
Energy Efficient Deep Spiking Recurrent Neural

Networks: A Reservoir Computing-Based Approach

Kian Hamedani

Dissertation Submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

Yang (Cindy) Yi, Chair

Lingjia Liu, Co-Chair

Dong. S. Ha

Jeffrey H. Reed

Ali R. Butt

May 12, 2020

Blacksburg, Virginia

Keywords: Recurrent Neural Network, Reservoir Computing, Spiking Neural Networks,

Smart Grids, Spectrum Sensing, Adversarial Attacks.

Copyright 2020, Kian Hamedani



Energy Efficient Deep Spiking Recurrent Neural Networks: A

Reservoir Computing-Based Approach

Kian Hamedani

ABSTRACT

Recurrent neural networks (RNNs) have been widely used for supervised pattern recogni-

tion and exploring the underlying spatio-temporal correlation. However, due to the van-

ishing/exploding gradient problem, training a fully connected RNN in many cases is very

difficult or even impossible. The difficulties of training traditional RNNs, led us to reservoir

computing (RC) which recently attracted a lot of attention due to its simple training methods

and fixed weights at its recurrent layer. There are three different categories of RC systems,

namely, echo state networks (ESNs), liquid state machines (LSMs), and delayed feedback

reservoirs (DFRs). In this dissertation a novel structure of RNNs which is inspired by dy-

namic delayed feedback loops is introduced. In the reservoir (recurrent) layer of DFR, only

one neuron is required which makes DFRs extremely suitable for hardware implementations.

The main motivation of this dissertation is to introduce an energy efficient, and easy to train

RNN while this model achieves high performances in different tasks compared to the state-of-

the-art. To improve the energy efficiency of our model, we propose to adopt spiking neurons

as the information processing unit of DFR. Spiking neural networks (SNNs) are the most

biologically plausible and energy efficient class of artificial neural networks (ANNs). The

traditional analog ANNs have marginal similarity with the brain-like information process-

ing. It is clear that the biological neurons communicate together through spikes. Therefore,

artificial SNNs have been introduced to mimic the biological neurons. On the other hand,

the hardware implementation of SNNs have shown to be extremely energy efficient. Towards

achieving this overarching goal, this dissertation presents a spiking DFR (SDFR) with novel



encoding schemes, and defense mechanisms against adversarial attacks. To verify the effec-

tiveness and performance of the SDFR, it is adopted in three different applications where

there exists a significant Spatio-temporal correlations. These three applications are attack

detection in smart grids, spectrum sensing of multi-input-multi-output(MIMO)-orthogonal

frequency division multiplexing (OFDM) Dynamic Spectrum Sharing (DSS) systems, and

video-based face recognition.

In this dissertation, the performance of SDFR is first verified in cyber attack detection in

Smart grids. Smart grids are a new generation of power grids which guarantee a more reli-

able and efficient transmission and delivery of power to the costumers. A more reliable and

efficient power generation and distribution can be realized through the integration of inter-

net, telecommunication, and energy technologies. The convergence of different technologies,

brings up opportunities, but the challenges are also inevitable. One of the major challenges

that pose threat to the smart grids is cyber-attacks. A novel method is developed to detect

false data injection (FDI) attacks in smart grids.

The second novel application of SDFR is the spectrum sensing of MIMO-OFDM DSS sys-

tems. DSS is being implemented in the fifth generation of wireless communication systems

(5G) to improve the spectrum efficiency. In a MIMO-OFDM system, not all the subcarriers

are utilized simultaneously by the primary user (PU). Therefore, it is essential to sense the

idle frequency bands and assign them to the secondary user (SU). The effectiveness of SDFR

in capturing the spatio-temporal correlation of MIMO-OFDM time-series and predicting the

availability of frequency bands in the future time slots is studied as well.

In the third application, the SDFR is modified to be adopted in video-based face recognition.

In this task, the SDFR is leveraged to recognize the identities of different subjects while they

rotate their heads in different angles.

Another contribution of this dissertation is to propose a novel encoding scheme of spiking

iii



neurons which is inspired by the cognitive studies of rats. For the first time, the multiplexing

of multiple neural codes is introduced and it is shown that the robustness and resilience of

the spiking neurons is increased against noisy data, and adversarial attacks, respectively.

Adversarial attacks are small and imperceptible perturbations of the input data, which have

shown to be able to fool deep learning (DL) models. So far, many adversarial attack and

defense mechanisms have been introduced for DL models. Compromising the security and

reliability of artificial intelligence (AI) systems is a major concern of government, industry

and cyber-security researchers, in that insufficient protections can compromise the security

and privacy of everyone in society. Finally, a defense mechanism to protect spiking neurons

against adversarial attacks is introduced for the first time. In a nutshell, this dissertation

presents a novel energy efficient deep spiking recurrent neural network which is inspired

by delayed dynamic loops. The effectiveness of the introduced model is verified in several

different applications. At the end, novel encoding and defense mechanisms are introduced

which improve the robustness of the model against noise and adversarial attacks.

iv



Energy Efficient Deep Spiking Recurrent Neural Networks: A

Reservoir Computing-Based Approach

Kian Hamedani

General Audience Abstract

The ultimate goal of artificial intelligence (AI) is to mimic the human brain. Artificial neural

networks (ANN) are an attempt to realize that goal. However, traditional ANNs are very far

from mimicking biological neurons. It is well-known that biological neurons communicate

with one another through signals in the format of spikes. Therefore, artificial spiking neural

networks (SNNs) have been introduced which behave more similarly to biological neurons.

Moreover, SNNs are very energy efficient which makes them a suitable choice for hardware

implementation of ANNs (neuromporphic computing). Despite the many benefits that are

brought about by SNNs, they are still behind traditional ANNs in terms of performance.

Therefore, in this dissertation, a new structure of SNNs is introduced which outperforms the

traditional ANNs in three different applications. This new structure is inspired by delayed

dynamic loops which exist in biological brains. The main objective of this novel structure

is to capture the spatio-temporal correlation which exists in time-series while the training

overhead and power consumption is reduced.

Another contribution of this dissertation is to introduce novel encoding schemes for spiking

neurons. It is clear that biological neurons leverage spikes, but the language that they use

to communicate is not clear. Hence, the spikes require to be encoded in a certain language

which is called neural spike encoding scheme. Inspired by the cognitive studies of rats, a

novel encoding scheme is presented.

Lastly, it is shown that the introduced encoding scheme increases the robustness of SNNs

against noisy data and adversarial attacks. AI models including SNNs have shown to be



vulnerable to adversarial attacks. Adversarial attacks are minor perturbations of the input

data that can cause the AI model to misscalassify the data. For the first time, a defense

mechanism is introduced which can protect SNNs against such attacks.

vi



Acknowledgement

I would like to express my most sincere gratitude to my Ph.D. advisors Dr. Yang (Cindy)

Yi and Dr. Lingjia Liu for their continuous support, and guidance during my Ph.D. studies.

I have had their support, encouragement, and guidance since the first day I began my Ph.D.

I will always be grateful to them for sharing their knowledge and experience with me which

made my Ph.D. journey very productive and pleasant.

I would also like to express my deepest appreciation to the members of my Ph.D. advisory

and exam committee: Professors Dong. S. Ha, Jeffrey H. Reed, and Ali R. Butt for their

valuable comments and suggestions which significantly helped me towards improving my

dissertation.

Words fail to express my appreciation to my loving wife, Kate. The completion of this

dissertation would not have been possible without her nurturing and support. I thank my

beloved parents,parents in law, and brothers for their uncoditional love , care, and sacrifice

that they dedicated to me in my life.

Last but not the least, I would like to thank my labmates who I had the pleasure of working

with both at VT and KU.

vii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Reservoir Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Contribution and Dissertation Structure . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Chapter2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 The variants of RC models and their applications . . . . . . . . . . . 12

1.3.2 Electronics RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 SNNs: A Biologically Inspired Approach for Information Processing . 14

1.3.4 Novel Applications of Spiking Delayed Feedback Reservoir . . . . . . 16

viii



1.3.5 State-Of-The-Art Encoding Schemes of SNNs . . . . . . . . . . . . . 20

1.3.6 Adversarial Attacks on SNNs & Defence Mechanisms . . . . . . . . . 21

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Reservoir Computing Meets Smart Grids: Attack Detection Using Delayed

Feedback Networks 24

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 RC Design for Attack Detection in Smart Grids . . . . . . . . . . . . . . . . 29

2.3.1 Realizing RC using DFN . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Temporal Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Smart Grid Attack Detection Formulation . . . . . . . . . . . . . . . 34

2.3.4 Modeling the wind power generators in MATPOWER . . . . . . . . . 36

2.3.5 Smart Grid Attack Detection using DFN and MLP . . . . . . . . . . 36

2.3.6 Training an MLP with the timing of spikes . . . . . . . . . . . . . . . 39

2.3.7 State Vector Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Detecting Dynamic Attacks in Smart Grids using Reservoir Computing:

A Spiking Delayed Feedback Reservoir-Based Approach 47

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



3.2 Precise spike driven synaptic plasticity . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 PSD Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Error Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 RC and Spiking DFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Design and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 High dimensional behavior of DFR . . . . . . . . . . . . . . . . . . . 63

3.4 Training PSD For FDI Attack Detection . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Latency encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Latency-Phase encoding . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.3 ISI encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Performance and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.1 Using SNN for Dynamic Attack Detection . . . . . . . . . . . . . . . 68

3.5.2 Attack Detection Using DFR . . . . . . . . . . . . . . . . . . . . . . 71

3.5.3 Effect of Delay on the Performance . . . . . . . . . . . . . . . . . . . 75

3.5.4 Comparison With Classical Algorithms . . . . . . . . . . . . . . . . . 76

3.5.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 MIMO-OFDM Spectrum Sensing using Delayed Feedback Reservoir Com-

puting 80

x



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Problem Formulation & System Model . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Delayed Feedback Reservoirs for Spectrum Sensing . . . . . . . . . . 88

4.2.2 Stacked Deep Spiking DFRs . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Synthesizing MIMO-OFDM Symbols Using GAN . . . . . . . . . . . . . . . 95

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Latency VS ISI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.2 Comparison With Other Methods . . . . . . . . . . . . . . . . . . . . 99

4.4.3 SSDFR Performance for Cooperative Spectrum Sensing . . . . . . . . 102

4.4.4 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . 104

4.4.5 Effect of Delay on Performance . . . . . . . . . . . . . . . . . . . . . 105

4.4.6 MIMO-OFDM Symbols Augmentation Using cGAN . . . . . . . . . . 107

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Spiking Recurrent Neural Network with Novel Encoding and Defense

Mechanisms 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Spiking Delayed Feedback Reservoir (SDFR) . . . . . . . . . . . . . . 115

5.2.2 Multiplexing Encoding Scheme . . . . . . . . . . . . . . . . . . . . . 118

5.2.2.1 State-of-the-Art Encoding Schemes . . . . . . . . . . . . . . 118

xi



5.2.2.2 Multiplexing Phase and ISI Encoding . . . . . . . . . . . . . 121

5.2.3 Defending SDFR Against Adversarial Attacks . . . . . . . . . . . . . 122

5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.1 Performance of the SDFR Network . . . . . . . . . . . . . . . . . . . 125

5.3.2 Effect of Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.2.1 Robustness Against Noise: . . . . . . . . . . . . . . . . . . . 130

5.3.2.2 Robustness Against Adversarial Attacks: . . . . . . . . . . . 131

5.3.3 Defending SDFR against Adversarial Attacks . . . . . . . . . . . . . 133

5.4 Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Conclusion and Open Problems 136

6.1 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 138

xii



List of Figures

1.1 A simple RNN with one input node, one output node, and one hidden recur-

rent node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Unfolding the recurrent unit through time and Vanishing/Exploding Gradient 4

1.3 Structure of RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Hardware implementation of delayed feedback reservoir system [1] . . . . . . 32

2.2 Interspike intervals [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Average DFN states for attacked and non-Attacked Data. . . . . . . . . . . . 38

2.4 Error Plot for training an MLP with DFN states. . . . . . . . . . . . . . . . 40

2.5 Accuracy of the SVE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Block diagram of the proposed DFN+MLP system for attack detection. . . . 41

2.7 Accuracy of direct attack detection for three different methods, a=0.1,1,10. . 45

2.8 Accuracy of hidden attack detection for three different methods, a=0.1,1,10. 45

3.1 Post Synaptic Current after Spike Convolution. . . . . . . . . . . . . . . . . 59

3.2 Spiking Delayed Feedback Reservoir Computing. . . . . . . . . . . . . . . . . 62

xiii



3.3 High dimensional mapping of data using DFR. . . . . . . . . . . . . . . . . . 64

3.4 Aligning latency code with SMO of each meter using Gamma alignment. . . 66

3.5 The interval between spikes in ISI encoding. . . . . . . . . . . . . . . . . . . 67

3.6 Error of training for different encoding schemes. . . . . . . . . . . . . . . . . 69

3.7 Error of training for different encoding schemes & different number of com-

promised meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Test results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 Accuracy of attack detection for three different methods and magnitude of

attacks, A=0.1,1,10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 F1 of attack detection for three different methods and magnitude of attacks,

A=0.1,1,10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.11 Effects of different values of the delay on the performance when the A=1 . . 73

3.12 Phase portraits of dynamic systems. . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Spiking DFR Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 a. latency encoding, b. ISI encoding . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Structure of SSDFR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 System Model of MIMO-OFDM spectrum sensing using GAN and SDFR+MLP. 97

4.5 ROC curves for different sensing approaches and different number of antennas

at SNR(dB) = -20dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Average ROC curves of different methods in cooperative DSS environment. . 103

4.7 Phase Portrait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xiv



4.8 Delay effects: SNR(dB)=−20dB, Tx=4, Rx=4. . . . . . . . . . . . . . . . . 107

4.9 Loss Functions of generator and discriminator. . . . . . . . . . . . . . . . . . 109

4.10 ROC curves of real samples VS combined real and fake. . . . . . . . . . . . . 110

5.1 Structure of the SDFR network. . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 An example of ISI encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Phase Encoding.In a phase encoding unit, a positive neuron (Pos), a negative

neuron (Neg), and output neuron exist. The Pos is used for encoding the

stimulus values that are positive and the Neg conversely. The output neuron

fires a spike at the times which the corresponding SMO of Pos or Neg crosses

its threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Multiplexing Phase and ISI codes. . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 A few frames of VidTIMIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6 F1 value of attack detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Accuracy of each encoding with respect to noise. . . . . . . . . . . . . . . . . 130

5.8 Adversarial attacks on video frames. . . . . . . . . . . . . . . . . . . . . . . 132

5.9 Effect of increasing the capacitance on adversarial attacks. . . . . . . . . . . 134

xv



List of Tables

3.1 Acronyms and Their Descriptions . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . 78

4.1 TTFS vs ISI, Tx = 2 , Rx = 2 . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 AUC of Different MIMO-OFDM Spectrum Sensing Methods at Different SNR(dB)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . 104

4.4 AUC of hybrid SDFR+MLP spectrum sensing of 25 training samples . . . . 108

4.5 AUC of hybrid SDFR+MLP spectrum sensing using synthetic and real data

for training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 AUC of hybrid SDFR+MLP spectrum sensing in different scenarios using

synthetic and real data for training . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Classification accuracy of SDFR for face recognition. . . . . . . . . . . . . . 127

5.2 F1 values of smart grid attack detection of SDFR for different encoding schemes.131

5.3 Success rate of the attacker while performing adversarial attacks on video

frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xvi



5.4 F1 values of smart grid attack detection of SDFR for different encoding schemes.133

xvii



Chapter 1

Introduction

1.1 Motivation

In the recent years, the major advancements of artificial intelligence (AI) and machine learn-

ing (ML) have been realized due to the significant progress in the field of artificial neural

networks (ANNs). ANNs are the core information processing technology of many real world

applications and have witnessed striking progress in the past few years. Neurons are the fun-

damental units of biological neurons and ANNs are mathematical representation of biological

neurons. In fact ANNs are constituted of a network of neuron-like information processing

units which are connected via synaptic weights. In general, there are two categories of ANNs,

namely, feedforward neural networks (FNNs) and recurrent neural networks (RNNs) [3]. The

choice of which category of ANN depends on the application. For the applications with static

data where no temporal correlation exists FNNs are mainly used. On the other hand, RNNs

are used for processing the dynamic data, e.g., time-series, video frames, and speech sig-

nal [4]. RNNs capture the temporal correlation via cyclic connections within the network of

nodes [3]. Backpropogation (BP) is the most successful algorithm to train FNNs [5]. The

1



chain rule is used in BP algorithm to calculate the synaptic weights. The synaptic weights

are then update based on the gradient of the loss function. There is no guarantee that the

BP algorithm can achieve the global minimum due to the non-convex surface of the loss

function [3]. Convolutional neural networks (CNNs) are a variant of FNNs which have been

popular in computer vision [6]. CNNs are able to capture the local dependencies of visual

information and leverage that information to improve the image classification [3]. RNNs are

used to model the dynamics via recurrent connections among the nodes. In fact, the outputs

of artificial neurons within RNNs are not only dependent on the current input, but they

depend on the previous samples within time domain as well [7]. RNNs are developed to find

a nonlinear mapping between a sequence of input and target data. The input sequence can

be expressed as [x(1), x(2), ..., x(T )] where each temporal sample, x(t) is a vector of real valued

features of the input data, and T is the temporal length of the input. RNNs have shown to

be very effective to analyze the time-series with short length [8]. However, as the length of

the input increases, RNNs suffer from vanishing and exploding gradient problem [9]. The

vanishing and exploding gradient problem rises while the BP error is calculated over a long

sequence. Figure 1.1 represents a simple example of RNNs with one input, output, and

hidden recurrent node. The nodes which are used to connect the adjacent temporal samples

are called recurrent nodes. The recurrent nodes may establish cycles too. The cycles are

the recurrent connections with the length of one which in fact form a connection from a

node to itself across the time. The current input x(t) and the value of the previous hidden

state h(t − 1) are received by the recurrent node at each time sample t. Consequently, the

output ˆy(t) at time t is estimated by the hidden state at time t. The necessary calculations

to compute the hidden states and the output of a simple RNN as Figure 1.1 are presented

as follows [10],

h(t) = f(Whxx(t) +Whhh(t− 1) + bh), (1.1)

2



where f is a nonlinear activation function, Whx is the set of synaptic weights between the

input and the hidden layer, Whh is the set of synaptic weights between the hidden recurrent

layer and itself at consecutive temporal instances, and bh is the set of bias parameters at the

hidden layer which its role is to increase the capacity of RNN to learn from an offset. The

output is estimated as [11],

ˆy(t) = softmax(Whyh(t) + by), (1.2)

where Why and by are the weight matrix connecting the hidden states to the output and

the bias vector of the output layer, respectively. softmax is a function that takes the real

valued numbers as the input and it generates the probability distributions of the input

through normalizing them using the exponential of the input numbers. In order to mimic

the biological neurons, an activation function is required to map the input to the output.

