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ACADEMIC ABSTRACT 

 

Despite soybean’s widespread recognition as a versatile and valuable crop due to many 

end-use purposes, breeders seek to develop varieties with improved nutritional and 

functional components that capture added-value for producers. Additionally, producers 

seek to maximize profits by utilizing field practices to augment crop value. Therefore, 

this dissertation had two main objectives of maximizing soybean value: 1) to evaluate 

accelerated selection methods by soybean breeders for methionine content and test 

weight, and 2) to identify sulfur fertilization impact on soybean seed composition 

including amino and fatty acid profiles. First, a genome-wide association study (GWAS) 

analyzed genomic influence on proteinogenic methionine in soybean seeds which 

identified 23 single nucleotide polymorphisms (SNPs). Utilizing a SNPs subset identified 

by GWAS, genomic selection (GS) exhibited average prediction accuracies ranging from 

0.41-0.62. Secondly, a novel phenomic selection (PS) method using near-infrared 

reflectance spectroscopy (NIRS) was evaluated for predictive ability of soybean test 

weight. PS cross-validations exhibited average predictive accuracies of 0.75, 0.59, and 

0.16 when incorporating all environments, between locations, and between years, 

respectively. Finally, sulfur fertilizer rates and sources were assessed across two years 

and six locations in relation to seed composition. Notably, ammonium sulfate (AMS) was 

found to have a significant impact (P < 0.05) on methionine content in soybean seed. 

These outcomes will have positive impacts on plant breeding and soybean production for 

seed composition and quality traits using contemporary breeding and fertilization. 
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PUBLIC ABSTRACT 

 

Despite soybean’s widespread recognition as a versatile and valuable crop due to a 

myriad of end-use purposes, breeders seek to develop varieties with improved nutritional 

and functional components that captured value for producers. Additionally, producers 

seek to maximize their profits by utilizing field practices that increase crop value. 

Therefore, this dissertation had two main objectives of maximizing soybean value: 1) to 

evaluate accelerated selection methods by soybean breeders for methionine content and 

test weight, and 2) to identify sulfur fertilization impact on soybean seed protein and oil 

composition. The overall objective was to create a comprehensive toolset for soybean 

breeders to develop Mid-Atlantic soybean varieties with improved seed composition 

traits and to determine fertilization impacts for use by producers. Genetic controls for 

protein-bound methionine in soybean seed were identified and could be used for variety 

development. Additionally, a new prediction method that uses light reflectance to 

represent genetic information and environmental effects was shown to have high 

accuracy for soybean test weight. It was also found that sulfur fertilizer with high 

availability in the soil positively impacted methionine content. These outcomes will have 

positive impacts on plant breeding and soybean production for seed composition and 

quality traits using contemporary breeding and fertilization. 
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Introduction 

 Soybean [Glycine max (L.) Merril] is a member of the Fabaceae family and an 

annual leguminous crop grown globally across diverse environments with assorted 

management practices. Originating in East Asia, soybean has been used for human food 

and livestock feed for centuries, and its global production has increased 350% since 1987 

(Soy Meal Info Center, 2018). This tremendous production growth is directly linked to 

soybean seed composition and the international demand for protein and oil sources. The 

soybean seed consists of roughly 40% protein and 20% oil which are comprised of their 

respective monomers, amino and fatty acids (Wilson, 2004). Modern plant breeders, 

especially in the United States, have been successful in optimizing the productivity of 

soybean while also adding value by augmenting seed composition.   

 Continuous genetic improvement of soybean and the development of new 

varieties are critical to increasing crop value and supporting global food systems. 

Therefore, in this dissertation potential breeding tools and management decisions were 

explored to maximize seed composition and quality. The first chapter contains a 

comprehensive review of amino acids in soybean seeds. The first study seeks to identify a 

genetic basis for proteinogenic methionine in soybean seeds by using a genome-wide 

association study and genomic prediction. The second study compares phenomic and 

genomic prediction for test weight, an indicator of seed quality, in soybean. The final 

study analyzes environmental impacts on amino and fatty acids in soybean seeds through 

a sulfur fertilizer trial. In combination, results from these studies can assist breeders in 

developing soybean varieties with improved seed compositions and expand producer 

knowledge for management decisions.  
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Abstract 

Soybean is an important source of protein and amino acids for humans and 

livestock because of its well-balanced amino acid profile. This chapter outlines the 

strengths and weaknesses of soybean as a complete amino acid source as well as the 

relative importance of individual amino acids. Special attention is paid to the sulfur-

containing amino acids, methionine and cysteine. Breeding and genetic engineering 

efforts are summarized to highlight previous accomplishments in amino acid 

improvement and potential avenues for future research. Agronomic properties and 

processing methods that affect amino acid levels in soybean food and feed are also 

explained. A brief introduction into current amino acid evaluation techniques is provided. 

By understanding the complexities of amino acids in soybean, protein quality for humans 

and livestock can be maximized. 
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Introduction 

Soybean is one of the world’s most economically and nutritionally important 

crops. In 2018, soybean was 61% of international oilseed production with 397.9 tons 

harvested worldwide (The American Soybean Association, 2019a). The United States and 

Brazil were the largest producers at 4,545 and 4,299 million bushels, respectively, with 

China being the largest importer of U.S. whole soybeans valued over $3 billion (The 

American Soybean Association, 2019bc). Soybean products, namely meal and oil, are 

popular in a myriad of industries for their versatility and utility. Soybean oil provides the 

most versatility with uses in fuel, solvents, candles, cosmetics, construction, and foam. 

However, soybean meal is the driving factor for 70% of the plant’s value with 97% of all 

U.S. soybean meal being used for animal feed [United Soybean Board(b)]. As such, an 

enormous portion of soybean’s importance lies with its nutritional capabilities for 

livestock and humans. 

Nutritionally speaking, soybeans are a highly valued protein source. Proteins are a 

crucial macromolecule needed in the diets of human and livestock. However, the true 

significance of soybean protein is due to its well-balanced amino acid profile that aligns 

with dietary needs of humans and animals (Osborne and Mendel, 1993). Amino acids are 

the functional subunits of proteins that, when linked together in different orders, generate 

the variety of proteins critical to life. Amino acids are also important intermediates for 

many biosynthesis pathways (Herrmann and Somerville, 1983). Deficiencies in single or 

multiple amino acids can negatively impact an individual’s growth and development 

(Berry et al., 1962; Wade, 1985). Intriguingly, an excess of certain amino acids has also 

been shown to worsen feed intake, nitrogen efficiency, and growth rate in livestock 
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(Waldroup et al., 1976; Han et al., 1992; Boisen et al., 2000). The importance of amino 

acid levels on human health has also been well documented (Jez and Fukagawa, 2008; 

D’Mello, 2012).   

Amino acids are characterized by having amine (-NH2) and carboxyl (-COOH) 

functional groups as well as a “R-group” that is unique to each amino acid (Weaver, 

2008). Amino acids are abundant in both proteinogenic (protein-incorporated) and non-

proteinogenic forms (Wagner and Musso, 1983). The 20 common, proteinogenic amino 

acids are generally the focus of research in soybeans as they are the defining nutritive 

feature. Of those 20, nine amino acids are essential for humans to consume. Livestock 

usually require these same amino acids from feed and might require others because of 

their biological systems (Buttery and D’Mello, 1994). Soybeans contain some level of all 

nine essential amino acids which creates a suitable nutritional foundation for livestock 

feed and human food.  

Essential Amino Acids 

Essential amino acids are ones that living organisms are unable to biosynthesize 

themselves and must obtain from their food source (Wade, 1985; Buttery and D’Mello, 

1994; D’Mello, 2012). Therefore, in this term, “essential” refers to the amino acid 

requirements in dietary ingredients. The nine standard essential amino acids for humans 

present in soybean are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, 

threonine, tryptophan, and valine (Kuiken and Lyman, 1949). Arginine is regularly 

considered an essential amino acid for fish, poultry and sometimes swine due to absent or 

deficient urea cycles (Buttery and D’Mello, 1994; Boisen et al., 2000). Poultry and 

reptiles also require dietary glycine because of differing waste excretion pathways 
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(Buttery and D’Mello, 1994). While crude protein content is normally recognized as the 

driving nutritional factor for soybean meal, these essential amino acids provide true 

utility.  

It has long been recommended that protein quality is based upon essential amino 

acid content. However, for many reasons, animal feed and human food markets have only 

recently begun assessing accordingly [Osborne and Mendel, 1993; Pfarr et al., 2018; 

United Soybean Board(a)]. Equipment required for accurate amino acid measurement and 

the diversity of markets for amino acids makes it difficult for supply chain evaluators like 

elevator operators to appraise amino acid content on site. To some degree, the well-

balanced soybean amino acid profile also devalues the need to measure individual amino 

acid levels. Since all essential amino acids are present, less attention is paid to deficient 

amino acids such as methionine and tryptophan (Kuiken and Lyman, 1949; Fernandez et 

al., 1994).  

Deficiencies in soybean’s essential amino acid profile has led to a large section of 

the livestock industry focusing on feed mixing and supplementation. Rationing with other 

feed sources such as cereal grain and synthetic amino acid augmentation can effectively 

resolve the issue. Although, this comes with economic and environmental problems. 

Supplementing amino acids adds costs to farmers. For example, the average cost for 

amino acids supplementation for dairy farmers is twenty cents per head per day 

(Drovers). Maximizing crude protein for a growth limiting factor also negatively impacts 

livestock nitrogen-use-efficiency and environmental nitrogen outputs (Berry et al., 1962; 

Meisinger, 2005). Synthetic amino acid production can produce hazardous environmental 

waste and synthetic methionine, the most limiting soybean amino acid for poultry, has 



8 

 

also been banned for organic poultry production (Fernandez et al., 1994; Willke, 2014). 

Movement towards sustainable agriculture will pressure the feed industry to alter how 

soybean meal is enhanced for essential amino acid livestock maximization. Furthermore, 

the increasing popularity of meat-less diets in humans will create new markets for 

soybean’s well-balanced amino acid profile. 

Non-essential Amino Acids 

Non-essential amino acids should not be misconstrued as unimportant amino 

acids. Of the twenty proteinogenic amino acids, those considered non-essential are still 

necessary for living organisms. Healthy organisms are just able to biosynthesize them 

and are not from food and feed consumption. The eleven standard non-essential amino 

acids for humans found in soybean are: arginine, alanine, asparagine, aspartic acid, 

cysteine, glutamine, glutamic acid, glycine, proline, serine, and tyrosine (Rackis et al., 

1961; Goldflus et al., 2006; Kita et al., 2010). As previously mentioned, the necessity of 

amino acids such as arginine and glycine can differ amongst species. Some non-essential 

amino acids are also affected by the presence and amounts of essential amino acids. 

Cysteine not provided from food consumption is directly biosynthesized from 

methionine via trans-sulfuration (Kredich, 1983; Buttery and D’Mello, 1994; Fuller, 

1994; Brosnan and Brosnan, 2006; Mato et al., 2012). Consequently, if cysteine is not 

provided in the diet, then enough methionine must be provided to compensate for both 

amino acid needs. For that reason, feed research for poultry occasionally measures 

methionine and cysteine jointly (Han et al., 1992; D’Mello, 1994; Jankowski et al., 

2014). Tyrosine is also directly formed from phenylalanine via hydroxylation (Herrmann, 

1983; Buttery and D’Mello, 1994; Fuller, 1994). Other amino acids like arginine, glycine, 
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and proline can be required from the diet when animals are young, old, sick, or otherwise 

deficient in body protein regulation. As human and livestock diets become more 

sustainably plant-based, it will become more important to evaluate non-essential amino 

acids, specifically the ones immediately affected by essential amino acids.  

Proteinogenic Sulfur-containing Amino Acids 

The two proteinogenic sulfur-containing amino acids, methionine and cysteine, 

are critical to evaluate soybean meal as food and feed. While present in soybean, 

methionine and cysteine levels are both inadequate for consumer needs (Berry et al., 

1962; Fernandez et al., 1994; Goldflus et al., 2006). Similar to research determinations, 

the nutritional requirements for methionine and cysteine intake are often grouped 

together as overall sulfur consumption from protein. Adult humans are recommended to 

intake 910-1,120 mg methionine and cysteine (based on body weight) per day (Jez and 

Fukagawa, 2008). For livestock, sulfur amino acids recommendations can vary based on 

species, age, end-use, and diet formulation. The importance of dietary sulfur amino acids 

for livestock is greatly emphasized in literature, especially with soybean meal as base 

feed (Berry et al., 1962; Fernandez et al., 1994; Allee, 2003; Wu, 2014). 

Methionine and cysteine are vital to biological functions because of the sulfur 

contained in their R-groups and versatility in macromolecule synthesis. Methionine is 

well-known for being the typical initiating amino acid for protein synthesis and has 

hydrophobic properties when incorporated into proteins (Ingenbleek and Kimura, 2013). 

