets of candidate independent variables: (1) area sources as measured by city 

business permit data retrieved from the MHD, (2) area sources as measured by web-scraped 

Google POI data, (3) transportation variables, and (4) land use variables. Specifically, the city 

permit data includes four types of business licensing facilities (dry cleaners, paint booths, auto 

shops, and gas stations) that may emit VOCs and are of interest to the MHD; the data showed 
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sources as of November 2013. To explore an alternative data source for area sources, I retrieved 

90 categories of POI data from the Google Places Application Programming Interface (API) and 

identified four categories that most closely matched the city permit data (i.e., laundry, painter, 

car repair, gas station). The Google Places API is a service that returns information about POIs 

based on a search query (e.g., all restaurants within a specified distance from a central point). In 

this study, I used a Python script (shown in the Appendix) to automatically retrieve POI data in 

May 2018 to cover the study area. Google POI data is based, in part, on crowd-sourced 

information and may have errors. Importantly, Google POI data may be a promising set of 

variables to assess impacts of localized sources since the data can be tabulated across political 

boundaries, potentially allowing for modeling the relationship between VOCs and area sources 

across multiple jurisdictions. Variables were tabulated as point, proximity, or buffer variables as 

appropriate; I used 16 buffer lengths (25m, 50m, 75m, 100m, 150m, 200m, 250m, 300m, 400m, 

500m, 750m, 1000m, 1500m, 2000m, 3000m, 5000m) following a previous LUR study in 

Minneapolis (Hankey & Marshall, 2015). This process resulted in a total of 228 (i.e., 16 × 14 

buffer variables plus 4 point/proximity variables) candidate variables for selection (Table 3.2). 

Transportation and land use variables were offered for all models; area source variables offered 

varied depending on the model (see model building description below).  
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Table 3.2 Candidate independent variables in the LUR models 

Category Variable Name Variable Type Unit Data Source 

Area Sources: City 

Permit Data 

Dry Cleaners Count in buffera Count total 
Minneapolis Health 

Department 

Gas Stations Count in buffer Count total 
Minneapolis Health 

Department 

Paint Booths Count in buffer Count total 
Minneapolis Health 

Department 

Auto Shops Count in buffer Count total 
Minneapolis Health 

Department 

Area Sources: 

Google POI 

Laundry Count in buffer Count total Google POI 

Gas Stations Count in buffer Count total Google POI 

Painter Count in buffer Count total Google POI 

Car Repair Count in buffer Count total Google POI 

Transportation 

Principal Arterials Length in buffer Meters N'compass 

Arterials Length in buffer Meters N'compass 

Collectors Length in buffer Meters N'compass 

Local Roads Length in buffer Meters N'compass 

Dis. to Freeway Length Meters Calculated 

Dis. to Major Road Length Meters Calculated 

Traffic Intensity Point AADT m-2 
Minnesota Pollution Control 

Agency 

Transit Stops Count in buffer Count total 
Minnesota Geospatial 

Commons 

Land Use 

Elevation Elevation Meters 
Minnesota Geospatial 

Commons 

Industrial Area Area in buffer Square meters 
Minnesota Geospatial 

Commons 

Open Space Area in buffer Square meters 
Minnesota Geospatial 

Commons 

Retail Area Area in buffer Square meters 
Minnesota Geospatial 

Commons 

Wtd. Household 

Income 
Area-weighted average Dollars US Census Bureau 

Wtd. Housing Dens. Area-weighted average Unit km-2 US Census Bureau 

aBuffers in meters: 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 5000 
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3.2.4. LUR Model Building 

My LUR modeling approach was based on a commonly used forward stepwise regression 

technique (Su et al., 2009). The approach includes two steps: (1) add the independent variable 

most correlated with the VOC concentration (tested for normality and log-transformed for LUR 

modeling) and (2) sequentially add the independent variables most correlated with model 

residuals until the last variable is not significant (p > 0.05) or the Variance Inflation Factor (VIF; 

multicollinearity indicator) is larger than 5. I allowed for only one buffer size to be selected for 

each variable to further avoid collinearity (Wilton et al., 2010). I report model performance 

based on adjusted R2, Root Mean Square Error (RMSE), and 10-fold cross validated (10-fold 

CV) R2. I developed three types of LUR models with the four subsets of candidate independent 

variables using MATLAB R2014b to assess the impact of including area source information in 

LUR models of VOCs: 

Base-case: No Area Sources. To replicate the majority of previous LUR models for VOCs 

(Aguilera et al., 2008; Carr et al., 2002; Kheirbek et al., 2012; Mukerjee et al., 2012; Smith et al., 

2011), I developed LUR models with only transportation and land use variables as covariates.  

Area Sources: City Business Permit Data. To explore whether area sources contribute to model 

performance, I added area sources from city business permit data in addition to the transportation 

and land use variables.  

Area Sources: Google POI. To explore how an alternative data source for area sources – Google 

POI – impacts model performance, I replaced area source city permit data with Google POI data 

(while still including the transportation and land use variables). 
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I mapped model estimates of VOC concentrations (100m × 100m grid) for all three types of LUR 

models using ArcGIS 10.6 to assess spatial patterns among models. I tabulated the independent 

variables (variables that were significant in my LUR models) at the centroid of each grid, and 

used corresponding model results to estimate the VOC concentrations for all grid cells. To 

compare the impact of variables among VOC species and models, I fully normalized the model 

coefficients by multiplying each coefficient by the 95th-5th percentile difference of the 

independent variable divided by the 95th-5th percentile difference of the dependent variable.  

3.2.5. Sensitivity Analysis  

I performed sensitivity analyses to explore (1) LUR model results using different scenarios for 

aggregating to annual averages among sampling periods and (2) seasonal LUR models to assess 

whether seasonal trends exist among VOC species.  

3.2.5.1. Scenarios to estimate annual-average concentrations among sampling periods 

I aggregated VOC concentrations for LUR modeling based on multiple scenarios: (1) four 

consecutive sampling events (one event per season) during the first year (November 2013 to 

August 2014; n=40), second year (November 2014 to August 2015; n=50), or year-2014 calendar 

year (February 2014 to November 2014; n=45); (2) measurements during all 8 sampling events 

(n=24); and (3) non-consecutive coverage of 4 seasons among the 8 sampling events (n=79). 

Summary statistics for all 5 VOC annual-average scenarios of different sampling periods for the 

priority VOCs are shown in Table A3.3.  
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3.2.5.2. Seasonal LURs 

In addition to the annual-average models, I also developed seasonal models with all available 

sampling data for each season (i.e., spring, summer, fall, and winter). I report model performance 

for each season as compared to the annual-average concentration models for the priority VOCs.   

3.2.6. Model Validation 

I examined Cook’s distance to identify potential outliers that may influence my model results. I 

checked for spatial autocorrelation of model residuals using Moran’s I, and further explored 

where spatial autocorrelation arose (if any) using LISA (Local Indicators of Spatial Association) 

for the priority VOCs (Anselin, 1995).  

3.3. Results and Discussion 

I developed three types of LUR models for 60 VOCs to explore the impact of different 

independent variables including different measures of area sources on model performance. I 

report detailed findings for the priority VOC species (BTEX, naphthalene, tetrachloroethene, and 

TVOC); detailed analyses for all 60 VOCs are in the Appendix. 

3.3.1. LUR Model Results for Priority VOCs 

I developed core LUR models using three sets of candidate independent variables: (1) 

transportation and land use variables (base-case models), (2) the base-case variables plus area 

sources measured from city permit data, and (3) the base-case variables plus area sources 

measured by Google POI data. I compare model results using performance indicators (e.g., adj-

R2; RMSE; 10-fold CV), variable selection (e.g., coefficient direction; buffer sizes) and by 

mapping concentration estimates for visual inspection. Table 3.3 shows model results for the 

priority VOCs. Table A3.4 shows model results for all 60 VOCs. 
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Table 3.3 LUR model coefficients for the priority VOCs 

Category Variable 

Base-case: No Area Sources Area Sources: City Permit Data Area Sources: Google POI 

BTEX Naphthalene 

Tetrachlo

-roethene TVOC BTEX 

Naphthalen

e 

Tetrachlo

-roethene TVOC BTEX Naphthalene 

Tetrachlo

-roethene TVOC 

Area Sources: 

City Permit 

Data 

Dry Cleaners       0.39 (25) 0.21 (25)     

Gas Stations      0.37 (200)       

Paint Booths      0.29 (500)       

Auto Shops     0.05 (50)   0.02 (75)     

Area Sources: 

Google POI 

Laundry           0.41 (25) 

0.55 

(1,000) 

Gas Stations           

0.41 

(200)  

Painter         

0.31 

(400) 0.76 (400)  0.28 (400) 

Car Repair         0.16 (50)   0.12 (150) 

Transportation 

Principal Arterials  -0.45 (500)  

0.47 

(2,000) 

0.28 

(5,000) -0.38 (750)  

0.53 

(2,000) 

0.30 

(5,000) -0.73 (500) 

0.34 

(300) 

0.63 

(3,000) 

Arterials     0.33 (250)  

0.30 

(200)      

Collectors  0.34 (1,500)  

0.40 

(5,000) 0.21 (75)    

0.15 

(100) 0.50 (1,000)   

Transit Stops 

0.55 

(300)a   -0.29 (150)         

Land Use 

Industrial Area        0.15 (200)     

Open Space        

0.35 

(2,000)    

0.29 

(2,000) 

Retail Area   

0.68 

(150)         0.18 (25) 

Wtd. Housing 

Dens.       0.26 (25)    0.31 (25) -0.41 (150) 

Intercept 1.36 0.25 0.41 1.36 0.80 0.42 0.24 3.32 0.78 0.23 0.26 3.09 

Adj-R2 0.15 0.20 0.31 0.26 0.37 0.40 0.64 0.42 0.47 0.50 0.75 0.56 

RMSEb 0.43 0.27 0.76 0.41 0.37 0.23 0.55 0.37 0.34 0.21 0.46 0.32 

10-fold CV-R2 0.14 0.17 0.26 0.21 0.32 0.32 0.40 0.36 0.41 0.47 0.56 0.48 
aModel coefficients are normalized coefficients with buffers in parentheses. All variables are at p < 0.05. Number of locations used for modeling is 50.  
bAll units are in µg/m3. Grey shading indicates variables that were not offered for the three LUR models during model building. 
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3.3.1.1. Goodness of fit 

In general, adding city permit data to the LUR models improved model performance and 

outperformed the base-case models; this finding suggests that area sources are an important 

factor in explaining the variability of VOC concentrations. I also found that models with Google 

POI data outperformed models with city permit data for both the priority VOCs and among all 60 

VOCs. For example, the BTEX models performed much better when including Google POI data 

(adj-R2: 0.47; RMSE: 0.34 µg/m3) as compared to city permit data (0.37; 0.37) and the base-case 

model (0.15; 0.43). These results are consistent with the reported R2 of five previous LUR 

models for total BTEX ranging from 0.40 (moderate) in Detroit, USA to 0.81 (good) in Sarnia, 

Canada (Aguilera et al., 2008; Amini et al., 2017; Atari & Luginaah, 2009; Kheirbek et al., 2012; 

Mukerjee et al., 2012). For tetrachloroethene (commonly used at dry cleaners), the model 

performance improved from the base-case model (adj-R2: 0.31; RMSE: 0.76 µg/m3) with the 

addition of city permit data model (0.64; 0.55) and Google POI model (0.75; 0.46). I also 

aggregated all VOC species (TVOC) to compare to other measurement and modeling campaigns 

(Chen et al., 2016; Mečiarová et al. , 2017; Singh et al., 2016). Similar to the individual VOC 

species, the Google POI model (adj-R2: 0.56; RMSE: 0.32 µg/m3) outperformed the city permit 

data model (0.42; 0.37) and the base-case model (0.26; 0.41). These results indicate that area 

sources are important for explaining spatial patterns of VOC concentrations and that Google POI 

data may serve as a useful data source for LUR modeling. Figure 3.1 shows a summary of model 

performance among all 60 VOCs. 
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Figure 3.1. LUR model performance among 60 VOC species. The three input datasets represent 

the addition of area source information as candidate variables. 

3.3.1.2. City permit data vs. Google POI 

I developed LUR models by including four categories of area sources from two data sources 

(city business permit and Google POI). I noticed that LUR models using Google POI data 

outperformed those using the city permit data. There are several differences between the city 

permit and Google POI data that may explain this result. First, the Google POI area source 

categories were not perfectly matched with the city permit data and I had to choose the closest 

Google category; thus, the two data sources may capture slightly different sets of locations due to 

this choice. Second, there was a temporal mismatch among the Google POI data (year-2018), the 

city permit data (year-2013), and the VOC sampling data (2013-2015). Since business locations 
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change over time, there are differences among locations in each category that could be due to 

this temporal mismatch. Third, the Google POI data is crowd-sourced (i.e., Google includes 

information available from businesses on the internet) which may lead to additional locations 

(e.g., capture of businesses without formal permitting) or missing locations (e.g., businesses that 

do not have an online presence) as compared to the city permit data. In general, the Google POI 

data captured more area source locations (e.g., average number of gas stations within 500m 

buffer: 0.73 Google POI vs. 0.68 city permit locations) and had a larger coefficient of variation 

as compared to that of the city permit data (e.g., gas stations: 1.40 vs. 1.29). Table A3.5 shows 

the average number of area source locations and coefficient of variation for the city permit data 

and the Google POI data. 

3.3.1.3. Significant variable selection 

The base-case models selected comparatively fewer variables (n ≤ 3) for the priority VOCs – 

most of which were transportation variables (e.g., transit stops, principal arterials; Table 3.3). 

This choice of spatial predictors is similar to other studies that assess these VOCs (Amini et al., 

2017; Atari & Luginaah, 2009; Kheirbek et al., 2012). When adding area sources as candidate 

variables, either from city permit or Google POI data, models consistently selected area sources 

(e.g., dry cleaners, gas stations) suggesting that traditional models (base-case model) may neglect 

the impact of important area sources. For example, BTEX, which is predominately from auto-

related emissions, was associated with auto shops in the city permit data models; in the Google 

POI model, a similar area source (e.g., car repairs) was selected reinforcing the importance of 

including these data in the LUR models. One study in Tehran, Iran also found that the proximity 

to gas stations was associated with toluene and BTEX (Amini et al., 2017) while one national 

LUR study in Canada also incorporated this variable but failed to capture the variability of local-
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scale benzene concentrations (Hystad et al., 2011). A unique aspect of my models is the 

capability to compare the area sources that may be important to explain the variations in VOC 

concentrations. To support my findings, I also modeled all 60 VOCs (in addition to the priority 

VOCs) to explore how many VOC species may be linked to these small-scale sources. This 

exercise resulted in 45 out of 60 VOCs selecting area sources for the city permit data models and 

52 out of 60 VOCs for the Google POI models, which further points to the importance of the 

area sources (see Figure A3.4). 

3.3.1.4. Model coefficients 

The normalized model coefficients allow for comparing variables across VOC species and 

indicate that area sources were as important predictors as commonly recognized transportation 

and land use variables. For the best performing Google POI model (tetrachloroethene), the area 

source coefficients had a slightly larger magnitude of association (0.41 for both laundry and gas 

stations) as compared to coefficients for transportation variables (0.34 for principal arterials) and 

land use variables (0.31 for housing density). These findings may help highlight the importance 

of specific area sources to inform policy choices (e.g., elimination of tetrachloroethene from all 

dry-cleaners in Minneapolis). Coefficients among models mostly followed a priori assumptions; 

however, results for certain variables and VOC species were counterintuitive, which was also the 

case in other LUR studies of VOCs (Fernández-Somoano et al., 2011; Mukerjee et al., 2012; 

Smith et al., 2011). For example, principal arterials had a negative association with naphthalene 

among all three models. To my knowledge, no study has explored naphthalene in LUR models; 

however, one review of emission sources of naphthalene pointed out that vehicle emissions were 

important sources (Jia & Batterman, 2010). This conflicting result indicates that area sources 
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(e.g., paint booths, gas stations) may be correlated with other traditional predictor variables (e.g., 

road classification) and produce confounding results in some cases.  

3.3.1.5. Buffer sizes of significant variables 

Almost all area sources were selected at small buffer sizes (e.g., 25m-500m) suggesting that area 

sources are associated with VOC concentrations at small spatial resolutions reinforcing findings 

from previous studies (Baldasano et al., 1998; Brown et al., 2007; Watson et al., 2001; Mukund 

et al., 1996; Sun et al., 2016). For example, the Tehran LUR study found that being near a gas 

station was associated with higher VOC concentrations (Amini et al., 2017). Buffer sizes of 

transportation variables differed among VOC species; for example, traffic-related VOC species 

(e.g., BTEX) were associated with principal arterials at a buffer length of 5,000m while TVOC 

selected road classifications at a buffer length at 3,000m. The choice of these large buffer sizes is 

consistent with a suggestion to include traffic-related variables at buffers up to 5,000m from a 

recent VOC review (Amini et al., 2017). BTEX was also associated with lower road hierarchy 

(e.g., collectors) at smaller buffer lengths (e.g., 100m), which is similar to other LUR studies 

(Smith et al., 2006; Su et al., 2010). These findings imply that modeling individual or grouped 

VOC species may help identify specific variables of importance at different spatial resolutions.  

3.3.1.6. Mapping concentration estimates 

I mapped VOC concentrations for the entire city of Minneapolis on a 100 × 100 meter grid. For 

the purposes of mapping concentrations, locations with predicator data values that were outside 

of the variable space in the model building data were truncated to the highest (or lowest) value at 

my sampling sites as suggested by previous LUR studies (Beelen et al., 2010; 2009). In general, 

spatial patterns differed among VOC species and model types underscoring that (1) it is 
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necessary to model VOC species separately to assess VOC-specific predictors (Amini et al., 

2017), (2) different methods of obtaining area source data appear to provide different 

information, and (3) incorporating information on area sources from Google POI (or from local 

permitting data) offers an opportunity to improve model performance. For example, apart from 

the higher concentrations along transportation segments, the BTEX maps also showed vast hot 

spots partly due to area sources (e.g., car repair). Concentration hotspots in these maps visualize 

the spatial patterns of naphthalene and tetrachloroethene resulting from the significant 

association with area sources as compared to transportation variables. Potentially, these maps 

could be used for selecting additional sampling locations and to identify differences between the 

city permit and Google POI maps (to find potential emitters not captured with the city permit 

data, or possibly to identify errors or improve classification of the Google POI data). Figure 3.2 

shows model estimates for the priority VOCs using all three types of models in Minneapolis, 

MN. Figure 3.3 shows scatterplots of the predicted vs. observed values for the priority VOCs. 
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Figure 3.2. LUR model estimates for the priority VOCs among model types in Minneapolis, MN.  
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Figure 3.3. Scatterplots of predicted vs. observed values for the priority VOCs. Solid black lines 

represent the 1:1 line; dashed red-lines represent the best fit line. 
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3.3.2. Sensitivity Analysis 

3.3.2.1. Scenarios to estimate annual-average concentrations among sampling periods 

I developed LUR models using five scenarios for estimating annual-average VOC 

concentrations. Generally, the model scenario using only locations with all eight sampling events 

had the highest adj-R2; however, this scenario included only 24 locations and demonstrated 

issues with overfitting (e.g., too many significant variables selected). All other scenarios had 

similar performance to my core model scenario (second year; n = 50 sampling locations; Figure 

A3.5 and Figure A3.6). My core scenario is consistent with the adequate number of sampling 

location (n = ~40-80) recommended for LUR modeling over small geographic areas (Hoek et al., 

2008).  

3.3.2.2. Seasonal LUR models 

I developed seasonal LUR models and compared performance to the annual-average models for 

the priority VOCs (see Figure A3.7). In general, model performance varied by VOC and season 

with no obvious pattern of seasonal performance among the priority VOCs. On average, model 

fit was better for the annual-average models (mean adj-R2 with Google POI: 0.57) as compared 

to the seasonal-average models (mean adj-R2 with Google POI: 0.28). Seasonal fluctuations were 

not consistent among VOCs and annual-average concentrations are likely a stronger rationale for 

policy decisions which aim to reduce overall exposure.  

3.3.3. Model Validation 

3.3.3.1. 10-fold CV 

In general, 10-fold CV R2 values (Table 3.3) were slightly lower than the Adj-R2 for the full 

models, with generally consistent patterns between Adj-R2 and CV R2. The drop in R2 was 
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largest for the Google POI models (e.g., tetrachloroethene: 0.75 to 0.56) suggesting that the 

Google POI models may be the most likely to encounter overfitting issues. However, my sample 

size was small (n=50) and this result should be tested in studies with more sampling data 

available for VOC-specific modeling.  

3.3.3.2. Cook’s distance and spatial autocorrelation 

Examination of Cook’s distance for my priority VOCs confirmed that no significant outliers 

influenced my model results (see Table A3.6). Based on the Moran’s I test, no significant spatial 

residual correlation was found in the LUR models for the priority VOCs except for some 

instances in the BTEX models (Table A3.7). For example, BTEX showed significant 

autocorrelation in two models (Moran’s I index with p < 0.05 for the base-case models [models 

with Google POI data]: 0.26 [-0.19]) but not the third model (city permit data). I further explored 

this issue using the LISA procedure and found that among the priority VOCs, only BTEX was 

flagged at a cluster of locations near a principal arterial indicating that spatial autocorrelation 

existed at this heavy traffic corridor for BTEX (see Figure A3.7). Future research should explore 

how sampling locations can be specifically designed for the purpose of spatial modeling to 

reduce spatial autocorrelation, or how spatial autocorrelation can be included within the 

modeling framework.  