Sigmoid, tangsig, relu and softmax are the most well-known activation functions which

have been introduced to model the biological neurons.

Assume that an input is passed to the network (Figure 1.1) at time τ and its corresponding

error is calculated at time t. Tying the weights across the temporal samples, leads to the

fixed weights of the recurrent hidden units. The vanishing/exploding gradient problem is

visualized in Figure 1.2. In order to train RNNs, the recurrent hidden layer is unfolded

through time and the algorithm which is used to train the synaptic weights is called BP

through time (BPTT) [12]. The vanishing gradient occurs when Whh < 1. As the recurrent

unit is unfolded through time, Whh is trained using the BPTT algorithm. However, as the

chain rule is applied to BPTT, Whh gets smaller and smaller until it converges to zero.

Hence, for longer time series the vanishing gradient problem occurs which prevents RNNs

from learning the nonlinear mapping between the input and output sequences.

On the other hand while Whh > 1 and BPTT is applied on very long sequences, Whh will

3



Figure 1.1. A simple RNN with one input node, one output node, and one hidden recurrent
node.

Figure 1.2. Unfolding the recurrent unit through time and Vanishing/Exploding Gradient

4



converge to very large values. This is called exploding gradient and similar to vanishing

gradient is a major challenge for training RNNs [13]. Reservoir computing (RC) is a new

class of RNNs which has recently been introduced to solve the vanishing/exploding gradient

problem of RNNs [14–19]. The RC models are regarded as an extension of ANNs where the

reservoirs are a set of neurons which are connected together via fixed weight [20,21]. The RC

models have been extensively adopted for temporal/sequential information processing. The

recurrent layer of an RC model is formed via a set of neurons in the reservoir layer where they

are sparsely connected connected with some random recurrent weights [4]. In an RC model,

the input sequential data is mapped from a low-dimensional space to a high-dimensional

space which is formed as the reservoir layer. The weight which connect the reservoir neurons

are fixed and do not require any training, hence, the vanishing/exploding gradient problem

of RNNs can be resolved. The only weights in an RC model which require training are the

readout weights which map the high-dimensional features of the reservoir layer to the output.

Reducing the computational complexity of the training is another advantage of RC models

as the input and recurrent wights are fixed and do not undergo any training. In many cases

including temporal pattern classification, synthesize, and prediction, RC models have shown

equal or even better performances than standard RNNs. Echo state networks (ESNs) and

liquid state machine (LSMs) are the two main categories of RC models. Recently, inspired

by the delayed dynamic loops, a new category of RC models has been introduced. In order to

create effective reservoirs, some certain adjustments are required. Some of these adjustments

are task dependent and some of them are independent of task. In ESNs a certain property

named as echo state property needs to be satisfied. According to the echo state property,

the spectral radius of the reservoir weights has to be smaller than 1. The spectral radius of

the reservoir weights is defined as the maximum absolute eigenvalue of the reservoir weights.

In that way, the reservoir nodes can form short-term fading memory which can map the

data from low-dimensional space to high-dimensional space. The structure of an RC model

5



is presented in Figure 1.3. As it can be seen, RC models are constituted of three layers,

namely, input, reservoir, and output layer.

Figure 1.3. Structure of RC

1.1.1 Reservoir Computing

ESNs and LSMs were introduced in early 2000s as the first two major RC models. The main

difference between RC models and standard RNNs is that the recurrent (reservoir) layer of

RC models is fixed and does not require any training. The state of the reservoirs is expressed

as,

h(n) = f(W res
in x(n) +W res

res h(n− 1) +W res
out y(n− 1)), (1.3)

where n denotes the discrete time, W res
in is the matrix of weights which connect the input

nodes to the reservoir layer, W res
res is the matrix of the recurrent weights in the reservoir layer,

and W res
out is the matrix of the feedback weights which are used to incorporate the output of

the previous time step in the current state. The output of RC is estimated as,

y(n) = W out
res h(n), (1.4)

6



where y(n) is the estimated output at time step n, and W out
res is the matrix of weights which

maps the hidden high-dimensional reservoir states to the output. The W out
res is the only set

of weights in RC which undergoes a training step. In the recent years RC models have

been adopted in many applications. The RC models have shown to be very effective in

biomedical, audio, and visual signal processing and prediction. They have also been applied

in security related problems including cryptography. The hardware implementation of RC

models has drawn a remarkable attention due to the easy training and considerable reduction

of computational complexity. The physical realization of RC models is a straightforward

method to implement RNNs which is called neuromporphic computing [22, 23]. In order to

make the hardware implementation of RC models effective and reliable, there are certain

requirements which have to be satisfied. 1) High-dimensional behavior is necessary for RC

models. The input data can be mapped from low-dimensional space to high-dimensional

space due to the high-dimensional behavior of the reservoir layer. Mapping the data to high-

dimensional space facilitates the classification tasks while the data is not linearly separable.

On the other hand, the spatio-temporal correlations can be read out in prediction tasks.

2)An RC model has to be nonlinear, otherwise it is not capable of estimating the nonlinear

mappings between the input and output data. 3) The neurons of the reservoir layer have to

form fading (short-term) memory. In that way, the states of the reservoirs are only dependent

on the recent past inputs and the far past inputs are faded and, hence, not taken into effect.

4) Lastly, separation is another property which has to be satisfied by RC models, i.e., they

have to be insensitive to the minor fluctuations of the input. In other words, RC models

have to be robust against noise.

Besides, ESN and LSM, there is another category of RC models which is inspired by delayed

dynamical systems. Using a time-delayed dynamical system is another approach to generate

7



a high-diemsnional system. A time-delayed dynamical system is presented as,

dh(t)

dt
= F (t, h(t), h(t− τ)) , (1.5)

where τ is the delay of the dynamic system, F is a nonlinear function, and h(t) is the state

of the delay loop at time t. Depending on the parameters of the delayed dynamical system,

the delayed dynamical system is capable of exhibiting considerable nonlinear behaviors in-

cluding periodic and chaotic. The delayed based reservoir models require only one neuron

as their information processing unit which makes them extremely suitable for implementa-

tion of neuromorphic circuits compared with network-based RC models. The focus of this

dissertation is on the single-node delay based RC models.

1.1.2 Spiking Neural Networks

In ANNs the neurons are modeled using continuous valued activation function such as

sigmoid and tansig. Yet, modeling the biological neurons with a continuous activation

function is far from the reality. Biological neurons communicate together via discrete sig-

nals, namely, spikes. Therefore, to understand and model the computational mechanisms of

brain, it is essential to introduce artificial neurons which mimic the spikes. Spiking neural

networks (SNNs) are an attempt to represent a mathematical model of brain which is more

biologically plausible than ANNs. Unlike ANNs which use continuous activation function,

SNNs adopt activation functions which are event-driven and also sparse in time and space.

Being sparse in time and space and also event driven, makes SNNs very energy efficient. In

fact SNNs are the first choice of neuromorphic hardware realization of biological neurons.

Despite, the several advantages of SNNs, they have not been fully adopted in real world

applications. This is because SNNs are still behind ANNs in terms of performance in several

8



applications. The BP algorithm works well with continuous and differentiable activation

functions. However, the activation function of SNNs is non-differentiable and discrete in

time. This makes the training of SNNs very challenging and still an open problem. In recent

years, several supervised and unsupervised training algorithms have been proposed for SNNs.

The recent studies have shown that the gap between SNNs and ANNs in terms of accuracy

is decreasing and even in some tasks has completely vanished. In general SNNs are better

candidates for processing the spatio-temporal data. Due to the advantages of SNN, the

motivation of this dissertation is to introduce a RC model which is based on delay dynamic

loops where a spiking neuron is adopted as the single unit of information processing.

1.2 Contribution and Dissertation Structure

1.2.1 Chapter2

In chapter 2 of this dissertation, a recurrent structure of SNNs is introduced, which is

inspired by delayed feedback reservoirs (DFRs). To verify the performance of the introduced

structure it is used in a novel application which RC models have not been used before, i.e.,

single-period attack detection in smart grids. It is shown that the combination of temporal

encoding, DFR, and a multilayer perceptron (MLP) as the output readout layer can achieve

significant performance improvement over existing attack detection methods such as MLPs,

support vector machines (SVM), and conventional state vector estimation (SVE) in terms

of attack detection in smart grids.The introduced algorithms is als shown to be more robust

than MLP and SVE in dealing with different variables such as the amplitude of the attack,

attack types, and the number of compromised measurements in smart grids [24].

9



1.2.2 Chapter 3

SNNs have been widely used for supervised pattern recognition exploring the underlying

spatiotemporal correlation. Meanwhile, spatio-temporal correlation manifests significantly

between different components in a smart grid making the spiking neural network a desirable

candidate for false data injection attack detection. In this chapter, a SNN based technique

for dynamic cyber-attack detection in a smart grid is introduced. This is achieved through

judiciously integrating spiking neurons with a special recurrent neural network called the

delayed feedback reservoir computing. The inter-spike interval encoding is also explored

in the precise-spike-driven (PSD) synaptic plasticity based training process. The simulation

results suggest that the introduced method outperforms MLPs and can achieve a significantly

better performance compared to the state-of-the-art techniques. Furthermore, our analysis

indicates that the delay value in the delayed feedback reservoir will have a substantial impact

on the overall system performance. Several encoding schemes including latency, latency

phase and ISI are investigated to train the SNN using the PSD algorithm. The results

suggest that the ISI encoding leads to the least training error and the best attack detection

performance [25, 26].

1.2.3 Chapter 4

In this chapter, the introduced model is modified to be applied in a different application.

This chapter introduces a novel spectrum sensing method for multiple-input-multiple-output

- orthogonal frequency division multiplexing (MIMO-OFDM) systems in dynamic spectrum

sharing (DSS) environments. The model is extended in time and space domains to capture

the spatial and temporal correlations in DSS environments. Conditional Generative adver-

sarial networks (cGANs) are introduced to tackle the data scarcity issue arose from applying

10



Ml based techniques to MIMO-OFDM systems where training data is limited. Simulation

results suggest that the probability of detection of the introduced RC based spectrum sensing

at the low signal-to-noise (SNR) regime is significantly higher than the state-of-the-art tech-

niques and the computational complexity is also reduced compared with traditional RNNs.

In this chapter the combination of spiking DFR (SDFR) and cGAN is introduced to to syn-

thesize more training data while the training data is scarce. We investigate the quality of

the synthesized data in different scenarios. To the best of our knowledge, this is the first

time that the cGANs are used to synthesize MIMO-OFDM symbols for data augmentation.

It is shown that the detection performance of our introduced spectrum sensing approach

will significantly drop when the size of training data is limited and we resolve this issue by

introducing a combined cGAN and SDFR platform.

1.2.4 Chapter 5

In this chapter two other major drawbacks of SNNs are addressed: 1) existing encoding

mechanisms are not robust against noise; and 2) defense mechanisms against adversarial

attacks are lacking. To address these issues, this chapter introduces an easy-to-train spiking

recurrent structure and shows its capability in classifying time-series data. Furthermore,

motivated by recent studies in cognitive science, a new multiplexing encoding mechanism is

introduced and it is shown that it outperforms the state-of-the-art codes. To thwart adver-

sarial attacks for the first time in the literature, we introduce an effective defense mechanism

for SNNs. The efficacy of the introduced network and mechanisms are validated in two

applications, namely, video-based face recognition and bad data detection in smart grids

(a cyber-physical system). The results demonstrate the effectiveness of our mechanisms in

terms of classification accuracy, robustness to noise, and resilience to adversarial attacks.

For the first time, the idea of multiplexing two encoding schemes in artificial SNNs is intro-

11



duced. More specifically, inspired by recent studies in cognitive neuroscience, we multiplex

the phase and temporal encoding of the neuron spikes. Under our SDFR model, we show

that our encoding scheme achieves higher classification accuracy, is more robust to noise, and

is more robust to adversarial attacks than existing encoding schemes. An effective defense

mechanism for SNN against adversarial attacks is also presented in this chapter. At the end

a game theoretic approach is presented to optimize the attack/defence strategy while the

attack/defence budget is limited.

1.3 Related Work

1.3.1 The variants of RC models and their applications

To improve the performance of RC models, several modifications have been introduced.

These modifications have been mainly performed on different aspects of RC models. In

[27–29] new architectures of RC models have been developed where multiple reservoirs are

adopted to improve the performance of RC systems. Evolving reservoirs, combining RC

models with other features extraction techniques such as reinforcement learning, and un-

trained CNN layers are other recent attempts to improve the performance of RC models.

The theories of information, dynamical systems, and statistics have been used to better

understand the relationship between the dynamics of the reservoirs and their performance.

These studies have shown that RC models can form fading memory and demonstrate high-

dimensional behavior only if their parameters are tuned somehow that they can operate at

the edge of chaos [30, 31]. Hence, a proper hyperparameter tuning of RC models is very

essential.

Two approaches have been devised to extend the structure of single-node delay based reser-

12



voirs. In the first approach, the outputs of the ensemble of two delay based reservoirs are

combined together and as a result, performance, and the robustness of delay based reser-

voirs are improved. The second approach relies on the circular concatenation of the two delay

based reservoirs which leads to a longer delay line. So far RC models have been adopted in

different applications. Spoken digit recognition, action recognition, digit recognition, chaotic

time-series prediction, NARMA-10 time series prediction, wave generation, measuring the

memory capacity, channel equalization, biomedical signal classification, and analyzing the fi-

nancial data are just few examples that RC models have been successfully applied for. In this

dissertation, besides introducing a new spiking structure of RC models, novel applications

of RC models are presented as well.

1.3.2 Electronics RC

Developing energy efficient ML devices with low computational complexity has been the

subject of many RC based neuromorphic circuits studies [32–36]. Single-node delay based

RC systems have drawn more attention for neuromorphic circuits implementations because

they consume less energy, are faster to train. Analog circuits and Field-Programmable Gate

Array (FPGAs) have been used to implement the delay based reservoirs on hardware. The

nonlinear single node along with the delay loop was can be built using analog circuits and

the pre- and post-processing blocks are developed by digital components. Masking is an

important pre-processing step while using delay based RC models. A model was proposed

in [37] where digital-to-analog and analog-to-digital converters with 12 bits resolution were

adopted as the interfaces between the digital and analog parts of the system. That model has

shown to be very effective in spoken digit recognition, time-series prediction, and estimation

of memory capacity. The reconfigurability of FPGAs has made them a popular choice for

neuromorphic implementation of ANNs as the weights of ANNs are updated adaptive and

13



a lot of concurrent processing are performed. In the domain of RC, FPGAs have been used

to implement the reservoir and readout layers. In [38] a single-node delay based reservoir

using Boolean logic is implemented on FPGA. The invereter gates are paired and cascaded

together to realize the delay loop and the Boolean logic component acts as an XOR gate.

An external computer was used to collect the combination of the virtual nodes’ states and

use their linear combination to estimate the output. Very large scale integration circuits

(VLSI) have also been used to implement RC circuits. To reduce the costs of hardware

implementation, VLSI circuits have been used to implement the biologically inspired RC

models, namely, LSMs. Memristive RC is another approach to realize the neuromporphic

circuits. Memristives are elements which their resistance changes through time with respect

to the input intensity. The adaptive variations of the memristives resistance makes them a

proper choice to implemet the synaptic connections between neurons. Memristives based RC

models are categorized in to two major groups: 1) neuromemristive reservoirs which consist

both the neurons and synapse circuits, 2) memristive reservoirs which only consist synaptic

circuits without any neurons.

1.3.3 SNNs: A Biologically Inspired Approach for Information

Processing

SNNs are regarded as the third generation of ANNs and they have encouraged a lot of studies

on biologically inspired pattern recognition. The discrete action potentials (spikes) that are

fired by the biological neurons were the first motivation to develop SNNs. In this part the

recent trends, advances and applications of SNNs are presented.

• SNN Architecture. Similar to ANNs, SNNs are also constituted of a network of

artificial neurons which are connected via adjustable scalar weights. However, unlike

14



ANNs, in SNNs the artificial neurons are discrete in time. To process the analog inputs

using SNNs, the first step is to encode the input using rate or some type of temporal

encoding. In SNNs, similar to biological neurons, synaptic inputs are received from

adjacent neurons. There are two types of dynamics in biological networks (similarly

in SNNs), namely, action potential (AP) dynamics, and network level dynamics. The

network level dynamics of SNNs are highly simplified compared to biological networks.

The membrane potential of post-synaptic neurons is modulated via pre- synaptic neu-

rons activity which leads to an AP (spike) when the membrane voltage exceeds a

certain threshold value. The model which was introduced by Hodgkin and Huxley in

1952 was the first mathematical representation of biological neurons. The Hodgkin

and Huxley model provides rich biological details. The Hodgkin and Huxley model

is computationally expensive, hence, in the recent years other models such as the the

leaky integrated-and-fire (LIF) neuron, spike response model (SRM), and Izhikevich

neuron model have been introduced. Specifically, the LIF neuron has drawn a lot of

attention.

• Training Algorithms of SNNs. The most challenging part of training SNNs is

because the spiking neurons are non-differentiable and the BP algorithm cannot be used

to train SNNs. In recent years many unsupervised and supervised training algorithms

have been introduced for tarining SNNs. Many different type of learning rule for

SNNs have been identified by neuroscientists and they are all under the same unified

terminology, namely, spike-timing-dependent plasticity (STDP). The STDP implies

that all learning rules of SNNs, supervised or unsupervised, are based on adjusting

the synaptic weights through time. If a post-synaptic neuron fires a spike after the

pre-synaptic neuron, then the connection weights are strengthened and, conversely.