These hydrophobic properties usually result in methionine incorporation within the core 

of proteins. However, certain proteins have surface-exposed methionine susceptible to 

oxidation that is associated with age-related disease (Levine et al., 1996; Moskovitz, 
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2005; Brosnan and Brosnan, 2006). S-adenosylmethionine, a methionine metabolism 

intermediate, is widely-used with functions in methylation as well as amine, methylene, 

and sulfur atom donation (Catoni, 1953; Fontecave et al., 2004; Brosnan and Brosnan, 

2006). Methionine is especially important for poultry production as birds have 

exceedingly high sulfur amino acid requirements, and low methionine levels can 

negatively affect growth rate, carcass yield, fat content, and disease immunity 

(Bunchasak, 2009; Wu et al., 2012; Conde-Aguilera et al., 2013). Cysteine’s ability to 

form disulfide bonds makes it incredibly important to tertiary protein structure and can 

occur with and without enzyme interactions (Jessop et al., 2004; Brosnan and Brosnan, 

2006). Cysteine is involved with keratin and feather production in poultry and 

deficiencies have been correlated to poor breast muscle development (Wylie et al., 2001; 

Bonato et al., 2011). Swine also need higher amounts of cysteine as they age to 

compensate for body maintenance (Fuller, 1994; Lewis, 2003).  

Breeding Efforts 

Soybean has an extensive cultivated history dating back thousands of years to its 

country of origin, China. Glycine max, the contemporary species of soybean, was 

domesticated from the wild species Glycine soja and has been continually been improved 

through selective and molecular breeding (Hermann, 1962; Liu, 1997; Sleper and 

Poehlman, 2006). Once harvesting traits such as seed shatter and lodging were improved 

in the late 1930’s to make soybean a competitive row crop, other cultivar improvements 

became a valuable research goal (Sleper and Poehlman, 2006). Current breeding 

programs tend to focus on traits such as yield, disease resistance, abiotic stress tolerance, 

and seed composition. Seed composition improvements include protein and oil content, 
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fatty acid levels, anti-nutritional factors, isoflavones, and amino acids profiles. Before 

1972, there had been zero reported research for improvement of soybean amino acid 

profiles, rather with emphasis on overall protein content (Howell et al., 1972). Modern 

breeders are also inclined to concentrate efforts on protein content and consider amino 

acid levels an afterthought (Mahmoud et al., 2006). TN04-5321 is the only released 

germplasm in the United States that maintains yield and protein content while improving 

amino acid balance by increasing methionine and cysteine to levels recommended 

livestock needs (Panthee and Pantalone, 2006).  

The major soybean storage proteins are 11S (glycinin) and 7S (conglycinin) and 

provide the bulk of amino acids with limited non-proteinogenic amino acids in seed 

(Wolf, 1969; Meinke et al., 1981; Takahashi et al., 2003). By increasing 11S and 7S 

quantity, more protein can ultimately be present in food and feed. Overemphasis on crude 

protein content can have negative ramifications on overall protein quality, specifically 

deficient amino acids. While an increase in protein content would theoretically entail an 

increase in amino acids including methionine and cysteine (Wilcox and Shibles, 2001), 

the opposite effect has been more notable (Paek et al., 1997; Thakur and Hurburgh, 

2007). Molecular breeding techniques have recently improved the understanding of 

amino acid genomic regulation. Multiple quantitative trait loci (QTL) studies have been 

performed to identify genomic regions that control amino acids levels in soybean seed 

(Panthee et al., 2006b; a; Fallen et al., 2013; Warrington et al., 2015; Li et al., 2018). A 

myriad of QTL’s was found to create amino acid phenotypic variation. Individual amino 

acids had reoccurring or proximal QTL’s discovered such as Satt 518 (Panthee et al., 

2006b), ss107913002 (Fallen et al., 2013), and BARC-048619 (Warrington et al., 2015) 
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for glycine and threonine. QTL’s for methionine and cysteine were also discovered which 

could lead to valuable improvements for soybean livestock feed (Panthee et al., 2006b; a; 

Fallen et al., 2013; Warrington et al., 2015; Li et al., 2018). Other genomic studies such 

as genome-wide association studies (GWAS) and genetic diversity analyses would 

further improve genetic understanding.  

Genetic Engineering 

Genetic engineering experiments such as genetically modified organisms 

(GMO’s) and gene editing are also promising avenues for improving amino acid profiles 

of soybeans. Compared to conventionally bred varieties, transgenic soybeans face 

additional adversity from registration requirements and public opinion. Transgenic efforts 

generally have one of three targets: magnifying biosynthesis genes, adjusting 

biosynthesis regulation, and modifying storage proteins. The earliest example would be a 

Brazil nut gene transfer in 1992. This successfully increased protein content and 

methionine biosynthesis, however a major food allergen was also transferred making 

commercialization impossible (Townsend et al., 1992). Expressing zein proteins from 

corn has also been shown to increase sulfur-containing amino acids levels in soybean 

(Kerr, 1996; Kim and Krishnan, 2019). Altering biosynthesis feedback regulation 

amplified both non-proteinogenic and proteogenic lysine by circumventing normal 

enzymatic pathways (Falco et al., 1995). Tryptophan in soybean also exhibited increased 

non-proteinogenic levels when a feedback-insensitive enzyme was transferred (Kita et al., 

2010). While soybean is not deficient in lysine or tryptophan, corn is deficient in both. By 

increasing lysine and tryptophan concentrations, soybean becomes an even more useful 

feed additive to corn rations. Even with limited research on modifying overall amino 
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acids profiles in soybeans, modifying 11S and 7S storage proteins ratios (El-Shemy et al., 

2007) or silencing their expression entirely (Schmidt et al., 2011) has displayed increased 

amino acids levels. Similarly, a study using irradiated mutant soybeans lacking storage 

proteins as breeding parents demonstrated increased non-proteinogenic amino acids 

contents (Takahashi et al., 2003). In addition, further research should be conducted to 

determine the bioavailability and digestibility of increased non-proteinogenic amino acids 

in soybean.  

Agronomic Relations 

Amino acids concentrations in soybean are not only affected by their genetic 

potential. Agronomic properties greatly impact the final levels of amino acids. Agronomy 

encompasses all aspects of crop production including environmental effects, climatic 

variables, and abiotic factors. Perhaps the most considered agronomic factor is soil 

nutrient availability. Insufficient soil nutrient levels of nitrogen, potassium, phosphorous, 

sulfur, calcium, and magnesium create poor amino acid profiles in soybean plants 

(Haghiri, 1966). Increased phosphorous rates have been shown to increase the percentage 

of methionine and tryptophan in seed but had no effect on protein content percentage 

(Kapoora and Gupta, 1977). Applications of sulfur, phosphorous, and nitrogen 

(individual and combined) produced a variety of different methionine and cysteine seed 

concentrations (Arora and Luthra, 1971). Sulfur deficiencies were also shown to inhibit 

the production of 11S proteins while almost eliminating methionine and cysteine in 7S 

proteins (Gayler and Sykes, 1985). It is becoming more popular to also apply biological 

substances such as amino acids to plants through foliar and seed application. Amino acid 

uptake by soybean and wheat have been proven, and improved soybean growth rates and 
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antioxidant effects have also occurred (Gioseffi et al., 2012; Teixeira et al., 2017). 

Further research should be conducted to determine if biofortification solutions are 

possible through amino acid application.   

Amino acid variation has also been shown to occur across environments (Goldflus 

et al., 2006; Thakur and Hurburgh, 2007). Specific correlations have emerged in response 

to temperature, solar radiation, and rainfall. One study shows that increased temperature 

leads to increased concentrations of all proteinogenic amino acids (Carrera et al., 2011), 

while another concludes that only methionine and cysteine increase alongside 

temperature (Wolf et al., 1982). Increased solar radiation and greater available water 

appeared to have a negative relationship with amino acid content (Carrera et al., 2011). 

These favorable conditions would increase yield which has been shown to have a 

negative correlation with overall protein content (Wilcox and Shibles, 2001). The 

multitude of agronomic factors that affect amino acid profiles in soybean make it 

exceedingly important to compensate for variables when researching.  

Processing Impacts 

The diversity in food, feed, and industrial used for soybean require the whole seed 

or seed components to be processed. Processing can affect the nutritional value of 

soybean protein and presence of amino acids in food and feed. Processing procedures can 

either separate seed components for different purposes or convert the entire seed into a 

product (usually human food). Some human soy foods such as edamame and soybean 

sprouts need little to no processing. Others including soymilk, tofu, natto, and soy sauce 

involve more processing. Soymilk and tofu processing are interconnected. Soymilk is a 

water-extract of whole or crushed soybeans that is coagulated and pressed into tofu (Liu, 
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1997). While not all seed proteins convert into protein in tofu, 11S/7S storage protein 

ratios have been shown to be both positively and negatively correlated with tofu hardness 

(Cai and Chang, 1999; Mujoo et al., 2003). Natto is a soy food created by fermenting 

whole soybeans with Bacillus subtilis. Fermentation time affects final amino acid 

concentrations, and proper fermentation length could potentially increase nutritional 

values (Weng and Chen, 2010). Soy sauce is produced by traditional and commercial 

methods, but both are based around whole seed or meal fermentation with Aspergillus sp. 

However, commercial methods have a lower amino acid to nitrogen ratio (Liu, 1997).  

Soybean meal processing also impacts the level of amino acids in livestock feed. 

The first step in soybean meal processing is essentially separating protein from oil. A 

variety of methods exist including solvent extraction, screw pressing, and extruding (Liu, 

1997; Lusas, 2004; Johnson and Smith,). All three processes have three final products: 

oil, meal (usually toasted to lessen anti-nutritional factors), and hulls. Over processing of 

solvent extracted soymeal has been shown to decrease lysine, cysteine, and arginine 

levels (Taira, 1966; Parsons et al., 1992). Protein solubility and dispersibility 

measurements may be a useful indicator of over processing (Araba and Dale, 1990; Batal 

et al., 2000). Soybean hulls are sometimes added to livestock feed for additional fiber, 

however an increase in hull/meal ratios decrease the digestibility of amino acids (Dilger 

et al., 2004). While soybean is renowned for its protein and amino acid content, actual 

nutritional values can be decreased through certain processing methods.   

Evaluation Methods 

All previously mentioned aspects of soybean production in regard to amino acid 

levels and human and animal nutrition depend on a single common denominator: amino 
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acid quantification. Amino acids must be reliably, effectively, and accurately identified, 

measured and evaluated. A Google Scholar search of “amino acid analysis” will display 

over 1 million results. Several reviews have been published regarding the development of 

amino acid analysis (Tristram and Rattenbury, 1981; Williams, 1994; Husek and Simek, 

2001). In general, contemporary analysis of amino acids from any source will be 

performed by chromatography or near-infrared reflectance spectroscopy. 

Chromatography is the common method with specific techniques including ion exchange 

chromatography (IEC), high-performance liquid chromatography (HPLC), and gas 

chromatography (GC). HPLC is the more validated method for soybean amino acid 

analysis. It is more efficient than IEC, and it does not require the transformation into 

volatiles like GC (Malmer and Schroeder, 1990; Oomah et al., 1994; Williams, 1994; 

Jajić et al., 2013). Near-infrared reflectance spectroscopy (NIRS) is a more recent 

addition to amino acid analysis, and it has the potential to drastically improve the 

efficiency in soybean feed evaluation [United Soybean Board(a)]. The inability to 

actually measure amino acid levels is main hindrance for NIRS amino acid analysis. 

NIRS methods must be developed from a calibration set of raw data (often from HPLC) 

(Kovalenko et al., 2006; Baianu and Prisecaru, 2011; Pazdernik et al.,). Nonetheless, 

efficiency improvements should persuade researchers to continually explore future NIRS 

amino acid analysis applications.  

Conclusion 

Soybean is a valuable source of protein and amino acids for humans and 

livestock. Soybean’s well-balanced amino acid profile provides all essential amino acids 

as well as most non-essential. However, there is much room for nutritional improvement. 
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Proteinogenic sulfur-containing amino acids, methionine and cysteine, are deficient in 

soybean and are especially needed in livestock rations. Increased levels of these amino 

acids would augment soybean meal value and lessen the need for synthetic amino acid 

supplements. Breeding efforts have made little progress in adjusting amino acid profiles 

thus far, however significant developments in understanding genomic control regions 

promise future success. Genetic engineering efforts have shown promising amino acid 

improvements, but regulations and public opinions made commercialization difficult. 

New gene-editing technology could be the key to unlock true nutritional improvement.  