3.3.4. Implications for Developing VOC LUR Models 

3.3.4.1. Implications for modeling 60 VOCs 

To my knowledge, this is the first LUR study that measures and models 60 VOC species; 

existing LUR studies explored a limited number of species (n<10; see Table A3.1). I was able to 

model 60 VOCs to explore how VOCs show various spatial variability. My correlation matrix 
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indicates that certain VOC species may be highly correlated and share similar spatial 

characteristics. For example, BTEX and some aromatic compounds (e.g., 1,3-Dichlorobenzene, 

1,4-Dichlorobenzene) were generally correlated with each other (Pankow et al., 2003). This 

finding suggests that future LUR models could be refined by grouping certain VOCs (e.g., factor 

analysis, principal component analysis). However, many of the VOC species showed little 

correlation and warranted individual LUR models for those VOC species. The different toxicity 

and complex health risks of each VOC also necessitates my targeted modeling strategy for 

individual VOCs in certain cases (Lansing et al., 2016).  

3.3.4.2. Implications for community-based sampling campaigns 

Few studies have developed LUR models for air pollutants using community-based sampling 

data. Community- and volunteer-based sampling campaigns offer the potential to monitor at 

spatial and temporal scales that would otherwise be difficult for some pollutants. To ensure 

measurement quality, this approach requires training sessions for volunteers and adequate 

collection devices for rotation. My work shows that community-based efforts can provide useful 

data for modeling and estimating VOC concentrations. Learning from previously established best 

practices for LUR models (Larson et al., 2007; Su et al., 2013), future community-based 

campaigns could be designed to ensure that annual-average concentrations are available at a 

large number of locations for modeling.  

A limitation of my study is that out of 186 total locations, I was only able to use 50 locations for 

modeling due to a lack of sampling data during specific sampling events among locations; my 

community-based sampling may also be limited by the fact that its original purpose was not for 

LUR. My LUR models were based on locations that had four consecutive events of data 

available to capture annual-average concentrations of VOCs. This issue may be important for 
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future sampling campaigns to capture the spatiotemporal nature of VOC emissions. The seasonal 

models didn’t demonstrate obvious patterns across seasons among the priority VOCs; however, 

the annual model fit outperformed the seasonal models indicating that it is necessary to capture 

concentration patterns during all four seasonal events to evaluate the annual-average 

concentrations. Previous studies typically use a limited number of sampling events (e.g., 1-2 

weeks) to build LUR models, which may misrepresent spatial patterns or annual-average values 

of VOC concentrations (Amini et al., 2017; Atari & Luginaah, 2009; Kheirbek et al., 2012; Su et 

al., 2010; Wheeler et al., 2008).  

3.3.4.3. Implications for comparing area sources in VOC LUR 

Most LUR studies are developed for criteria pollutants and rely on traditional transportation and 

land use variables and do not include information on small-scale air pollution sources (i.e., area 

sources; Kheirbek et al., 2012; Wheeler et al., 2008). However, VOCs embody comparatively 

different characteristics and emission sources as compared to criteria pollutants (e.g., NO2). 

Existing LUR VOC studies have only analyzed a few VOC species (e.g., BTEX) that are mainly 

from traffic and industrial emissions (Amini et al., 2017). Comparatively, my study analyzed 60 

VOCs and presented a more comprehensive assessment of different VOC species in my LUR 

models. 

A contribution of my models is that adding area sources helps to assess whether these small-

scale sources are correlated with VOC concentrations. I was able to explore this relationship by 

comparing our base-case models that exclude area sources to models with information on area 

sources. By normalizing the model coefficients, I found that area sources may be as important 

(or even more important for some VOC species) as traditional transportation and land use 

variables.  More work is needed to add area sources into LUR modeling for other jurisdictions 
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and pollutants to further assess utility of these data sources. For example, in one LUR study in 

Iran, proximity to gas stations were flagged as significant variables for toluene and BTEX 

(Amini et al., 2017); the inclusion of this variable suggests that it is necessary to consider area 

sources when modeling in both developed countries and developing countries (often with higher 

air pollution levels; Amini et al., 2017).  

3.3.4.4. Implications for using non-traditional data such as Google POI 

An open question is how best to measure small-scale emission sources for air quality modeling. I 

used two measures of area source data (Google POI and city permit data) to explore the potential 

benefits of each dataset. I found that inclusion of both datasets improved model performance but 

that the Google POI models demonstrated the best model performance among all models and the 

60 VOC species. My LUR models show that online mapping data could provide a useful input 

for LUR modeling. I only included variables from the Google POI database that were closely 

matched to the categories of area sources I had from the city business permit database; future 

work could replicate and expand my approach by including all data available in the Google POI 

database.  

My modeling approach of combining an open dataset (Google POI) on area source emissions 

with a community-based sampling campaign offers promising potential for creating community 

driven modeling efforts to better characterize the spatial patterns of VOCs. To date, only one 

national LUR model for limited VOC species is available (Hystad et al., 2011). My work 

suggests that it may be possible to develop generalizable LUR models for VOCs across different 

regions or countries when using open access variables to pool datasets among study locations. 

However, such data sources may introduce biases, particularly from user generated and user 

verified content (Crutcher & Zook, 2009; Stephens, 2013). For example, businesses without an 
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online presence, which are more likely in low socioeconomic regions, are less likely to add 

themselves to the dataset (e.g., Google Maps), and lower internet/smartphone usage in these 

regions may exacerbate that divide. Future work could refine this modeling approach and allow 

for expanding the geographic scope of these models towards developing models capable of 

providing generalizable information for siting and planning efforts.  

3.4. Conclusion 

I developed LUR models for 60 ambient VOC species using measurements at 50 sampling 

locations (out of 186 locations) from a community-based sampling campaign during November 

2013 to August 2015 in Minneapolis, MN. I was able to assemble three sets of independent 

variables to develop my core LUR models: (1) land use and transportation variables, (2) area 

source variables from local business permit data, and (3) Google POI data for area sources. I 

found that models with the Google POI area source data performed better as compared to the 

base-case model and the permit data model. I found that area sources had a similar or bigger 

magnitude of correlation with VOCs than traditional land use and transportation variables. 

Among the 60 VOCs, over two-thirds of the LUR models indicated that area sources were 

significantly correlated with the VOC concentrations at small spatial scales. My work suggests 

that community-based sampling could be used as a valuable input for LUR models to estimate 

VOC concentrations. My study explores the spatial patterns of a wide breath of VOCs (a novel 

aspect is the number of VOCs studied) and identifies differences among data inputs for important 

area sources. The use of Google POI data also offers a more generalizable data source for 

national VOC LUR models in the future. My work could be used to inform planning policies to 

reduce emissions from area sources.   
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Chapter 4. USING A CROWD-SOURCED LOW-COST SENSOR 

NETWORK IN NATIONAL LAND USE REGRESSION MODELS FOR 

PM2.5 

ABSTRACT  

Exposure assessment from existing national scale land use regression (LUR) models are typically 

based on sparse regulatory monitoring networks. Emerging low-cost sensor networks that are 

located by a variety of users (i.e., crowd sourcing of locations) offer the opportunity to 

supplement LUR models with improved measurement density and coverage (e.g., where the 

regulatory monitors are unavailable). I evaluated an existing national LUR model using annual 

average PM2.5 concentrations from PurpleAir sensors in 6 US urban areas (n = 149). I developed 

LUR models (using only the PurpleAir sensors) and hybrid LUR models (using both the 

regulatory and low-cost monitors). I found that the low-cost sensor network may offer a 

promising alternative to regulatory networks where there are gaps in regulatory network. For 

example, developing LUR models using the PurpleAir sensors yielded promising results (6-city 

PurpleAir sensors: 10-fold CV R2 = 0.66, MAE = 2.01 µg/m3; PurpleAir and national regulatory 

monitors: R2 = 0.85, MAE = 1.02 µg/m3). I observed that integrating PurpleAir into LUR may be 

helpful to capture within-city variability and identify areas of disagreement (e.g., near-industrial 

neighborhoods). Integrating crowd-sourced low-cost sensor network in LUR models could help 

track exposures more accurately and inform environmental and health policies. 

Keywords: 

Crowdsourcing; low-cost monitoring; LUR validation; hybrid models 
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4.1. Introduction  

Exposure to ambient air pollution (e.g., PM2.5: particulate matter less than 2.5 micrometers in 

diameter) is a significant global burden of disease resulting in various health effects (e.g., 

cardiovascular, metabolic, and respiratory diseases; Dabass et al., 2016; F. Liu et al., 2019; Pun 

et al., 2017). Land Use Regression (LUR) is frequently used to predict and assess ambient 

exposure to PM2.5 at unmonitored locations (Hankey & Marshall, 2015; Hoek et al., 2008). LUR 

models are often trained with limited and expensive ground-level regulatory monitors (e.g., 

Environmental Protection Agency Air Quality System [EPA AQS]; Clark et al., 2011; Di et al., 

2016; Ross et al., 2007). The relatively sparse regulatory monitoring network is designed for 

compliance with the national ambient air quality standards and may fail to reliably capture 

within-city spatial variability (Hall et al., 2014). Dense air quality monitoring networks are 

needed to improve exposure assessment (Vlaanderen et al., 2019).  

Growing interest in public environmental data collection and the innovation of inexpensive 

instruments have shifted the paradigm of air quality monitoring from government agencies 

toward crowd-sourced efforts (e.g., non-governmental organizations, citizen scientists; Jiao et al., 

2016; Snyder et al., 2013b; Thompson, 2016b). For example, Google Project Air View initiative 

has been expanded across the world to measure street-level air quality data through sensors 

equipped on the Google Street View vehicles (Google Earth Outreach, 2020). Others focus on 

involving citizens to monitor and share monitoring data through internet-enabled platforms 

(Kumar et al., 2015). Emerging crowd-sourced monitoring is not tied to siting policies that 

ignores hot spots in favor of capturing ambient concentrations and provides increased spatial 

resolutions (e.g., neighborhood) with potential large inventories of data as compared to 

regulatory fixed monitors (Muller et al., 2015; Rada et al., 2016). This crowd-sourced trend 
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allows for public participation in air quality data collection and holds promise for supplementing 

the regulatory data towards reducing exposure and informing health policies (English et al., 

2017; Kaufman et al., 2017).  

In addition, the inexpensive, portable, and operation-friendly low-cost sensors have 

revolutionized the crowd-sourced effort (Morawska et al., 2018). The non-regulatory grade low-

cost sensors do not hinder their popularity and ubiquitous monitoring networks (Morawska et al., 

2018). For example, low-cost sensors have known performance issues related to inter-device 

consistency and sensitivity to relative humidity, temperature, and particle coincidence (e.g., two 

particles get counted at once; Y. Wang et al., 2015; R. Xu, 2015). However, data from laboratory 

and ambient calibrations are becoming increasingly available to correct for these sampling 

artifacts; these corrections combined with improving performance from low-cost sensing provide 

opportunities to refine air quality monitoring (Broday et al., 2017; Holstius et al., 2014; Kelly et 

al., 2017; Malings et al., 2019). While such low-cost sensor networks have been deployed and 

readily accessible, the retrieving data haven’t been used in concert with the regulatory monitors 

for exposure estimation.  

A few studies have integrated low-cost sensing into LUR modeling for a single city (Dijkema et 

al., 2011; Eilenberg et al., 2020; Jain et al., 2020; Masiol et al., 2018; Weissert et al., 2019); yet 

limited work examines their contribution to LUR models (e.g., PM2.5) at multi-city and national 

scale (Bi et al., 2020). Emerging low-cost sensor networks may be useful for improving LURs 

due to the increased network density within many urban areas and coverage in places not 

covered by EPA. For example, PurpleAir (hereafter PPA) is a crowd-sourced low-cost sensor 

network that offers publicly available real-time and historic data (e.g., PM2.5) worldwide 

(PurpleAir, 2020). Prior work has shown that the PPA data is well correlated with reference 
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measurements in US and Canada (R2 = ~ 0.90; Brauer & Lee, 2018; South Coast Air Quality 

Management District, 2018). An understudied topic is whether the crowd-sourced low-cost 

sensor data from multiple cities is of sufficient quality to improve LUR models and to capture 

spatial variability that is not well characterized by regulatory monitoring alone. Properly 

characterizing the spatial patterns of air quality is important for assigning exposures in 

epidemiological studies and estimating the resulting health impacts.  

In this study, I use a crowd-sourced low-cost sensor network (i.e., PPA) in 6 US urban areas to 

explore the contribution of multi-city low-cost sensor data to regulatory monitor-based LUR 

models. Specifically, I firstly use calibrated concentration estimates from the 6-city PPA sensors 

(n = 149) to evaluate an existing PM2.5 LUR model and identify potential opportunities for the 

PPA data. I then develop LUR models using the PPA data (along with the same geographic 

variables from the existing model) and evaluate this model using the EPA regulatory monitors in 

the same 6 urban areas (n = 68). I also develop hybrid models using a combination of the PPA 

and EPA monitors. Finally, I focus on comparing how long-term concentration estimates derived 

from different LUR modeling approaches impact exposure assessment. 

4.2. Materials and Methods 

4.2.1. PPA Data Preparation 

4.2.1.1. National model data 

In this study, I used an existing national LUR model for year-2015 annual average PM2.5 

developed as part of the Center for Air, Climate, and Energy Solutions (CACES; hereafter 

CACES LUR; Kim et al., 2020). Briefly, the model is developed using a partial least squares-

universal kriging (PLS-UK) approach; the universal kriging framework partitions annual average 
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concentrations into (1) a variance component that accounts for spatial and non-spatial variability 

and (2) a mean component based on a small number of reduced dimension variables from partial 

least squares of a larger number of independent variables Kim et al., 2020). Independent 

variables included 11 categories of geographic variables (e.g., traffic, population, land use, and 

satellite air pollution measurements) around the regulatory PM2.5 monitoring sites (n = 757) in 

2015. Many variables were calculated as point data or at various buffer sizes (50m – 15 km) 

resulting in 339 independent variables; a list of independent variables is in Table A4.1. 

Generally, the CACES LUR had a reasonable performance using internal data (e.g., random 10-

fold cross validation PM2.5 in 2010: R2 = 0.85; standardized RMSE = 0.13). Details of model 

development and internal evaluation can be found here (Kim et al., 2020).  

4.2.1.2. PPA data assembly 

I retrieved PM2.5 measurements from a crowd-sourced low-cost sensor network (i.e., PPA). The 

PPA sensors measure real-time PM1.0, PM2.5, and PM10 concentrations that are calculated based 

on light scattering and conversion factors from the manufacturer (https://www2.purpleair.com/). 

Since our analyses aimed to assess performance from multi-city low-cost sensors, I selected 

core-based statistical areas (CBSA; hereafter cities; n = 6) that have at least 7 EPA regulatory 

monitors and PPA sensors each. Namely, Los Angeles-Long Beach-Santa Ana, CA (LA), New 

York-Northern New Jersey-Long Island, NY-NJ-PA (New York), Phoenix-Mesa-Glendale, AZ 

(Phoenix), Pittsburgh, PA (Pittsburgh), Riverside-San Bernardino-Ontario, CA (Riverside), and 

Washington-Arlington-Alexandria, DC-VA-MD-WV (DC). I retrieved and assembled ambient 

(with “outdoor” label on the website) hourly PM2.5 data (2015 – 2018) at all available PPA 

sensor sites in the 6 cities using Python 3.6 (Python Software Foundation) and RStudio 3.5.2 

from the ThingSpeak and PPA Application Interface Programming.  
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4.2.1.3. Quality assurance/quality control (QA/QC) and the PPA data correction 

I selected PPA sensor sites using the same criteria as the CACES national LUR model. 

Specifically, I retained sites with at least 18 hours/day, 244 days/year, and no more than 45 

consecutive days without measurements with the goal of calculating annual averages (S. Kim et 

al., 2020). The PPA monitors have two sensors (“channels”) in each monitor. I primarily used 

measurements from channel A and used channel B data only when data from channel A was not 

available. I also used the two channels to exclude spurious data by removing hours when the 

absolute difference between the two channels were larger than a predefined threshold (i.e., 3 

µg/m3 or 20% of the maximum channel readings, whichever is greater; Malings et al., 2019). For 

sites where it was possible to calculate annual averages for more than one year, I chose the year 

that was closest to 2015 to most closely align with the CACES LUR model estimates. Due to 

sensitivity of the PPA sensors to relative humidity and temperature (Y. Wang et al., 2015; R. Xu, 

2015), I removed obvious sensor errors (e.g., PM2.5 concentrations > 1,000 µg/m3, temperature > 

120 °F, and relative humidity > 100%). These procedures resulted in 149 valid PPA sites in the 6 

cities. A summary of obtaining valid PPA measurements is in Table A4.2. 

I mainly used a physics-based Hygroscopic Growth (HG) correction method from co-location 

studies to adjust the raw hourly PM2.5 measurements of the PPA sensors (Malings et al., 2019). In 

general, I calibrated using (1) the HG factor that accounts for temperature and relative humidity 

by referencing at conditions of reported regulatory data (22 °C and 35% relative humidity) and 

(2) hygroscopicity of bulk aerosol that considers particle composition changes during seasons. I 

used the PPA measurements with relative humidity below 95%. Finally, I applied additional 

linear corrections to calibrate factory-to-ambient differences using co-located measurements with 

the federal equivalent Beta Attenuation Monitors (BAM) in Pittsburgh (Malings et al., 2019) and 
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Riverside (South Coast Air Quality Management District, 2018). I applied the best available city-

specific chemical composition, thus hygroscopicity to the HG method for each city. Preferably, 

for cities (or nearby cities) where I had co-located regulatory-grade monitors, I calculated 

hygroscopicity based on the co-located monitors (i.e., Pittsburgh, LA, and Riverside); for cities 

where this was not possible, I used the Interagency Monitoring of Protected Visual Environments 

(IMPROVE) samples for the monitors closest to each city (i.e., New York, Phoenix, and DC; 

Figure A4.1; IMPROVE, 2019). Since city-specific composition may not be readily available if 

more cities are included, I also tested another Empirical Correction (EC)-based method for the 6 

cities to compare calibration performance (Figure A4.2; Malings et al., 2019). The PPA data 

assembly framework is presented in Figure A4.3.  

4.2.2. LUR Development Using the PPA Data 

4.2.2.1. External evaluation of the CACES LUR 

I used the adjusted hourly PPA PM2.5 measurements to calculate the annual average 

concentrations of all PPA sites for our analyses. I drew a map to compare the PPA data and the 

CACES LUR predictions in LA area and to identify the disagreement. I then performed external 

evaluation by comparing the PPA data to the CACES LUR predictions for all 6 cities. I explored 

how the external evaluation varied by the proximity of a PPA site to potential sources, including 

(1) sites near major road segments (< 200m) based on the 2015 TIGER/Line Shapefiles, (2) sites 

with more than 5 restaurants within 500m from Google Point of Interest data (Chapter 3), and (3) 

sites with major facility emissions (annual emissions > 45 short tons per year) within 5,000m 

according to the 2017 National Emissions Inventory data. I investigated the PPA sites near major 

emissions vs. all other sites (i.e., background) for the three types of sources.  
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4.2.2.2. Development of the PPA LUR 

To test the potential of using a low-cost sensor network for multiple cities, I used the PPA 

measurements in the 6 cities to develop LUR models using the same PLS-UK approach as the 

CACES LUR. Our dependent variable was PM2.5 annual average concentrations at the 149 PPA 

sites. Our independent variables included the same 339 geographic variables as the CACES LUR 

models and were assigned based on values from the nearest Census Block, the smallest spatial 

resolution for the existing CACES LUR.  

I conducted internal evaluation of the PPA LUR using the PPA data of the 6 cities (n= 149). 

Briefly, I used 10-fold cross-validation (CV): randomly divided all PPA sites into 10 groups, 

held out one group, developed models using the remaining groups, and predicted the hold-out 

group. Similar to the CACES LUR external evaluation, I performed external evaluation using the 

EPA monitors of the 6 cities (n = 68). Then, I compared the internal and external evaluation of 

the PPA LUR model. 

4.2.3. LUR Development Using Both the PPA and EPA Data 

I developed a hybrid LUR model (hereafter Hybrid LUR) by incorporating PM2.5 measurements 

of (1) the 6-city EPA monitors (n = 68) and the 6-city PPA sensors in the 6 cities and (2) the 

national EPA monitors (n = 757) and the 6-city PPA sensors (n = 149). Similar to the process of 

internal evaluation of the PPA LUR, I conducted internal evaluation for the Hybrid LUR.  

4.2.4. Exposure Assessment Based on Different LUR Modeling  

I used population-weighted PM2.5 annual average predictions from the three different LUR 

models based on combinations of the national EPA monitors and 6-city PPA monitors (CACES 

LUR, PPA LUR, and Hybrid LUR) to assess human exposures that could be used in 
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epidemiological studies. To further investigate how the EPA data from national monitors vs. the 

6 cities impacts the exposure assessment based on the CACES LUR and the Hybrid LUR, I 

created 5 scenarios of exposure maps: CACES LUR (National EPA data), CACES LUR (6-city 

EPA data), PPA LUR (6-city PPA data), Hybrid LUR (6-city PPA + National EPA data), and 

Hybrid LUR (6-city PPA + 6-city EPA data). Predictions were developed for all locations within 

the 6 cities except areas with zero population based on the US Census, at the Block Group (n = 

31,911). 