Strengthening of the weight connections is called ong-term potentiation (LTP) and

weakening the wight connections is called long-term depression (LTD).

15



• Applications of SNNs. Deep neural networks (DNNs) are biologically inspired,

end-to-end models which are trained via different optimization techniques to find the

optimal mapping between the input and output and they have been adopted in many

ML and AI applications. Studies on biological brains have shown that the information

is processed through a multi-layer process. Therefore, the AI researchers have been

trying models of ANNs which process the information in mutil-layers. Increasing the

depth of ANNs has led to DNN which in some applications have shown equal or even

better performances than brains. SNNs have also been applied in a variety of appli-

cations including, image, speech, and biomedical signals classification. Standard DNN

models with continuous activation functions have achieved remarkable performances in

different applications. SNNs are very energy efficient which makes them very popular

for neuromorphic circuits. SNNs similar to DNNs have been applied in different appli-

cations in visual, speech, and medical signal analysis and classification. Some of these

applications include processing the spatio-temporal brain data, path finding in robots,

multi-object detection and classification in video streams, and speech recognition.

1.3.4 Novel Applications of Spiking Delayed Feedback Reser-

voir

As it was mentioned the main motivation of this dissertation is to introduce an energy

efficient, and easy to train spiking recurrent neural network which is inspired by single-

node delay based RC model. After developing this model, it is required to verify its

performance in different applications. In this dissertation, our introduced model is

applied in novel applications which neither of RC and SNN models have not been used

before. In this part these novel applications are introduced and a survey of the related

works of these applications is presented.

16



• False Data Injection (FDI) Detection ins Smart Grids. The SDFR is first

applied in FDI detection in smart grids. Smart grids are new infrastructure that in-

tegrate energy with many different technologies, such as telecommunication, internet,

and electronic devices. This convergence of different technologies brings up some op-

portunities and challenges as well. The main opportunity that smart grids provide is

a bidirectional flow of electricity and information between power suppliers and cos-

tumers, which will result in a more efficient distribution of power. However, due to

the integration of different technologies, the smart grids are more vulnerable to cyber-

attacks [26,39]. FDI attacks are known to be as one of the most exceedingly malicious

cyber-security concerns in smart grids. Cyber security tries to maintain a reliable and

secure communication between different components of the network, including commu-

nication networks and computer systems [40]. As a result of this secure communication,

supervisory control and data acquisition (SCADA) system can have a better estima-

tion of the network state. State estimation is a critical process in control system and

due to this fact, the SCADA is usually a target for attackers. Injecting false data

to the SCADA, manipulates the state estimation and it can cause economic gains for

the attacker [40]. Approaches based on machine learning have been extensively used

for FDI detection in smart grids [41]. Different machine learning methods including

ANNs, support vector machines (SVM), and k-nearest neighbor (KNN) have been used

for this purpose [41]. Approaches based on machine learning have yielded better per-

formance than the traditional state vector estimation (SVE) in detecting the FDI in

smart grids. Esmalifalak et al [42] have applied dimension reduction for mapping the

data collected from the network and used both unsupervised and supervised machine

learning algorithms to detect the stealth data injections in smart grids. In [43], the

performance of SVM, and KNN in detection the false data in an IEEE- 30 bus sys-

tem under balanced and imbalanced data scenarios is studied. Mohammadpourfard

17



et al [44] proposed an unsupervised anomaly detection method in smart grids which

considers the effect of wind power generation and topology configuration. Zhao et

al [45] have proposed a method based on short term state forecasting which considers

a temporal correlation among measurements. Moslemi et al [46], proposed an approach

based on maximum likelihood which is decentralized, and the near chordal sparsity of

smart grids is considered in order to detect the FDI.

• Spectrum Sensing of MIMO-OFDM Systems in DSS Environments. Spec-

trum sensing of MIMO-OFDM systems is the second novel application which is intro-

duced in this dissertation. MIMO- technology combined with OFDM has been adopted

in many advanced wireless communication systems. The combination of MIMO and

OFDM technologies improves the spectral efficiency, as the MIMO utilizes the spatial

multiplexing gain and the OFDM avoids frequency selective fading. Besides, adding

cyclic prefix (CP) to the OFDM symbols decreases inter channel interference (ICI), and

inter symbol interference (ISI). However, in a MIMO-OFDM based wireless communi-

cation system not all the subcarriers are utilized simultaneously by the primary user

(PU), and the spectrum utilization efficiency is low [47]. Dynamic spectrum sharing

(DSS) in a MIMOOFDM system introduce a solution to resolve this problem where

the under utilized subcarriers can be used by the secondary users (SUs). The SUs are

allowed to transmit signals only on the subcarriers that are found idle and they should

evacuate those bands as soon as the PU wants to use them. Therefore, it is fundamen-

tal for the SUs to perform spectrum sensing subsequently to identify spectrum holes

accurately and the interference is minimized. So far, in the literature three major

techniques have been introduced as the classical spectrum sensing methods. These

methods are energy detection, matched filtering, and cyclo-stationary feature detec-

tion which suffer from several drawbacks including, low probability of detection at low

SNRs, requiring accurate prior knowledge of the signal, and computational complexity,

18



respectively [47–49]. Due to the limitations of classical spectrum sensing techniques,

machine learning (ML) approaches have drawn a lot of attention as they have several

advantages over traditional spectrum sensing techniques. These advantages are: 1) the

ML based spectrum sensing approaches are more adaptive and can learn the surround-

ing DSS environment (e.g., the fading channel) effectively; 2) the detection performance

of the ML based spectrum sensing techniques are better as they can identify the de-

cision boundaries [50–61]. In the recent years many supervised and unsupervised ML

and deep learning (DL) techniques have been leveraged in spectrum sensing [62, 63].

However, most of the ML algorithms introduced for spectrum sensing are not able to

capture the hidden spatio-temporal correlations of the received signals. Convolutional

neural networks (CNN) [64], RNNs, deep Bayesian networks, stacked auto encoders

(SAEs) [65–69] are among the most recent methods [70]. The DL based approaches

which have been introduced so far face many challenges and issues. CNNs loose some

information during the feature extraction phase as the neurons are partially connected

together and they are also very computationally expensive. Deep Bayesian networks

can achieve good performances while the training data is limited, but they are required

to estimate the posterior distribution of the model’s parameters [16, 71–76]. This is

specially very challenging in the scenarios where the size of network is very large. SAEs

have recently been adopted in spectrum sensing while there is limited labeled train-

ing data and showed good performance in a single-input-single-output (SISO)-OFDM

system. However, this method is computationally very complex and requires several

minutes of training (∼30 minutes) [65, 77–79]. Applying SAEs in MIMO systems will

even further increase their computational complexity. In a DSS scenario where the

channel statistics vary rapidly, we need to choose a technique that is very fast to train.

Due to the limits of the current DL based techniques, we introduce SDFR to overcome

these challenges.

19



• Video-Based Face Recognition. Recognizing the identities of people using their

face has been one of the most popular biometric tools in the past few decades. How-

ever, there are certain challenges that restrict the widespread usage of face recognition

technologies. These challenges are mainly caused due to the variations of pose, illumi-

nation, and expression. Deep convolutional neural networks (DCNNs) have successfully

addressed some of these challenges. However, DCNNs are only effective while the iden-

tity of the subjects is recognized only from one image. However, in scenarios where

it is required to recognize the identity of the subjects from a series of frames, i.e.,

video-based face recognition, DCNNs fail to achieve high accuracy because they are

only able to capture the spatial information and not the temporal. Therefore, in such

scenarios a model like RNNs which captures the temporal correlation achieves better

performances than DCNNs. The third application of SDFR in this dissertation is to

recognize the faces of few subjects from videos while they rotate their heads in different

angles.

1.3.5 State-Of-The-Art Encoding Schemes of SNNs

It is still unclear what method is employed by neurons to encode their information. This

requires further investigation to improve the performance of SNNs. The major encoding

methods employed by neurons include rate and temporal encoding [14]. Previously rate

encoding approaches were more common in neuroscience literature. However, recent studies

have shown that temporal encoding approaches have better performance compared to rate

encoding approaches [15]. The precise time of spikes is required in temporal codes to encode

the information. As one example, the neurons in the retina, the lateral geniculate nucleus,

and the visual cortex respond within milliseconds (ms) to visual stimuli. Is has also been

observed that the computational complexity of temporal encoding is less than rate encoding

20



[14]. Although the two encoding schemes have been shown to be effective in different scenar-

ios and applications several questions remain unanswered. For example, is there an optimal

encoding scheme? Can we combine two or more schemes to encode the spikes?. In this

dissertation, these questions are answered and a novel encoding mechanism is introduced.

1.3.6 Adversarial Attacks on SNNs & Defence Mechanisms

Adversarial attacks are regarded as a serious threat to the DL models. DNNs are being

leveraged in robotics, autonomous cars, and drones. Therefore, the robustness and resilience

of DNNs against adversarial attacks needs to be improved. Adversarial attacks are carefully

crafted small perturbations which are applied on the clean inputs. It has been shown that

DNNs are extremely vulnerable to such attacks and they can cause wrong predictions with

high confidence. Ensemble training, using random noise for implicit prior modeling, distil-

lation, and salable training are just a few techniques to protect DNNs against adversarial

attacks. SNNs have shown to be more robust than DNNs against adversarial attacks. This

behavior could be due to: 1) SNNs are more biologically plausible than DNNs, hence, it is

more difficult to fool them, 2) the inherent stochastic characteristics of SNNs and temporal

dynamics of them could be another reason which leads to more robustness of SNNs against

adversarial attacks compared to DNNs. However, SNN is not an exception of deep learning

models, i.e., it is vulnerable to adversarial attacks; and 2) SNNs are more resilient than

DNNs against adversarial attacks. Although the latter observation supports the resilience of

SNNs against adversarial attacks, without a defense mechanism, SNNs are still vulnerable.

There are two categories of adversarial attack, namely, white-box attacks, and black-box

attacks. In white-box attacks, it is assumed that the adversary is aware of the parameters of

the model which it is trying to craft the attack with respect to. On the other hand, in black-

box attacks, the adversary has no access to the parameters of the model. Hence, black-box

21



attacks are more challenging to craft but they are more realistic. In this dissertation, for the

first time a defense mechanism for spiking neurons against adversarial attacks is introduced.

1.4 Publications

Journal Papers

• Hamedani, K, Liu, L. and Yi, Y. (2020). MIMO-OFDM Spectrum Sensing Using

Delayed Feedback Reservoir Computing. Submitted to IEEE Transactions on Wireless

Communication.

• Hamedani, K., Liu, L., Atat, R., Wu, J. and Yi, Y., 2018. Reservoir computing meets

smart grids: Attack detection using delayed feedback networks. IEEE Transactions on

Industrial Informatics, 14(2), pp.734-743.

• Hamedani, K., Liu, L., Hu, S., Ashdown, J., Wu, J. and Yi, Y., 2019. Detect-

ing Dynamic Attacks in Smart Grids Using Reservoir Computing: A Spiking Delayed

Feedback Reservoir Based Approach. IEEE Transactions on Emerging Topics in Com-

putational Intelligence.

• Zhao, C., Hamedani, K., Li, J. and Yi, Y., 2017. Analog spike-timing-dependent

resistive crossbar design for brain inspired computing. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 8(1), pp.38-50.

• Li, J., Liu, L., Zhao, C., Hamedani, K., Atat, R. and Yi, Y., 2017. Enabling

sustainable cyber physical security systems through neuromorphic computing. IEEE

Transactions on Sustainable Computing, 3(2), pp.112-125 (published).

Book Chapter

22



• Hamedani, K., Zhou, Z., Bai, K. and Liu, L., 2019. The Novel Applications of Deep

Reservoir Computing in Cyber-Security and Wireless Communication. In Intelligent

System and Computing. IntechOpen.

Conference Papers

• Hamedani, K., Liu, L. and Yi, Y. (2020). Spiking Recurrent Neural Network with

Novel Encoding and Defense Mechanisms. Submitted to ICML 2020.

• Hamedani, K., Liu, L., Liu, S., He, H., and Yi, Y., 2020. Deep Spiking Delayed Feed-

back Reservoirs and Its Application in Spectrum Sensing of MIMO-OFDM Dynamic

Spectrum Sharing. In Proceedings of the AAAI Conference on Artificial Intelligence.

• Bai, K., Li, J., Hamedani K. and Yi, Y., 2018, June. Enabling an new era of

brain-inspired computing: Energy-efficient spiking neural network with ring topology.

In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC) (pp. 1-6).

IEEE.

• Li, J., Zhao, C., Hamedani, K. and Yi, Y., 2017, May. Analog hardware implementa-

tion of spike-based delayed feedback reservoir computing system. In 2017 International

Joint Conference on Neural Networks (IJCNN) (pp. 3439-3446). IEEE

23



Chapter 2

Reservoir Computing Meets Smart

Grids: Attack Detection Using

Delayed Feedback Networks

2.1 Introduction

Recently, Academic and industry show a lot of attention to the energy harvesting from

renewable resources, such as wind and solar [24, 80], due to the recent advancements and

increase in the world’s power demand field [24]. Energy harvesting technologies can supply

the smart grid elements by up to 80%. This includes sensors and smart meters, which

will significantly lower the ongoing maintenance costs and battery replacement costs and

of the smart grid networks [24]. Further, renewable energy significantly reduces the fossil

fuel consumption that leads a sustainable and greener environment [24]. Typically,a wind

turbine with a rotor of 1 meter under an 8 meters per second wind speed or a solar panel of

size 121 centimeters (cm) by 53 cm in diameter can deliver approximately an electric power

24



of 100 watt (W) [81]. Although renewable energies and energy harvesting seem attractive

for smart grids applications [24], they have several complications and disadvantages. These

drawbacks must be addressed in order to gain the maximum capabilities of them [82]. Since

the primary sources for harvesting energy from such networks are wind and solar, they are

not reliable source of power for smart grids applications. This justifies the use of energy

harvesters as a supplementary source of power to decrease the generation costs in power

plants, fossil based systems and carbon emission [24,82, 82–84].

We take the wind turbines as the main power generation source in this chapter. The gen-

erated power by the turbines supply smart grid networks. The use of first wind turbine

goes back to 1887. The invented turbine could be able to generate a power of 12 kilowatts

(KW) [24,85,86]. Since that date, advancements in technology allowed engineers to achieve

higher wind to electrical conversion efficiency and lower cost per kilowatt that led to greater

power generation [24].

Cyber-security is one of the essentials for guaranteeing the reliability of the smart grids

[24]. False data injection (FDI) is the censorious among attainable cyber-attacks [24, 41].

Adversaries can launch these attacks by compromising smart meters to introduce malicious

measurements.

If these measurements change the result of the state estimation, they can deviate the control

algorithms of power grid that may result in fatal consequences such as blackouts in large

geographic areas [24]. Therefore, attack detection is the most essential step for minimizing

the damages resulting from the FDI. The efficiency and effectiveness of FDI detection can

have a significant impact on the overall performance of smart grids. Feedforward neural

networks have been applied on FDI detection but they did not yield good results because

the spatio-temporal correlation of data is not considered in training [24,41].

On the other hand, it is found in [24,87] that recurrent neural networks (RNNs) are capable

25



of exploiting the underlying correlation within the data. It was shown that under fairly mild

and general assumptions, RNNs are universal approximations of dynamic systems. However,

training a fully connected RNN in many cases is very difficult or even impossible [24,88]. Due

to the difficulty of training traditional RNNs, reservoir computing (RC) recently attracted a

lot of attention due to its simple training methods [89,90]. Liquid state machine (LSM) [87]

and echo state networks (ESN) [91] are two most popular RC systems. The difference between

LSM and ESN is that, LSM uses spiking trains as the input which has to be encoded by

temporal or other encoding schemes, on the other hand ESN deals with regular data that

is not a spike [24, 87, 91]. In general, a typical RC system is composed of three different

layers: the input layer, the reservoir, and the readout/output layer. The reservoir is mainly

composed of randomly connected neurons where the weights of the connections between

neurons stay unchanged during the training [24]. The readout/output layer uses a linear

combination of the reservoirs to produce the desired output [91, 92]. It has been shown

in [24, 91, 93] that RC systems achieve better performance than traditional RNNs in many

applications.

It is observed that delayed feedback networks (DFNs) are also capable of acting as RC

systems [24, 94]. The set of sparsely connected neurons (reservoirs) in LSM and ESN are

replaced by a nonlinear node. This approach not only simplifies the structure of RC systems

but also demonstrates a very significant computational efficiency [24, 94]. The parallelism

that exists in many other structures of artificial neural networks may simply be changed by

a nonlinear node in which the input is inserted into that node

Several schemes have been introduced to encode the neural information. Rate encoding and

temporal encoding are the two most popular ones [2]. In rate encoding, a code consists of

a number of spikes occurring in a time frame after the stimulus appears [95]. Temporal

encoding is subdivided into three main groups: latency code, interspike intervals, and phase

26



of firing [96]. In latency code, the time in which the first spike occurs is used for encoding [95].

Interspike interval coding is another scheme that uses the intervals between different spikes

for encoding [96, 97]. In the temporal encoding using phase of firing, the phase of the local

field power (LFP) is used to encode the information [98]. Studies show that interspike

interval encoding carries more information than rate encoding [99, 100]. Therefore, in this

chapter, we use interspike interval temporal encoding as the encoder of our RC systems.

Equipped with the platform of analog spiking RC architecture, we will be able to conduct

anomaly detection in cyber physical systems (CPS) efficiently and effectively using RC. To be

specific, in this chapter, we show that by using DFNs and MLPs it is possible to efficiently and

effectively detect attacks in smart grids. Compared to existing attack detection algorithms

in smart grids, our introduced design shows a great deal of robustness with respect to various

attack variations. The main contributions of our work are the following:

• First, to the best of our knowledge, this is the first work to introduce the concept of

reservoir computing for attack detection in smart grids. It is shown through simula-

tions that the RC-based attack detection performs better than existing approaches.

Furthermore, the accuracy of the attack detection of the RC-based approach is in-

sensitive to attack variations such as the magnitude of the attack and the number of

compromised meters.