Agronomic properties and processing methods both impact the final quantities of 

amino acids available to humans and livestock. Understanding these impacts are essential 

to improve the nutritional quality of soybeans. Amino acid evaluation through HPLC 

provides reliable and efficient quantification, yet even quicker measurements are possible 

through NIRS. As the world’s population continues to grow, soybeans will be essential to 

both human and livestock for amino acid requirements. Wholesome approaches that 

understand the complexities of amino acids in soybean will be required to maximize 

overall success and feed the world with balance soy proteins. 
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Abstract 

Soybean [Glycine max (L.) Merr.] seeds have an amino acid profile that provides 

excellent viability as a food and feed protein source. However, low concentrations of an 

essential amino acid, methionine, limit the nutritional utility of soybean protein. The 

objectives of this study were to identify genomic associations and evaluate the potential 

for genomic selection (GS) for methionine content in soybean seeds. We performed a 

genome-wide association study (GWAS) that utilized 311 soybean accession from 

maturity groups IV and V grown in three locations in 2018 and 2019. A total of 35,570 

single nucleotide polymorphisms (SNPs) were used to identify genomic associations with 

proteinogenic methionine content that was quantified by high-performance liquid 

chromatography (HPLC). Across four environments, 23 novel SNPs were identified as 

being associated with methionine content. The strongest associations were found on 

chromosomes 3, 8, and 16, and several gene models were recognized within proximity to 

these SNPs, such as a leucine-rich repeat protein kinase and a serine/threonine protein 

kinase. Identification of these SNPs should help elucidate genomic regions for use by 

soybean breeders to improve protein quality in soybean seed. GS was evaluated using k-

fold cross validation within each environment with two SNP sets, the complete 35,570 set 

and a subset of 248 SNPs determined to be associated with methionine through GWAS. 

Average prediction accuracy (r2) was highest using the SNP subset ranging from 0.45-

0.62, which was a significant improvement from the complete set accuracy that ranged 

from 0.03-0.27. This suggests GS that utilizes a significant subset of SNPs may be a 

viable tool for soybean breeders seeking to improve methionine content. 
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Introduction 

Soybean [Glycine max (L.) Merr.] has an ideal amino acid profile for a protein 

source used in livestock feed and human food. All nine essential amino acids, histidine 

(His), isoleucine (Ile) leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), 

threonine (Thr), tryptophan (Trp), and valine (Val), are present in soybean seeds (Kuiken 

and Lyman, 1949; Boisen et al., 2000). Accounting for 35% of the seed (Wilson, 2004), 

the protein component is processed into meal and regularly used in cattle, swine, and 

poultry feed (Buttery and D’Mello, 1994). During 2020, 33.2 million metric tons of 

soybean meal were used in the United States for livestock feed, in which 20.2, 6.3, and 

5.8 million metric tons were fed to poultry, swine, and cattle, respectively (The American 

Soybean Association, 2020).  

While all essential amino acids are present, soybean is deficient in Met which 

limits its nutritional utility in feed (Berry et al., 1962; Fernandez et al., 1994; Bonato et 

al., 2011). Met is required for metabolic processes and is the initiating amino acid in 

protein synthesis (Brosnan et al., 2007). Due to Met deficiency, poultry has displayed 

negative effects on body composition such as protein, fat, and tissue gain (Conde-

Aguilera et al., 2013) and disease immunity (Wu, 2014). For this reason, synthetic 

supplementation of Met is critical to livestock feed, especially poultry. Bunchasak (2009) 

summarized the importance, viability, and special considerations for Met 

supplementation, however, synthetic methionine production generates hazardous waste 

and contributes to the greater dependence on fossil fuels (Willke, 2014; Neubauer and 

Landecker, 2021). Therefore, a sustainable solution would be to increase Met 

concentrations in soybean protein content through plant breeding.  
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Since soybean was introduced to North America in 1765 (Hymowitz and Harlan, 

1983), it has gained global prevalence. Contemporary soybean breeders have dedicated 

enormous effort to improve seed composition. Patil et al. (2017) aptly reviewed and 

described modern genomic efforts to improve soybean protein content. More specifically, 

quantitative trait loci (QTL) have been identified for protein concentration (Panthee et al., 

2005; Warrington et al., 2015) as well as amino acid profiles (Panthee et al., 2006a; 

Panthee et al., 2006b; Fallen et al., 2013; Warrington et al., 2015; Li et al., 2018). Direct 

breeding results from this research include the sole publicly-developed United States 

soybean variety (TN04–5321) release with enhanced sulfur-containing amino acids 

concentrations (Panthee and Pantalone, 2006) and potential introgression of an allele for 

significantly increased protein content (Warrington et al., 2015). Additionally, recent 

advances in molecular markers and high-throughput sequencing, summarized well by 

Zargar et al. (2015), have allowed for genomic research at the genome-wide level. Hwang 

et al. (2014) and Li et al. (2019) used single nucleotide polymorphisms (SNPs) to 

pinpoint genetic control of protein in soybean seed through genome-wide association 

studies (GWAS). Lee et al. (2019) targeted protein content as well as four amino acids, 

Met, Cys, Lys, and Thr, through GWAS. Qin et al. (2019) used GWAS to find genomic 

associations for 15 amino acids, Ala, Arg, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, 

Ser, Thr, Tyr, and Val. A single study also focused directly on Met and Cys with 

genome-wide associations for Canadian soybean lines in MG 000-II (Malle et al., 2020). 

Lee et al. (2019) and Malle et al. (2020) reported Met measurements using near-infrared 

reflectance spectroscopy (NIRS), whereas Qin et al. (2019) utilized ion exchange 

chromatography.  
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Genomic selection (GS) utilizes similar statistical models as GWAS, but it seeks 

to exploit larger genomic variations than individual genomic regions (Meuwissen et al., 

2001).  GS has been shown to reduce selection time in soybean breeding (Matei et al., 

2018) and the U.S. soybean germplasm collection has proven to be a valuable resource 

for creating GS models (Jarquin et al., 2016). Promising results have displayed successful 

prediction of grain yield, protein and oil content, plant height, maturity, seed weight (Ma 

et al., 2016; Duhnen et al., 2017; Stewart-Brown et al., 2019; Ravelombola et al., 2021) 

as well as soybean cyst nematode resistance (Ravelombola et al., 2019, 2020). However, 

only one study by Qin et al. (2019) has evaluated GS for amino acid content in soybean 

seed, and it did not include Met concentrations.  

Additionally, Warrington et al. (2015) identified negative correlations between 

increased protein content and Lys, Thr, and Met+Cys concentrations. This suggests 

complex genetic controls of protein as soybean breeders balance objectives for protein 

quantity and quality moving forward. Therefore, this project seeks to further elucidate 

genomic associations through GWAS and evaluate the potential for GS of proteinogenic 

Met content in soybean seeds. 
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Materials and Methods 

Plant Materials 

A total of 500 soybean accessions were selected from the USDA Soybean 

Germplasm Collection to represent maximum genetic variability in maturity groups IV 

and V based on genetic distance (Qin et al., 2017). Among them, a panel consisting of 

311 accessions from 17 different countries (Table 1) with good seed quality were grown 

in 3 m two-row plots with 76 cm row spacing in Blacksburg, VA and 4.2 m single row 

plots with 96 cm row spacing in Clayton, NC in 2018. In 2019, they were grown in 3 m 

four-row plots with 76 cm row spacing in Warsaw, VA and repeated in Blacksburg, VA. 

Plots were organized based upon maturity and grown as a randomized complete block 

design (RCBD) with two blocks at each location. Each block included two commercial 

checks AG4403 and Ellis. Due to limited seed quantity in general, block replicates were 

merged prior to seed processing. 

Data Collection 

All seed samples were cleaned by removing moldy, mottled, discolored, or off-

types seeds. Dry-matter based protein content and moisture were measured using the DA 

7250 NIR Analyzer spectrophotometer (PerkinElmer Inc.) through near-infrared 

reflectance spectroscopy (NIRS). For NIRS, the manufacturer’s annual updated 

calibration module was used and protein content was recorded for each sample.  

Samples were ground using a water-cooler Foss 1095 Knifetec mill to a consistent 

particle size. Subsamples of 0.01g were weighed into glass digestion tubes and 

subsequently hydrolyzed using a modified method 994.12 (AOAC International) to break 

apart proteinogenic methionine. Samples were first oxidized with 0.5 mL of performic 
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acid at 0˚C for 16 hours and 200 μL of sodium metabisulfite solution was added to end 

the reaction. Hydrolysis was then performed with 3 mL of 6 M HCl at 110˚C for 16 

hours. Next, samples were diluted to 10 mL with water, and 750 μL subsamples were 

taken and concentrated to remove HCl.  

Concentrated samples were rehydrated with water into vials for high-performance 

liquid chromatography (HPLC). HPLC was performed using online derivatization with o-

phthalaldehyde (OPA), ultra-violet (UV) detection, and the Agilent AdvanceBio AAA 

column with Agilent HPLC model 1200. Each sample had two technical replicates that 

were averaged to account for biological and equipment variation. To better describe 

proteinogenic concentrations, Met was reported on a g/kg crude protein (g kg -1 cp) basis. 

Data were fit with an ANOVA using standard least squares that included accession, 

location, and year as fixed effects. 

Genotypic Data 

Publicly available SNP marker data (www.soybase.org) of the 311 accessions 

were downloaded from the SoySNP50K SNPs data repository (Song et al., 2015). A total 

of 42,509 initial SNPs were filtered by low minor allele frequency (MAF < 0.05) and 

missing genotypes, which resulted in 35,570 SNPs being used for further analysis.  

Population Structure 

Population structure was evaluated through a discriminant analysis of principal 

components (DAPC) using the adegenet package (Jombart, 2008) in R to identify clusters 

of genetically related individuals (Jombart et al., 2010). Successive k-means clustering 

with the function find.clusters with maximum clusters as k = 40 was used. A total of 300 

principal components were retained, and Bayesian information criterion (BIC) was used 
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to identify an optimal number of clusters. The function dapc was then used by retaining 

an optimal number of principal components to maximize cumulative variance without 

overfitting, and all discriminant functions and eigenvalues were retained. A kinship 

matrix was also created with the software TASSEL 5 (Bradbury et al., 2007) using the 

Centered_IBS method (Endelman and Jannink, 2012).  

Genome-wide Association Analysis and Candidate Gene Evaluation 

Associations between genotypic and phenotypic data were analyzed using two 

different models in TASSEL 5: mixed linear model (MLM) and general linear model 

(GLM). Predominantly, MLM was used to incorporate a kinship matrix (K) jointly with 

population structure (Q) for increased statistical power through the Q+K approach (Yu et 

al., 2006). GLM was used to examine individual location datasets through a more lenient 

least squares fixed effect model with Q as a covariate. Additionally, five principal 

components (accounting for 18.75% cumulative variance) were included as covariates for 

the 2018 Blacksburg, VA and 2019 Warsaw, VA datasets to better control for false 

positive associations. A modified Šidák correction  for multiple 

testing was used to identify significant associations. The effective number of markers 

(Meff) was calculated to be 4,191 using the poolr package in R with the Li and Ji method 

(Li and Ji, 2005). Meff replaced m, and thus, the adjusted significance threshold at α = 

5% and the suggestive threshold at α = 25% were  and 

, respectively. QQ and Manhattan plots were used to visualize results 

with the qqman package (Turner, 2014). Gene models from Glyma.Wm82.a2.v1 

(Williams 82) as displayed on www.soybase.com within 10 kb of significant SNPs 

flanking regions were reported as candidate genes (Xie et al., 2018; Qin et al., 2019). 
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Gene descriptions were reported from gene homolog descriptions from TAIR for 

Arabidopsis thaliana (Berardini et al., 2015). If TAIR homologs were not available, 

descriptions were reported from either PANTHER or GO databases (Ashburner et al., 

2000; Mi et al., 2013; Gene Ontology Consortium, 2021). Expression patterns within 

soybean reproductive tissues (flowers, pods, and seeds) of each gene model were also 

reported when available (Severin et al., 2010). 

Genomic Selection 

GS was performed using gBLUP (genomic best linear unbiased prediction) with 

the TASSEL 5 genomic selection function. Similar to the GWAS, the Q+K approach was 

used to fit a mixed model with population structure and a kinship matrix as covariates. K-

fold cross validation was performed using k = 5 with 20 iterations, and the Pearson’s 

correlation coefficient (r2) was collected for each fold. Each environment’s dataset 

underwent GS using all 35,570 SNPs as well as a subset of 248 SNPs identified as having 

 from the GWAS (Qin et al., 2019). A T-test was used to compare r2 

values between the whole and partial SNP models. 
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Results 

Phenotypic 

Methionine concentrations across all environments displayed normal, continuous 

distributions with a grand mean of 9.06 g kg -1 cp and an average standard deviation (SD) 

of 2.84 g kg -1 cp. Figure 1 highlights distributions for all environments combined (1a), 

Blacksburg, VA 2018 and 2019 combined (1b), Warsaw, VA (1c), and Clayton, NC (1d). 

Blacksburg, Warsaw, and Clayton environments had means and SDs of 8.96, 12.32, and 

5.88 g kg -1 cp and 3.36, 1.73, and 2.61 g kg -1 cp, respectively. Warsaw, VA exhibited 

significantly higher average Met than both other locations, while Blacksburg, VA also 

possessed significantly higher average Met than Clayton, NC. Samples grown in 2019 

showed significantly higher Met content than 2018, but interaction variables could not be 

analyzed since locations and years were not orthogonal. Accessions were not shown to 

have a significant impact on Met content.  

