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ABSTRACT 

 

    Polyolefins are one of the most widely used commodity polymers with applications in 

films, packaging and automotive industry. The modeling of polymerization processes 

producing polyolefins, including high-density polyethylene (HDPE), polypropylene (PP), 

and linear low-density polyethylene (LLDPE) using Ziegler-Natta catalysts with multiple 

active sites, is a complex and challenging task. In our study, we integrate process modeling 

and data analytics for improving and optimizing polyolefin manufacturing processes.  

    Most of the current literature on polyolefin modeling does not consider all of the 

commercially important production targets when quantifying the relevant polymerization 

reactions and their kinetic parameters based on measurable plant data. We develop an 

effective methodology to estimate kinetic parameters that have the most significant impacts 

on specific production targets, and to develop the kinetics using all commercially important 

production targets validated over industrial polyolefin processes. We showcase the utility 

of dynamic models for efficient grade transition in polyolefin processes. We also use the 

dynamic models for inferential control of polymer processes. Thus, we showcase the 

methodology for making first-principle polyolefin process models which are scientifically 

consistent, but tend to be less accurate due to many modeling assumptions in a complex 

system. 

     Data analytics and machine learning (ML) have been applied in the chemical process 

industry for accurate predictions for data-based soft sensors and process 

monitoring/control. Specifically, for polymer processes, they are very useful since the 

polymer quality measurements like polymer melt index, molecular weight etc. are usually 

less frequent compared to the continuous process variable measurements. We showcase 

the use of predictive machine learning models like neural networks for predicting polymer 

quality indicators and demonstrate the utility of causal models like partial least squares to 

study the causal effect of the process parameters on the polymer quality variables. ML 

models produce accurate results can over-fit the data and also produce scientifically 

inconsistent results beyond the operating data range. Thus, it is growingly important to 

develop hybrid models combining data-based ML models and first-principle models.  

     We present a broad perspective of hybrid process modeling and optimization combining 

the scientific knowledge and data analytics in bioprocessing and chemical engineering with 

a science-guided machine learning (SGML) approach and not just the direct combinations 

of first-principle and ML models. We present a detailed review of scientific literature 

relating to the hybrid SGML approach, and propose a systematic classification of hybrid 

SGML models according to their methodology and objective. We identify the themes and 

methodologies which have not been explored much in chemical engineering applications, 

like the use of scientific knowledge to help improve the ML model architecture and 

learning process for more scientifically consistent solutions. We apply these hybrid SGML 

techniques to industrial polyolefin processes such as inverse modeling, science guided loss 

and many others which have not been applied previously to such polymer applications. 
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GENERAL AUDIENCE ABSTRACT 

 

    Almost everything we see around us from furniture, electronics to bottles, cars, etc.  are 

made fully or partially from plastic polymers. The two most popular polymers which 

comprise almost two-thirds of polymer production globally are polyethylene (PE) and 

polypropylene (PP), collectively known as polyolefins. Hence, the optimization of 

polyolefin manufacturing processes with the aid of simulation models is critical and 

profitable for chemical industry. Modeling of a chemical/polymer process is helpful for 

process-scale up, product quality estimation/monitoring and new process development. For 

making a good simulation model, we need to validate the predictions with actual industrial 

data. 

    Polyolefin process has complex reaction kinetics with multiple parameters that need to 

be estimated to accurately match the industrial process. We have developed a novel 

strategy for estimating the kinetics for the model, including the reaction chemistry and the 

polymer quality information validating with industrial process. Thus, we have developed a 

science-based model which includes the knowledge of reaction kinetics, thermodynamics, 

heat and mass balance for the polyolefin process. The science-based model is scientifically 

consistent, but may not be very accurate due to many model assumptions. Therefore, for 

applications requiring very high accuracy predicting any polymer quality targets such as 

melt index (MI), density, data-based techniques might be more appropriate. 

    Recently, we may have heard a lot about artificial intelligence (AI) and machine learning 

(ML) the basic principle behind these methods is to making the model learn from data for 

prediction. The process data that are measured in a chemical/polymer plant can be utilized 

for data analysis. We can build ML models to predict polymer targets like MI as a function 

of the input process variables. The ML model predictions are very accurate in the process 

operating range of the dataset on which the model is learned, but outside the prediction 

range, they may tend to give scientifically inconsistent results. Thus, there is a need to 

combine the data-based models and scientific models.  

    In our research, we showcase novel approaches to integrate the science-based models 

and the data-based ML methodology which we term as the hybrid science-guided machine 

learning methods (SGML). The hybrid SGML methods applied to polyolefin processes 

yield not only accurate, but scientifically consistent predictions which can be used for 

polyolefin process optimization for applications like process development and quality 

monitoring. 
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Original Contribution 

 

1. First-Principle Steady-State and Dynamic Model of Polyolefin Processes 

• We demonstrate a general and effective methodology for estimating kinetic 

parameters for Ziegler-Natta polymerization for commercial processes 

producing polyolefins, such as HDPE, PP and LLPDE. 

• Use all commercially important production targets for prediction to 

simultaneously estimate multiple reaction rate constants for Ziegler-Natta 

kinetics to match several data sets of production targets which differentiates 

from the previous sequential estimation approach in the literature. 

• Our methodology also greatly simplifies the kinetic parameter estimation for 

the multisite model, in that we only need to regress selected kinetic parameters 

for the multisite model. 

• Showcase the application of dynamic polyolefin models in simulating plant data 

and illustrate the advantages and limitations of first-principle polyolefin process 

models. 

 

2. Application of Machine Learning and Multivariate Statistics for 

Polymer/Polyolefin Process Data Analytics 

• Improve Melt Index prediction of the industrial HDPE process than in the 

literature. 

• Comparison of casual multivariate statistical models and predictive machine 

learning models for quality prediction in industrial polyolefin processes. 

• Showcase the application of semi-supervised learning machine learning 

methods like self-training and generating models to improve prediction for 

industrial polyolefin processes. 

• Application of data analytics and anomaly detection for extrusion process 

monitoring in industrial textile manufacturing process. 

• Showcase the advantages and limitations of application of machine learning in 

polymer/polyolefin process data analytics by pointing out the scientific 

inconsistency of predictions beyond operating range. 

 

3. Hybrid Science-Guided Machine Learning Approach for Modeling and 

Optimizing Chemical and Polymer Processes 

• Presentation of a broader hybrid SGML methodology of integrating science-

guided and data-based models, and not just the direct combinations of first-

principle and ML models. 

• Classification of the hybrid model applications according to their 

methodology and objectives, instead of their areas of applications. 
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• Identification of the themes and methodologies which have not been explored 

much in chemical engineering applications, like the use of scientific 

knowledge to help improve the ML model architecture and learning process 

for more scientifically consistent solutions. 

• Illustrations of the use of these hybrid SGML methodologies applied to 

industrial polymer processes, such as inverse modeling, and science-guided 

loss which have not been applied previously in such applications. 
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Outline of the thesis 

 

 

 

The contents of this dissertation are as follows. Chapter 1, covers the introduction and 

motivation for the research. Chapter 2 deals with first-principle steady-state modeling of 

polyolefin processes mainly using Ziegler Natta as catalyst. In this chapter, we present an 

effective methodology for estimating the kinetic parameters based on plant data in the 

development of simulation and optimization models for commercial polyolefin processes 

using efficient software tools.  

    Chapter 3 is about first-principle of dynamic modeling of polyolefin processes. In this 

chapter, we have showcased the use of dynamic models and efficient grade transition 

strategies for polyolefin processes. We also showcase the use of first principle dynamic 

models to produce steady state results for predicting polymer quality and state their 

advantages and disadvantages for polymer quality predictions. 

    Chapter 4 deals with the application of machine learning and multivariate statistics for 

polymer process data analytics. In this chapter, we showcase the use of predictive Machine 

Learning models like Neural Networks, ensemble based regressors for predicting polymer 

quality indicators. We also demonstrate the utility of causal models like partial least 

squares to study the causal effect of the process parameters on the polymer quality 

variables. We make use of anomaly detection methods as well to identify the process 

outliers and also the reasons for their outlier behavior.  

    Chapter 5 reviews the hybrid science-guided machine learning approach for modeling 

and optimizing chemical processes. The objective of this paper is to present a 

comprehensive review and exposition of scientific and engineering literature relating to the 

hybrid SGML approach, and propose a systematic classification of hybrid SGML models 

focusing on both sciences complementing ML models, and ML complementing science-

based models. Chapter 6 deals with the applications of the Hybrid SGML techniques for 

polymer process improvement by showcasing case studies of industrial polyolefin 

processes. Chapter 7 summarizes the conclusion of the research and future research 

directions. Appendix A consists of the steady state model details covered in Chapter 2. 

Appendix B have more details of dynamic process control details covered in Chapter 3.  

 

 

 

 

 

 

 

 



 x 

 

 

Table of Contents 

 

Abstract .......................................................................................................................... ii 

General Audience Abstract ........................................................................................... iii 

Dedication ...................................................................................................................... iv 

Acknowledgement .......................................................................................................... v 

Original Contribution ................................................................................................... vii 

Outline of Thesis ............................................................................................................ ix 

Table of Contents ............................................................................................................ x 

List of Figures .............................................................................................................. xiv 

List of Tables ............................................................................................................... xix 

 

Chapter 1: Introduction and Motivation .................................................................... 1 

References ....................................................................................................................... 4 

 

Chapter 2: First Principle Steady-State Modeling of Polyolefin Process:  

Ziegler-Natta Polymerization ...................................................................................... 6 

2.1. Introduction .............................................................................................................. 6 

2.2. Polyolefin Ziegler-Natta Polymerization Kinetics................................................... 7 

  2.2.1. Ziegler-Natta Catalysts ....................................................................................... 8 

  2.2.2.  Ziegler-Natta Polymerization Kinetics .............................................................. 9 

2.3. Commercial Polyolefin Production Targets........................................................... 12 

  2.3.1 General Production Targets ............................................................................... 12 

    2.3.1.1. Production Rate ............................................................................................ 12 

    2.3.1.2. MWN ........................................................................................................... 13 

    2.3.1.3. MI ................................................................................................................. 13 

    2.3.1.4. Conversion ................................................................................................... 13 

    2.3.1.5. PDI ............................................................................................................... 13 

    2.3.1.6. SMWN and SPFRAC .................................................................................. 13 

    2.3.1.7. SFRAC and SCB.......................................................................................... 13 

    2.3.1.8. Rho ............................................................................................................... 13 

    2.3.1.9. Residence Time ............................................................................................ 14 

  2.3.2. Polymer-Specific Targets.................................................................................. 14 

    2.3.2.1. CISFRAC ..................................................................................................... 14  

    2.3.2.2. ATFRAC ...................................................................................................... 14 

2.4. Modeling Considerations ....................................................................................... 15 

  2.4.1. Reactor Types ................................................................................................... 15 

  2.4.2. Polymer Types .................................................................................................. 17 

  2.4.3. Molecular Weight Distribution  ........................................................................ 17 

  2.4.4. Process Flowsheets ........................................................................................... 18 

  2.4.5. Thermodynamics............................................................................................... 20  

  2.4.6. Global Kinetics versus Local Kinetics .............................................................. 21 



 xi 

2.5. Methodology for Polyolefin Kinetic Estimation.................................................... 21  

  2.5.1. Efficient Use of Software Tool: Data Fit .......................................................... 22  

  2.5.2. Flowchart of the Methodology for Kinetic Parameter Est. ............................... 23   

    2.5.2.1. Multiple Product Grades and Single Active Catalyst Sites ......................... 24  

    2.5.2.2. Multisite Model and Deconvolution Analysis ............................................. 28  

  2.5.3. Efficient Use of Software Tool: Sensitivity Analysis ....................................... 32  

  2.5.4. Efficient Use of Software Tool: Design Specification ..................................... 36 

  2.5.5. Model Applications ........................................................................................... 37  

2.6. Key Points in Modeling Some Industrial Polyolefin Process ................................ 38  

  2.6.1. Modeling Polymer Phase Equilibrium in Slurry HDPE Process ...................... 38  

  2.6.2. Modeling of Horizontal Stirred-Bed Gas-Phase Reactor for PP ...................... 39  

  2.6.3. Condensed Mode Modeling of UNIPOL LLDPE process ............................... 40 

2.7. Metallocene Polymerization Modeling .................................................................. 42  

2.8. Conclusion ............................................................................................................. 43 

References ..................................................................................................................... 45  

 

Chapter 3: First-Principle Dynamic Modeling of Polyolefin Processes ................. 48 

3.1. Introduction ............................................................................................................ 48   

3.2. Polyolefin Grade Transition ................................................................................... 48  

3.3.  Grade Change for Series Flow Slurry HDPE Process .......................................... 49  

3.4. Dynamic Simulation and Control of a Commercial Slurry HDPE  

Process Using H2/C2 Ratio .......................................................................................... 53  

3.5. Dynamic Simulation and Control of a Gas-Phase Fluidized-Bed Process for  

Producing LLPDE in Condensed Mode Operation ...................................................... 55 

3.6. Dynamic Simulation and Control of a Slurry HDPE Process Using an  

Inferential Controller .................................................................................................... 58  

  3.6.1 Objective ............................................................................................................ 58 

  3.6.2 Inferential Control Theory and Recent Applications ......................................... 58  

  3.6.3. HDPE Process Description and Steady-State Model Empirical ....................... 59   

  3.6.4. Grade Change Transition Using Basic H2-Based Controller ........................... 61  

  3.6.5. Open-loop Inferential Controller Using Dynamic Model ................................. 61 

  3.6.6. Closed-Loop Inferential Controller................................................................... 63  

3.7. Using First Principle Dynamic models as polymer quality sensors ...................... 65  

3.8. Conclusion ............................................................................................................. 66 

References ..................................................................................................................... 67 

 

Chapter 4: Application of Machine Learning and Multivariate Statistics for  

Polymer Process Data Analytics ................................................................................ 69 

4.1. Introduction ............................................................................................................ 69 

4.2 An Overview of Relevant Machine Learning Concepts and Models ..................... 70 



 xii 

4.3. Literature on application of Data Analytics in Chemical and Polymer processes . 73 

  4.3.1 Literature on Application of Multivariate Statistics in Chemical Process  

Monitoring and Fault Diagnosis  ................................................................................... 73 

  4.3.2. Literature on Application of Machine Learning Models in Chemical .............. 74 

  4.3.3. Literature on Application of Data Analytics/Machine Learning in Polymer  .. 74 

4.4 Illustrative Example of Machine Learning Applications in an Industrial Poly- 

olefin Manufacturing Process ....................................................................................... 75 

  4.4.1. Multivariate Statistical Causal Model ............................................................... 78  

  4.4.2. Predictive Machine Learning Models ............................................................... 84 

4.5. Disadvantages of Stand-alone Data-Based Models ............................................... 88 

4.6.  Semi-supervised Learning for Polymer Process Data Analysis ........................... 89 

  4.6.1. Self-Training ..................................................................................................... 89  

  4.6.2. Generative Model GAN ...................................................................................  90 

4.7. Batch Data Analysis ............................................................................................... 93 

4.8. Industrial Case study of Extrusion Process Monitoring ........................................ 96 

4.9. Conclusion ............................................................................................................. 98 

References ..................................................................................................................... 98 

 

Chapter 5: A Hybrid Science-Guided Machine Learning Approach for Modeling  

and Optimizing Chemical Processes: A Review ..................................................... 104 

5.1. Introduction .......................................................................................................... 104 

5.2. Applications of Hybrid SGML Approach in Bioprocessing and Chemical Eng. 106 

5.3. A Classification and Exposition of Hybrid SGML Models ................................. 108 

5.4. ML Complements Science ................................................................................... 109 

  5.4.1. Direct Hybrid Modeling .................................................................................. 109 

    5.4.1.1. Parallel Direct Hybrid Model ..................................................................... 109 

    5.4.1.2. Series Direct Hybrid Model ....................................................................... 112 

    5.4.1.3. Serial-Parallel or Combined Direct Hybrid Model .................................... 113 

  5.4.2. Inverse Modeling ............................................................................................ 114 

  5.4.3. Reduced-Order Models ................................................................................... 116 

  5.4.4. Hybrid SGML Modeling for Uncertainty Quantification ............................... 117  

  5.4.5. Hybrid HGML Modeling to Aid in Discovering Scientific Laws using ML . 118 

5.5. Science Compliments ML.................................................................................... 119  

  5.5.1. Science-Guided Design ................................................................................... 119 

  5.5.2. Science-Guided Learning................................................................................ 120 

  5.5.3. Science-Guided Refinement ........................................................................... 121 

5.6. Conclusion ........................................................................................................... 122 

References ................................................................................................................... 125 

 

 



 xiii 

Chapter 6: Application of Hybrid Science-Guided Machine Learning for  

Polymer Processes Improvement ............................................................................. 135 

6.1. Introduction .......................................................................................................... 135 

6.2. Polyolefin Process and Data Description ............................................................. 136 

  6.2.1. Industrial parallel/single reactor HDPE process ............................................. 136 

  6.2.2. Industrial series reactors slurry HDPE process ............................................... 137 

  6.2.3. Industrial Hypol PP process ............................................................................ 138  

  6.2.4. Industrial LDPE process ................................................................................. 139 

6.3. An Application of Combined Direct Hybrid Modeling to Polyolefin  

Manufacturing ............................................................................................................. 141 

6.4. An Application of Inverse Modeling to Polymer Manufacturing ........................ 142 

  6.4.1. Predicting Operating Conditions of Different Polymer Grade ....................... 142 

  6.4.2. Kinetic Estimation Using Inverse Modeling................................................... 146 

6.5. An Application of Reduced-Order Modeling to Polymer Manufacturing ........... 147 

  6.5.1. Reduced-Order Modeling of Hypol PP process.............................................. 147 

  6.5.2. Reduced-Order Modeling of Industrial LDPE process ................................... 149 

6.6. An Application of HGML Modeling to Uncertainty Quantification in  

Polymer Manufacturing .............................................................................................. 149 

6.7.  An illustrative Example of Science-Guided Learning ........................................ 151 

6.8. Conclusion ........................................................................................................... 152 

References ................................................................................................................... 152 

 

Chapter 7: Conclusion and Future Work ............................................................... 154 

7.1. Conclusion ........................................................................................................... 154 

7.2. Future Work ......................................................................................................... 155 

 

Appendix A (Chapter 2) ........................................................................................... 156 

A.1 Hypol PP Process ................................................................................................. 156 

A.2. Mitsui Slurry HDPE process ............................................................................... 162 

A.3. Innovene and Horizone PP process ..................................................................... 167  

A.4. Spheripol PP process ........................................................................................... 172 

A.5. Unipol LLDPE process ....................................................................................... 175 

 

Appendix B (Chapter 3) ........................................................................................... 180 

B.1. Configuring a PID Controller .............................................................................. 180 

B.2. Controller tuning for HDPE slurry process dynamics and control ..................... 182 

 

 

 

 



 xiv 

 

List of Figures 

 

Figure 2.1a. Mitsui slurry HDPE process: serial reactor configuration ........................ 18 

Figure 2.1b. Borstar bimodal HDPE process with a pre-polymerization reactor ......... 18 

Figure 2.1c. Polymerization section of the Mitsui HYPOL PP process ....................... 19 

Figure 2.1d. Basell Spheripol PP process using two slurry loop reactors .................... 19  

Figure 2.1e. Innovene gas-phase PP process using a horizontal stirred-bed reactor .... 20  

Figure 2.1f. Univation UNIPOL LLPDE process using a fluidized-bed reactor .......... 20 

Figure 2.2a Methodology for kinetic parameter estimation for polyolefin  

process models from plant data using simulation software tools(Summary). .............. 23 

Figure 2.2b Methodology for kinetic parameter estimation for polyolefin  

process models from plant data using simulation software tools (Detailed) ................ 24 

Figure 2.3. An Aspen Polymers simulation flowsheet of the Mitsui HYPOL  

PP  process .................................................................................................................... 26 

Figure 2.4. GPC deconvolution of a homopolymer sample from a UNIPOL LLDPE  

Process .......................................................................................................................... 29 

Figure 2.5a. Sensitivity of the PDI, MWN and SMWN for the Unipol LLDPE process  

on the pre-exponential factor of the reaction rate constant for  chain transfer to  

hydrogen  ...................................................................................................................... 33 

Figure 2.5b. Sensitivity of the PDI, MWN and SMWN for the Unipol LLDPE process 

on the pre-exponential factor of the reaction rate constant for chain transfer to  

monomer ....................................................................................................................... 33 

Figure 2.6a.  The sensitivity of the Production rate and SPFRAC for the Unipol  

LLPDE process to changes in the propagation reaction rate constant .......................... 34 

Figure 2.6b. The sensitivity of the atactic fraction ATFRAC to changes in the  

atactic propagation reaction rate constant for the Spheripol PP process. ..................... 34 

Figure 2.7a. The sensitivity of the production rate for the slurry HDPE process  

to changes in the reaction rate constant for catalyst activation by cocatalyst ............... 35 

Figure 2.7b. The sensitivity of the production rate for the slurry HDPE process  

to changes in the reaction rate constant for spontaneous catalyst deactivation. ........... 35 

Figure 2.8. Sensitivity of the MWD from a Mitsui slurry HDPE process to changes in  

the reaction rate constant for catalyst inhibition ........................................................... 36  

Figure 2.9. The sensitivity of the production rate from an Innovene gas-phase PP  

process to changes in the propagation reaction rate constant. ...................................... 36 

Figure 2.10. Spheripol PP process flowsheet indicating the design specification ........ 37 

Figure 2.11. Sensitivity Analysis of the MWN and production rate on changes in  

hydrogen flow rates on the Unipol LLDPE process ..................................................... 38  

Figure 2.12. The front end of a two-reactor system for producing gas-phase PP 

 polymer using stirred-bed reactors (closed-loop) ........................................................ 40  

 



 xv 

Figure 3.1. The dynamic simulation flowsheet of HDPE series process ...................... 49 

Figure 3.2. Specification of task G1-G4 ....................................................................... 51 

Figure 3.3. Specification of the flowsheet constraints, MI and copolymer  

density correlations. ...................................................................................................... 52 

Figure 3.4. Evolution of R1 feed mass flow rates for producing grades G1  

to G4 beginning at 24, 120, 240 and 360 hr, respectively ............................................ 52 

Figure 3.5. Evolution of the computed melt index and copolymer density .................. 53 

Figure 3.6. The starting dynamic simulation flowsheet ................................................ 54 

Figure 3.7. Adding a hydrogen/ethylene ratio controller to the recycle gas ................. 54 

Figure 3.8. Performance of controllers after increasing ethylene mass flow rate to  

9000 kg/hr, catalyst mass flow rate to 60 kg/hr and C3 mass flow rate to 100 kg/hr ... 55 

Figure 3.9. Dynamic simulation flowsheet with default controllers ............................. 56  

Figure 3.10. An illustration of a split-range (SR) controller......................................... 56 

Figure 3.11. A modified dynamic process simulation flowsheet with a split-range  

Controller ...................................................................................................................... 57 

Figure 3.12. The configuration specifications of the split-range controller ................. 57 

Figure 3.13. Keeping the reactor pressure at 21.6975 bar by increasing the mass flow  

rate of N2 from 25 to 46.4267 kg/hr as determined through a split-range controller ... 58 

Figure 3.14. A simplified steady-state flowsheet for a slurry HDPE process .............. 60  

Figure 3.15. Dynamic HDPE process flowsheet .......................................................... 60 

Figure 3.16. Grade change using H2-setpoint-based controller ................................... 61 

Figure 3.17. Comparison of MI values from the open-loop inferential control MI  

with the actual correlation-based MI ............................................................................ 63 

Figure 3.18. Snapshot of the overall constraints and the local variable specification .. 64 

Figure 3.19. MI grade change from 10 to 20 using Inferential Control........................ 64 

Figure 3.20 Comparison of grade change process using the inferential control with  

the basic H2-based control ............................................................................................ 65 

Figure 3.21. Methodology of simulating plant data from dynamic model ................... 66 

Figure 3.22. Comparison of MI predictions of the first-principle model and plant data 

....................................................................................................................................... 66 

 

Figure 4.1. Classification of Machine Learning models ............................................... 72  

Figure 4.2. Process flowsheet of industrial parallel HDPE process ............................. 76 

Figure 4.3. Visualization of the HDPE process data .................................................... 77 

Figure 4.4. Correlation plot of the HDPE process data ................................................ 78 

Figure 4.5. Hoteling’s T2 plot deviation plot ............................................................... 78 

Figure 4.6. Contribution plot of process outlier compared to the average score to  

identify the cause of process abnormality ..................................................................... 79 

Figure 4.7. Principal Component R2 score for PLS model without lag ....................... 79  

Figure 4.8. T2 plot of the data after removing the process outliers .............................. 80 



 xvi 

Figure 4.9. Prediction plot for PLS model without lag ................................................. 80 

Figure 4.10. Variable Importance plot for PLS model without lag .............................. 81 

Figure 4.11. Loading plot for PLS model without lag .................................................. 81 

Figure 4.12.  Principal Component of dynamic PLS model with lag ........................... 82  

Figure 4.13. Prediction plot of dynamic PLS model with lag ...................................... 83 

Figure 4.14. Variable Importance Plot for Dynamic PLS model including lag ........... 83 

Figure 4.15. Development of a soft sensor of MI based on Causal PLS model ........... 84  

Figure 4.16. Deep Neural Network Architecture with three hidden layers .................. 85 

Figure 4.17. Loss curve of Deep Learning model for MI prediction ............................ 85 

Figure 4.18. The variation of hyperparameter in a Random Forest Model .................. 86 

Figure 4.19. Visualization of a tree from the Random Forest Model ........................... 87 

Figure 4.20. Development of a soft sensor of ML based on Predictive random forest  

model............................................................................................................................. 87  

Figure 4.21. Comparison of different ML models for MI prediction ........................... 88 

Figure 4.22. Accuracy v/s the sampling rate for Semi-Supervised Learning MI  

prediction ...................................................................................................................... 90  

Figure 4.23. The comparison of the real and fake(generated data) in terms of means . 91  

Figure 4.24. Comparison of each of the real and generated data for each of the  

features using the GAN model ...................................................................................... 92 

Figure 4.25. Comparison of each feature b/w real and fake data with Probability  

Density Distribution of each feature comparison ......................................................... 93 

Figure 4.26.  Batch wise unfolding methodology ......................................................... 94 

Figure 4.27. Score plot of PCA polymer batches ......................................................... 95 

Figure 4.28. Contribution to scores of bad batches ...................................................... 95  

Figure 4.29. Observation wise Analysis of Batch data ................................................. 96  

Figure 4.30. Score plot of the extruder process data ..................................................... 97 

Figure 4.31. Contribution to score plot of process anomaly in an industrial  

extrusion process ........................................................................................................... 97 

Figure 4.32. Loading Plot for the PLS analysis of the extruder data ............................ 98 

 

Figure 5.1. Classification of hybrid SGML models .................................................... 109 

Figure 5.2. Parallel direct hybrid model ..................................................................... 110 

Figure 5.3. Parallel direct hybrid residual model ........................................................ 111 

Figure 5.4. Serial direct hybrid model ........................................................................ 112 

Figure 5.5. Combined direct hybrid model ................................................................. 113 

Figure 5.6. Inverse modeling framework .................................................................... 115 

Figure 5.7. Reduced order process modeling framework ........................................... 116 

Figure 5.8. Uncertainty quantification modeling framework ..................................... 118 

Figure 5.9. Discovering scientific laws....................................................................... 119 

Figure 5.10. Science-guided design framework of neural network architecture ........ 120 



 xvii 

Figure 5.11. Science-guided loss function representation .......................................... 121 

Figure 5.12. Science-guided refinement framework ................................................... 122 

 

Figure 6.1. Process flowsheet of industrial parallel HDPE process ........................... 137 

Figure 6.2. Process flowsheet for industrial series HDPE process ............................. 137 

Figure 6.3. The variation of the quality data (MI and Rho) with time for different  

HDPE grades ............................................................................................................... 138 

Figure 6.4. Process flowsheet for industrial Hypol process........................................ 139 

Figure 6.5. Process flowsheet of the industrial LDPE process ................................... 140 

Figure 6.6. Melt index prediction of a combined direct hybrid model compared to the  

first-principle model and plant data ............................................................................ 142 

Figure 6.7. Hydrogen feed predictions for single reactor HDPE process using  

inverse modeling including the uncertainty of predictions ......................................... 143 

Figure 6.8. Stacked Regression Algorithm ................................................................. 144 

Figure 6.9a. Inverse ML model prediction v/s the observed data for hydrogen  

flow(H21) .................................................................................................................... 145 

Figure 6.9b. Inverse ML model prediction v/s the observed data for ethylene  

monomer flow (C21)................................................................................................... 145 

Figure 6.9c. Inverse ML model prediction v/s the observed data for catalyst flow  

(CAT1) ........................................................................................................................ 146 

Figure 6.9d. Inverse ML model prediction v/s the observed data for butlene  

comonomer flow(C42) ................................................................................................ 146  

Figure 6.10. Inverse Modeling modelling framework for kinetic parameter estimation 

..................................................................................................................................... 147 

Figure 6.11. Loss curve for prediction of inverse modeling kinetic parameter  

estimation .................................................................................................................... 147 

Figure 6.12a. Melt Index comparison of observed v/s prediction  ............................. 148 

Figure 6.12b. Feature importance for melt index prediction ...................................... 148 

Figure 6.13a. Prediction v/s Observed values of branching SCB ............................... 149 

Figure 6.13b. Prediction v/s Observed values of branching LCB .............................. 149 

Figure 6.14. Uncertainty prediction of Melt Index using Bayesian Neural Networks .....  

..................................................................................................................................... 150 

Figure 6.15. Uncertainty quantification of melt Index prediction of a slurry HDPE  

process......................................................................................................................... 151 

Figure 6.16. Melt index and polymer density prediction with a ML model with a  

science-guided loss function ....................................................................................... 152 

 

Figure A1. Flowsheet for Hypol simulation ............................................................... 157 

Figure A2. Deconvolution Curve for PP made from catalyst with 4 active sites ....... 158 

Figure A3.  Sensitivity of the PDI, MWN and SMWN for the HYPOL PP process  

on the pre-exponential factor of the reaction rate constant for chain transfer to  



 xviii 

monomer ..................................................................................................................... 161 

Figure A4. Comparison of model molecular weight with actual molecular weight ... 162 

Figure A5. Comparison of model PDI with actual PDI .............................................. 162 

Figure A6. Flowsheet for the slurry HDPE process with reactor in series ................. 162 

Figure A7.  MWD of the product in the outlet of the first reactor .............................. 166 

Figure A8. The effect of the sensitivity of the activation reactions on production rate  

for Mitsui HDPE process ............................................................................................ 166 

Figure A9. The effect on the MWD by varying the catalyst inhibition reaction rate  

for the Mitsui HDPE process ...................................................................................... 167 

Figure A10. Flow-sheet of Innovene process ............................................................  167 

Figure A11. The sensitivity of the production rate from an Innovene gas-phase PP  

process to changes in the propagation reaction rate constant ..................................... 172 

Figure A12. Flowsheet of Spheripol PP process ........................................................ 172 

Figure A13. The sensitivity of the atactic fraction ATFRAC to changes in the  

atactic propagation reaction rate constant for the Spheripol PP process .................... 175 

Figure A14. Flowsheet of the Unipol process ............................................................ 176 

Figure A15. Sensitivity of the PDI, MWN and SMWN for the UNIPOL LLDPE  

process on the pre-exponential factor of the reaction rate constant for chain transfer  

to hydrogen ................................................................................................................. 179  

 

Figure B1. Gain and integral time for the H2C2 controller ........................................ 183 

Figure B2. Controller Tune interface .......................................................................... 183 

Figure B3. Choosing tuning rule. ................................................................................ 184 

Figure B4. Updated tuning parameters. ...................................................................... 184 

Figure B5. Continually decaying response resulting from the updated tuning  

parameters ................................................................................................................... 185  

 

 

 

 

 

 

 

 

 

 

 

 

 



 xix 

 

 

 

 

 

 

 

 

List of Tables 

 

Table 2.1. Examples of production targets for kinetic parameter estimation for  

modeling commercial processes from plant data .......................................................... 14 

Table 2.2. Examples of Common Reactors for Producing Polyolefins ........................ 16 

Table 2.3. Production targets for single-site and multisite models ............................... 22 

Table 2.4. Major kinetic parameters affecting the single-site production target .......... 25 

Table 2.5. Plant data for kinetic modeling a commercial Mitsui HYPOL PP process . 26 

Table 2.6.  Comparison of single-site model predictions with production targets  

obtained by data fit........................................................................................................ 28 

Table 2.7. Deconvolution results for a representative LLDPE homo-polymer sample ....  

....................................................................................................................................... 29 

Table 2.8.  Comparison of multi-site model predictions with production targets  

obtained by data fit........................................................................................................ 31 

Table 2.9.  Major kinetic parameters affecting the multi-site simulation targets ......... 32  

Table 2.10: Design specification for the Spheripol PP process .................................... 37 

Table 2.11. Design specification for the UNIPOL LLDPE process ............................. 38  

 

Table 3.1 Process and quality variables for slurry HDPE process ............................... 50 

Table 3.2 Values of process variables for grades 1 to 4 for slurry HDPE process ....... 50 

 

Table 4.1. Process Variables for industrial HDPE Process .......................................... 76 

Table 4.2. Comparison of different ML models for MI prediction .............................. 88 

Table 4.3. Model comparison based on MI values at varying hydrogen flow.............. 89 

Table 5.1. Summary of hybrid SGML approach ........................................................ 123 

 

Table 6.1. Process variables and quality targets for the parallel HDPE process ........ 136 

Table 6.2. Process variables for the series reactor HDPE process .............................. 138 

Table 6.3: Process and quality variables of Hypol process ........................................ 139 

Table 6.4. Process variables and Quality for LDPE process ...................................... 140 

Table 6.5. Model comparison based on MI values at varying hydrogen flow............ 142 

Table 6.6. Process variable prediction for parallel HDPE process using inverse  

Modeling ..................................................................................................................... 144 



 xx 

Table 6.7. Prediction of operating conditions for series HDPE process ..................... 145 

 

Table B1. Typical PID controller algorithms ............................................................. 180 

Table B2. Initial PID controller tuning parameters .................................................... 181 

Table B3. PID controller actions ................................................................................ 181 

Table B4. Guidelines for AD default controllers ........................................................ 182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

Chapter 1: Introduction and Motivation 

 

    This dissertation covers the ‘Integrated Process Modeling and Data Analytics for 

Polyolefin Process Optimization’. We introduce the scope of this work and our motivation 

below.  

    Polyolefins are one of the most widely used commodity polymers with applications in 

films, packaging and automotive industry. The modeling of polymerization processes 

producing polyolefins, including high-density polyethylene (HDPE), polypropylene (PP), 

and linear low-density polyethylene (LLDPE) using Ziegler-Natta catalysts is a complex 

and challenging task. Ziegler-Natta (ZN) catalyst is one of the most widely used catalysts 

for manufacturing commercial polyolefins. Polyethylene and polypropylene are two 

commodity polymers of the highest demands.  Polyolefins have a wide application 

requiring different properties with different molecular weight distribution and branching 

distribution. The ZN polymerization follows the coordination mechanism and produces 

polymers with different structure/branching than the polymers formed from free radical 

polymerization mechanism used for producing high-pressure LDPE. Thus, catalyst design 

plays an important role in polyolefin processes. Different process types with different 

reactors and phases is another variable to modify polyolefin properties. The process for 

producing polyolefins can be in three phases, including solution, slurry and gas phase. 

Autoclaves/CSTR, loop reactors, fluidized bed reactors (FBR) are some of the main 

reactors used for polyolefin processes for different phases. For example, the loop reactors 

are used for slurry-phase process and FBR are used for gas-phase process. The book by 

Soares and Mckenna 1 covers different polyolefin processes in detail. 

    The modeling of the ZN kinetics is complex because of the multiple active catalyst sites 

in the ZN catalyst. The most common type of ZN catalyst is titanium tetrachloride TiCl4 

supported on MgCl2 or SiO2 which is heterogeneous in nature. ZN catalysts give high 

activity and productivity. Multiple active sites of the ZN catalyst enable the production of 

polymers with broad molecular weight distributions, and allow good polymer 

microstructural control. Khare et. al. 2,3 first showcased the steady-state and dynamic 

modeling and kinetic parameter estimation of polyolefin processes and since then there 

have been hundreds of articles after that on the topic. Each article has its merits, but most 

of them do not consider all of the commercially important production targets when 

quantifying the relevant polymerization reactions and their kinetic parameters based on 

measurable plant data. Most of the published articles also do not make efficient use of 

simulation tools, particularly sensitivity analysis, design specifications, and data fit, that 

are available in commercial modeling software for polymerization processes, such as 

Aspen Polymers. Thus, there is a need to develop a general methodology to model complex 

polyolefin models by estimating their kinetic parameters from limited plant data. 

    Dynamic models of polyolefin processes are useful in maximizing the safety, operability 

and productivity of plants. Most polyolefin processes have a wide range of polymer grades 
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with many applications. Thus, efficient grade transition is an important consideration for 

optimization of polymer processes to improve process economics. Polyolefin processes can 

be used for different applications by changing their physical properties like melt index and 

density. These physical properties are varied by changing the process operating conditions 

hence grade transition is critical as we change process conditions to make a new polymer 

grade. In one of the early applications of dynamic modeling of polyolefin processes. In one 

of the first applications Debling et. al. 4 presented grade transition strategies for polyolefin 

processes and compared that for different polyolefin processes in terms of the off-spec 

products produced during grade transition. 

    Dynamic process models are useful for simulating digital twins to simulate the whole 

polymer process. In polymer processes, it is difficult to measure certain product quality 

targets. In such cases, we measure some secondary process outputs in order to correlate the 

product quality with primary outputs for quality control, this approach is known as 

inferential control, which is yet another application of dynamic modeling. Ogawa et. al. 5 

use inferential control for quality control of a HDPE process in one of the earliest 

applications to polymer processes. Dynamic can also be useful in generating simulation 

data for further data analysis. Thus, there is a need to build first-principle dynamic models 

of complex polymer/polyolefin processes in addition to the steady-state models. First-

principle models are scientifically consistent, but tend to be less accurate due to many 

modeling assumptions in a complex system, thus for applications requiring higher accuracy 

process data analytics becomes more useful. 

    With the advancements in machine learning over the years, its application for chemical 

process data analytics have been known to be particularly useful and profitable for the 

industry. Data analytics is also instrumental in detection of process anomalies. Beginning 

in late 1980 to early 1990, chemical engineers have been paying greater attention to 

artificial intelligence, neural computing, machine learning and big data analytics, and their 

applications to bioprocessing and chemical industries 6,7,8. In particular, McGregor and 

others have demonstrated the significant applications of multivariate statistical analysis and 

big data analytics to optimizing the manufacturing of chemical and polymer processes 9,10 

. Some of the main applications of process data analytics have been in dimensionality 

reduction, outlier detection, process monitoring and data visualization 11.  

    Generally, process data consists of the independent variable which are the process input 

variables and operating conditions like feed flows, temperature, pressure etc. and the 

dependent variable are the process outputs and product quality measurements like 

concentrations, molecular weights, density etc. For most common machine learning 

applications like process monitoring control, soft sensors, we use regression models to fit 

an empirical model for any of process outputs/product quality as a function of the process 

inputs. We can also just use the process data to find patterns for fault diagnosis and anomaly 

detection. Specifically, polymer process data analytics is critical since the polymer quality 

measurements like polymer melt index, molecular weight etc. are usually less frequent 
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compared to the continuous process variable measurements, hence, the use of data-based 

sensors become useful. 

    Modeling of many physiochemical systems requires detailed scientific knowledge of the 

system which is not always feasible for complex processes. We make some assumptions 

when modeling the system with first principles that ultimately leads to some knowledge 

gaps in describing the original system. Even for the systems where the scientific knowledge 

is sufficient to model the system, there are too many model parameters to estimate.  We 

often apply data-based models to study the systems where scientific data are available since 

they are more accurate in prediction. However, data-based/machine learning models are 

black-box models which can over-fit the data and also produce scientifically inconsistent 

results. For better accuracy, ML models also require more data which is not always feasible 

for many problems. Therefore, it is important to integrate science-based knowledge and 

data-based knowledge for an accurate and scientifically consistent prediction in the form 

of hybrid models.  

    Among the earliest applications of hybrid modeling in chemical/bio processes 

Psichogios and Unger11 combine a partial first-principle model based on prior process 

knowledge with a neural network to a fed-batch bioreactor for more accurate extrapolations 

and scientifically consistent predictions. Hybrid modeling has been applied in 

bioprocesses, chemical and oil and gas process industries and polymer processes industry 

for more accurate and scientifically consistent predictions over the years 12,13,14. The main 

applications of hybrid modeling in chemical processes includes process control, design of 

experiments, process development and scale-up, process design and optimization 15. Most 

of the literature in chemical engineering application in hybrid modeling deals with a direct 

combination of first-principle and ML models. 