• Second, we modify the delayed feedback network so that it is able to take spike trains

as the input. Note that spike encoding is more biologically plausible and very similar to

the way that information is encoded in our brains. Several modifications are conducted

on the existing DFN architecture in the literature: 1) A block is added to convert the

spike train into analog signals before the nonlinear node and in the feedback loop. 2)

The leaky-integrate and fire (LIF) neuron model is introduced as the nonlinear node

in the DFN tailoring towards the input spike train.

27



• Third, a multi-layer preceptron is introduced as the readout layer that can deal with

both non-linear data and classification tasks.

We will show that the average attack detection rate based on the accuracy metric for 10000

simulations will be above 99% . This chapter is organized as follows. Section 2.2 reviews

the related works in smart grid security. Section 2.3 the proposed design will be described;

in Section 2.4 the simulation results are presented and compares the results of the proposed

algorithm with current existing methods and we will discuss why our proposed method

outperforms the other methods in literature. Section 2.5 concludes the chapter.

2.2 Related Work

FDI problem in smart grids was first introduced in [101]. In [102] a summary of all the

proposed methods for FDI detection and the advantages and disadvantages of each methods

is presented. Tan et al. [103] present a survey of the recent data driven approaches in smart

grid security. So far, many algorithms have been introduced for FDI in smart grids. Within

these methods, the state vector estimation [101] is among the first introduced algorithms.

Machine learning techniques have also been introduced to FDI detection of smart grids.

To be specific, feedforward neural network, K-nearest neighbor, support vector machines,

and sparse logistic regression have been applied to FDI detection recently [41]. However,

most of these techniques rely on manually chosen meta-parameters/parameters for the corre-

sponding model. Even though the feedforward neural network allows for certain autonomy,

its performance is usually strictly suboptimal when dealing with correlated data. Machine

learning approaches show better results than support vector estimation methods when ap-

plied on IEEE test systems [104]. The effectiveness of the Precision Measurement Units

(PMUs) have been extensively investigated in order to improve the performance of state

28



vector estimation [105] , [106]. Extended distributed state estimation (EDSE) was studied

by Cramer et al. [107]. EDSE uses graph partition algorithms to divide each power system

to several subsystems and in each subsystem three main categories are considered for the

buses: boundary bus, internal bus and adjacent bus. EDSE-based methods show better

performance than the traditional state estimation methods. In [108] the compromised nodes

are detected through the analysis of the existing relationship between the physical properties

of the power system and FDI.

2.3 RC Design for Attack Detection in Smart Grids

2.3.1 Realizing RC using DFN

Traditional RC models, including ESN and LSM, are different from DFN in the reservoir

layer [92]. The DFN consists of a nonlinear node. The output of the node, also called

the state, is a shifted version in time which provides the states of other nodes, called the

virtual nodes [109]. The structure of the DFN, used in this work, is shown in Figure 2.1.

The temporal encoder of [2] is used as the first, i.e. the input, layer. The details of the

temporal encoder is described in Section 2.3.2. We employ 10000 vectors as the measurements

generated using MATPOWER 5.1 [110]. A random Gaussian vector, with a variance of 0.05,

is used for simulating an attack on half of the measurements. We aggregate the combined

attacked and non-attacked data in a single vector and apply the temporal encoder on the

data. Further, the corresponding spiking train is generated for every sample in the vector.

This procedure allows us to convert the measurement matrix, extracted from 57 buses, to

the corresponding temporal code. Since we use several meters on the same bus, size of

the measurement matrix, generated by MATPOWER, is equal to 137. Next, we apply the

generated spikes on the nonlinear node of the DFN.

29



In order to implement spiking neural networks, we employ a leaky-integrate and fire (LIF)

neuron as the input node of the reservoir layer [111]. The generated spikes are then converted

to an analog current before feeding into the LIF neuron. In this way, for every analog current

at the input of the LIF neuron, a corresponding spike train is generated.

Almost any system with dynamics incorporate delays. As an example, information transfer

in the brain, from one neuron to another, involves delays. Delay differential equations are

the popular mathematical models to represent the delayed systems [112]. The dynamics

of such a system depend on both the current states as well as the previous ones. The

significant characteristics of dynamic systems include high dimensionality and short-term

memory which constitute the prerequisites for an RC system [113].

Delayed feedback RC systems exhibit practically similar performance as the traditional RC

systems [94,114,115]. However, the difference of the delayed feedback reservoir system from

the traditional reservoir is in a single nonlinear node and a delay loop. A training algorithm is

employed to optimized the output of the reservoir. The optimization objective is to minimize

the difference between the weighted sum of the state and a target output value. The nonlinear

node directly receives the input data. Further, a masking process employed to compensate

for the loss of parallelism. In the masking process, the input signals in the transient regime

are scaled [94]. The signals at the output of masking process are then transferred to the

nonlinear node for implementing the nonlinear mapping. The only trainable weights of the

system are the output weights, similar to a traditional RC system.

We employ an analog hardware implementation of the delayed feedback system which is

able to process spike-based signals directly. It is shown that analog implementations has

the advantage of implicit real-time operation which allows for smaller design area and lower

power [116–125]. Our proposed analog implementation is inspired by the delayed feedback

reservoir. In our design, the need for peripheral components, such as analog-to-digital (ADC)

30



and digital-to-analog converters (DAC), for interfacing with analog signals, is alleviated. The

spike train generated by the LIF neuron is shifted in time by 10 milliseconds (ms) which is

used as the state of the second node in the reservoir. The process is repeated four times

to arrive at a different state. Furthermore, information is encoded before the corresponding

signals are fed to the nonlinear node.

Most common encoding strategies used in the literature of spiking neural networks, include

rate encoding and temporal encoding. In rate encoding, information is represented by the

number of spikes while other spike characteristics, such as amplitude and phase, are irrele-

vant. A temporal encoding scheme encodes information into inter-spike intervals. Temporal

encoding provides a compact model and energy efficient processing since the analog signals

are encoded into spike based information. In this work, we employ temporal encoding with

an iterative structure to process data. In this scheme, the number of neurons and the num-

ber of spikes have an exponential relationship. As a result, less neurons would be needed to

achieve the same number of spikes.

In our temporal encoder, only one neuron operates in the dynamic mode which results in

significant savings in power consumption [126, 127]. Our proposed encoding scheme has

been fabricated using 180 nm CMOS technology and a symmetric layout to maximize the

die area utilization. Not only our design features an internal verification technique, but also

an output temporal code, which results in high error-tolerance via exploiting the additional

inspection spikes. In addition to high accuracy, the proposed neuron also achieves low power

consumption compared to the state-of-the art designs [128]. Our implemented neuron is able

to extract five different states for every sample in the measurement matrix. The extracted

states are then employed for training a multi-layer perceptron (MLP) neural network. We use

the time instances of the spikes, corresponding to the state of every sample, as the features

in training the MLP. We use the binary 0 and 1 labels, corresponding to the non-attacked

31



Figure 2.1. Hardware implementation of delayed feedback reservoir system [1]

and attacked samples, respectively, for training the reservoir. After training the MLP, the

performance of the system is evaluated using the generated test data.

2.3.2 Temporal Encoder

The design of our temporal encoder is adapted based on the the encoder of [2]. The corre-

sponding inter-spike intervals, for encoding data, is expressed as:

Di = f (Ci, Vi)− f (Ci−1, Vi−1) . (2.1)

in which the function f(X, Y ) is:

f (Ci, Vi) = (Ci+1) [β (Vi − γ) + θ] , (2.2)

32



In the above equations, the design parameters include the characteristics of the encoder,

such as charging and refractory periods. More specifically, Ci and Vi represent membrane

capacitance and the firing threshold voltage, respectively.

Figure 2.2. Interspike intervals [2].

Using the above temporal encoder, any sample in the measurement matrix is encoded in the

inter-spike interval distances, Di. There may be different number of intervals based on the

number of neurons used in the temporal encoder for any sample. In this experiment, for

the sake of simplicity, we choose the number of neurons in the encoder to be N = 3, which

results in four different spikes, X1 to X4 or three intervals D1 to D3. Due to the following

equation mentioned in [2], there is a relationship between the number of spikes produced

and the number of neurons used in the temporal encoder:

SN = 2N−1, (2.3)

where, SN is the number of spikes produced by the temporal encoder and N is the number

of neurons used in the encoder.

33



2.3.3 Smart Grid Attack Detection Formulation

Smart grids are used to make a reliable power transmission network and connection be-

tween consumers and generators. They are really vulnerable to cyber-attacks, and thus it

is a very important and challenging task to provide a secure network of smart grids [129].

MATPOWER 5.1 can be used to produce the smart grids’ measurement matrix [130]. MAT-

POWER allows the users to run the toolbox with different numbers of buses. In our exper-

iment, the number of buses is set to 57 resulting in 137 different measurements. Note that

it is pointed out in [41] that the parameter that really impacts smart grid attack detection

is the number of compromised meters instead of the number of buses. The reason that we

pick 57 is because this number is almost in the middle of the range of the number of the

buses that is provided by MATPOWER. This configuration will result in 137 meters which

is large enough for us to study the effect of different number of the attacked meters in that

configuration [131].

The system model that is used to study the attack detection in smart grids is defined in [101]:

z = Hx+ n. (2.4)

The measurement vector which is the output of different meters on the buses is z; H is the

state vector; x is the voltage phase of the buses; and n is the environment noise. When attack

is present, an attack vector, a, is added to the measurement. Accordingly, the measurement,

z̆, becomes

z̆ = Hx+ a+ n. (2.5)

We assume that the attack is a Gaussian random vector with 0.05 variance [131]. State vector

estimation (SVE) is the first method introduced to perform attack detection for smart grids.

This method consists of calculating a residual stated as ρ. If the value of ρ exceeds a

34



predefined threshold value, it is said that the z vector has been attacked and the meters are

compromised [101].

ρ = ‖z̆ −Hx̂‖22, (2.6)

where x̂ is the vector estimated using SVE algorithm. x̂ is then estimated as follows:

x̂ = (HT ∧H−1)HT ∧ z. (2.7)

The only action that has to be done in SVE algorithm is to estimate the x̂, and to do so, ∧

needs to be calculated, where ∧ is defined as a diagonal matrix with its diagonal elements are

the reciprocals of the variance of the measurements. For example, the j-th diagonal element

of the ∧ is equal to the reciprocal of the variance of the j-th element of the z. SVE method

is a very simple method for implementation but it has many shortcomings with different

attack situations [101].

In the case where a = HC, the attack is hidden (see Appendix A). It means that SVE

is incapable of detecting the bad measurements [101]. In the case of hidden attacks, the

residual value is less than the threshold and the attack cannot be detected by SVE. In order

to perform a hidden attack, the cyber attacker has to have access to at least a specific number

of attacks. In [101], it has been shown that it is not possible for the attacker to choose any

arbitrary c and multiply it by H to perform the hidden attack. This means that in order to

make a hidden attack, the attacker has to have access to at least k measurements, in which

k > m − n where m is the number of meters and n is the number of buses. In our system,

m = 137 and n = 57. In this case, m−n = 80 meaning that with high chance the attack will

be a hidden or stealth attack when there are more than 80 compromised measurements in

our smart grid network. Under this scenario, the SVE becomes an inefficient attack detector.

35



2.3.4 Modeling the wind power generators in MATPOWER

MATPOWER can also be used to study renewable energy, especially wind powers [132].

There are six power generators for a 57-bus smart grid network. It is possible to substitute the

power of these generators with the power obtained from wind power generators. Accordingly,

(2.8) gives the power produced by a wind power generator as the source of energy [133]:

Pavail = 1/2ρAv3CP , (2.8)

where Pavail is the power converted from wind; ρ is the air density which is assumed to be

equal to 1.23 kg/m3; A is the sweep area of the wind turbine blades; v is the speed of the

wind; and CP is the coefficient of the power. Albert Betz, a German physicist, has shown

that the maximum value for the power coefficient is equal to 0.59. This is called Betz Limit

or Betz Law. Based on that, the performance of a wind power generator cannot exceed

0.59 [134]. In this study the value of CP is set to 0.4 while the area of the generator is set to

8495 m2, six different values ranging from 0 to 12 m/s are used for the wind speed. These

power values are inserted in the MATPOWER to produce H matrix [134].

2.3.5 Smart Grid Attack Detection using DFN and MLP

The FDI problem can also be formulated as a classification problem. So far, many machine

learning algorithms have been suggested to deal with this problem [135]. To the best of our

knowledge, this problem has never been studied from RC’s point of view. We are the first

to study this problem using RC methods. In the FDI problem we face two classes of data:

attacked data and non attacked data, we can assign two different labels for these two classes

and figure out the classification of data.

36



In this experiment, two different sets of data are used. The data which has been attacked by

a hidden attack and the data which its measurements have been attacked by direct or non-

hidden attack vectors. The experiments are performed on 1000 samples and the experiments

are repeated 10 times. The first step is to encode z using the temporal encoder. Then, every

spike train extracted from the temporal encoder is converted to an analog current. In [136],

an equation was introduced to convert the spike trains to the analog current:

I i =
∑

tj

K
(

t− tj
)

H
(

t− tj
)

, (2.9)

where H is the Heaviside function; I i is the analog current of the i-th sample in the z; and tj

is the time of occurrence of the j-th spike in the corresponding spike train of the i-th sample

achieved from the temporal encoder [136]; and

K(t− tj) = V0 ·
(

exp(−((t− tj)/τs))− exp(−((t− tj)/τf ))
)

, (2.10)

where τs is set to 10 ms and τf to 2.5 ms. The values of τs and τf have to be chosen somehow

that τs/τf = 4. V0 is a normalization factor to make sure that the maximum value of kernel

does not exceed one [136].

Up to now what we can generate analog current signals from (2.9) and (2.10) corresponding

to the temporal codes extracted from the temporal encoder. The next step is to apply these

current on the DFN to produce the corresponding states. As mentioned in Section 2.3.1, the

nonlinear node of the DFN is chosen to be an LIF neuron. The analog current signals for the

attacked samples and non-attacked samples were applied to the DFN. The output of the LIF

neuron is shifted 10 ms in time to produce the state of the first virtual node. This process is

repeated in four times until we obtain four virtual nodes. Note that the state of the fourth

virtual node is shifted 40 ms compared to the nonlinear node. Then the state of the fourth

37



virtual node is multiplied by 0.8 which is the feedback gain, and is then added to the new

incoming analog current. Now for both attacked and non-attacked samples, five different

states are generated. Figure 2.3 shows the average total state of attacked and non-attacked

samples.

Figure 2.3. Average DFN states for attacked and non-Attacked Data.

From Figure 2.3, it is clear that the timing of the spikes for the average states of the two

data classes are very different. It can be seen that average spikes produced for the attacked

samples are more likely to fire at smaller times and the ones fired for non-attacked samples

are more likely to fire at larger times. Furthermore, it is possible to use these timings as a

feature to classify these two groups. Therefore, in the next step we utilize a MLP and train

38



the MLP with these features [137].

2.3.6 Training an MLP with the timing of spikes

As demonstrated in [94], the readout layer can be trained with a linear algorithm. In the

introduced training algorithm in [94], a weight was assigned to the every state extracted from

the DFN in a way that the desired output values can be estimated with the least possible

error. The following expression provides a good summary of the training algorithm in [94]:

ŷ(k) =
N
∑

i=1

wi × x [kτ − τ/N(N − i)] , (2.11)

where ŷ(k) is the estimated output; wi is the connection weight; x is the state vector; and

N is the number of states. The above algorithm is linear and not iterative so it won’t be

very precise. Therefore, in our RC-based attack detector, we adopt an MLP for output

estimation. The algorithm used for training the MLP is backpropagation. The label of y is

set to 1 for training the samples being attacked and 0 for the samples not being attacked.

The time in which attacks spikes happen for different states are saved in a vector and are

used as features for training the MLP. The MLP is trained with two different hidden layers

and one output layer. The desired output for the attacked sample is 1 otherwise it is 0. As

it can be seen in Figure. 2.4 the MLP is trained after 82 iterations. Then the weights are

saved to be applied on the test data to evaluate the performance of the system. In the next

step, SVE algorithm, MLP, and Support Vector Machines (SVM) are applied on the samples

to compare against the performance of our introduced RC-based attack detection strategy.

We use Gaussian radial basis function as the kernel of the SVM classifier (see Appendix B

for details) [131].

As it can be seen in Figure. 2.4, the training mean square error (MSE) reduces to 0.016

39



which indicates that MLP is capable to distinguish between the states spike timings of the

attacked data and the non-attacked data. The learning rate is set to 0.01 and momentum

factor to 0.5. If the output value is greater than 0.5, it is considered as 1, else it is considered

as 0. In that sense, the training accuracy is almost 100%, meaning that almost 100% of the

samples are classified accurately as attacked and non-attacked. In order to quantify the

detection performance, the accuracy metric is defined in equation (2.12). We used 50%

of the samples for training and the rest are saved for testing and validation. The results

of applying the DFN algorithm are presented in Section 2.4. Figure 2.6 shows the block

diagram of our RC-based attack detection algorithm.

0 10 20 30 40 50 60 70 80 90

Iteration

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

O
u

tp
u

t 
E

rr
o

r

Sqrt(E/pl)=0.016178 , Iteration=82

Figure 2.4. Error Plot for training an MLP with DFN states.

40



0 0.5 1

k/N

0

0.2

0.4

0.6

0.8

1
A

c
c
u
ra

c
y

Figure 2.5. Accuracy of the SVE.

Figure 2.6. Block diagram of the proposed DFN+MLP system for attack detection.

41



2.3.7 State Vector Estimation

As mentioned in Section 2.3.3, ρ = ‖z̆−Hx̂‖22 needs to be computed for SVE. If the value of

ρ exceeds a predefined threshold value, it is said that an attack has occurred, non-attack is

detected otherwise [101]. Accordingly, we can calculate the value of ρ when the measurement

vector is attacked by the same attack vector mentioned in the previous section. The value of ρ

achieved for attacked vectors with different number of compromised measurements is used to

evaluate the performance of SVE. However, we show in the next section that there are some

drawbacks with SVE. The performance metric used to evaluate the detection performance

is the accuracy which is defined as

Accuracy = (TP + TN) / (TP + TN + FP + FN) , (2.12)

where TP, TN, FP and FN correspond to the number of true positive, true negative, false

positive and false negative samples respectively.