Population Structure 

Through DAPC, 150 principal components that accounted for 78% of cumulative 

variance were retained, and with the smallest BIC, k = 4 was determined as the optimal 

number of clusters (Figure 2). Country of origin for accessions within each cluster were 

identified (Table 1). Cluster I (n = 76) contained 55 accessions (72.4%) that originated 

from China, 11 from Vietnam (14.5%), five from Japan (6.6%), three from Taiwan 

(3.9%), and one from Indonesia (1.3%). Cluster I also contained 52.6% of accessions 

from maturity group (MG) V. Cluster II (n = 62) contained 54 (87.1%), four (6.5%), two 

(3.2%), one (1.6%), and one (1.6%) accessions from China, Japan, the United States, 

Georgia, and South Korea, respectively, and 83.9% of those belonged to MG IV. Cluster 
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III (n = 47) contained 37 (78.7%) accessions from the United States, three (6.4%) from 

South Korea, two (4.3%) from Japan, and one (2.1% each) from Australia, Brazil, and 

Costa Rica. Cluster III also contained 78.7% of accessions from MG IV. Cluster IV (n = 

126) contained 65 (51.6%), 15 (11.9%), 14 (11%), 11 (8.7%), and seven (5.6%) 

accessions from China, Japan, South Korea, the United States, and North Korea, 

respectively, as well as two (1.6% each) accessions from Georgia, Uganda, and Vietnam 

and one accession (0.8% each) from Brazil, India, Morocco, Nepal, Russia, and Taiwan. 

Within cluster IV, 77% of accessions belonged to MG IV. Clusters were not shown to 

have a significant effect on Met content, however the clusters proved useful in identifying 

genetically similar accessions that were stratified predominantly by geographic origin. 

Genome-wide Associations 

A total of 23 SNPs were identified as being associated with proteinogenic Met 

concentration (g kg -1 cp) in soybean seed (Table 2). MLM and GLM models from 2018 

environments displayed three SNPs (one SNP from each model) above the suggestive 

threshold (Figure 3), whereas MLM and GLM models from 2019 environments displayed 

20 SNPs above the suggestive threshold (six from Blacksburg, VA, nine from Warsaw, 

VA, and five from a combined locations) (Figure 4). QQ plots for each model exhibited 

that Type I and Type II errors were accounted for sufficiently (Figures 3 and 4). Eight 

SNPs displayed significant associations [ ]: ss715586112, 

ss715586120, ss715586126, ss715586203, ss715586204, ss715599541, ss715599547, 

and ss715625009. The remaining 15 SNPs displayed  which was 

above the suggestive threshold: ss715585365, ss715586063, ss715586201, ss715589347, 

ss715589348, ss715589349, ss715590327, ss715593682, ss715593752, ss715625002, 
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ss715625007, ss715625012, ss715625013, and ss715625017. Chromosome (Chr) 3 

contained the most associations (five significant, three suggestive), followed by Chr 16 

(one significant, five suggestive), Chr 4 (three suggestive), Chr 6 (two suggestive), Chr 8 

(two significant), Chr 5 (one suggestive), and Chr 12 (one suggestive). When including 

all environments, an MLM did not identify any SNPs above the significance or 

suggestive threshold.  

Candidate Genes 

A total of 22 candidate gene models from Wm82 were identified within 10 kb 

flanking regions of each significant SNP (Table 3). A number of gene models were found 

on three chromosomes: 13 on Chr 3 (Glyma.03g188100, Glyma.03g188200, 

Glyma.03g188300, Glyma.03g188400, Glyma.03g188900, Glyma.03g189000, 

Glyma.03g189100, Glyma.03g189700, Glyma.03g189800, Glyma.03g203900, 

Glyma.03g204000, Glyma.03g204100, and Glyma.03g204200), seven on Chr 8 

(Glyma.08g177000, Glyma.08g177100, Glyma.08g177200, Glyma.08g177300, 

Glyma.08g177400, Glyma.08g177500, and Glyma.08g177600), and two on Chr 16 

(Glyma.16g219800 and Glyma.16g219900). Candidate gene models belong to several 

protein families with numerous metabolic and biosynthesis implications.  Of the 13 genes 

present on Chr 3, nine displayed moderate to high expression in reproductive tissues. 

Specifically, Glyma.03g188900, a ubiquitin-protein ligase, and Glyma.03g189800, a 

leucine-rich repeat (LRR) protein kinase, displayed high expression in all reproductive 

tissue and pods, respectively. On Chr 8, four out of seven genes had moderate to high 

expression in reproductive tissue, including Glyma.08g177000 a RING/U-box 
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superfamily protein. On Chr 16, Glyma.16g219800 displayed little to no expression in 

reproductive tissue, and Glyma.16g219900 did not had available expression data.  

Genomic Selection 

gBLUP through TASSEL estimated GEBVs using two different sets of SNPs: a 

complete set with 35,570 SNPs and a subset of 248 SNPs with some association with Met 

content ( ). The correlation coefficient (r2) between GEBVs and observed 

values varied throughout environments, but the subset of 248 SNPs consistently 

outperformed the larger SNP set (Figure 5). Using the larger set, the average r2 for 2018 

Blacksburg, VA, 2018 Clayton, NC, 2019 Blacksburg, VA, and 2019 Warsaw, VA 

datasets was 0.27, 0.03, 0.08, and 0.14, respectively. Using the 248 SNP subset, the 

average r2 for 2018 Blacksburg, VA, 2018 Clayton, NC, 2019 Blacksburg, VA, and 2019 

Warsaw, VA datasets was 0.62, 0.45, 0.48, and 0.48, respectively. When averaging Met 

content across all environments, prediction accuracy remained consistent, 0.05 and 0.41 

average r2 for the complete set and subset, respectively. T-tests comparing r2 between 

SNP sets within environments identified that accuracy when using the subset was 

significantly higher across all environments (P < 0.01). 
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Discussion 

Soybean protein content and amino acid profiles are critical objectives for plant 

breeders. For this reason, many resources have been allocated to unlock genomic controls 

for these traits. As suggested by Lee et al. (2019) and Jarquin et al. (2016), utilizing the 

high-density marker set from the SoySNP50K repository with environmentally suitable 

accessions in replicated, multi-location trials is a powerful method for unlocking genetic 

potential. In this study, we identified novel associations for proteinogenic Met content (g 

kg -1 cp) in soybean seeds using accessions from MG IV and V that complements current 

genomic knowledge. Furthermore, we discovered that GS with a subset of significantly 

associated SNPs improved the genomic prediction accuracy for Met.  

Previous studies have identified genomic associations with Met content on 

chromosomes 1, 2, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, and 20 (Panthee et al., 2006a; 

Fallen et al., 2013; Kastoori Ramamurthy et al., 2014; Warrington et al., 2015; Zhang et 

al., 2018; Lee et al., 2019; Malle et al., 2020). Although our study did not identify these 

same genetic regions, ss715593752 on Chr 6 was within 220 kb of a QTL from 

Warrington et al. (2015) and a suggested SNP from Lee et al. (2019). Additionally, 

ss715593682 is within 6,000 kb of a SNP identified by Zhang et al. (2018). Through 

GWAS, we identified 23 novel SNP associations for proteinogenic Met content that were 

not recurrent across environment, which is consistent with previous research (McClure et 

al., 2017; Lee et al., 2019). This suggests further research is needed to understand GxE 

interactions for amino acid profile improvements in soybean due to their complexity.  

Our analyzes identified associations greater in number and significance from the 

2019 dataset when compared to 2018 measurements. This is likely caused by substantial 
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differences between Met concentrations between years. In Figure 1, the histogram for 

Warsaw, VA displays an expected frequency distribution for Met content, whereas other 

distributions exhibit numerous measurements below expected levels as a result of 

included 2018 data. Soybeans harvested from both locations in 2018 exhibited poorer 

seed quality likely as a function of higher than normal precipitation rates late in the 

growing season and delayed harvest. Rainfall has been shown to have a negative 

correlation with protein content (Kumar et al., 2006) and delayed harvest dates decrease 

concentrations of seed components (Jaureguy et al., 2013). These factors combined with 

higher disease rates, due to increased moisture, likely impacted the proteinogenic Met 

content. The three SNP associations from 2018 data exhibited a -log10(P) greater than the 

suggestive threshold, but not the significance threshold. Although, ss715590327 

(suggested from combined 2018 environments) was within 10 kb of Glyma.05g104400, a 

gene model involved in peptidyl-amino acid modification.  

The 20 SNPs identified from our 2019 datasets provide superior evidence for 

associations to Met concentrations. The strongest associations occurred on Chr 3 with a 

set of four SNPs (ss715586063, ss715586112, ss715586120, and ss715586126) within a 

distance of 710 kb and another set of three SNPs (ss715586201, ss715586203, and 

ss715586204) within a distance of 20 kb. Within immediate proximity to the former set, 

nine gene models of relevant protein functions are present with ss715586126 being inside 

the coding region of Glyma.03g18980, a leucine-rich repeat protein kinase family protein 

that is highly expressed in pod walls. The latter set is close to four gene models including 

Glyma.03g204000, a Mal d 1-associated protein expressed highly in the root system and 
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moderately in pods and developing seeds, where ss715586203 is within its coding 

sequence. 

While only suggestive associations, two SNPs on Chr 6 are within a 300 kb 

distance, and ss715593682 is part of the coding region for a S-adenosyl-L-methionine-

dependent methyltransferase, Glyma.06g193300. The two significant SNPs found on Chr 

8 (ss715599541 and ss715599547) are within 31 kb of each other and are proximal to 

seven various genes. Interestingly, ss715599541 is a part of the 3' untranslated region of 

Glyma.08g177100, a gene model with unknown function. Chr 16 contains one significant 

SNP association (ss715625009) that is flanked by five other suggestive associations, all 

within a 124 kb region. Within this region, ss715625012 can be found in the coding 

sequence of Glyma.16g220200, a serine/threonine protein kinase.  

When our results are combined with previously identified QTLs, genomic regions 

impacting Met concentration in soybean seeds can be found on all chromosomes except 

Chr 19. This creates a complicated framework for increasing Met content through 

marker-assisted selection (MAS), transgenic, or genome editing approaches. Amir et al. 

(2019) summarized current efforts at biofortification of Met in plant seeds through gene 

regulation and found that most attempts failed to increase Met in a synergistic manner. 

More specifically, some researchers have incorporated cystathionine γ-synthase genes 

from Arabidopsis thaliana into soybean; Song et al. (2013) found an increase in general 

Met content, whereas Hanafy et al. (2013) saw increased soluble Met but not total Met in 

seeds. In Arabidopsis thaliana, Girija et al. (2020) discovered that Met protein residues, 

unsoluble Met production was the limiting factor for final Met content in seeds.  
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In breeding applications, our study suggests that GS may be a useful tool for 

selecting varieties with increased Met content. GS success is mainly determined by 

prediction accuracy (Duhnen et al., 2017) and impacted by many variables, including 

marker density. While high-density marker sets are typically ideal for utilizing genome-

wide data, subsets of significant SNPs have been found to perform equal to or better than 

large SNP collections (Zhang et al., 2016; Qin et al., 2019). Qin et al. (2019) specifically 

identified improved genomic prediction for soybean amino acid content using a subset of 

231 SNPs. Our results showed similar improvement in prediction accuracies with a 

subset of 248 SNPs. In 2018 Clayton, NC, both 2019 environments, and using average 

Met content, GS had average accuracy values between 0.41-0.48. This could prove useful 

to breeders and may complement the use significant SNPs from the 2019 dataset with 

MAS. However, when using the 2018 Blacksburg, VA dataset, predictive accuracy 

reached and average of 0.62. Considering the single suggestive SNP identified through 

GWAS for this location, GS appears to provide greater utility.  

In summary, this project included a GWAS that not only identified many SNPs 

associated with Met content but also characterized several genomic regions that appear 

relevant. Within these regions, numerous gene models are present and their expression 

may correlate to the desired trait. GS was also evaluated as a potential method for 

selecting soybean lines with higher Met content. GS appears to be useful in certain 

environments with a subset of SNPs and could complement or outperform MAS. 

However, GxE limitations are still present and may impact which genes are influencing 

the final Met concentrations. This will require further research to elucidate genomic 

control of Met concentrations in soybean seed. 
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Tables and Figures 

Table 1. Countries of origin and maturity groups (MG) for clustered accessions as determined 

by discriminant analysis of principal components (DAPC). 