    In a recent article Karpatne et. al. 16 suggest the theory-guided data science as a new 

paradigm for scientific discovery from data where they give a broader perspective of a 

hybrid science- guided machine learning (SGML) methodology where they showcase 

different applications showcases complementing ML models, and ML complementing 

science-based models complements. This SGML approach has been applied in physics 17 

and other scientific fields but not in chemical process data analysis.  Thus, there is a need 

for a broader application of scientific principles in machine learning and industrial 

chemical processes. In particular, polymer processes requiring accurate and scientifically 

consistent data-based sensors for quality target predictions, but there are not many studies 

showcasing a hybrid modeling approach. Hence, there is utility in applying this hybrid 

SGML approach by integrating the polyolefin process models and Data Analytics for 

polyolefin process improvement and optimization. 
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Chapter 2: First Principle Steady State Modeling of Polyolefin Process: Ziegler-Natta 

Polymerization 

 

"Reprinted with permission from [110th Anniversary: An Effective Methodology for 

Kinetic Parameter Estimation for Modeling Commercial Polyolefin Processes from 

Plant Data Using Efficient Simulation Software Tools, Niket Sharma and Y. A. Liu, 

Industrial & Engineering Chemistry Research 2019 58 (31), 14209-14226,DOI: 

10.1021/acs.iecr.9b02277] 

. Copyright [2019] American Chemical Society." 
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2.1. Introduction 

    Polyolefins are one of the most widely used commodity polymers with applications in 

films, packaging and automotive industry. The modeling of polymerization processes 

producing polyolefins, including high-density polyethylene (HDPE), polypropylene (PP), 

and linear low-density polyethylene (LLDPE) using Ziegler-Natta catalysts with multiple 

active sites, is a complex and challenging task. This chapter presents an effective 

methodology to estimate kinetic parameters that have the most significant impacts on 

specific production targets, and to develop the kinetics using all commercially important 

production targets validated over polyolefin processes producing HDPE, PP and LLDPE 

using Ziegler-Natta catalysts. This chapter is modified from our publication - (Sharma and 

Liu) 1. Since the publication of our 2002 and 2004 articles  2,3 , there have been at least 100 

articles about estimating kinetic parameters and modeling of commercial polyolefin 

processes producing high-density polyethylene (HDPE), polypropylene (PP), and linear 

low-density polyethylene (LLPDE) involving Ziegler-Natta (Z-N) polymerization. Each 

article has its merits, but most of them do not consider all of the commercially important 

production targets when quantifying the relevant polymerization reactions and their kinetic 

parameters based on measurable plant data. Most of the published articles also do not make 

efficient use of simulation tools, particularly sensitivity analysis, design specifications, and 

data fit, that are available in commercial modeling software for polymerization processes, 

such as Aspen Polymers which is an extension of Aspen Plus® simulation software. In 

particular, sensitivity analysis quantifies the effect of varying kinetic parameters on the 

production targets. Design specification finds the desired kinetic parameters to match the 

specified production targets. Data fit is an efficient nonlinear regression tool that 

determines statistically acceptable, kinetic parameters from constant, time-varying, or 
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temperature-dependent laboratory measurements, or from matching the process simulation 

to production targets.  

    The objective of this study is to present an effective methodology for estimating the 

kinetic parameters based on plant data in the development of simulation and optimization 

models for commercial polyolefin processes using efficient software tools. We first 

describe the Ziegler-Natta polymerization kinetics for polyolefin processes, and present 

commercially important production targets involving slurry, solution and gas-phase 

reactors. We identify the kinetic parameters that have the most significant impacts on the 

specific production targets, and demonstrate an effective methodology for estimating the 

kinetic parameters to fit production targets in a computer-aided step-by-step procedure. We 

report our insights and experiences from training practicing engineers to successfully apply 

our methodology to several dozen commercial HDPE, PP and LLPDE processes to achieve 

sustainable operation goals and generate significant economic payback at two of the 

world’s largest petrochemical companies in the Asia-Pacific over the past two decades. To 

help our reader in applying our methodology, we present supplements of detailed modeling 

examples and Excel modeling spreadsheet for commercial polyolefin processes. This study 

is motivated in part by the minimum coverage of developing models for industrial 

polyolefin reactors from plant data in two premier textbooks 5, 6 . 

    This chapter deals with first-principle based modeling of HDPE, PP, LLDPE and 

manufacturing processes using Ziegler-Natta (ZN) catalyst. We will also briefly cover 

Metallocene based catalyst modeling for producing EPDM. We use simulation software 

Aspen Polymers for this study. We deal with the methodology and procedure to model the 

ZN polymerization kinetics. In particular, we present an effective methodology for 

estimating the kinetic parameters based on plant data in the development of simulation and 

optimization models for commercial polyolefin processes using efficient software tools. 

We showcase the methodology of making first principle models for polyolefins processes. 

 

 2.2. Polyolefin Ziegler-Natta Polymerization Kinetics 

    Ziegler-Natta (ZN) catalyst is one of the most widely used catalysts for manufacturing 

commercial HDPE, PP, LLDPE and EPDM. Polyethylene and polypropylene are two 

commodity polymers of the highest demands.  Polyolefins have a wide application 

requiring different properties with different molecular weight distribution and branching 

distribution. The polymerization follows the coordination mechanism which is different 

from the free radical polymerization mechanism used for producing high-pressure LDPE. 

The microstructure of polyolefins made with coordination catalysts is different from that 

made with free radical kinetics. The LDPE made using the free radical mechanism consists 

of both short chain branching (SCB) and long chain branching (LCB), while that made by 

coordination mechanism consists of only SCB. Thus, catalyst design plays an important 

role in polyolefin processes. Different process types with different reactors and phases is 

another variable to modify polyolefin properties. The process for producing polyolefins 
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can be in three phases, including solution, slurry and gas phase. Autoclaves/CSTR, loop 

reactors, fixed bed reactors (FBR) are some of the main reactors used for polyolefin 

processes for different phases. For example, the loop reactors are used for slurry-phase 

process and FBR are used for gas-phase process. The book by Soares and Mckenna 2 covers 

different polyolefin processes in detail.  

    The modeling of the ZN kinetics is complex because of the multiple active catalyst sites 

in the ZN catalyst. The most common type of ZN catalyst is titanium tetrachloride TiCl4 

supported on MgCl2 or SiO2 which is heterogeneous in nature. ZN catalysts give high 

activity and productivity. Multiple active sites of the ZN catalyst enable the production of 

polymers with broad molecular weight distributions, and allow good polymer 

microstructural control.  

    This chapter focuses on ZN catalysts, not other catalyst types, such as Phillips, 

metallocene and late transition metal catalysts discussed in Chapters 3 and 5 of Soares and 

McKenna 6. Phillips catalyst is similar to the ZN catalyst with multiple active sites, and is 

used for producing HDPE consisting of chromium compounds like CrO3 supported on 

SiO2. Metallocene catalyst and late transition metal catalysts are used to produce 

HDPE/LLDPE with uniform properties and narrow MWD. The metallocene catalysts are 

considered to be single site and homogeneous, i.e., soluble in the reaction medium.   This 

chapter also does not deal with any processes that may use more than one catalyst type. 

Our limitation results from the lack of sufficient published plant data that would enable us 

to develop an effective methodology for kinetic parameter estimation for other catalyst 

types. 

 

2.2.1. Ziegler-Natta Catalysts 

 

    The ZN catalyst requires a co-catalyst AlR3 such as triethyl aluminum (TEAL), 

Al(C2H5)3, for activation. The co-catalyst is used to alkylate the Ti salt to yield an active 

site. The catalyst and co-catalyst react in a series of reactions to form a complex. The co-

catalyst extracts the chlorine atoms and transfer the alkyl group to the catalyst. Thus, the 

co- catalyst acts as a reducing agent and the electron-deficient site acts as the active site 

initiating the polymerization. The ZN catalyst is usually heterogeneous and has multiple 

active sites and produces polymer with broad molecular weight distribution. The catalyst 

structure of ZN catalyst can be designed based on the required stereoregularity of the 

polymer. The homogeneous form of the ZN catalyst usually contains different cocatalyst 

like methylalumoxane along with the titanium complex. We will focus mostly on the 

heterogenous catalyst in this chapter. 
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2.2.2.  Ziegler-Natta Polymerization Kinetics  

    The most important reactions in the ZN kinetics are the same as in any polymerization 

kinetics, namely, the chain initiation, propagation and chain transfer reactions which can 

be with monomer, hydrogen, and solvent. The ZN catalyst consists of different catalyst site 

types with each having its own relative reactivity, because of variations in the local 

chemical composition of each site type. The catalyst activation, deactivation and inhibition 

reactions are also specific to ZN catalyst. Site activation reactions convert potential sites 

to active sites, while site deactivation reactions convert active sites to dead sites. As 

discussed previously, Aspen Polymers builds the kinetic model in terms of repeating units 

or segments. All the main reactions in ZN kinetics are as follows. The Ziegler Natta kinetics 

have also been explained previously by Khare 4 in his thesis  . We summarize below our 

kinetic model reactions. For detailed description of each reaction, references to 2-4. 

(1a) ACT-SPON: Spontaneous catalyst activation (𝑃0,𝑖 is vacant site of type i):                                                           

𝐶𝐴𝑇𝑖
𝑘𝑎𝑠,𝑖
→   𝑃0,𝑖 

(1b) ACT-COCAT: Catalyst site activation by cocatalyst: 

𝐶𝐴𝑇𝑖
𝑘𝑎𝑠,𝑖
→   𝑃0,𝑖 

(1c) ACT-H2: Catalyst site activation by hydrogen: 

𝐶𝐴𝑇𝑖 + 𝐻2  
𝑘𝑎𝑐𝑡ℎ,𝑖
→     𝑃0,𝑖 

(2) CHAIN-INI: Chain initiation by monomer (𝑀) (𝑃1,𝑖 is a propagation site of type i with 

an attached polymer chain containing one segment): 

𝑃0,𝑖 +𝑀
𝑘𝑖𝑛𝑖,𝑖
→   𝑃1,𝑖 

(2’) CHAIN-INI: Chain initiation by monomer j (𝑀𝑗) for copolymerization: 

𝑃0,𝑖 +𝑀𝑗
𝑘𝑖𝑛𝑖,𝑖
𝑗

→   𝑃1,𝑖
𝑗

 

(3a) PROPAGATION: Chain propagation ( 𝑃𝑛,𝑖 and 𝑃𝑛+1,𝑖 are polymer chains of length n 

and 

n + 1 segments): 

𝑃𝑛,𝑖 +𝑀
𝑘𝑝,𝑖
→  𝑃𝑛+1,𝑖 

(3b) ATACT-PROP: Atactic chain propagation (𝑘𝑝𝑎,𝑖 is the rate constant for atactic chain 

propagation 

at site type i): 

𝑃𝑛,𝑖 +𝑀
𝑘𝑝𝑎,𝑖
→   𝑃𝑛+1,𝑖 

(4a) CHAT-MON: Chain transfer to monomer (𝑘𝑡𝑚,𝑖
𝑗𝑘

 is the rate constant for chain transfer 

to a monomer of type k reacting with a growing chain transfer ending with a monomer unit 

of type j at site type i): 
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𝑃𝑛,𝑖
𝑗
+𝑀𝑘

𝑘𝑡𝑚,𝑖
𝑗𝑘

→   𝐷𝑛 + 𝑃1,𝑖
𝑘  

(4b) CHAT-H2: Chain transfer to hydrogen (Chain transfer to hydrogen and other transfer 

reactions generate a vacant site of type i, 𝑃0,𝑖.  𝐷𝑛 is a dead polymer chain of length n). 

𝑃𝑛,𝑖 + 𝐻2
𝑘𝑡ℎ,𝑖
→   𝐷𝑛 + 𝑃0,𝑖 

(4b’) CHAT-H2: Chain transfer to hydrogen for copolymerization (Chain transfer to 

hydrogen and other transfer reactions generate a vacant site of type i, 𝑃0,𝑖 .  𝐷𝑛 is a dead 

polymer chain of length n). 

𝑃𝑛,𝑖
𝑗
+ 𝐻2

𝑘𝑡ℎ,𝑖
𝑗

→   𝐷𝑛 + 𝑃0,𝑖
𝑗

 

(5) FSINH-H2 and RFINH-H2: “Forward and reverse catalyst Inhibitions by hydrogen 

(𝐼𝐶𝐴𝑇𝑖  is the inhibited” 2,4 

catalyst of site type i ): 

𝐶𝐴𝑇𝑖 + 𝑥𝐻2
𝑘𝑓𝑖𝑛ℎ,𝑖
→     𝐼𝐶𝐴𝑇𝑖 

𝐼𝐶𝐴𝑇𝑖
𝑘𝑟𝑖𝑛ℎ,𝑖
→     𝐶𝐴𝑇𝑖 + 𝑥𝐻2 

 

(6) DEACT-SPON: Spontaneous catalyst deactivation (𝐷𝐶𝐴𝑇𝑖 is deactivated catalyst site 

of type i. 𝐷𝑛 is a dead polymer chain of n segments): 

𝑃0,𝑖
𝑘𝑑𝑠,𝑖
→   𝐷𝐶𝐴𝑇𝑖 

𝑃𝑛,𝑖  
𝑘𝑑𝑠,𝑖
→   𝐷𝑛 + 𝐷𝐶𝐴𝑇𝑖 

(7) Copolymerization Kinetic Scheme (“ 𝑘𝑝,𝑖
𝑗𝑘

  is the rate constant for propagation, 

associated with site  type i, for a monomer of type k adding to a chain with an active 

segment of type j” 2,4): 

𝑃𝑛,𝑖
1 +𝑀1

𝑘𝑝,𝑖
11

→  𝑃𝑛+1,𝑖
1  

𝑃𝑛,𝑖
1 +𝑀2

𝑘𝑝,𝑖
12

→  𝑃𝑛+1,𝑖
2  

𝑃𝑛,𝑖
2 +𝑀1

𝑘𝑝,𝑖
21

→  𝑃𝑛+1,𝑖
1  

𝑃𝑛,𝑖
2 +𝑀2

𝑘𝑝,𝑖
22

→  𝑃𝑛+1,𝑖
2  

We note that the reaction rate constants listed in the chemical reactions (1) to (7) above 

have the following standard Arrhenius form:  

                                                               𝑘 =  𝑘0 ∗ 𝑒
−
𝐸 

𝑅
(
1

𝑇
 – 
1

𝑇𝑟
) 
                                          (2.1) 

where ko is the pre-exponential factor, E is the activation energy, R is the ideal gas constant, 

and T is the temperature of the reaction system and Tr is the reference temperature.  

    We discuss below our reasoning for including certain model reactions, and our 

simplification in ignoring other model reactions. 
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(1) Touloupidis  7  and Zacca and Ray  8  include the catalyst site activation by monomer 

(ACT-MON) and by electron donor (ACT-EDONOR) in their modeling studies. 

These reactions are available within the Ziegler-Natta kinetic model in Aspen 

Polymers when needed. 

(2) To quantify the catalyst activation, the Aspen Polymers model for Ziegler-Natta 

kinetics includes a parameter (called max sites) for the concentration of catalyst sites 

per unit mass of catalyst, in addition to the catalyst activation reaction rate constants. 

Typical values of the max sites parameter range from 1.0E-5 to 1.0 E-3 mol of sites 

per g of catalyst. When employing titanium tetrachloride as the catalyst, we typically 

use a value of 2E-4 mol of sites per g of catalyst  2,9 . We can vary this parameter to 

change the polymer production rate, without affecting the polymer molecular weight 

or copolymer composition. 

(3) Chain transfer to transfer agent (CHAT-AGENT), to solvent (CHAT-SOL), to 

cocatalyst (CHAT-COCAT), and to electron donor (CHAT-EDONOR) follows 

reaction (4b), for chain transfer to hydrogen (CHAT-H2). These reactions are 

available within the Ziegler-Natta kinetic model in Aspen Polymers. We ignore them 

as in references  2, 3 . 

(4) Zhang et al.  10  include the beta-hydride elimination in their slurry HDPE modeling 

study. Soares and McKenna  4, p.162  state that this reaction produces metal hydride 

sites that are indistinguishable from those made by chain transfer to hydrogen. 

Therefore, it would be appropriate to consider only the reaction of chain transfer to 

hydrogen, without the reaction of beta-hydride elimination, as in references  2,3. 

(5) After considering chain-transfer reactions, Touloupidis  7  includes site-transformation 

reactions that convert one vacant catalyst site type to another by means of specific 

reactions, such as transformation to hydrogen, to cocatalyst, to solvent and to poison, 

as well as spontaneous site transformation. Touloupidis further states that “site 

transformation reactions do not seem to play an important role, as they are rarely 

employed. Moreover, they pose difficulties on the way site transformation can be 

experimentally measured and validated”  7, p. 518 . Therefore, we ignore site-

transformation reactions. 

(6) As explained in reference 2 , by adding hydrogen to polyolefin processes with ethylene 

as a monomer, the rate of polymerization decreases. We can model this effect by 

including the forward and backward catalyst site inhibition reactions due to hydrogen 

(FSINH-H2 and RFINH-H2). The rate constants of these inhibition reactions affect 

the polymer production rate. The Aspen Polymers model also calculates the 

equilibrium mole of inhibited catalyst sites (CISFRAC). 

(7) In certain polyolefin systems such as HDPE  2 , we may get a bimodal homopolymer 

from a single reactor. This is different from the bimodal copolymer produced in a 

reactor series for HDPE 10,11,12 , PP  3, 13,14  or LLDPE  15 due to the difference in the 

hydrogen concentrations in the two reactors in series. We can model this bimodal 
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copolymer by the forward and reverse catalyst inhibition reactions due to hydrogen 

(FSINH-H2 and RFINH-H2) 2 . The Aspen Polymers model also calculates the 

equilibrium mole of inhibited catalyst sites (CISFRAC).  

(8) Many HDPE  2, 9, 10, 11, 12 , PP  3, 13,14  and LLPDE  15  models include the reaction of 

spontaneous catalyst deactivation (DEACT-SPON). For PP, the tacticity control agent 

deactivates a portion of the catalyst sites that produces atactic polymer. We account 

for this by the reaction of catalyst deactivation by tacticity control agent (DEACT-

TCA)  2 . The Aspen Polymers model includes also catalyst deactivation reactions by 

hydrogen (DEACT-H2), by cocatalyst (DEACT-COCAT), by monomer (DEACT-

MON), by poison (DEACT-POISON), and by electron donor (DEACT-EDONOR), 

as listed in 5. In Appendix A.3 and A.5, we include DEACT-POISON and DEACT-

H2 reactions. 

(9) Certain polyolefin processes, such as slurry HDPE, produce an oligomer, which is a 

low-molecular-weight polymer species that dissolves in the hexane diluent. Using 

plant data for the molecular weight of the oligomer, we model the oligomer production 

by reacting stoichiometric amounts of ethylene and hydrogen according to the 

equation  2 :   x C2H4 + H2 -> oligomer, where x is a stoichiometric coefficient 

determined from plant data. 

(10)  As our section title, “Polyolefin Ziegler-Natta Polymerization Kinetics”, implies, we 

focus only on the kinetic reactions that are applicable to commercial processes using 

Z-N catalysts, not other catalyst types, such as Phillips, metallocene and late transition 

metal catalysts discussed in Chapters 3 and 5 of Soares and McKenna  6 . We do not 

deal with any processes that may use more than one catalyst type. Our limitation 

results from the lack of sufficient published plant data that would enable us to develop 

an effective methodology for kinetic parameter estimation for other catalyst types. 

2.3. Commercial Polyolefin Production Targets 

    The important commercial production targets for kinetic parameter estimation of 

polyolefin processes are as follows. 

2.3.1 General Production Targets 

2.3.1.1. Production Rate: We use the mass flow rate of polymer within the outlet stream 

from each reactor for a process with reactors in series for kinetic parameter estimation. It 

is an important production target for process modeling, since the production rates are 

increased for production expansion and the kinetics should be dependent on it. The 

propagation reaction determines the polymerization rate hence directly affects the 

production rate.  

2.3.1.2. MWN: The number-average molecular weight (MWN) of the polymer is an 

important target. MWN varies for different polymer grades. The reaction rate constants for 

chain transfer to H2 (CHAT-H2) and to monomer (CHAT-MON) significantly affect the 

molecular weight of the polymer since the reactions lead to breaking the growing polymer 

chain and forming the dead polymer chain. 
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2.3.1.3. MI: In the literature, most empirical correlations for MI for polyolefins with broad 

MWD or large PDI are based on the weight-average molecular weight (MWW).  For 

example, a general MI correlation with MWW is in the form of   16,17 : 

                                                                  MI = a (MWW) –b                                                    (2.2) 

where a and b are correlating parameters. For PP, the MI may depend on the MWW as well 

as the atactic fraction (ATFRAC), calculated by the atactic chain propagation reaction 

(ATACT-PROP)  2 . 

2.3.1.4. Conversion: The conversion percentages of the monomer and the co-monomer are 

required to determine the yield of the process. 

2.3.1.5. PDI: The polydispersity index is the ratio of the weight-average molecular weight 

to the number-average molecular weight, MWW/MWN. It is an important polyolefin 

property. It is measured by performing gel permeation chromatography (GPC) of the 

polyolefin sample obtained at the product outlet or at each reactor outlet in a process with 

reactors in series. 

2.3.1.6. SMWN and SPFRAC: SMWN represents the number-average molecular weight 

produced at each active catalyst site. SPFRAC is the weight fraction of polymer produced 

at each active site. They are determined by deconvolution of the polymer GPC curve, and 

are required for estimating individual site-specific kinetic parameters. 

2.3.1.7. SFRAC and SCB: SFRAC is the mole fraction of segments of the comonomer 

and is usually determined by the short chain branching distribution (SCBD). The use of 

online Fourier transform infrared spectroscopy (FTIR) with gel permeation 

chromatography (GPC) permits the detection of the SCB as a function of the weight-

average molecular weight  18 . We use this simulation target to predict the co-monomer 

content in the copolymer. SFRAC depends on the co-monomer kinetics. 

2.3.1.8. Rho: The polymer density is usually measured for the pellets, and correlated as a 

function of the MWW. For copolymerization, we often correlate the polymer density as a 

function of mole fraction of the comonomer and the MWW  11,18 . In reference  9 , the HDPE 

density obtained from ethylene copolymerization with comonomer 1-butene follows the 

following correlation: 

                                  𝜌 = ( 1 − 0.009165 xB0.148895) x  1.137247 – 0.014314 ln (MWW)        

(2.3) 

where xB is the mole fraction of 1-butene. In reference 18 , we see an example of 

correlating the polymer density to MWW and SCB content for a bimodal HDPE copolymer 

process: 

𝜌 = 1.0748 − 0.0241𝑙𝑜𝑔𝑀𝑊𝑊 − 0.01145(
∑ 𝑚(𝑗)𝑆𝐶𝐵(𝑗)𝑤𝑙𝑜𝑔𝑀𝑊𝑊(𝑗)
𝑁
𝑗=1

∑ 𝑚(𝑗)𝑤𝑙𝑜𝑔𝑀𝑊𝑊(𝑗)
𝑁
𝑗=1

)0.47332                      

(2.4) 

where m(j) is mass fraction of polymer formed at active site j, SCB(j)  is the average short 

chain branching in copolymer formed at active site j, and  𝑤𝑙𝑜𝑔𝑀𝑊𝑊(𝑗) is the weight chain 

length distribution of the polymer formed at active site j. 
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2.3.1.9. Residence Time: This refers to the reactor residence time. It can be the residence 

time of each reactor in a process with a series of reactors. It is an important target affecting 

the polymer properties. The residence time is dependent on the polymer solution density 

which depends on the thermodynamic property parameters. 

2.3.2. Polymer-Specific Targets:  

2.3.2.1. CISFRAC: It is the ratio of the moles of the inhibited catalyst sites to the total 

number of moles of the catalyst sites. It may be considered as a target for HDPE process 

when catalyst inhibition reactions are considered. 

2.3.2.2. ATFRAC: It is the ratio of the atactic propagation to the total propagation. It is a 

commercial target for atactic PP production. 

Table 2.1 give examples of production targets for kinetic parameter estimation for 

modeling commercial polyolefin processes from plant data. 

 

 

 

Table 2.1. Examples of production targets for kinetic parameter estimation for modeling 

commercial polyolefin processes from plant data  

Polymer  

reference  

Pr

od.    

rat

e  

 

MWN 

and 

MI 

Conv SFRAC 

 

PD

I 

Rho SMWN 

and 

SPFRAC 

Res. 

tim

e 

Polymer 

specific 

HDPE,                 

Khare et a.  2  

✓ ✓ 

 

✓ ✓ ✓ ✓ ✓ ✓ ✓ 

HDPE,                         

Chen et al.   9  

✓ ✓  ✓ ✓ ✓ ✓ ✓  

HDPE,                        

Zhang et al. 10  

✓ ✓  ✓ ✓  ✓   

HDPE,                         

Meng et al. 11  

✓ ✓  ✓ ✓ ✓ ✓ ✓  

HDPE,                            

Zhao, et al. 12 

✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ 

PP,                                        

Khare, et al.  3   

✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ 

PP,                             

Zheng et al. 13  

✓ ✓  ✓ ✓ ✓ ✓   

PP,                                     

Luo et al.  19  

✓ ✓ ✓  ✓ ✓ ✓ ✓  

PP,                                   

You and Li  20  

✓ ✓ ✓ ✓ ✓  ✓ ✓  
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PP,                                   

Luo et al.  21       

✓ ✓  ✓ ✓  ✓ ✓  

PE,                                  

Kou et al.  22,23  

✓ ✓   ✓     

LLPDE, 

Touloupidis et 

al.  15  

✓ ✓   ✓  ✓   

LLPDE,                         

Kashani at el.  24  

✓ ✓   ✓  ✓   

 

We conclude this section by noting two points. 

(1) Not all of these production targets are fully independent of each other. As an 

example, MI typically depends on MWW for most polyolefins, and also depends on atactic 

fraction (ATFRAC) for PP. In our simulation, we use a FORTRAN block to calculate the 

MI based on a correlation developed from past plant data for MWW, and compare the 

calculated MI value with the current plant data. If the resulting deviation between the 

calculated and measured MI values is not acceptable, we would fine-tune the simulation 

parameters for better MWW predictions, and possibly update the MI-MWW correlation 

with new plant data. 

 (2)       Not all of the suggested production targets in reported modeling studies have the 

relevant plant data for model validation. Depending the intended purposes for using the 

resulting simulation model and the accuracy requirements of model predictions, the model 

developers must decide if they wish to make a serious effort to collect plant data of certain 

production targets for validating the simulation model. Alternatively, they could use 

available data of relevant process variables or the values of simulation output variables as 

independent variables to develop soft sensors or inferential models (such as those based on 

neural networks  25 ) for production targets (e.g., MI and ATFRAC) that are not routinely 

measured. 

2.4. Modeling Considerations 

2.4.1 Reactor Types 

    Chapter 4 of Soares and McKenna 6  describes the various types of reactors used for 

polyolefin processes, depending on the type of polyolefin, process technology and reactant 

phase. The most common reactors used in polyolefin processes are stirred autoclave or 

continuous stirred tank reactor (CSTR), loop reactor, fluidized-bed reactor (FBR), and 

horizontal stirred-bed reactor (HSBR). The modeling of the reactors requires certain 

assumptions.  

    Table 2.2 gives examples of common reactor types in commercial polyolefin processes. 

We can model the stirred autoclave reactors in the Mitsui slurry HDPE process  2,10,11  and 

in the DOWLEX solution LLPDE process  26  as continuous stirred tank reactors (CSTRs).  

Loop reactors are used in the Borstar slurry HDPE process  6, p. 120; 9, 11  as well as the Basell 
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Spheripol  13,14; 6, p. 106  and Mitsui HYPOL  20,21  PP processes. In the modeling of a loop 

reactor when the recycle ratio is 30 or higher as calculated by Zacca and Ray  8 , we can 

simulate the loop reactor as a CSTR. High recycle ratios give very low axial concentration 

of the reactant and uniform temperature and residence time distribution (RTD) so that we 

can model a loop reactor as a CSTR. The loop reactors have a higher space-time yield and 

a high ratio of heat transfer per unit volume. Luo et. al.  19 , Zheng  27 , among others, have 

modeled the loop reactor series as CSTRs for PP production.  

Table 2.2. Examples of Common Reactors for Producing Polyolefins 

Polymer Stirred 

autoclave, or 

continuous 

stirred tank 

reactor 

(CSTR) 

Slurry 

Loop 

Reactors 

(SLRs) 

Fluidized-

Bed 

Reactors 

(FBRs) 

SLRs + 

FBRs 

 

Stirred-

Bed 

Reactors 

(SBRs) 

HDPE Mitsui slurry 

process                       

2, 10, 11  

  Borstar 

bimodal 

process                     

9, 12  

 

PP  Loop 

reactor 

series  19,27  

Univation 

UNIPOL  28  

Basell 

Spheripol 

process  6, 

p.26; 13, 14 , 

HYPOL 

process  20,21  

Innovene  

3  

LLPDE DOWLEX 

solution 

process  6, p. 

120; 26   

Loop 

reactor 

series  15  

Basell 

Spherilene  

26 ,  

Univation 

UNIPOL  24  

  

 

    Fluidized-bed reactors are mainly used for gas-phase and mixed-phase processes, such 

as the Borstar bimodal HDPE  11,12 , Basell Spheripol PP  13,14 , Mitsui HYPOL PP  20,21 , 

Basell Spherilene  26  and Univation UNIPOL  24  LLPDE processes. FBRs have a high 

overall conversion as well as high heat removal capacity. FBRs are mostly used as a 

finishing reactor for making copolymers in a series polyolefin process, as varying levels of 

co-monomers can be added without any solubility issues. The high recycle ratios of the 

recycle gas lead to uniform temperature and low concentration gradient in the FBRs, 

making it reasonable to model the FBR as a CSTR. Chen et al.  11  and Zhao et al.  14  have 

modeled the FBR as a CSTR in the finishing reactor for making bimodal HDPE. 
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    The HSBR (horizontal stirred-bed reactor) has been used for gas-phase polymerization 

processes, such as the Innovene (formerly BP Amoco) PP process  3 . It has a plug-flow 

characteristic and can be used for fast grade change and making wide variety of products. 

We can simulate the HSBR as a series of CSTRs to approximate the RTD of the plug flow  

3 . 

2.4.2 Polymer Types:  

    HDPE, PP and LLDPE are mostly made using Ziegler-Natta catalysts. The strategy for 

process modeling and kinetic parameter estimation does not change when considering 

different polymers. We only need to include certain reactions specific to the polymers. For 

HDPE processes, it is appropriate to consider the forward and reverse catalyst inhibition 

reactions by hydrogen (FSINH-H2 and RFINH-H2), since the rate of polymerization for 

ethylene polymer decreases with the addition of hydrogen. For PP processes, we need to 

consider the atactic propagation reaction (ATACT-PROP), depending on the atactic 

content of the polymer. The atactic polymer is amorphous and has low commercial value; 

it is desirable to have high isotactic PP.  

2.4.3 Molecular Weight Distribution (MWD) and Multi-Modal Distributions:  

    The MWD of the polymer can be unimodal or multi-modal, depending on the operating 

conditions. The kinetic estimation and modeling strategy remain the same whether the 

MWD distribution is unimodal or bimodal. The homopolymer MWD is usually unimodal.  

    For obtaining bimodal MWD in many polyolefin processes, the catalyst is exposed to 

two different operating conditions in a cascade of reactors. We can use two reactors in 

series to produce bimodal HDPE. The first reactor makes low MWN HDPE with the help 

of a higher hydrogen concentration, while the second reactor has a lower hydrogen 

concentration producing a higher molecular weight polymer. A comonomer alpha olefin is 

often added to make a copolymer. Chen et. al.  9  and Meng, et al.  11 have modeled the 

Borstar HDPE process to predict the bimodal MWD. In the Borstar process, the low-

molecular-weight homopolymer is made in the slurry loop reactor (SLR) and the high-

molecular-weight copolymer is made in the FBR. There can be other reasons for obtaining 

a bimodal MWD apart from operating conditions if we obtain a bimodal MWD in a single 

reactor. The other reasons for bimodal MWD can be different types of reacting sites in the 

catalyst, inhibition of catalyst sites due to hydrogen or other poisoning and non-ideal 

mixing in the reactor 29 . 

 

 

 

2.4.4 Process Flowsheets 

    Figures 2.1a to 2.1f illustrate the simplified flowsheets of several commercial polyolefin 

production processes that we use below to demonstrate our methodology for kinetic 

parameter estimation from plant data using simulation software tools. 
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Figure 2.1a. Mitsui slurry HDPE process: serial reactor configuration  2  

 
Figure 2.1b. Borstar bimodal HDPE process with a prepolymerization reactor, a slurry loop 

reactor (SLR), a flash unit, and a finishing fluidized-bed reactor (FBR)  12 . 

 

 
Figure 2.1c. Polymerization section of the Mitsui HYPOL PP process: C201, C202 and 

C203- compressor; D201 and D202- slurry polymerization reactor (SLR); D203- fluidized-
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bed reactor (FBR); D221, D222, and D228- flash drum; E201, E202, E203 and E208- heat 

exchanger  21 . In our example and in Supplement 1a, we have another FBR, D204. 

 
Figure 2.1d. Basell Spheripol PP process using two slurry loop reactors (SLRs), followed 

by a flash unit and a fluidized-bed reactor (FBR) for copolymerization (Soares, J. B. P.; 

McKenna, T. F. L. Polyolefin Reaction Engineering, p. 126, 2012. Copyright Wiley-VCH 

Verlag GmbH & Co. KGaA. Reproduced with permission).  

 
Figure 2.1e. Innovene gas-phase PP process using a horizontal stirred-bed reactor  3 . 
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Figure 2.1f. Univation UNIPOL LLPDE process using a fluidized-bed reactor (Soares, J. 

B. P.; McKenna, T. F. L. Polyolefin Reaction Engineering, p. 116, 2012. Copyright Wiley-

VCH Verlag GmbH & Co. KGaA. Reproduced with permission).  

2.4.5 Thermodynamics:  

    Thermodynamics is an essential component of the model. The perturbed chain statistical 

fluid theory (PC-SAFT) is one of the most useful thermodynamic models for simulating 

polyolefin processes  3,29 . The PC-SAFT model is based on the perturbation theory. The 

underlying idea is to divide the total intermolecular forces into repulsive and attractive 

contributions. The model uses a hard-chain reference system to account for the repulsive 

interactions. The attractive forces are further divided into different contributions, including 

dispersion, polar, and association. A correct thermodynamic model is very important in 

predicting certain commercial targets like the polymer solution density (not the polymer 

pellet density which depends on MWW and SCB content 11,18 ). We use the polymer 

solution density to match the reactor residence time before estimating the kinetic 

parameters. 

 

2.4.6 Global Kinetics versus Local Kinetics  30  

    Reaction kinetics, like thermodynamics, are expected to be a global phenomenon. As 

long as the same catalyst is used in all the reactors, a good model should be capable of 

covering the full range. Using different kinetics in different reactors significantly raises the 

degree of freedom of the problem, which is already enormously complex. Instead, we 

should treat the data from the different stages of the process as a sort of ‘natural experiment’ 

to further confirm a single set of rate parameters.  

    If we had samples after each stage, we could use the molecular weight distribution to 

further enrich our understanding of what is happening within the process. We have seen 

projects where engineers have used different kinetics in different reactors, or different 

kinetics for different product grades. We have also seen in some cases of force-fitting the 

kinetics where the maximum sites concentration (max sites) is not realistic, or the inhibition 

reaction and catalyst poisoning reaction rate constants may not be correct, resulting in the 
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incorrect catalyst activity predicted by the model. We always consider these symptoms of 

an imperfect model. Using local kinetic models may be ‘over-fitting’ the limited available 

data, which can lead to bad extrapolations away from the base-case conditions. Since the 

goal of modeling is usually to optimize the process to increase throughput, improve quality, 

or reduce energy consumption, it is important to be able to predict behavior outside the 

current operating envelope.  

    Additionally, when fitting a kinetic model, we should always use the reference 

temperature form of the kinetic expression, Eq. (1). This form makes the pre-exponential 

factor ko and the activation energy E independent of each other at Tr . Otherwise, small 

changes to E overwhelm the data fitting of the k values and the fitting algorithm usually 

fails. We also find it easier to compare rate constants when they are on a consistent 

reference temperature basis. 

2.5. Methodology for Polyolefin Kinetic Estimation 

    Table 2.3 summarizes the important commercial production targets that we have 

considered for kinetic parameter estimation. The number of targets that can be used for 

estimation depends on the data availability. In our strategy to estimating kinetic parameters, 

we first try to match some production targets in a single catalyst site model and we fit the 

remaining targets after converting the single-site model into a multisite model. In this 

procedure, we consider the rate constants for all the reactions involved in the Ziegler Natta 

polyolefin kinetics, including the catalyst activation, initiation, propagation, chain transfer, 

deactivation and other polymer-specific reactions. The kinetic rate constants follow the 

Arrhenius form given in Eq. (1). For polyolefin reactors operating in a small temperature 

range, we only estimate the pre-exponential factor ko and keep the activation energy E 

constant with values from the literature. Our methodology for kinetic parameter estimation 

does allow us to estimate the activation energy if necessary.  

 

 

Table 2.3 Production targets for single-site and multisite models 

Single-Site Targets  Multisite Targets 

Production Rate PDI of polymer 

MWN overall MWN produced at catalyst site  

Monomer Conversion Mass fraction for polymer produced at 

each site  

Co-monomer Conversion or SFRAC Atactic  fraction ATFRAC for each site for 

PP 

Polymer solution density Catalyst site inhibition fraction CISFRAC 

for each site for HDPE 

Residence time Rho /Polymer pellet density 

Atactic  fraction ATFRAC for PP  

 



 22 

2.5.1. Efficient Use of Software Tool: Data Fit 

    We develop models using Aspen Polymers and fit the kinetic parameters to plant data 

using the data fit tool. Data fit is an efficient nonlinear regression tool that allows the user 

to determine statistically acceptable, kinetic parameters from constant, or time-varying, or 

temperature-dependent laboratory measurements, or from matching the process simulation 

to plant targets. We can use both point data or time-profile data for regression. We need to 

define the data with reconciled input variables and a standard deviation. We estimate the 

model parameters using the data within the specified range. 

The least-square regression objective function that the data fit minimizes is as follows: 

𝑓 = min
𝑋𝑝,𝑋𝑟𝑖

 
1

2
 ∑ (𝑊𝑖
𝑁𝑠𝑒𝑡
𝑖=1 × (∑ (∑ (

𝑋𝑚𝑟𝑖 −𝑋𝑟𝑖

𝜎𝑋𝑚𝑟𝑖 
)
2

𝑁𝑟𝑖
𝑖=1

𝑁𝑒𝑥𝑝
𝑗=1

+ ∑ (
𝑋𝑚𝑟𝑟 −𝑋𝑟𝑟

𝜎𝑋𝑚𝑟𝑟 
)
2

𝑁𝑟𝑟
𝑚=1 )))                                          

(2.5) 

subject to                                                 𝑋𝑝𝑙𝑏 ≤ 𝑋𝑝 ≤ 𝑋𝑝𝑢𝑏 ,  𝑋𝑟𝑖𝑙𝑏 ≤ 𝑋𝑟𝑖 ≤ 𝑋𝑟𝑖𝑢𝑏                                 

where: 

Nsets = Number of data sets specified for regression 

Nexpi = Number of experiments in data set i 

Nri = Number of reconciled input variables 

Nrr = Number of measure output variables 

Wi = Weight for each data set i for regression 

Xp = Vector of varied parameters 

Xmri = Measured values of the reconciled independent variables 

Xri = Calculated values of the reconciled input variables 

Xmrr = Measured values of the output variables 

Xrr = Calculated values of the output variables 

σ = Standard deviation specified for the measured variables 

    Since kinetic parameter estimation is a complex regression problem, we can vary some 

numerical parameters within the data fit to speed up the convergence calculations. We vary 

the maximum algorithm iterations and the maximum number of passes through the process 

flowsheet which are required to compute the residuals. We specify a bound factor which 

gives the upper and lower bounds for variables by multiplying by the standard deviation. 

We also specify the absolute sum-of-squares objective function tolerance, so that the 

problem converges whenever the objective function value is less than the tolerance value. 