The attack detection performance of SVE can be clearly seen in Figure 2.5. As seen in the

figure, the accuracy of SVE is severely affected by the number of compromised measurements

even when the attack is not hidden. This is due to the fact that the performance of SVE

depends heavily on the residual value. When the number of compromised measurements is

small, the accuracy of the SVE drops significantly. In Section 2.4, we will show that this

issue can be completely resolved by the introduced RC-based DFN+MLP attack detector.

2.4 Performance Evaluation

As it was mentioned in Section 2.3.3 only 50% of the data is used for training and the rest

is saved for test and validation. In this section, we will detail the performance evaluation of

42



the three aforementioned algorithms: RC-based method (DFN+MLP), MLP, and SVM. We

have totally 5000 samples for testing and validation. Half of them are attacked and half of

them are not. As the main evaluation results, Figures. 2.7 & 2.8 show the accuracy of the

proposed method for the two types of attacks in smart grids, hidden and direct, as a function

of the attack magnitude a. Three different values of the attack magnitude are used: a = 0.1,

a = 1, and a = 10. Note that since SVE is not capable of detecting hidden attacks [101], we

did not evaluate its performance in Figures. 2.7 & 2.8.

From the figures, we can clearly observe that the performance of both MLP and SVM are

very sensitive to attack magnitudes as well as the number of attacked meters. Unlike SVE,

both MLP and SVM can detect hidden attacks. However, their detection performances are

very sensitive to attack parameters. For example, the accuracy of both MLP and SVM

increases as the attack magnitude increases. This means that MLP and SVM can detect

attacks accurately when attacks have large magnitudes. However, when attacks have small

magnitudes, MLP and SVM will detect attacks with less certainty. To be specific, for the

case of MLP, the accuracy is 100% when the magnitude of the attack is 10 and can be

as low as 70% when the attack magnitude is 0.1. This is not very desirable for attack

detection in smart grids where the attack magnitude can be arbitrary. For the RC-based

DFN+MLP method, we can see that the variations of attack magnitude do not cause any

significant change to the accuracy. To be specific, the accuracy variation due to the change

in attack magnitude is very small for RC-based approach and the accuracy is close to 100%

in all attack magnitudes. This clearly suggests that the attack detection performance of

the RC-based approach is robust under different attack magnitudes. Figures. 2.7 & 2.8

also show the accuracy as a function of the number of compromised meters for different

attack detection strategies. SVE is not capable of detecting hidden attacks, therefore, we

did not evaluate its performance in Figures. 2.7 & 2.8. From the figures we can see that the

introduced RC-based approach is much more robust than the MLP and the SVM method

43



under different number of compromised meters. Furthermore, comparing the two figures, we

can observe that unlike existing detection strategies (SVE, MLP, and SVM) the RC-based

DFN+MLP method provides uniform performance under different attack methods (direct

and hidden). In this study 50 % of the samples are attacked and the rest not, which means

we are dealing with a balanced data set and if the number of attacked and non-attacked

samples are significantly different the data set is imbalanced [131]. The imbalanced data

set is very likely to compromise the performance of the learning algorithm [138]. In such

scenarios F1 score is used to evaluate the performance of the learning algorithm [131, 139].

F1 measure can handle the imbalanced data. In [131] the detection performance evaluation

is studied for both balanced and imbalanced data set extracted from IEEE 30-bus system.

F1 = (2TP) / (2TP + FP + FN) , (2.13)

In that study [131] the performance plots , accuracy for balanced data set and F1 measure

for the imbalanced data set, do not show any meaningful difference.

2.5 Conclusion

In this chapter, we introduced a RC-based (DFN+MLP) attack detection strategy for smart

grids.The introduced method constitutes of three main steps. The first step is encoding

the measurement vector with temporal encoder and converting the produced spikes to their

corresponding analog currents. In the second step, these analog currents are applied on an

LIF neuron and shifted in time to produce the sates of virtual nodes. The output of the

fourth virtual node is multiplied by a feedback gain and added to the new incoming data in

order to preserve the recurrent nature of the DFN. The spiking times of these states are used

to train an MLP for classification. Simulation results have shown that this algorithm can

44



0 0.5 1

k/N

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

DFN+MLP

MLP

SVM

0 0.5 1

k/N

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

DFN+MLP

MLP

SVM

0 0.5 1

k/N

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

DFN+MLP

MLP

SVM

Figure 2.7. Accuracy of direct attack detection for three different methods, a=0.1,1,10.

0 0.5 1

k/N

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

DFN+MLP

MLP

SVM

0 0.5 1

k/N

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

DFN+MLP

MLP

SVM

0 0.5 1

k/N

0.5

0.6

0.7

0.8

0.9

1
A

c
c
u

ra
c
y

DFN+MLP

MLP

SVM

Figure 2.8. Accuracy of hidden attack detection for three different methods, a=0.1,1,10.

45



robustly detect attacks under different attack variations such as magnitudes and the number

of compromised meters compared to existing methods such as SVE, MLP, and SVM. It

is also important to note that this work is the first effort to solve FDI problems in smart

grids through RC. The proposed model can be applied on any classification task that there

is spatio-temporal correlation between the samples of the data set. In our next work we

will show that we have been able to apply this model successfully on face recognition task

from video frames. Since there are spatio-temporal correlations among the meters in smart

grids, RC-based attack detection can take full advantage of this spatio-temporal correlation

yielding a better performance compared to existing solutions.

46



Chapter 3

Detecting Dynamic Attacks in Smart

Grids using Reservoir Computing: A

Spiking Delayed Feedback

Reservoir-Based Approach

Smart grids are power grids that have been modernized for intelligent transmission and dis-

tribution that improve the system reliability, security, and efficiency. However, smart grids

introduce new vulnerabilities in security unless properly controlled. Cyber-attacks or inci-

dents arise from various sources with different motivations, ranging from pranks to terrorism.

With the enormous amount of data that is constantly flowing through the network, it be-

comes a challenging task for analysts to monitor the extensive security-related information

that is being exchanged for anomaly detection [140].

The false data injection (FDI) problem in smart grids was first introduced in [141]. In general,

there are two main categories of FDI attacks in smart grids: single-period or opportunistic

47



attacks and multi-period or dynamic attacks [142]. In single-period scenario, attacks are

performed simultaneously, and the attacker waits until there is an opportunity to perform the

attack with a high chance of success. Most of the existing work on smart grid cyber security

focused on this case. In dynamic attack scenarios, the adversary manipulates the state of

the network gradually and through time toward the desired state. The dynamic attacks

are generally more difficult to detect because the variations to the normal state take place

gradually and slowly. A comprehensive summary of existing FDI detection algorithms, and

the pros and cons of each algorithm were presented in [143]. State vector estimation (SVE)

was the first algorithm that was proposed to tackle the FDI problem in smart grids [141].

Machine learning based approaches has also been introduced for FDI detection in smart

grids [144] where artificial neural networks (ANNs), support vector machines (SVMs), and

k-nearest neighbor (KNN) are investigated for this purpose. In general, machine learning

based approaches have shown better performance than SVE in detecting the FDI in smart

grids. Both supervised and unsupervised learning algorithms are utilized to detect the stealth

data injections in smart grids [42]. In [145], the performance of SVM and KNN in detecting

the false data in an IEEE-30 bus system under balanced and imbalanced data scenarios are

studied. A deep learning-based method is exploited in In [146] to capture the behavior of

the FDI attacks features. These features are used to detect the FDI in real-time with high

accuracy. Unfortunately, all these work focus on the single-period attack and neglect the

spatio-temporal correlation of the measurement in smart grids.

In our previous work in [24], a reservoir computing (RC) based approach is introduced to

detect the FDI taking advantage of the underlying spatio-temporal correlation. RC is a

class of recurrent neural networks (RNNs) that is more easily trained compared with the

traditional RNNs [20]. The two well-known RC models, echo state network (ESN) and

liquid state machine (LSM), employ the strength of RNN as their reservoir or liquid in

48



which the synaptic connection within these layers are not trained [20]. Recently, another

RC model, called the delayed feedback reservoir computing (DFR), is constructed through

a single nonlinear neural node with dynamic delay loop. It is shown in [147, 148] that DFR

has improved performance compared to other RC models. Our previous work in [24] utilizes

DFR to conduct single-period attack detection. In this chapter, we will extend the work to

the challenging case of dynamic attack.

There are several different mathematical models for artificial neurons in a neural network.

Spiking neural networks (SNNs) are one example of these models that have been highly used

during past decades to solve pattern recognition related problems. Spikes are thought to

be the main signal format that neurons use in the brain to communicate with each other.

Therefore, SNNs are more biologically plausible compared with traditional artificial neural

networks (ANNs) [136]. The other advantage of SNNs is that SNNs are much more energy

efficient and are better for hardware implementations [149].

Several studies have shown that the artificial SNNs can be very energy efficient as they

are using spiking models of neurons. For example, the TrueNorth chip which is capable of

running 1 million neurons with 256 million synapses consumes only 70 milliWatts (mW) [149].

This makes SNN a suitable choice for hardware implementations of artificial neurons.

On the other hand, the approach that neuron is employed to encode the information is

still unclear and deserves further investigations. There have been various encoding schemes,

which can be categorized into two major classes, namely, rate encoding and temporal encod-

ing [150]. Rate coding schemes used to be more popular in the literature. However, recent

research works have shown the superiority of temporal encoding schemes over rate encoding

schemes [151]. In the temporal code the exact time of the spike is used for encoding the

neural information. Several experimental results have shown that the exact time of spikes

is used by neurons to encode and convey the information. For example, the neurons in the

49



retina, the lateral geniculate nucleus and the visual cortex respond to the stimuli with mil-

liseconds (ms) precision. The temporal encoding approaches are also more computationally

efficient than rate encoding approaches as it has been studied in [150].

In [136] an algorithm called precise-spike-driven (PSD) synaptic plasticity was introduced to

learn the hetero-association which exists in spatio-temporal spike patterns. Synaptic plastic-

ity is a concept in neuroscience and computer science where the strength or the amplitude of

the weights that connect neurons together can be adjusted. Essentially, synaptic plasticity

specifies the influence of the activation or firing of one neuron on other neurons. The PSD

synaptic plasticity is a rule that is used to adjust the weights of a SNN in order to learn the

spatio-temporal patterns. Different from most of supervised SNNs’ training algorithms that

employ rate codes, PSD uses temporal codes as the encoding scheme.

In this chapter, the PSD algorithm is introduced to train SNNs to detect the multi-period

attack in a smart grid and find the optimal encoding scheme of spikes. Multi-Period or

dynamic attacks are a special type of attacks, where the adversary manipulates the state of

the smart grid network gradually and through time toward the desired state. The optimal

encoding scheme that is identified in the training of the PSD algorithm will be used for

training the spiking DFR+MLP.

The main contributions of this chapter are of the following,

1. Dynamic attack detection in smart grids are studied for the first time using recurrent

neural networks. Furthermore, our work explores SNNs based on the DFR structure

to effectively capture the spatio-temporal association existing among spikes patterns.

2. Several encoding schemes including latency, latency-phase and ISI are investigated to

train the SNN using the PSD algorithm. Our results suggest that the ISI encoding

leads to the least training error and the best attack detection performance.

50



3. Spiking neurons are integrated with DFR to take the advantage of both methods.

DFRs can capture the spatio-temporal correlation between different components of

the smart grid and map the data to a higher dimensional space to make it easier for

the MLP to learn the spatio-temporal patterns of attack.

4. The effects of different delay values in DFR on the attack detection performance are

investigated and the chaos behavior of the introduced algorithm is analyzed. Our

results suggest that a dynamic delay system has to work at the edge of chaos in order

to show high-dimensional behavior and delay is the parameter that specifies the level

of chaotic behavior of such a dynamic system.

The rest of the chapter is organized in the following: Section 3.1 presents different types

of attacks in smart grids and corresponding mathematical modelings. Section 3.2 describes

the PSD algorithm and its training procedure. The RC approaches for high dimensional

mapping of data with the focus on DFR is discussed in Section 3.3. In Section 3.4, training

methods for the SNNs, DFRs, and MLPs using different temporal encoding schemes are

presented under dynamic attacks. Section 3.5 presents performance results and provides

intuitions behind the results. Section 3.6 contains the conclusion. Table 3.1 provides the list

of acronyms used in the chapter.

3.1 Problem Formulation

There are potentially two different targets to attack in smart grid systems, the state of

measurements and the topology of the smart grid network [142]. The measurement of each

meter in a smart grid system is determined by the state of the system, a linear function and

51



Table 3.1: Acronyms and Their Descriptions

Acronym Description

RC Reservoir Computing

RNN Recurrent Neural Network

ESN Echo State Network

LSM Liquid State Machine

ESN Echo State Network

DFR Delayed Feedback Reservoir

SNN Spiking Neural Network

ANN Artificial Neural Network

PSD Precise Spike Driven

MLP Multi Layer Perceptron

ISI Inter Spike Interval

FDI False Data Injection

SVE State Vector Estimation

SVM Support Vector Machine

KNN K-Nearest Neighbor

SCADA Supervisory Control and Data Acquisition

LIF Leaky-Integrate-and-Fire

WH Widrow-Huff

PSC Post Synaptic Current

TTFS Time to First Spike

SMO Subthreshold Membrane Potential Oscillation

FLOP Floating-Point Operations

the environment noise, and can be expressed as follows,

z = Hx+ n, (3.1)

where z is the measurement vector consisting the real parts of the line flows and bus injec-

tions; H is a linear function; x is the state vector, and n is the environment noise [142]. In

the case where an attack exists, equation 3.1 can be written as,

ž = z + a,

ž = Hx+ n+ a,

(3.2)

52



where a is the attack vector. The attack mentioned in equation 3.2 is called the observable

attack. It is possible for the adversaries to perform another type of attack which is called

the unobservable or hidden attack that is more difficultly detected especially for traditional

attack detection methods such as SVE [145,152–154]. In hidden attacks, it is assumed that

the adversary has access to theH matrix, and the adversary can hide its desired state in theH

matrix to manipulate the measurement vector z. The hidden attacks are more challenging to

detect as they are unobservable by the Supervisory Control and Data Acquisition (SCADA)

center of the smart grid. In this chapter, we consider hidden dynamic attacks. The hidden

attack is defined as a = Hc, and equation 3.2 is reformulated as follows,

ž = Hx+ n+Hc

ž = H(x+ c) + n,

(3.3)

where c is the desired state of the adversary, where the attacker wants to drift the normal

state of the smart grid toward its desired state by hiding it in the H matrix.

Dynamic attacks are performed in a way that the state of the smart grid system will gradually

be manipulated toward the state desired by the adversary [142]. In order to design this

attack, the attack vector has to be defined as a function of time, because unlike single-

period attack that the adversary performs the attack opportunistically, in dynamic attacks

the attack is performed gradually and through time. The dependency of the dynamic attack

on time makes the magnitude of the attacks variations lower, and are more challenging to

be detected. In single-period attacks the variations of the attacks magnitude are sudden

and abrupt, and are more easily detected. The formulation of dynamic attack used in this

chapter is as follows,

ž(t) = Hx(t) + n+ a(t). (3.4)

53



The dynamic attack a(t) is time dependent, and we also assume that the adversary has

access to H matrix. Thus the attack can be performed as hidden or unobservable. In hidden

attacks the attack a(t) can be expressed as a(t) = Hc(t), and c(t) is defined as follows,

c(t) = Acos(2πfct)×N(0, 1), (3.5)

where A is the magnitude of attack, cos is the cosine function, fc is the frequency of the

attack and is set to 1 in this study, in order to perform a dynamic attack that can gradually

manipulate the state of smart grid, N (0,1) is a normally distributed vector with zero mean

and variance of 1. Substituting (5) into (4) gives us the following equation,

ž(t) = H(x+ Acos(2πfct)×N(0, 1)) + n. (3.6)

The motivation of this chapter, is to detect the presence or absence of hidden dynamic

attacks on smart grids meters. To detect this, we need to have smart grid measurements

data that can be compromised by hidden dynamic attacks. In [155] providing that the

adversary is aware of the attack detector’s parameters, the attack detection probability is

minimized. However, in this study we assume that the adversary is not aware of the attack

detector’s parameters which in our case are the parameters of the DFR and MLP. Therefore,

the adversary cannot perform any optimization on the attack before launching it to minimize

the attack detection probability. However, the adversary can adjust the magnitude of the

attack to make its detection probability smaller. As we will show in Section 3.5, while the

attack magnitude is lower, the attack detection is more challenging and vice versa.

The dynamic attack model that we use to compromise the smart grid’s measurements is

expressed in (6). The MATPOWER toolbox and IEEE 14-bus test system are used for the

simulation of the smart grid’s measurements [110]. In the IEEE 14-bus smart grid test bed,

54



there are totally 34 different meters that can be compromised by the adversary. Our model

assumes that the amount of access the adversary has to the system can vary. In our model

the number of meters in the system that the adversary is able to compromise ranges from

0 to 34. We generate totally 10000 samples for training our model, and 10000 samples for

testing and validation, using the MATPOWER toolbox and IEEE 14-bus test bed.

3.2 Precise spike driven synaptic plasticity

3.2.1 Neuron Model

The PSD algorithm is capable of learning the spatio-temporal correlation that exists in

different data sets. There exists a significant spatio-temporal correlation among the different

components of a smart grid [141]. Therefore, PSD is a good candidate for extracting this

spatio-temporal correlation and using it to facilitate the FDI attack detection. In this section,

we discuss the neuron model, the PSD learning rule, and its training procedure. So far,

several models for spiking neurons have been proposed in order to mimic the behavior of

biological neurons. The Leaky-Integrate-and-Fire (LIF) and the Hodgkin-Huxley are two

well-known models for artificial spiking neurons which are used commonly [156]. The LIF

neuron has been used more often than other models due to its simplicity and ease of hardware

implementation [151]. When a stimulating current is applied on a neuron, the neuron starts

to fire as soon as its membrane voltage exceeds a certain threshold. In the LIF neuron, the

relationship between the stimulus and the membrane voltage is expressed as,

τm
dvm
dt

= −(Vm − E) + (Inoise + Is)Rm, (3.7)

55



where Vm is the membrane voltage, τm = RmCm is the time constant of the neuron, Rm

and Cm correspond to the resistance and the capacitance of the membrane respectively, E

represents the resting voltage, Inoise is the background noise and Is is the presynaptic or

stimulus current [136]. Rm is set to 1 mega ohms and Cm= 10nF.