 

 Cluster I Cluster II Cluster III Cluster IV 
 

 (n = 76) (n = 62) (n = 47) (n = 126)  

 Count % Count % Count % Count % Total 

Australia - - - - 1 2.1 -  1 

Brazil - - - - 1 2.1 1 0.8 2 

China 55 72.4 54 87.1 - - 65 51.6 174 

Costa Rica - - - - 1 2.1 -  1 

Georgia - - 1 1.6 - - 2 1.6 3 

India - - - - - - 1 0.8 1 

Indonesia 1 1.3 - - - - -  1 

Japan 5 6.6 4 6.5 2 4.3 15 11.9 26 

Morocco - - - - - - 1 0.8 1 

Nepal - - - - - - 1 0.8 1 

North Korea - - - - - - 7 5.6 7 

Russia - - - - - - 1 0.8 1 

South Korea - - 1 1.6 3 6.4 14 11 18 

Taiwan 3 3.9 - - - - 1 0.8 4 

Uganda - - - - - - 2 1.6 2 

United States - - 2 3.2 37 78.7 11 8.7 50 

Vietnam 11 14.5 - - - - 2 1.6 13 

Unknown 1 1.3 - - 2 4.3 2 1.6 5 

MG IV 36 47.4 52 83.9 37 78.7 97 77 222 

MG V 40 52.6 10 16.1 10 21.3 29 23 89 
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Table 2. Significant SNPs on chromosomes 3, 4, 5, 6, 8, 12, and 16 associated with Met content (g kg -1 cp) in 

soybean seeds. 

Chr Genomic 

Location 

SNP 

(position) 

Wm82 

Allelea 

Alter-

native 

Allele 

Environmentsd 

2018 

BB 

2018 

CL 

2018 

Combined 

2019 

BB 

2019 

W 

2019 

Combined 

     ----------------------------- -log10(P) ------------------------------ 

3 
Intergenic 

ss715585365 

(33765404) 
T G NSb 4.29* NS NS NS NS 

 
Intergenic 

ss715586063 

(39357229) 
C T NS NS NS 4.60* NS NS 

 
Intergenic 

ss715586112 

(39946374) 
A G NS NS NS 5.82** NS NS 

 
Intergenic 

ss715586120 

(40006278) 
A G NS NS NS 5.16** NS NS 

 Coding 

sequence 

ss715586126 

(40062294) 
T G NS NS NS 5.57** NS NS 

 
Intergenic 

ss715586201 

(41217558) 
A G NS NS NS NS NS 4.37* 

 Coding 

sequence 

ss715586203 

(41228895) 
G T NS NS NS NS NS 5.33** 

 
Intergenic 

ss715586204 

(41236923) 
G A NS NS NS NS NS 5.11** 

4 Coding 

sequence 

ss715589347 

(8089953) 
T C NS NS NS NS 4.27* NS 

 
Intron 

ss715589348 

(8091107) 
G A NS NS NS NS 4.33* NS 

 Coding 

sequence 

ss715589349 

(8095691) 
C T NS NS NS NS 4.33* NS 

5 
Intergenic 

ss715590327 

(27762168) 
A G NS NS 4.17* NS NS NS 

6 Coding 

sequence 

ss715593682 

(17154269) 
G A NS NS NS NS NS 4.39* 

 
Intergenic 

ss715593752 

(17453327) 
C T NS NS NS NS NS 4.20* 

8 
3' UTRc ss715599541 

(14196322) 
T C NS NS NS 4.92** NS NS 

 
Intergenic 

ss715599547 

(14226774) 
G A NS NS NS 5.81** NS NS 

12 
Intergenic 

ss715613175 

(5433032) 
T G 4.22* NS NS NS NS NS 

16 
Intron 

ss715625002 

(37660795) 
A C NS NS NS NS 4.78* NS 

 
Intergenic 

ss715625007 

(37701598) 
T G NS NS NS NS 4.38* NS 

 
Intergenic 

ss715625009 

(37712387) 
T C NS NS NS NS 5.05** NS 

 Coding 

sequence 

ss715625012 

(37737235) 
C T NS NS NS NS 4.71* NS 

 
Intergenic 

ss715625013 

(37753573) 
T C NS NS NS NS 4.74* NS 

 
Intergenic 

ss715625017 

(37784014) 
T C NS NS NS NS 4.78* NS 

** significance threshold (5%), * suggestive threshold (25%) 
aWilliams 82 
bnot significant 
c3 prime untranslated region 
dBlacksburg, VA (BB), Clayton, NC (CL), Warsaw, VA (W) 
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Table 3. Candidate gene models and descriptions within 10 kb flanking regions of significantly associated SNPs using Wm82.a2.v1. 

Chr SNP Candidate Genes Gene Function Descriptiona Expression in soybean reproductive tissueb 

3 ss715586112 Glyma.03g188100 Modifier of rudimentary protein High expression in flowers 

  Glyma.03g188200 Nucleic acid binding NA 

  Glyma.03g188300 Pollen Ole e 1 allergen and extensin family protein Little to no expression in reproductive tissue 

  Glyma.03g188400 Eukaryotic aspartyl protease family protein Moderate to high expression in seeds and pods 

 ss715586120 Glyma.03g188900 Ubiquitin-protein ligase 7 High expression in flowers, pods, and seeds 

  Glyma.03g189000 Pentatricopeptide repeat (PPR) superfamily protein Moderate to high expression in flowers, pods, and seeds 

  Glyma.03g189100 Exostosin family protein Moderate to high expression in seeds 

 ss715586126 Glyma.03g189700 Pyruvate kinase family protein Moderate to high expression in seeds 

  Glyma.03g189800 Leucine-rich repeat (LRR) protein kinase family protein High expression in pods 

 ss715586203 Glyma.03g203900 Polyketide cyclase/dehydrase/lipid transport superfamily 

protein 

NA 

  Glyma.03g204000 Mal d 1-associated protein Moderate expression in flowers, pods, and seeds 

  Glyma.03g204100 Calmodulin-domain protein kinase cdpk isoform 2 Moderate to high expression in pods 

 ss715586204 Glyma.03g204200 TPX2 (targeting protein for Xklp2) protein family Little to no expression in reproductive tissue 

8 ss715599541 Glyma.08g177000 RING/U-box superfamily protein High expression in flower and pods 

  Glyma.08g177100 NA Little to no expression in reproductive tissue 

  Glyma.08g177200 Arabinogalactan protein 1 NA 

  Glyma.08g177300 GTP cyclohydrolase II Little to no expression in reproductive tissue 

 ss715599547 Glyma.08g177400 Dicarboxylate transport 2.1 Moderate expression in pods and seeds 

  Glyma.08g177500 Pyrimidine 2 Moderate expression in flowers 

  Glyma.08g177600 Centrin2 High expression in flowers; moderate expression in pods 

16 ss715625009 Glyma.16g219800 WRKY DNA-binding protein 70 Little to no expression in reproductive tissue 

  Glyma.16g219900 B-block binding subunit of TFIIIC NA 
aas described in TAIR, PANTHER, or GO annotation 
bSoybean flowers, seeds, and pods. Detailed expression profiles can be found in Severin et al. (2010) 
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Abstract 

Soybean [Glycine max (L.) Merr.] is a valuable, global crop with many end-use 

purposes due to its seed composition. Test weight, a measure of bulk density, is directly 

linked to end-use efficiency as an important indicator of seed quality. Test weight in 

soybean has historically been overlooked as a trait of interest by plant breeders and is 

difficult to measure in early breeding generations due to the limited seed amount. The 

objective of this study was to compare genomic and phenomic prediction models for test 

weight of soybean seeds in order to accelerate its breeding selection. We planted 129 

soybean accessions from maturity groups IV and V in two locations in 2019 and 2020. 

Genomic prediction was evaluated using 35,454 single nucleotide polymorphisms, k-fold 

cross validation, and with population structure determined through discriminant analysis 

of principal components. Phenomic prediction was performed using near-infrared 

reflectance spectral data as predictors with a standard least squares approach and with 

80% training and 20% validation populations. Average phenomic prediction accuracy 

consistently outperformed genomic prediction with accuracies of 0.75 and 0.07-0.31, 

respectively. Phenomic prediction was also successful in cross validations by 

environment with an accuracy range of 0.16-0.59. These results suggest that phenomic 

prediction could be a useful selection tool for improving test weight in soybean.  
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Introduction 

Soybean [Glycine max (L.) Merr.] is a valuable, global crop with a myriad of end-

use purposes due to its seed composition. The protein and oil components within soybean 

seeds make up of 40% and 20%, respectively (Wilson, 2004). A variety of processing 

methods can unlock the value of soybean seeds by separating the protein and oil to create 

value-added products such as protein meal, cooking and industrial oils, and lecithin. Test 

weight, a measure of bulk density and an important indicator of seed quality, is intricately 

linked to this final utility. According to the U.S. Soybean Export Council, soybean test 

weight is graded No. 1, 2, 3, and 4 representing 72.1, 69.5, 66.9, and 63.1 kg hL -1 (U.S. 

Soybean Export Council, 2015). Aside from test weight’s influence on seed quality, 

discounts may directly affect farmer profits. Price discounts from $0.005 to $0.02 per 

hectoliter may be applied for test weights beneath grade No. 2, and rejection can occur 

with test weights below No. 4 (Mississippi Soybean Promotion Board,). Additionally, 

poor test weight negatively impacts transportation and processing efficiency.  

In 2019 and 2020, the U.S. exported $16.5 billion (USD) worth of whole 

soybeans with China accounting for $5.85 billion (The American Soybean Association, 

2020). The storage, transportation, and export of soybean is significantly impacted by test 

weight. Soybean with poor test weight will occupy the same volume with less mass than 

equivalent soybeans with better test weight. For example, 1.4 to 1.55 million kg of 

soybean with a test weight of 77.2 kg hL -1 can be transported by one barge, 16 rail cars, 

or 62 semi-truck trailers (McNeece et al., 2021; Soy Transportation Coalition,). However, 

the average test weight of U.S. soybean in 2018 was 73.1 kg hL -1 (Naeve and Miller-

Garvin, 2019). This would result in a potential reduction 77,500 kg of soybean per unit of 
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transport, and a potential loss over $36,000 (assuming a reasonable price of $12.74 per 

bushel (Markets Insider). In a competitive global market, maximizing transportation 

efficiency is paramount.  

While test weight is relatively simple trait to measure in soybean with many 

options for mimicking grain elevator measurements in breeding programs, a consistent 

seed yield is required for accurate results. We have identified 13 oz or 370 g as the 

minimum seed amount needed for determining test weight with a widely used GAC 

2500-AGRI Grain Analysis Computer (DICKEY-john, Auburn, IL). This seed quantity is 

unrealistic in pre-breeding materials and unattainable in early breeding generations, 

resulting in that test weight can’t be selected until progeny rows are developed.  

Therefore, there is a need to easily and accurately evaluate test weight for early selections 

to accelerate its breeding process. 

While test weight in relation to genotypic control, agronomic practices, and seed 

composition has been studied heavily in other grain crops such as small grains, soybean 

test weight has historically been overlooked. Recently, two articles by Liu et al. and 

McNeece et al. have identified genetic variation among genotypes in soybean and 

reported correlations between test weight and yield, maturity, protein content, oil content, 

sucrose content, seed size, and seed quality (Liu et al., 2019; McNeece et al., 2021). 

Research in other crops highlight greater potential for breeding improvements in test 

weight. In wheat (Triticum), researchers have developed a foundation for genotypic 

effects of test weight (Ghaderi et al., 1971; Teich, 1984; Rharrabti et al., 2001; Jing et al., 

2003; Kaya and Akcura, 2014), and test weight inheritance and recurrent selection have 

been studied in oat (Avena sativa) (Pixley and Frey, 1991; Klein et al., 1993). 
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Additionally, quantitative trait loci (QTL) have been identified for test weight in maize 

(Zea mays) (Ding et al., 2011).  

High-throughput genotyping technology, especially the use of single nucleotide 

polymorphisms (SNPs) as molecular markers, has allowed modern plant breeders to 

utilize high-density genetic markers for variety development. Specifically, genomic 

prediction (GP) uses genetic information to predict traits, while genomic selection (GS) 

refers active selection of breeding lines based upon those predictions. Crossa et al. aptly 

reviewed recent progress for genomic selection in plant breeding and discussed methods 

and statistical models used in selection (Crossa et al., 2017). GS accuracy is usually 

represented as the r2 correlation between predicted and observed values after datasets 

have been divided into training and validation populations. Regarding test weight, GS has 

shown variable accuracy in rice (Oryza sativa) and small grains. Prediction accuracy was 

shown to increase as population size increased in rice but remained below 0.5 (Isidro et 

al., 2015). Battenfield et al. observed increasing accuracy in spring bread wheat with 

increasing training population size with the best model reaching 0.67 forward predictive 

accuracy (Battenfield et al., 2016). An accuracy range of 0.59-0.61 was observed when 

using an optimal model within a large wheat breeding program (Verges and Van Sanford, 

2020). However, poor predictive accuracy for test weight was also shown in buckwheat 

(Fagopyrum esculentum) and wheat ranging from 0.26-0.36 and 0.2-0.3, respectively 

(Yabe et al., 2018; Borrenpohl et al., 2020). Even though GS can greatly reduce the 

number of generations or number of replications needed to develop varieties, it will 

decrease selection accuracy when compared to direct, phenotypic observation. 
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Recent advances in phenotyping proposes a new, more efficient method of 

prediction. Phenotyping is widely considered the bottleneck for genetic gain in plant 

breeding, whether breeders are making decisions directly based upon those phenotypes or 

creating prediction models from phenotypes (Bernardo, 2008; Rincent et al., 2012). As 

high-throughput phenotyping is becoming more practical, recent findings indicate that 

GS may be surpassed by a new, more efficient method: phenomic selection (PS) using 

near-infrared reflectance spectroscopy (NIRS). NIRS is prominently used throughout 

agricultural settings to measure grain composition of seeds and nutritional value of feed 

(Chen et al., 2013; Samadi et al., 2020). More importantly, it is regularly used in soybean 

breeding programs to collect phenotypes including protein, oil, starch, and sugar content. 