    The tool performs the least-square regression using a trust region algorithm for 

parameter estimation. Specifically, the algorithm maintains an estimate of the diameter of 

a region, called the trust region, about the current estimate of the vector of varied values in 

which it can predict the behavior of the least-squares objective function. If an adequate 

model is found within the trust region, the region is expanded; if the model is a poor 

approximation, then the trust region is contracted. The tool also provides certain handles 

to implement the regression with the trust region optimization algorithm.  
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2.5.2 Flowchart of the Methodology for Kinetic Parameter Estimation 

    Figure 2.2 a and b shows our methodology for estimating kinetic parameters for 

polyolefin process models from plant data using simulation software tools. In the 

following, we discuss the details of the algorithm and present illustrative applications to 

commercial polyolefin processes. We also give some useful suggestions based on our 

experiences in guiding practicing engineers to apply the methodology to several dozen 

commercial HDPE, PP and LLPDE processes in the Asia-Pacific. 

 

 

 
Figure 2.2a. The methodology for kinetic parameter estimation for polyolefin process 

models from plant data using simulation software tools (Summary) 
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Figure 2.2b. The methodology for kinetic parameter estimation for polyolefin process 

models from plant data using simulation software tools (Detailed) 

2.5.2.1 Multiple Product Grades and Single Active Catalyst Sites  

    We first make a single-site model and try to estimate the kinetic parameters based on 

single-site production targets for multiple product grades. Using the production rate data 

for multiple grades, the data fit tool enables us to simultaneously regress the reaction rate 

constants for catalyst activation (ACT-SPON, ACT-COCAT, and ACT-H2), propagation 

(PROPAGATION) reactions for monomer, and deactivation (DEAC-SPON) reactions, and 

any inhibition (FSINH-H2 and RSINH-H2) reactions if considered. This is different from 

most of the previous studies, including our previous work  2,3 , which sequentially estimate 

these reaction rate constants.  

    Before matching the production rates, we must ensure that the residence time matches 

plant data. We can adjust the PC-SAFT thermodynamic parameters and change the mixing 

model equation to adjust the polymer solution density. The residence time of the reactor 

depends on the solution density.We estimate the rate constants for propagation 

(PROPAGATION) reactions for the monomer using the production rate for the 

homopolymer and monomer conversion. We use the production rate for the copolymer and 

the ratio of the reaction rates of comonomer to monomer (SFRAC) or conversion of 

comonomer to estimate the rate constants of the propagation reactions for the comonomer.  

    For PP, we need to ensure that the isotacticity of the homopolymer matches the plant 

data. We do so by including the atactic propagation (ATACT-PROP) reaction and estimate 

the rate constant using the atactic fraction (ATFRAC), which is the ratio of the atactic 

polymer formed over the total polymer. We want the calculated ATFRAC to be close to  1 

– isotacticity/100 .  



 25 

    For HDPE, we also consider the inhibition of the catalyst due to the polymers since the 

rate of polymerization decreases with hydrogen concentration for ethylene-based polymer 

reactions. We usually estimate the forward inhibition and backward inhibition (FSINH-H2 

and RSINH-H2) reactions using the MWN. In the single-site model, we can also match the 

weight-average molecular weights and use them to estimate the rate constants of chain 

transfer to hydrogen and monomer/comonomer. 

    Depending on data available, the melt index of polymer is also useful in matching the 

molecular weight of polymer. Melt index is usually a function of weight-average molecular 

weight (MWW), but for the case of polypropylene homopolymer, it is also a function of 

atactic fraction (ATFRAC). 

    In case SFRAC and comonomer content data are not available, we may use the final 

polymer pellet density to estimate the comonomer propagation rate constants, as the 

polymer density depends on the SCB and comonomer content. 

Table 2.4 shows the major kinetic parameters that significantly affect the single-site 

production targets. 

Table 2.4 Major kinetic parameters affecting the single-site production target 

Single-Site Target  Major Kinetic Parameters Affecting the 

Target 

Production Rate Max sites parameter, propagation rate 

constant, catalyst activation, inhibition 

reaction 

MWN overall Chain transfer reactions –monomer and H2 

Monomer conversion Monomer propagation rate constant 

Co-monomer conversion or SFRAC Co-monomer propagation rate constant 

Reactor residence time Polymer solution density and 

thermodynamic property parameters 

ATFRAC Atactic propagation rate constant 

Melt Index Chain transfer reactions and ATFRAC 

Polymer pellet density Comonomer content/comonomer 

propagation rate constants 

 

    We illustrate the application of the methodology to estimating the kinetic parameters for 

modeling a commercial Mitsui HYPOL PP process.  Appendix A.1 gives details of our 

kinetic model and kinetic parameter estimation, including the reaction rate constants 

chosen and their initial values. We demonstrate below the efficient use of data fit tool for 

the simultaneous estimation of kinetic parameters. 

    Table 2.5 lists the plant data for single-site modeling for a commercial Mitsui HYPOL 

PP process of Figure 1c, and Figure 3 shows an Aspen Polymers simulation flowsheet of 

the process with the addition of one more fluidized-bed reactor, D204.  
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Figure 2.3. An Aspen Polymers simulation flowsheet of the Mitsui HYPOL PP process. 

 

 

                   

 Table 2.5. Plant data for kinetic modeling a commercial Mitsui HYPOL PP process 29  

   Grade 1 Grade 2 

Data set Process 

parameters 

Reacto

r 

Production 

target 

Productio

n target 

PROD123 Polymer production 

rate (kg/hr) 

D-201  1560 1560 

  D-202  3120 3120 

  D-203  6240 6240 

PROD4  D-204  8600 8600 

MWN123 Number-average 

molecular weight 

(MWN) 

D-201 60000 76000 

  D-202 63000 83000 

  D-203 77000 88000 

MWN4  D-204 80000 96000 

SFRAC4 Ethylene content in 

copolymer, mole 

fraction 

D-204 0.145 0.15 

 

PDI Polydispersity 

index 

D-201 5.50 5.60 
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  D-202 5.52 5.70 

  D-203 5.54 5.80 

  D-204 6.00 6.20 

H2/C3H6 

mole ratio x 

10E3 

H2/monomer mole 

ratio in reactor 

overhead 

D-201 188 17 

  D-202 209 9.3 

  D-203 15 1.7 

  D-204 38 1.15 

 

    To simplify the kinetic parameter estimation, we begin by setting some kinetic 

parameters to be equal to each other. For example, we make the pre-exponential factors for 

propagation (PRPRE-EXP) from ethylene segment (C2-SEG) and from propylene segment 

(C3-SEG) to ethylene comonomer (C2H4) equal. Therefore, we use a Calculator 

(FORTRAN block) to make PRPRE-EXP PROPAGATION (C2-SEG/C2H4) equal to 

PRPRE-EXP PROPAGATION (C3-SEG/C2H4). Appendix A.1 gives additional details 

about this simplification. 

    Our data fit application includes the simultaneous execution of two regression runs for 

the first three reactors D201 to D203, and a regression run for the fourth reactor, D204 that 

focuses on copolymer production. First, regression run RPROD123 varies the pre-

exponential factors for spontaneous site activation (ACT-SPON), catalyst activation by 

cocatalyst (ACT-COCAT), propagation (PROPAGATION) reactions for monomer, and 

deactivation (DEAC-SPON) reactions, to match data set PROD123 listed in Table 2.6 

Next, regression RMWN123 varies the pre-exponential factors for chain transfer of 

propylene segment and of ethylene segment to H2 and to propylene monomer to match 

data set MWN123. Lastly, regression RD204 varies the pre-exponential factors for chain 

propagation of propylene segment and from ethylene segment to comonomer C2H4, and 

chain transfer from propylene segment and from ethylene segment to comonomer C2H4, 

to match the data sets PROD4, MWN4 and SFRAC4. 

    Table 2.6 demonstrates that the data fit tool enables us to accurately estimate the kinetic 

parameters for the single-site model that have the most impacts on specific production 

targets (see Table 2.4) for the Mitsui HYPOL PP process. The comparison between model 

predictions and production targets shows minimum errors of 0.37% to 3.22%. 

 

 

 

 

 

 



 28 

Table 2.6.  Comparison of single-site model predictions with production targets obtained 

by data fit  

 Grade one Grade two 

Polymer 

production, 

kg/hr 

D201 D202 D203 D201 D202 D203 

Plant data 1560 3120 6240 1560 3120 6240 

Prediction 1541 3153 6151 1538 3211 6236 

% Error 1.18% 0.76% 0.83% 2.17% 2.39% 0.37% 

MWN D201 D202 D203 D201 D202 D203 

Plant data 60000 63000 70000 80000 83000 88000 

Prediction 61797 61511 68598 80547 82693 85167 

% Error 3.06% 2.36% 2.00% 0.68% 

 

0.37% 3.22% 

 D204 

Production, 

kg/hr 

D204  

MWN 

D204 

SFRAC, 

mole 

fraction 

D204 

Production, 

kg/hr 

D204  

MWN 

D204 

SFRAC, 

mole 

fraction 

Plant data 8600 80000 0.145 8600 96000 0.150 

Prediction 8812 78004 0.142 8730 95099 0.152 

% Error 2.45% 2.49% 1.80% 1.52% 0.94% 1.60% 

 

 

 

2.5.2.2 Multisite Model and Deconvolution Analysis 

    We now convert our single-site model into a multisite model by changing the specified 

number of sites in the model. We then make use of the gel permeation chromatography 

(GPC) analysis of the polymer samples. 

    Using the GPC characterization data, we apply the deconvolution procedure first 

presented by Soares and Hamielec  32 . We deconvolute the MWD to determine the most 

probable chain length distribution (CLD) for each active catalyst site.  We assume that the 

CLD of the polyolefins produced by each active site of Ziegler-Natta catalyst follows the 

Flory distribution.  

    We represent the instantaneous weight chain length distribution (WCLD) by averaging 

the distribution of each catalyst site in equation (2.6)  

W logM = ∑ 𝑤𝑖(2.30268 × 𝑀
2 τ𝑖

2𝑒−𝑀 τ𝑖𝑛
𝑖=1  )               (2.6) 

where W logM   is the mass fraction of the chains of polymer having molecular weight M 

in logarithmic scale; n is the total number of active sites;  𝑤𝑖 is the mass fraction of polymer 

formed at each site i;  τ𝑖 is the fitting parameter for each site i, which is equal to the inverse 

of the number-average molecular weight of polymer formed at each site, that is,  τ𝑖 = 
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1/MWNi. Here, 𝑤𝑖  and MWNi are equivalent to the production targets SPFRAC and 

SMWN defined previously.  

    We fit the model in equation (6) to the experimental GPC data and estimate the 

parameters by minimizing the difference between the model and experimental values. We 

estimate the minimum number of Flory distributions, n, required to describe the 

experimental MWD, which in turn gives the minimum number of active catalyst sites. We 

also estimate the MWN of polymer produced at each active catalyst site, MWNi and the 

mass fraction of polymer produced at each active site, 𝑤𝑖. Appendix A.2 presents details 

of our kinetic model and kinetic parameter estimation, including the reaction rate constants 

chosen and their initial values for this slurry HDPE process. 

Table 2.7. Deconvolution results for a representative LLDPE homo-polymer sample 

Active catalyst site 

type, i 

Polymer weight 

fraction,  𝒘𝒊 

𝛕𝐢 (or 1/ MWN i ) MWN i 

1 0.562 3.156e-5 31685 

2 0.299 9.17e-6 109012 

3 0.139 1.28e-4 7763 

 

Figure 2.4 plots the weight chain length distribution as given in equation 6 for the example 

of Table 2.7. The figure shows the weight chain length distribution for each catalyst active 

site and distribution of the plant data. The sum of the three individual distributions of the 

catalyst site weighted with the mass fraction of polymer formed for each site predicts the 

chain length distribution of the polymer. 

 
Figure 2.4. GPC deconvolution of a homopolymer sample from a UNIPOL LLDPE process 
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    We use the rate constants from single-site modeling and the deconvolution results of 

Table 2.8 to further calculate the rate constants for the multi-site kinetics. “We calculate 

the pre-exponential factors for  catalyst activation reactions (ACT-SPON, ACT-COCAT 

and ACT-H2) at each site 𝑘𝑎𝑖  from the  single-site value 𝑘𝑎 ,                                                                              

                                                                         𝑘𝑎𝑖 = 
𝑘𝑎

𝑛
                                                           (2.7) 

    Eq. (2.7) results from the fact that the concentration of potential catalyst sites is identical 

for both single-site and multisite models, but the concentration of vacant catalyst sites must 

be divided by the number of site types, n. We resolve this issue by dividing the pre-

exponential factors for catalyst activation reactions by the number of catalyst site types, n  

2 . 

We estimate the pre-exponential factor for the chain initiation reaction (CHAIN-INI) at 

each site by 

                                                  𝑘𝑖𝑖 = 𝑘𝑖 ∗ 𝑤𝑖 ∗ 𝑛                                                                   (2.8) 

We calculate the pre-exponential factor for the propagation reaction (PROPAGATION) at 

each site by 

                                            𝑘𝑝𝑖 = 𝑘𝑝 ∗ 𝑤𝑖 ∗ 𝑛                                                                     (2.9) 

Equations (2.7) to (2.9) give the actual values of the activation, chain initiation and 

propagation rate constants for the multisite model directly.  Based on our modeling 

experience with polyolefin processes, further data fit runs that vary these reaction 

constants, obtained from applying equations (2.7) to (2.9), to match the relevant data sets 

for production rate, MWN, SFRAC, etc. within the multisite model would produce only 

minimum or no changes to the reaction rate constant values. 

We calculate the initial value for pre-exponential factor for the chain transfer reaction 

(CHAT-MON and CHAT-H2) at each site by 

                                                                  𝑘𝑐𝑖 = 𝑘𝑐 ∗ 𝑤𝑖 ∗ 𝑛                                                   (2.10) 

It is important to maintain the same relative contributions of chain transfer to hydrogen 

(CHAT-H2) and to monomer (CHAT-MON) from the same single-site model in the 

multisite model, in order to preserve the sensitivity of these reactions to the concentrations 

of hydrogen and monomer”  2-4 . We do this by using a Calculator (FORTRAN block) in 

Aspen Polymers. 

    To estimate the rate constants for chain transfer to H2 and to monomer for each site, we 

regress the PDI and MWN data for the polymer stream exiting each reactor, along with the 

SMWN results from GPC analysis. For more accurate estimates of these kinetic 

parameters, it is helpful to have these data obtained with varying H2 and monomer flow 

rates. In the example presented in Tables 5 and 8, we use the measured PDI and MWN data 

for the polymer stream exiting each reactor to estimates the chain transfer rate constants. 

We should also make sure that measured MWD matches the model MWD by matching the 

SMWN and SFRAC values obtained from GPC analysis. 

    The other rate constants, such as the deactivation rate constants (DEACT-ACT and 

DEACT-TCA), and inhibition reactions (FSINH-H2 and RSING-H2), are all identical to 
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those of the single-site model. If we consider the catalyst inhibition reactions (FSINH-H2 

and RSING-H2), we must ensure that the total CISFRAC for the multisite model is the sum 

of CISFRACi for all single sites. Also for the PP model, the ATFRAC considered should 

be the same for each site and matching the plant data. After updating all the rate constants, 

the multisite model matches all the targets.  

    To simplify the kinetic parameter estimation, we begin by setting some kinetic 

parameters to be equal to each other. We make the pre-exponential factors for chain transfer 

(CTPRE-EXP) from ethylene segment (C2-SEG) and from propylene segment (C3-SEG) 

to propylene monomer (C3H6) and to ethylene co-monomer (C2H4) equal. Therefore, we 

use a Calculator (FORTRAN block) to make PRPRE-EXP CHAT-MON (C2-SEG/C3H6) 

equal to PRPRE-EXP CHAT-MON (C3-SEG/C3H6), and make PRPRE-EXP CHAT-

MON (C2-SEG/C2H4) equal to PRPRE-EXP CHAT-MON (C3-SEG/C2H4). We can see 

the pre-exponential factor and activation energy values for these reaction rate constants in 

Appendix A.3. 

    We apply data fit to execute a regression run RPDI that varies the reaction rate constants 

for chain transfer to hydrogen (CHAT-H2) and to monomer C3H6 and comonomer C2H4 

(CHAT-MON) in order to match the data set PDI (and hence the MWW data) given in 

Table 2.5 from reactors D201 to D204 for two grades with different H2/C3H6 ratios in the 

reactor overheads. Section A.1.6 shows the resulting reaction rate constants for the 

multisite model, and we note that the resulting pre-exponential factors for chain transfer to 

hydrogen and to monomer are indeed different. Table 2.8 compares minimum errors 

between the model predictions and plant data for PDIs. We note the percent errors between 

our model predictions and plant data in Table 6 (0.37% to 3.06%) and Table 2.8 (0.25% to 

1.84%) are equivalent to or smaller than those in reported modeling studies for polyolefin 

processes (approximately 5% in our previous work for HDPE  2  and for PP  3 ). 

Table 2.8.  Comparison of multi-site model predictions with production targets obtained 

by data fit  

 Grade one Grade two 

PDI D-201 D-202 D-203 D-204 D-201 D-202 D-203 D-204 

Plant data 5.50 5.52 5.54 6.00 5.60 5.70 5.80 6.20 

Model 

Prediction 

5.48 5.50 5.64 5.95 5.62 5.67 5.76 6.26 

Error % 0.25% 0.37% 1.84% 0.67% 0.33% 1.42% 0.68% 1.03% 

 

Table 2.9 shows the different reaction constants that have the major effect on the 

production targets in a multisite model. We can use sensitivity analysis as described in 

Section 5.3 to quantify the effect of varying kinetic parameters on the simulation targets. 

 

 

 



 32 

Table 2.9.  Major kinetic parameters affecting the multi-site simulation targets 

Multisite Targets Major Affecting Kinetic Parameters 

1. PDI of polymer Chain transfer reaction rate constant 

2. MWN produced at catalyst site and overall 

MWN 

Chain transfer reaction rate constant for each 

site 

3. Mass fraction for polymer produced at each 

site and overall production rate  

Propagation reactions for each site 

4. ATFRAC for each site Atactic propagation reaction rate  constant 

5. Polymer solution density  Comonomer rate constants 

 

2.5.3 Efficient Use of Software Tool: Sensitivity Analysis 

    Sensitivity analysis enables us to quantify the dependence of the production targets on 

the reaction kinetic parameters. The analysis helps us in deciding which directions to vary 

the operating conditions in order to match the production targets. Sensitivity analysis also 

helps in validating the kinetic estimation procedure for polyolefins. We illustrate below 

some examples of sensitivity analysis of the different polyolefin processes that we have 

modeled and estimated kinetics using our procedure.  

    Appendix A.3 gives details of our kinetic model and kinetic parameter estimation, 

including the reaction rate constants chosen and their initial values for the Unipol LLPDE 

process. Applying the sensitivity analysis, we illustrate in Figure 2.8a how varying the 

reaction rate constant for chain transfer to hydrogen, 𝑘𝑡ℎ,𝑖   of just one of the three active 

site affects the final LLPDE polymer properties, including the polydispersity index PDI, 

the number-average molecular weight at the chosen catalyst site SMWN, and the overall 

MWN. As we increase the reaction rate constant for chain transfer to hydrogen, both the 

SMWN and MWN decreases, while the PDI increases gradually. In other words, we can 

vary the hydrogen flow rate to change the rate of chain transfer reaction in order to achieve 

the desired MWN and PDI.  

    As another example, for the Mitsui Hypol PP (Appendix A.1) illustrates that varying the 

reaction rate constant for chain transfer to monomer, 𝑘𝑡𝑚,𝑖  results in similar trends of 

changes in PDI, SMWN and MWN, as with the chain transfer to hydrogen. The similar 

trends observed in Figures 2.5a-b below, support our approach of applying the same 

methodology for kinetic parameter estimation for modeling different commercial 

polyolefin processes from plant data. 
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Figure 2.5a. Sensitivity of the PDI, MWN and SMWN for the Unipol LLDPE process on 

the pre-exponential factor of the reaction rate constant for  chain transfer to  

hydrogen 

 
Figure 2.5b. Sensitivity of the PDI, MWN and SMWN for the Unipol LLDPE process 

on the pre-exponential factor of the reaction rate constant for chain transfer to  

monomer 

    We demonstrate the further use of sensitivity analysis for the Unipol LLPDE process 

Figure 2.6 a shows how increasing the per-exponential factor of the propagation rate 

constant, 𝑘𝑝,𝑖 for one of the three active sites increases the production rate and mass fraction 

of polymer produced at that site (SPFRAC).  
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    Appendix A.4 gives details of our kinetic model and kinetic parameter estimation, 

including the reaction rate constants chosen and their initial values for the Basell Spheripol 

PP process . In Figure 2.6b, we show how increasing the atactic propagation rate constant 

increases the atactic fraction, ATFRAC, for the Spheripol PP process.  

 
Figure 2.6a.  The sensitivity of the a)Production rate and SPFRAC for the Unipol  

LLPDE process to changes in the propagation reaction rate constant 

 
Figure 2.6b. The sensitivity of the atactic fraction ATFRAC to changes in the  

atactic propagation reaction rate constant for the Spheripol PP process. 

    For the Mitsui slurry HDPE process with serial reactor configuration we show in Figure 

2.7- a-b showcase the sensitivity of the polymer production rate to changes in the reaction 

rate constants for catalysts activation by cocatalyst, 𝑘𝑎𝑐𝑡,𝑖,    and for spontaneous catalyst 

deactivation 𝑘𝑑𝑠,𝑖 for one of the five active catalyst sites. 
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Figure 2.7a. The sensitivity of the production rate for the slurry HDPE process  

to changes in the reaction rate constant for catalyst activation by cocatalyst 

       
Figure 2.7b. The sensitivity of the production rate for the slurry HDPE process  

to changes in the reaction rate constant for spontaneous catalyst deactivation 

                                                                                     

Figure 2.8 illustrates the sensitivity of the MWD from a Mitsui slurry HDPE process 

changes in the reaction rate constant for forward catalyst inhibition by hydrogen,  𝑘𝑓𝑖𝑛ℎ,𝑖  ,  

for two different of the five active catalyst sites. The MWD of the HDPE produced from a 

single reactor can change from unimodal to bimodal. This happens since the difference in 

the rate of inhibition for different catalyst sites. 
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Figure 2.8. Sensitivity of the MWD from a Mitsui slurry HDPE process to changes in the 

reaction rate constant for catalyst inhibition for two different of the five active catalyst 

sites. 

Figure 2.9 shows the effect on the production rates for the two horizontal bed reactors 

(represented as P1, P2 in the figure 2.10) in the Innovene gas-phase PP process by varying 

the pre-exponential rate constant of propagation reaction for a particular active site.  

 
Figure 2.9. The sensitivity of the production rate from an Innovene gas-phase PP process 

to changes in the propagation reaction rate constant. 

2.5.4 Efficient Use of Software Tool: Design Specification 

    Design specification (design spec) is an important tool that supports process modeling 

and kinetic estimation. While sensitivity analysis quantifies an increasing or a decreasing 

trend of a production target when varying a reaction rate constant within a chosen range of 

values, applying the design spec enables us to identify the reaction rate constant value 

within the chosen range to reach a specific production target. 

    Design spec is particularly useful in converging models of polyolefin processes having 

recycle loops. We can fix a particular ratio of components in a recycle stream and the model 

can vary input flow rates to maintain the ratio.  As an illustration, in the Spheripol PP 
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process (Appendix A.4), we can use a design spec to maintain the ratio of ethylene to 

propylene in a recycle stream into the fluidized-bed reactor where the stream is a 

combination of the overall recycle stream and a feed of ethylene and hydrogen. Design 

spec varies the flow rates of ethylene (comonomer) and the hydrogen to maintain the 

desired ratio of ethylene and propylene in the recycle stream.  Similarly, we can use another 

design spec for the recycle flow into the loop reactor by varying the flow of the propylene 

and hydrogen in the feed stream. Figure 2.10 show a flowsheet of the Spheripol PP process 

with the design specs  31 . 

 
Figure 2.10. Spheripol PP process flowsheet indicating the design specification 

Specifically, for the Spheripol PP model, we define the design specs as follows:  

1) Design specification for the hydrogen mass fraction in the recycle stream entering 

the loop reactor, while the manipulated variable is the make-up hydrogen flow rate  

2) Design specification for ratio of propene to ethylene in the recycle stream entering 

the fluidized- bed reactor, while the manipulated variable is the flow rate of ethane. 

Table 2.10 shows the design spec results.  

Table 2.10: Design specification for the Spheripol PP process 

Design 

spec 

Target 

Value 

Model 

Result 

Initial Vary 

(kg/hr) 

Final Vary 

(kg/hr) 

Range set 

(kg/hr) 

1 4 e-5 3.9e-5 0.1 0.16 0.01 -10 

2 0.5 0.48 1000 3250 5- 1000 

 

2.5.5 Model Applications 

    A polyolefin process model validated by plant data can have many useful applications. 

The model will be helpful for the capacity expansion of the current plant. The model will 

also be useful in the process development stage for a new plant. We can use the validated 

model to study the effect of changes in process variables on production targets.  
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    We can use the model to change certain production target, while maintaining the same 

value for other targets. As an example, we can vary certain process conditions to make 

polymer grades of different MWNs for the same throughput as shown in Figure 2.11.  It 

shows a sensitivity analysis for the effect of changes in hydrogen flow rates on MWN, 

while the production rate remains same for the UNIPOL LLDPE process. 

    In another application of model, we can increase the throughput, while keeping the same 

MWN using design specification and we demonstrate this on the UNIPOL LLDPE process 

as well. We use design specification to vary the hydrogen flow rate to keep the same MWN 

at 29000 approximately, while increasing the production rate of LLDPE from 2400 to 3200 

kg/hr. Table 11 summarizes the results of the UNIPOL process design specification. Lastly, 

when combined with process control and optimization techniques, a validated model can 

be useful for polymer quality control and effective polymer grade changes.  

 
Figure 2.11. Sensitivity Analysis of the MWN and production rate on changes in hydrogen 

flow rates on the Unipol LLDPE process  

Table 2.11. Design specification for the UNIPOL LLDPE process 

Target MWN Model MWN Initial H2 flow 

(kg/hr) 

Final H2 

flow 

(kg/hr) 

Range set 

(kg/hr) 

29194 29217 4938 7515 3000-9000 

 

2.6. Key Points in Modeling Some Industrial Polyolefin Process 

2.6.1. Modeling Polymer Phase Equilibrium in Slurry HDPE Process 

    In the reactor, ethylene molecules react to form long polymer chains.  In the slurry 

process, the reactor temperature (70 to 85 °C) is below the melting point of the polymer 

(140 °C).  The polymer molecules solidify upon formation, creating a slurry system. “In 

the actual process, the solid polymer does not interact thermodynamically with the other 

components in the reactor.  Our primary assumption in phase calculations is that the 

polymer is dissolved in the liquid phase with the solvent, as would be the case in solution 
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polymerization of ethylene, where the reactor temperature would be above the melting 

point of the polymer.  Although this modeling simplification does not represent the 

physical picture of what is happening in the slurry polymerization of ethylene, the effect 

of it on thermodynamic modeling is relatively small.In reference 2 Khare et. al. have 

presented quantitative evidence to demonstrate that we can make this assumption without 

undermining the robustness of the reactor model . The details of slurry HDPE model are 

shown in Appendix A.2. 

2.6.2. Modeling of Horizontal Stirred-Bed Gas- Phase Reactor for PP manufacturing 

    During steady-state operation of the gas phase PP process, the polymer level remains 

constant along the reactor length of the horizontal stirred bed reactor. The paddles along 

the reactor agitate the polymer only mildly, and the solids are not fluidized  34 . The polymer 

phase essentially experiences plug flow conditions along the reactor length. We can 

simulate the plug flow situation by using several continuous stirred-tank reactors (CSTRs) 

configured in series. Experimental studies on the residence-time distribution (RTD) of 

polymers produced in horizontal stirred-bed reactors suggest that the polymer RTD is 

equivalent to that produced by three to five CSTRs 34. Each CSTR receives liquid and vapor 

recycled from the overhead condenser, which includes fresh monomer and hydrogen. Only 

the first CSTR receives fresh catalyst and co-catalyst. The temperature and pressure are the 

same for all zones. 

    The concept of residence time is significantly different between this situation and that 

for multiple CSTRs in series. Furthermore, a residence-time calculation requires 

knowledge of the volumetric holdup in the reactor. We cannot measure the volume holdup 

very accurately because the paddles are always agitating the polymer and there is a void 

fraction associated with the solid phase. Therefore, we do not use residence time as a 

simulation target in the model and instead use reactor mass holdup. In the simulation, we 

constrain the CSTRs to the same polymer mass to maintain the same level along the bed 

length. This results in monotonically decreasing residence times for the four CSTRs 

corresponding to a given stirred-bed reactor, which conforms to reported experimental 

results 34. 
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Figure 2.12. The front end of a two-reactor system for producing gas-phase PP polymer                                           

using stirred-bed reactors (closed-loop). 

Figure 2.12. showcases a part of the process flowsheet for the Horizontal Stirred bed Gas 

phase PP process  

 

 

2.6.3. Condensed Mode Modeling of UNIPOL LLDPE process 

     U. S. patents 454399A and 4588790 by Jenkins et. al. 35-37 present the concept of 

condensed mode cooling in ethylene polymerization in a fluidized-bed reactor (FBR). 

According to Jenkins et. al.  36 , condensed mode cooling in a FBR for an exothermic 

polymerization reaction cools the recycle stream to below its dew point and returns the 

resulting two-phase fluid stream to the reactor in order to maintain the fluidized bed at a 

desired temperature above the dew point of the recycle stream. This can increase the yield 

of polymer production, among other significant benefits. McKenna 38 presents a 

comprehensive review and detailed analysis of condensed model cooing in ethylene 

polymerization. He illustrates the concept of condensed mode cooling with a. We 

summarize his basic analysis below. 

 

Figure 2.15. An illustration of a fluidized-bed reactor (FBR) system for ethylene 

polymerization under condensing mode operation 38. In the figure, ICA represents an 

induced condensing agent. 

    First of all, we note that heat removal is the number one factor limiting the production 

rate of polyethylene on an industrial scale. For a fluidized-bed polymerization reactor 

system producing LLPDE and PP, such as the UNIPOL process of Figure 2.15 with 

modeling details , McKenna 38  notes that the melting point of a typical LLPDE is on the 

order of 110°C, and a typical reactor operating temperature is 85°C to 95°C. Therefore, we 

have a very little margin for error in terms of heat removal. In order to understand the tools 
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available for maximizing the heat removal, we present a simple enthalpy balance around a 

gas-phase FBR by McKenna which after simplifying looks the same as below. 

                                              𝑅𝑝𝑉𝑅 =
𝐹𝑔,𝑖𝑛𝐶𝑝𝑔,𝑖𝑛(𝑇𝑅 −𝑇𝑔,𝑖𝑛)+𝑈𝐴(𝑇𝑅 −𝑇𝑊)+ 𝑄𝑣𝑎𝑝  

−∆𝐻𝑝
                         

(2.11) 

𝐹𝑔,𝑖𝑛 and 𝐹𝑔,𝑜𝑢𝑡 = the inlet and outlet mass flow rates of process gas stream 

 𝐹𝑠,𝑜𝑢𝑡 = the outlet mass flow rate of the solid polymer stream 

𝐶𝑝𝑔,𝑖𝑛 , 𝐶𝑝𝑔,𝑜𝑢𝑡 and 𝐶𝑝𝑠,𝑜𝑢𝑡

= the heat capacities of the inlet and outlet process gas stream, andof the solid polymer stream 

𝑇𝑔,𝑖𝑛, 𝑇𝑔,𝑜𝑢𝑡, 𝑇𝑠,𝑜𝑢𝑡 and 𝑇𝑟𝑒𝑓 =

the temperatures of the inlet and outlet proces gas stream, of the outlet solid polymer 

stream, and the reference temperature for the calculation of the enthalpy 

U= the overall heat transfer coefficient 

A = the surface area of contact between the reactor wall and the powder bed 

𝑇𝑅 and 𝑇𝑊 = the average teperatures of the reactor bed and the bed wall 

𝑄𝑣𝑎𝑝 = the total enthalpy of change due to evaporation of any liquid in the reactor 

   𝑅𝑝 = the rate of reaction per unit volume of the reactor bed 

𝑉𝑅 = the vuolume of the reactive bed 

∆𝐻𝑝 =the overall enthalpy of polymerization 

 

 

What can we learn from this defining relationship for maximizing our polymer production 

rate, 𝑅𝑝𝑉𝑅? 

(1) The reactor temperature 𝑇𝑅 (85° to 95°𝐶)  has a very narrow operating range for 

producing LLPDE, as the melting temperature of LLPDE is about 110°C and higher bed 

temperature tends to promote softening and sticking of the polymer particles. 

(2) It is difficult to increase the overall heat transfer coefficient between the reactor wall 

and the powder bed. Increasing the gas velocity through the reactor may cause changes to 

the fluidizing medium. 

(3) This basically leaves changes to the heat capacity 𝐶𝑝𝑔,𝑖𝑛  of the inlet process gas stream 

and to the total enthalpy due to evaporation of any liquid in the reactor 𝑄𝑣𝑎𝑝 as our 

manipulative variables for maximizing the polymer production. 

    The conclusion is that we can use the composition and phase conditions of the feed 

stream (only the inert components obviously) to increase the amount of heat that can be 

removed, thus increasing the polymer production rate.As illustrated in Figure2.15, the feed 

to the bottom of the reactor below this distributor plate is composed of ethylene (monomer), 

nitrogen (inert), comonomer, hydrogen (chain transfer agent) and at least one induced 

condensing agent (ICA) that is a partially liquefied, chemically inert species. An ICA is 

typically an alkane. Isomers of butane, pentane and hexane appear to be most common, as 

referred to in the original patents 36,37.  
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2.7. Metallocene Polymerization Modeling 

    Till now we have only talked about Ziegler Natta catalyst we will briefly touch upon the 

modeling using Metallocene catalysts. Polymerization kinetics using a metallocene catalyst 

system include most of the reactions for Ziegler-Natta catalysts described in Section 2.2, 

except for two differences. First, a metallocene catalyst system mostly exhibits only a 

single active catalyst site, and results in a narrow molecular weight distribution. Second, a 

metallocene catalyst system includes additional reactions involving terminal double bond 

(TDB) end groups that are absent in the traditional Ziegler-Natta polymerization kinetics.  

    Hagg, et al. 39 have presented a generic reaction mechanism, reaction rate equations and 

experimental reaction rate constants for an EPDM (ethylene propylene diene) 

terpolymerization using a metallocene Et(Ind)2ZrCl2/MAO catalyst system. Since we do 

not have ENB (ethylidene norbornene) in Aspen  plus database we showcase a 

methodology to produce EPM (ethylene-propylene copolymer) instead of EPDM with the 

same kinetics. 

    Polymerization with a metallocene catalyst system typically leads to the formation of 

long chain branching (LCB), but the LCB frequency is usually small. The long chain 

branches likely result from chain propagation reactions involving a growing polymer chain 

and a terminal double bond on a dead polymer chain. Polymer chains with terminal double 

bonds are formed by some of the chain transfer reactions. To form long chain branches, 

the metal catalytic center must be open to provide a favorable reactivity ratio for the 

macromonomer. 

    Aspen Polymers tracks the concentration of TDB end groups on the dead polymer chains 

through a segment called TDB Segment, which typically has one less hydrogen atom than 

the related repeated segment. We specify a C3H5-TDB end segment (C3H5-E) 

corresponding to a C3H6 SEG repeated segment (C3H6-R). TDB segments are generated 

through chain transfer reactions and are consumed through the TDB polymerization 

reaction as shown in equation below.   

Pn + Dm  - >  Pn+m 

Pn ,Pn+m are the active segment (C3H6-R/C2H4-R) and Dm is the TDB end segment (C3H5-

TDB). 

    We set the TBD-frac greater than 0 for the chain transfer reactions so that TDB segment 

could be formed. We can assume the rate constants for TDB reaction same as propagation 

reactions and use the TBD-frac as the estimation parameter. The TDB polymerization 

reaction increases the Molecular Weight of the polymer. 

 

2.8 Conclusions 

    In this chapter, we have demonstrated an effective methodology for estimating kinetic 

parameters for Ziegler-Natta polymerization for commercial processes producing 

polyolefins, such as HDPE, PP and LLPDE.  We consider the catalyst activation, initiation, 

propagation, chain transfer, deactivation and other polymer-specific reactions. We have 
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identified the reaction rate constants in Ziegler-Natta polymerization kinetics that have 

most significant impacts on common production targets, which greatly simplifies the 

kinetic parameter estimation for simulation and optimization models for polyolefin 

processes from plant data.   

    Our methodology begins with a kinetic model considering a single active catalyst site, 

followed by converting the single-site model into a model involving multiple active 

catalyst sites. We apply deconvolution analysis to characterize the GPC MWD data in order 

to determine the most probable chain length distribution for each catalyst site assuming a 

Flory distribution. The deconvolution analysis identifies the expected number of active 

catalyst sites together with the weight fraction and number-average molecular weight for 

each active catalyst site. 

    We demonstrate an effective methodology to use efficient software tools, such as data 

fit, sensitivity analysis and design specification in Aspen Polymers, to simultaneously 

estimate multiple reaction rate constants for Ziegler-Natta kinetics to match several data 

sets of production targets, such as production rates, MWN, SFRAC, etc. in a computer-

aided step-by-step procedure. This differentiates our study from most of the previous 

studies which sequentially estimate these reaction rate constants. Our methodology also 

greatly simplifies the kinetic parameter estimation for the multisite model, in that we only 

need to regress selected kinetic parameters for the multisite model in order to match the 

plant data for PDI and related production targets, such as atactic fraction for PP production. 

    Our methodology results in part from our insights and experiences from applying our 

methodology to several dozen commercial polyolefin processes at two of the world’s 

largest petrochemical companies in the Asia-Pacific over the past two decades. Applying 

our methodology using efficient software tools results in validated simulation and 

optimization models that we can use to quantify changes in process operations, process 

capacity scale-up, polymer quality control, and product grade change, etc. 

    Our detailed supplements of modeling examples will be useful to practicing engineers 

interested in applying process modeling and optimization to commercial polyolefin 

production. Thus, overall we present here a methodology to make first principle polyolefins 

models and if kinetic parameters are unknown we showcase a strategy to estimate 

parameters which can also be considered as a basic hybrid model which we will discuss 

further in Chapter 5. 

 

Symbols 

CATi = inactive catalyst 

COCAT = cocatalyst 

𝐷𝑛 = inactive polymer chain containing n segments 

ICATi = inhibited catalyst of site type i  

𝑘𝑎𝑐𝑡,𝑖= rate constant for activation of catalyst site type i  

𝑘𝑓𝑖𝑛ℎ,𝑖= rate constant for forward hydrogen inhibition of catalyst site type i 
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𝑘𝑖𝑛𝑖,𝑖= rate constant for chain initiation for catalyst site type i 

𝑘𝑝,𝑖= rate constant for chain propagation for catalyst site type i 

𝑘𝑟𝑖𝑛ℎ,𝑖= rate constant for reverse hydrogen inhibition of catalyst site type i 

𝑘𝑡ℎ,𝑖= rate constant for chain transfer to hydrogen for catalyst site type i 

𝑘𝑡𝑚,𝑖= rate constant for chain transfer to monomer for catalyst site type i 

𝑘𝑝,𝑖
𝑗𝑘

 = rate constant for total chain propagation for monomer type j adding to segment 

𝑘𝑝𝑎,𝑖= rate constant for atactic chain propagation for catalyst site type i 

M = monomer species 

𝑀𝑖= monomer of type i  

𝑃0,𝑖= activated catalyst site of type i 

𝑃1,𝑖= initiated catalyst site of type i 

𝑃𝑛,𝑖= live polymer chain containing n segments attached to catalyst site type i 
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Chapter 3: First-Principle Dynamic Modeling of Polyolefin Processes 

 

3.1. Introduction  

    We can convert a steady-state polyolefin model to a dynamic model using Aspen 

Dynamics. Dynamic models are useful in maximizing the safety, operability and 

productivity of plants. During a dynamic simulation, we can manipulate operating variables 

to change the feed conditions, introduce feed disturbances to test operability, and to 

simulate feedstock changes or grade transitions. Thus, we can use the dynamic model to 

vary process operating conditions with time for polymer grade transitions. The Aspen 

Dynamics model has its own declarative language which allows us to write scripts to 

perform tasks like changing process operating conditions. We use these tasks to schedule 

polymer grade transitions at different time intervals. Thus, we can even simulate plant data 

from the model.  

    In this chapter we demonstrate the use of dynamic models for efficient grade transition 

strategies for polyolefin processes. We also showcase the use of first-principle dynamic 

models to produce steady state results for predicting polymer quality and describe their 

advantages and disadvantages for polymer quality predictions. 