Equation 3.9 formulates the relationship between the voltage membrane and the presynaptic

current. Equation 3.10 formulates the relationship between the postsynaptic current pro-

duced for each LIF neuron and presynaptic currents. The presynaptic current of a neuron

is a weighted summation of postsynaptic currents for afferent neurons [136,157].

Is(t) =
∑

j=1

wiI
i
PSC(t), (3.8)

where wi is the weight of the current coming from the i-th afferent neuron and; I iPSC corre-

sponds to the postsynaptic current of the i-th afferent neuron [136,157]. It is shown in [136]

that I iPSC(t) can be presented as below,

I iPSC(t) =
∑

tj

K(t− tj)H(t− tj), (3.9)

where H corresponds to the Heaviside function, tj is the time in which a spike occurs, and

k is defined as below,

κ(t− tj) = V0.(exp(−
t− tj

τs
)− exp(−t− tj

τf
)), (3.10)

where
τs
τf

has to be set to 4. In our case, τs and τf are set to 10 and 2.5, respectively.

Moreover, V0 is called the normalizing factor which helps assure that the magnitude of the

kernel will remain less than 1.

56



3.2.2 PSD Learning Algorithm

The PSD algorithm is inspired by the traditional Widrow-Huff (WH) rule defined in the

following equation [158],

∆wi = ηui(yd − yo), (3.11)

where η is a positive number called the learning rate which specifies the rate of the training,

ui corresponds to the input, yd is the desired output and yo is the output produced by the

network, ∆wi specifies the weight update value.

The traditional WH rule cannot be easily applied on training SNNs because the WH model

was originally proposed to handle continuous signals. For spikes, the input and outputs are

just defined as the time in which spikes occur. Due to this reason, the updated formulation

presented in equation 3.11 cannot be directly applied on SNNs.

Assuming that each neuron can fire several spikes, an impulse function can be used to

formulate the spike trains that fired by each neuron,

S(t) =
∑

j

δ(t− tj), (3.12)

where δ is the Dirac or impulse function, tj is the time when the j − th spike occurs. The

input, output and desired spike trains can also be defined ,



































Sin =
∑

j δ(t− tj)

Sout =
∑

i δ(t− ti)

Sdes =
∑

f δ(t− tf ),

(3.13)

where Sin, Sout and Sdes correspond to the input, output and desired spike trains respectively

57



[136].

The Dirac function in the input, output and desired output makes it difficult to use the

traditional WH rule. In order to resolve that issue, a concept called spike convolution is

used. Convolving a kernel with different spike trains converts spike trains to real-valued

functions. In this way, the WH rule can be applied to the spike trains as well.

s̆(t) = s(t) ∗ κ(t), (3.14)

where κ(t) is the kernel function and is derived from equation 3.12. Based on this derivation,

the convolved spike has the same form as IPSC and the only difference is that IPSC is the

weighted sum of the afferent spiking neurons. St(i) is the presynaptic spike train, and S̆t(i)

is the convolved version of St(i) where it is convolved with the kernel function expressed

in equation 3.10. The convolution of St(i) with the kernel function, will transform St(i)

from spikes to an analog current signal. It is essential to convert the presynaptic spike

trains to the analog current, otherwise the postsynaptic neurons will not be able to process

the information coming from presynaptic neurons. Figure 3.1 demonstrates a post synaptic

current produced for random input and random output spikes. It can be seen that it is

continuous and can be used for training the SNN using WH training rule.

After the above modifications, the updated WH learning rule that is suitable for training is

expressed,

dwi

dt
= η(Sdes(t)− So(t))I

i
PSC(t). (3.15)

The above equation indicates that by applying the kernel introduced in two discrete spike

trains using equation 3.14, we can calculate the derivative of weights that corresponds to the

weight update in each iteration.

58



Figure 3.1. Post Synaptic Current after Spike Convolution.

3.2.3 Error Function

The Rossum metric was used in the PSD algorithm for determining the error. This metric

calculates the distance between the desired output and the output produced by the network

and is defined as below [136],

Dist =
1

τs

∫ +∞

0

[h(t)− g(t)]2, (3.16)

where h(t) is the filtered version of the output and g(t) is the filtered version of the desired

output. In our , we consider two different spikes trains as the labels of two different classes,

i.e., attacked measurements and not-attacked measurements. In this chapter, the desired

output means the label of the related input signal. In the learning process, the Dist function

does not affect the updating of weight values. However, the Dist is a measure that indicates

59



when we have a good training.

3.3 RC and Spiking DFR

In this section, we first introduce the structure of the RC, and then explain how this can be

modified to spiking DFR.

3.3.1 Design and Structure

In the past, neuron function was modeled as a linear integration of multiple synaptic inputs

followed by a threshold nonlinearity. However, recent neural information-processing research

suggests that single-neuron function is actually much more complicated [159]. These data

suggest that the spatial arrangement and the cable-filtering properties of biological synapses

and dendrites make the spatial-temporal characteristics highly nonlinear. In addition, these

temporal and spatial nonlinear integration processes enable the dynamics of certain neurons

to transit between superlinear and sublinear regimes. Such superlinear excitatory inputs can

transform the neurons into a two-layer neural network with the potential to classify linearly

non-separable functions. This single-neuron nonlinear-processing property has attracted

widespread research interests, not only in neuroscience but also in the ANN [160].

The architecture of the reservoir is based on the RNN. Unlike the RNNs, the connections

within the reservoir are not trained whereby randomly synaptic weights are assigned. The

input connections serve as the scaling of the input signal and transfer the scaled signal

to the reservoir. Within the reservoir, nodes are connected in a random manner whereby

the nonlinear mapping takes place. The two well-known reservoir computing models, echo

state network (ESN) and liquid state machine (LSM), employ the strength of RNN as the

60



reservoir or liquid in which the synaptic connection within these layers are not trained. By

only training the output weights, the complexity of training process has greatly reduced

resulting in less computation power and complexity.

The node states can be expressed as,

s(t) = f [W res
res .s(t− 1) +W res

in .x(t− 1)], (3.17)

where s(t) is the node state at time t, x(t − 1) is the input, and W res
res and W res

in represent

the randomly generated reservoir and input connection weights. The output, y(t), can be

expressed in terms of input and weight connections,

ŷ = W out
res s(t) +W out

in .x(t− 1) +W out
bias, (3.18)

whereW out
res are the output weights from reservoir, W out

in are the feedback weights from output

to reservoir, and W out
bias is the set of weights for training bias value.

The neuron-like nodes in the reservoir possess the functionality of nonlinear mapping whereby

the biological neuron’s behavior is achieved. Any reservoir computing systems should possess

two properties, 1) high dimensionality, and 2) short-term memory. The RC is computation-

ally inexpensive to train, and its reservoir implementation is highly flexible. These advan-

tages make the RC especially suitable for emerging unconventional computing paradigms.

The DFR model utilizes a single neuron and a delayed feedback to create reservoirs with a

ring topology. Figure 3.2 illustrates the topology of our introduced spiking DFR. There are

several blocks in this structure. The incoming smart grids measurements first have to be

encoded. The encoded data is then converted to the analog current. This current is next

applied to the nonlinear node of the DFR, where in this structure is a LIF neuron. The

spikes generated by the LIF neuron go through a delay loop, and for each measurement

61



of the smart gird its corresponding spike train is generated. This process is repeated until

the corresponding spike trains of all the measurements are generated. In the next step, the

interspike intervals of the spikes trains are used as the features for training the readout layer,

where in our case is a MLP. The MLP is trained with the features extracted in the reservoir

layer, and there are two different labels corresponding to the compromised measurements

and not-compromised measurements.

Figure 3.2. Spiking Delayed Feedback Reservoir Computing.

The governing equation for DFR is expressed in as,

ẋ = −x(t) + F (x(t− τ), I(t), θ), (3.19)

where f is a nonlinear differentiable function, also known as the nonlinear mapping, τ is the

delay, x(t) is the states of DFR, and I(t) is the input signal along with a masking scheme

that injects into the DFR. Within the delay loop, the total delay time, τ , is divided into N

equidistant delay units which can be expressed as equation 3.20,

τ = Nθ, (3.20)

62



where θ is the time interval between virtual nodes. Different from the RC, due to the ring

topology of DFR, the number of nonlinear nodes is drastically reduced. The input will be

injected directly into the nonlinear node whereby the nonlinear mapping takes place. Similar

to the traditional RC, the output weight connections are the only trained weights [159].

3.3.2 High dimensional behavior of DFR

The reason that DFR has drawn a lot of attention in machine learning is that it is capable of

mapping data to a higher dimensional space which makes the data linearly separable [159].

The question that arises is , ”How it could be possible that a simple delay would map the

data to a high dimensional space”. The chaos theory answers this question very well. The

Lyapunov analysis of chaos systems shows that the delay can map the low dimensional data

to a higher dimensional space [161]. Several studies have shown that the Lyapunov dimension

of a chaos system directly corresponds to the delay of the loop [161]. In this chapter, we will

show that there is a potential to combine DFR and SNN. In that way, we can benefit from

both of them. Applying DFR on the data will map it to a higher dimensional space that

makes the linear separation of the attacked and not-attacked easier. On the other hand, if

we can use the SNN trained by the PSD rule, then it is possible to take advantage of the

spatiotemporal correlation that exists in different components of smart grids.

Based on several studies, DFR has to be at the edge of the chaotic region in order to show

high dimensional behavior. In Section 3.5, we will examine the behavior of the DFR for

several delays and we will choose the value that shows more chaotic behavior, as the delay

used in our simulations. As it can be seen in Figure 3.3, the data on the left side is not easily

linearly separable but when it gets mapped to a higher dimensional space, it is much more

easily separable. That is the main motivation behind using DFR in this chapter.

63



Figure 3.3. High dimensional mapping of data using DFR.

3.4 Training PSD For FDI Attack Detection

In this section, we introduce different spike encoding schemes and describe how to leverage

them for encoding the smart grids’ measurements. We then use the encoded measurement for

training the SNN using the PSD algorithm. Encoding the information and learning are the

two major components of each SNN [156]. In this chapter, three different encoding schemes

are explored to encode the measurements produced by the smart grid simulations. That is,

latency, latency-phase, and ISI are respectively used for training SNN using the PSD.

3.4.1 Latency encoding

In latency or time to first spike (TTFS) encoding, a stimulus is encoded as the time in which

the first spike fires with respect to the stimulus, i.e., the latency between the onset of the

stimulus and the first spike observed [157]. Latency code is formulated as below in [156],

Latency = ti = tmax − ln(α.si + 1), (3.21)

64



where tmax is the maximum length of the encoding window; α is the scaling factor; si is

the intensity of each pixel. In our case, tmax is set to 200 ms, si is replaced by smart grid

measurements and α is set to -1 when the measurement is a negative number and 1 otherwise.

Equation 3.21 is inspired by this fact that stimulus with stronger intensity leads to shorter

response time and stimulus with weaker intensity leads to a longer latency for the neuron to

fire [162].

3.4.2 Latency-Phase encoding

It has been shown in [157] that combining or multiplexing different encoding approaches can

yield higher information capacity. There is also other evidence showing that multiplexing of

different encoding schemes happens in the brain and that is a reason why a brain is a powerful

tool in discriminating different objects. Inspired by this background, Nadasdy [163] proposed

a mechanism for combining latency and phase codes. The relative timing of a spike with

respect to the intrinsic subthreshold membrane potential oscillation (SMOs) is the feature

that defines the phase code of a spike [163]. SMOs can simply be defined as below for the

measurement of the i-th meter in the smart grid,

SMOi = Acos(2πft+ φi) i = 1, 2, ...., L, (3.22)

where A is the magnitude of SMO and in this chapter, it is set to 1, f is the oscillation

frequency that in our case is set to 0.05, L is the total number of encoding units that in

this chapter is equal to 34 which represents the total number of meters in the smart grid

design that we used, φi is the initial phase of the i-th meter and is presented as the following

equation,

φi = φ0 + (i− 1)∆φ, (3.23)

65



where φ0 corresponds to the reference phase, and ∆φ is the phase difference between adjacent

smart grid meters. In [136, 156], ∆φ is set to 2π/Nen and Nen is the total number of pixels.

In our case, ∆φ is equal to 2π/L and L is the total number of meters, i.e. 34 in the smart

grid configuration that is used in this chapter.

Figure 3.4. Aligning latency code with SMO of each meter using Gamma alignment.

Gamma alignment is the process that multiplexes the latency code with phase code. In this

process, the latency code gets synchronized with the corresponding SMO of each meter as

shown in Figure 3.4. In fact, the latency codes are drifted using this method so that they

are located at the peak of their corresponding SMO for each meter. In this way, we can

combine phase and latency code and probably get better results in training the SNN using

PSD code.

66



3.4.3 ISI encoding

ISI encodes the relative distance between the spikes, i.e., instead of using the absolute timing

of each spike, the relative distance of each spike with respect to other ones is used for encoding

the stimulus. Figure 3.5, demonstrates an example of ISI.

Figure 3.5. The interval between spikes in ISI encoding.

Di = f(Ci, Vi)− f(Ci−1, Vi−1), (3.24)

where f(Ci, Vi) is defined as below,

f(Ci, Vi) = (Ci+1)[β(Vi − γ) + θ], (3.25)

where Ci,Vi are the parameters of the LIF neuron performing the encoding. Ci,Vi corresponds

to the capacitance of the membrane and the threshold [150, 151]. The number of the spikes

produced by the encoding unit is set as 4 for the sake of the simplicity. This means that for

the measurement of each meter, there are totally three interspike intervals. The extracted

intervals will be used later to train the SNN with PSD.

67



3.5 Performance and Analysis

3.5.1 Using SNN for Dynamic Attack Detection

In our simulations, we assume that the number of compromised meters can vary from 0 to 34.

Figure 3.6 shows the average training error for the attacked data. As it can be seen, TTFS

multiplexed by phase can improve the training performance. This agrees with our initial

hypothesis that multiplexing different codes results in better classification. However, the

training performance with ISI is even better than the TTFS multiplexed phase. Figure 3.6

demonstrates the average training error for different numbers of compromised meters. As

it can be seen in Figure 3.7, the training error of PSDS using ISI is better than both other

methods, and the performance of the TTFS multiplexed by phase encoding is better than

simple TTFS. All the simulations are performed over 2000 iterations, and the error is defined

as the distance between the generated spike train and the spike train specified as the label for

each attack. In this chapter, 10 different neurons are used at the output layer, and for each

number of compromised meters, there exists one spike train as the label. The SNN trained

with the PSD algorithm will associate the pattern of each spatiotemporal attack depending

on the number of compromised meters with a spike train in the output. It means that if an

attack is performed that only compromises one meter, the first neuron has to fire a spike

train at 20ms, 60ms and 100ms and the other neurons should not fire any spikes. The error

for SNN is defined as the distance between the desired spike train and the output spike train

as defined in equation 3.16.

As seen in Figure 3.7, when the number of compromised meters increases, the training error

decreases. In our simulations, we set the learning rate, η, equal to 0.01. The weights are

initialized with a normal distribution of mean and variance equal to 0.5 and 0.2 respectively.

The output neurons are supposed to fire three spikes at three different times for the samples

68



0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

-5

0

5

10

15

20

25

D
is

ta
nc

e
ISI

TTFS

TTFS multiplexed by Phase

Figure 3.6. Error of training for different encoding schemes.

of each class of data. These results indicate that SNNs, especially if being trained by ISI

encoding, have a good potential for supporting FDI attack detection. The drawback of ISI

encoding is that ISI produces multiple spikes per meter, as opposed to only a single spike

per meter for the latency encoding. This makes it computationally more challenging, and

the training takes longer.

The performance metric used to evaluate the detection performance is the accuracy which

is defined as

Accuracy = (TP + TN) / (TP + TN + FP + FN) , (3.26)

where TP, TN, FP and FN correspond to the number of true positive, true negative, false

positive and false negative samples respectively. As it can be seen in Figure 3.8, ISI encoding

achieves higher attack detection rate based on the accuracy metric defined in equation 3.26.

For testing, some other data that are not used for the training are applied on the weights

69



0 5 10 15 20 25 30 35

# of Compromised meters

0

2

4

6

8

10

12

D
is

ta
n
c
e

ISI

TTFS multiplexed by Phase

TTFS

Figure 3.7. Error of training for different encoding schemes & different number of
compromised meters.

70



0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

110

A
c
c
u
ra

c
y
%

# of Compromised meters

 

 

ISI

TTFS

TTFS multiplexed by Phase

Figure 3.8. Test results.

achieved from the training phase. The test results also confirm that ISI is a better encoding

scheme. Therefore, multiplexing can improve the results of TTFS encoding but it cannot

outperform the ISI.

3.5.2 Attack Detection Using DFR

As it was mentioned in Section 3.4.1, RC is a type of recurrent neural networks that is easier

to train, and is capable of classifying linearly non-separable data by mapping them to higher

dimensional space. In this section we use spiking DFR to detecting the dynamic attacks.

The data that we use are unbalanced. It means that the ratio of the compromised and

uncompromised samples is not equal. In our data set, 20% of the samples are compromised

and 80% are not. The performance metrics for evaluation are accuracy , and F1 . Accuracy

71



was defined in Section 3.5.1, and F1 is defined,

F1 = 2× Precision×Recall

Precision+Recall
, (3.27)

where Precision = TP
TP+FP

, and Recall = TP
TP+FN

.

Figures 3.10 & 3.11, demonstrate that the combination of the spiking neurons, DFR,

0 5 10 15 20 25 30 35

# of Compromised meters

50

55

60

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

A
=

0
.1

)

Spiking DFR+MLP

MLP

SNN

0 5 10 15 20 25 30 35

# of Compromised meters

50

55

60

65

70

75

80

85

90

95

100

A
c
c
u

ra
c
y
 (

A
=

1
)

Spiking DFR+MLP

MLP

SNN

0 5 10 15 20 25 30 35

# of Compromised meters

50

55

60

65

70

75

80

85

90

95

100

A
c
c
u

ra
c
y
 (

A
=

1
0

)

Spiking DFR+MLP

MLP

SNN

Figure 3.9. Accuracy of attack detection for three different methods and magnitude of
attacks, A=0.1,1,10.