4.3. Results and Discussion 

4.3.1. External Evaluation Performance of the CACES LUR 

4.3.1.1. Descriptive statistics of measurements and CACES LUR 

After conducting QA/QC for the PPA measurements, I drew the boxplot of the EPA monitors (n 

= 68), PPA sensors (n = 149), and CACES LUR predictions at Census Blocks (n = 478,756) in 

Figure 4.1. Generally, the PPA measurements reported higher concentrations than the EPA 

monitors. This result may be attributable to a bias towards high concentration locations (e.g., 

near traffic or industrial area) from PPA users. For example, LA had many more PPA than EPA 

sites (103 vs. 12), thus the PPA sites potentially had better chance to capture more localized 

emission sources and spatial variability. Comparatively, Phoenix had equal number of the EPA 

and the PPA monitoring sites (n = 7) reporting similar annual average concentrations. In 

addition, interquartile range (IQR) of the concentrations varied by city suggesting that different 

sampling locations between the regulatory and crowd-sourced sensors may impact the variability 

of measurements. Developed using the EPA monitors, the CACES LUR predicted similar-to-

smaller IQR than the EPA measurements, which may be explained by the fact that (1) the Census 
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Block predictions derived from the national CACES LUR includes many more locations than the 

EPA monitoring network (478,756 vs. 68) including many likely low-concentration areas, and 

(2) owing to the model structure, the CACES LUR may not capture all of the variability 

demonstrated within the EPA monitoring network.  

 

Figure 4.1. Boxplot of PM2.5 concentrations by city and data source: EPA monitors (n = 68), PPA 

sensors (n = 149), and CACES LUR predictions at Census Blocks (n = 478,756).  

4.3.1.2. External evaluation of the CACES LUR 

The comparison of the CACES LUR predictions and the PPA measurements of LA area 

identified that concentration disagreement seemed to be larger at residential areas near industrial 
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facilities or highway segments (Figure 4.2). This finding suggests that the PPA sensors may help 

pick up “hotspots” that were not be captured by the CACES LUR model. Table 4.1 shows a 

summary of the EPA and PPA data for the 6 cities as well as external evaluation results of the 

CACES LUR. PPA mean concentrations were higher than the EPA monitors (15 vs. 8.7 µg/m3); 

the disagreement was most prominent in LA and Riverside. The performance of the external 

evaluation of the CACES LUR using all 6-city PPA measurements (pooled evaluation) showed 

modest performance (R2 = 0.41, MAE = 5.5 µg/m3) indicating that the CACES LUR may fail to 

capture the PPA sites where high concentrations were reported (Figure A4.4). Comparatively, 

the single-city evaluation performed worse than the pooled evaluation for most cities (Table 4.1, 

Figure A4.5). Pittsburgh (R2 = 0.72, MAE = 1.7 µg/m3) and Riverside (R2 = 0.64, MAE = 4.0 

µg/m3), where co-located PPA and regulatory monitors were available for the PPA data 

correction, performed better than the pooled evaluation. This finding indicates that co-locating 

the PPA sensors with the EPA monitors improves the PPA calibration. The disagreement 

between the CACES LUR and the PPA measurements implies the potential use of the PPA data 

in LUR models. The external evaluation using the HG corrected PPA data outperformed that 

using the EC method for the 6 cities in our study Figure A4.6 – A4.11, which suggests that our 

use of the HG correction method is more appropriate in this study. 
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Figure 4.2. Comparison of the CACES LUR predictions and the PPA measurements of LA area. 

 

Table 4.1 Summary Statistics of the EPA Monitors and PPA Sensors and External Evaluation of 

the CACES LUR 

Core-based Statistical Area (CBSA) 
# Monitors 

Mean Concentrations 

(µg/m3) 

External 

Evaluation 

EPA PPA EPA PPA R2 MAE 

Los Angeles-Long Beach-Santa Ana, CA 12 103 9.1 16 0.28 6.8 

New York-Northern New Jersey-Long Island, 

NY-NJ-PA 
19 7 9.1 9.6 0.31 2.1 

Phoenix-Mesa-Glendale, AZ 7 7 6.6 6.6 0.28 0.71 

Pittsburgh, PA 12 8 9.9 12 0.72 1.7 

Riverside-San Bernardino-Ontario, CA 11 16 7.7 12 0.64 4.0 

Washington-Arlington-Alexandria, DC-VA-

MD-WV 
7 8 8.6 11 0.020 2.5 

All 6 cities 68 149 8.7 15 0.41 5.5 

Note: MAE: mean absolute error (µg/m3). Concentrations and R2 are at two significant figures. 
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To further investigate whether the disagreement is a general trend for potential emission sources. 

I conducted external evaluation using the PPA sites that were near major emission sources (i.e., 

traffic, restaurants, and NEI facilities) vs. all other sites. Generally, when accounting for all the 

three major sources, no general trend was found at sites in proximity (R2: 0.21, MAE: 6.9 µg/m3) 

vs. background (R2: 0.41, MAE: 5.5 µg/m3; Figure A4.12). Similar results were found in the city-

specific evaluations (Figure A4.13 – A4.18). While looking at each source separately, no 

obvious pattern was found for all 6 cities except for the NEI facilities (Figure A4.19 – A4.21). 

For example, for PPA sites near high NEI emissions (within 5,000m), the external evaluation 

performed (R2: 0, MAE: 8.0 µg/m3) worse than the background (R2: 0.51, MAE: 4.7 µg/m3) 

indicating that such high emissions may not be fully captured in the CACES LUR models (given 

limited number of EPA monitors surrounding major industrial facilities). This finding implies 

that the PPA sensors may be integrated into LUR models to help capture the near-source 

variability. 

4.3.2. PPA LUR Models 

4.3.2.1. Internal and external evaluation of the PPA LUR 

I used the PPA data (n = 149) instead of the EPA data to develop LUR models (i.e., PPA LUR); I 

conducted external evaluation using the EPA monitors (n = 68). The internal evaluation showed 

reasonable performance (R2: 0.66; MAE: 2.01 µg/m3) indicating that the PPA data may be 

feasible to develop LUR models. The external evaluation performance dropped (R2: 0.39; MAE: 

4.1 µg/m3) as compared to the internal evaluation; but the slope was consistent around the 1:1 

line (Figure 4.3). Notably, the PPA LUR seemed to consistently over-predict concentrations at 

the EPA sites (Figure 4.3, right panel); however, there were no EPA concentrations higher than 

20 µg/m3 available to further explore if such pattern remains at high-concentration sites. These 
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findings suggest that the PPA network could potentially be used successfully in places where 

large regulatory monitoring network don’t exist. 

 

Figure 4.3. Internal evaluation vs. external evaluation of the PPA LUR models. Internal 

evaluation: 149 PPA measurements; external evaluation: 68 EPA measurements. 

4.3.3 Hybrid LUR Models  

I developed the Hybrid LUR models using a combination of the EPA and PPA measurements 

(Figure 4.5). Generally, the Hybrid LUR performed better than the separate models (i.e., CACES 

LUR and PPA LUR). Specifically, when using data from the national EPA monitors, the Hybrid 

LUR performed similarly (R2: 0.85; MAE: 1.02 µg/m3) as compared to the CACES LUR (R2: 

0.83; MAE: 0.72 µg/m3; Figure 4.5: panel D vs. panel A). When using the EPA and PPA data 

from only the 6 cities, the PPA LUR (R2: 0.66; MAE: 2.01 µg/m3) showed similar performance 

as compared to the CACES LUR (R2: 0.67; MAE: 0.99 µg/m3; Figure 4.5: panel C vs. panel B); 

however, combining both data improved model performance: Hybrid LUR (R2: 0.77; MAE: 1.62 
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µg/m3; Figure 4.5: panel E). These findings indicate that integrating the PPA data into LUR 

models could improve model performance.  

4.3.4. Exposure Assessment Using Population-weighted Concentrations 

4.3.4.1. Boxplot of the three exposure assessment scenarios 

Figure 4.4 shows the boxplot of PM2.5 Predictions of the CACES LUR, PPA LUR, and Hybrid 

LUR at Block Group level for the 6 cities. In general, the PPA LUR had the highest median 

concentrations and prediction variability. A likely reason for the inflated PPA LUR results is that 

the full sample was dominated by measurements in LA (~2/3 of the measurements), where 

concentrations from the PPA sensors were higher than the EPA monitors (Figure 4.1), and the 

consistently higher concentrations in LA was probably transferred to other cities via LUR 

modeling. This transferability may also be found when the Hybrid LUR predictions in Phoenix 

and Riverside were slightly higher than the CACES LUR; however, the CACES LUR and 

Hybrid LUR shared similar central tendencies of predictions for most cities.  
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Figure 4.4. PM2.5 Predictions of CACES LUR, PPA LUR, and Hybrid LUR at the Block Group 

level (n = 31,911). 

4.3.4.2. Comparison of the CACES LUR, PPA LUR and Hybrid LUR 

I compared the three exposure assignment models (5 scenarios) of population-weighted PM2.5 

concentrations for LA at the BG level in the main text (Figure 4.5) since the PPA data in LA had 

(1) the highest variability and (2) most number of sensors (n = 103) among the 6 cities 

(comparisons for other cities are in Figure A4.22 – A4.26). I found that the PPA LUR predicted 

higher concentrations as compared to the CACES LUR and the Hybrid LUR. To investigate 

whether the PPA LUR predictions were mostly due to elevated PPA measurements, I normalized 

the predictions to the model mean. I found that the PPA LUR had more sparse areas of high 
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concentrations as compared to the CACES LUR (developed using the national EPA data or the 

6-city data; Figure A4.27 – A4.32). This result indicates that the PPA LUR could potentially 

capture more within-city variability due to higher density of sensors deployed around the city as 

compared to the CACES LUR. This finding could also be reflected by the sparsely distributed 

higher concentrations in the Hybrid models as compared to the CACES LUR (Figure 4.5: panel 

D vs. panel A and panel E vs. panel B). The difference between the models using the national 

EPA data and the 6-city EPA data was not large (Figure 4.5: panel A vs. panel B and panel D vs. 

panel E). To include as many as the EPA monitors, I focused on analyzing the model scenarios 

with the national EPA data: CACES LUR (National EPA data) and Hybrid LUR (6-city PPA + 

National EPA data).  
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Figure 4.5. Population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in LA (top 5 panels) and 

internal evaluations of LUR model comparisons (bottom 5 panels). Panel A is the CACES LUR developed using the national EPA 

data; panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA LUR using the 6-city PPA data; panel D is the Hybrid 

LUR using the national EPA data and the 6-city PPA data; panel E is the Hybrid LUR using the 6-city EPA data and the 6-city PPA 

data. 
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Figure 4.6 shows scatterplots of the three exposure scenarios of LA and the 6 cities (scatterplots 

of other cities are presented in Figure A4.33 – A4.37). I found that the PPA LUR and the 

CACES LUR predictions were spatially correlated while the PPA LUR predicted higher PM2.5 

concentrations overall. The association between the PPA LUR and the CACES LUR predictions 

was the strongest in LA among all 6 cities (R2: 0.62, MAE: 4.52 µg/m3 with a near 1:1 slope). 

This alignment was also consistent for the CACES LUR including all 6-city data, though with a 

drop in R2 (R2: 0.46, MAE: 4.50 µg/m3 with a near 1:1 slope). Both scatterplots (top two panels 

of Figure 4.6) reveal that the PPA LUR predictions were consistently higher than those from the 

CACES LUR. Similarly, the Hybrid LUR predictions were also correlated with the CACES LUR 

for the 6 cities (strongest for LA); the correlation dropped when including data of all 6 cities (R2: 

0.82 vs. 0.64). These findings indicate that including the PPA data might introduce some areas of 

higher concentration that may not be predicted by the CACES LUR; however, we need a bit 

more care of (or confidence in) the absolute concentrations reported by the PPA sensors to verify 

whether these are “real” areas of high concentrations.  
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Figure 4.6. Scatterplots of the PPA LUR and CACES LUR comparisons (top two panels) and the 

Hybrid LUR and CACES LUR comparisons in LA and the 6 cities (bottom two panels).  
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4.3.5. Implications for LUR Evaluation and Development Using Low-cost Sensors 

I used a crowd-sourced low-cost sensor network using data from multiple US cities rather than 

single cities (Dijkema et al., 2011; Eilenberg et al., 2020; Jain et al., 2020; Masiol et al., 2018; 

Weissert et al., 2019) to explore the contribution of low-cost sensing to LUR models. I 

developed LUR models using the PPA data from 6 US cities and obtained promising 

performance (i.e., PPA LUR: R2: 0.66), which indicates that the crowd-sourced multi-city low-

cost sensor data may be plausible for LUR development. In addition, integrating the 6-city low-

cost sensor data into existing regulatory-based CACES LUR achieved improved performance. 

For example, when using the EPA data nationwide, adding the 6-city PPA data into the LUR 

model resulted in similar performance (R2: Hybrid PPA [0.85] vs. CACES LUR [0.83]). While 

combining both the EPA data and the PPA data from the same 6 cities, the Hybrid model 

outperformed the CACES LUR (R2: Hybrid PPA [0.77] vs. CACES LUR [0.67]). These findings 

suggest that the PPA data is a promising dataset to improve existing LUR. Further, the 

contribution of adding only the PPA data from 6 cities (n = 149) to the national EPA data 

network (n = 757) may not be as obvious as Hybrid models developed using the 6-city PPA data 

and the 6-city EPA data (n = 68). As such, the low-cost sensor networks could potentially be as 

useful as regulatory networks for model building when high-grade measurements aren’t 

available. Our study reinforced the potential contribution of the low-cost sensor network to LUR 

modeling similar to other studies (Bi et al., 2020b; Huang et al., 2019; Schneider et al., 2017; 

Weissert et al., 2019) Particularly for PM2.5, a recent study in Southern California found that 

combining the low-cost sensors with the regulatory monitors using a satellite-based random 

forest hourly LUR models could effectively improve PM2.5 predictions (CV R2 increased by 

~0.2; Bi et al., 2020).  
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Developing LUR models with refined spatial resolution and coverage is an important goal for 

exposure assessment. LUR models developed from only regulatory monitors may 

mischaracterize within-city variability especially for sparsely monitored locations (Pope et al., 

2019). Our approach of using the crowd-sourced low-cost sensor network to develop LUR 

models may offer insight to environmental and health scientists. For example, the well-correlated 

scatterplots among the population-weighted PPA LUR, Hybrid LUR, and the CACES LUR are 

positive signs for using the low-cost sensors. For example, they could serve as a substitute to 

some places where monitoring is sparse and be integrated into existing regulatory monitor-based 

LUR models for improving exposure assessment. In addition, the exposure assessment maps of 

the PPA LUR and the Hybrid LUR models had identified more within-city variability as 

compared to the CACES LUR predictions. The different spatial patterns indicate that the low-

cost sensor network may be useful for near-source areas. Similar findings have been found in 

another study using an ongoing low-cost sensor network in the New York City Community Air 

Survey, which identified more “hotspots” in traffic and populous areas (Huang et al., 2019). 

While our study could not confirm whether the disagreement came from the underestimation of 

the CACES LUR models or the overestimation of the PPA LUR, our results are encouraging for 

the potential of the multi-city low-cost sensors to be used in LUR models to merit further 

investigation on these areas of discrepancy.  

The usefulness of the low-cost sensor network for LUR models may also be reflected by some 

disagreement between the PPA data and the regulatory monitor-based CACES LUR (Figure 4.2 

and Table 4.1). The PPA users tend to monitor high-concentration locations (e.g., industrial areas 

or traffic segments), which may help pick up such areas not predicted by the CACES LUR. I 

found that the pooled CACES LUR model evaluation outperformed the city-specific models, 
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similar to a study in Canada that found the national models could generally capture pollutant 

variability at regional-scale instead of local-scale (Hystad et al., 2011b). This is likely due to the 

fact that the CACES LUR models (1) were based on national patterns and potentially 

mischaracterized within-urban variability and (2) may be sensitive to individual cities with 

different siting of regulatory monitors. In this case, models incorporating the PPA data might 

help capture local variability and resolve the complex spatial heterogeneity of within-city air 

pollution levels.  

One key potential of using the low-cost PPA sensors is the increased and promising network. 

The PPA sensors has by far the largest global network (n = ~ 7000 nodes) and the expansion of 

such network would be more significant for places where regulatory-grade monitoring networks 

are limited (e.g., developing countries) or don’t exist (e.g., rural areas; Reis et al., 2015). For 

example, Africa lacks sufficient monitors to track air quality leaving nearly a billion people have 

no pollution exposure information at all (IQAir, 2019). The available PPA sensor data as well as 

other similar types of low-cost sensor network could provide opportunities for developing LUR 

models to predict PM2.5 exposure. Another strength of the PPA network is that it has many 

sensors tracking real-time PM2.5 for several months of a year rather than a few weeks, 

contributing to more representative annual averages. The PPA data I used to calculate annual 

averages in this study included at least 2/3 days of the entire year. While the regulatory EPA data 

is known to be the “gold standard”, the crowd-sourced PPA data could potentially become a 

valuable dataset with careful quality control and side-by-side calibration from the regulatory-

grade monitors. 

I followed the EPA criteria to filter and calibrate the PPA data with the goal of obtaining reliable 

annual averages of PM2.5. Previous studies typically used measurements based on one sensor per 
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site or duplicated measurements at limited sites at best (Eeftens et al., 2012b; English et al., 

2017; Huang et al., 2019). I was able to censor the two channels of the PPA sensor per site to 

reduce the bias of measurements. Although the low-cost sensors may not be as reliable as 

regulatory monitors, a good correlation between the low-cost sensors and the regulatory 

reference sites has been identified (Brauer & Lee, 2018; Mead et al., 2013; South Coast Air 

Quality Management District, 2018). To account for the sensitivity of the low-cost sensors to 

humidity and temperature and to approach to regulatory-grade data, I have applied the HG 

correction approach (Malings et al., 2019) based on available reference monitors in Pittsburgh (n 

= 9) and Riverside (n = 3). Our data calibration suggests that more co-located sensors with 

regulatory-grade monitors from a variety of locations could reduce the uncertainty of the PPA 

measurements and mitigate the concerns for developing LUR models.  

4.3.7. Limitations and Future Research 

Our work could be improved in several ways in the future. Our 6-city PPA data was dominated 

by the LA sample (103 out of 149) and could introduce bias to predictions of other cities for 

capturing within-city variability. Developing LUR models with a larger sample of PPA data 

(e.g., integrating PPA sensors nationwide) could allow for improving exposure estimates for 

multiple cities. I web-scraped crowd-sourced PPA data, but had limited information on 

monitoring purpose, sampling campaign, and sensor ownership among different cities. For 

example, the user-oriented sensor network could lead to a bias of sampling at locations near high 

emission sources (e.g., industrial facility). As such, LUR models developed using only sensors 

based on such preference are more likely to over-predict other areas. A useful test for 

investigating this issue is to assess locations where the low-cost sensor and regulatory-based 

models disagree. Another limitation is that our QA/QC procedure was not able to identify 
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whether the PPA sensors had a systematic bias, which warrants caution for its sole use of model 

development. The improved performance of the Hybrid LUR models suggests that combining 

data from both the low-cost sensors and regulatory monitors could help reduce the uncertainty ( 

Williams, 2019), thus allowing for spatially-refined exposure estimates to investigate the air 

quality impacts on human health. The confidence of using the low-cost sensor data could also be 

gained through testing more co-located PPA sensors with the regulatory monitors. For example, 

prior work has showed that the PPA data was reliable based on investigations of two cities 

(Brauer & Lee, 2018; South Coast Air Quality Management District, 2018), future work could 

aim to reduce uncertainty by expanding the evaluation of the PPA sensors for various locations 

and multiple cities. Lastly, the PPA measurements I used to calculate annual averages were 

mostly from 2017 and 2018 due to data availability while the latest CACES LUR predictions 

were for 2015. For example, the California wildfire in December 2017 may be one incident to 

elevate the air pollution level; however, a filtered boxplot (excluding the PPA data of December 

2017 in LA and Riverside; Figure A4.38) indicated a minor influence on the annual averages. To 

better inform application of the PPA data, I remained using the full year of data. Future studies 

can be refined by using same years of PPA sensor measurements and CACES model predictions 

once newer versions of LUR models become available.  