 

3.2. Polyolefin Grade Transition 

    One of the most important applications of dynamic process modeling in polymer 

processes is for grade change. The main quality indicators of polyolefin grades are the melt 

index (MI) and density (ρ). The melt index is a function of the weight-average molecular 

weight (MWW), while the density is a function of MWW as well as SFRAC (mole fraction 

of co-monomer) as explained in chapter 2. 

    Most polyolefin processes have a wide range of polymer grades with many applications. 

Thus, efficient grade transition is an important consideration for optimization of polymer 

processes to improve process economics. Polyolefin processes can be used for different 

applications by changing their physical properties like melt index and density. We vary 

these physical properties by changing the process operating conditions hence grade 

transition is critical as we change process conditions to make a new polymer grade. The 

most important requirements of an efficient grade transition are (1) we need to conduct the 

grade transition process swiftly and (2) we need to minimize off-specification production. 

Thus, by reducing off-spec material there is significant reduction in production cost of 

polyolefins as well. The most important parameters that determine the grade transition 

performance of a process are reactor design, residence time, runtime per batch, and 

residence time distribution of the polymer, gas and/or solution phase. 

    Debling et. al. did a study on grade transition strategies for polyolefin processes and 

compared that for different polyolefin processes in terms of the off-spec products produced 

during grade transition.1 The different grade transition strategies mainly includes a 
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combination of techniques like overshoot of hydrogen, monomer rates, quick venting to 

change composition of reactor gas quickly and bed-deinventorying etc. depending on the 

polyolefin process. They showed different combination of grade transition strategies being 

useful for different processes. Takeda et. al. 2 applied optimal grade transition strategies 

for polyolefin reactors. Ben Amor et. al. 3 have showcased the application of real time 

optimization to non linear model control of a polymer grade transition. Similarly, Shi and 

Biegler 4 applied dynamic optimization to reduce off spec material and transition time. 

Prata et. al. 5 integrated scheduling and dynamic optimization of grade transition for a 

continuous polymer process.  

3.3.  Grade Change for Series Flow Slurry HDPE Process 

We showcase how to implement grade-change operations applied to HDPE productions. 

 

Step 1. Making the steady-state simulation model ready for conversion to a dynamic 

simulation model. 

Step 2. Converting to a dynamic model (shown in figure 3.1) 

Step 3. Our next step is to make initial adjustments to the Aspen Dynamics (AD) model, 

focusing on: (1) rigorous property option; (2) polymer attributes for streams and blocks; (3) 

heat duties and temperatures; (4) calculation of derived polymer attributes; and (5) revising 

the control scheme setup. 

Step 5. We can fine tune the controller using heuristics and controller tuning (Appendix 

B.2)  

Step 6. Simulating HDPE grade change. 

We will focus on step 6, which highlights the grade change operations.  

 

 

 

 

 
Figure 3.1. The dynamic simulation flowsheet of HDPE series process 
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Table 3.1 summarizes the key process and quality variable  

Table 3.1 Process and quality variables for slurry HDPE process 

Process 

variable 

Description  

C21 Ethylene monomer flow in the feed to the first reactor (kg/hr) 

H21 Hydrogen flow in the feed to the first reactor (kg/hr) 

CAT Catalyst flow to the first reactor (kg/hr) 

HX1 Solvent (n-hexane) flow to the first reactor (kg/hr) 

C42 1-Butene co-monomer flow to the second reactor (kg/hr) 

C22 Ethylene monomer flow to the second reactor (kg/hr) 

H22 Hydrogen flow to the second reactor (kg/hr) 

HX2 Solvent (n-hexane) flow to the second reactor (kg/hr) 

Quality 

variable 

Description 

MWW Weight-average molecular weight of polymer in outlet stream 

SFRAC Co-monomer fraction in outlet polymer 

Rate_pol Polymer flow rate in outlet stream 

 

For the purpose of demonstrating grade change for this case we only vary the hydrogen flow 

(H21, H22) and the comonomer flow(C42) here keeping rest of the variables same. The 

details of the grade change operations are shown in table 3.2. We can simulate tasks in AD 

as shown in figure 3.2. 

Table 3.2 Values of process variables for grades 1 to 4 for slurry HDPE process 

 Current Grade 1 Grade 

2 

Grade 

3 

Grade 4 

Tasks G1 to 

G4 run at 

@0 hr G1               

@5 hr 

G2 

@40 hr 

G3 

@80 hr 

G4  

@120 hr 

H21, kg/hr 8 4 4 10 10 

H22, kg/hr 1 0.5 0.5 0.75 0.75 

C42, kg/hr 1000 1000 750 750 900 

 

Basically in task  G1, the command SRAMP(Streams(“H21“). FmR,4,4) changes the mass 

flow rate of stream H21 according to the shape of a sinusoidal curve to 4 kg/hr over an 

interval of 4 time units. 
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Figure 3.2. Specification of task G1-G4  

 

Following Figure 3.2 and Table 3.2, we complete the specifications of tasks G2 to G4 in the 

same way.We create the plots for calculated process quality variables, such as melt index 

and copolymer density, based on empirical correlations suggested by Sinclair 6. Specifically, 

we correlate plant data for melt index (MI) as a function of the weight-average molecular 

weight (MWW) of the HDPE product according to the equation: 

 

𝑀𝐼 = 𝐴_𝑀𝐼(
𝑀𝑊𝑊

𝐶_𝑀𝐼
)𝐵_𝑀𝐼               (3.1) 

For illustrative purposes, we assume A_MI = 901,B_MI = -5.14 and C_MI = 1e5. When 

plant data for MI are available, the reader can regress new values of A_MI and B_MI. 

Additionally, we correlate the copolymer density (DENSITY) by the equation: 

                                           

𝐷𝐸𝑁𝑆𝐼𝑇𝑌 = 0.996 −  𝐴_𝐷𝑁(𝑆𝐹𝑅𝐴𝐶 ∗ 100)𝐵_𝐷𝑁   (3.2) 

 

where SFRAC_Comonomer is the mole fraction of segments of the comonomer, butene 

(C4H8), and the assumed correlation parameters A_DN = 0.02386 and B_DN = 0.514.We 

implement these correlations in Aspen Dynamic constraints as shown in figure 3.3. 
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Figure 3.3. Specification of the flowsheet constraints, MI and copolymer density 

correlations. 

 

We perform the grade changes with the process variables changes according to the tasks, 

specified in the figure 3.3. Figures 3.4 and 5.5 illustrate the changes in mass flow rates for 

producing grades G1 to G4 and the resulting polymer Melt Index and Density. 

 

 
 

Figure 3.4. Evolution of R1 feed mass flow rates for producing grades G1 to G4                                                 

beginning at 24, 120, 240 and 360 hr, respectively. 
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Figure 3.5. Evolution of the computed melt index and copolymer density. 

 

 

 

3.4. Dynamic Simulation and Control of a Commercial Slurry HDPE Process Using 

H2/C2 Ratio 

 

    We demonstrate how to control the HDPE process using H2/C2 ratio in vapor flow. This 

ratio is also used in industry as a basis of polymer grade change. We simulate an industrial 

HDPE reactor process with a single reactor and recycle with heat exchangers and 

compressors. We list the steps below for making the model and explain the ratio controller 

in detail. 

 

Step 1. Converting a steady-state simulation model to a dynamic simulation model with the 

process flowsheet without adding the ratio controllers is shown in figure 3.6.  

Step 2. Initial adjustment of the model by using the Polymer attributes for streams and 

blocks. We also implement reactor level control using mechanical weir which we define 

using tasks. 

Step 3. Improvement of reactor temperature controller by computing the pressure for the 

outlet of heat exchanger and also delete pressure controller. 

Step 5. Add a Hydrogen/Ethylene ratio controller in the recycle using a ratio block which 

we will be explained in detail here. 
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Figure 3.6. The starting dynamic simulation flowsheet  

 

    There is a controller that manipulates the feed rate of hydrogen and the purge rate from 

vessel D205 to maintain the hydrogen/ethylene ratio in the recycle gas.  The process variable 

for this controller is the hydrogen-ethylene ratio in the recycle-gas stream.  We introduce 

three blocks to the dynamic model when implementing this controller.   

 
Figure 3.7. Adding a hydrogen/ethylene ratio controller to the recycle gas 

 

    The first block is a Ratio block, which computes the ratio of the mole flow of hydrogen, 

STREAMS(“205V”). Fcn(“H2”) as input 1 to that of ethylene, 

TREAMS(“205V”).Fcn(“C2H4”) as input 2 in the recycle gas, stream 205V. The controller 
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output is the computed mole ratio of hydrogen to ethylene. The second block is a PID 

controller that accepts the hydrogen/ethylene ratio from the ratio block.  We name the 

controller as H2C2, and specify its controller action as reverse. We set the proportional gain 

and integral time according to those for composition controllers. The PID output signal 

specifies the mass split fraction of the purge stream exiting the flow splitter S2, 

BLOCKS(“S2”).sf(“PURGE”).We open the faceplates and plots for controllers H2C2, 

D205_LC and D201_TC, make initialization and steady-state runs, and then make a 

dynamic run to pause at 10 hr. We tune the controller according to the procedure in appendix 

B.2 For the H2C2 controller, we find the current tuning parameters are: Gain= 30.97225 

%/%, and integral time = 77.47908 min. 

 

    Now we specifically test the critical PID H2/C2 controller against a change in input 

ethylene flow rate (STREAMS(“C2”).FmR. We increase: (1) the flow rate of ethylene from 

7500 kg/hr to 9000 kg/hr; (2) the specified catalyst total mass flow rate from 49.206 kg/hr 

to 60 kg/hr, and (3) the specified propylene total mass flow rate from 85 kg/hr to 100 kg/hr 

. We run the controllers to pause at 40 hr. Figure shows the performance plots. The process 

output curve matches the set point curve closely after the disturbance hence, the control 

strategy can be termed as stable. 

 

 
Figure 3.8. Performance of controllers after increasing ethylene mass flow rate to 

9000 kg/hr, catalyst mass flow rate to 60 kg/hr and C3 mass flow rate to 100 kg/hr. 

 

3.5. Dynamic Simulation and Control of a Gas-Phase Fluidized-Bed Process for 

Producing LLPDE in Condensed Mode Operation 

 

    We want to show how to implement various control schemes in a gas-phase fluidized-

bed process for producing LLPDE in a condensed mode operation. We specifically 

demonstrate the reactor pressure control using a split-range controller. We follow the same 
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step for converting the steady state model to a dynamic model and figure 3.9 shows the 

resulting flowsheet with the added default controllers. 

 
Figure 3.9. Dynamic simulation flowsheet with default controllers 

 

 

    As the RECY1 vapor recycle molar flow rate tends to increase, leading to an increase in 

the reactor pressure, we need a better control scheme for the reactor pressure. We want to 

introduce the use of a split-range (SR) controller for our reactor pressure control. 

Referring to Figure 3.10, we see that valve A opens when the controller output goes from 0 

to 50%, and valve B opens when the controller output goes from 51 to 100%.  

 

    Figure 3.11  shows a modified flowsheet where we have added a split-range controller, 

where the PC controller output, BLOCKS(“REACT_PC”), becomes the input to the SR 

controller. When this PC controller output is between 0 to 50%, the manipulated variable 

for the PC controller is the mass flow rate of N2 in the FEED stream, 

STREAMS(“FEED”).FmcR(“N2”), whose value is bounded between 0 to 100 kg/hr. When 

this PC controller output is between 51 to 100%, the manipulated variable for the PC 

controller is the split fraction for the PURGE stream, BLOCKS(“SPLIT”).sf(“PURGE”), 

whose value is bounded between 1E-6 to 0.1. We follow the path: Controller SplitRange -> 

Right-click “Forms” -> Configure: See Figure 3.12. 

 

 
Figure 3.10. An illustration of a split-range (SR) controller 
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Figure 3.11. A modified dynamic process simulation flowsheet with a split-range controller 

 

 
Figure 3.12. The configuration specifications of the split-range controller. 

 

    We run the dynamic simulation to pause at 5 hr. Figure 3.13 show that the controllers 

perform correctly. We change the FEED pressure from 30 bar to 25 bar. changes. We then 

run the dynamic simulation to pause at 15 hr. Figure  displays that in response to the FEED 

pressure decrease from 30 to 25 bar, the pressure controller performs correctly. As the 

controller output is at 12.75%, the SR controller activates increase of the N2 mass flow rate 

from 25 to 46.4267 kg/hr, while keeping the PURGE split fraction unchanged and the 

reactor pressure at the set point of 21.6975 bar. 
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Figure 3.13.   Keeping the reactor pressure at 21.6975 bar by increasing the mass flow rate 

of N2 from 25 to 46.4267 kg/hr as determined through a split-range controller. 

 

 

3.6. Dynamic Simulation and Control of a Slurry HDPE Process Using an Inferential 

Controller  

 

3.6.1 Objective: 

    The objective of this application is to develop an inferential control for melt index (MI) 

measurement in a HDPE production process. The controller controls the MI to target and 

minimize the difference between the target and measured MI values during grade 

transitions. We perform grade transition of the polymer for different MI values using the 

inferential controller, and we also try to improve the controller to minimize the off-spec 

product. 

3.6.2 Inferential Control Theory and Recent Applications 

    In many industrial processes, it is difficult to measure certain product quality targets. In 

such cases, we measure some secondary process outputs in order to correlate the product 

quality with primary outputs for quality control. The additional measurement of the 

secondary output gives an inference on the key unmeasured variables, which is often called 

inferential control 7.  

    Inferential controllers use simple models to predict the controlled variables using plant 

measurements such as raw material feed rates and reactor temperature. Once a 

measurement is available for the controlled variable, we compare the measurement with 



 59 

the model prediction to adjust the model. The model can then recommend a new control 

action.  

    In one of the first applications of inferential controllers, Joseph and Brosilow 8 apply the 

inferential control to adjust the column temperature in a petroleum process. They build 

steady-state and dynamic inferential control systems 9. Parrish and Brosilow 10 showcase 

how inferential controller performs better than a cascade PID controller when applied to 

heat exchanger and industrial reactor control. 

    In a recent application, Wang et al. 11 use the inferential control for temperature and 

simultaneous composition control of a divided wall column. Behrooz 12 use the inferential 

control for controlling the product quality of crude oil distillation using stochastic 

optimization. Choi et. al. 13 apply the inferential control for controlling the grade transition 

in pulping process. Durr et. al.14 use the inferential control for controlling the quality of 

produced granules in a fluidized-bed process. Nikhil et. al. 15 apply the inferential control 

to control a fermentation process by maintaining product ethanol concentrations. 

    In polymer processes, the product quality measurements, such as melt index, are sparse 

and not very accurate. Therefore, control becomes important for reaching the quality target. 

MI is dependent on the hydrogen flow rate, which becomes an important manipulated 

variable. However, using a traditional feedback controller is inefficient, because the plant 

will only measure the MI of the product once every six hours, and there is a long time delay 

between where the hydrogen is fed to where the MI is measured. That is why we need an 

inferential controller for MI. Ogawa et. al. 16 use the inferential control for quality control 

of a HDPE process in one of the earliest applications to polymer processes. Oshima and 

Tanigaki 17 apply the inferential control for optimal grade change control. 

3.6.3. HDPE Process Description and Steady-State Model Empirical Correlation 

    We consider a single CSTR for modeling the HDPE process. With a HDPE production 

rate of 5 metric ton (MT) per hour and with a product grades of 1 to 20, we wish to optimize 

the grade transition while minimizing the amount of off-spec product.  The HDPE process 

also consists of a centrifuge and extruder, which we do not model. This follows because 

we can approximate the MI from the downstream equipment by the MI value at the reactor 

outlet by considering the time delay. 

    We first make a steady-state HDPE model with a single CSTR., Figure 3.14 shows a 

simplified HDPE process flowsheet with a single reactor and a flash drum. MI is dependent 

on the hydrogen feed flow, which represents an inferential variable. We use the model to 

determine an empirical correlation of MI with hydrogen feed flow rate by simulating data 

with different hydrogen flow rates, keeping other variables same and calculate the product 

MI value. 

We approximate the steady-state MI data given by the following empirical equation: 

                                                         ln(MIi) = 3.266ln(𝐻2 ) − 3.215     (3.3) 
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We refer to this steady-state MIi as the instantaneous MI, which a function of the hydrogen 

is feed flow rate (H2). Based on the steady-state model, we can calculate the hydrogen feed 

flow value for a particular MI grade. 

 

Figure 3.14. A simplified steady-state flowsheet for a slurry HDPE process. 

 

We convert the steady-state model to a dynamic model as shown in Figure 3.15. We save 

the dynamic simulation file, and the property file as. We leave the default controller 

settings for the temperature (R1_TC) and level control (R1_LC), but delete the pressure 

controller since it is not critical for the liquid-phase reactor. 

 

 
Figure 3.15. Dynamic HDPE process flowsheet 

We consider the industrial correlation18 of the melt index (MI) as function of the Molecular 

Weight (MWW) to calculate the reactor outlet MI and assume that as the plant data. 

𝑀𝑒𝑙𝑡_𝐼𝑛𝑑𝑒𝑥 = (11152.5/𝑀𝑊𝑊)3.472      (3.4) 

We enter the MI correlation as a flowsheet constraint within AD as follows: 

# Plant model (industrial MI correlation)  

A_MI as realparameter(11152.5); 

B_MI as realparameter(3.472); 

Plant_MI as positive; 

Melt_Index = (A_MI/(STREAMS("R1OUT").MWW))^B_MI; 
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where A_MI, B_MI are the parameters and STREAMS("R1OUT"), and MWW is the 

weight-average molecular weight of the polymer at the reactor outlet. 

 

 

3.6.4. Grade Change Transition Using Basic H2-Based Controller 

    The basic traditional methodology of grade change is to change the grades by changing 

the hydrogen feed flow rate. From the steady-state model, we calculate the H2 feed flow 

value to produce a particular polymer MI. So in order to change the grade from MI of value 

10 to 20, we increase the hydrogen flow rate from 5.41 kg/hr to 6.68 kg/hr, with the steady-

state values obtained from the model to reach the respective MI value. we define the 

following task to increase H2 flow (STREAMS("H2").FmR) in minimum time ( 0.1 hr). 

#Task for grade change using basic control using H2 feed flow rate 

Task M1 runs at 5 

SRamp (STREAMS("H2").FmR,6.68,0.1); 

End 

    This basic control grade change process will lead to grade change, but with a constant 

H2-setpoint-based control, the transition will be slower leading to much larger amount of 

off-spec product. For the mentioned grade change, the amount off-spec material is 

approximately 75 metric tons (MT) in 15 hours as shown in Figure 3.16. Therefore, 

introducing an inferential control would become useful in reducing the off-spec material, 

as it constantly updates the hydrogen setpoint based on the controller error difference 

between the cumulative MI and the target MI. 

 

 

 
Figure 3.16. Grade change using H2-setpoint-based controller 

3.6.5. Open-loop Inferential Controller Using Dynamic Model  

    To find a dynamic inferential control relation, we use the methodology showcased by 

Ogawa et. al.9 to calculate the cumulative MI exiting the reactor. They derive the ordinary 
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differential equation (ODE) using mass balance, quantifying the relation between the 

instantaneous MI and the cumulative MI formed at the exit of the reactor  

𝑑𝑙𝑛(𝑀𝐼𝑐(𝑡))

𝑑𝑡
=

1

𝜏1
log(𝑀𝐼𝑖(𝑡)) −

1

𝜏1
log(𝑀𝐼𝑐(𝑡))  (3.5) 

where the MIi is the instantaneous MI and MIc is the cumulative MI at the exit of the reactor. 

We substitute Eq. (3.3) into Eq. (3.5) to calculate the cumulative MI and then use the 

dynamic model to tune the time constant (τ1), and build an inferential controller.  

    We model the inferential controller by simulating the dynamic differential equation (3.5) 

and try to iterate for an appropriate value of time constant so that the inferential model 

matches the plant MI correlation (3.4) with error less than 5% described by the industrial 

correlation. We find a value of time constant of 4.077 hours gives a good match between 

plant and model values as shown in figure 3.14. By substituting Eq. (3.4) into Eq. (3.5) and 

considering value of time constant, we find the inferential model ODE as Eq. (3.6): 
𝑑(ln(𝑀𝐼𝑐))

𝑑𝑡
=

1

4.077
[3.266𝑙𝑛(𝐻2) −  3.215 −  ln (𝑀𝐼𝑐))]  (3.6)  

 

MIc gives the cumulative MI at the exit of the reactor and its logarithm is defined as log_mi 

in the AD tasks. The hydrogen feed flow rate (H2) is represented by 

STREAMS("H2").FmR in the AD model. It is defined this way since AD does not allow 

the logarithm of a differential. 

The flowsheet constraint commands for simulating the differential equation model are 

given below: 

#Open Loop Inferential Model ODE 

log_mi as realvariable; 

$log_mi = (1/4.0775)*((3.266*LOGe(STREAMS("H2").FmR)) - 3.2157 - log_mi); 

predicted_mi as realvariable; 

predicted_mi = EXP(log_mi); 

 

    In order to compare the MI values and iterate value for the time constant for an open-

loop controller, we perform grade transition by changing the values of H2 feed flow for 

grades of MI 1, 10, 20 by creating task as explained previously. We change the grades by 

using tasks to change H2 flow rate (Streams("H2").FmR) at 2 hrs to 5.46 kg/hr and at 25 

hrs to 2.67 kg/hr, respectively, as explained previously. We set the H2 flow rate as a fixed 

variable prior to implementing the task.  

Figure 3.17 compares MI values from the open-loop inferential control with the actual 

correlation-based MI values at a time constant of 4.07 hr, resulting in a lowest error of 3%. 
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Figure 3.17. Comparison of MI values from the open-loop inferential control MI 

(predicted_MI) with the actual correlation-based MI (Melt_Index) (time constant = 4.07 

hours) 

3.6.6. Closed-Loop Inferential Controller 

    In order to automate the inferential controller, we need a closed-loop controller using 

the open-loop model ODE. This allows us to input a target MI, so that the inferential model 

can calculate the control action accordingly. In order to form the closed-loop inferential 

model, we need to discretize the inferential control ODE using the Euler method and 

simplify to get the following equation: 

(ln(𝑀𝐼𝑡𝑎𝑟𝑔𝑒𝑡) − ln(𝑀𝐼𝑐))/∆𝑡 = (1/4.07) ∗ (3.266𝑙𝑛(𝐻2𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)  −  3.215 − ln(𝑀𝐼𝑐))  

(3.7) 

where MItarget is the fixed target MI that the controller need to achieve and MIc is the 

cumulative MI at the exit of the reactor. We use the same open-loop time constant 4.07hr 

for the closed-loop discretized ODE. Thus, Eq. (3.7) closes the loop since by inputting a 

given target MI, it continuously back-calculates the hydrogen setpoint which can then be 

used to equate to the hydrogen flow rate resulting in the inferential control action. The time 

interval Δt is a fixed parameter that can be used to tune the controller and reduce overshoot.  

We enter the closed-loop inferential control as a flowsheet constraint within AD. # 

Closed Loop Inferential Control 

target_mi as realvariable(fixed,1);  

delta_t as realvariable(fixed, 1); 

h2_setpoint as realvariable(free); 

(LOGe(target_mi)-log_mi)/delta_t = (1/4.0775)*((3.2667*LOGe(h2_setpoint)) - 3.2157 - 

log_mi); 

h2_setpoint= STREAMS("H2").FmR; 

    The variable as defined in the constraint are MItarget as target_mi, Log(MIC) as log_mi 

,∆t as delta_t. We create a new variable called ‘target_mi’ and set it as a fixed variable and 
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use log_mi as the initial variable condition for the discretized ODE. Also make 

Streams("H2").FmR as a free variable since it is  equal to the H2 setpoint.  

Figure 3.18 shows all the three flowsheet constraints f. 

 
Figure 3.18. Snapshot of the overall constraints and the local variable specification 

    We simulate a grade change from 10 to 20 using AD tasks. The grade change for the MI 

happens in 5 hrs with only 25 metric ton (MT) of off-spec material. Figure 3.19 illustrates 

the inferential model prediction for grade change. The y-coordinate, predicted_mi, 

represents predicted MI value by the inferential controller. 

 
Figure 3.19. MI grade change from 10 to 20 using Inferential Control 

    Thus, we can compare the grade change due to the inferential control Melt Index with 

the basic constant hydrogen flow based control resulting in faster grade transition in 

inferential control (5hrs) compared to basic control (15 hrs). Figure 3.20 illustrates that the 

inferential control reduces off-spec material by 50 metric ton (MT) and by 10 hours to 
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reach the new MI target. Hence, we have showcased the utility of inferential control for 

polymer grade change.  

 
Figure 3.20 Comparison of grade change process using the inferential control with the basic 

H2-based control 

3.7. Using First Principle Dynamic models as polymer quality sensors 

    We can use the first-principle dynamic model to simulate polymer quality 

characteristics. Let us consider the prediction of MI from a slurry HDPE process with two 

reactors in parallel using actual plant data from LG Petrochemicals in South Korea by Park 

et. al. 19 where they correlate the MI data by considering the following independent 

variables: (1) C2: monomer ethylene feed flow rate; (2) C4: comonomer 1-butene flow 

rate; (3) CAT: catalyst flow rat; (4) H2: chain-transfer agent hydrogen flow rate; (5) HX: 

solvent n-hexane flow rate; (6) H2/C2: ratio of feed flow rates of H2 and C2; (7) T: reactor 

temperature; and (8) P: reactor pressure.  

    We convert a steady-state simulation model based on Aspen Plus to a dynamic (time-

dependent) simulation model using Aspen Plus Dynamics. The resulting dynamic 

simulation model has similar independent variables as explained before. Both steady-state 

and dynamic simulation models are developed from first principles such as phase-

equilibrium calculations and mass and energy balances. Therefore, they are scientifically 

consistent models. The methodology of simulation of plant data using dynamic process 

model is summarized in Figure 3.21. 
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Figure 3.21. Methodology of simulating plant data from dynamic model 

 

 
Figure 3.22. Comparison of MI predictions of the first-principle model and plant data 

 

    Figure 3.22. compares the predictions of the first-principle-based dynamic simulation 

model (in green) with the plant data with grade transitions (in blue). We see much deviation 

between the model predictions and the plant data. The accuracy of prediction decreases due 

to non -idealities and model assumptions. Also, for this particular case we also depend on 

the accuracy of the empirical correlation for MI since the dynamic model calculates MWW 

and we use that value to calculate MWW. 

3.8. Conclusion 

    The first principle dynamic models are suitable for process development, optimization 

and control. The first principle model worked better for predicting steady state quality data 

seen in chapter 2 but not so accurate for predicting dynamic polymer quality as shown in 

figure. Hence, the data-based sensors based on Machine Learning techniques becomes 

more useful for such applications. Although first principle models are known to be much 

better at predicting beyond the operating range compared to data-based Machine Learning 
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models. In further chapters we will compare these results to a stand-alone data-based model 

and hybrid models and showcase their advantages and limitations. 
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Chapter 4: Application of Machine Learning and Multivariate Statistics for Polymer 

Process Data Analytics 

 

4.1. Introduction 

    Data analytics have been known to be useful for chemical process industry. With the 

advancements in machine learning (ML) over the years its application for chemical process 

data analytics have been known to be particularly useful and profitable for the industry. 

Some of the major applications of process data analytics are in building data-based soft 

sensors for quality prediction, monitoring and control. Data Analytics is also instrumental 

in detection of process anomalies. Beginning in late 1980 to early 1990, chemical engineers 

have been paying greater attention to the emerging topics of artificial intelligence, neural 

computing, machine learning and big data analytics, and their applications to bioprocessing 

and chemical industries  1, 2, 3, 4, 3, 5. In particular, McGregor and others have demonstrated 

the significant applications of multivariate statistical analysis and big data analytics to 

optimizing the manufacturing of LDPE, HDPE, Nylon 6 and other polymers 6,7 . 

Multivariate statistical analysis8, 9, 10, 11 and its implementation using Python,R or softwares 

like Aspen ProMV, SAS, JMP etc. find many applications to polymer manufacturing, such 

as: (1) data quality deviation analysis; (2) unit yield analysis; (3) production capacity 

degradation analysis; (4) offline production optimization (discovery and optimization of 

key variables); (5) online process monitoring and troubleshooting; and (6) batch process 

variable analysis. 

    Qin discusses about the 4Vs of big data from the process data analytic point of view 3 .  

Volume: There is massive process data available from process operation databases due to 

digital control systems. 

Velocity: Most of the data is time sensitive and thus fault diagnosis using latent variable 

multivariate methods and time series analysis of data becomes useful for analysis. 

Variety: Depending on the manufacturing process, there are different variety of process 

data available like equipment-based continuous sensor-based process measurements, lab-

based quality data. 

Veracity: Use of multivariate statistics and machine learning methods for accurate 

predictive and causal analysis of process data. 

    Qin and Chiang 12 have emphasized on the attributes required for process data analytics 

using ML methods. First is the importance of utilizing process knowledge or first principle 

models for accurate analysis. Second is the importance of considering the process 

uncertainties due to measurement errors and other non-idealities in the prediction. Lastly, 

the process data analysis should provide interpretable solutions to provide 

recommendations for manufacturing. 
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    Ge et al. discuss the main steps of process data analytics in their study 5. First step is the 

data preparation and collection of data from historical sources. Next comes the 

preprocessing of data for dealing with any missing data or inconsistency in data. Next we 

deal with appropriate machine learning model sections, its training and performance 

evaluation. Lastly comes the analysis of results based on its applications. They classify the 

machine learning models for process data analysis into four main applications including 

dimensionality reduction, outlier detection, process monitoring and data visualization. In 

their review Shang and You 13 highlight the application of ML, especially reinforcement 

learning for optimal process control. ML  have also been applied to predict property 

parameters by aiding molecular simulations which also indirectly helps in chemical process 

data analytics 14.Similarly ML has been useful for catalyst design and discovery which aids 

process data analytics 15. Ning and You 16 highlight the use of machine learning for process 

optimization under process uncertainty. 

    Specifically, for polymer processes, data analytics is critical since the polymer quality 

measurements like polymer melt index (MI), molecular weight, etc. are usually less 

frequent compared to the continuous process variable measurements, hence the use of data-

based sensors become useful 17. In this chapter, we showcase the use of predictive ML 

models like neural networks and ensemble-based regressors for predicting polymer quality 

indicators. We also demonstrate the utility of causal models like partial least squares to 

study the causal effect of the process parameters on the polymer quality variables. We 

make use of anomaly detection methods as well to identify the process outliers and also 

the reasons for their outlier behavior.  

 

4.2. An Overview of Relevant Machine Learning Concepts and Models 

    In the context of process data analytics majority of ML applications use supervised 

learning techniques, which basically means that your dependent variable and independent 

variables are available in the data. Usually for process data the independent variable (X) 

are the process input variables and operating conditions like feed flows, temperature, 

pressure etc., the dependent variable (Y) are the process outputs and product quality 

measurements like concentrations, molecular weights, density etc. For most supervised 

learning applications like process monitoring control, soft sensors, we use regression 

models to fit an empirical model for any of process outputs/product quality as a function 

of the process inputs. For some applications, we might also need to use classification 

models, for example, to classify some product batches given the product data labels.  

    Most supervised learning algorithms dealing with process data analysis can be classified 

into two major categories of predictive and causal models. Popular machine learning 

models are known for predictive modeling. Neural Networks (NN) are one of the most 

popular algorithms that are known to give highest prediction accuracy. They are made up 

of interconnected nodes that process information by its dynamic state to external inputs.2  

These are known to be kind of black box models which do not require much feature 
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engineering and can predict the output with high accuracy. The concept of neural network 

was first presented by Walter Mitts in 1943 and since then the field has had many 

advancements. With the availability of computational resources, deep learning with many 

layers of NN have become popular which tend to give more accurate and generalized 

predictions. LeCun et. al. 18 have described how multiple layers of deep neural network 

models help to learn big data accurately and have led to breakthrough in various areas like 

speech recognition, image recognition, object detection, drug discovery. They identify the 

importance of the backpropagation algorithm in learning many parameters in deep 

learning. Similarly, there are many other conventional algorithms like Ridge/Lasso 19, 

Support Vector Machines 20, Decision Tree 21 etc. which can be used for predictive 

modeling.  

    There are also other supervised learning predictive models available which can combine 

some of the individual models i.e. combining some of the weak learner/models to improve 

prediction which are known as ensemble models. Schapire 22 presented a theoretical proof 

that weak learners can be boosted to become strong learners. Bagging is the ensemble 

technique for combining the predictions of a model trained on random subsets of the data. 

The predictions are usually combined by averaging for regression and voting for 

classification. A popular bagging algorithm is the random forest algorithm 23 using 

multiple decision trees. Boosting is a sequential technique where present model attempts 

to correct the errors of the previous model. Gradient Boosting is one of the popular boosting 

models based on decision trees 24. Xgboost is an extreme form of  Gradient boosting is a 

very efficient and scalable implementation of the gradient boosting algorithm25 . Stacked 

regression 26 is an ensemble technique which combines base learner models, the output of 

which are input to a second level learner model.    

    Multivariate statistical methods which makes the use of latent variables are best suited 

for causal analysis to find the effect of multiple input/features on the output. Partial least 

squares 27 (PLS) are one of the popular latent variable models for causal analysis that brings 

out the cause and effect relation in the independent (X) and the dependent Y variables. PLS 

provides a unique result unlike other data analytic models, since it simultaneously models 

the X and Y spaces. PLS is a latent variable (LV) model that provide causal models in low-

dimensional LV space. These models can be used to actively alter the process to 

troubleshoot, optimize and control the process. They can give interpretable results, for any 

active changes in the manipulated variable, the model will reliably predict the output. 

Probabilistic models like Bayesian networks are also useful in identifying multiple causal 

relationships 28. 

    Unsupervised Learning methods are useful when we have process data measurements 

(X) readily available, but do not have the quality measurements. Thus, we can use these 

methods to find patterns from the process data which can be useful for applications like 

fault diagnosis. A large data set with many variables termed as high dimensional data is 

expensive and difficult to analyze. Unsupervised learning methods can also be useful for 
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dimensional reduction. Principle Component Analysis (PCA) 29 is one of the popular 

dimensional reduction algorithms which have the ability to reduce the dimensionality of 

the monitoring space by projecting the information in the data into low-dimensional spaces 

defined by a few latent variables and still retaining the maximum variance of the original 

dataset quality. As we will showcase later in the chapter PCA is also useful for anomaly 

detection. 

    Semi- Supervised learning methods can also be useful for process data analytics, 

especially for polymer processes where the output quality measurements (Y) are measured 

at lower frequency compared to the input process variables (X). Self-training methods like 

pseudo-labeling by entropy minimization can be used for semi-supervised learning 30. 

There are also Generative ML models which can be used to generate more data. Generative 

Adversarial Networks 31 (GAN) is one of the popular generative models which consists of 

two main models the generator which generates fake data and the discriminator which 

classifies real or fake data. Reinforcement learning methods are emerging to be very 

popular in robotics/gaming , where an agent learns behavior through trial errors interactions 

in a dynamic environment 32.Reinforcement learning has also found application in process 

control and optimization as well 33. 

Figure 4.1 summarizes the classification of ML models. 

 

 
Figure 4.1. Classification of Machine Learning models  
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In this chapter, we will be mostly use supervised regression models .The regression models 

are evaluated based on the Root Mean Square Error (RMSE) value as well as the % 

Normalized RMSE (nRMSE): 
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yi = original observation ;pi = model-predicted value; n = number of observation; MSE = 

mean square error; ym = mean value of observations. 

    Most of these regression models are popular machine learning algorithms so we will not 

discuss them in too much detail. There are numerous textbooks and online resources that 

discuss the principle and implementation of gradient boosting algorithms, and their 

extensions for the interested readers. Scikit-learn machine learning 34 is one of the most 

popular open source Python library which has most of the ML models available which we 

have used in our analysis. For deep learning models, we use the open source TensorFlow 
35 ML system.  

 

4.3. Literature on application of Data Analytics in Chemical and Polymer processes 

4.3.1 Literature on Application of Multivariate Statistics in Chemical Process 

Monitoring and Fault Diagnosis  

    Some of the major work in the applications of multivariate statistics have been done by 

MacGregor et. al  6, 11. We highlight some recent applications of PCA and PLS below. 

Lou et. al. 36 apply Sparse PCA for easier interpretation along with Particle Swarm 

Optimization for process monitoring. Ning and You 37 apply PCA along with Kernel 

smoothing techniques to handle uncertainty data for process optimization and control. He 

et. al. 38 used PCA on spectral data for analysis of crystallographic phases of explosives for 

quality control. Fezai et. al. 39 apply the application of online kernel PCA for monitoring 

of non-linear processes. Harrou et. al. 40 showcase a novel method of PCA-based anomaly 

detection to detect small abnormalities which are not possible in conventional methods. 

They use of control charts on uncorrelated PCA residuals helps to better detect anomalies. 

 

    Brestrich et. al. 41 use PLS for monitoring of protein chromatography methods using 

spectral data with PLS differentiating between different species. In a recent study, 
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Kocevska et. al. 42 use preprocess methods like blind source operations to identify 

independent components along with PLS for nuclear waste analysis using spectral data.  

Zhang et. al. 43 showcase a novel locally weighted Kernel PLS methodology for bioprocess 

monitoring to accurately model non linearity and time varying dynamics of the process. 

Jiang et. al. 44 use a novel optimized sparse PLS methodology for simultaneous bath-end 

quality prediction and variable selection for industrial process monitoring. In an application 

to biopharmaceutical process, Hattori and Otsuka 45 use PLS for feed forward control of 

tablet compression process by integrating spectral data and granule physical property data. 

 

4.3.2. Literature on Application of Machine Learning Models in Chemical processes 

    Artificial Neural Networks (ANN) have been widely used for process data analytics. 

In one of the early studies, Willis et. al. 46 showcase the use of ANN for process control by 

inferential estimation. Iliyas et. al. 47  have used ANN as inferential sensors for emission 

prediction of an industrial furnace. Sun et. al.  48 use ANN along with weight shrinkage 

methods for soft sensor applications in industrial air separation processes. In a recent study, 

Hough et. al. 49 use neural networks to reduce the computational expense of detailed kinetic 

models for biomass pyrolysis process. In more recent applications in chemical engineering, 

deep learning/deep neural networks have been quite popular. Shang et. al. 50 use deep 

neural networks for estimation of distillation cut point in petroleum refining processes. Gao 

et. al. 51 use deep belief networks for classification of scheduling models for different types 

of crude oil feeds. Li et. al. 52 have applied deep belief networks in CO2 capture process 

for prediction of CO2 production rate and capture level. Zhang and Zhao 53 showcase 

process fault diagnosis using deep belief networks on the Tennessee Eastman process. 

 

    Namdari et. al. 54 have used support vector regression for fault diagnosis of incipient 

process faults which increase with time like reactor fouling and catalyst deactivation. Pani 

and Mohanta 55 have used support vector regression for monitoring and control of particle 

size in cement grinding process. In another study, Gholami and Shahbazian 56 used soft 

sensor to predict the hydrogen sulphide concentration of a stripper column using support 

vector regression along with fuzzy means clustering. Zio et. al. 57 use Decision tree model 

for fault classification in a steam generation process in pressurized water reactor. Ge 58 

showcase the use of probabilistic Machine Learning models for process data analytics . 

Zhou et. al. 59 use gaussian process regression model for adaptive quality monitoring in 

batch processes.  

 

4.3.3. Literature on Application of Data Analytics/Machine Learning in Polymer 

process  

    There is a growing number of reported studies applying machine learning and 

multivariate statistical methods to polymer process monitoring, operation and control, and 

we mention a few examples here. Skagerberg et. al. 7 apply multivariate data analysis to 
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linear low-density polyethylene (LLPDE) reactors to build models for inferential control. 

MacGregor et. al. 60 introduce the multiblock projection to latent structures or partial least 

squares (PLS) to the same process to diagnose process deviations. Gonzaga et. al. 61 used 

neural networks for using as soft senor to predict polymer viscosity. In another application, 

Shi et. al. 62 predicted the melt index of polypropylene by combining independent 

component analysis and multi-scale analysis. Han et. al. 63 use the support vector machines 

and neural networks to model melt index (MI) of industrial polymer processes. Sharmin et. 

al. 64 develop an inferential PLS-based sensor to measure polymer quality parameters to 

provide physical insights in the process prediction in an application to batch 

polymerization.  

 

    Ao et. al. 65 showcase a batch-to-batch iteration learning control using a data-based 

nonlinear model that improves prediction accuracy. Kaneko et. al. 66 use a data-based soft 

sensor to detect the completion of transition of industrial polymer processes by predicting 

polymer quality parameters. Ge et. al. 67 use gaussian process regression to handle 

nonlinear data for polypropylene melt index prediction. Liu and Chen 68 apply the just-in-

time support vector regression and probabilistic analysis for polymer quality. Liu and Xu 
69 have used dynamic fuzzy neural network to predict higher accuracy melt index prediction 

sensors for quality control of Poly Propylene process. Wang and Liu 70 have used support 

vector least squares regression along with adaptive optimization algorithm for parameter 

estimation for melt index prediction. 