0 5 10 15 20 25 30 35

# of Compromised meters

0

10

20

30

40

50

60

70

F
1

 (
A

=
0

.1
) Spiking DFR+MLP

MLP

SNN

0 5 10 15 20 25 30 35

# of Compromised meters

0

10

20

30

40

50

60

70

80

90

100

F
1

 (
A

=
1

)

Spiking DFR+MLP

MLP

SNN

0 5 10 15 20 25 30 35

# of Compromised meters

0

10

20

30

40

50

60

70

80

90

100

F
1

 (
A

=
1

0
)

Spiking DFR+MLP

MLP

SNN

Figure 3.10. F1 of attack detection for three different methods and magnitude of attacks,
A=0.1,1,10.

and MLP achieves a higher performance than the MLP and SNN, based on both evaluation

metrics. As it can be seen, as the magnitude of the attack, A, increases the performance

also gets better. It is due to the fact that DFR can mimic the RNNs and captures the

spatiotemporal correlation between the meters of the smart grids. In the DFR+MLP, the

MLP is used as the readout layer of the DFR. The structure of the spiking DFR is shown in

72



0 5 10 15 20 25 30 35
88

90

92

94

96

98

100

A
c
c
u
ra

c
y

# of Compromised meters

 

 

Delay=10ms

Delay=40ms

Delay=100ms

Delay=400ms

0 5 10 15 20 25 30 35
10

20

30

40

50

60

70

80

90

100

F
1

# of Compromised meters

 

 

Delay=10ms

Delay=40ms

Delay=100ms

Delay=400ms

Figure 3.11. Effects of different values of the delay on the performance when the A=1 .

Figure 3.2. The input is the data that is collected. In our simulations we use MATPOWER

for generating the data, and 20% of the total data is compromised by dynamic attack defined

in (6). The nonlinear node of the DFR is chosen as a LIF neuron, which is a model of spiking

neurons. The encoded input needs to be converted to the current that can be applied to

the LIF neuron. Equation 3.9 is used for converting the encoded input to the current. This

current is then applied to the LIF neuron, and for each current the corresponding spike train

is generated. These spike trains are delayed in time, and then are again converted to the

current that can be added to the corresponding current of the next input. This process is

repeated until all the samples are processed and the corresponding spike train of each input

samples is generated. These spike trains are composed of several spikes, and each spike

occurs at a different time. The occurrence frequency of these spikes are used as the features

for training the readout layer. In this chapter, the MLP is the readout layer. The input

of the MLP is the occurrence time of these spikes and the output of the MLP is 0 or 1,

depending on the class of the data. If the data are attacked, then the output of the MLP is

1, otherwise is 0. After the training is accomplished, the data that have not been previously

seen by the spiking DFR is used for testing.

73



Totally 10000 samples are used for training and 10000 are used for testing, where 20%

of the samples are compromised and 80% of them are not. The two different ratios of

compromised and uncompromised samples, make the data unbalanced. The same dataset

are also used for training the MLP and SNN. In Figures 3.10 & 3.11, the performance

of these three methods, DFR+MLP, MLP, and SNN with respect to to the number of

compromised meters and the magnitude of the attack is plotted. When the magnitude of

the attack increases, the performance gets better regarding both performance metrics. The

spiking DFR+MLP, achieves the best performance. For low values of magnitude of attacks,

both MLP and SNN achieve very low performance rates. However, DFR+MLP can detect

the attacks with much higher accuracy even for low values of magnitude of attack. Our

simulation results demonstrate that the average accuracy of attack detection for all different

magnitude of attacks and number of compromised measurements is increased up to 94.6%

when spiking neurons, DFR, and MLP are combined together in a single platform. In the

simplest case where only SNNs are used, the average accuracy is 77.92%, which shows that

our introduced method can improve the average accuracy about 17%. The enhancement

brought about by our method regarding F1 measure is even more significant. The average

F1 achieved by combining spiking neurons, DFR, and MLP is 78%. However, the F1 is

only 25% where we just use SNN for dynamic attack detection. This result implies that our

introduced algorithm can improve F1 measure about 53% In Section 3.5.1, the performance

of the SNN was presented while the magnitude of the attack was high, i.e., A = 1. However,

as it is shown in Figures 3.10 & 3.11, the SNN achieves very low performance rates when

the magnitude of the attack is low. Specially, F1 metrics demonstrates that in situations

that the magnitude of the dynamic attack is very low the MLP and SNN are both incapable

of detecting the attacks. The main reason is that the MLP and the SNN are not able to

capture the spatiotemporal correlation of the data and map the data to higher dimensional

space respectively. However, the spiking DFR+MLP is able to capture the spatiotemporal

74



Figure 3.12. Phase portraits of dynamic systems.

correlation existing in the data due to its recurrent structure, and it also maps the data to

a higher dimensional space due to the fact that it is able to act at the edge of chaos [164].

3.5.3 Effect of Delay on the Performance

Figure 3.12. shows the performance of the DFR+MLP when the delay value is changing.

When the delay value is set to 40ms, the performance achieves higher rates regarding both

accuracy and F1. However, when the delay is set to 10ms, the lowest performances are

obtained. This is due to the fact that proper values of the delay need to be chosen so

that the spiking DFR+MLP can work at the edge of chaos. Varying the time delay, the

phase portraits are illustrated in Figure 3.12. As delay increases, the dynamic behavior

varies from ordered to the edge of chaos to completely chaotic. Studies in [161] suggest

that a dynamic system can show a high dimensionless behavior if its delay is tuned in a

75



way that the dynamic system can operate at the edge of chaos. To further examine the

dynamic behavior, the solution to the DDE equation is investigated. The dynamic behavior

of the nonlinear function is modeled by the DDE with varied delay time, as demonstrated in

Figure 3.12. The phase portrait is a representation of the solutions tracing the path of each

particular solution. It is a graphical tool to visualize how the solutions of a given system

of differential equations would behave in the long run. Phase portrait tracks the dynamic

behavior and demonstrates the chaotic or periodic behavior of the system.

3.5.4 Comparison With Classical Algorithms

The SVE is the first method for attack detection in smart grids [141]. This method is based

on calculating the chi-squared residual stated as ρ. If the calculated value of ρ is greater

than a predefined threshold value, then the measurement vector, z, is classified as attacked.

The residual value, ρ, is defined as,

ρ = ||ž −Hx̂||22, (3.28)

where x̂ is the estimated state of the smart grid, and can be calculated as follows,

x̂ = (HTWH−1)HTWz, (3.29)

where W is a diagonal matrix and its diagonal elements are the reciprocal of the measure-

ments variance. The ith diagonal element of W corresponds to the reciprocal of the variance

of the ith meter. The SVE is very easily implemented. However, it faces a major shortcom-

ing while dealing with hidden attacks. In the case of hidden attacks, as we will show and

prove in (30), the residual value is always less than the threshold value. Therefore, the SVE

76



cannot be useful for hidden attacks.

ρ = ||ž −Hx̂||22

= ||z + a−H((HTWH−1)HTWz)||22

= ||z −Hx+Hc−H((HTWH−1)HTWHc)||22

= ||z −Hx+Hc−HC||22

= ||z −Hx||22 ≤ τ

(3.30)

As it can be seen in (30), when the attack is hidden the residual value, ρ, is always smaller

than the threshold value, τ . Therefore, the hidden attack cannot be detected by SVE. Since,

in this chapter we also consider the attack to be hidden, it means that the SVE is not a

good choice for us.

3.5.5 Complexity Analysis

In this section, the complexity of our approach is analyzed and compared with other meth-

ods. The computational complexity of the spiking DFR based dynamic attack detection is

associated with calculating the reservoirs and updating the weights of the readout layer. In

the spiking DFR based approach, the only weights that require training, are the weights of

the readout layer. However, in RNNs the weights of all the neurons in different layers have

to be trained. The training of all the layers of RNNs make them much more computationally

complex than RC based structures. The total number of floating- point operations (FLOPs)

can be used for measuring the complexity. It has been shown in [69] that the computational

complexity of RC based learning approaches, correspond to the training time. Therefore, in

this section we will demonstrate the training time of our approach and compare it with the

training times of the MLP, and SNN. In Table 3.2, the training times of spiking DFR+MLP,

77



MLP, and SNN are presented. The comparisons are done among the training time of these

three algorithms, which imply their computational complexities as well.

Table 3.2: Computational Complexity Analysis

Algorithm Training Time

Spiking DFR+MLP 16.69 s

MLP 3.2 s

SNN 90 s

As shown in Table 3.2, the SNN algorithm has the highest computational complexity. In

Figure 3.6, it can also be observed that it takes a lot of iterations for the SNN algorithm

to converge. The spiking DFR+MLP, and MLP are the second and third computationally

complex algorithms respectively. As it can be seen in Figure 3.2, the spiking DFR+MLP has

some building blocks that make it more computationally complex than MLP. Our introduced

algorithm contains some blocks, e.g. spike to current, reservoir block, and MLP as the

readout layer. These blocks make our algorithm more computationally complex than a

simple MLP. However, this extra overhead is not that much significant as shown in Table

3.2.

3.6 Conclusion

This is the first chapter exploring spiking DFRs for dynamic cyber-attack detection in a

smart grid. Our method integrates DFR and MLP to detect FDI dynamic attack in a smart

grid. Different temporal encoding schemes are investigated to encode the measurements

obtained from the smart grid. Simulation results suggest that ISI yields the best training

performance because it conveys more information than other encoding schemes. On the

other hand, DFR can be used to map the data to a higher dimensional space making it

easier to classify the compromised data from uncompromised data. Simulation results also

78



show that combining DFR with MLP can outperform other methods such as MLP and

SNN. Furthermore, the chaotic dynamic behavior can be observed in DFR responses when

the delay is changed suggesting the DFR performance is sensitive to the delay value.

79



Chapter 4

MIMO-OFDM Spectrum Sensing

using Delayed Feedback Reservoir

Computing

4.1 Introduction

Multiple-input-multiple-output (MIMO) technology combined with orthogonal frequency di-

vision multiplexing (OFDM) has been adopted in many advanced wireless communication

systems. The combination of MIMO and OFDM technologies improves the spectral effi-

ciency, as the MIMO utilizes the spatial multiplexing gain and the OFDM avoids frequency

selective fading. Besides, adding cyclic prefix (CP) to the OFDM symbols decreases inter

channel interference (ICI), and inter symbol interference (ISI). However, in a MIMO-OFDM

based wireless communication system not all the subcarriers are utilized simultaneously by

the primary user (PU), and the spectrum utilization efficiency is low [47, 165–169]. Dy-

namic spectrum sharing (DSS) in a MIMO-OFDM system introduce a solution to resolve

80



this problem where the under utilized subcarriers can be used by the secondary users (SUs).

The SUs are allowed to transmit signals only on the subcarriers that are found idle and

they should evacuate those bands as soon as the PU wants to use them. Therefore, it is

fundamental for the SUs to perform spectrum sensing subsequently to identify spectrum

holes accurately and the interference is minimized. The performance of the spectrum sens-

ing can be significantly degraded due to fading wireless channels, and low signal-to-noise

(SNR) ratios. In addition, sensing the OFDM symbols faces more challenges including noise

uncertainty, timing delay and carrier frequency offset [170]. Despite, numerous efforts these

challenges still remain unsolved. In order to minimize the interference, for a given SNR, the

probability of detection (Pd) has to be close to one while the probability of false alarm (Pf )

is close to zero.

So far, in the literature three major techniques have been introduced as the classical spec-

trum sensing methods. These methods are energy detection, matched filtering, and cyclo-

stationary feature detection which suffer from several drawbacks including, low probability

of detection at low SNRs, requiring accurate prior knowledge of the signal, and computa-

tional complexity, respectively [47–49]. Due to the limitations of classical spectrum sensing

techniques, machine learning (ML) approaches have drawn a lot of attention as they have

several advantages over traditional spectrum sensing techniques. These advantages are: 1)

the ML based spectrum sensing approaches are more adaptive and can learn the surround-

ing DSS environment (e.g., the fading channel) effectively; 2) the detection performance

of the ML based spectrum sensing techniques are better as they can identify the decision

boundaries [50, 51].

Recurrent neural networks (RNNs) have been introduced to capture the temporal correlation

of the RF received signals and increase the Pd for a low value of Pf [171]. However, due

to the vanishing gradients, the traditional RNNs are very challenging or even impossible to

81



train. Reservoir computing (RC) is a new generation of RNNs that is much easier to train,

and in many cases have shown equal or even better performances than the traditional RNNs.

There are three different types of RC systems, echo state networks (ESN), delayed feedback

reservoirs (DFR), and liquid state machines (LSM) [20]. In this chapter we focus on DFRs

because they have low computational complexity. For several reasons, we introduce to adopt

spiking DFR (SDFR) for spectrum sensing in a MIMO-OFDM system. The neurons in our

brains communicate together using spikes and artificial spiking neural networks (SNNs) are

the most energy efficient and biologically plausible model of artificial neurons which make

them a suitable choice for hardware implementations. As an example, we can mention to

Truenorth which is a spiking neural network chip developed by IBM in 2014, and consumes

only 70 milliWatts (mW) while performs 46 billions of synaptic operations in a second [172].

Although it is clear that biological neurons leverage spikes to communicate, the encoding

mechanism which is adopted to encode the neural information is not clear yet. There are

evidences which show that temporal encoding is the most likely encoding scheme used by

biological neurons [157]. Temporal encoding schemes are also divided to different categories.

Latency or time to the first spike (TTFS) and interspike-interval encoding are the two most

well-known temporal encoding schemes in biological neurons. In this chapter we introduce

the mathematical representation of these two schemes and identify the optimal encoding

in terms of detection accuracy. On the other hand, training the DFR is composed of an

unsupervised feature extraction followed by a supervised training. It will be discussed in

Section 4.2 that the unsupervised feature extraction step of the DFR does not require any

training which makes DFR very suitable for practical scenarios where the training time

should be very low. Moreover, none of the ML based methods in the literature have been

adopted in the spectrum sensing of MIMO systems. MIMO is a core technology in many

advanced wireless communication systems. Therefore, it is very important to introduce a

spectrum sensing method which can be adopted in MIMO systems as well.

82



As discussed earlier, ML based spectrum sensing approaches provide several benefits. How-

ever, these approaches face multiple challenges as well. One of the major challenges that the

ML based spectrum sensing techniques suffer from is the scarcity of labeled data [173]. In or-

der to achieve high performances, the ML based techniques are required to use sufficient and

expressive data for training. Collecting sufficient and expressive data for spectrum sensing is

very expensive and time consuming. Therefore, we introduce to leverage generative adver-

sarial networks (GANs) combined with SDFRs to generate synthetic samples using a small

number of real samples [174]. The GANs were initially introduced to synthesize fake images

which look very similar to the real images. In recent years, the GANs have been applied in

other domains as well. Data collection process is both expensive and time consuming and we

will show that GANs combined with SDFR are very efficient and fast to train in spectrum

sensing while there is limited training data. The main contributions of this chapter are the

followings:

• First, we introduce an energy efficient and easy to train hybrid training scheme using

spiking neurons and DFR combined with multi-layer perceptrons (MLPs) to identify

the busy/idle subcarrier in a MIMO-OFDM system. We incorporate the temporal

correlation in the PU activity behavior using spectrum sensing dataset developed by

RWTH Aachen University Static Spectrum Occupancy Measurement Campaign [175].

In most of the spectrum sensing literature, the activity of the PUs follows a Markov

chain or a random trend [68]. However, none of these two assumptions are realistic.

We use the Aachen university PU activity behavior to model the occupancy trend

of the PU in this chapter. RWTH Aachen University Static Spectrum Occupancy

Measurement Campaign has conducted several experiments to measure the PU activity

in different frequency bands and time slots. Their experiments have shown that in each

frequency band, a significant temporal correlation exists in the PU activity in different

83



time slots. In this chapter, the occupancy of each subcarrier is modeled based on

its corresponding frequency occupancy model which is extracted from RWTH Aachen

university spectrum occupancy database. Then, we will show that our introduced

scheme outperforms the state-of-the-art techniques in terms of detection accuracy and

computational complexity. This is the first time that the hybrid SDFR and MLP

platform is being introduced for spectrum sensing.

• Second the optimal encoding scheme to encode the spikes is introduced. It is clear

that in our brains, neuron communicate together using spikes. However, the mech-

anism which is used to encode the information is not clear. We will formulate two

temporal encoding schemes namely, latency and ISI and identify the optimal encoding

mechanism in terms of detection accuracy.

• Third, our model is extended to a stacked deep SDFR in space domain to capture

the spatial correlations which exist while there are multiple SUs in a cooperative DSS

environment. The results indicate that the deep extension of SDFR in space is very

effective to exploit the spatial correlations between multiple SUs.

• Fourth, the combination of SDFR and conditional GANs (cGANs) are introduced

to synthesize more training data while the training data is scarce. We investigate the

quality of the synthesized data in different scenarios. To the best of our knowledge, this

is the first time that the cGANs are used to synthesize MIMO-OFDM symbols for data

augmentation. It is shown that the detection performance of our introduced spectrum

sensing approach will significantly drop when the size of training data is limited and

we resolve this issue by introducing a combined cGAN and SDFR platform.

The organization of this chapter is as follows. In Section 4.2, the system model of the MIMO-

OFDM spectrum sensing and detailed description of SDFR based spectrum sensing are

84



presented. Section 4.3, describes our approach for using cGANs to synthesize MIMO-OFDM

symbols to enlarge the training dataset. Section 4.4 presents the results and performance

evaluation. Section 4.5, concludes the chapter.