4.4. Conclusion 

The novelty of this study is to use an emerging crowd-sourced low-cost sensor network (i.e., 

PPA) to develop LUR models for multiple cities. Our work suggests that the low-cost sensors 

may offer a promising alternative to fill the gaps of existing regulatory monitoring network (e.g., 

sparse or no monitors). Most importantly, I demonstrate how the approach of using crowd-

sourced sensor network for LUR models could provide information for places where regulatory 
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monitors are not available and serve as a promising strategy to improve exposure assessment of 

spatial resolution and coverage. Further, our approach of using data from the 6-city PPA sensors 

for LUR models could be expanded to include the PPA data nationwide or other low-cost sensor 

networks available. This idea could become more significant for rural areas and developing 

countries where regulatory monitor networks are not rich, thus tracking exposure patterns of 

PM2.5 more accurately and informing environmental and health policies.  
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Chapter 5: EXPLORING NEW PREDICTOR DATA SOURCES TO 

DEVELOP NATIONAL LAND USE REGRESSION MODELS FOR 

CRITERIA POLLUTANTS 

ABSTRACT 

Most empirical land use regression (LUR) models are developed using hundreds of geographic 

variables (e.g., road lengths, area of built land; hereafter “traditional” variables). An 

understudied topic is whether “new” data sources capable of capturing street-level features 

uniformly (e.g., point of interest [POI], Google street view [GSV], and local climate zones 

[LCZ]) could alternate traditional variables and improve LUR models. I developed national LUR 

models for predicting annual average concentrations of six criteria pollutants (e.g., NO2, PM2.5) 

in the US. I compared models with combinations of new and traditional variables based on 

different modeling approaches (e.g., machine learning [ML]). Model performance was similar 

for both variable scenarios (e.g., random 10-fold CV R2 of ML-kriging models for NO2, new vs. 

traditional: 0.89 vs. 0.91); whereas adding the new variables to the traditional LUR models 

didn’t necessarily improve model performance. Models with kriging effect outperformed those 

without (e.g., CV R2 for PM2.5 using the new variables, ML-kriging vs. ML: 0.83 vs. 0.67). The 

contribution of the new variables to LUR models highlights the potential of substituting 

traditional variables, thus enabling LUR models in areas with limited or no data (e.g., developing 

countries) and across political boundaries (e.g., cities).  

Keywords: 

Open data; urban morphology; local emissions; enhanced models 
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5.1. Introduction 

Ambient air pollution contains a complex mixture of particles and gases that have shown adverse 

effects to human health (Jerrett et al., 2009; Laden et al., 2006). Knowledge of air quality 

primarily relies on limited regulatory air monitors, yet fail to capture air pollution concentrations 

at unmonitored locations (Demerjian, 2000; EPA, 2020). Land use regression (LUR) has been 

identified as an effective tool to predict air pollution concentrations at these locations (Adam-

Poupart et al., 2014; Keller et al., 2015; Marshall et al., 2008; Van Donkelaar et al., 2016). 

Estimating air pollution levels with improved efficiency and spatial resolution/coverage 

necessitates better LUR models aiming at intra-city and multi-city air pollution assessment for 

health studies (Beelen et al., 2014; Di et al., 2017), environmental justice (Clark et al., 2014; Su 

et al., 2010), and urban planning (Hankey et al., 2017; Shi et al., 2016).  

“Traditional” variables used for developing LUR models often include hundreds of geographic 

features (e.g., traffic, land use/land cover, and population dynamics; Hoek et al., 2008; Jerrett et 

al., 2005). These variables are often extracted and calculated based on various government-

sponsored sources that may not be timely updated (e.g., US Census, national land cover database 

[NLCD]) using geospatial information system (GIS) and remote sensing techniques (Beckerman 

et al., 2013; Hankey & Marshall, 2015; H. Xu et al., 2019). The variable collection and 

processing demand large effort from data sources at different levels, thus difficult for 

generalizing LUR models across regions. For example, land use data is often limited at the 

national level since local jurisdictions classify and archive this information in different manners 

(Theobald, 2014). Another limitation is that traditional variables do not include urban 

morphology (e.g., street configuration, building height), which may be important to capture 

street-level air pollution variability (Edussuriya et al., 2014; Yuan et al., 2014; Tang et al., 2013). 
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New variables that require less different data sources and characterize more air quality-related 

features may be helpful for improving LUR models.  

More recently, the column abundance and ground-level estimates of air pollution from satellite 

products (e.g., aerosol optical depth [AOD]) have been identified as significant variables for 

developing LUR models (Bechle et al., 2013; Martin, 2008), particularly at national or global 

levels (Knibbs et al., 2014; Novotny et al., 2011; Vienneau et al., 2013). The rapid development 

in data sciences (e.g., data mining) has enabled the access to multiple non-government sponsored 

data platforms (Bellinger et al., 2017; Lary et al., 2016; Sheng & Tang, 2011; Zheng et al., 

2013). For example, Google point of interest (POI) provides place-based attributes (e.g., 

restaurants, gas stations) related to air quality (Hassan Amini et al., 2014; Wu et al., 2017b). In 

addition, Google street view (GSV) imagery-derived features could characterize street-level built 

environment (e.g., greenness, infrastructure; Larkin & Hystad, 2019; Rzotkiewicz et al., 2018). 

Another recently developed database is the local climate zones (LCZ), which classifies built and 

natural environment based on urban morphology and climate-related properties (Bechtel et al., 

2015; Demuzere et al., 2020; Stewart & Oke, 2012a). The LCZ data has been widely used in 

temperature and climate studies, which may offer some insights for air quality modeling 

(Brousse et al., 2016; Steeneveld et al., 2016; Y. Xu et al., 2017). While these new sets of 

variables may offer a uniform way of capturing local features across large geographies, an 

understudied topic is whether they could shed some light on LUR model development and 

generalizability.  

Conventional LUR models apply a stepwise regression approach that allows for multiple 

significant variables with varying buffers to be selected (Eeftens et al., 2012; Su et al., 2009). 

Recent progress has been made to develop parsimonious and hybrid models (e.g., partial least 
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squares in a kriging framework [PLS-UK]) that input much less number of predictor variables 

(Kim et al., 2020). Machine learning (ML) models (e.g., random forest, neural network) allow 

for processing big data input with high predictive power for air quality (Bi et al., 2020a; Di et al., 

2016). Questions remain on how these LUR approaches impact model performance using 

different sets of variables. 

In this study, I develop national LUR models of six criteria pollutants (i.e., NO2, O3, PM2.5, CO, 

PM10, and SO2) for the contiguous US that predict annual average concentrations based on 

regulatory monitors in 2015. My work aims to compare LUR model performance using different 

scenarios of predictor variables (i.e., “traditional”, “new”, and “all”) and check their performance 

consistency across different modeling approaches (e.g., stepwise regression, PLS-UK, and ML). 

That is, the “traditional” scenario includes geographic and satellite categories. The “new” 

scenario includes satellite, POI, GSV, and LCZ data. Lastly, the “all” scenario contains all of the 

candidate independent variables. I test the feasibility of using new variables and assess merging 

new variables with traditional variables in LUR models. I also evaluate the contribution of 

adding kriging effect to LUR models. I focus on how choice of variable input across different 

modeling approaches impacts LUR model performance.  

5.2 Materials and Methods 

5.2.1. Dependent Variables 

The dependent variables of the models included criteria pollutant (i.e., pollutants that have been 

regularly monitored due to their adverse health effects; NO2, O3, PM2.5, CO, PM10, and SO2) 

concentrations retrieved from the EPA Air Quality System (AQS) monitoring locations in 2015 

(Kim et al., 2020). I developed models for all criteria pollutants, but focused on reporting only 
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criteria pollutants (i.e., NO2, O3, and PM2.5) in the manuscript. All the concentrations were 

annualized (except O3) mainly based on the following criteria: computing locations with (1) at 

least 18 hours valid measurements per day and 244 days per year and (2) at most 45 consecutive 

missing days of measurements. The concentrations of O3 was calculated using the daily 

maximum of the 8-hour moving average at locations with at least 18 hours per day during the 

summer season with predominant photochemical reactions (i.e., May to September). All 

pollution concentrations were square rooted to meet the normal distribution assumption. Detailed 

description of data preparation can be found in another study (Kim et al., 2020).  

5.2.2. Independent Variables 

I assembled multiple categories of candidate independent variables for developing LUR models 

in the goal of exploring how different variable input impacts model performance. Generally, I 

used three scenarios of variable inputs: traditional (i.e., geographic and satellite) vs. new (i.e., 

satellite, POI, GSV, and LCZ) vs. all (all candidate variables). Table 5.1 shows the full list of the 

candidate independent variables.  

5.2.2.1. Geographic variables 

To compare to a recent LUR study (Kim et al., 2020), I used the same sets of geographic 

variables including eight major categories (e.g., traffic, population, land use/land cover, and 

vegetation). Variables were calculated and tabulated as count, length, and area within appropriate 

buffers according to different data types; in general, buffer sizes ranged from 0.05 to 30 

kilometers. This process resulted in ~ 360 variables of geographic category for the LUR models 

(Table 5.1). Detailed data processing and variable calculation process is also available in Kim et 

al., 2020.
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Table 5.1 Candidate independent variables in the LUR models 

Variable scenario Variable 

category 
Variable name Variable type Description Data source 

All New Traditional 

X  X 

Geographica 

Traffic 

Length in buffer 

(km) 

Any road, A1, truck route, 

intersections, etc. (0.05-15 

km) 

TeleAtlas 

(http://www.teleatlas.com/OurProducts/M

apData/Dynamap/index.htm) 

X  X 

Population 

Count in buffer 

(person) 

Population in block groups 

(0.5-3 km) 

US Census 

(http://arcdata.esri.com/data/tiger2000/tig

er_download.cfm) 

X  X 
Land use/land 

cover Area in buffer (%) 

Built land, open space, 

agricultural land, etc. (0.05-

15 km) 

US Geological Survey 

(http://water.usgs.gov/GIS/dsdl/ds240/ind

ex.html); 

MRLC (http://www.mrlc.gov/index.php) 

X  X 

Sources 

Length in buffer 

(m) 

Distance to the nearest 

source (e.g., railroad, 

airport) 

National Emission Inventory 

(http://www.epa.gov/ttn/chief/net/2002in

ventory.html) 

X  X 

Emissions 

Point in buffer 

(lb/ton) 

Sum of site-specific facility 

emissions (3-30 km) 

National Emission Inventory 

(http://www.epa.gov/ttn/chief/net/2002in

ventory.html) 

X  X 
Vegetation 

Area in buffer 

(quantile) 

Normalized difference 

vegetation index (0.5-10 km) Satellite (http://glcf. umd.edu/data/ndvi/) 

X  X 
Impervious Area in buffer (%) 

Impervious surface value 

(0.05-5 km) 

National Land Cover Database 

(http://www.mrlc.gov/index.php) 

X  X 
Elevation Counts 

Elevation above sea levels 

(1-5 km) 

Calculated from 

(http://nationalmap.gov/elevation.htm) 

X X X 

Satelliteb 

Air pollution 

estimates 

Column abundance 

or surface (µg/m3 or 

ppb) 

Satellite-based estimates 

(NO2, SO2, CO, HCHO, 

PM2.5) Multiple sourcesb  

X X  

POIb 

Point of 

interest Count in buffer 

90 categories of POI (e.g., 

gas station, restaurant) 

Google Places API 

(https://developers.google.com/places/we

b-service/intro) 

X X  

GSVb 

Google street 

view Object pixel (%) 

57 categories of GSV-

related features (e.g., tree, 

grass, person, building) 

Calculated 

(https://developers.google.com/maps/doc

umentation/streetview/intro) 

X X  
LCZb 

Local climate 

zones Counts in buffer 

17 LCZs (e.g., compact 

high-rise, dense trees) Calculated from (Demuzere et al., 2020) 
aDetailed description can be found in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) Database (Kim et al., 2020). 
bDetailed description is shown in the Appendix.
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5.2.2.2. Satellite measurements/estimates 

The annual average estimates of satellite-based air pollution concentrations (i.e., column 

abundance [atmospheric trace gas in the vertical column] or surface [ground-level estimates]) for 

NO2, PM2.5, SO2, CO, and HCHO (formaldehyde) were obtained from different satellite products 

and datasets (e.g., aerosol optical depth [AOD], ozone monitoring instrument [OMI]; Boersma et 

al., 2011; Chance, 2007; Deeter et al., 2017; OMI Science Team, 2012; Stavrakou et al., 2008). 

The resolution of these gridded satellite-based estimates varied (NO2, PM2.5, HCHO: 0.1˚ * 0.1˚; 

SO2, CO: 0.25˚ * 0.25˚; Table A5.1). The satellite estimates was assigned to the grid where EPA 

monitor was located.  

5.2.2.3. Google POI 

To explore alternative datasets for traditional land use and geographic data, I web-scraped 

Google POI from Google Places application programming interface (API) that returns all point-

based location of interest within a specific buffer around the target location. Particularly, I used 

Python code to retrieve the POI data in 2018. This process resulted in number of counts for 90 

POI categories (Table A5.2) at all EPA monitors of the criteria pollutants with buffer sizes of 

100m, 250m, 500m, 750m and 1,000m (n = 450 variables). In general, the candidate categories 

could pick up details in land use that were not included in other datasets, including direct 

emissions from local business (e.g., gas stations, restaurants, auto shops, and dry cleaners; Table 

5.1). More importantly, the POI data may serve as a uniform and localized land use proxy for 

assessing air quality impacts across political boundary (e.g., cities, regions), allowing for more 

generalizable air quality model in large geographies.  
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5.2.2.4. Google GSV 

Another promising data source capable of capturing local features is the publicly available 

Google GSV, which provides georeferenced images containing street-level information along 

major road network in developed and underdeveloped countries (Rzotkiewicz et al., 2018a). In 

general, the GSV image collection and processing of this study involve two steps. First, I web-

scrapped GSV images (n = 133,252) around the coordinates of the EPA monitors for criteria 

pollutants (1979-2015). At least five random locations within 100m-buffer of each monitoring 

location were sampled with a threshold of 20m for distance to the monitoring locations. Four 

panorama images covering four directions (0˚, 90˚, 180˚, 270˚) were extracted per location. This 

step resulted in at least 20 GSV images per monitoring location. To match the EPA monitors 

chosen in this study, 5,470 images were assembled in total for the image processing step. 

Second, each GSV image was processed using a deep learning algorithm (i.e., pyramid scene 

parsing network) to classify each pixel in the image (Zhao et al., 2017). Then, a python script 

was used to summarize each image to give a percentage of 150 feature categories (Andrew 

Larkin & Hystad, 2019). For the purpose of ambient air quality modeling, I tabulated only 57 

categories of outdoor-related GSV features (e.g., tree, grass, and building; Table A5.3). The pixel 

results of the sampling locations around each monitoring location were averaged to obtain the 

final GSV-based variables for all air quality monitors.  

5.2.2.5. LCZ 

LCZ data classifies urban form into a total of 17 categories based on climate-relevant properties 

(Stewart & Oke, 2012). Most importantly, it enables characterizing urban areas in a consistent 

manner worldwide and captures urban morphology (e.g., building heights) that is often missing 

in existing urban form measures. Recently, the first continental US-wide LCZ map based on 
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deep learning, remote sensing, and crowd-sourced data is available (Demuzere et al., 2020). 

Figure A5.1 shows the 17 LCZ classifications: LCZ 1-10 features built environment while LCZ 

A-G characterizes land cover. The LCZ surface for contiguous US includes 15 categories 

(excluding LCZ 7 and LCZ 9). I calculated the counts of the 15 LCZ categories  within 5 buffer 

sizes (i.e., 500m, 1,000m, 1,500m, 2,000, and 2,500m) of the EPA monitors based on the LCZ 

surface. LCZ count calculation was conducted in ESRI ArcGIS (version: 10.6). 

5.2.3. Modeling Approach 

5.2.3.1. Stepwise Regression 

I compared multiple modeling approaches using different scenarios of independent variables 

(traditional vs. new vs. all). First, I used a forward stepwise linear regression, which has been 

used commonly in LUR models for air pollution (Su et al., 2009), to select significant variables 

from candidate independent variables. Generally, it included two steps: (1) selecting the most 

correlated variable with the dependent variable and (2) adding the variable that was mostly 

correlated with the model residuals among the remaining variables. This process stopped when 

either a variable was not significant (p > 0.05) or the multi-collinearity indicator (variance 

inflation factor [VIF]) was greater than 5. I allowed variables to be selected with multiple buffers 

since the main purpose of this study is to make predictions.  

I also followed a similar approach in a model comparison study (Mercer et al., 2011b) and added 

a kriging process (based on a minimum mean squared error interpolation) after the stepwise 

regression. That is, I incorporated spatial smoothing by kriging the residuals as a second stage 

after first estimating a trend in the stepwise regression (hereafter stepwise-kriging). The 
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assumption is that this approach may improve model performance as compared to the traditional 

stepwise-based LUR models. 

5.2.3.2. Partial least squares-universal kriging (PLS-UK) 

I used PLS-UK modeling approach same as a recent LUR study (Kim et al., 2020) for the three 

independent variable scenarios. The modeling process involved two major components: variance 

and mean. Specifically, the universal kriging (using exponential covariance function for 

variogram) accounts for the variance component and PLS accounts for the mean component by 

reducing the dimensions of independent variables that served in a linear regression process. All 

kriging covariance parameters and PLS summary variables were based on a maximum likelihood 

approach. According to the study (Kim et al., 2020), models using 3-30 variables performed best 

depending on pollutant but mostly that was marginal compared to those using full dataset. 

Therefore, I used the 30-variable parsimonious model to develop LUR models for each pollutant. 

That is, only top 30 variables were selected by forward selection to enter PLS reduction and 

regression modeling. Details were described in Kim et al., 2020. I conducted the PLS-UK 

modeling in R (version: 3.5.2). 

5.2.3.3. Machine learning (ML) 

Finally, to explore how emerging ML algorithms could impact LUR model performance, I 

developed LUR models using ML algorithms for all three scenarios of variables (traditional vs. 

new vs. all). I compared nine common algorithms (e.g., random forest, gradient boosting) 

integrated in Python scikit-learn packages (Python version: 3.6.10) to develop LUR models. For 

example, random forest has a set of decision trees (constructed by the best splits randomly 

chosen through subset predictors) averaging for regression results in the final prediction. 

Gradient boosting optimizes model prediction in an iterative fashion by fitting on the negative 
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gradients. I fine-tuned the parameters and selected the ML algorithm with the best performance 

(potentially highest predictive power and lowest error) among the nine ML algorithms. Then, I 

selected the best algorithm to represent ML approach to compare to the stepwise regression and 

PLS-UK approaches.  

Similar to the stepwise regression, I also added a second-stage kriging step after estimating a 

trend in the ML process. I used kriging for the residuals from the ML algorithm with the best 

performance (using exponential covariance function for variogram; hereafter ML-kriging). 

5.2.4. Modeling Evaluation 

I conducted two types of 10-fold cross-validation (CV) to evaluate the LUR models. In general, 

random CV divided the monitoring locations into 10 groups randomly for training and testing 

while spatial CV divided the 10 groups using k-means clustering (Young et al., 2016). Each CV 

separately involves 10 times of following processes: (1) selecting one group out of the 10 groups 

as the hold-out group, (2) developing models using the remaining nine groups to predict 

concentrations at the hold-out group. In general, random CV accounts for model performance at 

random air monitoring locations while spatial CV reflects locations distant from a monitor.  

I used standardized root mean square error (RMSE) and mean square error (MSE)-based R2 to 

evaluate the CV performance. Briefly, the standardized RMSE (i.e., RMSE/mean concentrations 

of all monitors; hereafter RMSE) allows for comparison across the criteria pollutants. The MSE-

R2 (i.e., one minus the sum of squared error between the observations and the predictions divided 

by the sum of squared error between the observations and the mean of the observations; hereafter 

R2) assesses agreement between observations and predictions on the 1:1 line instead of the 

regression line (Keller et al., 2015).  
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5.2.5. Modeling Comparison 

To investigate how the LUR models performed among different scenarios, I focused on several 

comparisons below. First, assessing the model performance using the three scenarios of variable 

input: traditional vs. new vs. all. The goal was to evaluate whether (1) the new sets of variables 

could be alternative choices for LUR models when traditional data sources are not available and 

(2) adding the new variables to the traditional variables improves model performance. Second, I 

compared across the three modeling approaches with two extra approaches adding a second-step 

kriging smoothing (i.e., stepwise, stepwise-kriging, PLS-UK, ML, and ML-kriging) to assess 

how different modeling approaches impact model performance. Third, I compared across the 

pollutants to see whether the LUR models are sensitive to pollutant species. Then, I 

demonstrated the results of the two types of CV to indicate how spatial relationships among 

monitors would impact LUR predictions. Lastly, I investigated how different variable categories 

were chosen by each model to reveal their contribution to air pollution prediction. Specifically, 

variable importance (i.e., relative importance) in ML models was characterized by number of 

times each variable was selected (ML and ML-kriging shared the same variable selection 

process). For stepwise regression (stepwise and stepwise-kriging shared the same variable 

selection process), variable importance was represented by the normalized coefficients in the 

regression process during variable selection. That is, to multiple the variable coefficient by a 

factor that equals the difference of 95th and 5th percentile of the independent variable divided by 

the difference of 95th and 5th percentile of the dependent variable. I used variable importance in 

projection (VIP) score to measure the contribution of candidate variables in PLS-UK approach. 

Variables with VIP score close to or greater than one are recognized as important features for the 

models. The larger value of the variable importance indicators (i.e., relative importance, 
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normalized coefficients, and VIP), the greater contribution of the variable to the LUR models. 

The 20 variables with greatest importance were reported.  

5.3. Results and Discussion 

5.3.1. Summary of Monitored Air Pollution Concentrations 

The number of valid monitors in 2015 based on the selection criteria differed among pollutants, 

ranging from 196 (CO) to 821 (O3). I summarized descriptive statistics of major criteria 

pollutants: NO2, O3, and PM2.5 (Table 2). The annual mean (median) concentrations of each 

pollutant is NO2: 7.8 (7.1) ppb, O3: 44.2 (44.5) ppb, and PM2.5: 7.7 (8.0) µg/m3. The results of 

other criteria pollutants are in Table A5.4.  