Recently, Liu et. al. 71 use the ensemble deep kernel learning for quality prediction in 

industrial polymerization processes.  

 

4.4. Illustrative Example of Machine Learning Applications in an Industrial 

Polyolefin Manufacturing Process 

 

Objective: We illustrate a simple data-based senor for predicting the MI from a slurry 

HDPE process with two reactors in parallel using actual plant data from LG Petrochemicals 

in South Korea 72 .  
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Figure 4.2. Process flowsheet of industrial parallel HDPE process 

Figure 4.2 shows a schematic diagram of a general slurry HPDE process with parallel 

reactors  

    We consider the same process we used in Chapter 3 in comparison of dynamic first-

principle model for comparing with plant data. Park et. al. 72 correlate the MI data by 

considering the independent variables shown in table 4.1.The data set consists of 5000 

observations and 9 main independent process variables and 1 MI as the quality target. 

Table 4.1. Process Variables for industrial HDPE Process 

Process variable Description 

C2 Ethylene feed flow rate 

H2 Hydrogen feed flow rate 

CAT Catalyst feed flow rate 

HX Hexane solvent feed flow rate  

C3 Comonomer feed flow rate 

T Temperature of the reactor 

P Pressure in the reactor 

H2/C2 Feed concentration ratio in the reactor of ethylene to 

hydrogen 

C3/C4 Feed concentration ratio of Propylene to Butylene 

monomer 

MI  Melt Index of polymer 
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. 

Figure 4.3. Visualization of the HDPE process data 

Figure 4.3 shows the data visualization of all the variables with time of the process data. 

    Figure 4.4 shows the correlation mapping of the variables showcasing the correlation 

between all variables. From the data set, we can H2 is highly correlated with H2/C2. This 

correlation mapping is useful for understanding the data and also feature selection. In a 

larger data set we can drop highly correlated features to improve prediction, Although for 

this data analysis, we use all features to understand the process. 
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Figure 4.4. Correlation plot of the HDPE process data 

4.4.1. Multivariate Statistical Causal Model  

    We use Aspen Pro MV for a latent variable causal analysis for the data analysis. We first 

fit the original data set PLS model which results in a R2/Q2 value of 0.95 which defines 

the %variance defined by the Principal Components with 4 principal components and 

RMSE 1.1. Then we use Hoteling’s T2 methods to identify the process outlier as shown in 

Figure 4.5. Note the data points above the horizontal line labeled by the confidence limits 

of 0.99 and 0.96.  

 
Figure 4.5. Hoteling’s T2 plot deviation plot  

 

    The process outlier observations are 2412-15,2696-98 based on the confidence limits.(In 

the plot the close observation points are not clearly visible. We can even understand the 
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reasons for any of the observations to be an outlier based on their contribution scores. The 

2413 observation (SPE score 200.196) being an outlier is due to temperature (T) being 

higher than the average as shown in contribution plot figure 4.6. 

 
Figure 4.6. Contribution plot of process outlier compared to the average score to identify 

the cause of process abnormality 

    We remove the process outliers and fit the PLS model again. The R2 /Q2 value of the 

PLS model with 4 principal components is 0.956 as shown in figure 4.7. Now we can again 

plot the Hotelling’s plot and see none of the observations beyond 99 % confidence interval 

as shown in figure.  
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Figure 4.7. Principal Component R2 score for PLS model without lag 

 

 
Figure 4.8. T2 plot of the data after removing the process outliers 

 

  
Figure 4.9. Prediction plot for PLS model without lag 

    The Root Mean Squared Error (RMSE) plot for the PLS model without lag is 1.08 for 

test data and the plot of the observed v/s predicted values is shown in Figure 4.9.The 

variable importance of each variable in defining the variance of the PLS model is shown 
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in Figure 4.8. The loading plot is shown in Figure 4.11 which defines the correlation of the 

variables which signify that MI is highly correlated with H2, H2/C2 and CAT (since they 

lie nearer to each other). The bar plot gives a quantitative dependence of each variable for 

MI prediction.  

 

 
Figure 4.10. Variable importance plot for PLS model without lag 

 

 

 
Figure 4.11. Loading plot for PLS model without lag 
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    Now since this is a dynamic process there is some lag between the time when the MI at 

reactor outlet is measured and the process variable. So the output in a dynamic process is 

related to the past process variable inputs and past outputs as well. In order to handle the 

autocorrelation data we mimic the concept of auto-regressive moving average exogenous 

(ARMAX) time series models by forming the data matrix with previous observation in 

each observation vector. The time series model which relates independent variable Y at 

present time to past independent variable Ys and dependent variable Xs. 

The model equation is represented below: 

yt = 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 +⋯+ 𝛾1𝑥𝑡−1 + 𝛾2𝑥𝑡−2 + 𝑒𝑡 

    This eventually means that we need to use a lagged value of the variable to account for 

the dynamic analysis. Thus, we consider the autocorrelation in the data in Pro MV by 

introduction of the lag of variable order. This time series modeling technique is also 

referred as Dynamic PLS 73. 

    In this case we introduce a lag of order 1 in both the input process variables and the 

process output MI, so that the MI at the current time is function of the historical value of 

process variables and past MI value. By introducing the process lag the R2 value of the 

PLS model increases to 0.98, the R2 value is shown in figure 4.12. The RMSE value of the 

model improves significantly to 0.58. The prediction values are shown in figure 4.13. 

 

 

 
Figure 4.12.  Principal component of dynamic PLS model with lag 
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Figure 4.13. Prediction plot of dynamic PLS model with lag 

 

In the VIP plot, we can see that the lagged variables become more important and the MI 

lagged value becomes the most important variable for the dynamic PLS model as shown 

in Figure 4.14. 

 

 
Figure 4.14. Variable Importance Plot for Dynamic PLS model including lag 
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    Figure 4.15 compares the measured time-dependent MI data for the slurry HPDE process 

from with grade transitions to the predictions from a regressed model based on the 

multivariate statistical analysis with partial least squares (PLS). Now, we will compare the 

same time -dependent grade transitions for predictive ML models  

  
Figure 4.15. Development of a soft sensor of MI based on Causal PLS model  

 

 

4.4.2. Predictive Machine Learning Models  

    We use different predictive machine learning (ML) models to predict the MI index 

values. 

In general, we evaluate the relative accuracy of different regression models using the root 

mean square error (RMSE). Regression methods like support vector regression performed 

worst for this dataset. The other regression models like linear/ridge, Bayesian, lasso 

regression has RMSE values around the same range as PLS model in the range of 0.8 to 

1.3, but still lower than Dynamic PLS models with RMSE of 0.58. 

Deep Neural Network model with 3 hidden layers and 100 neurons in each layer gives 

slightly better RMSE of 0.4 which can be further improved by hyper parameter estimation. 

The Neural Network architecture with 9 inputs, 3 hidden layers and 1 output is represented 

in Figure 4.16. 

In neural networks or any ML model we define an error function which calculates the 

difference between the current model output and the expected value called as loss function. 

The loss curve of the deep learning model for training and validation is shown in Figure 

4.17, which shows how the loss decreases with the increasing epochs. 
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Figure 4.16. Deep Neural Network Architecture with three hidden layers 

 

 

 

 
Figure 4.17. Loss curve of Deep Learning model for MI prediction 

 

    Ensemble models perform best for this dataset with Gradient Boosting/Xgboost 

regression model with an RMSE of 0.2 and Random Forest model with a RMSE of 0.12.  

We use grid search 5-fold cross validation to obtain the best hyper parameters for both the 

initial and meta-regressors.5-fold cross-validation means that the data set is split into 5 

number of sections/folds where each fold is used for testing while rest use for training 
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iteratively. For each regressor we choose a range of values of some hyperparameters and 

finally choose the parameter values that gives the best prediction using the cross validation. 

For instance, in the random forest model - number of trees is one of the important 

hyperparameter model that can be varied to improve the validation accuracy. The Figure 

4.18 shows the accuracy scores (R2) for Random Forest model, we can see how the cross-

validation score varies by changing the number of tree estimators in the model.  

 
Figure 4.18. The variation of hyperparameter in a Random Forest Model 

 

    We plot a sub model of the random forest model of a single tree and max depth =3 to 

visualize the tree model in figure 4. We visualize the recursive tree model as the tree splits 

in a way so that overall sum of squares of error are minimized. Figure 4.29 shows the same 

comparison of the plant MI values with the random forest model predictions. 
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Figure 4.19. Visualization of a tree from the Random Forest Model 

 

 

 
Figure 4.20. Development of a soft sensor of ML based on Predictive random forest model  
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Table 4.2 and Figure 4.21 summarizes the comparison of each of the ML models  

Table 4.2. Comparison of different ML models for MI prediction 

Model RMSE (test) MI  

Random Forest 0.12 

Xgboost/Gradient Boosting/Stacking reg 0.2 

Deep Neural Network 0.42 

Dynamic PLS 0.58 

Ada-boost Regression 0.64 

Linear/Ridge Regression 0.77 

Bayesian Regression 0.8 

PLS 1.08 

Lasso Regression 1.3 

Support Vector Regression 4.44 

 

 

 
Figure 4.21. Comparison of different ML models for MI prediction 

 

4.5. Disadvantages of Stand-alone Data-Based Models 

    The predictive ML models are not able to identify the important features correctly, hence 

 they are not able to identify the model sensitivities accurately. Based on the 

knowledge of polyolefin reaction kinetics, we know that melt index (MI) is highly 
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dependent on the hydrogen flow rate and a small change in hydrogen flow leads to a 

significant change in MI. So, the variation of MI with hydrogen flow for a first principle 

model and ML model is shown in table, as we can see the accurate predictive model like 

is not able to identify accurate process sensitivities. By doubling the hydrogen flow rate, 

there is much less change in ML model compared to a first-principle model or latent 

variable causal model, which is scientifically inconsistent since MI is highly dependent on 

H2 flow. Now we start with an observation with H2 = 60 m3/hr with all values of process 

variables same as those of the data and use it to predict MI from each of the models and 

compare the result with plant data. We increase H2 flow to 95 m3/hr above the operating 

flow range keeping other process variables as same. For the actual plant data, we write the 

corresponding value of H2 when H2 flow is 95 m3/hr, even though other variables are 

different since it is the most important factor. We find that the first principle model is better 

able to predict the change since it is built on accurate reaction kinetics. The ML model is 

not able to capture the individual effect of the features, it is more accurate only if given the 

same combination of features that the model was trained on (all features when H2 flow is 

90 m3/hr for accurate prediction when H2 flow is 95 m3/hr). The causal PLS model is 

better able to capture the effect of individual features. Still for a more accurate prediction 

beyond the operating range we will need a hybrid combination of first-principle and ML 

models.  

Table 4.3. Model comparison based on MI values at varying hydrogen flow 

Model MI (H2 = 60 m3/hr) MI (H2 = 95 m3/hr) (beyond 

operating range) 

Plant Actual value 5 22 

First principle 6.1 17 

Causal ML model  4.7 15 

Predictive ML model 4.9 12 

 

4.6.  Semi-supervised Learning for Polymer Process Data Analysis 

    We demonstrate the application of semi-supervised learning techniques for polyolefin 

data analysis. In many polyolefin plants, the product quality variables are not measured 

online and they are usually measured in lab sample analysis at much longer time intervals 

compared to the process data measurements. The quality data, also referred as labelled 

data, are expensive and difficult to get while unlabeled is abundant and cheap.  

4.6.1. Self-Training  

    We can use self-training semi-supervised techniques like pseudo-labeling to utilize 

unlabeled data. It improves the model robustness by more precise decision boundary. We 

simulate real plant scenario by reducing the frequency of product quality measurement to 

much lower values compared to the process variables. Thus, we consider the same 

polyolefin process as mentioned previously with the feed process variables and the MI as 
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the quality variable. We consider only 1% MI values for the y data. For 5000 observations 

of process data (X), only 50 values of MI data (Y) are available. 

    For the analysis of these data we use semi-supervised learning techniques called pseudo-

labeling. This method utilizes both the labelled and unlabeled process data. We refer the 

data which have MI measurements as labelled, while the data which do not have MI values 

as unlabeled. We first train labelled data by a regressor model. We use random forest 

regressor for this data. Then, we use the model to predict labels on the unlabeled data, 

creating the pseudo labels or predictions. We combine the labelled and the unlabeled data, 

giving an augmented dataset which is again used to train the random forest regressor model. 

The model predicts much higher accuracy when we used the unlabeled data set along with 

the labeled data compared to just using the labeled data set alone. The prediction accuracy 

is much higher than using only labelled data. In Figure 4.22 we see the RMSE value of the 

Pseudo-labelled regression prediction is 0.8 compared to 1.8 considering only the labelled 

data.  Sample rate denotes the percentage of unlabeled data to be used as the pseudo 

labelled for the modelling purpose. 

 
Figure 4.22. Accuracy v/s the sampling rate for Semi-Supervised Learning MI prediction 

 

 

 

4.6.2 Generative Model - GAN 

    Another approach when less data is available can be used to generate more data. GAN 

models explained previously are useful for generating more data. The generative model 

generates data with some noise and the discriminator model detects from the real data from 

the generated/fake data in the form of a loss function. With each iterative process the 

generative model becomes better at generating fake data. So that finally when the model 

converges the discriminator is not able to distinguish real from fake data. 
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    We use the same HDPE dataset and consider only 50 available observations. We 

showcase how to generate 1000 more data points from these 50 available observations 

using the GAN models. We use the Condition GAN model by Xu et. al. 74 where they 

showcase the methodology of generating tabular data like our dataset. They model the 

probability distributions of each of the rows in dataset and generate realistic synthetic data 

dealing with both discrete and continuous dataset. Figure 4.23 compares the the absolute 

log mean of the actual data (real) and generated data (fake) and the comparison of each 

feature is shown in Figure 4.24. Probability Density Distribution of each feature 

comparison of of the real and generated data is shown in figure 4.25.  

    These plots show that the generated dataset represents the original dataset quite well.The 

original dataset with 50 data points is used to fit a gradient boosting regression model for 

the MI prediction which gives a higher RMSE value of 1.14. Now the augmented dataset 

with 1050 data-points is again used to fit the regression model which results in 

improvement in prediction with RMSE 0f 0.85. 

 

 
Figure 4.23. The comparison of the real and fake(generated data) in terms of means and 

stdev. 
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Figure 4.24. Comparison of each of the real and generated data for each of the features 

using the GAN model 
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Figure 4.25. Comparison of each feature b/w real and fake data with Probability Density 

Distribution of each feature comparison  

 

 

4.7. Batch Data Analysis 

    Most of the data analysis till now has been for continuous processes. For data analysis 

of batch process we require a different approach. An industrial batch process data with 

multiple batches has a three-dimensional structure with the three data dimensions, namely, 

process variables, time and number of batches. Thus we need to apply data unfolding 

techniques along with the PLS models for analysis. Batch data analysis requires the The 
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Batch Wise Unfolding (BWU) approach was first established by Nomikos and Macgregor 
75 , it examines the variation among batches since the different batches may have different 

disturbance. In BWU, the batch observation are extracted horizontally in a time-wise 

fashion. Each batch becomes a single row of data as shown in Figure 4.26. Thus, BWU 

score predicts the final state of each batch based on all the time history of that batch to 

current time. 

 
Figure 4.26.  Batch wise unfolding methodology 

    In contrast if we use a similar data analysis methodology as we sued for the continuous 

processes it can be termed as the Observation Wise Unfolding (OWU), where the data for 

each batch is stacked on top of one another and the analysis will summarize the 

instantaneous condition of each batch using the measured values at the current time. 

    We consider a polymer batch data provided by Kevin Dunn 10 consisting of only the 

process variables (10) X of the 55 batches. Thus, we use PCA along with the BWU analysis 

to identify the bad batches using Aspen Pro-MV. The R2 score for the PCA model for the 

Batch model is 0.66. By plotting the score plot shown in Figure 4.27 we identified the 

abnormal batches (50-55) 
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Figure 4.27. Score plot of PCA polymer batches 

 

Then we also try to identify the causes for the batches to be abnormal by plotting the 

contribution plot for the scores from 50 to 55 as shown in Figure 4.28.  

 
Figure 4.28. Contribution to scores of bad batches  
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If we use the OWU for the same dataset, the score plot for the PCA model does not provide 

any interpretable results to identify outliers shown in figure 4.29.

 
Figure 4.29. Observation wise Analysis of Batch data  

Thus, BWU approach is more suitable than OWU for any batch data analysis. 

 

4.8. Industrial Case study of Extrusion Process Monitoring 

    In a extrusion process by Universal Fibers, Virginia they had an issue of high 

modification ratio (MR) for one of their fiber product which is not good for their process 

quality specification. We analyze industrial data for a month with more than 10000 

observations. The process variables/features were mainly the extruder variables, pump 

variables and spinning variables like: RPM, pressure, amp, temperature etc. with a total of 

50 features. 

    We first use PCA on the data set we reduce the 50 features to 7 principle components 

with R2 of 0.65. Then we identify process outliers using Hoteling T2 method and plot the 

score plot as shown in Figure 4.30. We find that the process outliers lie in the same period 

when the MR was high b/w the range 4-5. Thus, we analyze the reason for the process 

faults to be high value of pump amp and the low value of extruder RPM using contribution 

scores. The contribution plot for the outliers is shown in Figure 4.31.We also use the MR 

data (Y) to fit a PLS model and analyze the relationship between MR and process variables. 

The loading plot in Figure 4.32 shows the variables highly correlated with the MR values 

like Extruder (RPM), Pump AMP. 
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Figure 4.30. Score plot of the extruder process data 

 

 

 
Figure 4.31. Contribution to score plot of process anomaly in an industrial extrusion 

process 
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Figure 4.32. Loading plot for the PLS analysis of the extruder data 

4.9. Conclusion 

    We have showcased the utility of latent variable models like PLS for causal analysis to 

identify correct correlations between input and outputs using the polymer process 

application. We also showcase the utility of predictive models like ensemble random forest 

for predicting the process outputs, predicting the MI with lowest RMSE. We identify the 

Dynamic PLS model utility in dynamic time series process data by considering the 

measurement lags. We conclude that a data-based model alone has a high accuracy, but it 

may give scientifically inconsistent results for predictions beyond process operating data 

which the model uses and also not able to accurately simulate individual feature 

importance. Hence, we advocate the integration of first principle process model with data-

based ML models in hybrid modeling strategy in following chapters. We showcase the 

applications of semi-supervised learning methods like self-training and generative models. 

We also show the methodology for analysis of batch data. We also showcase the fault 

diagnosis in an industrial extrusion process. 

 

References 

1. Quantrille, T. E.; Liu, Y. A., Artificial intelligence in chemical engineering. Elsevier: 

2012. 

2. Baughman, D. R.; Liu, Y. A., Neural networks in bioprocessing and chemical 

engineering. Academic press: 2014. 

3. Qin, S. J., Process data analytics in the era of big data. AIChE Journal 2014, 60 (9), 

3092-3100. 

4. Chiang, L.;  Lu, B.; Castillo, I., Big data analytics in chemical engineering. Annual 

review of chemical and biomolecular engineering 2017, 8, 63-85. 

5. Ge, Z.;  Song, Z.;  Ding, S. X.; Huang, B., Data mining and analytics in the process 

industry: The role of machine learning. Ieee Access 2017, 5, 20590-20616. 



 99 

6. MacGregor, J. F., Using on‐line process data to improve quality: challenges for 

statisticians. International Statistical Review 1997, 65 (3), 309-323. 

7. Skagerberg, B.;  MacGregor, J. F.; Kiparissides, C., Multivariate data analysis applied 

to low-density polyethylene reactors. Chemometrics and intelligent laboratory systems 

1992, 14 (1-3), 341-356. 

8. Haykin, S., Neural Networks and Learning Machines 3rd Ed. NY: NYL Pearson Prentice 

Hall. 2009. 

9. Johnson, R. A.; Wichern, D. W., Applied multivariate statistical analysis. Pearson 

London, UK:: 2014; Vol. 6. 

10. Dunn, K., Process improvement using data. Experimentation for Improvement. 

Hamilton, Ontario, Canada. Creative Commons Attribution-ShareAlike 2019, 4, 325-404. 

11. MacGregor, J. F.; Kourti, T., Statistical process control of multivariate processes. 

Control engineering practice 1995, 3 (3), 403-414. 

12. Qin, S. J.; Chiang, L. H., Advances and opportunities in machine learning for process 

data analytics. Computers & Chemical Engineering 2019, 126, 465-473. 

13. Shang, C.; You, F., Data analytics and machine learning for smart process 

manufacturing: recent advances and perspectives in the big data era. Engineering 2019, 5 

(6), 1010-1016. 

14. Haghighatlari, M.; Hachmann, J., Advances of machine learning in molecular modeling 

and simulation. Current Opinion in Chemical Engineering 2019, 23, 51-57. 

15. Goldsmith, B. R.;  Esterhuizen, J.;  Liu, J. X.;  Bartel, C. J.; Sutton, C., Machine learning 

for heterogeneous catalyst design and discovery. 2018. 

16. Ning, C.; You, F., Data-driven stochastic robust optimization: General computational 

framework and algorithm leveraging machine learning for optimization under uncertainty 

in the big data era. Computers & Chemical Engineering 2018, 111, 115-133. 

17. Sharma, N. In Polyolefin Process Modeling and Monitoring, 2019 AIChE Annual 

Meeting, AIChE: 2019. 

18. LeCun, Y.;  Bengio, Y.; Hinton, G., Deep learning. nature 2015, 521 (7553), 436-444. 

19. Tibshirani, R., Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society: Series B (Methodological) 1996, 58 (1), 267-288. 

20. Smola, A. J.; Schölkopf, B., A tutorial on support vector regression. Statistics and 

computing 2004, 14 (3), 199-222. 

21. Lewis, R. J. In An introduction to classification and regression tree (CART) analysis, 

Annual meeting of the society for academic emergency medicine in San Francisco, 

California, Citeseer: 2000. 

22. Schapire, R. E., The strength of weak learnability. Machine learning 1990, 5 (2), 197-

227. 

23. Breiman, L., Random forests. Machine learning 2001, 45 (1), 5-32. 

24. Friedman, J. H., Greedy function approximation: a gradient boosting machine. Annals 

of statistics 2001, 1189-1232. 



 100 

25. Chen, T.; Guestrin, C. In Xgboost: A scalable tree boosting system, Proceedings of the 

22nd acm sigkdd international conference on knowledge discovery and data mining, 2016; 

pp 785-794. 

26. Breiman, L., Stacked regressions. Machine learning 1996, 24 (1), 49-64. 

27. Geladi, P.; Kowalski, B. R., Partial least-squares regression: a tutorial. Analytica 

chimica acta 1986, 185, 1-17. 

28. Ellis, B.; Wong, W. H., Learning causal Bayesian network structures from experimental 

data. Journal of the American Statistical Association 2008, 103 (482), 778-789. 

29. Wold, S.;  Esbensen, K.; Geladi, P., Principal component analysis. Chemometrics and 

intelligent laboratory systems 1987, 2 (1-3), 37-52. 

30. Grandvalet, Y.; Bengio, Y., Semi-supervised learning by entropy minimization. CAP 

2005, 367, 281-296. 

31. Goodfellow, I.;  Pouget-Abadie, J.;  Mirza, M.;  Xu, B.;  Warde-Farley, D.;  Ozair, S.;  

Courville, A.; Bengio, Y., Generative adversarial nets. Advances in neural information 

processing systems 2014, 27. 

32. Kaelbling, L. P.;  Littman, M. L.; Moore, A. W., Reinforcement learning: A survey. 

Journal of artificial intelligence research 1996, 4, 237-285. 

33. Hoskins, J.; Himmelblau, D., Process control via artificial neural networks and 

reinforcement learning. Computers & chemical engineering 1992, 16 (4), 241-251. 

34. Pedregosa, F.;  Varoquaux, G.;  Gramfort, A.;  Michel, V.;  Thirion, B.;  Grisel, O.;  

Blondel, M.;  Prettenhofer, P.;  Weiss, R.; Dubourg, V., Scikit-learn: Machine learning in 

Python. the Journal of machine Learning research 2011, 12, 2825-2830. 

35. Abadi, M.;  Barham, P.;  Chen, J.;  Chen, Z.;  Davis, A.;  Dean, J.;  Devin, M.;  

Ghemawat, S.;  Irving, G.; Isard, M. In Tensorflow: A system for large-scale machine 

learning, 12th {USENIX} symposium on operating systems design and implementation 

({OSDI} 16), 2016; pp 265-283. 

36. Lou, S.;  Wu, P.;  Guo, L.;  Duan, Y.;  Zhang, X.; Gao, J., Sparse principal component 

analysis using particle swarm optimization. Journal of Chemical Engineering of Japan 

2020, 53 (7), 327-336. 

37. Ning, C.; You, F., Data-driven decision making under uncertainty integrating robust 

optimization with principal component analysis and kernel smoothing methods. Computers 

& Chemical Engineering 2018, 112, 190-210. 

38. He, X.;  Liu, Y.;  Huang, S.;  Liu, Y.;  Pu, X.; Xu, T., Raman spectroscopy coupled 

with principal component analysis to quantitatively analyze four crystallographic phases 

of explosive CL-20. RSC advances 2018, 8 (41), 23348-23352. 

39. Fezai, R.;  Mansouri, M.;  Taouali, O.;  Harkat, M. F.; Bouguila, N., Online reduced 

kernel principal component analysis for process monitoring. Journal of Process Control 

2018, 61, 1-11. 



 101 

40. Harrou, F.;  Kadri, F.;  Chaabane, S.;  Tahon, C.; Sun, Y., Improved principal 

component analysis for anomaly detection: Application to an emergency department. 

Computers & Industrial Engineering 2015, 88, 63-77. 

41. Brestrich, N.;  Ruedt, M.;  Buechler, D.; Hubbuch, J., Selective protein quantification 

for preparative chromatography using variable pathlength UV/Vis spectroscopy and partial 

least squares regression. Chemical Engineering Science 2018, 176, 157-164. 

42. Kocevska, S.;  Maggioni, G. M.;  Rousseau, R. W.; Grover, M. A., Spectroscopic 

Quantification of Target Species in a Complex Mixture Using Blind Source Separation and 

Partial Least-Squares Regression: A Case Study on Hanford Waste. Industrial & 

Engineering Chemistry Research 2021, 60 (27), 9885-9896. 

43. Zhang, X.;  Kano, M.; Li, Y., Locally weighted kernel partial least squares regression 

based on sparse nonlinear features for virtual sensing of nonlinear time-varying processes. 

Computers & Chemical Engineering 2017, 104, 164-171. 

44. Jiang, Q.;  Yan, X.;  Yi, H.; Gao, F., Data-driven batch-end quality modeling and 

monitoring based on optimized sparse partial least squares. IEEE Transactions on 

Industrial Electronics 2019, 67 (5), 4098-4107. 

45. Hattori, Y.; Otsuka, M., Modeling of feed-forward control using the partial least 

squares regression method in the tablet compression process. International journal of 

pharmaceutics 2017, 524 (1-2), 407-413. 

46. Willis, M. J.;  Montague, G. A.;  Di Massimo, C.;  Tham, M. T.; Morris, A. J., Artificial 

neural networks in process estimation and control. Automatica 1992, 28 (6), 1181-1187. 

47. Iliyas, S. A.;  Elshafei, M.;  Habib, M. A.; Adeniran, A. A., RBF neural network 

inferential sensor for process emission monitoring. Control Engineering Practice 2013, 21 

(7), 962-970. 

48. Sun, K.;  Liu, J.;  Kang, J.-L.;  Jang, S.-S.;  Wong, D. S.-H.; Chen, D.-S., Development 

of a variable selection method for soft sensor using artificial neural network and 

nonnegative garrote. Journal of Process Control 2014, 24 (7), 1068-1075. 

49. Hough, B. R.;  Beck, D. A.;  Schwartz, D. T.; Pfaendtner, J., Application of machine 

learning to pyrolysis reaction networks: Reducing model solution time to enable process 

optimization. Computers & Chemical Engineering 2017, 104, 56-63. 

50. Shang, C.;  Yang, F.;  Huang, D.; Lyu, W., Data-driven soft sensor development based 

on deep learning technique. Journal of Process Control 2014, 24 (3), 223-233. 

51. Gao, X.;  Shang, C.;  Jiang, Y.;  Huang, D.; Chen, T., Refinery scheduling with varying 

crude: A deep belief network classification and multimodel approach. AIChE Journal 

2014, 60 (7), 2525-2532. 

52. Li, F.;  Zhang, J.;  Shang, C.;  Huang, D.;  Oko, E.; Wang, M., Modelling of a post-

combustion CO2 capture process using deep belief network. Applied Thermal Engineering 

2018, 130, 997-1003. 

53. Zhang, Z.; Zhao, J., A deep belief network based fault diagnosis model for complex 

chemical processes. Computers & chemical engineering 2017, 107, 395-407. 



 102 

54. Namdari, M.; Jazayeri-Rad, H., Incipient fault diagnosis using support vector machines 

based on monitoring continuous decision functions. Engineering Applications of Artificial 

Intelligence 2014, 28, 22-35. 

55. Pani, A. K.; Mohanta, H. K., Online monitoring and control of particle size in the 

grinding process using least square support vector regression and resilient back propagation 

neural network. ISA transactions 2015, 56, 206-221. 

56. Gholami, A. R.; Shahbazian, M., Soft sensor design based on fuzzy C-Means and 

RFN_SVR for a stripper column. Journal of Natural Gas Science and Engineering 2015, 

25, 23-29. 

57. Zio, E.;  Baraldi, P.; Popescu, I. C., A fuzzy decision tree method for fault classification 

in the steam generator of a pressurized water reactor. Annals of Nuclear Energy 2009, 36 

(8), 1159-1169. 

58. Ge, Z., Process data analytics via probabilistic latent variable models: A tutorial review. 

Industrial & Engineering Chemistry Research 2018, 57 (38), 12646-12661. 

59. Zhou, L.;  Chen, J.; Song, Z., Recursive Gaussian process regression model for adaptive 

quality monitoring in batch processes. Mathematical Problems in Engineering 2015, 2015. 

60. MacGregor, J. F.;  Jaeckle, C.;  Kiparissides, C.; Koutoudi, M., Process monitoring and 

diagnosis by multiblock PLS methods. AIChE Journal 1994, 40 (5), 826-838. 

61. Gonzaga, J.;  Meleiro, L. A. C.;  Kiang, C.; Maciel Filho, R., ANN-based soft-sensor 

for real-time process monitoring and control of an industrial polymerization process. 

Computers & chemical engineering 2009, 33 (1), 43-49. 

62. Shi, J.;  Liu, X.; Sun, Y., Melt index prediction by neural networks based on 

independent component analysis and multi-scale analysis. Neurocomputing 2006, 70 (1-

3), 280-287. 

63. Han, I. S.;  Han, C.; Chung, C. B., Melt index modeling with support vector machines, 

partial least squares, and artificial neural networks. Journal of Applied Polymer Science 

2005, 95 (4), 967-974. 

64. Sharmin, R.;  Sundararaj, U.;  Shah, S.;  Griend, L. V.; Sun, Y.-J., Inferential sensors 

for estimation of polymer quality parameters: Industrial application of a PLS-based soft 

sensor for a LDPE plant. Chemical Engineering Science 2006, 61 (19), 6372-6384. 

65. Ao, T.;  Dong, X.; Zhizhong, M., Batch-to-batch iterative learning control of a batch 

polymerization process based on online sequential extreme learning machine. Industrial & 

Engineering Chemistry Research 2009, 48 (24), 11108-11114. 

66. Kaneko, H.;  Arakawa, M.; Funatsu, K., Novel soft sensor method for detecting 

completion of transition in industrial polymer processes. Computers & chemical 

engineering 2011, 35 (6), 1135-1142. 

67. Ge, Z.;  Chen, T.; Song, Z., Quality prediction for polypropylene production process 

based on CLGPR model. Control Engineering Practice 2011, 19 (5), 423-432. 



 103 

68. Liu, Y.; Chen, J., Integrated soft sensor using just-in-time support vector regression 

and probabilistic analysis for quality prediction of multi-grade processes. Journal of 

Process control 2013, 23 (6), 793-804. 

69. Xu, S.; Liu, X., Melt index prediction by fuzzy functions with dynamic fuzzy neural 

networks. Neurocomputing 2014, 142, 291-298. 

70. Wang, W.; Liu, X., Melt index prediction by least squares support vector machines 

with an adaptive mutation fruit fly optimization algorithm. Chemometrics and Intelligent 

Laboratory Systems 2015, 141, 79-87. 

71. Liu, Y.;  Yang, C.;  Gao, Z.; Yao, Y., Ensemble deep kernel learning with application 

to quality prediction in industrial polymerization processes. Chemometrics and Intelligent 

Laboratory Systems 2018, 174, 15-21. 

72. Park, T. C.;  Kim, T. Y.; Yeo, Y. K., Prediction of the melt flow index using partial 

least squares and support vector regression in high-density polyethylene (HDPE) process. 

Korean Journal of Chemical Engineering 2010, 27 (6), 1662-1668. 

73. Chen, J.; Liu, K.-C., On-line batch process monitoring using dynamic PCA and 

dynamic PLS models. Chemical Engineering Science 2002, 57 (1), 63-75. 

74. Xu, L.;  Skoularidou, M.;  Cuesta-Infante, A.; Veeramachaneni, K., Modeling tabular 

data using conditional gan. arXiv preprint arXiv:1907.00503 2019. 

75. Nomikos, P.; MacGregor, J. F., Monitoring batch processes using multiway principal 

component analysis. AIChE Journal 1994, 40 (8), 1361-1375. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 104 

Chapter 5: A Hybrid Science-Guided Machine Learning Approach for Modeling and 

Optimizing Chemical Processes: A Review 

  

5.1. Introduction  

    Modeling of many physiochemical systems requires detailed scientific knowledge of the 

system which is not always feasible for complex processes. We make some assumptions 

when modeling the system with first principles that ultimately leads to some knowledge 

gaps in describing the original system. Even for the systems where the scientific knowledge 

is sufficient to model the system, there are too many model parameters to estimate.  We 

often apply data-based models to study the systems where scientific data are available since 

they are more accurate in prediction. However, data-based/machine learning models are 

black-box models which can over-fit the data and also produce scientifically inconsistent 

results. For better accuracy, ML models also require more data which is not always feasible 

for many problems. Therefore, it is important to integrate science-based knowledge and 

data-based knowledge for an accurate and scientifically consistent prediction, which we 

will refer to as hybrid science- guided machine learning (SGML) approach.  

    The most popular hybrid SGML approach that is being practiced in different fields of 

science is to combine a data-based ML model with a science-based first-principle model. 

However, there are more ways to combine scientific knowledge and data-based knowledge. 

In this work, we focus on both aspects of science complementing ML, and ML 

complementing science.  

    In our development of the hybrid SGML approach, we have benefited from two latest 

references. In their 2017 article, Karpatne et. al.1 suggest the theory-guided data science as 

a new paradigm for scientific discovery from data. They classify the theory-guided data 

science methods into different categories, such as theory-guided design of models, 

initialization, theory-guided refinement of data science outputs, hybrid models of theory of 

data science, and augmenting theory-based models using data science.  In their 2020 article, 

Willard et. al.2 classify the integration of physics-based modeling with ML methodology 

according to the modeling objectives. The latter include, for example, improving the 

predictions beyond physical models, downscaling the complexity of physics-based models, 

generating data, quantifying uncertainty, and discovering governing equations of the data-

based model.  

    This study presents a broad perspective of hybrid process modeling and optimization 

combining the scientific knowledge and data analytics in bioprocessing and chemical 

engineering with a science-guided machine learning (SGML) approach. We divide the 

approach into two major categories. The first refers to the case where a data-based ML 

model compliments and makes the first-principle science-based model more accurate in 

prediction, and the second corresponds to the case where scientific knowledge helps make 

the ML model more scientifically consistent. We present a detailed review of scientific and 

engineering literature relating to the hybrid SGML approach, and propose a systematic 
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classification of hybrid SGML models. For applying ML to improve science-based models, 

we present expositions of the sub-categories of direct serial and parallel hybrid modeling 

and their combinations, inverse modeling, reduced-order modeling, quantifying 

uncertainty in the process and even discovering governing equations of the process model. 

For applying scientific principles to improve ML models, we discuss the sub-categories of 

science-guided design, learning and refinement. For each sub-category, we identify its 

requirements, strengths and limitations, together with their published and potential areas 

of applications in bioprocessing and chemical engineering. 

    This work differentiates itself from several recent reviews of hybrid modeling in 

bioprocessing and chemical engineering through the following contributions: (1) 

presentation of a broader hybrid SGML methodology of integrating science-guided and 

data-based models, and not just the direct combinations of first-principle and ML models; 

(2) classification of the hybrid model applications according to their methodology and 

objectives, instead of their areas of  applications; (3) identification of the themes and 

methodologies which have not been explored much in chemical engineering applications, 

like the use of scientific knowledge to help improve the ML model architecture and 

learning process for more scientifically consistent solutions; and (4) illustrations of  the use 

of these hybrid SGML methodologies applied to industrial polymer processes, such as 

inverse modeling, and science-guided loss which have not been applied previously in such 

applications. 

    The objective of this paper is to present a comprehensive review and exposition of 

scientific and engineering literature relating to the hybrid SGML approach, and propose a 

systematic classification of hybrid SGML models focusing on both sciences 

complementing ML models, and ML complementing science-based models. Section 5.2 

gives a review of the broad applications of hybrid SGML approach in bioprocessing and 

chemical engineering.  As the number of reported methodologies and applications 

continues to rise significantly, it is hard for a person unfamiliar with the subject to identify 

the appropriate approach for a specific application. This leads to our key focus in Sections 

3 and 4, presenting a systematic classification and exposition of hybrid SGML 

methodologies. Section 5.3-5.5 explains different categories of applying ML to 

complement science-based models, discuss their requirements, strengths and limitations, 

suggest potential areas of applications, and present illustrative examples from chemical 

manufacturing. Section 4 focuses on different categories of applying scientific principles 

to complement ML models, together with their requirements, strengths and limitations, as 

well as their potential applications and illustrative examples. Section 5.6 summarizes our 

conclusions. 
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5.2. Applications of Hybrid SGML Approach in Bioprocessing and Chemical 

Engineering 

    The integration of science-based models with data-based models has appeared in various 

fields like fluid mechanics3, turbulence modeling4, quantum physics5, climate science6 , 

geology7 and  biological sciences.8 

    This study focuses on applications of hybrid SGML methodologies in bioprocessing and 

chemical engineering.  Among the earliest applications is the direct hybrid modeling 

involving the integration of first-principle model with data-based neural networks9.    

Psichogios and Unger10 combine a partial first-principle model based on prior process 

knowledge with a neural network, which serves as an estimator of unmeasured process 

parameters that are difficult to model from first principle. They apply the hybrid model to 

a fed-batch bioreactor, and the integrated model has better properties than the standard 

“black-box” neural network models in that it is able to interpolate and extrapolate much 

more accurately, is easier to analyze and interpret, and requires significantly fewer training 

examples. Thompson and Kramer11 later demonstrate how to integrate simple process 

model and first-principle equations to improve the neural network predictions of cell 

biomass and secondary metabolite in a fed-batch penicillin fermentation reactor when 

trained on sparse and noisy process data.  

    Agarwal12 develops a general qualitative framework for identifying the possible ways of 

combining neural networks with the prior knowledge and experience embedded in the 

available first-principle models, and discusses the direct hybrid modeling with series or 

parallel configuration to combine the outputs of the science-based model and the ML 

model.  Asprion, et al.13 present the term, grey-box modeling, for optimization of chemical 

processes.  They consider the case where a predictive model is missing for a process unit 

within a larger process flowsheet, and use measured operating data to set up hybrid models 

combining physical knowledge and process data. They report results of optimization using 

different gray-box models for process simulators applied to a cumene process. Actually, in 

a number of earlier studies, Bohlin and his coworkers have explored in details the concepts 

of gray-box identification for process control and optimization, and Bohlin has summarized 

the concepts, tools and applications of grey-box hybrid modeling in an excellent book.14  

    Over the years, we have seen a growing number of applications of hybrid modeling in 

bioprocessing and chemical engineering as part of the advances in smart manufacturing 15-

17.  

    In their 2021 paper, Sansana et al.16 discuss mechanistic modeling, data-based modeling, 

hybrid modeling structures, system identification methodologies, and applications. They 

classify their hybrid model into parallel, series, surrogate models (which are simpler 

mathematical representations of more complex models and similar to reduced-order 

models that we discuss below), and alternate structures (which include gray-box modeling 

mentioned above). In the alternate structures, they refer to some applications of semi-

mechanistic model structures where the best hybrid model is selected using optimization 
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concepts. They also classify the hybrid models based on some of the chemical industry 

applications into analysis of model-plant mismatch17, model transfer, feasibility analysis 

and predictive maintenance, apart from the previous mentioned applications like process 

control, monitoring and optimization.  