It would be a simple endeavor to replace GS with PS in soybean breeding programs by 

replacing genetic markers with NIR spectral data. PS would provide an even greater 

decrease in resources needed for varietal development than GS, but with improved 

accuracy and optimized methods.  

Originally suggested by Rincent et al. in 2018, phenomic selection is founded on 

the idea that spectral reflectance also reflects the underlying genetic variance as well as 

the environmental influence on the phenotype (Rincent et al., 2018). This seminal 

research provided a proof on concept that measured NIR on wheat grain and tissue and 

poplar (Populus nigra) wood and demonstrated PS to be a low-cost and successful 

method for selection in breeding programs with a potential 81% increase in genetic gain. 

Several other prediction models have since been evaluated by Lane et al. for predicting 

maize yield from NIR on kernels with accuracies above 0.72, but they did not compare 

directly to GS models (Lane et al., 2020). In-season prediction of yield in soybean has 
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also shown promise by using machine learning to develop models from hyperspectral 

wavelengths (Parmley et al., 2019). Sandhu et al. combined phenomic wavelength data 

with genomic markers to improve prediction accuracy for protein content and yield in 

wheat (Sandhu et al., 2021). While all of these studies collect NIR spectral data with 

different equipment, they all utilize thousands of wavelength data points. However, not 

all NIR equipment generate this size dataset. Therefore, the objective of our study was to 

compare genomic and phenomic prediction models for test weight of soybean seeds in 

order to accelerate its breeding selection.   
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Materials and Methods 

Plant Materials 

A total of 500 soybean accessions were selected for the USDA Soybean 

Germplasm Collection to comprehensively represent genetic variability in maturity 

groups (MG) IV and V (Qin et al., 2017). Among these, a panel of 136 accessions 

produced enough seed to accurately measure test weight. These accessions were grown in 

3 m two-row plots with 76 cm row spacing in Blacksburg, VA and 3 m four-row plots 

with 76 cm row spacing in Warsaw, VA in 2019 and 2020. Plots were organized based 

upon maturity and grown in a randomized complete block design with two blocks at each 

location. Each block began with two commercial checks, AG4403 and Ellis. Due to 

limited seed quantity in 2019, block replicates were merged within locations prior to 

measurement.  

Data Collection 

Test Weight Data 

All seed samples were cleaned by removing moldy, mottled, discolored, split, or 

off-types seeds as well as any soil or debris. Test weight and moisture content was 

measured using the GAC 2500-AGRI Grain Analysis Computer (DICKEY-john, Auburn, 

IL). Test weight was reported as kilograms per hector liter (kg hL -1) after being adjusted 

to a 13% moisture content (Liu et al., 2019). A minimum of 13 oz, or roughly 370 g, of 

soybean seed were used for accurate measurements. Three technical replicates were 

performed and averaged for each sample to account for equipment variation. Two 

accessions were removed from further analysis after abnormal test weight was observed.  

Near-infrared Reflectance Spectroscopy Data 
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All samples were non-destructively analyzed using the DA 7250 NIR Analyzer 

spectrophotometer (PerkinElmer Inc.). Samples of 2.5 oz, or roughly 75 g, were placed in 

a small, rotating cup intended for use with whole seeds and scanned twice with a repack 

step between scans. The spectral dataset consisted of 141 wavelength data points 

collected between the 950-1650 nm range at 5 nm intervals. Average spectral absorbance 

values were exported and then treated using the Unscrambler X software (CAMO 

Analytics). The spectral wavelengths for each sample can be viewed in Figure 1. Similar 

to Rincent et al.  and Lane et al., individual reflectance points were normalized by 

centered by the mean and scaled by the standard deviation and then the first derivative 

using the Savitky-Golay method (Savitzky and Golay, 1964; Rincent et al., 2018; Lane et 

al., 2020). A total of five accessions were removed from further analysis after 

inconsistent reflectance data was observed.  

Genomic Data 

Publicly available SNP marker data (www.soybase.org) of the 129 accessions 

were downloaded for the SoySNP50K SNPs data repository (Song et al., 2015). A total 

of 42,509 initial SNPs were filtered by low minor allele frequency (MAF <0.05) and 

missing genotypes, which resulted in 35,454 SNPs being used for analysis. 

Evaluation of Genomic and Phenomic Selection  

Genomic Prediction 

GS was performed using gBLUP (genomic best linear unbiased prediction with 

the TASSEL 5 genomic selection function (Bradbury et al., 2007). A mixed model was 

used to incorporate a kinship matrix (K) and population structure (Q) for increased 

statistical power through the Q+K approach (Yu et al., 2006). Q was evaluated with a 
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discriminant analysis of principal components (DAPC) using the adegenet package in R 

to identify clusters of genetically related individuals (Jombart, 2008; Jombart et al., 

2010). Successive k-means clustering was performed with the find.clusters function with 

maximum cluster set to k = 40. All principal components were retained, and Bayesian 

information criterion (BIC) was used to identify an optimal number of clusters. Then 

using the dapc function, an optimal number of principal components were retained to 

maximize cumulative variance without overfitting, and all discriminant functions were 

retained. A kinship matrix was create using the Centered_IBS method in TASSEL 5 

(Bradbury et al., 2007; Endelman and Jannink, 2012). K-fold cross validation was 

performed using k = 5 with 10 iterations with r2 collected for each environment. 

Environments with two blocks had 100 total iterations performed, 50 for each block.   

Phenomic Prediction 

JMP Pro 15.0.0 (SAS Institute Inc.) was used to perform statistical analyzes and 

predictions. Using an ANOVA with a 99% confidence interval (P < 0.01), location, year, 

accession, and the location × year (henceforth referred to as an environment) interaction 

variable were treated as fixed effects and a connecting letter report for accession and 

environment was generated post hoc using Tukey’s honest significant difference (HSD). 

A T-test was used to generate connecting letter reports for location and year. Since our 

number of observations exceeded our phenomic predictors (p < n), a standard least 

squares regression was deemed suitable for prediction models. For similar reasons, PS 

accuracy was not estimated within locations as the decrease in total observations limited 

the least squares approach. PS accuracy within locations is of little interest as phenomic 

markers theoretically incorporate both genomic and environmental effects and should be 
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used to predict across environments. A total of 50 cross validations were performed using 

80% training populations and 20% validation populations which were randomly assigned 

through JMP. The Pearson’s correlation coefficient (r2) was collected for each cross 

validation by comparing predicted and observed test weights for each validation 

population. Three cross validations were also performed to evaluate the predictive 

accuracy across locations and years; Blacksburg, VA observations, Warsaw, VA 

observations, and 2020 observations were used as training populations to predict test 

weight in Warsaw, VA, Blacksburg, VA, and 2019, respectively. Tukey’s honest 

significant difference test was used to compare r2 values between all average genomic 

and phenomic predictions to evaluate selection potential.  
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Results 

Test Weight Observations 

Test weight measurements exhibited normal, continuous distributions across all 

environments and averaged 69.5 kg hL -1 with a standard deviation of 1.85 kg hL -1.  All 

samples were within 62.9 and 75.8 kg hL -1. It should be noted that the standard U.S. test 

weight used for calculating soybean value is 74.8 kg hL -1 (60 lbs per bushel), which 

suggests the potential for test weight improvement using accessions in our collection with 

high test weight as parental lines. Figure 2 displays frequency distributions for all 

environments (2a), 2019 Blacksburg, VA (2b), 2019 Warsaw, VA (2c), 2020 Blacksburg, 

VA (2d), and 2020 Warsaw, VA (2e) with means and standard deviations of 70.6, 71.2, 

69.7, and 67.9 kg hL -1 and 1.43, 1.31, 1.25, and 1.45 kg hL -1, respectively. Accession, 

location, year, and environment were all shown to be significant effects for test weight (P 

< 0.01). Most accessions had statically similar means, but PI87059 and PI157487B (both 

originating from South Korea) displayed the highest and lowest average respective test 

weights, 72.9 and 67.3 kg hL -1. When considering location and year as independent 

effects, Blacksburg, VA and 2019 displayed the highest means, 70.2 and 70.9 kg hL -1 

respectively. However, when considering each location and year combination as an 

environment, 2019 Warsaw, VA displayed the highest mean test weight (72.2 kg hL -1) 

followed by 2019 Blacksburg, VA (70.6 kg hL -1), 2020 Blacksburg, VA (69.8 kg hL -1), 

and 2020 Warsaw, VA (67.9 kg hL -1).  

Genomic and Phenomic Prediction 

Through DAPC, 80 principal components that accounted for 81.2% of cumulative 

variance were retained. Using BIC, k = 3 was determined as the optimal number of 
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clusters (Figure 3). Country of origin and MG for accessions within each cluster are 

shown in Table 1. Cluster I (n = 21) contained 20 MG IV accessions from the U.S. (95%) 

and one accession from South Korea (1%). Cluster II (n = 46) contained 41 accessions 

from China (89%) and a single accession each from Georgia, Indonesia, Japan, South 

Korea, and the U.S. (2.2% each). All but one accession in Cluster II belong to MG IV. 

Cluster III (n = 62) contained 32 accessions from China (51.6%), eight, five, six, and five 

accessions from Japan (12.9%), North Korea (8.1%), South Korea (9.7%), and the U.S 

(8.1%), respectively, and a single accession from Georgia, Nepal, Taiwan, Uganda, and 

Vietnam (1.6% each). Within Cluster III, 46 accessions belong to MG IV (75%) and 16 

belong to MG V (25%).  

gBLUP utilized the 35,454 SNPs and incorporated population structure to 

determine genomic estimated breeding values (GEBVs) which were compared to the 

observed test weight values. Overall, GP accuracy when using the 35,454 SNPs 

collection was poor, especially when predicting for average test weight across locations 

(r2 = -0.04). Average predictive accuracy for individual environments were 0.26, 0.31, 

0.07, and 0.17 for 2019 Blacksburg, VA, 2019 Warsaw, VA, 2020 Blacksburg, VA, and 

2020 Warsaw, VA, respectively (Figure 4). Both environments from 2019 had 

statistically greater accuracies than all other genomic models, but they still exhibited 

much lower accuracy than the phenomic prediction model.  

Cross validation (80% training and 20% validation population) over 50 iterations 

for phenomic prediction displayed an average predictive accuracy of 0.75 and an average 

root mean square error (RMSE) of 0.91. As evidenced in the boxplots of Figure 4, 

predictions based on NIRS data outperformed genomic models and generated precise 
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accuracy measurements across all iterations. Phenomic prediction accuracy was 

determined by generating predictions for the validation population from a model created 

with the training population and then comparing the predicted test weight value to the 

observed test weight value. Figure 5 shows four predicted test weight and observed test 

weight linear regression comparisons for cross validation iterations one through four as 

an example of the 50 iterations. Additionally, cross validation performed across locations 

and years showed variable accuracy. In Figure 6, correlations between predicted and 

observed test weights using models created from Blacksburg, VA to predict Warsaw, VA 

test weights (6a), Warsaw, VA to predict Blacksburg, VA test weights (6b), and 2020 to 

predict 2019 test weights (6c) are shown. The respective r2 and RMSE values for each 

model were 0.59, 0.37, and 0.16 and 0.96, 1.64, 1.90.  
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Discussion 

Test weight in soybean has historically been overlooked as a breeding objective 

and considered an afterthought until determining sales price. However, foundational 

research in other crops and recent investigations in soybean have identified test weight as 

an important factor for seed quality, processing, and transportation efficiency. As 

soybean breeders move toward developing varieties with improved test weight, they will 

face difficulties in phenotyping, especially during early breeding generations. To 

accurately and precisely measure test weight, a sufficient quantity of seed is required, and 

this quantity is unattainable until later breeding generations. This limits a breeder’s 

ability to make selections for test weight in pre-breeding and early breeding materials. 

With this study, we evaluated the potential for GS and PS of test weight in soybean and 

identified that PS would be an ideal tool for achieving genetic gain with small seed 

quantity to measure test weight in early generations.   

We observed consistent test weight performance, ranging from 62 to 76 kg hL -1. 