Table 5.2 Summary statistics of major criteria pollutants in 2015 

Statistics NO2
a O3

a PM2.5
b 

Number of monitors 320 821 757 

Mean concentrations 7.8 44.2 7.7 

Std 4.9 5.2 2.4 

Min 0.4 25.4 1.8 

Q1 3.9 41.1 6.2 

Median 7.1 44.5 8.0 

Q3 10.9 47.5 9.2 

Max 22.3 57.3 18.0 
aConcentration unit is ppb; 
bConcentration unit is µg/m3. 

5.3.2. LUR Model Performance by Variable Input 

In general, LUR models using the new scenario of variables performed similarly as compared to 

those using the traditional scenario in both random and spatial CV. For example, for NO2 in 

random CV among different modeling approaches, the gap of R2 between the traditional scenario 

models and the new scenario models ranged from 0.02 to 0.09. However, when applying 

stepwise and stepwise-kriging, this pattern of performance varied: for O3, models with the 
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traditional variables performed much better than the new scenario (e.g., in random CV, stepwise 

R2 [RMSE]: 0.56 [0.08] vs. 0.01 [0.12]; stepwise-kriging R2 [RMSE]: 0.72 [0.06] vs. 0.36 [0.09]; 

Figure 5.1). This finding suggests that the use of new variable input may be sensitive to 

modeling approaches. Overall, using the alternative new variables in LUR models is feasible for 

predicting concentrations of criteria pollutants. Figure A5.2 shows the random and spatial CV 

results of CO, PM10, and SO2. 
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Figure 5.1. Random and spatial 10-fold CV results of major criteria pollutants (NO2, O3, and PM2.5). 
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The LUR models using all variables showed similar performance as those with the traditional 

scenario in both random and spatial CV. For example, for most criteria pollutants (e.g., NO2, 

PM2.5, and SO2) in random CV among different modeling approaches, the gap of R2 between the 

traditional scenario models and the all scenario models was less than 0.10. Exceptions applied 

when the gap of R2 became bigger in stepwise and stepwise-kriging models for O3 and PM10. For 

example, PM10 using all variables outperformed the traditional-only models in both random and 

spatial CV (e.g., in random CV, stepwise R2 [RMSE]: 0.45 [0.37] vs. 0.26 [0.43]; stepwise-

kriging R2 [RMSE]: 0.71 [0.27] vs. 0.49 [0.35]; Figure A5.2). This finding suggests that in most 

cases, adding the new variables to the traditional variables in LUR models doesn’t necessarily 

improve model performance; while in certain cases, incorporating the new variables may be 

helpful to capture spatial variability.  

5.3.3. LUR Model Performance by Modeling Approach 

Among the nine ML algorithms, gradient boosting and random forest generally showed the best 

performance in both random and spatial CV (Figure A5.3-A5.4). For example, for NO2, gradient 

boosting performed slightly better than random forest using the three scenarios of variables (e.g., 

in random CV, gradient boosting vs. random forest: traditional R2 [RMSE]: 0.79 [0.29] vs. 0.74 

[0.32]; new R2 [RMSE]: 0.78 [0.29] vs. 0.75 [0.31]; all R2 [RMSE]: 0.80 [0.28] vs. 0.75 [0.31]; 

Figure A5.3), while other ML algorithms had worse performance (e.g., in random CV, traditional 

R2 [RMSE]: 0.44-0.69 [0.18-0.24]; new R2 [RMSE]: 0-0.70 [0.17-0.54]; all R2 [RMSE]: 0.31-

0.74 [0.15-0.25]). Since gradient boosting performed slightly better for the major criteria 

pollutants focused here (i.e., NO2, O3, and PM2.5), I used gradient boosting algorithm to represent 

ML approach to compare to other LUR approaches.  
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Comparing among the five modeling approaches in LUR (i.e., stepwise, stepwise-kriging, PLS-

UK, ML, and ML-kriging), models with kriging (i.e., stepwise-kriging, PLS-UK, and ML-

kriging) generally performed well for all criteria pollutants. Specifically, ML-kriging showed a 

marginal improvement for both random and spatial CV (e.g., in random CV of NO2 using all 

variables, ML-kriging R2 [RMSE]: 0.92 [0.18]; PLS-UK R2 [RMSE]: 0.87[0.23]; stepwise-

kriging R2 [RMSE]: 0.86 [0.24]). For models without kriging effect, ML generally outperformed 

the stepwise regression approach slightly in random and spatial CV for most variable scenarios; 

in some ways, ML really helped with specific pollutants (e.g., O3, PM10; Figure 5.1 and Figure 

A5.2). Another finding is that CO, PM10, and SO2 were more sensitive to modeling approaches. 

For example, for CO, the random CV R2 could range from 0 to 0.80 depending on modeling 

approaches while for PM2.5, the random CV R2 showed smaller variability (0.57-0.89). 

5.3.4. LUR Model Performance by Pollutant 

The LUR models performed differently by pollutant. Generally, models for major criteria 

pollutants (i.e., NO2, O3, and PM2.5) outperformed others (i.e., CO, PM10, and SO2). For NO2, O3, 

and PM2.5, all models performed well except for O3 using stepwise regression. For example, in 

random CV for O3, the R2 (RMSE) of stepwise regression with the new variables was 0.01 (0.12; 

Figure 5.1). Particularly, LUR models for NO2 performed the best (e.g., random CV R2: 0.69-

0.92) among all pollutants whereas those for SO2 had the worst performance (e.g., random CV 

R2: 0-0.57).   

5.3.5. LUR Model Performance by CV 

In terms of CV evaluation, random CV consistently performed better than spatial CV indicating 

improved model performance when EPA monitors used for model development were in 

proximity. For example, when comparing the best-performing ML-kriging, the difference of R2 
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(RMSE) in each CV for NO2 was 0.11(0.09); while for O3, the gap could be as large as R2 

(RMSE): 0.41(0.04). This finding suggests that the magnitude of impact of model evaluation 

method may vary by pollutant and model type.  

5.3.6. Variable Importance  

The traditional categories were identified as important variables contributing to the LUR models, 

even when adding the new variables. Among all three variable scenarios (i.e., traditional, new, 

and all), satellite data was mostly selected as a top 5 variable. The importance of satellite data 

was more prominent in models with the new variable scenario. This finding indicates that 

satellite variables were important predictors for air pollution levels. 

For major criteria pollutants (i.e., NO2, O3, and PM2.5), variables contributed differently among 

pollutants and modeling approaches in the new variable scenario. For example, of the top 20 

variables selected in ML models, POI was an important contributor for NO2 while LCZ 

contributed the most apart from the satellite data for O3. Satellite, POI, and LCZ were all among 

the top 20 variables for the PM2.5 model. All the three categories of new variables could also 

potentially contribute to LUR models. The top 20 variables selected by the stepwise regression 

and PLS-UK were similar, but slightly different from those in the ML models. For example, for 

O3 of the new variable scenario, 10 out of 20 important variables were LCZ categories using ML 

approach. In contrast, 9 (13) out of 20 important variables were POI categories using stepwise 

(PLS-UK) approaches; GSV variables were also among the top 5 important predictors. Even in 

the all variable scenario, new variables were also identified as important contributors 

highlighting the potential to substitute some traditional variables.  
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While for the other three pollutants (i.e., CO, PM10, and SO2), GSV, POI and LCZ were 

important variable categories for ML, PLS-UK and stepwise regression respectively. For 

example for CO, 10 out of 20 important variables were GSV category using ML and 11 out of 20 

variables were POI using PLS-UK. For PM10, 6 out 12 variables were LCZ using stepwise 

regression approach. This finding suggests that the contribution of the new variables may be 

sensitive to modeling approaches. Figure 5.2 shows top 20 most important features of the ML 

models for NO2, O3, and PM2.5 (other pollutants are shown in Figure A5.5). Variable importance 

of the stepwise regression and PLS-UK models are shown in Figure A5.6-A5.9.  
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Figure 5.2. Top 20 most important features of the ML models for NO2, O3, and PM2.5. 
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5.3.7. Implications for Developing LUR Models 

5.3.7.1. Implications for using new variables for LUR models 

I developed LUR models for six criteria pollutants in 2015 using five different modeling 

approaches based on the US EPA monitors. I investigated on how model performance varied 

using three different sets of variable scenarios: traditional vs. new vs. all. I used both random and 

spatial CV to evaluate the model performance.  

One motivation of this study is to explore whether some new variables could replace or 

supplement traditional datasets. Current LUR models (particularly for large geographies) were 

often developed using variables that mainly from government-sponsored sources (e.g., US 

Census, NLCD) that may not updated in a timely fashion; some datasets were only available 

before 2010. The tabulation of hundreds of variables that involves data sources at different levels 

and across multiple jurisdictions may hinder the effort to develop LUR models at relatively high 

spatial resolutions (e.g., Census blocks) or beyond political boundaries. This limitation further 

impacts the subsequent research in environmental justice, exposure assessment, urban planning, 

and epidemiology. While there is ongoing effort in developing air quality models at national or 

global scales, the challenge of assembling and analyzing the huge magnitude of data deserves 

attention. Additionally, underdeveloped countries may suffer from data sources with limited 

spatial coverage and public accessibility to develop air quality models. Seeking for alternative 

new variables for developing LUR models may be helpful to resolve these issues.  

I found that LUR models using the new scenario of variables generally demonstrated similar 

performance as compared to those with only the traditional variables (e.g., land use and 

geographic variables). This finding indicates that the new variables could be alternative choices 
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for LUR models when preparation and processing of the traditional variables are cumbersome. 

The use of the new variables can also benefit regions with limited and no traditional data sources 

(e.g., developing countries). While replacing existing traditional variables with the new variables 

could be feasible for LUR development, adding both variables would not necessarily yield 

improved performance. The minimal change in model performance suggests that models 

developed with more variables may perform as well as those with adequate ones, which matches 

a recent study exploring the sensitivity of variable input (Kim et al., 2020). Another explanation 

may be that the new variable category consists of features that resemble the traditional variables 

(e.g., POI vs. land use), reassuring the potential application of using the alternative variables for 

LUR models.  

Satellite-derived air pollution estimates could mostly be selected as top 5 significant variables 

among different pollutants regardless of modeling approaches indicating the importance of 

maintaining satellite variables for developing LUR models, particularly for models using only 

the new variable scenario. Such significant contribution has also been identified in other studies 

(Bechle et al., 2013; Knibbs et al., 2014; Novotny et al., 2011; Vienneau et al., 2013; Di et al., 

2016; Kim et al., 2020). For example, Kim et al. (2020) found that satellite-derived estimates 

were almost prioritized for model contribution based on PLS-UK approach. In another ML-based 

(i.e., neural network) LUR study, satellite products (e.g., AOD) served as key components of the 

hybrid model for predicting PM2.5 exposure (Di et al., 2016).  

5.3.7.2. Implications for exploring variable importance of new variables 

Aside from the traditional variables, variable importance of the new variables for LUR models 

varied by pollutant and modeling approach. For example, POI data was the second largest 

contributor (frequently selected for modeling) for NO2 prediction in the ML models, including 
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transit station and car repair. This finding is reasonable since NO2 is mainly associated with 

traffic-related emissions (Bechle et al., 2015; de Hoogh et al., 2016; Hochadel et al., 2006). For 

O3, LCZ was commonly important contributors for ML whereas for PLS-UK and stepwise 

regression, POI stood out among the top 20 important variables. This result may be explained by 

that O3 is a secondary pollutant and highly correlated with urban heat and the emissions of NOx 

and VOCs. LCZ could be an indicator to characterize urban heat (Petralli et al., 2014) and POI 

may feature impacts of local emission sources (Hassan Amini et al., 2014; Wu et al., 2017b). 

Though LCZ variables were not commonly identified as important variables in LUR models by 

each pollutant, it has the capacity to account for urban morphology and track land use and land 

cover over time. It may also contribute to develop LUR models for areas suffered from urban 

heat and street canyon effect. The widely recognized important new categories reveal great 

potential for alternating traditional land use and geographic dataset to uncover local factors in a 

uniform way.  

Likewise, GSV variables commonly contributed to CO, PM10, and SO2 models using ML 

approach highlighting the potential application for predicting these pollutants. Some subset 

categories of GSV (e.g., building, sidewalk) may indicate traffic and infrastructure conditions 

and others (e.g., grass, palm) may characterize natural components, which has been successfully 

used to identify infrastructure and green space that may be associated with air quality (Larkin & 

Hystad, 2019; Rzotkiewicz et al., 2018). Some studies have already identified the importance 

such microscale predictors, including presence of awnings (Miskell et al., 2018; Weissert et al., 

2018),  tree canopy (Knibbs et al., 2014; Novotny et al., 2011a), and building (Madsen et al., 

2011; Shi et al., 2016b; Su et al., 2008). These features could be characterized by the GSV 

variables. This finding further implies that future studies could use GSV-related variables to 
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develop LUR models for areas where the traditional data sources are limited and pollutant 

species that are difficult to model. While new insights may be offered through these important 

new variables, the sensitivity of these new variables to different modeling approaches and 

pollutants cautions the use and interpretation for developing LUR models. 

5.3.7.3. Implications for developing LUR models based on different modeling approaches 

The difference in model performance of the various modeling approaches reflected that models 

integrated with kriging performed better than those without. This result is consistent with other 

similar studies that integrated models with kriging (Kim et al., 2020; H. Xu et al., 2019; Young 

et al., 2016). In addition, this improvement from kriging is greater than a study in US (Young et 

al., 2016), but similar to another study in China (H. Xu et al., 2019). Such benefit could be 

greater for models using the new variables (e.g., in random CV R2 increase of PM2.5, stepwise to 

stepwise-kriging: 0.17 [new] vs. 0.10 [traditional]; ML to ML-kriging: 0.16 [new] vs. 0.10 

[traditional]). Among these models, ML-kriging performed best for most pollutants indicating 

that developing hybrid models may be one effective strategy to improve LUR models. For 

models without kriging effect, ML models offered modest improvement compared to stepwise 

regression approach in most cases; ML approach helped improve models of O3 and PM10. This 

finding is similar to another study comparing linear regression and ML approach within the LUR 

framework (Weichenthal et al., 2016). Another noticeable pattern was that using ML models 

could be more adaptable to the use of the new variables (as compared to stepwise regression) 

suggesting that when non-traditional variables are readily available, ML approach may be more 

appropriate for developing LUR models. More studies on the sensitivity of ML model 

performance to different variable input should be investigated.  
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As noted, model performance varied by pollutant. In general, models for major criteria pollutants 

(i.e., NO2, O3, and PM2.5) were better than those for CO, SO2, and PM10, confirming the finding 

of a recent LUR model study using PLS-UK (Kim et al., 2020). In addition, some criteria 

pollutants were more sensitive to modeling approaches (e.g., O3, CO, SO2, and PM10). This could 

be attributable to different factors including chemical features and physics, emission sources, 

spatial patterns, satellite data availability, and data quality. This finding further supports 

incorporating kriging into existing modeling effort. The model evaluation results indicate that 

random CV outperformed spatial CV for all pollutants. This finding means that regardless of 

modeling approach, poor model performance may be expected when there are few monitors in 

the vicinity. One should caution the use to predict air pollution concentrations where sparse 

network of monitors are available.  

5.3.7.4. Limitations and future research 

This study has several limitations. One limitation is that some of the new variables may be 

inaccurate. For example, I explored the use of Google products (i.e., POI, GSV) in LUR in the 

goal of alternating the traditional variables; however, the time of the extracted POI and GSV data 

may not well aligned with the local environment of 2015 (when my LUR models are developed 

for). While most of these new variables may be more updated (e.g., LCZ for 2016 surface; POI 

was retrieved in 2018), the development of more updated version of LUR models may help 

explore the impacts of such temporal mismatch. While inaccuracies of these new data sources 

may exist, some of these variables may be better than the traditional variables in capturing street-

level features and urban morphology. Thus, the contribution of these alternative variables should 

not be neglected. To compare to a recent published study using PLS-UK (Kim et al., 2020), I 

used the same sets of traditional variables to develop LUR models. While some of the traditional 
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variables may be limited in temporal mismatch (e.g., population data in 2000), future studies 

could use updated datasets of traditional variables for comparison. Another limitation relates to 

the modeling approach. I followed the literature (Mercer et al., 2011b) to conduct a two-step 

modeling approach to include kriging process (i.e., ML-kriging and stepwise-kriging) instead of 

developing a kriging framework similar to PLS-UK. Future model improvement could be 

achieved by integrating the ML and stepwise regression into a kriging framework, thus testing 

the impacts on model performance. The different variable categories selected by various 

modeling approaches for the same pollutant may reveal intertwining relationships between 

variables. Future effort can explore modeling approaches that better account for multicollinearity 

and complexity (e.g., neural network; Di et al., 2016).  

There are some implications for future research. Developing empirical models of large 

geographies is an important goal for tracking air pollution exposure for large populations. 

However, most large-scale air quality models may be limited in spatial resolution and variable 

consistency. My study of using new variables capable of capturing street-level features and 

providing relatively uniform method may offer some insights for environmental scientists and 

urban planners. I used Google POI and GSV to explore the feasibility of developing LUR 

models. The reasonable model performance of using these alternative variables implicates that 

future LUR models could use variables of these types when traditional land use and geographic 

variables are not readily available. Although Google POI and GSV are not available in some 

countries (e.g., China), similar products may be used (e.g., Baidu POI, Gaode Map) for LUR 

development. Such alternative variables further increase the possibility of developing multi-

country LUR models – an understudied topic. I only used satellite, Google POI, GSV, and LCZ 

to serve as new variables; other potential new variables could also be incorporated. For example, 
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Yelp open dataset provides institutional, retail, and entertainment place-based data that may 

capture street-level features for air quality. One important application of these new variables is 

that they enable characterizing new information on street-level features that may be associated 

with air quality. Further studies on the use of such variables may inform urban planning 

strategies and landscape designs for healthy cities. In addition, traditional cross-year LUR 

models often used land use data without accounting for temporal changes. One advantage of 

using LCZ dataset is that it has the ability to track land use and land cover information over 

decades, which could be used to develop LUR model over years. Lastly, existing national LUR 

models were developed based on the EPA monitoring network, which was originally launched 

for regulation compliance covering mostly urban areas. Future national models could be 

developed integrating air quality monitors with improved coverage and density (e.g., low-cost 

sensors).  

5.4. Conclusion 

In summary, this study reveals important findings on feasibility of using alternative new 

variables with improved consistency, availability, and generalizability for LUR model 

development. Results indicate that models using the alternative variables demonstrated similar 

performance as compared to those with the traditional variables. Additionally, models adding 

kriging effect could improve model performance and ML-based approach may be more 

applicable for non-traditional data sources. My approach suggests that LUR models for 

predicting air pollution concentrations developed using emerging modeling approaches and new 

variables may be promising for areas or countries where traditional land use and geographic 

information are limited and unavailable.  
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Chapter 6. CONCLUSIONS 

The dissertation describes empirical evidence on improving LUR models for predicting air 

pollution concentrations using new air quality data, alternative predictor variables, and emerging 

modeling approaches. In this Chapter I summarize the core conclusions of this dissertation. My 

conclusions include key findings, limitations, and implications for future research.  

6.1. Key Findings 

With the rapid development in crowdsourcing, sensor technologies, data sciences, and modeling 

approaches, there are opportunities to improve existing LUR models for refined exposure 

assessment. This dissertation aims at exploring the impacts of new data sources and emerging 

modeling methods on LUR model performance. I tested the feasibility of these strategies for 

cities/regions at different levels (i.e., a single city, multiple cities, and the entire country). I found 

that LUR models could be improved through integrating new data sources of air quality, 

community-based low-cost monitoring, and non-government sponsored crowd-sourced platforms 

into the modeling process. Below I discuss the key findings of these studies.   

I found that the area source-related features was an important factor for predicting VOC 

concentrations. For example, in the BTEX model, models with area sources (e.g., dry cleaners, 

gas stations; city permit data: adj-R2: 0.37; RMSE: 0.37 µg/m3) outperformed the base-case 

model that didn’t include these sources (adj-R2: 0.15; RMSE: 0.43 µg/m3). Further, in the TVOC 

models (aggregating all 60 VOC species), this pattern was similar to the BTEX models: the city 

permit model (adj-R2: 0.42; RMSE: 0.37 µg/m3) performed better than the base-case model (adj-

R2: 0.26; RMSE: 0.41 µg/m3). In addition, I found that area sources may be as important as 

traditional transportation and land use variables in LUR models. These findings suggest that 
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predictions of VOCs with comparatively different emission sources from criteria pollutants (e.g., 

NO2) could benefit from accounting for area sources in LUR models.  

For models with variables of area sources, LUR models using Google POI data outperformed 

those with city permit data among all 60 VOCs. For example, the BTEX models with Google 

POI data (adj-R2: 0.47; RMSE: 0.34 µg/m3) showed better performance as compared to models 

with city permit data (0.37; 0.37). Likewise, for TVOC models, the model performance 

improved when including Google POI data: Google POI (adj-R2: 0.56; RMSE: 0.32 µg/m3) vs. 

city permit data (adj-R2: 0.42; RMSE: 0.37 µg/m3). This comparison between models with the 

city permit data and the Google POI data indicates that non-government data sources may be 

helpful for improving performance of LUR models.  