    Von Stosch et. al.18 have used the term, hybrid semi-parametric modeling, in their 2014 

review, and have summarized applications in biochemical engineering for process 

monitoring, control, optimization, scale-up and model reduction. They emphasize that the 

application of hybrid semi-parametric techniques does not automatically lead to better 

results, but that rational knowledge integration has potential to significantly improve 

model-based process design and operation. 

    Qin and Chiang19 review the advances in statistical machine learning and process data 

analytics that can provide efficient tools in developing future hybrid models. In a latest 

paper, Qin et. al.20 propose a statistical learning procedure integrating with process 

knowledge to handle a challenging problem of developing a predictive model for process 

impurity levels from more than 40 process variables in an industrial distillation system. 

Both studies highlight the power of statistical machine leaning for developing future hybrid 

process models. 

    A survey of the literature has shown applications of hybrid modeling in bioprocesses 21-

27, chemical and oil and gas process industries28-32, and polymer processes 33,34 for more 

accurate and scientifically consistent predictions. This survey has also shown many topical 

focuses of applications in bioprocessing and chemical engineering, including process 

control 35-38, design of experiments 39,40, process development and scale-up 41,42, process 

design43 and optimization 13,44,45. 

    In a recent study, Zhou et al.46 present a hybrid approach for integrating material and 

process design that holds much promise in process and product design. Cardillo et. al.47 

demonstrate the importance of hybrid models in silico production of vaccines to accelerate 

the manufacturing process. Chopda et. al.23 apply integrated process analytical techniques, 

and modeling and control strategies to enable the continuous manufacturing of monoclonal 

antibodies.  McBride et. al.48 classify the hybrid modeling applications in different 

separation processes in chemical industry, namely, distillation 49-51 , crystallization 52,53  , 

extraction 54-56 , floatation 57,58, filtration 59,60  and drying 61,61. Venkatasubramanian63 gives 

an excellent exposition of the current state of development and applications of artificial 

intelligence in chemical engineering. The author highlights the intellectual challenges and 

rewards for developing the conceptual frameworks for hybrid models, mechanism-based 

causal explanations, domain-specific knowledge discovery engines, and analytical theories 

of emergence, and presents examples from optimizing material design and process 

operations.  

    In an excellent edited volume, Glassey and Stosch64 discuss some of the key strengths 

of hybrid modeling in chemical processes, particularly in the prediction of scientifically 

consistent results beyond the experimentally tested process conditions, which is crucial for 
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process development, scale-up, control and optimization. They also identify some 

challenges. For example, incorrect fundamental knowledge in a science-based model could 

impose bias on predictions, thus the underlying assumptions used in a model are important 

for analysis. Also, time and accuracy of parameter estimation is critical when deciding on 

a hybrid modeling strategy. Kahrs and Marquardt65 discuss the approach of simplifying the 

complex hybrid models into sequence of simpler problems, such as data preprocessing, 

solving nonlinear equations, parameter estimation and building empirical models using 

ML. 

    A recent patent by Chan et al.66 presents Aspen Technology’s approach on asset 

optimization using integrated modeling, optimization and artificial intelligence.  In a later 

white paper, Beck and Munoz67 describe Aspen Technology’s current focus on hybrid 

modeling, combining AI and domain expertise to optimize assts. In particular, based on 

their application experience in in chemical industries, Aspen Tech have classified hybrid 

models into three categories:  AI-driven, first-principle driven and reduced-order models 
67. They define an AI-driven hybrid model as an empirical model based on plant or 

experimental data and use first principles, constraints and domain knowledge to create a 

more accurate model. Examples of AI-driven models are inferential sensors or online 

equipment models. They define a first-principle driven hybrid model as an existing first-

principle model augmented with data and AI to improve model’s accuracy and 

predictability, which has seen many applications in bioprocessing and chemical 

engineering. Lastly, they define a reduced-order model where we use ML to create an 

empirical data-based model based on data from numerous first-principle process simulation 

runs, augmented with constraints and domain expertise, in order to build a fit-for-purpose 

low-dimensional model that can run more quickly. With reduced-order models, we can 

extend the scale of modeling from units to the plant-wide models that can be deployed 

faster. 

5.3. A Classification and Exposition of Hybrid Science-Guided Machine Learning 

Models  

    As we have seen thus far, the majority of work in hybrid model applications in 

bioprocessing and chemical engineering focuses on the direct combination of science-

based and data-based models. In this article, we portray a broad perspective of the 

combination of scientific knowledge and data analysis in bioprocessing and chemical 

engineering as inspired by some of the applications in physics and other areas 1,2. We 

categorize these hybrid SGML applications in chemical process industry into two major 

categories, namely, ML compliments science and science compliments ML, together with 

their subcategories based on the methodologies and objectives of hybrid modeling as 

illustrated in Figure 5.1. We also classify the applications in bioprocessing and chemical 

engineering according to our hybrid SGML approach. We present examples in several 

areas of SGML which have not been explored much thus far, and which have great potential 

for process improvement and optimization. 
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Figure 5.1. Classification of hybrid SGML models 

5.4. ML Complements Science 

    We can integrate a first-principle scientific model with a data-based model to improve 

the model accuracy and consistency. In the following, we introduce the subcategories of 

direct hybrid modeling, inverse modeling approach, reducing model complexity, 

quantifying uncertainty in the process, and discovering governing equations. 

5.4.1 Direct Hybrid Modeling  

    A direct hybrid model combines the output of a first-principle or science-based model 

with the output of a data-based ML model to improve the prediction accuracy of dependent 

variables. These combinations could occur in a series configuration, a parallel 

configuration, or a series-parallel configuration. The direct hybrid modeling strategy is the 

most widely used approach in hybrid modeling in bioprocessing and chemical engineering. 

5.4.1.1 Parallel Direct Hybrid Model 

    Figure 5.2 illustrates the concept of a parallel direct hybrid model. The science-based 

model may use the initial conditions and boundary conditions as inputs to make a 

prediction (Ym), while the ML model uses dynamic time-varying data to make the 

predictions (Yml). We then combine both outputs directly or with assigned weights (w1, 

w2) to achieve higher prediction accuracy. 
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Figure 5.2. Parallel direct hybrid model: Ym and Yml are model                                                             

predictions, and w1 and w2 are weights. 

    Galvanauskas et. al.68 combine directly the data-based neural networks for kinetics and 

viscosity predictions with the first-principle mass balance ordinary differential equations 

to optimize the production rate of an industrial penicillin process. Chang et. al.33 showcase 

a parallel hybrid model for the dynamic simulation of a batch free-radical polymerization 

of methyl methacrylate. They combine an approximate rate function for the concentration 

of the immeasurable initiator concentration with a black-box time-dependent or recurrent 

neural network model9 of the dependent variables representing the mass and moment 

balance equations of the polymerization reactor. They use the resulting hybrid neural 

network and rate function (HNNRF) model to optimize the batch polymerization system, 

identifying the optimal recipe or operating conditions of the batch polymerization system.  

    Hybrid residual modeling or parallel direct hybrid residual model is a class of the 

parallel direct hybrid model, where we use a first-principle or science-based process model 

to quantify the time-dependent prediction error or residual, Yres, between plant data Y(t) 

and science-based model prediction Ym as a function of process variables 41,69-71.  Figure 

3 illustrates the concept of the parallel direct hybrid residual model.  The correction to the 

model output taking care of the prediction error or residual of the ML model in the hybrid 

residual configuration improves the model accuracy over the non-residual configuration of 

Figure 5.2. 
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Figure 5.3. Parallel direct hybrid residual model: Ym represents model outputs, Res are the 

time-dependent prediction errors or residues between plant data Y(t) and science-based 

model outputs Ym, and Ym + Yres are the corrected model outputs 

    Tian et al.69 develop a hybrid residual model for a batch polymerization reactor. First, 

they develop a simplified process model based on polymerization kinetics, and mass and 

energy balances to predict the monomer conversion, number-average molecular weight 

MWN, and weight-average molecular weight MWW. This first-principle process model 

cannot predict these product quality targets accurately because of its neglect of the gel 

effect at high monomer conversion and other factors. Next, the authors develop a parallel 

configuration of three data-based, time-dependent or recurrent neural networks9 trained by 

process data to predict the residuals of monomer conversion, MWN and MWW of the 

simplified first-principle process model.  The predicted residuals are added to the 

predictions from the simplified process model to form the final hybrid model predictions. 

Because of focus in batch process control is on the end-of-batch product quality targets, 

the use of time-dependent or recurrent neural networks can usually offer good long-range 

predictions. Therefore, the resulting hybrid residual model performs well in many batch 

process control and optimization applications 41,43,69-71. 

    Simutis and Lubnert36 present another application of the direct hybrid modeling 

methodology to state estimation for bioprocess control. This work combines a first-

principle state Kalman filter based on mass balances of biomass, substrate and product, and 

an ML-based observation model for quantifying relationship between less established 

variables and measurements. Recently, Ghosh et. al.72-73 apply the parallel hybrid modeling 

framework in process control, where they combine first-principle models with data-based 

model built by applying subspace identification for better prediction of batch polymer 

manufacturing and seed crystallization system. Hanachi et. al.74 showcase the application 

of direct hybrid modeling methodology for predictive maintenance. They combine a 

physics-based model with a data-based inferential model in an iterative parallel 

combination for predicting manufacturing tool wear. 
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5.4.1.2. Series Direct Hybrid Model 

 

 
Figure 5.4. Serial direct hybrid model 

    Figure 5.4 illustrates the serial direct hybrid model. The science-based process model 

serves to augment the data needs of the ML model, while the ML model can help in 

estimating the parameters of the science-based model. Babanezhad et al.75 consider the 

computational fluid dynamics (CFD) for two-phase flows in chemical reactors, and couple 

science-based CFD results to a ML model based on an adaptive network-based fuzzy 

inference system (ANFIS). Once the ML model captures the pattern of the CFD results, 

they use the hybrid model for process simulation and optimization. Some features 

calculated from a science-based CFD model can augment the data as inputs to a ML model.  

Chan et. al.66  have discussed the advantages of data augmentation by combining simulation 

and plant data to generate a more accurate data-based analysis. In an application to crude 

distillation in petroleum refining, Mahalec and Sanchez51 use a science-based model to 

calculate the internal reflux to augment other plant data as inputs to a ML model, in order 

to calculate the relationship to the product true boiling point curves for quality analysis.  

    Krippl et. al.76 present the hybrid modeling of an ultrafiltration process where they 

calculate the flux using a ML model to act as an input to a science-based model. Similarly, 

Luo et al.29 develop a hybrid model for a fixed-bed reactor for ethylene oxidation, 

integrating first-principle reaction kinetics and reactor model with a ML catalyst 

deactivation model. The latter is developed with support vector regression from operating 

data, assuming the deactivation property decreasing monotonically with time. With the 

hybrid model, the prediction error is less than 5% for the prediction of an industrial reactor. 

The approach can predict the production more accurately and have more reliable 

extrapolation.  

    Figure 4 shows that a ML model can also help in estimating the parameters of the 

science-based model. Mantovanelli et al.77 develop a hybrid model for an industrial 

alcoholic fermentation process, combining first-principle mass and energy balance 

equations for a series of five fermenters with a data-based, functional link network75 to 

identify the kinetic parameters of the fermentation reactors trained by plant data. The 

hybrid model includes the effect of temperature on the fermentation kinetics and show 

good nonlinear approximation capability. Sharma and Liu78 show how to use plant data to 

estimate kinetic parameters of first-principle models for industrial polyolefin processes.   



 113 

Finally, we note that as illustrated in Figure 5.4, we can interchangeably use a science-

based model or a ML model first in the hybrid framework, depending on we require to add 

more features to augment the data set or to estimate model parameters. 

5.4.1.3. Serial-Parallel or Combined Direct Hybrid Model 

    Figure 5.5 shows a combined direct hybrid model, where we use the steady-state data 

from the plant to estimate the unknown parameters of a science-based process model and 

then uses the hybrid residual modeling strategy of Figure 5.3 for prediction. This serial-

parallel combination or feedback system can improve model predictions depending on the 

application. 

 
Figure 5.5. Combined Direct Hybrid Model: Ym are outputs,                                                                                    

Yres are residuals, and Ym+ Tres are corrected outputs 

    Bhutani et. al.79 present a definitive study comparing first-principle, data-based and 

hybrid models applied to an industrial hydrocracking process. In particular, they couple a 

first-principle hydrocracking model based on pseudocomponents with data-based neural 

network models of different configurations of Figures 5.3 to 5.5 that quantify the variations 

in operating conditions, feed quality and catalyst deactivation. The neural network 

component of the hybrid model either provides updated model parameters in the first-

principle process model connected in series or correct predictions of the first-principle 

process models. The hybrid models are able to represent the behavior of an industrial 

hydrocracking unit to provide accurate and consistent predictions in the presence of process 

variations and changing operating scenarios. 

    Song et. al.80 also apply the direct hybrid model configurations of Figure 5.3 to 5.5 to an 

industrial hydrocracking process and analyze the strengths and weaknesses of these 

configurations. They call a model a mechanism-dominated model if the accuracy of its 

outputs is mainly dominated by the available theoretical knowledge used to develop the 

model; and they also call a model a data-dominated model if the accuracy of its outputs is 

mainly dominated by the quality of the training data and the performance of the resulting 
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data-based model. In particular, they give both the first-principle model and the serial direct 

hybrid model of Figure 4 as examples of mechanism-dominated models, and cite the data-

based model, parallel direct residual model of Figure 3, and the combined direct hybrid 

model of Figure 5 as examples of data-dominated models. 

    In their work, Song et al.80 combine a mechanism-dominated model with a data-

dominated model as a hybrid direct model of Figure 2, with the weighting factors for the 

outputs of two individual models being determined in an adaptive fashion. For their 

application, Song et al. work with a mechanism-dominated model of an industrial 

hydrocracking process based on kinetic lumping79,80, and with a data-dominated model 

based on a self-organizing map (SOM) followed by a convolutional neural network (CNN), 

with both being trained by simulated process data based on Aspen HYSYS80. They evaluate 

the performance of the hybrid model for operational optimization of the hydrocracking 

producing different product scenarios. While this study includes new conceptual 

development, it needs much simplification of its relatively complex methodology to make 

it readily applicable by data scientists and practicing engineers. 

    In a recent study, Chen and Lerapetritou17   demonstrate how to use partial correlation 

analysis from multivariate statistics and mutual information analysis from information 

theory to identify and improve the plant-model mismatch in using a direct combined hybrid 

model for a pharmaceutical manufacturing process. As the authors state, implementing this 

plant-model mismatch strategy requires active excitation of variables online in order to 

capture the corresponding response data from the plant, which is often difficult to perform 

in manufacturing plants and in experimental settings, and could benefit from new 

development in computing and information technology. 

    Lima et al.81 propose a semi-mechanistic model building framework based on selective 

and localized model extensions.  They use a symbolic reformulation of a set of first-

principle model equations in order to derive hybrid mechanistic–empirical models. The 

symbolic reformation permits the addition of empirical elements selectively and locally to 

the model. They apply the approach to the identification of a non-ideal reactor and to the 

optimization of the Otto–Williams benchmark reactor.  

5.4.2 Inverse Modeling 

    In inverse modeling, we use the output of a system to infer its corresponding input or 

independent variables; this is different from the forward modeling where we use the known 

independent variables to predict the output of the system 2.  Figure 5.6 illustrates the inverse 

modeling framework. We see that in the traditional data-based approach, we use process 

variable data (X) and quality target data (Y) to train and test a ML model. Because the plant 

does not measure most quality targets continuously, we can apply a science-based process 

model, developed by first principles and validated by plant data, to predict and augment 

the quality target data (Y) for given process variable (X). 
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Figure 5.6. Inverse Modeling Framework 

    One of the earliest applications of inverse modeling for chemical process was by 

Savkovic-Stevanovic et. al.83 They use a neural network controller for product composition 

control of a distillation plant based on the process inverse dynamic model relating the 

product composition to the reflux flow rate. The results illustrate the feasibility of using 

neural network for learning nonlinear dynamic model of the distillation column from plant 

input-output data. Their results also demonstrate the importance to take the time-delay of 

the plant into account. 

    Pharmaceutical product design and development typically uses the design of 

experiments (DOE) and response surface modeling (RSM) for steady-state process 

modeling, while neglecting the process dynamics and time delays. Tomba et. al.84,85 

demonstrate how to use the inverse modeling concept to generate process understanding 

with dynamic process models, quantifying the impact of temporal deviations and 

production dynamics. Specifically, they perform data-based, latent variable regression 

model inversion to find the best combination of raw materials and process variables to 

achieve the desired quality targets. The authors propose to combine design-of-experiments 

studies with hybrid modeling for process characterization. 

    Recently, Bayer al.86 apply the inverse modeling approach to Escherichia coli fed-batch 

cultivations, evaluating the impact of three critical process variables. They compare the 

performance of a hybrid model to a pure data-driven model and the widely adopted RSM 

of the process endpoints, and show the superior behavior of the hybrid model compared to 

the pure black-box approaches for process characterization. The inverse modeling 

methodology makes the decision-making process in pharmaceutical product development 

faster, while minimizing the number of experiments and reducing the raw material 

consumption. 

    Raccuglia et.al.87 train the ML learning model using reaction data to predict reaction 

outcomes for the crystallization of templated vanadium selenites. They demonstrate the use 

of ML to assist material discovery using data from previously unsuccessful or failed 

material synthesis experiments.  The resulting ML model outperforms traditional human 

strategies, and successfully predicts conditions for new organically templated, inorganic 
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product formation with a success rate of nearly 90%. Significantly, they show that inverting 

the machine-learning model reveals new hypotheses regarding the conditions for 

successful product formation. 

    There is a growing interest in the inverse approach to material deign, in which the desired 

target properties are used as input to identify the atomic identity, composition and structure 

(ACS) that exhibit such properties. Liao et al.88 present a metaheuristic approach to material 

design that incorporates the inverse modeling framework.Vankatasunramanian61 also 

mentions the importance of inverse problem being solved by the application of artificial 

intelligence in chemical engineering processes.  

5.4.3 Reduced-Order Models 

    Reduced-order models (ROMs) are simplified models that represent a complex process 

in a computationally inexpensive manner, but also maintain high degree of accuracy of 

prediction in simulating the process. In bioprocessing and chemical engineering, we can 

apply the ROM methodology to simulate complex processes and then use ML models to 

optimize the processes.  See Figure 5.7. We can use ROMs to simulate different scenarios 

and sensitivities in order to generate process data, which in turn can be combined with ML 

models to build accurate soft sensors to predict quality variables. This approach helps to 

make sure that the ML model is trained on process data with multiple variations which is 

not possible in a steady plant run. Hence, data-based sensors will be accurate for any future 

process optimization, scale up etc. and it is also easier to deploy such models online. 

 

 
Figure 5.7. Reduced order process modeling framework 

 

The concept of Digital Twin 89 in chemical process industry is also based on the concept 

of Reduced Order Models of combining multiple models so that they can run multiple 

processes simultaneously to simulate a virtual plant. 

    In one of the earliest applications of ROM, MacGregor et. al.90 apply a PLS (projection 

to latent squares or partial least squares) ML model of a polyethylene using process data 

simulated from a process model to develop inferential prediction models for polymer 

properties. This application involves a high-pressure tabular reactor system producing low-

density polyethylene, in which all the fundamental polymer properties are extremely 

difficult to measure and are usually unavailable, and some on-line measurements such as 

the temperature profile down the reactor and the solvent flow rate are available on a 

frequent basis. The dimensionality reduction aspects of PLS facilitates the development of 
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a multivariate statistical control plot for monitoring the operating performance of the 

reactors. 

    Reduced-order models have also been called surrogate models in the context of grey-

box modeling techniques where first-principle models are combined with data-based 

optimization techniques. Rogers and Lerapetritou91,92 propose the use of surrogate models 

as reduced-order models that approximate the feasibility function for a process in order to 

evaluate the flexibility and operability of a science-based process model, since it is difficult 

to directly evaluate the feasibility due to black-box constraints.  

    In a recent study, Abdullah et. al.93 showcase a data-based reduced-order modeling of 

non-linear processes that have time-scale multiplicity to identify the slow process state 

variables that can be used in a dynamic model.  Agarwal et. al.94 use ROM for modeling 

pressure swing adsorption process where they use a low-dimensional approximation of a 

dynamic partial differential equation model, which is more computationally efficient. In 

another study, Kumar et. al. 45 use a reduced-order steam methane reformer model to 

optimize furnace temperature distribution. In a recent study, Shafer et al.95 use a reduced-

dimensional dynamic model for the optimal control of air separation unit. The model 

combines compartmentalization to reduce the number of differential equations with 

artificial neural networks to quantify the nonlinear input–output relations within 

compartments. This work reduces the size of the differential equation system by 90%, 

while limiting the additional error in product purities to below 1 ppm compared to a full-

order stage-by-stage model.  

    Our focus on ROM is more towards using the science-based model to simulate process 

data that can be used by ML models to derive empirical correlations for process 

optimization. ROM are particularly useful in chemical processes for dynamic optimization 

of a complex large-scale process.  

5.4.4 Hybrid SGML Modeling for Uncertainty Quantification  

    A science-based model can produce results with some uncertainties which can be 

quantified by some ML-based techniques. The uncertainties in science-based models arise 

from uncertainty in model parameters, and boundary and initial conditions. In some cases, 

the model bias and assumptions can be a source of uncertainty as well. We can use the 

predictions from a calibrated model to quantify uncertainties. Data-based ML models like 

Gaussian process, neural networks etc. are used to help build a surrogate model that defines 

a relation between model inputs and outputs which can then be used to quantify the 

uncertainty. This surrogate data- based ML modeling reduces the computational expense 

of Monte Carlo methods, which are traditionally used for uncertainty quantification (UQ)96. 

    Because of uncertainty in process inputs and process states in a chemical process model, 

the uncertainty propagates to the process outputs as well. The uncertainty in a science-

based model due to any of the parameters or any of the prior knowledge can be used by a 

ML model to quantify uncertainty in a chemical process as shown in figure 5.8. Duong et. 

al.97 uses UQ for process design and sensitivity analysis of complex chemical processes 
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using the polynomial chaos theory.  Fenila et. al.98 utilize UQ for electrochemical synthesis, 

where they calculate simulation uncertainties and global parameter sensitivities for the 

hybrid model. UQ has also been applied to understand complex reaction mechanisms.   

    Proppe et. al.99 showcase kinetic simulations in discrete-time space considering the 

uncertainty in free energy and detecting regions of uncertainty in reaction networks. UQ 

techniques are popular in the field of catalysis and material science as they are used to 

quantify the uncertainty of models based on density functional theory100,101. In another 

study, Boukouval and Lerapetritou102 demonstrate the feasibility analysis of a science-

based process model over a multivariate factor space. They use a stochastic data-based 

model for feasibility evaluation, referred to as Kriging and develop an adaptive sampling 

strategy to minimize sampling cost while maintaining feasibility.   

 
Figure 5.8. Uncertainty quantification modeling framework 

5.4.5 Hybrid HGML Modeling to Aid in Discovering Scientific Laws using ML  

    One way in which ML can help science-based modeling is by discovering new scientific 

laws which governs the system. There is a growing application of ML in physics to 

rediscover or discover physical laws mainly by data-driven discovery of partial differential 

equations (PDE). ML can be used to develop an empirical correlation which can be used 

as a scientific law in a science-based model or ML can be used to solve the PDE defining 

scientific laws as illustrated in figure 5.9. 

    Rudy et. al.103 showcase the discovery of physical laws like the Navier-Stokes equation 

and the reaction-diffusion equation in chemical processes by a sparse regression method 

governing the PDE by using a system of time series measurements. Langley et. al.105 

present the applications of ML in rediscovering some of the chemistry laws, such as the 

law of definite proportions, law of combining volumes, determination of atomic weights 

and many others.  

    Another important application of ML is to discover some of the thermodynamic laws 

which can be useful in defining the phase equilibrium and critical for an accurate science-

based process model. Nentwich et. al.107 use data-based mixed adaptive sampling strategy 

to calculate the phase composition, instead of the complex equation-of-state models. In 

another novel approach. In another novel approach Hoffmann et. al. 108 discovers governing 

reactions from concentration data. They use a sparse tensor regression method for 

identification of non-linear dynamics to estimate a complex reaction networks. 
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    Thus, ML application can have promising use in discovering more accurate physical and 

chemistry laws that govern the chemical process. These scientific laws calculated by ML-

based models can then be utilized in first-principle model to improve accuracy as well as 

reduce model complexity. 

 
Figure 5.9. Discovering scientific laws 

5.5. Science Compliments ML  

    Referring to Figure 5.1, we can also improve ML models using scientific knowledge. 

We can improve the generalization or extrapolation capability and reduce the scientific 

inconsistency of ML models by using scientific knowledge in designing the ML models. 

The scientific knowledge can also help in improving the architecture of the data-based ML 

model or the learning process of the ML model and even with the final post-processing of 

the ML model results.  

5.5.1 Science-Guided Design  

    In science-guided design, we choose the model architecture based on scientific 

knowledge. For a neural network, we can decide the intermediate variables expressed as 

hidden layers based on scientific knowledge of the system. This helps in improving the 

interpretative ability of the models. Figure 5.10 illustrates a neural network model whose 

architecture like the number of neurons, hidden layers, activation layers etc. can be decided 

by prior scientific knowledge. In a bioprocess application, Rodriguez-Granrose et. al.39 use 

the design of experiments (DOE) to create and evaluate a neural network architecture. They 

use DOE to evaluate activation functions and neurons on each layer to optimize the neural 

network. In their recent study, Wang et al.107 design their theory-infused neural networks 

based on adsorption energy principles for interpretable reactivity prediction.  

    The use of the novel neural differential equation108 to solve a first-principle dynamic 

system represents a hybrid SGML approach, where the architecture of ML model is 

influenced by the system and finds applications in continuous time series models and 

scalable normalizing flows. The derivative of hidden state is parameterized using a neural 

network and the output of the network is computed using a differential equation solver. In 

a recent study, Jaegher et. al.109 use the neural differential equation to predict the dynamic 

behavior of electro-dialysis fouling under varying process conditions. In a recent 

application of this theme in chemical process for model predictive control, Wu et. al.110 use 
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prior process knowledge to design the recurrent neural network structure9.They showcase 

a methodology to design the RNN structure using prior scientific knowledge of the system 

and also employ weight constraints in the optimization problem of the RNN training 

process. Reis et. al.111 discuss the concept of incorporation of process-specific structure to 

improve process fault detection and diagnosis.  

    Fuzzy Artificial Neural Networks(ANN) is a class of Neural Networks which utilize 

prior scientific knowledge of the system is used to formulate rules mapped on to the 

structure of the ANN 112. The weights of the ANN connecting the process input to output 

can be connected to physical process variables 64 .Apart from making the models more 

scientifically consistent with prior knowledge they also reduce computational complexity 

and provides interpretable results. The use of prior knowledge also makes them suitable 

for extrapolation. Fuzzy ANN have been particularly useful for applications in process 

control 113. Simutis et. al. have used fuzzy ANN system for industrial bioprocess 

monitoring and  control 114-115. Simutis et. al. have showcased the application of fuzzy ANN 

process control expert to perform appropriate control actions based on process trends for 

bioprocess optimization and control 116. 

 

 
Figure 5.10. Science-guided design framework of neural network architecture  

5.5.2 Science-Guided Learning 

    Here, we make use of the scientific principles to improve the scientific consistency of 

data-based models by modifying the machine learning process. We do this by modifying 

the loss function, constraints and even the initialization of ML models based on scientific 

laws.             Specifically, in order to make the ML models physically consistent we make 

the loss function of NN model incorporate physical constraints 2. A loss function in ML 

measures how far an estimated value is from its true value. A loss function maps decisions 

to their associated costs. Loss functions are not fixed, they change depending on the task 

in hand and the goal to be met. Figure 5.11 illustrates the science-guided loss framework.  

    We can define a loss function of the ML model (LossM) for regression to calculate the 

difference between the true value (Ytrue) and the model predicted value (Ypred). Likewise, 

we can define a loss function for a science-based model (LossSC), which is a function of 

the model predicted value (Y_pred) consistent with science-based loss. We include a 

weighting factor λ to express the relative importance of both loss terms. We write the 

overall loss function (Loss) as:   
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𝐿𝑜𝑠𝑠 =  𝐿𝑜𝑠𝑠𝑀(𝑌𝑡𝑟𝑢𝑒 − 𝑌𝑝𝑟𝑒𝑑) +  λ𝐿𝑜𝑠𝑠𝑆𝐶(𝑌𝑝𝑟𝑒𝑑)    (5.1.) 

Figure 5.8 illustrates the concept of science-guided loss function. 

         
Figure 5.11. Science-guided loss function representation 

    A science-guided initialization helps in deriving an initial choice of parameters before a 

model is trained so that it improves model training and also prevents from reaching a local 

minimum, which is the concept of transfer learning. Thus, we can use the data from a 

science-based model to pre-train a ML model based on this concept of initialization 1,2,7. 

This concept has been utilized in chemical process model in the form of process similarity 

and developing new process models through migration. In particular, Lu et. al. 117 introduce 

the concept of process similarity, and classify it into attribute-based and model-based 

similarities. They present a model migration strategy to develop a new process model by 

taking advantage of an existing base model, and process attribute information. Adapting 

existing process models can allow using fewer experiments for the development of a new 

process model, resulting in a saving of time, cost, and effort. They apply the concept to 

predict the melt-flow-length in injection molding and obtain satisfactory results.  

    In another study on the similar concept, Yan et al.118 use a Bayesian method for 

migrating a ML Gaussian process regression model. They showcased an approach of an 

iterative model migration and process optimization for an epoxy catalytic reaction process. 

    Recently, Kumar et. al.119 try to optimize the Non-Newtonian fluid flow for industrial 

processes like crude oil transportation using a physics- based loss function for the shear 

stress calculation for more accurate flow predictions. In another study on the similar 

principle, Pun et. al. 120 apply physics-informed neural networks for more accurate and 

transferable atomistic modeling of materials.  

5.5.3. Science-Guided Refinement 

    By science-guided refinement, we mean the post-processing of ML model results based 

on scientific principle. The raw data without any feature engineering can be used as input 

to a ML model for prediction and then the science-based model can be used to test the 

scientific consistency of ML predictions. Figure 5.12. illustrates the science-guided 

refinement framework This post-processing of results of the ML model using science-
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based models can be useful to the design and prediction of material structure113. Thus, the 

discovery of materials forms the basis of chemical process development from which the 

manufacturing process of any compound can be designed. This is different than the serial 

direct hybrid model discussed in Section 5.3.1.2. In particular, we use the science-based 

model to merely test the scientific consistency of the ML model results. Hautier et. al.114 

use first-principle models based on density functional model to refine the results of 

probabilistic ML models to discovery ternary oxides.  

    Another application for science-guided learning is for data generation. ML techniques 

like generalized adversarial networks (GAN) are useful for generating data in an 

unsupervised data. GANs do have a problem of high sample complexity2 which can be 

reduced by incorporating some science-based constraints and prior knowledge.  Cang et al. 
115 apply ML models to predict the structure and properties of materials and use the results 

of the ab initio calculations to refine the ML model results. They generate more imaging 

data for property prediction using a convolution neural network and introduce a 

morphology constraint form scientific principles, while training of the generative models 

so that it improves the prediction of the structure- property model.  

 
Figure 5.12. Science-guided refinement framework 

Thus, some of these methodologies of having science complimenting ML have much 

potential for future applications to bioprocessing and chemical engineering. 

5.6. Conclusion 

Table 5.1 summarizes all the hybrid SGML models and their advantages, limitations and 

potential applications. 

    We present a broad perspective of hybrid modeling with a science-guided machine 

learning (SGML) approach and its application in bioprocessing and chemical engineering. 

We give a detailed review and exposition of the hybrid SGML modeling approach and its 

applications, and classify the approach into two categories. The first refers to the case 

where a data-based ML model compliments and makes the first-principle science-based 

model more accurate in prediction, and the second corresponds to the case where scientific 

knowledge helps make the ML model more scientifically consistent. We point out some of 

the areas of SGML which have not been explored much in chemical process modeling and 

have potential for further use like in the areas where Science can help improve the data-

based model by improving the model design, learning and refinement. We have recently 

submitted a modified version of this chapter in AIChE journal and it is under review 124. 
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Table 5.1. Summary of hybrid SGML approach 

Hybrid SGML 

Modeling 

Science

-based 

model 

/knowle

dge 

ML  

model  

Advantages Limitation

s 

Potential  

applications 

                                                                        ML compliments Science (base model: 

Science Based) 

Direct 

Hybrid 

modeli

ng 

Series Science

-based 

model 

(SBM) 

Regression Parameter 

estimation, 

data 

augmentatio

n 

Limited 

by data for 

parameter 

estimation 

Kinetic 

estimation 78 

soft sensor 
51,86 

process 

modeling 29,75 

process scale-

up41 

Parallel SBM Regression  Improved 

accuracy of 

prediction 

Scientific 

consistenc

y depends 

on SBM  

Process 

control 36,43,72 

softsSensor 33 

process 

monitoring 68 

predictive 

maintianance 
66,74 

Series-

parallel 

SBM Regression Higher 

Accuracy  

Increased 

Model 

complexit

y 

Process 

monitoring 

and control 58 

plant-model 

mismatch 17 

Inverse modeling SBM  Probabilistic

, 

Regression 

Computatio

nally 

cheaper 

inverse 

problem 

Lower 

generality 

of the 

model 

Product 

design and 

development 
84,85 

polymer grade 

change, 

material 

design87 

Reduced-order 

models 

SBM Regression  Fast online 

deployment, 

Higher 

Bias, 

Process 

Optimization 
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reduce 

model 

complexity 

limited by 

SBM 

accuracy  

at plant scale 
84,85 , 

dynamic 

modeling 93,95 

soft Sensor 94 

feasability 

Analysis 91,92 

Uncertainty 

quantification 

SBM Probabilistic  Gives real 

error 

estimate and 

solution 

space 

Limited 

by SBM 

assumptio

ns, 

parameter

s 

Process 

design and 

development 
97 

feasability 

Analysis 102 

Discovering 

scientific law 

SBM Regression, 

probabilistic 

System 

stability 

interpretabil

ity 

Limited 

by data 

size/availa

bility 

Thermodyna

mics 

phase 

equilibrium105 

Reaction 

Network 106 

                                                                               Science Compliments ML (base model : 

ML) 

Science-guided -

design 

Laws or 

SBM  

Deep neural 

network 

(DNN) 

Neural Diff. 

Eqn. 

Scientificall

y consistent 

and 

interpretable 

Requires 

deep 

scientific 

knowledg

e of 

system  

Dynamic 

time- 

dependent 

systems 109 

process 

control 110,111 

Science-guided -

learning 

Laws DNN Scientificall

y consistent 

and 

interpretable 

Possible 

lower 

prediction 

accuracy  

Process 

design and 

development 
100 , 

process 

Monitoring,  

Science-guided -

refinement 

SBM Probabilistic  Less effort 

in feature 

selection 

Limited 

by SBM 

assumptio

ns, 

parameter

s 

Process 

design,  

discovery of 

materials 106 
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Chapter 6: Application of Hybrid Science-Guided Machine Learning for Polymer 

Processes Improvement 

 

6.1. Introduction  

    The hybrid science-guided machine learning techniques (SGML) integrate science-

based knowledge and data-based knowledge for an accurate and scientifically consistent 

prediction as showcased by Sharma and Liu 1 and chapter 5 as well. Polymer processes 

such as Ziegler Natta Polyolefin process which is a multi-site catalytic process there are 

many unknown reaction kinetic parameters which needs to be estimated with limited 

information. The thermodynamic parameters like phase equilibrium/interaction parameters 

of some polymers are also uncertain. The process is highly exothermic and heat transfer is 

important to defining process physics, the parameters of which may be based on certain 

assumptions. Thus, the first-principle-based polymer process models are built on many 

assumptions which lead to less accurate predictions. Similarly, for data-based analysis of 

polymer processes, the lesser frequency of quality measurements in certain cases becomes 

a limitation. Also, data-based models may tend to give scientifically consistent results 

beyond the process operating range on which the models are trained. Thus, hybrid models 

combining science-based models and machine learning models are quite useful for polymer 

process modeling. 

    There have been limited applications of hybrid modeling on polymer processes over the 

years. Tsen et. al. 2 showcase one of the earliest applications of hybrid modeling for 

predictive control of a batch polymerization process. They used a hybrid model combining 

the physics model and a neural network model to control polymer quality parameters like 

dispersity and molecular weight. They have trained a data-based neural network model 

using an augmented data set combining results from a chemical process model and 

experimental data. They have shown their hybrid model performing better than a 

theoretical model built only on experimental data.  

    Tian et. al. 3 work on a hybrid residual model to accurately predict the gel effect in the 

batch polymerization process. They use the hybrid model for optimal temperature control 

of reactor temperature. First, they develop a simplified process model based on 

polymerization kinetics, and mass and energy balances to predict the monomer conversion, 

number-average molecular weight MWN, and weight-average molecular weight MWW. 

This first-principle process model cannot predict these product quality targets accurately 

because of its neglect of the gel effect at high monomer conversion and other factors. Next, 

the authors develop a parallel configuration of three data-based, time-dependent or 

recurrent neural networks trained by process data to predict the residuals of monomer 

conversion, MWN and MWW of the simplified first-principle process model.  The 

predicted residuals are added to the predictions from the simplified process model to form 

the final hybrid model predictions. Because of focus in batch process control is on the end-
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of-batch product quality targets, the use of time-dependent or recurrent neural networks 

can usually offer good long-range predictions. 

    Hinchliffe et. al. 4 apply the hybrid modeling approach for modeling an industrial 

polyethylene process for accurate prediction of the Molecular Weight Distribution(MWD)  

of the polymer. They use Neural Network to predict some of the multipliers to some 

important features that affect the MWD in the mechanistic model like the mass fraction of 

polymer produced at each sites and degree of polymerization.  

    Doyle et. al. 5 apply the hybrid modeling strategy for batch-to-batch control of particle 

size distribution in an emulsion polymerization process. They combine the first-principle 

population balance model with a data-based partial least squares model for controlling the 

particle size for batch-to-batch optimization. Chang et. al. 6 use a hybrid modeling approach 

for dynamic modeling of a batch polymerization process. They include some of the state 

variables which could not be measured by mechanistic models and then combine the model 

results with the measurements in a neural network rate function model for better prediction. 

In this chapter, we showcase some more applications of the hybrid SGML methodologies 

for industrial polyolefin process improvements. 

 

6.2. Polyolefin Process and Data Description 

6.2.1. Industrial parallel/single reactor HDPE process 

    For most of the applications, we consider an industrial HDPE process using actual plant 

data from LG Petrochemicals in South Korea by Park et. al 7. The industrial process is a 

slurry single reactor (parallel process) Ziegler Natta process. We first estimate the 

polymerization kinetic parameters from plant production targets in a steady-state model 

using Aspen Polymers based on our reported methodology 8. This results in a validated 

Aspen Polymers steady-state simulation model. Next, we convert the steady-state model to 

a dynamic model using Aspen Plus Dynamics. We use the dynamic model to simulate the 

product quality data for different process operating conditions, which include the data 

characterizing the polymer grade transitions. Figure 6.1 shows the process flowsheet of the 

parallel HDPE process. 

    The data consist of the input stream flow rates and product quality targets varying with 

time at the two reactor outlets. The dataset consists of about 5000 observations. Table 6.1 

summarizes the process variables and quality targets for the parallel HDPE process  

Table 6.1. Process variables and quality targets for the parallel HDPE process 

Process variable Description  

C2 Ethylene feed flow rate (kg/hr) 

H2 Hydrogen feed flow rate (kg/hr) 

CAT Catalyst feed flow rate (kg/hr) 

HX Hexane solvent feed flow rate (kg/hr)  

C3 Comonomer feed flow rate (kg/hr) 

T Temperature of the reactor (C) 
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P Pressure in the reactor (Bar) 

H2/C2 Feed concentration ratio in the reactor of ethylene to 

hydrogen 

C3/C4 Feed concentration ratio of Propylene to Butylene 

monomer 

MI   Melt Index of polymer 

 

 
Figure 6.1. Process flowsheet of industrial parallel HDPE process 

6.2.2. Industrial series reactors slurry HDPE process 

    We also simulate a two-reactor slurry HDPE process by Mitsui. Ethylene is the monomer 

for the process and propylene or butylene is comonomer. Hexane is used as a diluent to 

dissolve the monomer, co-monomer and hydrogen. The process variables are shown in 

figure.  Figure 6.2 shows the flowsheet for the process made in Aspen Polymers and Table 

6.2 summarizes the process variables. 