However, we also observed significant environmental effect that is consistent with 

previous research (Liu et al., 2019; McNeece et al., 2021). This implies that improvement 

for soybean test weight will be influenced by G x E interactions, ultimately impacting 

breeder selections. Jarquin et al. suggested GS that utilizes high-density molecular 

marker sets, such as the marker set used in this project, combined with replicated, multi-

location trials would be a suitable tool for making selections (Jarquin et al., 2016). While 

some researchers have reported GS accuracies for wheat test weight above 0.6 

(Battenfield et al., 2016; Verges and Van Sanford, 2020), our results exhibit poor 

predictive ability for soybean test weight. Even when predicting within a single 
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environment, our strongest model only displays an average accuracy of 0.31. This aligns 

with similar studies in rice, wheat, and buckwheat (Isidro et al., 2015; Yabe et al., 2018; 

Borrenpohl et al., 2020). Once averaged across environments, that accuracy deteriorates 

to have no predictive ability (-0.04). Negative GS predictive ability has also been 

observed during a selection cycle for buckwheat test weight (Yabe et al., 2018). Through 

a combination of poor accuracy and environmental effects, GS appears to be a less-than-

ideal method for accelerating genetic gain in soybean test weight.  

Alternatively, PS is a recently published method that utilizes NIRS data to 

generate predictions for selection decisions. To beneficially impact genetic gains, PS will 

need to either decrease resources needed to make selections or showcase improved 

prediction ability when compared to GS. Rincent et al. identified a potential genetic gain 

increase of 81% when using PS over GS for grain yield in wheat (Rincent et al., 2018). 

This increase was a function of prediction accuracy as well as decreased cost. Lane et al. 

determined that PS would be economically suitable when NIR wavelengths can be easily 

obtained from each sample-environment combination (Lane et al., 2020). In soybean 

breeding programs, NIRS can be quickly obtained for each sample (often at no additional 

cost), as NIR analyzers are prominently used to measure seed composition such as 

protein and oil content.  

Rincent et al. and Lane et al. reported variable predictive accuracies that depended 

on trait and environment, but general predictive abilities when including grain NIRS 

measurements from the same environment in both training and validation populations 

ranged from 0.3-0.6 for wheat yield and 0.72-0.84 for maize yield, respectively (Rincent 

et al., 2018; Lane et al., 2020). Rincent et al. compared accuracies directly to GS models, 



80 

 

whereas Lane et al. evaluated several PS models. It should be noted that these two studies 

utilized large wavelengths ranges with many repeated scans averaged together. 

Contrarily, by following the suggested method for collecting seed composition 

measurements using the DA 7250 NIR Analyzer (PerkenElmer, Inc.), our analysis only 

obtained 141 wavelength data points that were averaged over two scans. While this 

decreased our number of observations, it allowed us to use a standard least squares 

approach, simplifying the model design.  

Our results exhibited similar success for PS potential, especially when compared 

to GS accuracy. Using a model that incorporated all environments, we observed an 

average predictive ability of 0.75, and the variability across cross validation iterations 

was markedly smaller than observed in GS (Figure 4). Thus, a PS model that incorporates 

NIRS data from all environments of interest could be an effective method for selection. 

As to be expected, however, the accuracy decreased when using separate environments as 

training and validation populations. When using Blacksburg, VA and Warsaw, VA to 

predict test weight for the other location, accuracy fell to 0.59 and 0.37, respectively. 

Similar accuracy drops between environments have been observed in wheat and maize 

(Rincent et al., 2018; Lane et al., 2020). The Blacksburg, VA dataset likely maintained a 

higher accuracy due to more consistent test weights between years. Another decline in 

accuracy (to 0.16) occurred when using 2020 spectra to predict for 2019. As 2019 had 

significantly higher test weights than 2020, the model underestimated the test weight for 

several accessions. Intriguingly, it also overestimated some test weights that were 

observed to be near average. Both locations in 2020 experienced greater precipitation 

rates than during 2019, and portions of seed filling in 2019 suffered drought. Excess 
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rainfall and soil water have been shown to negatively affect test weight in wheat 

(Guarienti et al., 2005), and moisture content during seed development and maturation 

directly affects physical properties of soybean seed (Tunde-Akintunde et al., 2005). This 

may suggest limited phenomic predictive accuracy when certain environmental variables 

are inconsistent. However, when compared to the lack of GS predictive ability, all PS 

models still provide utility when averaging test weight across locations.  

Overall, our results highlight the potential benefits of incorporating phenomic 

prediction models for breeders to make selections for soybean test weight and exhibit 

increased accuracy of PS when compared to GS. In one swift motion, breeders can use a 

common NIR analyzer to measure seed composition and collect NIRS spectra to obtain 

high predictive accuracy across multi-location trials. These results also support the 

growing body of research highlighting PS as a useful tool for plant breeders working in 

many crops and selecting for several traits. 
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Tables and Figures 

 

 

 

 

 

Table 1. Countries of origin and maturity groups (MG) for clustered accessions as 

determined by discriminant analysis of principal components (DAPC). 

 Cluster I Cluster II Cluster III  

 (n = 21) (n = 46) (n = 62)  

 Count % Count % Count %          Total 

China - - 41 89 32 51.6 73 

Georgia - - 1 2.2 1 1.6 2 

Indonesia - - 1 2.2 - - 1 

Japan - - 1 2.2 8 12.9 9 

Nepal - - - - 1 1.6 1 

North Korea - - - - 5 8.1 5 

South Korea 1 5 1 2.2 6 9.7 8 

Taiwan - - - - 1 1.6 1 

Uganda - - - - 1 1.6 1 

United States 20 95 1 2.2 5 8.1 26 

Vietnam - - - - 1 1.6 1 

Unknown - - - - 1 1.6 1 

MG IV 21 100 45 97.8 46 75 112 

MG V - - 1 2.2 16 25 17 
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Abstract 

 Soybean (Glycine max) is a valuable crop with end-use versatility in feed, 

food, and industrial purposes due to its amino acid and fatty acid profiles. With sulfur 

availability becoming increasingly important and the value of soybean intrinsically tied to 

these seed components, the objective of this project was to identify the impact of sulfur 

fertilization on the monomers of seed protein and oil. A replicated field study was 

implemented in 2019 and 2020 in six locations across the state of Virginia using four 

forms of sulfur fertilizer: ammonium sulfate (AMS), ammonium thiosulfate (ATS), 

calcium sulfate (CS), and elemental sulfur (ES). Amino and fatty acids were quantified 

using near-infrared reflectance spectroscopy. Location proved to be a significant effect (P 

< 0.001) for all amino and fatty acids observed, while year influenced nine of the traits (P 

< 0.001). Sulfur fertilization only statically affected methionine concentrations (P < 0.05) 

with AMS, the most available source of sulfate, exhibiting the highest mean (0.565% 

methionine in seed, dry weight basis). Interaction between source and location variables 

suggests that site-specific implications may also be relevant.  
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Introduction 

Soybean (Glycine max) is a valuable and versatile global crop due to its seed 

composition (Wilson, 2004). Protein and oil content as well as their respective 

monomers, amino acids and fatty acids, provide a variety of end-uses after processing. 

Soybean is regularly used in livestock feed as a protein source (Buttery and D’Mello, 

1994; Boisen et al., 2000) because of the presence of all nine essential amino acids 

(Kuiken and Lyman, 1949; Goldflus et al., 2006). Many human food and industrial 

products also result from soybean oil (Liu, 1997), especially in high oleic acid varieties 

(Zambelli, 2021). Sulfur is a known nutrient required for optimal crop growth (Hitsuda et 

al., 2005; Franzen and Grant, 2008) and has been shown to impact soybean production 

(Hitsuda et al., 2008). Alongside nitrogen, sulfur is critical for seed protein formation and 

therefore influences seed component accumulation.  

While sulfur deficiencies are typically not a concern, recent sulfur deposition data 

posits that increased sulfur fertilization may be needed in the future (USEPA, 2020). 

Kaiser and Kim (2013), Letham et al. (2021), and Cannon et al. (2021) identified limited 

to no agronomic improvement from sulfur application to soybean. Regardless, many 

physiological processes are dependent upon sulfur availability. Dev and Saggar (1974) 

recognized nitrogen to sulfur ratios were affected by sulfur fertilization and varied 

between soybean varieties. Additionally, nitrogen to sulfur cotyledon ratios and storage 

protein abundance were reportedly impacted by sulfur availability which suggests direct 

implications for overall amino acid biosynthesis (Sexton et al., 1998). This necessitates a 

special consideration of sulfur-containing amino acids, i.e. methionine and cysteine.  
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Methionine is one of the nine essential amino acids, required for metabolic 

processes, and is typically known as the initiating amino acid in proteins sequences 

(Brosnan et al., 2007). Conde-Aguilera et al. (2013) and Wu et al. (2012) showed limited 

methionine in poultry diets negatively impacts body composition and disease immunity, 

while methionine is the limiting amino acid in soybean proteins (Berry et al., 1962). 

Cysteine, while not one of the nine essential amino acids, plays a critical role in tertiary 

protein structure through disulfide bonds (Jessop et al., 2004). Limited cysteine in poultry 

diets also interferes with keratin production and thereafter feather production and quality 

(Wylie et al., 2001). As 36.6 million short tons of soybean meal used for livestock feed in 

the United States in 2020 (The American Soybean Association, 2020), it is important to 

explore how to increase the content of sulfur-containing amino acids. 

Sulfur fertilizer can be applied in several different forms including ammonium 

sulfate (AMS), ammonium thiosulfate (ATS), elemental sulfur (ES), and calcium 

sulphate (CS) which all eventually oxidize to form plant-available sulfate (SO4
-). AMS is 

the most available form; it requires little to no oxidation but is highly susceptible to 

leaching (Riley et al., 2002). ES has the slowest oxidation rate; however, it may be 

applied for delayed sulfur availability and decreased cost (Grant et al., 2012; Goyal et al., 

2021). Ham et al. (1975) and Devi et al. (2012) recognized impacts on seed composition 

with sulfur fertilization, but very little research determined the impact of sulfur 

fertilization on protein and oil monomers for a variety of sources.  

The research objective of this project was to determine the impact of different 

sulfur fertilizers on amino and fatty acid concentrations in soybean seed. It was 
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hypothesized that sulfur containing amino acids would be specifically affected by 

fertilization. 
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Materials and Methods 

Site Descriptions 

Fields with sandy loam soils and potential sulfur deficiencies were chosen across 

eastern Virginia. All locations were rain-fed and a full-season crop except for Suffolk 

2019 and Eastville 2020, which were double-crop after wheat. Pests were controlled on a 

site-by-site basis. 

Experimental Design 

The experiment was grown as a replicated complete block design (RCBD) in four 

locations, Chesapeake, Essex, Painter, and Suffolk, Virginia, in 2019 and 2020, as well as 

Eastville and Virginia Beach, Virginia in 2020. Soybean varieties were selected 

individually for each site. In 2019, plot sizes were 300 ft2, while in 2020, plot size was 

increased to 400 ft2, with the exception of Suffolk which had a plot size of 255 ft2 both 

years. Most locations were planted with a 15-inch row spacing, except for Chesapeake 

and Painter which were planted with 30-inch row spacing both years. Granular sulfur was 

broadcast evenly by hand as three different sources: AMS, ES, and CS. ATS, a liquid 

sulfur source, was applied using a hand sprayer. All sources were applied at three 

different rates: 10, 20, and 30 S lb acre -1. Each block also contained an untreated control 

(UTC) as well as three rates of urea (9, 18, and 26 N lb acre -1). Urea served as a positive 

nitrogen control for AMS and ATS which contained 9, 18, and 26 and 10, 20, and 30 N lb 

acre -1, respectively. 

Data collection 

Near-infrared spectroscopy (NIRS) was used to quantify seed components 

(Pazdernik et al., 1997; Kovalenko et al., 2006), including amino acids cysteine, 
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histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, 

and valine as well as fatty acids linolenic, oleic, palmitic, and stearic acid. The DA 7250 

NIR Analyzer and 2019 calibrations were utilized from PerkinElmer to quantify on a % 

in seed, dry weight basis. A small rotating tray was filled with whole soybean seeds and 

then repacked as a technical replicate.  

Statistical analysis 

Data were fitted with a mixed model ANOVA using standard least squares in 

JMP Pro 15.0.0 (SAS Institute Inc. 2019). Fixed effects included growing location, year, 

sulfur source, and the sulfur source × location interaction variable at the 95% confidence 

level (P < 0.05). Sulfur rate was included in a preliminary model, however due to 

singularity errors, it was removed from the final model. Connecting letter reports for 

location and source were generated post hoc using Least Square Means through Tukey’s 

honest significant difference (HSD). The Student’s T-test was used for the year effect. 

The test slice function in JMP Pro 15.0.0 (SAS Institute Inc. 2019) was used to identify 

significant contributions to the sulfur source × location interaction variable.  
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Results 

All traits exhibited a significant model when including all effects as shown in 

Table 1. However, linolenic acid exhibited a poor R-squared value, while oleic acid 

exhibited a poor root mean square error (RMSE). Location was a significant factor for all 

amino and fatty acid traits (P < 0.001). Year was a significant factor for nine traits (P < 

0.001 or 0.01), excluding isoleucine, leucine, methionine, and valine. The sulfur source × 

location interaction variable was significant for cysteine, histidine, isoleucine, leucine, 

lysine, phenylalanine (P <0.05), and threonine (P < 0.01). Sulfur source was only a 

significant factor for methionine (P < 0.05).  