For models adding area sources, variables including dry cleaners and gas stations were 

consistently identified as important predictors for LUR models of VOCs. For example, more 

than 45 out 60 VOC species models selected these small-scale emission sources. One unique 

aspect of my work is that I was able to compare variable importance across VOC species. For 

tetrachloroethene using the Google POI model, the magnitude of association was slightly larger 

for both laundry and gas stations (0.41) as compared to traditional (0.34) and land use variables 

(0.31). These results highlight the importance of area sources and necessitate of their integration 

into LUR models for VOCs.  

Additionally, my work indicates that air pollution data form community-based sampling could be 

feasible to develop LUR models for pollutants that were not commonly monitored (i.e., VOC). I 

was able to model 60 VOC species to identify various spatial variability of each VOC (group) 

using data from this community-based effort in a single city (i.e., City of Minneapolis) in the US. 

This practice implies that community-based monitoring could be useful data sources for 
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developing air quality models. My approach of combining the community-driven effort with new 

open data sources may enhance LUR models (as emphasized in Chapter 3).  

In Chapter 4, I first tested the contribution of a non-government air quality data source to LUR 

models using a crowd-sourced low-cost sensor platform (i.e., PurpleAir) from multiple US cities 

rather than single cities. I found that the PPA data could be reasonably used to develop LUR 

models. For example, the internal evaluation result (R2: 0.66) indicates that LUR models based 

on the PPA data may be capable of capturing spatial variability of PM2.5. In addition, combining 

both the PPA data and EPA data could improve LUR performance. For example, if including the 

national EPA data, the Hybrid PPA model performed as well as the CACES LUR (R2: 0.85 vs. 

0.83); if using only the 6-city EPA data, the Hybrid PPA model performed better than the 

CACES LUR (R2: 0.77 vs. 0.67). Air quality data from the crowd-sourced low-cost sensor 

network could be as useful as the regulatory networks for LUR models, particularly at locations 

where regulatory monitors are not available.  

Improving the spatial resolution and coverage for LUR models is significant for exposure 

assessment. Inclusion of the low-cost PPA measurements could potentially account for locations 

with high PM2.5 concentrations, thus improving the capability of capturing within-city spatial 

variability. For example, the population-weighted PPA LUR, CACES LUR, and Hybrid LUR 

were well correlated indicating the contribution of the low-cost sensor data. Such contribution 

could be expanded when filling the gaps of sparse regulatory monitors and integrating into 

regulatory-based LUR models. Another benefit of the low-cost sensors is that they may be 

capable of capturing more within-city variability, including near-source areas (e.g., industrial 

facilities, road segments). My work could be helpful to identify such places with prediction 

disagreement.  
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I found that the CACES LUR that was developed based on regulatory EPA monitors may fail to 

capture locations with higher concentrations. The PPA data may help fill these gaps. For 

example, I found that the evaluating the CACES LUR using the PPA data showed modest 

performance (e.g., R2 = 0.41, MAE = 5.5 µg/m3). This finding suggests that the PPA users may 

tend to deploy sensors at areas typically reporting high concentrations, which may pick up 

locations not predicted by the CACES LUR, thus identifying the complex spatial heterogeneity 

of within-city air pollution. Finally, the crow-sourced low-cost sensor network could benefit 

from careful quality control and more side-by-side regulatory-grade calibration to warrant better 

application in LUR models. 

Aside from improving LUR models via integrating data from low-cost sensors, searching for 

enhanced predictor variables based on emerging modeling approaches could be another strategy 

(Chapter 5). I compared national LUR models for criteria pollutants (e.g., NO2) using different 

sets of variables in the goal of exploring alternative variables from non-government sponsored 

sources that could improve traditional land use and geographic variables in terms of data 

availability, spatial resolution, and model generalizability.  

I found that the use of the new variables (i.e., satellite data, Google POI, GSV, and LCZ) for 

LUR models was as reasonable as using the traditional variables. For example, for NO2 in 

random CV, the difference of R2 between the models with the two type of variable scenarios 

(new variable vs. traditional variable scenario) ranged only from 0.02 to 0.09. This result 

indicates that the new variable sources may be alternative choices when the traditional variables 

were not easily obtained. This strategy could become more valuable for underdeveloped regions 

where traditional variables were not readily available.  
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I also found that combining both the traditional and new variables (the “all” variable scenario) 

may not yield improved LUR performance. For example, for most criteria pollutants (e.g., NO2, 

PM2.5, and SO2) in random CV, such improvement of R2 could be minimal (e.g., 0.10 in 

maximum). This result further highlights that using new variables for LUR models may also 

serve as parsimonious yet reliable option.  

While the new variables are promising, each of the variable categories may offer insights to 

urban planners and environmental scientists. For example, satellite-derived estimates were 

frequently included in LUR models for most criteria pollutants, which suggests that maintaining 

satellite data may help enhance LUR performance. This finding was particularly useful for 

models that only use the new variables. The contribution of other new data categories revealed 

the typical characteristics for some pollutants, including (1) the importance of traffic-related POI 

data for NO2 concentrations, (2) the significance of LCZ that characterize urban heat and street 

canyon effect for O3 concentrations, and (3) the contribution of GSV variables to feature street-

level conditions (e.g., sidewalk, awning) for pollutants (e.g., CO, PM10, and SO2) that were less 

frequently modeled.  

In terms of modeling approaches used for LUR models, I found that models integrated with 

kriging could perform better than those without. Such improvement could be more obvious for 

models using the new variables. For models without kriging, ML may be more plausible for 

places where the new variables were more accessible. Due to different characteristics of each 

pollutant (e.g., emission sources, data quality), some pollutants may be more sensitive to 

modeling approaches. As such, adding kriging into existing modeling effort may be an effective 

strategy to improve LUR models.  
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6.2. Limitations and Potential Future Research 

My dissertation highlights the potential of using community-based effort, new data sources, and 

emerging modeling approaches for improving LUR models. However, there are some limitations 

that could be addressed in future research. I briefly discuss some of the major limitations and 

implications for future research. 

One limitation of my work is the community-based air quality monitoring effort. For example, in 

Chapter 3 for a local practice, I used data from a community-based sampling with consecutive 8 

seasons of 60 VOC measurements. However, the annual average concentrations were calculated 

based on the 72-hour data of each season, which was not consecutive measurements for the 

entire year. While in Chapter 4 for a national study, I extracted PM2.5 concentrations at low-cost 

sensor sites (i.e., PPA) with at least 244 days out of a year to calculate the annual averages, but 

the detailed information on monitoring purpose, location characteristics, and deployment 

strategies were unknown. These limitations should caution the use and interpretation of LUR 

model results for long-term estimates. One should be aware of the trade-off in several aspects: 

data availability vs. data accuracy, site coverage vs. targeted sampling, and monitoring duration 

vs. temporal representativeness. Future work could be improved in these community-based effort 

including (1) merging the goal of air quality modeling with community-based monitoring and (2) 

using data from other available low-cost sensor platform or refining the models once more 

details regarding to sensor locations are available.  

Another limitation is from the predictor variables. For example, in Chapter 4 and 5 for model 

evaluation and comparison, I used the same set of traditional variables served in the CACES 

LUR models (i.e., PLS-UK). These variables were not well aligned with the target time of the 

LUR models (i.e., 2015). For example, some of the land use and geographic variables were 
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before 2010 (e.g., population data). Such temporal mismatch issue also appeared in non-

government data sources. For example, in Chapter 3 and 5, Google POI data was retrieved 

mainly in 2018 while the LUR models were developed for 2015. Similar issue also exists in the 

GSV (2018) and LCZ (2016) data. Developing newer version of LUR models with more updated 

data sources could further explore the impact on LUR performance. In addition, these data 

sources may be biased from the user generated and verified perspective. Some businesses 

without online presence and some rural areas without GSV imagery may suffer from data 

unavailability. 

A novel aspect of my dissertation is the alternative data sources from non-government sponsored 

open platforms. The new data I used for these studies mainly include two parts: air quality data 

(served as dependent variables in LUR models) and predictor variables (served as independent 

variables in LUR models). In terms of air quality data, many monitoring campaigns of air quality 

are ongoing across communities in the US. Future LUR models could be developed using these 

community-based data, particularly when regulatory air monitors are not available or pollutant of 

interest is not regularly monitored at all. One implication of my work (Chapter 3) is to develop 

first-of-its-kind regional or national LUR models using available VOC data collected from 

different cities across the US would be interesting. Similarly based on effort in Chapter 4, 

developing the first national PPA LUR models for PM2.5 using all the PurpleAir sensor data in 

the US may be another direction to explore the contribution of low-cost sensor data from non-

government open platforms. These air quality monitoring and modeling products may help 

inform monitoring gaps and readjust existing regulatory monitoring network, thus targeting 

pollutants and areas with more challenges and concerns.   
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For the future of non-traditional predictor datasets, they have the advantage of capturing street-

level features that may be important for predicting air pollution. In Chapter 3, I first identified 

the contribution of Google POI data to LUR models using only four categories (i.e., laundry, 

painter, car repair, gas station). Further in Chapter 5, I used all 90 categories to explore the 

application for criteria pollutants and found they were feasible variables to alternate traditional 

predictors. Future LUR models could be developed to generalize across regions or countries, 

particularly for underdeveloped areas where traditional variables are not rich and accessible. 

Developing LUR models using these types of uniform data could allow for multi-city and multi-

country comparisons. For example, other alternative data sources may be also tested and 

explored (e.g., Baidu POI, Yelp open dataset) for LUR models in different countries. The use of 

these new variables could further inform urban planning and landscape design strategies for 

developing healthy cities. One example would be using LCZ dataset as a proxy of urban form to 

explore how urban form impacts air quality and identify sustainable and resilient urban 

development patterns for clean and healthy communities. Finally, my dissertation could be 

valuable for those interested in using crowdsourcing, big/open data, data analytics, and emerging 

modeling approaches to develop generalizable air quality models in large scales.  
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Table A3.1 Summary of existing VOC LUR model literature 

Author VOC specie 

Number of 

sampling 

locations City Sampling period 

Model 

R2/Adj-R2 Major predictors (direction of association) 

Aguilera et al., 2008 BTEX 55 Sabadell, Spain 

four 1-week; Apr 2005-

March 2006 0.74/N/A Altitude (-); Distance to road/parking lot (-) 

Amini et al., 2017 

Benzene, 

toluene, 

ethylbenzene, 

m/p-xylene and 

o-xylene, and 

BTEX 179 Tehran, Iran 

three 2-week; Apr 

2015-May 2016 

0.64-

0.70/0.62-

0.68 

Road (+); proximity to bus terminals (-); sensitive land 

use (-); distance to sewage treatment plants/gas filling 

stations (-) 

Atari and Luginaah, 

2009 

Benzene, 

toluene, 

ethylbenzene, 

m/p-xylene and 

o-xylene, and 

BTEX 39 Sarnia, Canada 2 weeks; Oct 2005 0.81/0.79 Industry (+); highway (+); dwelling (+) 

Carr et al., 2002 

Benzene, 

toluene, and 

ethylbenzene 

34: 18 traffic and 

16 school sites Munich, Germany 

twelve 4-week; Dec 

1996-Feb 1998 

0.76-

0.80/N/A Traffic counts (N/A) 

Fernandez-Somoano et 

al., 2011 Benzene 67 Asturias, Spain 

two 1-week; Jun-Nov 

2005 0.73/N/A 

Altitude (-); continuous urban land cover (-); agriculture 

land use (-); proximity to road (+) 

Gaeta et al., 2016 

Benzene, 

toluene, 

acrolein, and 

formaldehyde 

43: The 

Ciampino 

Airport Rome, Italy 

two 2-week; May-June 

2011 and Jan 2012 

0.29-

0.57/0.24-

0.53 

The North latitude (+); product of traffic intensity of the 

nearest road and the inverse of distance to the nearest 

road (+); number of inhabitants (+) 

Hystad et al., 2011 

Benzene, 

ethylbenzene, 

and 1,3-

butadiene 53 Entire Canada Entire year of 2006 

0.62-

0.68/N/A 

Major road length (+); population (+); highway (+); 

commercial land use (+); national pollutant release 

emissions (+) 

Johnson et al., 2010 Benzene 

25-285(pseudo 

measurements) New Haven, USA Jul-Aug 2001 

N/A/0.67-

0.89 

Traffic intensity (N/A); proximity to roads/industrial 

sources (N/A) 

Kheirbek et al., 2012 

Benzene, 

BTEX, and 

formaldehyde 69 New York, USA 

five 2-week; March-

June 2011 

0.65-

0.83/N/A Number of traffic signals (+); length of highway (+) 
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Mukerjee et al., 2009, 

2012 

Benzene, 

toluene, 

ethylbenzene, 

m/p-xylene and 

o-xylene, 

BTEX, styrene, 

and 1,3-

butadiene 25: schools Detroit, USA 

one 5-week; Summer 

2005 

0.31-

0.63/N/A 

Proximity to nearest medium traffic road (-); traffic 

intensity (-); population density (+); distance to 

international border (+) 

Oiamo et al., 2015 

Benzene, 

toluene, and 

m/p-xylene 42 Ottawa, Canada 

two 2-week; Oct 2008 

and May 2009 

0.75-

0.79/N/A 

Population (+); length of highway (+); distance to VOC 

facility (-); intersection count (+) 

Poirier et al., 2015 

Benzene and 

toluene 50 Halifax, Canada 

two 2-week; Nov, Dec 

1999 

0.61-

0.63/N/A N/A 

Smith et al., 2006 Benzene 22: schools El Paso, USA 

two 1-week; Nov, Dec 

1999 0.93/N/A 

Population density (+); proximity to international border 

crossing/petroleum facility (-) 

Smith et al., 2011 

Benzene, 

toluene, 

ethylbenzene, 

m/p-xylene and 

o-xylene, and 

1,3-butadiene 24: fire stations Dallas, USA 

one 5-week; Aug-Sep 

2006 

0.41-

0.72/N/A Distance to nearest road (-/+); traffic intensity (+) 

Su et al., 2010 

Benzene, n-

hexane, and 

total 

hydrocarbons 50 Toronto, Canada 

one 2-week; Jul-Aug 

2006 

0.66-

0.68/N/A 

Expressway (+); major road (+); industrial and 

commercial land use (+); open land (-) 

Wheeler et al., 2008 

Benzene, 

toluene 54 Windsor, Canada 

2 weeks; Feb, May, 

Aug, Oct 2005 

0.46-

0.73/N/A 

Lengths of major roads/highways (+); VOC emission 

point sources (+) 
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Figure A3.1. Measurement gap between the co-located community-based monitors and MPCA monitors. We attempted to normalize 

each sampling event by dividing by the average concentration of all available sampling events from November 2013 to August 2015 at 

each of the four MPCA monitoring stations (co-located by the Minneapolis samplers); however, the Minneapolis campaign had a 2-

day sampling event gap with the MPCA campaign and was not available for all 8 events at these co-located stations. We then 

calculated the gap between the normalized values during each event of the two campaign. The normalized average measurement gap is 

23% for priority VOCs (BTEX: 21%, naphthalene: 26%). 962-1, 963-1, 966-1 and 907-1 are the four co-located sampling/monitoring 

location IDs. Since tetrachloroethene measurements were not available (with invalid values) at MPCA monitors, we were not able to 

calculate the measurement gaps for tetrachloroethene and TVOC. 
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Figure A3.2. Sampling locations available during core modeling period (Second year: S5-S8 [n = 

50]) and for all monitored locations (n=186) in Minneapolis, MN. Samples were collected using 

Summa Canister at each location.  
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Table A3.2 Summary statistics for all 60 VOCs during the core modeling period (Second year: 

S5-S8)a 

VOC Meanb Medianb Maxb Minb IQRb 

1,1,1-Trichloroethane 0.18 0.16 0.47 0.13 0.14-0.18 

1,1,2,2-Tetrachloroethane 0.26 0.23 0.75 0.18 0.20-0.26 

1,1,2-Trichloroethane 0.23 0.20 0.76 0.16 0.18-0.23 

1,1,2-Trichlorotrifluoroethane 0.22 0.19 0.59 0.15 0.17-0.23 

1,1-Dichloroethane 0.14 0.12 0.44 0.10 0.11-0.14 

1,1-Dichloroethene 0.16 0.14 0.36 0.11 0.13-0.16 

1,2,4-Trichlorobenzene 0.69 0.53 5.19 0.42 0.48-0.62 

1,2,4-Trimethylbenzene 0.54 0.28 9.17 0.08 0.13-0.52 

1,2-Dibromoethane (EDB) 0.46 0.41 0.92 0.33 0.38-0.47 

1,2-Dichlorobenzene 0.29 0.27 0.57 0.22 0.24-0.31 

1,2-Dichloroethane 0.15 0.13 0.40 0.11 0.12-0.15 

1,2-Dichloropropane 0.20 0.17 0.52 0.14 0.15-0.20 

1,3,5-Trimethylbenzene 0.26 0.16 3.09 0.13 0.14-0.22 

1,3-Butadiene 0.12 0.11 0.30 0.09 0.10-0.12 

1,3-Dichlorobenzene 0.35 0.31 0.82 0.25 0.28-0.35 

1,4-Dichlorobenzene 0.32 0.29 0.72 0.23 0.26-0.33 

2-Butanone (MEK) 2.31 2.05 6.28 0.55 1.56-2.95 

2-Hexanone 0.45 0.41 1.25 0.21 0.30-0.53 

2-Propanol 3.97 0.84 119.43 0.11 0.42-1.31 

4-Ethyltoluene 0.27 0.15 3.49 0.12 0.13-0.22 

4-Methyl-2-pentanone (MIBK) 0.38 0.22 5.28 0.13 0.16-0.32 

Acetone 11.63 9.53 42.16 6.08 8.59-11.53 

Benzene 0.57 0.47 2.76 0.23 0.36-0.65 

Benzyl chloride 0.35 0.28 1.51 0.22 0.24-0.33 

Bromodichloromethane 0.18 0.16 0.57 0.12 0.14-0.18 

Bromoform 0.59 0.50 2.74 0.41 0.45-0.58 

Bromomethane 0.28 0.24 0.85 0.19 0.21-0.27 

Carbon disulfide 0.50 0.09 10.41 0.06 0.06-0.24 

Carbon tetrachloride 0.34 0.28 1.10 0.17 0.22-0.37 

Chlorobenzene 0.30 0.15 1.67 0.08 0.09-0.34 

Chloroethane 0.17 0.15 0.51 0.12 0.13-0.17 

Chloroform 0.19 0.15 0.56 0.12 0.14-0.18 

Chloromethane 0.68 0.67 1.17 0.31 0.58-0.78 

cis-1,2-Dichloroethene 0.21 0.18 0.63 0.15 0.16-0.21 

cis-1,3-Dichloropropene 0.23 0.20 0.50 0.17 0.19-0.24 

Cyclohexane 0.64 0.24 14.90 0.15 0.18-0.33 

Dibromochloromethane 0.82 0.71 2.69 0.55 0.62-0.80 

Dichlorodifluoromethane 2.14 2.15 2.85 1.43 1.98-2.30 
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Dichlorotetrafluoroethane 0.26 0.23 0.80 0.18 0.20-0.26 

Ethanol 9.26 7.03 44.25 2.59 5.71-8.92 

Ethyl acetate 1.92 0.21 83.91 0.16 0.19-0.25 

Ethylbenzene 0.38 0.28 2.58 0.20 0.23-0.38 

Hexachloro-1,3-butadiene 0.54 0.43 3.17 0.35 0.38-0.51 

m&p-Xylene 1.08 0.87 4.15 0.36 0.66-1.18 

Methyl-tert-butyl ether 0.18 0.16 0.36 0.13 0.15-0.18 

Naphthalene 0.73 0.55 6.12 0.19 0.35-0.84 

n-Heptane 1.05 0.51 17.30 0.15 0.27-0.96 

n-Hexane 2.79 1.37 33.21 0.17 0.78-2.97 

o-Xylene 0.48 0.37 1.47 0.26 0.31-0.53 

Propylene 0.60 0.54 2.05 0.09 0.38-0.76 

Styrene 0.17 0.14 0.76 0.11 0.12-0.16 

Tetrachloroethene 5.19 0.39 184.14 0.16 0.19-1.36 

Tetrahydrofuran 0.15 0.11 1.08 0.08 0.09-0.12 

Toluene 2.51 1.41 25.33 0.67 1.15-2.32 

trans-1,2-Dichloroethene 0.25 0.22 0.59 0.18 0.20-0.26 

trans-1,3-Dichloropropene 0.21 0.18 0.50 0.14 0.17-0.21 

Trichloroethene 0.26 0.21 0.66 0.15 0.18-0.28 

Trichlorofluoromethane 1.24 1.27 1.95 0.69 1.37-1.95 

Vinyl acetate 0.59 0.45 1.69 0.22 0.75-1.69 

Vinyl chloride 0.13 0.12 0.32 0.10 0.13-0.32 

BTEX 5.02 3.64 27.61 1.97 2.88-5.01 

TVOC 61.76 45.91 228.82 30.68 36.37-69.29 

 
 aSecond year: S5-S8 (Nov 2014-Aug 2015); bAll units are in µg/m3. 
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Figure A3.3. Correlation matrix for all VOCs during the core modeling period (Second year: S5-S8)



147 

 