 
Figure 6.2. Process flowsheet for industrial series HDPE process 
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Table 6.2. Process variables for the series reactor HDPE process 

 Process Variable 

C21 Ethylene monomer flow in the feed to the first reactor (kg/hr) 

H21 Hydrogen flow in the feed to the first reactor (kg/hr) 

CAT Catalyst flow in the first reactor (kg/hr) 

HX1 Solvent flow in the first reactor (kg/hr) 

C42 1-Butene co-monomer flow in the second reactor (kg/hr) 

C22 Ethylene monomer flow in the second reactor (kg/hr) 

H22 Hydrogen flow in the second reactor (kg/hr) 

HX2 Solvent flow in the second reactor (kg/hr) 

 Quality Target 

MI Melt index 

Rho Polymer density (kg/ m3) 

PDI Polydispersity index 

P Polymer flow rate (kg/hr) 

 

We simulate grade change for the process to simulate dynamic data. Figure 6.3 shows the 

grade change simulated for 4 grades with different Melt Index and Density values.  

 
Figure 6.3. The variation of the quality data (MI and Rho) with time for different HDPE 

grades 

6.2.3. Industrial Hypol PP process 

    We also simulate the Hypol PP process. Mitsui Hypol process is used for making 

polypropylene (PP) homopolymers and propylene-ethylene impact copolymer. The 

process consists of two autoclave reactors in series followed by two fluidized-bed reactors 

(FBR). It is a mixed-phase process with the fluid phase in the autoclave reactors and gas 

phase in the FBR. The FBRs have scrapers to eliminate fouling for making high-rubber-

content impact copolymers. Figure 6.4 shows the flowsheet for the and the table 6.3 lists 

the process variables. 
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Figure 6.4. Process flowsheet for industrial Hypol process 

For this process, we simulate steady-state sensitivity data by varying the independent 

process variables. The simulated dataset for the two processes have 200 observations. 

 

Table 6.3: Process and quality variables of Hypol process 

 Process Variable 

C31, C32, C33, C34 Propylene monomer flow in each of the reactors (R1, R2,R3,R4)(kg/hr) 

H21, H22, H23, H24 Hydrogen flow in each of the reactors (R1,R2,R3,R4) (kg/hr) 

CAT Catalyst flow in the first reactor (kg/hr) 

HX1 Solvent flow in the first reactor (kg/hr) 

C24 Ethylene co-monomer flow in the 4th reactor (kg/hr) 

T1, T2, T3, T4  Temperature in each of the reactors (R1, R2, R3, R4) C 

P1, P2, P3, P4 Pressure in each of the reactors (R1, R2, R3, R4) Bar 

MI Melt Index (QualityTarget) 

 

6.2.4. Industrial LDPE process 

    We model a high-pressure industrial LDPE process which follows the free radical 

polymerization mechanism and consists of high-pressure tubular reactors in series/parallel 

arrangement as shown in the flowsheet in figure 6.5. Table 6.4 lists the independent process 

variables and product quality for the LDPE process. Due to free radical kinetics both long 

chain and short chain branching also need to be tracked to determine the LDPE polymer 

properties. The feed to the process is ethylene monomer (E2) and two initiators are benzoyl 

peroxide (INI1) and di-t-butyl-peroxide (INI2) 
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Figure 6.5. Process flowsheet of the industrial LDPE process 

Table 6.4. Process variables and Quality for LDPE process 

 Process Variable 

E2 Ethylene feed flow  (kg/hr) 

INITF1 Flow of initiator into the mixer(M1)  INITR1 (kg/hr) 

INI1M1 Mass frac of INI1 (stream INITR1)  

INI2M1 Mass Frac of INI2 (stream INITR1) 

CW1 Cooling water flow rate to 1st reactor RPLUG1 (kg/hr) 

TCW1 Temperature of cooling water in 1ST reactor RPLUG1  (C) 

CW2 Cooling water flow rate to 2nd reactor RPLUG2(kg/hr) 

TCW2 Temperature of cooling water in 2nd reactor RPLUG1 (C) 

INITF2 Flow of initiator into the mixer(M2) INITR2(kg/hr) 

INI1M2 INI1 Mass frac (INITR2) flow 

INI2M2 INI2 Mass Frac (INITR2) flow 

CW3 Cooling water flow rate to 3rd reactor RPLUG3 (kg/hr) 

TCW3 Temperature of cooling water in 3rd reactor RPLUG3 (C) 

CW4 Cooling water flow rate to 4th reactor RPLUG4 (kg/hr) 

TCW4 Temperature of cooling water in 4th reactor RPLUG4 (C) 

  Product Quality Target 

LCB Long Chain Branching in LDPE polymer (kmol/hr) 

SCB Short Chain Branching in LDPE product (kmol/hr) 

MWW Weight Average Molecular Weight of LDPE polymer 

MWN Number Average Molecular Weight of LDPE polymer 

POLYF Mass flow rate of LDPE polymer 
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6.3. An Application of Combined Direct Hybrid Modeling to Polyolefin 

Manufacturing 

    We apply the combined direct modeling strategy to an industrial polyethylene process 

for the prediction of melt index. We build a first-principle steady-state model of a Mitsui 

slurry high-density polyethylene (HDPE) process by following the methodology and 

kinetic parameters presented in Sharma and Liu8. We convert the steady-state simulation 

model based on Aspen Plus to a dynamic simulation model using Aspen Plus Dynamics. 

The resulting dynamic simulation model has similar independent process variables, 

including the feed flow and compositions and the reactor operating conditions. We use the 

hybrid residual modeling strategy where we use a first-principle or science-based process 

model to quantify the time-dependent prediction error or residual between plant data and 

science-based model prediction as a function of process variables. 

𝑀𝐼𝑃𝑙𝑎𝑛𝑡 − 𝑀𝐼𝑀𝑜𝑑𝑒𝑙 = 𝑅𝑒𝑠 = 𝑓(𝑋𝑃𝑟𝑜𝑐𝑒𝑠𝑠)    (1) 

 

𝑀𝐼𝐻𝑦𝑏𝑟𝑖𝑑 = 𝑀𝐼𝑀𝑜𝑑𝑒𝑙 + 𝑅𝑒𝑠             (2) 

 

    Figure 6.6 compares the predictions of the first-principle dynamic simulation model (in 

red) with the plant data with grade transitions (in green). We see much deviation between 

the model predictions (MIModel ) and the plant data (MIPlant). We compare the MI values 

from the model with the plant data and calculate the error residuals (Res) . The root-mean-

squares-error (RMSE) values of the model residual is to 1.5 for the actual MI data with a 

standard deviation of 5.1. 

    To improve the accuracy of model predictions, we develop a regression model to predict 

the error residues as a function of independent process variables (XProcess ) using a random 

forest ML algorithm with Python. This leads to a hybrid model that predicts the MI value 

as a sum of the dynamic simulation model prediction (first-principle-based) and the 

predicted error residual (data-based) corresponding to a give set of independent process 

variable values, as shown in Equations 1-2. Figure 6.6 shows that the hybrid model 

predictions (with a RMSE value of 0.21) match the plant data much better than a first-

principle dynamic simulation model alone. We note that a data-based model alone has also 

a similar accuracy, but it may give scientifically inconsistent results for predictions beyond 

the range of process operating data which the model uses. Thus, the hybrid model is not 

only accurate, but also gives scientifically consistent results beyond current operating 

range. 
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Figure 6.6. Melt index prediction of a combined direct hybrid model compared                                               

to the first-principle model and plant data 

 

    As a test of the scientific consistency of the hybrid model we use the same conditions of 

testing hybrid models beyond operating range at H2 = 95 m3/ as in table 4.3. We compare 

the hybrid model results with first principle and ML results in table 6.  From the results we 

can see hybrid SGML models are more accurate and scientifically consistent in 

extrapolation of results beyond operating range compared to the first-principle and ML 

models. 

Table 6.5. Model comparison based on MI values at varying hydrogen flow 

Model MI (H2 = 60 m3/hr) MI (H2 = 95 m3/hr) (beyond 

operating range) 

Plant Actual value 5 22 

First principle 6.1 17 

Causal ML model  4.7 15 

Predictive ML model 4.9 12 

Hybrid Model  5.3 21.5 

 

 

6.4. An Application of Inverse Modeling to Polymer Manufacturing 

6.4.1. Predicting Operating Conditions of Different Polymer Grades 

    We illustrate the application of an inverse modeling approach that integrates steady-state 

and dynamic simulation models of a Mitsui slurry HDPE process, developed from first 

principles and validated by plant data, with a data-based ML model. The goal is to predict 

the operating conditions for producing new polymer grades, given the desired product 

quality targets, such as melt index (MI), polymer density (Rho), polydispersity index (PDI) 

and polymer production rate (P).  
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    We first use the single-reactor industrial HDPE process to predict the operating 

conditions. We with the simulated product quality data as input, and the process operating 

conditions (flow rates of all input streams) as the output. We use an ensemble machine 

learning regression model to regress the simulated data.  

    We apply the gradient boosting regressor model for predictions and also determine the 

uncertainty in prediction using prediction intervals as shown in figure 6.7. The RMSE for 

the hydrogen feed flow rate prediction comes to be 2.2 (uncertainty range 1 – 5) with actual 

standard deviation of H2 flow being 22 kg/hr.We further use the stacked regression models 
9 with combination of ensemble models which predicts the operating conditions/feed flow 

rates with a high accuracy.  

 
Figure 6.7. Hydrogen feed predictions for single reactor HDPE process using inverse 

modeling including the uncertainty of predictions using gradient boosting regression. 

    We used tree regression models like the gradient boosting, ada boosting, Random forest 

and Xgboost regression model for the stacked regression algorithm. We combine 

regression models by first individually fitting the regression models and then the regressor 

which performs best is chosen as the Meta regressor while the other three regressors are 

chosen as the Initial regressors. We compared the prediction of the stacked regressor with 

the individual ensemble regressors to come up with our stacking regressor. The RMSE 

values for the prediction of some of the process variables are compared for each of the 

individual regressors – gradient boosting, adaboost, xgboost and random forest regressors, 

xgboost 10 has lower RMSE value as compared to other regressors, thus we chose it as meta 

regressor while using other ensemble regressors as initial regressor. Figure 6.8 shows the 

stacked regression algorithm for prediction of the inverse model.  
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Figure 6.8. Stacked Regression Algorithm 

    The stacked ML model predictions gave a low RMSE of 0.9 when compared to actual 

plant data for a standard deviation of 20.We predict all process variables for the parallel 

HDPE process using the stacked regression model as shown in table 6.6. The table consists 

of the mean and standard deviation of each of the process variables from the actual data 

and the RMSE and NRMSE predictions.  

Table 6.6. Process variable prediction for parallel HDPE process using inverse modeling 

Predicted variable 

(kg/hr) 

Data  

Mean 

(kg/hr) 

Data  

Stdev 

(kg/hr) 

RMSE 

(test) 

kg/hr 

NRMSE 

(%) 

H2 52 21 1.04 2 

C2 8873 569 68.5 0.772005 

CAT 26 5.6 1.03 3.961538 

HX 22356 2734 219 0.979603 

C3 51 44 2.83 5.54902 

T 84 0.3 0.11 0.130952 

P 3.1 0.7 0.2 6.451613 

H2/C2 0.95 0.4 0.01 1.052632 

C3/C4 0.4 0.37 0.014 3.5 
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    Now we also test the inverse modeling methodology on the HDPE series reactor process 

and predict more process variables for the two-reactor process. We use the same stacking 

regression model for prediction. Table 6.7 and figure 6.9 A-D showcase the predictions of 

the process variables for the series HDPE process using the inverse modeling methodology. 

Table 6.7. Prediction of operating conditions for series HDPE process 

Predicted variable 

(kg/hr) 

Data  

Mean 

(kg/hr) 

Data  

Stdev 

(kg/hr) 

RMSE 

(test) 

kg/hr 

NRMSE  

(test) 

% 

H21  5 0.98 0.04 0.8 

C21 5750 49 0.4 0.006957 

CAT1 255 0.54 0.003 0.001176 

HX1 14980 186 1.1 0.007343 

C22 5450 49 0.35 0.006422 

C4 1030 76 0.43 0.041748 

HX2 2020 35 0.93 0.04604 

H22 0.75 0.24 0.0011 0.146667 

 

 

 

 

          
   

                        Figure 6.9a.                                                              Figure 6.9b. 

Figure 6.9a. Inverse ML model prediction v/s the observed data for hydrogen flow(H21) 

Figure 6.9b. Inverse ML model prediction v/s the observed data for ethylene monomer 

flow (C21) 
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                                 Figure 6.9c.                                                        Figure 6.9d.  

Figure 6.9c. Inverse ML model prediction v/s the observed data for catalyst flow (CAT1) 

Figure 6.9d. Inverse ML model prediction v/s the observed data for butlene comonomer 

flow(C42)  

    The %RMSE on predictions are less than 2.5% on the average for both the examples. 

Hence, we are able to accurately predict the operating conditions using inverse modeling 

methodology. Thus, if we want to produce a new polymer grade given its quality targets, 

we can predict the operating conditions required to produce that polymer grade using the 

inverse modeling approach.  

 

6.4.2. Kinetic Estimation Using Inverse Modeling  

    Another application of inverse modeling can be for parameter estimation as well as better 

model calibration. We showcase the inverse model approach for estimation of kinetic 

model parameter for the HDPE process. We use the methodology to estimate the catalyst 

site concentration which is one of the assumed parameters that we use for modeling the 

Ziegler Natta process as even mentioned in the kinetic estimation study by Sharma and 

Liu8. The ultimate aim of this inverse model application is to showcase that given the 

polymer quality characteristics we can estimate some assumed model parameters for more 

accurate predictions. We calculate a multiplication factor to the rate constants to account 

for the assumed model parameters for their better estimate. 

    We use the dynamic process model of the HDPE process to generate data for different 

values of the multiplying factor to the rate constant. We simulate the grade change dynamic 

data with different values of the rate constant keeping the grade change process same. The 

process variable changes in hydrogen flow, ethylene flow rate etc. are same for each of the 

values of the rate constant and collate the polymer quality data mainly the Molecular 

Weight, Polydispersity and Polymer flow with time. Thus, we consider the polymer quality 

data as the features and use it to predict the multiplying factor deciding the model assumed 

parameters for catalyst concentrations. Figure 6.10 illustrates the kinetic estimation 

methodology. 
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Figure 6.10. Inverse Modeling modelling framework for kinetic parameter estimation 

    We use a Neural Network model with 2 hidden layers with 512 and 256 neuron sand 

Rectified Linear Unit as activation function. A loss function in ML measures how far the 

model estimated value is from the actual value. The loss curve for the training and 

validation of the model is shown in figure 6.11. The RMSE value for prediction of 

multiplying factor is 0.1.Thus, given any new set of quality parameter we can infer the 

multiplication factor of the kinetic rate constant that will lead to a more accurate 

assumption and better kinetic estimation and prediction. 

 
 Figure 6.11. Loss curve for prediction of inverse modeling kinetic parameter estimation 

 

6.5. An Application of Reduced-Order Modeling to Polymer Manufacturing 

6.5.1. Reduced-Order Modeling of Hypol PP process 

    We illustrate the ROM methodology in a HYPOL polypropylene production process. 

The Hypol process is complex with series of reactors, separators and recycle loops. The 

process has many operating variables, such as feed flow rates of propylene, hydrogen to 



 148 

each reactor, and temperature and pressure in each reactor. We consider 19 critical 

independent process variables for the Hypol process as shown in table 6.3. It is critical to 

quantify the effects of operating variables on the polymer quality targets, particularly melt 

index, in order to design or optimize the process. To achieve this, we need multivariate 

process data which are not usually available in a steady running plant. Hence, we use the 

ROM methodology. We build a simpler model with reduced complexity and build a digital 

twin of the whole process and then we use the model to simulate the multivariate data.  

    We model the HYPOL polypropylene production process and then run multiple steady-

state simulations to generate multivariate data with varying operating variables and the 

corresponding melt index predictions. We use a random forest ML model to train the 

simulated data to predict the melt index as a function of the process variables and also 

understand the causality of important features affecting the polymer quality. We can use 

the empirical ML model of melt index can be used to predict the melt index at varying 

process variables and can act as an approximate quality sensor. The RMSE for prediction 

is 0.5 for the data with standard deviation 2.5. Thus, the multivariate complex process can 

be approximated using this ROM for process design and optimization a shown in figure  

    The ML model also decides the relative importance of different operating variables 

based on the mean decrease in “node impurity”, which is a measure of how much each 

operating variable feature reduces the variance in the model. Figure 6.12 (B) illustrates that 

the model calculates the important features like hydrogen flow rate (H24) and the 

temperature to the fourth reactor (R4T) as the most important variables affecting the melt 

index, which can then be used to find the optimum conditions to produce polymer of certain 

melt index and to improve the process design for a new process. 

 

                     
                            Figure 6.12a.                                                          Figure 6.12b.                     

 

Figure 6.12a. Melt Index comparison of observed v/s prediction  

Figure 6.12b. Feature importance for melt Index prediction:  
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6.5.2. Reduced-Order Modeling of Industrial LDPE process 

    The high-pressure LDPE process is a complex process with many reactors in 

series/parallel operations. It has 15 critical independent process variables and also has 

multiple polymer product quality characteristics like branching apart from the Molecular 

Weights that affect the final polymer quality. We use the concept of the ROM to build 

empirical data-based model to predict LDPE quality variables based on the input process 

variables. We generate multivariate data by sensitivity analysis of the independent process 

variables and then build a machine learning model to predict the LCB/SCB and 

MWW/MWN. Branching LCB and SCB determine the polymer properties like 

morphology and rheology. Hence, it is critical to predict the branching for different grades 

based on different applications. Hence, we build empirical ML based models for branching 

prediction of LDPE apart from the Molecular Weights. 

    We use the Xgboost model for prediction of branching, which gives a good fit with a 

very low RMSE of 0.0002. The prediction of SCB and LCB (kmol/hr) for the test data is 

shown in figure 6.13 A-B. We also find that the most important feature based on the node 

impurity decrease for prediction of branching both (SCB, LCB) is ethylene mass flow (E2). 

 

                 
                        Figure 6.13a.                                                                 Figure 6.13b.           

Figure 6.13a. Prediction v/s Observed values of branching SCB  

Figure 6.13b. Prediction v/s Observed values of branching LCB 

6.6. An Application of HGML Modeling to Uncertainty Quantification in Polymer 

Manufacturing 

    We quantify the uncertainty of the chemical process model in predicting the melt index 

for the industrial HDPE process described in Section. This uncertainty in prediction may 

result from the estimated kinetic parameters of the process, which propagates to the quality 

output as well. Uncertainty in a process can be classified into two main types. 

Aleatoric Uncertainty: This is the Inherent Uncertainty in the process/data also refers to the 

irreducible noise 

Epistemic Uncertainty: This is the uncertainty due to the model which has parameters 

whose values are uncertain due to limited data. This is reducible uncertainty as can be 

reduced by adding more data. 
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    Bayesian Neural Networks 11 are particularly useful for Uncertainty Quantification as 

they are able to capture both the irreducible noise/inherent uncertainty in the data as well 

as the due to uncertainty about the model parameters due to limited training data. The 

Bayesian NN learns weight distributions instead of specific weight values. We use Monte 

Carlo methods to sample the output for the weight distributions to calculate the uncertainty 

given the prior and posterior distribution of weights. We refer to Keras tutorial for this 

analysis 12.  

    We generate the data from the process model and showcase the use of bayesian neural 

network for predicting the uncertainty in predicting normalized melt index as shown in 

figure 6.14. The uncertainty lies between 0.25 for the normalized predictions. 

  
Figure 6.14. Uncertainty prediction of Melt Index using Bayesian Neural Networks 

 

    Since deep learning models are more computationally expensive for a smaller dataset 

and for this case we are more interested in deterministic results. The probabilistic Bayesian 

neural network are more useful for prediction of output distribution in processes where are 

stochastic in nature, which is not the case for this polymer process problem. Also, ensemble 

learning model seems more accurate for prediction of this medium-sized process data we 

will recommend the calculation of deterministic prediction intervals using ensemble 

methods.  

    For this case, we use a gradient boosting 13 ML model for Melt prediction. We make use 

of the concept of quantile regression 14 loss to create prediction interval. Quantile 

regression estimates conditional quantile (percentile like medians) of the response 

variables by minimizing the quantile loss to predict a quantile. Quantile regression is 

suitable to model uncertainty of a regression model with increasing variance of residuals. 

For example, if we calculate the 0.977 and 0.023 percentiles/quantiles, the prediction 

interval between them has 95% probability of values within the interval. 
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    We can use the quantile regression loss in any regression model to estimate prediction 

intervals. The gradient boosting model uses the quantile loss to predict the 10th and 90th 

quantile and use the predictions as an interval. Figure 6.15 illustrates the uncertainty in the 

prediction of melt index given by the range of the prediction interval which lies between 

the 10% and 90% confidence intervals. The resulting RMSE value lies within 0.94 to 1.1, 

with the standard deviation of melt index data equals 5.1. From the figure, we see a higher 

uncertainty in prediction for time less than 100 hours compared to the later stage. Thus, 

UQ helps in making better process decisions after knowing the error estimate of the model. 

 
Figure 6.15. Uncertainty quantification of melt Index prediction of a slurry HDPE process 

6.7.  An illustrative Example of Science-Guided Learning 

    Physics-based loss functions in neural networks have been used to make more 

scientifically consistent and accurate predictions 15 .We showcase the application of the 

science-guided loss function in the slurry HDPE process for the industrial HDPE process 

described in Section 2.1.4.  The goal is to predict the melt index of the polymer. The plant 

data only measure the polymer melt index as the quality output, but we also want the data-

based ML model to predict the scientifically consistent polymer density values.  

    We express polymer density as a function of the melt index using some empirical 

correlations and replace 𝑌𝑝𝑟𝑒𝑑 𝑖𝑛 𝐸𝑞. (1) 𝑏𝑦 𝜌(𝑀𝐼𝑝𝑟𝑒𝑑) , that is, density as an empirical 

function of the melt index.  See Eq. (3) below. We then train a deep learning neural network 

model to predict the melt index of the polymer. Figure 6.16. illustrates that the SGML 

hybrid model calculates the melt index, resulting in a RMSE of the melt Index that is 

slightly higher (RMSE = 0.8) (standard deviation of data= 5) compared to a standalone ML 

model. However, in addition to predicting the melt index values, the hybrid SGML model 

is simultaneously predicting the polymer density correctly within the physically consistent 

range of 0.94-0.97 g/c. By contrast, the density estimates by the ML model alone result in 

density values greater than 1, which is physically inconsistent. 
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𝐿𝑜𝑠𝑠 =  𝐿𝑜𝑠𝑠𝑀(𝑀𝐼𝑡𝑟𝑢𝑒 − 𝑀𝐼𝑝𝑟𝑒𝑑) +  λ𝐿𝑜𝑠𝑠𝑆𝐶(𝜌(𝑀𝐼𝑝𝑟𝑒𝑑))   (3) 

 

 
Figure 6.16. Melt index and polymer density prediction with a ML model with a science-

guided loss function 

6.8. Conclusion 

    We showcase the application of the Science Guided Machine Learning techniques for 

polymer processes for scientifically consistent and accurate predictions. These techniques 

can be useful for building soft sensors for polymer quality, polymer process design and 

development and help in polymer grade change. 
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Chapter 7: Conclusion and Future Work 

7.1. Conclusion 

    In this work, we have demonstrated an effective methodology for estimating kinetic 

parameters for Ziegler-Natta polymerization for commercial processes producing 

polyolefins, such as HDPE, PP and LLPDE.  We consider the catalyst activation, initiation, 

propagation, chain transfer, deactivation and other polymer-specific reactions. We have 

identified the reaction rate constants in Ziegler-Natta polymerization kinetics that have 

most significant impacts on common production targets. This greatly simplifies the kinetic 

parameter estimation for simulation and optimization models for polyolefin processes from 

plant data. We showcase the utility of dynamic models for efficient grade transition in 

polyolefin processes. We also use the dynamic models for inferential control of polymer 

processes. Thus, we showcase the methodology for making first-principle polyolefin 

process models which are scientifically consistent, but tend to be less accurate due to many 

modeling assumptions in a complex system. 

    We have illustrated the utility of multivariate statistical methods, such as partial least 

squares (PLS) for causal analysis to identify correct correlations between input and outputs 

in polymer process application. We also showcase the utility of data-based machine 

learning (ML) methods such as ensemble random forest for predicting the process outputs 

e.g. the melt index (MI). We also identify the Dynamic PLS model utility in dynamic time 

series process data by considering the measurement lags. We conclude that a data-based 

model alone has a high accuracy, but it may give scientifically inconsistent results for 

predictions beyond process operating data which the model uses and also not able to 

accurately simulate individual feature importance. 

    We present a broad perspective of hybrid modeling with a science-guided machine 

learning (SGML) approach and its application in bioprocessing and chemical engineering. 

We give a detailed review and exposition of the hybrid SGML modeling approach and its 

applications, and classify the approach into two categories. The first refers to the case 

where a data-based ML model compliments and makes the first-principle science-based 

model more accurate in prediction, and the second corresponds to the case where scientific 

knowledge helps make the ML model more scientifically consistent. We point out some of 

the areas of SGML which have not been explored much in chemical process modeling and 

have potential for further use like in the areas where science can help improve the data-

based model by improving the model design, learning and refinement. We also illustrate 

some of these applications of the hybrid SGML methodologies for industrial 

polymer/chemical process improvement. 

    Based on our analysis, we recommend the use of stand-alone machine learning models 

for data analytics of chemical and polymer processes for interpolation applications like 

quality predictions in an established process with fixed operating conditions and model is 

trained on the data of the given operating range. For applications requiring extrapolation 

like new process and product development, we recommend the use of the hybrid science-
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guided machine learning models since they also focus on the scientific consistency of 

predictions and not just accuracy. 

7.2. Future Work 

    In this section, we suggest some of the research directions and ideas in which the current 

research can move forward. 

    There is opportunity in utilizing more of process operating knowledge in designing 

machine learning architecture which will yield practically relevant predictions. We can 

integrate multiple first-principle models at different stages along with the machine learning 

(ML) models. For example, for the polymer processes, molecular simulation can be used 

to estimate some of the thermodynamic phase-equilibrium parameters that can be used in 

the macro-scale process model. Similarly, for certain parts of the process model which 

require deeper insights into mixing, mass and heat transfer as in modeling the fluidized-

bed reactor in polyolefin process, we can utilize computational fluid dynamics for 

modeling the system. ML can be used in any of the first-principle models for estimation of 

parameters. 

    In current times, we have seen the growing use of reinforcement learning (RL) in many 

artificial intelligence applications like robotics where an agent learns behavior through trial 

error interactions in a dynamic environment using a reward policy. For process analytics, 

RL can be particularly useful for process control and monitoring, hence can be utilized for 

polymer process control as well. Computer vision along with deep learning has many 

applications like self-driving cars can also be useful for chemical/polymer manufacturing 

as well. For instance, computer vision can be used to detect final polymer quality based on 

its color and structure. Similarly, the image data from different spectroscopic methods 

which yield molecular weight distribution curves can be trained using a convolution neural 

network to predict some polymer quality parameters. 

    Currently in ML field, researchers are also working on the interpretability of machine 

learning/deep learning models to make the black-box models more interpretable. The 

interpretability of models can be in the form of feature summary statistics/visualizations or 

model internal like learned weights. The methods of interpretation can be model-specific 

or model agnostic. Thus, using these techniques for chemical/polymer process data 

analytics, we can simultaneously make interpretable and accurate predictions 
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Appendix A 

(Chapter 2) 

 

 

A.1.   Hypol PP Process  

Mitsui Hypol process is used for making polypropylene (PP) homopolymers and 

propylene- ethylene impact copolymer. The process consists of two autoclave reactors in 

series followed by two fluidized-bed reactors (FBR). It is a mixed-phase process with the 

fluid phase in the autoclave reactors and gas phase in the FBR. The FBRs have scrapers to 

eliminate fouling for making high rubber content impact copolymers. We have developed 

a steady-state model of the Hypol process using Aspen Polymers for estimating the kinetic 

parameters using plant data. The process consists of four continuously stirred tank reactors 

(CSTR) in series. The first three CSTRs are used to make the PP homo-polymers, while 

the fourth reactor makes the PP impact copolymer. Figure S1 shows the Aspen flowsheet 

of the process. 

A.1.1 Reactions 

The main reactions we consider (single site) for the Hypol process are as follows. 

Reactants  Products 

Catalyst Activation 

Cps[Cat] ->  Po (Act- Spon) 

Cps[Cat] + H2 ->  Po (Act-H2) 

Chain Initiation 

Po -> P1[C3-Seg] 

Po -> P1[C2-Seg] 

Propagation 

Pn[C3-SEG] + C3H6 -> Pn+1[C3-Seg] 

Pn[C3-SEG] + C2H4 -> Pn+1[C2-Seg] 

Pn[C2-SEG] + C3H6 -> Pn+1[C3-Seg] 

Pn[C2-SEG] + C2H4 -> Pn+1[C2-Seg] 

Chain Transfer to monomer 

Pn[C3-Seg] + C3h6 ->  Dn + P1[C3-Seg] 

Pn[C3-Seg] + C2h4 ->  Dn + P1[C2-Seg] 

Pn[C2-Seg] + C3h6 ->  Dn + P1[C3-Seg] 

Pn[C2-Seg] + C2h4 ->  Dn + P1[C2-Seg] 

Chain Transfer to Hydrogen 

Pn[C3-Seg] + H2 ->  Dn + Po 

Pn[C2-Seg] + H2 ->  Dn + Po 

Spontaneous Deactivation 

Po/Pn ->  Cds + Dn 

* where Cps is an activated catalyst site, Po is the empty site, P1[Ci-seg] is the site with 

polymer segment from propylene or ethylene, Cds is a dead catalyst site, and Dn is a dead 

polymer. 
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Figure A1. Flowsheet for Hypol simulation 

 

A.1.2. Targets 

Based on the available plant data, the targets we use for estimation and validation of 

kinetics are: 

Single-site Targets 

- Production rate 

- Number-average molecular weight (MWN) 

- Co-monomer content - (ratio of C2/C3 segments)-ethylene content (Copolymer) 

Multiple-site targets 

- Polymer polydispersity index (PDI) of polymer 

- MWN total and produced at each site  

- Production rate total and produced at each site 

- Co-monomer content - (ratio of C2/C3 segments)-ethylene content (Copolymer) 

Note: In this case, we do not have data for atactic fraction and melt index so we cannot 

consider those reactions. 

A.1.3 Deconvolution 

We use the GPC data for the final polypropylene to deduce the number of sites of the 

Ziegler- Natta catalyst (assuming a similar distribution for homo-polymer and copolymer 

since the fraction of ethylene is low in the final polymer). The resulting number of catalyst 

sites from deconvolution is 4. The fraction of polymer molecular weight in each site 

appears below: 

Site 1 2 3 4 

Frac. Area 0.249 0.086 0.511 0.154 



 158 

 

 

 
Figure A2. Deconvolution Curve for PP made from catalyst with 4 active sites 

A.1.4. Kinetic Estimation Algorithm 

We divide the modeling strategy into single site and multiple sites. We make a closed-loop 

steady-state model for the two grades. The two grades have different reactor operating 

conditions, mainly the residence time and pressure. We simultaneously make the Hypol 

model for the two grades. We have the plant data in the form of polymer flow rate, 

molecular weight, co-monomer content and PDI. We use the plant data for both the grades 

simultaneously and estimate different parameters using the Aspen Polymers Data Fit tool 

based on our estimation methodology.  

A.1.5. Single Site (Multiple Grades) 

• We use the production rate in the first three reactors to estimate the catalyst 

activation and deactivation reactions and propagation reaction for propylene (set 

the maximum sites concentration to a general observed value – 0.001 moles of sites 

per g of catalyst) to match the same. 

• We use the MWN in first three reactors to regress the chain transfer to hydrogen 

and chain transfer to monomer for propylene.  

• Lastly, we use the MWN, production rate and SFRAC in the last reactor toe 

estimate the propagation and chain transfer reaction for ethylene  

The rate constants estimated for single-site kinetics are (Reference temperature = 69C: 

Type 
Site 
No. Comp 1 Comp 2 Pre-Exp 

Act-
Energy 

    1/sec cal/mol 
ACT-SPON 1 CAT  0.000182 1000 
ACT-H2 1 CAT H2 1.00E-05 1000 
CHAIN-INI 1 C3H6  97 9000 
CHAIN-INI 1 C2H4  600 9000 
PROPAGATION 1 C3-SEG C3H6 97 9000 
PROPAGATION 1 C3-SEG C2H4 600 9000 
PROPAGATION 1 C2-SEG C3H6 97 9000 
PROPAGATION 1 C2-SEG C2H4 600 9000 
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CHAT-MON 1 C3-SEG C3H6 0.04 9100 
CHAT-MON 1 C3-SEG C2H4 0.0014 9100 
CHAT-MON 1 C2-SEG C3H6 0.04 9100 
CHAT-MON 1 C2-SEG C2H4 0.0014 9100 
CHAT-H2 1 C3-SEG H2 0.22 9100 
CHAT-H2 1 C2-SEG H2 0.01 9100 
DEACT-SPON 1   3.76E-05 1000 

 

 

A.1.6. Multiple Sites (Multiple Grades) 

• After tuning for single polymer grade and single catalyst active site, we use the 

deconvolution GPC data to estimate the number of active catalyst sites and the 

active surface area for each active catalyst. We use the GPC data to estimate the 

multisite kinetic parameters as follows. 

• The estimate for  pre-exponential factor of the catalyst activation reaction (ACT-

SPON and ACT-H2) at each active site is:    

• The estimate of  pre-exponential factor for the chain initiation reaction (CHAIN-

INI) at each active site is:  

• The estimate of pre-exponential factor for the chain propagation reaction 

(PROPAGATION) at each active site is:  

• The estimate of pre-exponential factor for the chain transfer reaction (CHAT-MON 

and CHAT-H2) at each active site is:  

• The pre-exponential factor for catalyst deactivation reaction at each active site is 

the same as that for the single active site. 

• Now by using the above rate constants in the model, we validate that the fraction 

of polymer molecular weight in each site matches the GPC data. 

• In order to match the polymer plant PDI from the outlet of each reactor, we regress 

the reaction rate constant for each of the chain transfer reactions involving 

monomer and hydrogen using the PDI data. We also use the MWN data along with 

the PDI for regressing the reaction rate constants so that we match both the PDI and 

MWN as well. 

 

 

The multiple-site rate constants obtained are: 

Type 
Site 
No. Comp 1 Comp 2 Pre-Exp 

Act-
Energy 

    1/sec cal/mol 
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ACT-SPON 1 CAT  4.54E-05 1000 
ACT-SPON 2 CAT  4.54E-05 1000 
ACT-SPON 3 CAT  4.54E-05 1000 
ACT-SPON 4 CAT  4.54E-05 1000 
ACT-H2 1 CAT H2 2.50E-06 1000 
ACT-H2 2 CAT H2 2.50E-06 1000 
ACT-H2 3 CAT H2 2.50E-06 1000 
ACT-H2 4 CAT H2 2.50E-06 1000 
CHAIN-INI 1 C3H6  96.6 9000 
CHAIN-INI 1 C2H4  598 9000 
CHAIN-INI 2 C3H6  33.368 9000 

CHAIN-INI 2 C2H4  206.4 9000 
CHAIN-INI 3 C3H6  198.268 9000 
CHAIN-INI 3 C2H4  1226.4 9000 
CHAIN-INI 4 C3H6  59.752 9000 
CHAIN-INI 4 C2H4  369.6 9000 
PROPAGATION 1 C3-SEG C3H6 96.612 9000 
PROPAGATION 1 C3-SEG C2H4 597.6 9000 
PROPAGATION 1 C2-SEG C3H6 96.612 9000 
PROPAGATION 1 C2-SEG C2H4 597.6 9000 
PROPAGATION 2 C3-SEG C3H6 33.368 9000 
PROPAGATION 2 C3-SEG C2H4 206.4 9000 

PROPAGATION 2 C2-SEG C3H6 33.368 9000 
PROPAGATION 2 C2-SEG C2H4 206.4 9000 
PROPAGATION 3 C3-SEG C3H6 198.268 9000 
PROPAGATION 3 C3-SEG C2H4 1226.4 9000 
PROPAGATION 3 C2-SEG C3H6 198.268 9000 
PROPAGATION 3 C2-SEG C2H4 1226.4 9000 
PROPAGATION 4 C3-SEG C3H6 59.752 9000 
PROPAGATION 4 C3-SEG C2H4 369.6 9000 
PROPAGATION 4 C2-SEG C3H6 59.752 9000 

PROPAGATION 4 C2-SEG C2H4 369.6 9000 
CHAT-MON 1 C3-SEG C3H6 0.15343 9100 
CHAT-MON 1 C3-SEG C2H4 0.013083 9100 

CHAT-MON 1 C2-SEG C3H6 0.15343 9100 
CHAT-MON 1 C2-SEG C2H4 0.013083 9100 
CHAT-MON 2 C3-SEG C3H6 0.002748 9100 
CHAT-MON 2 C3-SEG C2H4 4.72E-05 9100 
CHAT-MON 2 C2-SEG C3H6 0.002748 9100 
CHAT-MON 2 C2-SEG C2H4 4.72E-05 9100 
CHAT-MON 3 C3-SEG C3H6 0.047955 9100 
CHAT-MON 3 C3-SEG C2H4 1.11E-05 9100 
CHAT-MON 3 C2-SEG C3H6 0.047955 9100 
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CHAT-MON 3 C2-SEG C2H4 1.11E-05 9100 
CHAT-MON 4 C3-SEG C3H6 0.003439 9100 
CHAT-MON 4 C3-SEG C2H4 0.000665 9100 
CHAT-MON 4 C2-SEG C3H6 0.003439 9100 
CHAT-MON 4 C2-SEG C2H4 0.000665 9100 
CHAT-H2 1 C3-SEG H2 0.031767 9100 
CHAT-H2 1 C2-SEG H2 0.001444 9100 
CHAT-H2 2 C3-SEG H2 0.09753 9100 
CHAT-H2 2 C2-SEG H2 0.004433 9100 
CHAT-H2 3 C3-SEG H2 2.70E-06 9100 
CHAT-H2 3 C2-SEG H2 1.23E-07 9100 

CHAT-H2 4 C3-SEG H2 0.002903 9100 
CHAT-H2 4 C2-SEG H2 0.000132 9100 
      
      
      
DEACT-SPON 1   3.76E-05 1000 
DEACT-SPON 2   3.76E-05 1000 
DEACT-SPON 3   3.76E-05 1000 
DEACT-SPON 4   3.76E-05 1000 

 

A.1.7. Sensitivity Analysis  
Figure A3  illustrates that varying the reaction rate constant for chain transfer to monomer, 𝑘𝑡𝑚,𝑖  

results in similar trends of change in PDI, SMWN and MWN, as with the chain transfer to 

hydrogen. 

 
Figure A3.  Sensitivity of the PDI, MWN and SMWN for the HYPOL PP process on the 

pre-exponential factor of the reaction rate constant for chain transfer to monomer. 

A.1.8. Model Validation  
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Figure A4. Comparison of model molecular weight with actual molecular weight 

 

 
Figure A5. Comparison of model PDI with actual PDI 

 

A.2. Mitsui Slurry HDPE process 

 

A.2.1. Process Description 

The Mitsui process for manufacturing HDPE is a slurry-phase process. Ethylene is the 

monomer for the process and propylene or butylene is comonomer. Hexane is used as a 

diluent to dissolve the monomer, co-monomer and hydrogen. The process usually consists 

of two autoclave reactors in series or in parallel configuration.  Figure A6 shows the 

flowsheet for the process made in Aspen Polymers. 

 
Figure A6. Flowsheet for the slurry HDPE process with reactor in series. 

 

A.2.2. Kinetics 
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The main reactions considered for the HDPE slurry process are with a comonomer of C3H6 

or C4H8 for single site: 

Catalyst Activation 

Cps[Pz] + At ->  Po 

Chain Initiation 

Po -> P1[R-C2h4] 

Po -> P1[R-C3h6] 

Po -> P1[R-C4h8] 

Propagation 

Pn[C2H4] + C2H4 -> Pn+1[C2H4] 

Pn[C2H4] + C3H6 -> Pn+1[C3H6] 

Pn[C3H6] + C2H4 -> Pn+1[C2H4] 

Pn[C3H6] + C3H6 -> Pn+1[C3H6] 

Pn[C2H4] + C4H8 -> Pn+1[C4H8] 

Pn[C4H8] + C4H8 -> Pn+1[C4H8] 

Pn[C4H8] + C2H4 -> Pn+1[C2H4] 

Chain Transfer to Hydrogen  

Pn[C2h4] + H2 ->  Dn + Po 

Pn[C3h6] + H2 ->  Dn + Po 

Pn[C4h8] + H2 ->  Dn + Po 

Deactivation Spontaneous 

Po/Pn ->  Cds+ Dn 

Inhibition reactions 

Po + H2 ->  Cis  

Cis  ->  Po + H2 

* where Cps is an activated catalyst site, Po is the empty site, P1[Ci-seg] is the site with 

polymer segment from propylene or ethylene, Cds is a dead catalyst site, and Dn is a dead 

polymer. 