Significant differences between amino acid (Table 2) and fatty acid (Table 3) 

concentration means were observed for all traits. Chesapeake, VA displayed the highest 

amino acid concentrations for histidine, isoleucine, leucine, lysine, phenylalanine, and 

valine with means of 1.09, 2.01, 3.22, 2.72, 2.18, and 2.08% in seed, respectively. 

Threonine performance was identical in Chesapeake and Painter, VA (μ = 1.56% in seed) 

which was significantly greater than all other locations. Cysteine and methionine 

concentrations were highest in Painter, VA with means of 0.58 and 0.572% in seed, 

respectively. However, Painter, VA cysteine levels were statistically indifferent from 

seeds harvested in Eastville, VA, whereas methionine levels were also indifferent from 

levels observed in Virginia Beach, VA. Tryptophan concentrations were highest in 

Eastville, VA (μ = 0.42% in seed).  

Performance for fatty acids was more similar across locations. Essex and Painter, 

VA linolenic acid levels (μ = 6.83, 6.87% in seed, respectively) were significantly higher 

than measured values from Chesapeake, VA (μ = 6.55% in seed) but statistically similar 
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to all other locations. Painter, VA displayed the highest oleic acid concentrations with a 

mean of 26.74% in seed, ≥ 2% more than all other locations. Eastville, Painter, and 

Virginia Beach, VA all displayed the greatest levels of palmitic acid with means of 11.36, 

11.55, 11.41% in seed, respectively. Stearic acid concentrations were significantly higher 

in Virginia Beach, VA (μ = 3.99% in seed). 

Amino and fatty acids concentrations were typically higher from seeds produced 

in 2019 as shown in Tables 4 and 5. Cysteine, histidine, threonine, and tryptophan as well 

as oleic, palmitic, and stearic acid all displayed higher means in 2019 (μ = 0.58, 1.08, 

1.54, 0.41, 24.94, 11.32, and 3.72% in seed, respectively). Lysine, phenylalanine, and 

linolenic acid had higher concentrations in 2020 with means of 2.68, 2.12, and 6.87, 

respectively.  

Sulfur source proved to only be significant for methionine in which AMS 

performed significantly higher than ES and urea with means of 0.565, 0.56, and 0.56% in 

seed, respectively (Table 6). CS (μ = 0.563% in seed), ATS (μ = 0.563% in seed), and 

UTC (μ = 0.562% in seed) were statistically indifferent from all other treatments. Figure 

1 displays the normal distribution of methionine with a mean and median of 0.56% in 

seed and a standard deviation of 0.014. Table 7 exhibits that Chesapeake and Painter, VA 

and all sources were consistently, significant contributors to the interaction effect for 

amino acid concentrations. Excluding methionine, tryptophan, and valine, all source 

treatments were deemed significant interaction components (P < 0.001). Chesapeake, VA 

exhibited interaction significance for cysteine (P < 0.05), leucine (P < 0.01), lysine (P < 

0.05), phenylalanine (P < 0.05), and threonine (P < 0.001). Painter, VA also exhibited 

interaction significance for leucine (P < 0.05), lysine (P < 0.01), and phenylalanine (P < 
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0.05) as well as histidine (P < 0.01) and isoleucine (P < 0.01). Additionally, Essex, VA 

displayed interaction importance for cysteine (P < 0.01). 
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Discussion 

Amino and fatty acid concentrations were significantly affected by the growing 

location and year more consistently than sulfur fertilization source. Similar results were 

found in Goyal et al. (2021). Chesapeake and Painter, VA appeared to have improved 

performances when compared to other locations. This is likely due to soil factors or 

varietal differences. This may suggest site-specific implications for soybeans grown for 

particular end-uses such as high oleic acid, high meal protein, or high methionine 

varieties. Methionine was the sole trait impacted by sulfur source which aligns with our 

hypothesis. Surprisingly, cysteine did not show a response to sulfur fertilization. As 

cysteine is a precursor to methionine in plant amino acid biosynthesis (Bonner et al., 

2005), an increase in cysteine from sulfate uptake may not be evident in post-harvest 

evaluation. 

Plots treated with AMS had the highest concentration of methionine, possibly as a 

result of higher SO4
- availability. It was statistically greater than ES, the slowest 

oxidizing source, and urea, the positive control for nitrogen. This suggests the increase in 

methionine resulted from the added sulfur and not nitrogen. AMS was not statistically 

different than ATS and CS, intermediate SO4
- sources, but confoundingly, it was not 

significantly more than UTC. The availability of SO4
- appears to be playing an important 

role, and combined with recent research elucidating season-long nutrient uptake and 

partitioning trends in soybean (Bender et al., 2015; Gaspar et al., 2018), further 

investigation is required to determine impacts of sulfur application timing. Moreover, 

dependence found within the sulfur source × location interaction variable further 

indicates site-specific implications. 



106 

 

Additionally, while higher levels of methionine were observed, the increased 

amount would not alter end-use quality on a basis of poultry feed requirements 

(Fernandez et al., 1994; Bunchasak, 2009). Given these results and the lack of 

significance for other amino and fatty acids, we are unable to suggest sulfur application 

of any source for seed composition motives. However, significant results in methionine 

suggest that future research could identify soybean development stages and SO4
- 

availability timing to optimize sulfur-containing amino acid concentrations. 
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Tables and Figures 

Table 1. ANOVA results and fixed effects significance for amino acid fatty acid data from 

soybean grown in Chesapeake, Essex, Painter, and Suffolk, Virginia in 2019 and Chesapeake, 

Eastville, Essex, Painter, Suffolk, and Virginia Beach, Virginia in 2020. 

 Whole Model Location Year Source Source × 

Location 

Trait R-squared RMSEa df = 5 df = 1 df = 5 df = 25 

Cysteine 0.55 0.02 *** *** NSᵻ * 

Histidine 0.48 0.02 *** *** NS * 

Isoleucine 0.42 0.04 *** NS NS * 

Leucine 0.52 0.07 *** NS NS * 

Lysine 0.44 0.05 *** *** NS * 

Methionine 0.37 0.12 *** NS * NS 

Phenylalanine 0.48 0.05 *** *** NS * 

Threonine 0.44 0.03 *** * NS ** 

Tryptophan 0.51 0.01 *** *** NS NS 

Valine 0.47 0.04 *** NS NS NS 

Linolenic 

acid 0.15 

0.10 ** *** NS NS 

Oleic acid 0.49 2.45 *** *** NS NS 

Palmitic acid 0.30 0.65 *** *** NS NS 

Stearic acid 0.33 0.23 *** *** NS NS 
aRoot Mean Square Error – standard deviation of the residuals 

*Significant at the 0.05 probability level **Significant at the 0.01 probability level ***Significant at the 0.001 probability level 
ᵻNS – not significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 

 

 

Table 2. Comparison of means between locations for amino acids. 

Location Cysteine Histidine Isoleucine Leucine Lysine Methionine Phenylalanine Threonine Tryptophan Valine 

 -------------------------------------------------------------------% seed, dry weight basis--------------------------------------------------------------------------------- 

Chesapeake 0.56da 1.09a 2.01a 3.22a 2.72a 0.566b 2.18a 1.56a 0.407c 2.08a 

Eastville 0.58ab 1.03d 1.91e 2.99d 2.59c 0.556cd 2.00c 1.48c 0.42a 1.95e 

Essex 0.56cd 1.06c 1.94d 3.09c 2.62c 0.551d 2.11b 1.53b 0.406c 2.00d 

Painter 0.58a 1.08b 1.96c 3.15b 2.67b 0.572a 2.12b 1.56a 0.39d 2.03c 

Suffolk 0.52e 1.07b 1.99b 3.17b 2.67b 0.557c 2.13b 1.53b 0.39d 2.05b 

Virginia 

Beach 

0.57bc 1.07b 1.98bc 3.14b 2.68b 0.571ab 2.13b 1.54b 0.41b 2.04bc 

Grand Mean 0.56 1.07 1.97 3.14 2.67 0.56 2.12 1.53 0.40 2.03 

SDb 0.03 0.03 0.05 0.10 0.07 0.01 0.07 0.04 0.02 0.06 
aWithin each column, means followed by the same letter are not significantly different. 
bStandard deviation 
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Table 3. Comparison of means between locations for fatty acids. 

Location Linolenic acid Oleic acid Palmitic acid Stearic acid 

 --------------------------------% seed, dry weight basis------------------------------ 

Chesapeake 6.55ba 23.76b 10.83b 3.66b 

Eastville 6.71ab 20.12c 11.36a 3.50c 

Essex 6.83a 24.73b 10.80bc 3.53c 

Painter 6.87a 26.74a 11.55a 3.74b 

Suffolk 6.66ab 23.93b 10.56c 3.53c 

Virginia 

Beach 

6.75ab 24.49b 11.41a 3.99a 

Grand Mean 6.78 23.97 10.95 3.62  

SDb 0.59 3.33 0.75 0.27 
aWithin each column, means followed by the same letter are not significantly different. 
bStandard deviation 
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Table 4. Comparison of means between years for amino acids. 

Year Cysteine Histidine Lysine Phenylalanine Threonine Tryptophan 

 -------------------------------------% seed, dry weight basis------------------------------------

- 

2019 0.58aa 1.08a 2.64b 2.10b 1.54a 0.41a 

2020 0.55b 1.06b 2.68a 2.12a 1.53b 0.40b 
aWithin each column, means followed by the same letter are not significantly different. 
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Table 5. Comparison of means between years for fatty acids. 

Year Linolenic 

acid 

Oleic acid Palmitic acid Stearic acid 

 -----------------------% seed, dry weight basis----------------------- 

2019 6.59ba 24.94a 11.32a 3.72a 

2020 6.87a 22.99b 10.85b 3.60b 
aWithin each column, means followed by the same letter are not significantly different. 
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Table 6. Comparison of means sulfur 

sources for methionine. 

Source Methionine 

 % seed, dry weight basis 

AMS 0.565a 

CS 0.563ab 

ATS 0.563ab 

UTC 0.562ab 

ES 0.560b 

Urea 0.560b 
aWithin each column, means followed by the same letter are 

not significantly different. 
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Table 7. Results from test slice analysis in JMP for amino acids that had significant interaction between sulfur source 

and location. 

Interaction Slice Cysteine Histidine Isoleucine Leucine Lysine Phenylalanine Threonine 

Chesapeake * NSᵻ NS ** * * *** 

Eastville NS NS NS NS NS NS NS 

Essex ** NS NS NS NS NS NS 

Painter NS ** * * ** * NS 

Suffolk NS NS NS NS NS NS NS 

Virginia Beach NS NS NS NS NS NS NS 

AMS *** *** *** *** *** *** *** 

ATS *** *** *** *** *** *** *** 

CS *** *** *** *** *** *** *** 

ES *** *** *** *** *** *** *** 

Urea *** *** *** *** *** *** *** 

UTC *** *** *** *** *** *** *** 
*Significant at the 0.05 probability level **Significant at the 0.01 probability level ***Significant at the 0.001 probability level 
ᵻNS – not significant 
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Conclusion 

 The value of harvested soybean is directly impacted by seed composition, 

especially protein and oil content and their respective monomers. While many resources 

have been allocated to improve the yield and production efficiency of soybean, great 

effort is still required to optimize seed composition and quality to meet market demands. 

In these studies, several approaches were utilized to evaluate methods of genetic 

improvement for traits of interest and highlighted the importance of management 

decisions and environmental factors for specific seed components. Results from these 

studies can be employed in the development of future soybean varieties and as a basis for 

creating management recommendations.   

 Using a genome-wide association study, several single nucleotide polymorphisms 

(SNPs) were identified as being associated with methionine content in soybean seeds. 

Methionine is the first limiting amino acid and restricts the nutritional value of soybean 

protein. These SNPs could be used in marker-assisted selection for improving soybean 

amino acid profiles, and the specific SNPs located in the coding sequence of genes could 

be the key to understanding physiological mechanisms for methionine content. Genomic 

selection proved less useful on a genome-wide scale; however, a subset of significant 

SNPs provided higher predictive accuracy.  

 A novel phenomic selection method was evaluated using test weight observations. 

Despite test weight being an important physical seed characteristic and indicator of seed 

quality, it has been overlooked in soybean breeding programs. Phenomic prediction 

models displayed highly accurate phenotype estimates and exhibited potential for 

predicting across environments. This methodology would provide breeders great utility 
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for test weight, a trait that is difficult to measure in pre-breeding materials and early 

breeding generations.  

 The final project sought to understand a factor of environmental effects observed 

in the previous studies for seed components. Specifically, environmental impact on 

proteinogenic methionine concentrations, a sulfur containing amino acid, was observed, 

so influence of sulfur fertilization was selected to investigate. Soybean plots fertilized 

with granular ammonium sulfate exhibited increased methionine content which is 

consistent with the plant availability of sulfur sources. By combining this information 

with new soybean varieties developed for improved seed composition and quality, 

breeders and producers can partner in the production of economically and nutritionally 

enhanced soybean.   

 