Table A3.3 Summary statistics of all 5 VOC annual-average scenarios of different sampling 

periods for the priority VOCs 

VOC Period 

Number of 

Locations Meanf Medianf Maxf Minf IQRf 

BTEX 

First year: S1-S4a 40 16.95 4.93 197.66 2.48 3.93-10.32 

Second year: S5-S8b 50 5.02 3.64 27.61 1.97 2.88-5.01 

Year-2014c 45 14.63 3.98 197.35 2.30 3.47-8.21 

8Sd 24 13.57 5.57 99.96 2.58 3.32-7.90 

4Se 79 8.16 4.11 99.96 1.83 3.10-6.23 

Naphthalene 

First year: S1-S4 40 1.68 0.71 31.97 0.27 0.45-1.07 

Second year: S5-S8 50 0.73 0.54 6.12 0.19 0.35-0.84 

Year-2014 45 1.41 0.49 31.92 0.22 0.29-0.86 

8S 24 0.78 0.63 2.87 0.26 0.51-0.82 

4S 79 2.33 0.60 94.58 0.20 0.39-0.84 

Tetrachloroethene 

First year: S1-S4 40 5.04 0.27 181.13 0.17 0.19-0.58 

Second year: S5-S8 50 5.19 0.36 184.14 0.16 0.19-1.23 

Year-2014 45 5.51 0.61 176.99 0.15 0.20-1.48 

8S 24 9.00 0.83 182.63 0.17 0.28-1.33 

4S 79 3.33 0.55 182.63 0.16 0.23-1.17 

TVOC 

First year: S1-S4 40 131.83 62.05 1142.67 36.08 49.63-89.88 

Second year: S5-S8 50 61.76 45.91 228.82 30.68 36.37-69.29 

Year-2014 45 120.90 55.88 1140.84 32.46 46.31-102.20 

8S 24 100.52 74.96 375.66 38.35 46.95-112.14 

4S 79 85.48 52.44 1141.75 31.38 43.20-79.52 

aFirst year: S1-S4 (Nov 2013-Aug 2014); bSecond year: S5-S8 (Nov 2014-Aug 2015); cYear-2014: calendar year-

2014 (Feb 2014-Nov 2014); abc are four consecutive sampling events (one event per season); d8S: measurements 

during all 8 sampling events; e4S: non-consecutive coverage of 4 seasons among the 8 sampling events; fAll units 

are in µg/m3. 
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Table A3.4 LUR model results for the 60 VOCs 

Category Variable 
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners                

Gas Stations  0.63 (200)   

0.67 

(200)   

0.73 

(200)   0.71 (200)   

0.74 

(200)  

Paint Booths                

Auto Shops                

Area Sources: 

Google POI 

Laundry                

Gas Stations   

0.35 

(200)   

0.36 

(200)   

0.40 

(200)   

0.33 

(200)   

0.40 

(200) 

Painter   

0.41 

(400)   

0.42 

(400)   

0.45 

(400)   

0.37 

(400)   

0.46 

(400) 

Car Repair                

Transportation 

Principal 

Arterials          

0.64 

(3,000)      

Arterials     

0.36 

(200)   

0.43 

(200)  

-1.53 

(1,000)    

0.43 

(200)  

Collectors                

Local Roads          0.56 (25)      

Dis. to Freeway                
Dis. to Major 

Road          -0.32      

Traffic Intensity                

Transit Stops 

-0.76 

(2,000)  

-0.32 

(500) 

-0.76 

(2,000)  

-0.34 

(500) 

-0.83 

(2,000)  

-0.37 

(500)  

-0.32 

(100)  

-0.84 

(2,000)  

-0.38 

(500) 

Land Use 

Elevation                

Industrial Area            

0.17 

(150)    

Open Space   

-0.33 

(5,000)        

-0.64 

(5,000) 

-0.46 

(5,000)     

Retail Area 0.45 (200)   0.44 (200)   0.47 (200)      0.47 (200)   
Wtd. Household 

Income          

-0.80 

(2,000)      
Wtd. Housing 

Dens. 0.56 (25) 0.52 (25) 

0.45 

(25) 0.57 (25) 

0.43 

(25) 

0.46 

(25) 0.65 (25) 

0.48 

(25) 

0.53 

(25) 0.70 (25) 0.57 (25) 

0.47 

(25) 0.64 (25) 

0.48 

(25) 0.53 (25) 

Intercept 0.19 0.23 0.15 0.27 0.18 0.21 0.25 0.15 0.19 0.54 0.34 0.16 0.16 0.09 0.12 

Adj-R2 0.40 0.45 0.68 0.40 0.46 0.69 0.35 0.42 0.70 0.52 0.43 0.80 0.34 0.41 0.70 

RMSE 0.04 0.04 0.03 0.06 0.06 0.05 0.07 0.07 0.05 0.05 0.05 0.03 0.05 0.04 0.03 

10-fold CV-R2 0.29 0.34 0.51 0.29 0.38 0.55 0.25 0.34 0.55 0.41 0.33 0.61 0.27 0.32 0.61 
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Category Variable 
1,1-Dichloroethene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners                

Gas Stations  0.53 (200)         0.39 (200)   

0.34 

(200)  

Paint Booths                

Auto Shops              

0.05 

(200)  

Area Sources: 

Google POI 

Laundry                

Gas Stations   

0.29 

(200)      

0.80 

(300)   

0.21 

(200)   

0.20 

(200) 

Painter   

0.33 

(500)         

0.16 

(500)   

0.33 

(1,000) 

Car Repair                

Transportation 

Principal 

Arterials                

Arterials                

Collectors                

Local Roads    

0.47 

(25) 

0.47 

(25) 

0.47 

(25)       

0.25 

(25)  

0.23 

(100) 

Dis. to Freeway                
Dis. to Major 

Road                

Traffic Intensity                

Transit Stops                

Land Use 

Elevation                

Industrial Area                

Open Space   

-0.29 

(5,000)              

Retail Area                
Wtd. Household 

Income                
Wtd. Housing 

Dens. 0.36 (25) 0.43 (25) 

0.33 

(25)       0.26 (25) 0.27 (25) 

0.24 

(25) 

0.25 

(25) 

0.25 

(25)  

Intercept 0.13 0.20 0.12 0.39 0.39 0.39 0.33 0.33 0.28 0.35 0.34 0.33 0.18 0.23 0.20 

Adj-R2 0.34 0.51 0.61 0.09 0.09 0.09 0.00 0.00 0.17 0.21 0.52 0.45 0.22 0.55 0.44 

RMSE 0.04 0.03 0.03 0.21 0.21 0.21 0.35 0.35 0.32 0.08 0.06 0.06 0.05 0.04 0.05 

10-fold CV-R2 0.28 0.41 0.50 0.06 0.06 0.07 0.03 0.01 0.08 0.16 0.41 0.38 0.18 0.46 0.39 
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Category Variable 
1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Butadiene 1,3-Dichlorobenzene 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners                

Gas Stations  0.65 (200)   0.61 (200)      0.60 (200)   0.52 (200)  

Paint Booths                

Auto Shops                

Area Sources: 

Google POI 

Laundry                

Gas Stations   

0.36 

(200)   

0.36 

(200)   

0.69 

(300)   

0.33 

(200)   

0.29 

(200) 

Painter   

0.40 

(400)   

0.48 

(400)      

0.40 

(400)   

0.19 

(500) 

Car Repair      

-0.14 

(300)          

Transportation 

Principal 

Arterials                

Arterials       

0.74 

(300) 

0.74 

(300)        

Collectors                

Local Roads                

Dis. to Freeway                
Dis. to Major 

Road                
Traffic 

Intensity                

Transit Stops 

-0.77 

(2,000)  

-0.32 

(500) 

-0.74 

(2,000)      

-0.74 

(2,000)  

-0.31 

(500)    

Land Use 

Elevation                

Industrial Area                

Open Space   

-0.33 

(5,000)   

-0.32 

(5,000)      

-0.31 

(5,000)   

-0.28 

(5,000)  

Retail Area 0.45 (200)   0.43 (200)      0.43 (200)      
Wtd. 

Household 

Income                
Wtd. Housing 

Dens. 0.57 (25) 0.54 (25) 0.46 (25) 0.54 (25) 0.51 (25) 0.41 (25)    0.53 (25) 0.49 (25) 0.42 (25) 

0.36 

(25) 0.42 (25) 

0.33 

(25) 

Intercept 0.16 0.20 0.13 0.21 0.25 0.15 0.13 0.13 0.18 0.13 0.16 0.11 0.27 0.40 0.25 

Adj-R2 0.41 0.46 0.68 0.31 0.35 0.62 0.08 0.08 0.15 0.40 0.34 0.60 0.16 0.30 0.51 

RMSE 0.04 0.04 0.03 0.05 0.05 0.04 0.19 0.19 0.18 0.03 0.03 0.02 0.08 0.07 0.06 

10-fold CV-R2 0.36 0.40 0.59 0.25 0.30 0.55 0.05 0.05 0.10 0.32 0.30 0.52 0.12 0.26 0.42 
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Category Variable 
4-Methyl-2-pentanone (MIBK) Acetone Benzene Benzyl chloride Bromodichloromethane 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners                

Gas Stations  

-0.62 

(5,000)         

0.74 

(200)   

0.75 

(200)  

Paint Booths  0.28 (75)   

0.19 

(25)           

Auto Shops                

Area Sources: 

Google POI 

Laundry            

0.29 

(1,000)    

Gas Stations   

-0.86 

(5,000)   

0.40 

(300)      

0.43 

(200)   

0.40 

(200) 

Painter            

0.57 

(400)   

0.45 

(400) 

Car Repair      

0.13 

(75)      

-0.16 

(300)    

Transportation 

Principal Arterials    -0.51 (100)            

Arterials    -0.30 (25)      

0.45 

(200)      

Collectors                

Local Roads    

0.25 

(2,000) 

0.25 

(1,000)           

Dis. to Freeway                
Dis. to Major 

Road                

Traffic Intensity                

Transit Stops 

0.58 

(25) 0.74 (25) 

0.58 

(25)    0.78 (300) 

0.78 

(300) 

0.78 

(300)    

-0.84 

(2,000)  

-0.37 

(500) 

Land Use 

Elevation                

Industrial Area    0.43 (25) 

0.23 

(200) 

0.18 

(200)          

Open Space             

0.21 

(200)    

Retail Area  -0.57 (25)  0.60 (300) 

0.28 

(300)      

0.49 

(200)  0.48 (200) 

0.44 

(200)  
Wtd. Household 

Income                
Wtd. Housing 

Dens.          

0.46 

(25) 

0.48 

(25) 0.41 (25) 0.65 (25) 

0.48 

(25) 0.53 (25) 

Intercept 0.23 0.45 0.59 1.86 1.96 2.33 0.31 0.31 0.31 0.20 0.18 0.16 0.19 0.11 0.15 

Adj-R2 0.10 0.54 0.24 0.43 0.41 0.56 0.16 0.16 0.16 0.31 0.47 0.77 0.35 0.42 0.70 

RMSE 0.25 0.18 0.23 0.28 0.28 0.25 0.17 0.17 0.17 0.12 0.11 0.07 0.06 0.05 0.04 

10-fold CV-R2 0.08 0.36 0.18 0.25 0.32 0.49 0.08 0.08 0.08 0.24 0.36 0.58 0.26 0.36 0.58 
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Category Variable 
Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners                

Gas Stations     

0.70 

(200)           

Paint Booths  

0.43 

(1,500)              

Auto Shops           

0.48 

(3,000)     

Area Sources: 

Google POI 

Laundry            

0.14 

(250)    

Gas Stations   

0.21 

(200)   

0.38 

(200)      

0.20 

(200)    

Painter   

0.47 

(750)   

0.44 

(400)      

0.54 

(1,500)    

Car Repair                

Transportation 

Principal 

Arterials          

-0.35 

(1,000) 

-0.38 

(1,000) 

-0.42 

(2,000)    

Arterials     

0.41 

(200)       

0.36 

(400)    

Collectors          

0.31 

(3,000)   

-0.49 

(1,000) 

-0.49 

(1,000) 

-0.49 

(1,000) 

Local Roads 

0.42 

(200) 0.48 (200) 0.33 (25)             

Dis. to Freeway                
Dis. to Major 

Road                

Traffic Intensity                

Transit Stops    

-0.80 

(2,000)  

-0.35 

(500)       0.39 (75) 

0.39 

(75) 0.39 (75) 

Land Use 

Elevation                

Industrial Area                

Open Space                 

Retail Area    0.46 (200)       

-0.20 

(25) 

-0.23 

(25)    
Wtd. Household 

Income                
Wtd. Housing 

Dens.    0.61 (25) 0.46 (25) 0.50 (25)    

0.27 

(25) 

0.34 

(25) 

0.40 

(2'000)    

Intercept 0.30 0.23 0.34 0.28 0.18 0.22 0.24 0.24 0.24 0.14 0.16 0.10 0.38 0.38 0.38 

Adj-R2 0.21 0.21 0.21 0.41 0.40 0.76 0.00 0.00 0.00 0.30 0.40 0.62 0.17 0.17 0.17 

RMSE 0.14 0.14 0.14 0.07 0.07 0.04 0.43 0.43 0.43 0.11 0.10 0.08 0.20 0.20 0.20 

10-fold CV-R2 0.16 0.16 0.17 0.32 0.32 0.67 0.01 0.03 0.03 0.22 0.31 0.52 0.10 0.12 0.12 
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Category Variable 
Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners     -0.09 (200)           

Gas Stations  0.72 (200)   0.91 (200)   

-0.31 

(5,000)   

0.71 

(200)   

0.47 

(200)  

Paint Booths     -0.09 (50)           

Auto Shops     

0.39 

(1,500)           

Area Sources: 

Google POI 

Laundry                

Gas Stations   0.39 (200)   0.22 (200)   

0.83 

(200)   

0.38 

(200)   

0.26 

(200) 

Painter   0.45 (400)         

0.43 

(400)   

0.18 

(500) 

Car Repair                

Transportation 

Principal 

Arterials                

Arterials  0.41 (200)   0.31 (200)  

0.58 

(200) 

0.66 

(200) 

0.47 

(200)  

0.40 

(200)     

Collectors                

Local Roads                

Dis. to Freeway                
Dis. to Major 

Road                

Traffic Intensity                

Transit Stops 

-0.81 

(2,000)  -0.36 (500) 

-0.71 

(2,000) -0.27 (250)     

-0.81 

(2,000)  

-0.36 

(500)    

Land Use 

Elevation                

Industrial Area         

0.15 

(250)       

Open Space        

0.21 

(150)  

0.29 

(150)     

-0.26 

(5,000)  

Retail Area 

0.46 

(200)   

0.66 

(200)      

0.46 

(200)      
Wtd. Household 

Income                
Wtd. Housing 

Dens. 

0.62 

(25) 0.46 (25) 0.51 (25) 

0.29 

(25) 0.30 (25) 0.27 (25)    

0.62 

(25) 

0.46 

(25) 0.50 (25) 0.32 (25) 0.38 (25) 

0.29 

(25) 

Intercept 0.18 0.11 0.14 0.21 0.10 0.14 0.46 0.55 0.44 0.22 0.14 0.17 0.19 0.28 0.17 

Adj-R2 0.42 0.41 0.68 0.35 0.67 0.40 0.26 0.26 0.37 0.39 0.40 0.77 0.14 0.28 0.48 

RMSE 0.05 0.05 0.04 0.06 0.05 0.06 0.09 0.08 0.08 0.04 0.06 0.04 0.05 0.05 0.04 

10-fold CV-R2 0.32 0.35 0.60 0.31 0.59 0.33 0.20 0.20 0.30 0.31 0.31 0.65 0.10 0.21 0.42 
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Category Variable 
Cyclohexane Dibromochloromethane Dichlorodifluoromethane Dichlorotetrafluoroethane Ethanol 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners                

Gas Stations     

0.66 

(200)      

0.69 

(200)   

-0.29 

(1,500)  

Paint Booths        

-0.32 

(1,500)        

Auto Shops                

Area Sources: 

Google POI 

Laundry         

-0.32 

(500)       

Gas Stations      0.38 (200)      0.38 (200)    

Painter   0.39 (200)   0.50 (400)      0.44 (400)    

Car Repair      -0.15 (300)          

Transportation 

Principal 

Arterials       

0.40 

(750) 

0.44 

(750)        

Arterials     

0.39 

(200)   

-0.29 

(100)   

0.39 

(200)     

Collectors                

Local Roads                

Dis. to Freeway                
Dis. to Major 

Road       0.28         

Traffic Intensity                

Transit Stops         

0.61 

(750) 

-0.79 

(2,000)  -0.34 (500)    

Land Use 

Elevation                

Industrial Area       

-0.41 

(2,000)  

-0.29 

(2,000)       

Open Space                 

Retail Area          

0.46 

(200)   

0.57 

(1,000) 

0.69 

(1,000) 

0.57 

(1,000) 

Wtd. Household 

Income                
Wtd. Housing 

Dens.    

0.47 

(25) 

0.42 

(25) 0.44 (25) 

-0.20 

(25)  

-0.27 

(50) 

0.60 

(25) 

0.45 

(25) 0.49 (25)    

Intercept 0.33 0.33 0.26 0.52 0.46 0.49 1.15 1.16 1.10 0.27 0.17 0.21 1.89 2.10 1.89 

Adj-R2 0.00 0.00 0.11 0.39 0.39 0.76 0.30 0.22 0.37 0.41 0.39 0.75 0.16 0.22 0.16 

RMSE 0.40 0.40 0.38 0.14 0.14 0.09 0.09 0.09 0.08 0.07 0.07 0.04 0.46 0.45 0.46 

10-fold CV-R2 0.00 0.01 0.08 0.31 0.32 0.58 0.22 0.16 0.33 0.35 0.36 0.62 0.08 0.18 0.13 



155 

 

 

Category Variable 
Ethyl acetate Ethylbenzene Hexachloro-1,3-butadiene m&p-Xylene Methyl-tert-butyl ether 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners                

Gas Stations              

0.39 

(200)  

Paint Booths           

0.22 

(250)     

Auto Shops                

Area Sources: 

Google POI 

Laundry                

Gas Stations         

0.22 

(200)      

0.22 

(200) 

Painter      0.12 (300)   

0.50 

(1,000)   0.30 (250)   

0.28 

(500) 

Car Repair            0.05 (75)    

Transportation 

Principal 

Arterials      

0.62 

(3,000)          

Arterials                

Collectors                

Local Roads       0.40 (200) 

0.40 

(200) 

0.33 

(25)       

Dis. to Freeway                
Dis. to Major 

Road                

Traffic Intensity                

Transit Stops          

0.33 

(400)      

Land Use 

Elevation                

Industrial Area                

Open Space                 

Retail Area                
Wtd. Household 

Income          

-0.37 

(75) 

-0.36 

(75) -0.30 (50)    
Wtd. Housing 

Dens.             

0.27 

(25) 

0.28 

(25) 0.24 (25) 

Intercept 0.30 0.30 0.30 0.31 0.31 0.16 0.24 0.24 0.26 0.72 0.84 0.78 0.15 0.15 0.14 

Adj-R2 0.00 0.00 0.00 0.00 0.00 0.31 0.06 0.06 0.25 0.23 0.29 0.44 0.20 0.56 0.47 

RMSE 0.60 0.60 0.60 0.18 0.18 0.15 0.18 0.18 0.15 0.25 0.24 0.21 0.04 0.03 0.03 

10-fold CV-R2 0.01 0.01 0.02 0.02 0.06 0.25 0.05 0.05 0.20 0.18 0.22 0.34 0.06 0.38 0.38 
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Category Variable 
Naphthalene n-Heptane n-Hexane o-Xylene Propylene 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners                

Gas Stations  0.66 (200)              

Paint Booths  0.53 (500)   

0.37 

(25)           

Auto Shops           

0.17 

(75)     

Area Sources: 

Google POI 

Laundry                

Gas Stations         

0.71 

(200)   0.93 (200)    

Painter   0.76 (400)   0.37 (300)   

0.33 

(300)   0.19 (300)    

Car Repair      0.18 (75)      0.06 (75)    

Transportation 

Principal 

Arterials 

-0.80 

(500) -0.68 (750) -0.73 (500)   

0.98 

(3,000)          

Arterials      

-0.80 

(1,500)    

0.34 

(200) 

0.33 

(250) 0.24 (250)  

0.06 

(200)  

Collectors 

0.60 

(1,500)  

0.50 

(1,000)   

-0.66 

(1,000)          

Local Roads                

Dis. to Freeway                
Dis. to Major 

Road             0.26 0.29 0.26 

Traffic Intensity                

Transit Stops                

Land Use 

Elevation                

Industrial Area                

Open Space                 

Retail Area                
Wtd. Household 

Income             

-0.30 

(500)  

-0.30 

(500) 

Wtd. Housing 

Dens.          