 

A.2.3. Production Targets  

The production targets used for kinetic estimation are: 

• Production rate 

• Number-average molecular weight (MWN/MI) 

• Conversion of monomer-comonomer 

• PDI 

• H2/C ratio 

• SMWN & SPFRAC (Site based)  

• Residence time 

• CISFRAC 

A.2.4. Estimated Rate Constants 

The GPC deconvolution gives 5 minimum active catalyst sites. The reference temperature 

for rate constants is very high(1e35 C) 

The final set of multisite estimated rate constants for 5 active catalyst sites are:  

Type 

Site 

No. 

Comp 

1 

Comp 

2 Pre-Exp 

Act-

Energy Order 
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    1/sec J/kmol  
ACT-COCAT 1 PZ AT 900000 33494000 1 

ACT-COCAT 2 PZ AT 900000 33494000 1 

ACT-COCAT 3 PZ AT 900000 33494000 1 

ACT-COCAT 4 PZ AT 900000 33494000 1 

ACT-COCAT 5 PZ AT 900000 33494000 1 

CHAIN-INI 1 C2H4  82000000 29308000 1 

CHAIN-INI 1 C3H6  3300000 29308000 1 

CHAIN-INI 1 C4H8  1100000 29308000 1 

CHAIN-INI 2 C2H4  82000000 29308000 1 

CHAIN-INI 2 C3H6  3300000 29308000 1 

CHAIN-INI 2 C4H8  1100000 29308000 1 

CHAIN-INI 3 C2H4  82000000 29308000 1 

CHAIN-INI 3 C3H6  3300000 29308000 1 

CHAIN-INI 3 C4H8  1100000 29308000 1 

CHAIN-INI 4 C2H4  82000000 29308000 1 

CHAIN-INI 4 C3H6  3300000 29308000 1 

CHAIN-INI 4 C4H8  1100000 29308000 1 

CHAIN-INI 5 C2H4  82000000 29308000 1 

CHAIN-INI 5 C3H6  3300000 29308000 1 

CHAIN-INI 5 C4H8  1100000 29308000 1 

PROPAGATION 1 C2H4 C2H4 21703760 29308000 1 

PROPAGATION 1 C2H4 C3H6 873444 29308000 1 

PROPAGATION 1 C3H6 C2H4 1164592 29308000 1 

PROPAGATION 1 C3H6 C3H6 185276 29308000 1 

PROPAGATION 1 C2H4 C4H8 291148 29308000 1 

PROPAGATION 1 C4H8 C2H4 397020 29308000 1 

PROPAGATION 1 C4H8 C4H8 174688.8 29308000 1 

PROPAGATION 2 C2H4 C2H4 1.21E+08 29308000 1 

PROPAGATION 2 C2H4 C3H6 4873770 29308000 1 

PROPAGATION 2 C3H6 C2H4 6498360 29308000 1 

PROPAGATION 2 C3H6 C3H6 1033830 29308000 1 

PROPAGATION 2 C2H4 C4H8 1624590 29308000 1 

PROPAGATION 2 C4H8 C2H4 2215350 29308000 1 

PROPAGATION 2 C4H8 C4H8 974754 29308000 1 

PROPAGATION 3 C2H4 C2H4 1.11E+08 29308000 1 

PROPAGATION 3 C2H4 C3H6 4451535 29308000 1 

PROPAGATION 3 C3H6 C2H4 5935380 29308000 1 

PROPAGATION 3 C3H6 C3H6 944265 29308000 1 

PROPAGATION 3 C2H4 C4H8 1483845 29308000 1 

PROPAGATION 3 C4H8 C2H4 2023425 29308000 1 

PROPAGATION 3 C4H8 C4H8 890307 29308000 1 

PROPAGATION 4 C2H4 C2H4 1.05E+08 29308000 1 
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PROPAGATION 4 C2H4 C3H6 4238025 29308000 1 

PROPAGATION 4 C3H6 C2H4 5650700 29308000 1 

PROPAGATION 4 C3H6 C3H6 898975 29308000 1 

PROPAGATION 4 C2H4 C4H8 1412675 29308000 1 

PROPAGATION 4 C4H8 C2H4 1926375 29308000 1 

PROPAGATION 4 C4H8 C4H8 847605 29308000 1 

PROPAGATION 5 C2H4 C2H4 51266400 29308000 1 

PROPAGATION 5 C2H4 C3H6 2063160 29308000 1 

PROPAGATION 5 C3H6 C2H4 2750880 29308000 1 

PROPAGATION 5 C3H6 C3H6 437640 29308000 1 

PROPAGATION 5 C2H4 C4H8 687720 29308000 1 

PROPAGATION 5 C4H8 C2H4 937800 29308000 1 

PROPAGATION 5 C4H8 C4H8 412632 29308000 1 

CHAT-H2 1 C2H4 H2 2.38E+27 1.76E+08 0.85 

CHAT-H2 1 C3H6 H2 2.38E+27 1.76E+08 0.85 

CHAT-H2 1 C4H8 H2 2.85E+27 1.76E+08 0.85 

CHAT-H2 2 C2H4 H2 4.29E+27 1.76E+08 0.85 

CHAT-H2 2 C3H6 H2 4.29E+27 1.76E+08 0.85 

CHAT-H2 2 C4H8 H2 1.24E+27 1.76E+08 0.85 

CHAT-H2 3 C2H4 H2 1.94E+27 1.76E+08 0.85 

CHAT-H2 3 C3H6 H2 1.94E+27 1.76E+08 0.85 

CHAT-H2 3 C4H8 H2 2.85E+27 1.76E+08 0.85 

CHAT-H2 4 C2H4 H2 9.08E+26 1.76E+08 0.85 

CHAT-H2 4 C3H6 H2 9.08E+26 1.76E+08 0.85 

CHAT-H2 4 C4H8 H2 3.85E+27 1.76E+08 0.85 

CHAT-H2 5 C2H4 H2 3.87E+25 1.76E+08 0.85 

CHAT-H2 5 C3H6 H2 3.87E+25 1.76E+08 0.85 

CHAT-H2 5 C4H8 H2 2.87E+25 1.76E+08 0.85 

DEACT-SPON 1   0.002 4186800 1 

DEACT-SPON 2   0.002 4186800 1 

DEACT-SPON 3   0.002 4186800 1 

DEACT-SPON 4   0.002 4186800 1 

DEACT-SPON 5   0.002 4186800 1 

FSINH-H2 1 H2  5141.333 8373600 0.5 

FSINH-H2 2 H2  2855.22 8373600 0.5 

FSINH-H2 3 H2  6.29E+03 8373600 0.5 

FSINH-H2 4 H2  1.34E+04 8373600 0.5 

FSINH-H2 5 H2  8.16E+04 8373600 0.5 

RSINH-H2 1 H2  6.00E-01 8373600 1 

RSINH-H2 2 H2  6.00E-01 8373600 1 

RSINH-H2 3 H2  6.00E-01 8373600 1 

RSINH-H2 4 H2  6.00E-01 8373600 1 

RSINH-H2 5 H2  6.00E-01 8373600 1 
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CHAT-AGENT 5 C2H4 C2H4 1.10E+25 1.76E+08 1 

CHAT-AGENT 5 C2H4 C3H6 1.10E+25 1.76E+08 1 

CHAT-AGENT 5 C3H6 C2H4 1.10E+25 1.76E+08 1 

CHAT-AGENT 5 C3H6 C3H6 1.10E+25 1.76E+08 1 

 

A.2.5. Results  

The GPC curve for the polymer results in a bimodal curve in the outlet of the first reactor 

itself and the model results also confirm the same, because of different site-inhibition 

reactions. 

 
FigureA7.  MWD of the product in the outlet of the first reactor 

 

 

            
Figure A8. The effect of the sensitivity of the activation reactions on production rate for 

Mitsui HDPE process 

 

 

A.2.6. Sensitivity Analysis 

We study the effect of the catalyst inhibition reaction for the Mitsui slurry HDPE process. 

Figure A9 shows that varying the rate constants for the catalyst inhibition by hydrogen 

reaction (kinh) for a particular site, the MWD of the polyolefin produced from a single 

reactor can change from unimodal to bimodal. This happens since the difference in the rate 

of inhibition for different catalyst sites. 
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Figure A9. The effect on the MWD by varying the catalyst inhibition reaction rate for the 

Mitsui HDPE process 

 

A.3. Innovene and Horizone PP process 

Japan Polypropylene Corporation developed the Horizone process and INEOS developed 

the Innovene process for manufacturing PP. This is a gas-phase process and consists of two 

horizontal stirred bed reactors (HSBR) which are stirred powder beds in series. The catalyst 

and co-catalyst are injected at separate points in the initial section of the first reactor. The 

reactor is cooled by spraying liquid PP over the powder in the bed. The residence times 

will be different in the two reactors which helps in speeding up grade transitions. We model 

each HSBR as four CSTR in series [2]. The plug flow like characteristics enhance the 

polymer properties [5]. Figure A10 shows the flowsheet of the process made in Aspen 

Polymers. 

   
Figure A10. Flow-sheet of Innovene process  

 

A.3.1. Kinetics 

The main reactions for the Innovene/Horizone PP process are shown below: 

Reactants  Products 

Catalyst Activation 

Cps[Cat] ->  Po   (Spontaneous) 

Cps[Cat] + H2 ->  Po (Activation due to H2) 

Chain Initiation 

Po -> P1[C3-Seg] 

Po -> P1[C2-Seg] 

Propagation 

Pn[C3-SEG] + Propene -> Pn+1[C3-Seg] 

Pn[C3-SEG] + Ethylene -> Pn+1[C2-Seg] 

FSPLI T

FSPLI T

FSPLI T

FSPLI T

FSPLI T

FSPLI T
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Pn[C2-SEG] + Propene -> Pn+1[C3-Seg] 

Pn[C2-SEG] + Ethylene -> Pn+1[C2-Seg] 

Pn[C3-Seg] + Propene -> Pn+1[C3-Seg] (Atactic Propagation) 

Chain Transfer to Hydrogen 

Pn[C3-Seg] + H2 ->  Dn + Po 

Pn[C2-Seg] + H2 ->  Dn + Po 

Chain Transfer to Monomer 

Pn[C3-Seg] + Propene ->  Dn + P1[C3-Seg] 

Pn[C3-Seg] + Ethylene ->  Dn + P1[C2-Seg] 

Pn[C2-Seg] + Propene ->  Dn + P1[C3-Seg] 

Pn[C2-Seg] + Ethylene ->  Dn + P1[C2-Seg] 

 

Catalyst Deactivation Spontaneous 

Po/Pn ->  Csd[+ Dn 

Catalyst Deactivation due to Poison 

Po/Pn + Dib ->  Cds+ Dn 

Po/Pn + Dip ->  Cds+ Dn 

Po/Pn + O2 ->  Cds + Dn 

A.3.2. Production Targets  

The production targets used for kinetic estimation are: 

• Production rate 

• Number-average molecular wt. (MWN/MI) 

• Conversion of monomer-comonomer 

• PDI 

• H2/C ratio 

• SMWN & SPFRAC (Site-based)  

• Residence time 

• ATFRAC 

 

A.3.3. Estimated Rate Constants 

The GPC deconvolution predicts 4 minimum active catalyst sites. 

The reference temperature is (66 C): 

The final set of estimated rate constants for 4 active catalyst sites:  

Type 

Site 

No. Comp 1 Comp 2 Pre-Exp 

Act-

Energy Order 

    1/sec cal/mol  

ACT-SPON 1 CAT  

0.00017

5 2000 1 

ACT-SPON 2 CAT  

0.00017

5 2000 1 

ACT-SPON 3 CAT  

0.00017

5 2000 1 

ACT-SPON 4 CAT  

0.00017

5 2000 1 
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ACT-H2 1 CAT H2 

0.00203

9 4557 0.5 

ACT-H2 2 CAT H2 

0.00203

9 4557 0.5 

ACT-H2 3 CAT H2 

0.00203

9 4557 0.5 

ACT-H2 4 CAT H2 

0.00203

9 4557 0.5 

CHAIN-INI 1 PROPENE  

8.62403

3 9000 1 

CHAIN-INI 1 ETHYLENE 

63.0317

2 9000 1 

CHAIN-INI 2 PROPENE  

45.6045

6 9000 1 

CHAIN-INI 2 ETHYLENE 

333.316

7 9000 1 

CHAIN-INI 3 PROPENE  

76.4643

8 9000 1 

CHAIN-INI 3 ETHYLENE 

558.866

3 9000 1 

CHAIN-INI 4 PROPENE  

52.9980

6 9000 1 

CHAIN-INI 4 ETHYLENE 

387.354

6 9000 1 

PROPAGATIO

N 1 PROPENE PROPENE 

8.62403

3 9000 1 

PROPAGATIO

N 1 PROPENE 

ETHYLEN

E 

63.0317

2 9000 1 

PROPAGATIO

N 1 

ETHYLEN

E PROPENE 

8.62403

3 9000 1 

PROPAGATIO

N 1 

ETHYLEN

E 

ETHYLEN

E 

63.0317

2 9000 1 

PROPAGATIO

N 2 PROPENE PROPENE 

45.6045

6 9000 1 

PROPAGATIO

N 2 PROPENE 

ETHYLEN

E 

333.316

7 9000 1 

PROPAGATIO

N 2 

ETHYLEN

E PROPENE 

45.6045

6 9000 1 

PROPAGATIO

N 2 

ETHYLEN

E 

ETHYLEN

E 

333.316

7 9000 1 

PROPAGATIO

N 3 PROPENE PROPENE 

76.4643

8 9000 1 

PROPAGATIO

N 3 PROPENE 

ETHYLEN

E 

558.866

3 9000 1 

PROPAGATIO

N 3 

ETHYLEN

E PROPENE 

76.4643

8 9000 1 
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PROPAGATIO

N 3 

ETHYLEN

E 

ETHYLEN

E 

558.866

3 9000 1 

PROPAGATIO

N 4 PROPENE PROPENE 

52.9980

6 9000 1 

PROPAGATIO

N 4 PROPENE 

ETHYLEN

E 

387.354

6 9000 1 

PROPAGATIO

N 4 

ETHYLEN

E PROPENE 

52.9980

6 9000 1 

PROPAGATIO

N 4 

ETHYLEN

E 

ETHYLEN

E 

387.354

6 9000 1 

CHAT-MON 1 PROPENE PROPENE 0.00159 24500 1 

CHAT-MON 1 PROPENE 

ETHYLEN

E 0.00159 24500 1 

CHAT-MON 1 

ETHYLEN

E PROPENE 0 24000 1 

CHAT-MON 1 

ETHYLEN

E 

ETHYLEN

E 0 24000 1 

CHAT-MON 2 PROPENE PROPENE 

0.00169

4 24500 1 

CHAT-MON 2 PROPENE 

ETHYLEN

E 

0.00169

4 24500 1 

CHAT-MON 2 

ETHYLEN

E PROPENE 0 24000 1 

CHAT-MON 2 

ETHYLEN

E 

ETHYLEN

E 0 24000 1 

CHAT-MON 3 PROPENE PROPENE 0.0009 24500 1 

CHAT-MON 3 PROPENE 

ETHYLEN

E 0.0009 24500 1 

CHAT-MON 3 

ETHYLEN

E PROPENE 0 24000 1 

CHAT-MON 3 

ETHYLEN

E 

ETHYLEN

E 0 24000 1 

CHAT-MON 4 PROPENE PROPENE 

0.00019

8 24500 1 

CHAT-MON 4 PROPENE 

ETHYLEN

E 

0.00019

8 24500 1 

CHAT-MON 4 

ETHYLEN

E PROPENE 0 24000 1 

CHAT-MON 4 

ETHYLEN

E 

ETHYLEN

E 0 24000 1 

CHAT-H2 1 PROPENE H2 

2.66810

6 24500 0.5 

CHAT-H2 1 

ETHYLEN

E H2 

2.66810

6 24500 0.5 

CHAT-H2 2 PROPENE H2 

2.83102

9 24500 0.5 
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CHAT-H2 2 

ETHYLEN

E H2 

2.83102

9 24500 0.5 

CHAT-H2 3 PROPENE H2 1.50637 24500 0.5 

CHAT-H2 3 

ETHYLEN

E H2 1.50637 24500 0.5 

CHAT-H2 4 PROPENE H2 

0.33490

8 24500 0.5 

CHAT-H2 4 

ETHYLEN

E H2 

0.33490

8 24500 0.5 

DEACT-

POISON 1 DIB  

6.12613

9 1000 1 

DEACT-

POISON 1 DIP  

0.00010

3 1000 1 

DEACT-

POISON 1 O2  

0.88261

7 5000 0.5 

DEACT-

POISON 2 DIB  

0.00010

3 1000 1 

DEACT-

POISON 2 DIP  

0.00010

3 1000 1 

DEACT-

POISON 2 O2  

0.88261

7 5000 0.5 

DEACT-

POISON 3 DIB  

0.00010

3 1000 1 

DEACT-

POISON 3 DIP  

0.00010

3 1000 1 

DEACT-

POISON 3 O2  

0.88261

7 5000 0.5 

DEACT-

POISON 4 DIB  

0.00010

3 1000 1 

DEACT-

POISON 4 DIP  

0.00010

3 1000 1 

DEACT-

POISON 4 O2  

0.88261

7 5000 0.5 

DEACT-SPON 1   

0.00029

9 10000 1 

DEACT-SPON 2   

0.00029

9 10000 1 

DEACT-SPON 3   

0.00029

9 10000 1 

DEACT-SPON 4   

0.00029

9 10000 1 

ATACT-PROP 1 C3-SEG PROPENE 8.4 9000 1 

ATACT-PROP 2 C3-SEG PROPENE 0.042 9000 1 

ATACT-PROP 3 C3-SEG PROPENE 0.042 9000 1 

ATACT-PROP 4 C3-SEG PROPENE 0.042 9000 1 
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A.3.4. Sensitivity Analysis 

 

 
Figure A11. The sensitivity of the production rate from an Innovene gas-phase PP process 

to changes in the propagation reaction rate constant. 

 

Figure A11 shows the effect on the production rates for the two horizontal bed reactors 

(represented as P1, P2 in Figure A10) in the Innovene gas-phase PP process by varying the 

pre-exponential factor of propagation reaction rate constant for a particular active site. 

 

A.4. Spheripol PP process 

 

The Spheripol PP process by Basel is a mixed-phase process used for producing PP. The 

process consists of a prepolymerizer followed by two loop reactors in series, and by a 

fluidized-bed reactor (FBR). The loop reactors are slurryd-phase, while the FBR is gas-

phase required for the impact copolymer production because of the limited solubility of 

ethylene in liquid propylene. The process is modeled by using 4 CSTR’s in series. Figure 

A12 shows a flowsheet of the process taken (with permission) from an example file within 

Aspen Polymers.  

 
Figure A12. Flowsheet of Spheripol PP process 

 

 

A.4.1. Kinetics 

The reaction kinetics for the Spheripol PP process are defined below: 

Catalyst Co-catalyst Activation 

Cps[Cat] + Teal ->  Po 

Activation by Hydrogen 

Cps[Cat] + H2 ->  Po 
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Chain Initiation 

Po -> P1[C3-Seg] 

Po -> P1[C2-Seg] 

Propagation 

Pn[C3-SEG] + Propene -> Pn+1[C3-Seg] 

Pn[C2-SEG] + Ethene              -> Pn+1[C2-Seg] 

Pn[C2-SEG] + Propene -> Pn+1[C3-Seg] 

Pn[C3-SEG] + Ethene -> Pn+1[C2-Seg] 

Chain Transfer by monomer 

Pn[C3-Seg] + Propene ->  Dn + P1[C3-Seg] 

Pn[C2-Seg] + Ethene ->  Dn + P1[C2-Seg] 

Chain Transfer by Hydrogen 

Pn[C3-Seg] + H2 ->  Dn + Po 

Pn[C2-Seg] + H2 ->  Dn + Po 

Chain Transfer by Co-catalyst 

Pn[C3-Seg] + Teal ->  Dn + Po 

Spontaneous Deactivation 

Po/Pn ->  Cds + Dn 

 

A.4.2. Production Targets  

The production targets used for kinetic estimation are: 

• Production rate 

• Number-average molecular wt. (MWN/MI) 

• Conversion of monomer-comonomer 

• PDI 

• H2/C ratio 

• SMWN & SPFRAC (Site based )  

• Residence time 

• ATFRAC 

A.4.3. Kinetic Estimation 

The GPC deconvolution predicts 4 minimum active catalyst sites. The reference 

temperature is very high 1e35 C: 

The final set of estimated reaction rate constants for 4 active catalyst sites are: 

 

Type 
Site 
No. Comp 1 Comp 2 Pre-Exp 

Act-
Energy 

    1/hr kcal/mol 
ACT-COCAT 1 CAT TEAL 1155 10 
ACT-COCAT 2 CAT TEAL 1155 10 
ACT-COCAT 3 CAT TEAL 1155 10 
ACT-COCAT 4 CAT TEAL 1155 10 
ACT-H2 1 CAT H2 150 15 
ACT-H2 2 CAT H2 150 15 
ACT-H2 3 CAT H2 150 15 
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ACT-H2 4 CAT H2 150 15 
CHAIN-INI 1 PROPENE  1065561 10 
CHAIN-INI 1 ETHENE  85337130 10 
CHAIN-INI 2 PROPENE  6181176 10 
CHAIN-INI 2 ETHENE  4.94E+08 10 
CHAIN-INI 3 PROPENE  6481009 10 
CHAIN-INI 3 ETHENE  5.19E+08 10 
CHAIN-INI 4 PROPENE  2675434 10 
CHAIN-INI 4 ETHENE  2.14E+08 10 
PROPAGATION 1 C3-SEG PROPENE 1065561 10 
PROPAGATION 1 C3-SEG ETHENE 1314653 10 

PROPAGATION 1 C2-SEG PROPENE 7103739 10 
PROPAGATION 1 C2-SEG ETHENE 41515360 10 
PROPAGATION 2 C3-SEG PROPENE 6181176 10 
PROPAGATION 2 C3-SEG ETHENE 9225636 10 
PROPAGATION 2 C2-SEG PROPENE 38517029 10 
PROPAGATION 2 C2-SEG ETHENE 2.27E+08 10 
PROPAGATION 3 C3-SEG PROPENE 6942291 10 
PROPAGATION 3 C3-SEG ETHENE 9225636 10 
PROPAGATION 3 C2-SEG PROPENE 44974974 10 
PROPAGATION 3 C2-SEG ETHENE 2.79E+08 10 
PROPAGATION 4 C3-SEG PROPENE 2675434 10 

PROPAGATION 4 C3-SEG ETHENE 4382177 10 
PROPAGATION 4 C2-SEG PROPENE 17159682 10 
PROPAGATION 4 C2-SEG ETHENE 1.01E+08 10 
CHAT-MON 1 C3-SEG PROPENE 33.97478 14 
CHAT-MON 1 C3-SEG ETHENE 33.97478 14 
CHAT-MON 1 C2-SEG PROPENE 33.97478 14 
CHAT-MON 1 C2-SEG ETHENE 33.97478 14 
CHAT-MON 2 C3-SEG PROPENE 33.97478 14 
CHAT-MON 2 C3-SEG ETHENE 33.97478 14 

CHAT-MON 2 C2-SEG PROPENE 33.97478 14 
CHAT-MON 2 C2-SEG ETHENE 33.97478 14 
CHAT-MON 3 C3-SEG PROPENE 33.97478 14 

CHAT-MON 3 C3-SEG ETHENE 33.97478 14 
CHAT-MON 3 C2-SEG PROPENE 33.97478 14 
CHAT-MON 3 C2-SEG ETHENE 33.97478 14 
CHAT-MON 4 C3-SEG PROPENE 33.97478 14 
CHAT-MON 4 C3-SEG ETHENE 33.97478 14 
CHAT-MON 4 C2-SEG PROPENE 33.97478 14 
CHAT-MON 4 C2-SEG ETHENE 33.97478 14 
CHAT-H2 1 C3-SEG H2 133219.1 13 
CHAT-H2 1 C2-SEG H2 159863.8 13 



 175 

CHAT-H2 2 C3-SEG H2 188500.4 13 
CHAT-H2 2 C2-SEG H2 226563 13 
CHAT-H2 3 C3-SEG H2 66156.41 13 
CHAT-H2 3 C2-SEG H2 79387.53 13 
CHAT-H2 4 C3-SEG H2 8573.13 13 
CHAT-H2 4 C2-SEG H2 10295.01 13 
CHAT-SPON 1 C3-SEG  900 15 
CHAT-SPON 1 C2-SEG  900 15 
CHAT-SPON 2 C3-SEG  900 15 
CHAT-SPON 2 C2-SEG  900 15 
CHAT-SPON 3 C3-SEG  900 15 

CHAT-SPON 3 C2-SEG  900 15 
CHAT-SPON 4 C3-SEG  900 15 
CHAT-SPON 4 C2-SEG  900 15 
DEACT-SPON 1   0.24 2 
DEACT-SPON 2   0.24 2 
DEACT-SPON 3   0.24 2 
DEACT-SPON 4   0.24 2 
ATACT-PROP 1 C3-SEG PROPENE 161448.6 10 
ATACT-PROP 2 C3-SEG PROPENE 161448.6 10 
ATACT-PROP 3 C3-SEG PROPENE 4318.289 10 
ATACT-PROP 4 C3-SEG PROPENE 178.1978 10 

 

A.4.4. Sensitivity Analysis 

Figure A12 shows how increasing the atactic propagation rate constant increases the atactic 

fraction, ATFRAC, for the SPHERIPOL PP process 

 
Figure A13. The sensitivity of the atactic fraction ATFRAC to changes in the atactic 

propagation reaction rate constant for the Spheripol PP process. 

 

A.5. Unipol LLDPE process 

 

This is a process for manufacturing linear low-density polyethylene (LLDPE) and high-

density polyethylene (HDPE) developed by Union Carbide (Now part of Dow Chemical). 

It is a gas phase process consisting of a fluidized-bed reactor (FBR) where the unreacted 

monomer is removed from the product by flashing. The process consists of a FBR, a 
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product discharge system to get the polymer out of the system and flash off the monomer, 

and a purge column to remove any residual monomer. Figure A13 shows a flowsheet of 

the Aspen Polymers model for the process. 

 

 
Figure A14. Flowsheet of the Unipol process 

A.5.1. Kinetics 

The reaction kinetics of the Unipol LLDPE process are: 

Catalyst Activation 

Activation Spontaneous 

Cps[Ticl3] ->  Po 

Activation By Co-catalyst 

Cps[Ticl3] + Teal ->  Po 

Activation By monomer 

Cps[Ticl3] + C2h4 ->  Po + C2h4 

Cps[Ticl3] + C4h8 ->  Po + C4h8 

Chain Initiation 

Po -> P1[C2h4-R] 

Po -> P1[C4h8-R] 

Propagation 

Pn[C2H4-R] + C2H4 -> Pn+1[C2h4-R] 

Pn[C2H4-R] + C4H8 -> Pn+1[C4h8-R] 

Pn[C4H8-R] + C2H4 -> Pn+1[C2h4-R] 

Pn[C4H8-R] + C4H8 -> Pn+1[C4h8-R] 

Chain Transfer to Monomer 

Pn[C2h4-R] + C2h4 ->  Dn + P1[C2h4-R] 

Pn[C2h4-R] + C4h8 ->  Dn + P1[C4h8-R] 

Pn[C4h8-R] + C2h4 ->  Dn + P1[C2h4-R] 

Pn[C4h8-R] + C4h8 ->  Dn + P1[C4h8-R] 

Chain Transfer to Hydrogen 

Pn[C2h4-R] + H2 ->  Dn + Po 

Pn[C4h8-R] + H2 ->  Dn + Po 

Spontaneous Chain Transfer  

Pn[C2h4-R] ->  Dn + Po 

Pn[C4h8-R] ->  Dn + Po 

Catalyst Deactivation 

Deactivation due to poison 

K-40 03

C-40 01

E-40 02

MIX1

MX2

E-52 17

K-52 06X1

C-52 26

G-52 25

K-52 06X2

C-52 10

G-52 15

MX3

MX4

E-52 27

E-52 09

C500 9

HT

E-52 08

CG3

CG4

CAT

T2

CG6

CG1

PDS

DWS

CG5

DWC

C2H4 CG2

N2 H2

IC5

REC

C4H8

RECG RECG1

RECG2

RECG3

LIQ1

RECG4

REL IQ1

RECG5

RECG7

RECG8

RECG11

REL IQ2

REL IQ

L

PDS1

RECG6

PEF

W



 177 

Po/Pn + Co ->  Cds+ Dn 

Spontaneous Deactivation 

Po/Pn ->  Csd [+ Dn 

 

A.5.2. Production Targets  

The production targets used for kinetic estimation are: 

• Production rate 

• Number-average molecular wt. (MWN/MI) 

• Conversion of monomer-comonomer 

• PDI 

• H2/C ratio 

• SMWN & SPFRAC (Site-based)  

• Residence time 

A.5.3. Estimated Rate Constants 

The GPC deconvolution predicts 3 minimum active catalyst sites. 

The reference temperature is very high 1e35 C 

 

The final set of estimated reaction rate constants for 3 active catalyst sites are: 

Type 
Site 
No. Comp 1 Comp 2 Pre-Exp 

Act-
Energy 

    1/sec cal/mol 
ACT-SPON 1 TICL3  0.001 900 
ACT-SPON 2 TICL3  0.001 900 

ACT-SPON 3 TICL3  0.001 900 
ACT-COCAT 1 TICL3 TEAL 0.023333 900 
ACT-COCAT 2 TICL3 TEAL 0.023333 900 
ACT-COCAT 3 TICL3 TEAL 0.023333 900 
ACT-MON 1 TICL3 C2H4 0.000167 900 
ACT-MON 1 TICL3 C4H8 3.33E-05 900 
ACT-MON 2 TICL3 C2H4 0.000167 900 
ACT-MON 2 TICL3 C4H8 3.33E-05 900 
ACT-MON 3 TICL3 C2H4 0.000167 900 
ACT-MON 3 TICL3 C4H8 3.33E-05 900 
CHAIN-INI 1 C2H4  27661.58 500 

CHAIN-INI 1 C4H8  546.6832 500 
CHAIN-INI 2 C2H4  16576.61 500 
CHAIN-INI 2 C4H8  327.6079 500 
CHAIN-INI 3 C2H4  6610.303 500 
CHAIN-INI 3 C4H8  130.6412 500 
PROPAGATION 1 C2H4-R C2H4 27661.58 500 
PROPAGATION 1 C2H4-R C4H8 546.6832 500 
PROPAGATION 1 C4H8-R C2H4 546.6832 500 
PROPAGATION 1 C4H8-R C4H8 5.044209 500 
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PROPAGATION 2 C2H4-R C2H4 16576.61 500 
PROPAGATION 2 C2H4-R C4H8 327.6079 500 
PROPAGATION 2 C4H8-R C2H4 327.6079 500 
PROPAGATION 2 C4H8-R C4H8 3.022816 500 
PROPAGATION 3 C2H4-R C2H4 6610.303 500 
PROPAGATION 3 C2H4-R C4H8 130.6412 500 
PROPAGATION 3 C4H8-R C2H4 130.6412 500 
PROPAGATION 3 C4H8-R C4H8 1.205418 500 
CHAT-MON 1 C2H4-R C2H4 0.001253 850 
CHAT-MON 1 C2H4-R C4H8 2.92E-05 850 
CHAT-MON 1 C4H8-R C2H4 2.92E-05 850 

CHAT-MON 1 C4H8-R C4H8 2.92E-07 850 
CHAT-MON 2 C2H4-R C2H4 2.07E-05 850 
CHAT-MON 2 C2H4-R C4H8 4.82E-07 850 
CHAT-MON 2 C4H8-R C2H4 4.82E-07 850 
CHAT-MON 2 C4H8-R C4H8 4.82E-09 850 
CHAT-MON 3 C2H4-R C2H4 0.001273 850 
CHAT-MON 3 C2H4-R C4H8 2.97E-05 850 
CHAT-MON 3 C4H8-R C2H4 2.97E-05 850 
CHAT-MON 3 C4H8-R C4H8 2.97E-07 850 
CHAT-H2 1 C2H4-R H2 85.9114 850 
CHAT-H2 1 C4H8-R H2 85.9114 850 

CHAT-H2 2 C2H4-R H2 14.6419 850 
CHAT-H2 2 C4H8-R H2 14.6419 850 
CHAT-H2 3 C2H4-R H2 92.07744 850 
CHAT-H2 3 C4H8-R H2 92.07744 850 
CHAT-SPON 1 C2H4-R  8.36E-05 850 
CHAT-SPON 1 C4H8-R  2.01E-06 850 
CHAT-SPON 2 C2H4-R  1.38E-06 850 
CHAT-SPON 2 C4H8-R  3.30E-08 850 
CHAT-SPON 3 C2H4-R  8.49E-05 850 

CHAT-SPON 3 C4H8-R  2.04E-06 850 
DEACT-
POISON 1 CO  10 1000 
DEACT-
POISON 2 CO  10 1000 
DEACT-
POISON 3 CO  10 1000 
DEACT-SPON 1   8.00E-05 1000 
DEACT-SPON 2   8.00E-05 1000 
DEACT-SPON 3   8.00E-05 1000 
DEACT-H2 1 H2  0.001 1000 
DEACT-H2 2 H2  0.001 1000 
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DEACT-H2 3 H2  0.001 1000 
 

A.5.4. Sensitivity Analysis 

Figure 4a how varying the reaction rate constant for chain transfer to hydrogen, 𝑘𝑡ℎ,𝑖   of 

just one of the three active site affects the final LLPDE polymer properties, including the 

polydispersity index PDI, the number-average molecular weight at the chosen catalyst site 

SMWN, and the overall MWN. As we increase the reaction rate constant for chain transfer 

to hydrogen, both the SMWN and MWN decreases, while the PDI increases gradually. In 

other words, we can vary the hydrogen flow rate to change the rate of chain transfer 

reaction in order to achieve desired MWN and PDI. 

 
Figure A15. Sensitivity of the PDI, MWN and SMWN for the UNIPOL LLDPE process 

on the pre-exponential factor of the reaction rate constant for chain transfer to hydrogen 
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Appendix B 

(Chapter 3) 

 

B.1. Configuring a PID Controller 

 

Table B1 describes the ideal, series and parallel algorithms.  See AD online help for vendor 

algorithms. 

We choose the Ideal algorithm for the current example. 

Table B1. Typical PID controller algorithms 

PID 

algorithm 

Model equation 

1. Ideal OP =Bias + Kc x {Ep + (1/TI)∫EI dt +TD dED/dt} 

2. Series 

(interacting 

form) 

OP =Bias + Kc x {Ep + (1/TI)∫EI dt} x { 1 + TD dED/dt} 

3. Parallel 

(standard , 

ISA, or 

non-

interacting 

form) 

OP =Bias + Kc x Ep +  (1/TI)∫EI dt  +  TD dED/dt 

OP = controller output; Bias =the value of the manipulated variable when the process is 

at steady state; Gain = proportional gain Kc; E = error = setpoint – process variable; Ep 

= proportional mode error; EI = integral mode error; ED = Derivative mode error; TI = 

integral time; TD = derivative error 

 

We give some observations on the PID controller tuning parameters below: 

 

(1) The proportional gain, Kc, is typically expressed as 100/(proportional band, PB). 

The PB is the error (expressed in percentage of the range of the measured variable) 

required to move the control valve (the final control element) from fully closed to 

fully open. Typically, PB has a value between 30 and 300. 

(2) The larger the proportional gain, Kc, the smaller the difference between the setpoint 

value and the process variable value at steady state (called steady-state error or 

offset). P(proportional) control corrects the present error between the setpoint and 

the process variable. 

(3) The integral time or the reset time, TI, is the time it takes the controller to give an 

output that is twice the output from a proportional controller, following a step change 
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in error. It other words, the integral time is the time it takes for the controller to 

“repeat” the proportional controller action. 

(4) The integral controller acts to eliminate the steady-state error (offset) that is present 

in applying the proportional controller action alone. A large integral or reset time 

essentially minimizes the integral controller action. PI(proportional-integral) control 

corrects the past and present errors between the setpoint and process variable. 

(5) The derivative action increases the stability of the controlled system, and permits 

either a higher controller gain Kc, or a lower integral or reset time, TI, to be used. 

The latter speeds up the dynamic response of the controlled system. If the derivative 

time TD is large enough, the controlled system would be theoretically stable for all 

the controller gains. PID(proportional-integral-derivative) control corrects the past, 

present and future errors between setpoint and process variable, considering the 

positive or negative rate of change of the error in the output variable in affecting the 

future error. 

 

Table B2 gives the heuristic PID controller tuning parameters for different types of 

controllers [1,2]. 

 

Table B2. Initial PID controller tuning parameters 

 

Controller  

type 

Proportional  

gain, Kc 

Integral time,  

TI, min 

Derivative time,  

TD, min  

 Flow 0.1 0.2 0 

Level 2 10 0 

Pressure 2 2 0 

Temperature 1 20 0 

Composition 0.1 0.2 0 

 

We follow these initial values for our temperature controller, as illustrated in FigureB2. We 

also choose Reverse controller action for this temperature controller, because we need to 

decrease the HEATER heat duty when the temperature increases. Table B3 summarizes the 

other options for controller action. 

Table B3. PID controller actions 

When the 

action is 

And the measured 

variable (controlled 

variable or process 

variable) 

Then the 

manipulated 

variable 
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Direct                 Increases           Increases 

Direct Decreases Decreases 

Reverse                 Increases Decreases 

Reverse Decreases Increases 

  

Lastly, we mention that AD automatically generates pressure, level and temperature 

according to the guidelines of Table B4 . 

Table B4. Guidelines for AD default controllers 

Controller added When Measured 

variable 

(controlled 

variable or 

process 

variable) 

Manipulated 

variable 

PID tuning 

parameters 

Pressure Vapor holdup is 

modeled 

Pressure in 

vessel 

Vapor outlet 

 flow rate 

Kc = 0.2, 

TI = 12 min 

Level Liquid holdup 

is modeled 

Liquid level Liquid outlet                

flow rate 

Kc = 0.2 

Temperature Stirred reactor 

block 

Vessel 

temperature 

Heat duty Kc = 0.2,                        

TI = 12 min 

 

 

 

 

 

 

 

 

B.2. Controller tuning for HDPE slurry process dynamics and control. 

 

 In the following, we want to learn how to use the tuning tool within the PID controller and 

check if these tuning parameters are optimum. We use the model in 3.4. for the HDPE 

control using H2/C2 ratio. We use the H2C2 PID controller which takes input the H2/C2 

ration from ratio block and outputs specifies the mass fraction split of the purge stream. 
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Figure B1. Gain and integral time for the H2C2 controller. 

 

Next, we follow the heuristic gain and integral time for a composition controller given in, 

and change the gain displayed in Figure B1 to 0.1, and the integral time to 0.2 min, and 

initialize values. We then follow the following procedure to tune the controller parameters. 

1. Run the simulation in Dynamic run mode for a few steps. 

2. Pause the simulation. 

3. Open the controller Faceplate. 

4. Display the result plot.  

5. Click the tune button.   See the resulting Figure B2 . 

6. Click the <Start Test> button, as seen in Figure B2. 

7.    Run the simulation and you should observe that the OP of the controller is stepped up, 

and the ratio on the stage PV increases., Pause the simulation when it reaches steady state. 

Click Finish Test on the controller tuning sheet. 

8.   Click the Tuning parameters tab. 

 

 
Figure B2. Controller “Tune” interface 



 184 

9.  Select the tuning method (PI controller and Cohen-Coon tuning rule). Click the 

<Calculate> button. See Figure B3 The reader may search Aspen Dynamics online help for 

“Cohen-Coon” about explanations of different tuning rules. 

 

 
Figure B3. Choosing tuning rule. 

 

10. You click <Update Controller> the new settings are applied. Restart the simulation. 

Click Update controller button. We see the updated tuning parameters in Figure B4, and 

the continually decaying controller response in Figure B5  . This concludes the current 

workshop. We save the simulation file as  

 
Figure B4. Updated tuning parameters. 
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Figure B5. Continually decaying response resulting from the updated tuning parameters 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 