0.25 

(25) 

0.23 

(25) 0.20 (25)    

Intercept 0.25 0.42 0.23 0.51 0.48 0.69 1.03 1.03 0.85 0.28 0.27 0.26 0.54 0.36 0.54 

Adj-R2 0.20 0.40 0.50 0.00 0.20 0.50 0.00 0.00 0.26 0.27 0.45 0.59 0.14 0.15 0.14 

RMSE 0.27 0.23 0.21 0.48 0.43 0.34 0.66 0.66 0.57 0.14 0.12 0.10 0.19 0.19 0.19 

10-fold CV-R2 0.17 0.32 0.47 0.02 0.15 0.40 0.01 0.01 0.22 0.22 0.38 0.52 0.08 0.08 0.08 
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Category Variable 
Styrene Tetrachloroethene Tetrahydrofuran Toluene trans-1,2-Dichloroethene 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners     0.39 (25)           

Gas Stations        

0.25 

(250)      

0.53 

(200)  

Paint Booths           

0.35 

(500)     

Auto Shops           0.32 (50)     

Area Sources: 

Google POI 

Laundry      0.41 (25)          

Gas Stations   0.22 (200)   

0.41 

(200)   

0.82 

(300)      0.29 (200) 

Painter            0.55 (400)   0.32 (500) 

Car Repair   

0.57 

(1,000)         

0.71 

(1,000)    

Transportation 

Principal 

Arterials      

0.34 

(300)          

Arterials 

0.68 

(200) 0.68 (200) 0.60 (200)  

0.30 

(200)  0.65 (300) 

0.62 

(300)        

Collectors           0.20 (75) 0.19 (75)    

Local Roads   

-0.24 

(3,000)             

Dis. to Freeway                
Dis. to Major 

Road                

Traffic Intensity                

Transit Stops   -0.49 (250)         

-0.38 

(150)    

Land Use 

Elevation                

Industrial Area                

Open Space               

-0.28 

(5,000)  

Retail Area    

0.68 

(150)            
Wtd. Household 

Income                
Wtd. Housing 

Dens.     0.26 (25) 0.31 (25)       

0.36 

(25) 

0.42 

(25) 0.33 (25) 

Intercept 0.12 0.12 0.23 0.41 0.24 0.26 0.09 0.08 0.11 1.05 0.82 0.62 0.20 0.30 0.18 

Adj-R2 0.26 0.26 0.66 0.31 0.64 0.75 0.08 0.14 0.29 0.00 0.40 0.44 0.34 0.31 0.52 

RMSE 0.07 0.07 0.05 0.76 0.55 0.46 0.10 0.10 0.09 0.51 0.39 0.38 0.05 0.05 0.04 

10-fold CV-R2 0.18 0.21 0.51 0.26 0.40 0.56 0.05 0.10 0.21 0.02 0.31 0.35 0.25 0.25 0.44 
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Category Variable 
trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride 

M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c M1a M2b M3c 

Area Sources: 

City Permit 

Data 

Dry Cleaners           

0.71 

(1,000)     

Gas Stations  0.43 (200)      

-0.41 

(1,000)      

0.58 

(200)  

Paint Booths  -0.10 (50)              

Auto Shops  0.11 (400)              

Area Sources: 

Google POI 

Laundry         

-0.27 

(500)       

Gas Stations   0.23 (200)   0.44 (250)         0.32 (200) 

Painter   0.32 (500)            0.37 (400) 

Car Repair                

Transportation 

Principal 

Arterials                

Arterials  0.26 (200)       

0.39 

(300)       

Collectors        

-0.24 

(200)        

Local Roads 

0.28 

(300)          

0.30 

(25)     

Dis. to Freeway                
Dis. to Major 

Road                

Traffic Intensity                

Transit Stops  -0.33 (100) -0.29 (400)             

Land Use 

Elevation                

Industrial Area                

Open Space               

-0.31 

(5,000)  

Retail Area      

0.31 

(5,000)          
Wtd. Household 

Income                
Wtd. Housing 

Dens. 

0.31 

(25) 0.31 (25) 0.31 (25)          

0.41 

(25) 

0.47 

(25) 0.37 (25) 

Intercept 0.10 0.15 0.18 0.23 0.23 0.11 0.80 0.88 0.79 0.44 0.27 0.44 0.11 0.17 0.10 

Adj-R2 0.53 0.38 0.61 0.00 0.00 0.20 0.00 0.17 0.15 0.00 0.32 0.00 0.35 0.33 0.65 

RMSE 0.04 0.05 0.04 0.10 0.10 0.09 0.10 0.10 0.10 0.23 0.19 0.23 0.03 0.03 0.02 

10-fold CV-R2 0.47 0.32 0.50 0.01 0.05 0.12 0.02 0.10 0.11 0.03 0.28 0.02 0.34 0.30 0.58 
aM1: Base-case: No Area Sources; bM2: Area Sources: City Permit Data; cM3: Area Sources: Google POI; Model coefficients are normalized coefficients with 

buffers in parentheses. All variables are at p < 0.05. Number of locations used for modeling is 50. 
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Table A3.5 The average number of area source locations and coefficient of variation between the 

city permit data and Google POI data 

Category 
Area Sources: City Permit Data Area Sources: Google POI 

SDa Averageb CVc SDa Averageb CVc 

Dry Cleaners/Laundry 0.39 0.23 1.70 0.78 0.38 2.08 

Gas Stations 0.87 0.68 1.29 1.02 0.73 1.40 

Paint Booths/Painter 0.68 0.49 1.38 0.86 0.55 1.55 

Auto Shops/Car Repair 3.99 2.54 1.57 5.43 3.29 1.65 
aSD: standard deviation; bAverage: average number of area source locations; cCV: coefficient of 

variation. The results were calculated for the 500m buffer scenario. 
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Figure A3.4. Number of VOCs that selected an area source in the core LUR models. The black 

bar “Any” presents number of VOCs that selected at least one type of area source. 
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Figure A3.5. Model performance among the scenarios for estimating annual average VOC 

concentrations for the priority VOCs. The black bar (Second year: S5-S8) is our core model 

scenario. 

  

0

0.2

0.4

0.6

0.8

1

B
TE

X

N
ap

h
th

al
en

e

Te
tr

ac
h

lo
ro

et
h

en
e

TV
O

C

B
TE

X

N
ap

h
th

al
en

e

Te
tr

ac
h

lo
ro

et
h

en
e

TV
O

C

B
TE

X

N
ap

h
th

al
en

e

Te
tr

ac
h

lo
ro

et
h

en
e

TV
O

C

Base-case: No Area Sources Area Sources: City Permit Data Area Sources: Google POI

A
d

j-
R

2

First year: S1-S4 Second year: S5-S8 Year-2014 8S 4S



162 

 

 

Figure A3.6. Model performance among the scenarios for estimating annual average VOC 

concentrations for all 60 VOCs. Black dots are means of model performance. First year: S1-S4 

(Nov 2013-Aug 2014; n=40); Second year: S5-S8 (Nov 2014-Aug 2015; n=50); Year-2014: 

calendar year-2014 (Feb 2014-Nov 2014; n=24); 8S (measurements during all 8 sampling events; 

n=24); 4S (non-consecutive coverage of 4 seasons among the 8 sampling events; n=79). 
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Figure A3.7. Adj-R2 of seasonal models vs. annual models for the priority VOCs. VOC species 

without certain color-bars indicate no variables were selected in the seasonal models. Seasonal-

average bar is the average value of the adj-R2 of all LUR model using the VOC measurements of 

each season (if applicable); annual-average bar is the core LUR model performance using the 

VOC measurements of our second-year sampling events.  
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Table A3.6 Cook’s distance of the Google POI model for the priority VOCs 

VOC Min Median Mean Max 

BTEX 0 0 0.03 0.81 

Naphthalene 0 0.01 0.02 0.14 

Tetrachloroethene 0 0 0.03 0.28 

TVOC 0 0.01 0.02 0.10 
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Table A3.7 Moran’s I results of the three models for the priority VOCs 

Model Type VOC  
                                         2500m 

Moran's I p-value 

Base-case: No 

Area Sources 

BTEX 0.26 0.01* 

Naphthalene -0.03 0.90 

Tetrachloroethene 0.01 0.52 

TVOC 0.01 0.72 

Area Sources: 

City Permit Data 

BTEX -0.17 0.07 

Naphthalene -0.03 0.85 

Tetrachloroethene -0.03 0.95 

TVOC -0.05 0.76 

Area Sources: 

Google POI 

BTEX -0.19 0.03* 

Naphthalene -0.04 0.84 

Tetrachloroethene -0.01 0.84 

TVOC -0.07 0.60 

* denotes p-value < 0.05. We set the threshold distance to 2500 meters to ensure a minimum number of neighbors to 

1 based on inverse distance spatial relationships.  
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Figure A3.8. LISA results of BTEX for the models with spatial autocorrelation. 
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Table A4.1. Independent variables used in LUR models 

Category Measure Notea 

Traffic 

Distance to the nearest road (0.05-15 

km) Any available road 

Population Sum (0.5-3 km) Population in block groups 

Land use (Urban) Percent (0.05-15 km) Urban or built-up land, etc. 

Land use (Rural) Percent (0.05-15 km) Agriculture, forest, water, etc. 

Source Distance to the nearest source Coastline, railroad, airport, etc. 

Emission 

Sum of cite-specific facility emissions 

(3-30 km) PM2.5 

Vegetation Quantiles (0.5-10 km) Normalized Difference Vegetation Index  

Imperviousness Percent (0.05-5 km) Impervious surface value 

Elevation 

Counts of points above/below a 

threshold (1-5 km) Elevation value 

Satellite estimate Grid-level estimates PM2.5 
aDetailed information can be found from the CACES LUR modeling study (Kim et al., 2020) 
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Table A4.2. Summary of obtaining valid PPA measurements 

City 

# of raw hours including 

both channels 

# of valid hours of 

channel A data before 

filtering 

# of valid hours of 

channel A data after 

filtering 

# of valid 

sensors used 

LA 8,663,963 2,579,804 2,360,159 103 

New York 566,693 138,407 130,520 7 

Phoenix 377,132 113,908 102,430 7 

Pittsburgh 903,949 267,072 217,325 8 

Riverside 3,548,497 1,066,588 697,999 16 

DC 514,745 154,026 137,301 8 
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Figure A4.1. The overview of the Hygroscopic Growth (HG) Correction Method. 
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Figure A4.2. The overview of the Empirical Correction (EC) Correction Method. 
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Figure A4.3. The PPA data assembly framework. 
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Figure A4.4. External evaluation of the CACES LUR using all 6-city PPA measurements 

(pooled evaluation). The truncated data was the PPA measurements below the maximum 

concentrations (13.36 µg/m3) of the EPA monitors among the 6 cities.  
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Figure A4.5. External evaluation of the CACES LUR by city (single-city evaluation). The 

truncated data was the PPA measurements below the maximum concentrations (13.36 µg/m3) of 

the EPA monitors among the 6 cities.  
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Figure A4.6. External evaluation of the CACES LUR using the HG vs. EC correction methods 

for DC. 
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Figure A4.7. External evaluation of the CACES LUR using the HG vs. EC correction methods 

for LA. 
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Figure A4.8. External evaluation of the CACES LUR using the HG vs. EC correction methods 

for New York. 
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Figure A4.9. External evaluation of the CACES LUR using the HG vs. EC correction methods 

for Phoenix. 
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Figure A4.10. External evaluation of the CACES LUR using the HG vs. EC correction methods 

for Pittsburgh. 
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Figure A4.11. External evaluation of the CACES LUR using the HG vs. EC correction methods 

for Riverside. 
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Figure A4.12. External evaluation using the PPA sites near major emission sources (i.e., traffic, 

restaurant, and NEI facilities) vs. background (i.e., all other sites) for all 6 cities. 
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Figure A4.13. External evaluation using the PPA sites near major emission sources (i.e., traffic, 

restaurant, and NEI facilities) vs. background (i.e., all other sites) for DC. 
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Figure A4.14. External evaluation using the PPA sites near major emission sources (i.e., traffic, 

restaurant, and NEI facilities) vs. background (i.e., all other sites) for LA. 
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Figure A4.15. External evaluation using the PPA sites near major emission sources (i.e., traffic, 

restaurant, and NEI facilities) vs. background (i.e., all other sites) for New York. 
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Figure A4.16. External evaluation using the PPA sites near major emission sources (i.e., traffic, 

restaurant, and NEI facilities) vs. background (i.e., all other sites) for Phoenix. 
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Figure A4.17. External evaluation using the PPA sites near major emission sources (i.e., traffic, 

restaurant, and NEI facilities) vs. background (i.e., all other sites) for Pittsburgh. 
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Figure A4.18. External evaluation using the PPA sites near major emission sources (i.e., traffic, 

restaurant, and NEI facilities) vs. background (i.e., all other sites) for Riverside. 
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Figure A4.19. External evaluation using the PPA sites near traffic vs. background (i.e., all other 

sites) for all 6 cities. 
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Figure A4.20. External evaluation using the PPA sites near higher NEI emissions vs. background 

(i.e., all other sites) for all 6 cities. 

  



189 

 

 

Figure A4.21. External evaluation of the PPA sites near restaurants vs. background (i.e., all other 

sites) for all 6 cities. 
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Figure A4.22: Population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in DC. Panel A is the 

CACES LUR developed using the national EPA data; panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA LUR 

using the 6-city PPA data; panel D is the Hybrid LUR using the national EPA data and the 6-city PPA data; panel E is the Hybrid 

LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.23: Population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in New York. Panel A 

is the CACES LUR developed using the national EPA data; panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA 

LUR using the 6-city PPA data; panel D is the Hybrid LUR using the national EPA data and the 6-city PPA data; panel E is the 

Hybrid LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.24: Population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in Phoenix. Panel A is 

the CACES LUR developed using the national EPA data; panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA 

LUR using the 6-city PPA data; panel D is the Hybrid LUR using the national EPA data and the 6-city PPA data; panel E is the 

Hybrid LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.25: Population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in Pittsburgh. Panel A 

is the CACES LUR developed using the national EPA data; panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA 

LUR using the 6-city PPA data; panel D is the Hybrid LUR using the national EPA data and the 6-city PPA data; panel E is the 

Hybrid LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.26: Population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in Pittsburgh. Panel A 

is the CACES LUR developed using the national EPA data; panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA 

LUR using the 6-city PPA data; panel D is the Hybrid LUR using the national EPA data and the 6-city PPA data; panel E is the 

Hybrid LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.27: Normalized population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in DC 

(Normalized to the mean concentrations of the 6 cities). Panel A is the CACES LUR developed using the national EPA data; panel B 

is the CACES LUR using the 6-city EPA data; panel C is the PPA LUR using the 6-city PPA data; panel D is the Hybrid LUR using 

the national EPA data and the 6-city PPA data; panel E is the Hybrid LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.28: Normalized population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in LA 

(Normalized to the mean concentrations of the 6 cities). Panel A is the CACES LUR developed using the national EPA data; panel B 

is the CACES LUR using the 6-city EPA data; panel C is the PPA LUR using the 6-city PPA data; panel D is the Hybrid LUR using 

the national EPA data and the 6-city PPA data; panel E is the Hybrid LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.29: Normalized population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in New 

York (Normalized to the mean concentrations of the 6 cities). Panel A is the CACES LUR developed using the national EPA data; 

panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA LUR using the 6-city PPA data; panel D is the Hybrid LUR 

using the national EPA data and the 6-city PPA data; panel E is the Hybrid LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.30: Normalized population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in 

Phoenix (Normalized to the mean concentrations of the 6 cities). Panel A is the CACES LUR developed using the national EPA data; 

panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA LUR using the 6-city PPA data; panel D is the Hybrid LUR 

using the national EPA data and the 6-city PPA data; panel E is the Hybrid LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.31: Normalized population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in 

Pittsburgh (Normalized to the mean concentrations of the 6 cities). Panel A is the CACES LUR developed using the national EPA 

data; panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA LUR using the 6-city PPA data; panel D is the Hybrid 

LUR using the national EPA data and the 6-city PPA data; panel E is the Hybrid LUR using the 6-city EPA data and the 6-city PPA 

data. 
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Figure A4.32: Normalized population-weighted PM2.5 concentration maps of the CACES LUR, PPA LUR, and Hybrid LUR in 

Riverside (Normalized to the mean concentrations of the 6 cities). Panel A is the CACES LUR developed using the national EPA data; 

panel B is the CACES LUR using the 6-city EPA data; panel C is the PPA LUR using the 6-city PPA data; panel D is the Hybrid LUR 

using the national EPA data and the 6-city PPA data; panel E is the Hybrid LUR using the 6-city EPA data and the 6-city PPA data. 
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Figure A4.33. Scatterplot of the PPA LUR vs. CACES LUR and the Hybrid LUR vs. CACES 

LUR for DC. 
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Figure A4.34. Scatterplot of the PPA LUR vs. CACES LUR and the Hybrid LUR vs. CACES 

LUR for New York. 
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Figure A4.35. Scatterplot of the PPA LUR vs. CACES LUR and the Hybrid LUR vs. CACES 

LUR for Phoenix. 
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Figure A4.36. Scatterplot of the PPA LUR vs. CACES LUR and the Hybrid LUR vs. CACES 

LUR for Pittsburgh. 
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Figure A4.37. Scatterplot of the PPA LUR vs. CACES LUR and the Hybrid LUR vs. CACES 

LUR for Riverside. 
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Figure A4.38. Boxplots of PM2.5 concentrations: full-year version (left panel) vs. a filtered version (right panel; excluding the PPA 

data of December 2017 in LA and Riverside. 
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Table A5.1 Candidate independent variables of satellite products 

Pollutant Years Resolution Instrument Level Source 

PM2.5 
1998 – 

2014 
0.1° 

Multiple 

instruments 
Surface 

http://fizz.phys.dal.ca/~atmos/martin/?pag

e_id=140 

NO2
a 

2004 – 

2015 
0.1° OMIc Column http://www.temis.nl/airpollution/no2.html  

SO2 
2005 – 

2016 
0.25° OMI Column 

https://disc.gsfc.nasa.gov/datacollection/O

MSO2_CPR_003.html  

HCHOb 
2005 – 

2016 
0.1° OMI Column 

https://disc.gsfc.nasa.gov/datasets/OMHC

HO_V003/summary  

CO 
2001 – 

2016 
0.25° MOPITTd Surface https://eosweb.larc.nasa.gov/datapool 

aboth 1-year and 3-year averages calculated; 
blong term (12-year) average only; 
cOzone Monitoring Instrument; 
dMeasurements of Pollution in the Troposphere. 

  

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
http://www.temis.nl/airpollution/no2.html
https://disc.gsfc.nasa.gov/datacollection/OMSO2_CPR_003.html
https://disc.gsfc.nasa.gov/datacollection/OMSO2_CPR_003.html
https://disc.gsfc.nasa.gov/datasets/OMHCHO_V003/summary
https://disc.gsfc.nasa.gov/datasets/OMHCHO_V003/summary
https://eosweb.larc.nasa.gov/datapool
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Table A5.2 Categories of point of interest (POI) data 

POI name POI name POI name 

accounting electrician night_club 

airport electronics_store painter 

amusement_park embassy park 

aquarium fire_station parking 

art_gallery florist pet_store 

atm funeral_home pharmacy 

bakery furniture_store physiotherapist 

bank gas_station plumber 

bar gym police 

beauty_salon hair_care post_office 

bicycle_store hardware_store real_estate_agency 

book_store hindu_temple restaurant 

bowling_alley home_goods_store roofing_contractor 

bus_station hospital rv_park 

cafe insurance_agency school 

campground jewelry_store shoe_store 

car_dealer laundry shopping_mall 

car_rental lawyer spa 

car_repair library stadium 

car_wash liquor_store storage 

casino local_government_office store 

cemetery locksmith subway_station 

church lodging supermarket 

city_hall meal_delivery synagogue 

clothing_store meal_takeaway taxi_stand 

convenience_store mosque train_station 

courthouse movie_rental transit_station 

dentist movie_theater travel_agency 

department_store moving_company veterinary_care 

doctor museum zoo 
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Table A5.3 Categories of Google street view imagery (GSV) data used in LUR models 

GSV category GSV category GSV category 

wall railing airplane 

building box dirt.track 

sky signboard pole 

tree sand land 

road skyscraper van 

windowpane path.1 ship 

grass runway fountain 

sidewalk river canopy 

person bridge swimming.pool 

earth flower waterfall 

mountain hill tent 

plant palm minibike 

car boat food 

water hovel pot 

house bus animal 

sea truck bicycle 

field tower lake 

fence awning sculpture 

rock streetlight traffic.light 
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Table A5.4 Summary statistics of other criteria pollutants in 2015 

Statistics COa PM10
b SO2

c 

Number of monitors 196 456 367 

Mean concentrations 0.3 16 1.2 

Std 0.1 7.9 0.9 

Min 0.1 3.2 0.1 

Q1 0.3 10.9 0.7 

Median 0.3 15.6 1 

Q3 0.3 19.7 1.4 

Max 0.7 46.9 6.4 
aConcentration unit is ppm; 
bConcentration unit is µg/m3 
cConcentration unit is ppb. 
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Figure A5.1. Local climate zones (LCZ) classification (Stewart & Oke, 2012). 



212 

 

 

Figure A5.2. Random and spatial 10-fold CV results of criteria pollutants (CO, PM10, and SO2). 
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Figure A5.3. Random and spatial 10-fold CV results of major criteria pollutants of the nine ML algorithms (NO2, O3, and PM2.5). GB 

stands for Gradient Boosting while RF stands for Random Forest. 
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Figure A5.4. Random and spatial 10-fold CV results of criteria pollutants of the nine ML algorithms (CO, PM10, and SO2). GB stands 

for Gradient Boosting while RF stands for Random Forest. 
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Figure A5.5. Top 20 most important features of the ML models for CO, PM10, and SO2. 
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Figure A5.6. Top 20 most important features of the PLS-UK models for NO2, O3, and PM2.5. 



217 

 

 

Figure A5.7. Top 20 most important features of the PLS-UK models for CO, PM10, and SO2. 



218 

 

 

Figure A5.8. Top 20 most important features of the stepwise regression models for NO2, O3, and PM2.5. 
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Figure A5.9. Top 20 most important features of the stepwise regression models for CO, PM10, and SO2.  