4.2 Problem Formulation & System Model

In OFDM multicarrier transmission, L−point inverse discrete Fourier transform (IDFT) is

applied to modulate the PU symbols. In this chapter we use QPSK for modulating the

data bits. Subsequently, the CP is added to the symbols and the symbols are transmitted

over a fading Rayleigh channel. In this chapter, we set the mean, and the variance of the

Rayleigh channel equal to 0, and 1, respectively. Equation 4.1 represents the kth QPSK

symbol generated by the PU after it passes through the IDFT,

s(t− kTi) =
L−1
∑

l=0

Sk,le
j2πl(t−kTi)

Ti ej2πfi(t−kTi) (4.1)

where Sk,l is the PU symbol that is modulated on the lth subcarier, fi is the QPSK carrier

frequency, and Ti is the QPSK symbol period. This symbol is transmitted over a fading

Rayleigh channel and the received signal is down converted to the baseband and then passes

through the P−point discrete Fourier transform (DFT). The nth OFDM symbol can be

written as follows,

y(t− nTs) = e−j2πfs(t−nTs)

M−1
∑

m=0

hms(t− kTi −mTs), (4.2)

where hm is the Rayleigh channel fading coefficient, Ts is the OFDM symbol period, and fs is

the OFDM carrier frequency. The signal transmitted on the pth subcarrier is as follows [176]:

85



Yp(n) =
L−1
∑

l=0

Xk,lHle
j2π(−kfiTi+nfsTs)ejπβl,p(P−1)

× sin(πβl,pP )

sin(πβl,p)
1 ≤ p ≤ P,

(4.3)

whereHl =
∑M−1

m=0 hme
−j2πm



fiTs+l
Ts

Ti





, βl,p =

(

k

Ti

+ fi − fs

)

Ts

M
−m

M
, andM is the number

of subcarriers. Therefore, the received signal at the SU which is transmitted on the pth

subcarrier can be written as,

Rp(n) = Yp(n) +Np(n) (4.4)

where Np(n) is the DFT of complex additive white Gaussian noise (AWGN) with zero mean

and unit variance. The main objective of this chapter is to determine the presence or

absence of the signal on the pth subcarrier. The presence and absence of the received signal

are denoted as two hypothesis, H1 and H0 respectively. Therefore, the received signal is as

follows,

Rp(n) =















Np(n) H0

Yp(n) +Np(n) H1 n = 1, ...., N

(4.5)

where N is the number of OFDM received symbols. In the energy detection based spectrum

sensing, the decision statistics of each subcarrier is formed based on the average received

energy of N symbols and is expressed as follows,

Ep =



















1

N

∑N

n=1

∣

∣

∣

∣

Np(n)

∣

∣

∣

∣

2

H0

1

N

∑N

n=1

∣

∣

∣

∣

Yp(n) +Np(n)

∣

∣

∣

∣

2

H1

(4.6)

The decision statistics (Ep) is compared with a threshold value, if Ep is larger than the

threshold value then the subcarrier is considered as busy, otherwise the subcarrier is denoted

86



as idle. The threshold value is calculated based on the given probability of false alarm (Pf ).

The ideal case is to have a high probability of detection for each subcarrier (P p
d ) while P p

f

has a low value. The P p
d , and P p

f are defined as [177],

P p
f = Pr(Ep > ǫp|H0)

= Q

((

ǫ

σ2
n

− 1

)√
N

)

P p
d = Pr(Ep > ǫp|H1)

= Q

(

(

ǫ

σ2
n

− γp − 1

)

√
N

γp + 1

)

(4.7)

where ǫp is the energy detection threshold for subcarrier pth, γp is the signal-to-noise ratio

(not in dB) of the pth subcarrier, N is the number of OFDM received symbols, Q(.) is the

complementary function of a standard Gaussian distribution, and σ2
n is the noise variance

which in this chapter is assumed to be 1. The ǫp is calculated based on the given P p
f . So

far, the received signals, and decision statistics of a single antenna SU have been identified.

However, the receiver of SU might have multiple antennas. The received signal of the pth

subcarrier at the jth antenna is,

Rt
p(n) = Y t

p (n) +N t
p(n) t = 1, ...., T, (4.8)

where T is the number of SU antennas. The decision statistics (Ep) are as follows while we

assume there are multiple antennas at the SU,

Ep =



















1

NT

∑T

t=1

∑N

n=1

∣

∣

∣

∣

N t
p(n)

∣

∣

∣

∣

2

H0

1

NT

∑T

t=1

∑N

n=1

∣

∣

∣

∣

Yp(n) +N t
p(n)

∣

∣

∣

∣

2

H1

(4.9)

87



The P p
f and P p

d for a MIMO-SU are written as follows,

P p
f = Q

((

ǫ

σ2
n

− 1

)√
TN

)

P p
d = Q

(

(

ǫ

σ2
n

− γp − 1

)

√
TN

γp + 1

)

.

(4.10)

4.2.1 Delayed Feedback Reservoirs for Spectrum Sensing

In almost every system delay exists, inevitably in the neurons of our braina as well. The

delay can affect the performance of the neurons. Therefore, it is very essential to study the

delay effects on the information processing neurons. In delayed dynamic systems, the state

of the system not only depends on the current time but also on the previous time samples.

Delayed differential equations (DDEs) are leveraged to express the mathematical formulation

of delayed dynamic systems [147],

dx(t)

dt
= f [x(t), x (t− τ)] (4.11)

where f is a nonlinear function, and τ is the delay value. It is shown in [147] that the delayed

feedback loops can perform as reservoirs which means they can form short term memories.

As it was mentioned in Section 4.1, RC is a new class of RNNs which is capable of capturing

the spatio-temporal correlations in the data and also map the data from low dimensional

space to high dimensional space which makes the classification task of linearly non-separable

date easier. The RC systems are composed of three different layers: input, reservoir, and

output layer. In the input and reservoir layers, all the weights are fixed, but the output layer

requires training. The reservoir layer acts as the recurrent layer of the system, and captures

the temporal correlation of the input data. The extracted temporal features are then used

for training the output weights.

88



The structure of a delayed based RC scheme is depicted in Figure 4.1. As it can be seen in

Figure 4.1. Spiking DFR Structure.

Figure 4.1, the delay loop is composed of a nonlinear node and a set of virtual nodes. The

nonlinear node (NL) that we use in this chapter is a mathematical representation of spiking

neurons. This model is called leaky-integrate and fire (LIF) neuron which is defined as,

τRC

dv(t)

dt
= −v(t) + I(t), (4.12)

where τRC , v(t), and I(t) are the time constant, membrane voltage and input current of LIF

neuron, respectively. The LIF neuron generates a spike as soon as the membrane voltage

exceeds a certain threshold value. The spike trains which are generated by LIF neuron go

through a delay loop which is composed of virtual nodes. The virtual nodes are separated by

θ which is a fixed delay value. Delayed dynamic systems can form short term memory and

demonstrate high dimensional behavior only if they operate at the edge of chaotic region.

Therefor, the number of the virtual nodes and the value of θ are very important parameters

of SDFR which have to be tuned properly. To introduce the recurrence in this model, the

89



output of the last virtual node is multiplied by a feedback gain (g) and then it is added to

the next input sample.

To process the input signals using spiking neurons, we first need to encode the signals. It was

mentioned in Section 4.1 that the temporal encoding is the most optimal encoding which

has been introduced in the literature so far. Therefore, in this chapter we formulate two

different categories of temporal encoding schemes and evaluate the performance of each one

in MIMO-OFDM spectrum sensing. At first, we introduce the mathematical representation

of latency encoding. The latency encoding is defined in terms of the latency between the

input onset and occurrence of the first spike. The intuition behind the latency encoding is

that for input with higher intensity the latency is shorter and conversely. Therefore, the

latency encoding is defined as follows,

ti = Tmax − ln(η.Ii + 1), (4.13)

where ti is the latency which is shown in Figure 4.2(a), Tmax is encoding window time, Ii is

the intensity of the input, and η is a scaling factor.

In ISI encoding, the information is encoded with respect to the relative distance between

different spikes which exist in a spike train. Figure 4.2(b) demonstrates an example of ISI

encoding scheme where D1, D2, and D3 are the relative distances between the spikes. We

leverage a nonlinear neuron model for ISI encoding. Equation (4.14) shows the ISI encoding

strategy [36],

Di = G (ri, Ci, Vi)−G (ri, Ci−1, Vi−1) , (4.14)

where Di is the time distance between two consecutive spikes; G is the nonlinear ISI encoding

neuron; Ci and Vi are the capacitance and threshold voltage of the ith encoding neuron,

respectively. The number of the ISI encoding neurons is a hyperparameter that requires

90



Figure 4.2. a. latency encoding, b. ISI encoding

tuning. In this chapter, for the sake of computational simplicity, the number of ISI encoding

neurons are set to 3. The relationship between the number of ISI encoding neurons and the

number of spikes can be expressed as NS = 2N−1 where NS is the number of spikes. As it

can be seen in Figure 4.1, after encoding the input signal there is a block which converts

the encoded information to analog currents. This is inspired by the information processing

in our brains. To process the encoded information by the adjacent information processing

neurons, it is required to be converted to an analog current. Equation 4.15 is adopted to

convert the encoded information to its corresponding analog current,

IPSAC(t) =
∑

tj

κ(t− tj)H(t− tj), (4.15)

where IPSAC(t) is the postsynaptic analog current; H is the Heaviside function; tj is the time

of spiking; and κ(t− tj) is a kernel function and is defined in equation (4.16),

κ
(

t− tj
)

= V0 ×
(

exp

(

−t− tj

τs

)

− exp

(

−t− tj

τf

))

, (4.16)

91



where V0, τm, and τs correspond to the normalization factor, slow decay, and fast decay con-

stants, respectively. For each temporally encoded received signal, its corresponding analog

current is generated using equation 4.15 and then it goes through the delay reservoir loop.

In order to mimic a recurrent structure, the train of spikes fired by the LIF neuron for a

given input time sample is: 1) shifted in time (delayed) by value of τ ; 2) converted to an

analog current using equation 4.15; 3) multiplied by a feedback gain (g); and 4) added to

the current of the next time sample of the time-series data.

The final layer is the output layer which is the only layer of the introduced model that un-

dergoes a training. The hidden states that are extracted in the reservoir layer are now used

to estimate the final outputs. The hidden reservoir states are expressed as,

ht = f [g.ht−1 +W res
in xt], (4.17)

where ht is the hidden state at time t, f is a nonlinear function which in this chapter is a LIF

neuron, g is the feedback gain, W res
in is the set of randomly generated input weights that are

fixed and require no training, and xt is the input at time t. The desired output is estimated

using the hidden reservoir states as,

ŷt = W out
res ht +W out

bias, (4.18)

where ŷt is the estimated output at time t, and W out
res is the set of weights which map the

hidden reservoir states to the output, and W out
bias is the bias training weights. The goal of

the output layer is to minimize the difference between the estimated output and the desired

output (y(t)) for each time sample, t. The mean square error (MSE) is the most common

92



objective function and is defined as,

MSE =
1

Ttrain

Ttrain
∑

t=1

||yt − ŷt||2, (4.19)

where Ttrain is the total time length of the training data. Using MSE as the objective function

makes the training time very long. Therefore, we introduce to leverage a MLP with cross-

entropy as the objective function to estimate the output layer weights (W out
res ). Cross-entropy

is defined as follows,

ζ = cross− entropy =

Ttrain
∑

t=1

[yt log(ŷt) + (1− yt) log(1− ŷt)]. (4.20)

Let ω = [W out
res ,W

out
bias] define the set of weights that minimize the cross-entropy,

ω = argmin
ω

ζ. (4.21)

To achieve the optimal ω, we train a MLP with 20 neurons in the hidden layer and a sigmoid

function as the activation function and gradient descent algorithm,

W out
res (n+ 1)← W out

res (n)− α
∂ζ(Y, Ŷ )

∂W out
res

W out
bias(n+ 1)← W out

bias(n)− α
∂ζ(Y, Ŷ )

∂W out
bias

(4.22)

whereW out
res (n),W

out
bias(n) denote the output and bias weights at iteration n. Y = [y1, y2, ..., yTtrain

],

Ŷ = [ŷ1, ŷ2, ..., ŷT train], and α is the learning rate.

4.2.2 Stacked Deep Spiking DFRs

The introduced model in Section 4.2.1 is only capable to capture the temporal correla-

tions. However, in the cooperative spectrum sensing scenarios where there are multiple SUs

93



in different locations the initial model cannot completely exploit the spatial information.

Therefore, it is necessary to extend our introduced model in space domain as well. Figure

4.3, depicts the stacked spiking DFR (SSDFR) model which is extended in space domain to

perform cooperative spectrum sensing where there are multiple SUs.

Figure 4.3. Structure of SSDFR.

SSDFRs are adopted to extract the hidden spatial features of the received MIMO-OFDM

signals. There are two major steps in training the SSDFR: unsupervised pretraining, and

classification. In the unsupervised pretraining phase, the SSDFR network is partitioned into

94



independent SDFRs and the combined spatial-temporal hidden features are calculated as,

hl
t = f [g.hl

t−1 +
P
∑

p=1
p 6=l

W spatial
l,p hp

t−1 +W res
in .xl

t], (4.23)

where hl
t is the hidden state of the lth SDFR at time t, P = L− 1 and L is the total number

of SDFRs, W spatial
l,p is the connection weight between the pth and lth SSDFRs, and xl

t is the

input of the lth SDFR. In the SSDFR model, the output is estimated as,

ŷt = W out
resHt +W out

bias, (4.24)

where Ht = [h1
t , h

2
t ...h

L
t ]. W out

res and W out
bias are estimated using equation 4.22 and a fully

connected MLP with 20 neurons in its hidden layer. The number of neurons in the hidden

layer significantly affects the performance. To identify the optimal number of neurons,

we did hyperparameter tuning. We will show in Section 4.4 that the introduced SSDFR

model is very successful to capture the spatial correlation between multiple SUs and the

detection performance is improved compared against other techniques without causing much

computational overhead.

4.3 Synthesizing MIMO-OFDM Symbols Using GAN

The GANs are composed of two competing deep neural networks (DNN) that play a min-

max game together. The first DNN is called a generator network which its task is to map

the noise to the MIMO-OFDM symbols. The second DNN is a discriminator which tries

to discriminate between the fake samples which are synthesized by the generator and the

real samples. These two DNNs play a min-max game until both networks achieve a steady

state where none of their loss functions changes significantly anymore. The objective of

95



the generator is to synthesize the fake MIMO-OFDM symbols such that the discriminator

cannot distinguish whether they are real or fake. The output of the discriminator is 0 or 1

depending on whether the input of the discriminator is real or fake. However, at the steady

state the output of the discriminator for either of the fake or real classes should be equal

to 0.5. This means that at the steady state the generator is synthesizing samples that are

very similar to the real samples. The generator and the discriminator play a min-max game

which can be mathematically formulated as follows,

LD = max
D

Ex∼px(x) [log (D(x))] + Ez∼pz(z) [log (1−D (G(z)))]

LG = max
G

Ez∼pz(z)[log(D(G(z)))].

(4.25)

The first version of GAN introduced in [178] was not subject to any conditions. However,

in some scenarios such as supervised learning the synthesized data by the GAN has to be

subject to some conditions such as the labels of the data. In these scenarios another version

of GANs which is called conditional GAN (cGAN) was introduced [179]. In the cGANs the

fake data is generated with respect to its corresponding condition. In our case this condition

can be defined as the state of the subcarrier. The fake data is synthesized with respect to its

corresponding label which is 0 for idle state and 1 for busy state. The formulation of cGAN

is expressed as follows,

LD = max
D

Ex∼px(x) [log (D(x|c))] + Ez∼pz(z) [log (1−D (G(z|c)))]

LG = max
G

Ez∼pz(z)[log(D(G(z|c)))]
(4.26)

where c is the corresponding label of the subcarrier. In this chapter we use cGAN to synthe-

size fake data to improve the performance of introduced algorithm while the training data

is limited. We assume that we have only 25 training samples available for training and use

this limited data to train the cGAN to compensate the performance loss. In Figure 4.4, a

96



MIMO-OFDM system supplemented with cGAN and SDFR as the spectrum sensing plat-

form is depicted where cGAN is used to enlarge the size of the training data. The S/P block

Figure 4.4. System Model of MIMO-OFDM spectrum sensing using GAN and
SDFR+MLP.

in Figure 4.3, is a serial to parallel block which performs the subcarrier mapping of input

bits and pilot carriers. After passing through the S/P block, the input bits are modulated

using QPSK. Moreover, the modulated symbols are mapped from the frequency domain to

the time domain using the IDFT block. The time domain symbols pass through a parallel to

serial (P/S) block and consecutively the CP is added. The OFDM symbols are transmitted

over the Rayleigh fading channel using the multiple antennas that exist at the PU. At the

SU, there are also multiple antennas. The CP of the received OFDM symbols are removed

and then the DFT of the OFDM symbols are calculated. As we will show in Section 4.4, 25

training samples are not sufficient and the detection accuracy of our introduced algorithm

significantly drops. Therefore, we use these 25 received symbols to train a cGAN to synthe-

size more training samples. In order to evaluate the quality of our synthesized samples, we

consider different situations.Train on synthetic and test on real (TSTR), train in real and

test on synthetic (TRTS), train on real and test on real (TRTR), and train on synthetic and

test on synthetic (TSTS) are studied and it is shown that they all show similar performances

which implies that the quality of synthesized data is very high and similar to the real data.

97



4.4 Simulation Results

4.4.1 Latency VS ISI

To evaluate the performance of our introduced method, we adopt receiver operating charac-

teristic (ROC) curve. A method which achieves the highest area under curve (AUC) in the

ROC curve, is the best MIMO-OFDM spectrum sensing technique.In detection problems,

the threshold of the activation function is chosen according to the ROC curve. The optimal

threshold is a point where TP = 1− FP . TP and FP correspond to the true positive and

false positive values. We introduced latency and ISI as two temporal encoding schemes of the

spikes. In this part, we compare them in terms of AUC and identify the optimal encoding

approach. In Table 4.1, the the AUC of the SDFR for latency and ISI is presented. As it

can be seen, ISI achieves higher AUC than latency encoding. This is mainly due to two

reasons. The first reason is that in latency encoding the information is encoded with respect

to the onset of input and this requires an external temporal reference. On the other hand, in

ISI encoding the information is encoded in terms of the relative temporal distance between

multiple spikes. Therefore, a temporal reference with respect to the input onset is not re-

quired in ISI encoding. The temporal reference has to be chosen very precisely, otherwise

it can cause performance drops. The second reason is that, in several studies ISI encoding

has shown to convey more information than latency encoding [180]. Our simulation results

confirm this superiority too. In the rest of this chapter, we will use ISI.

Table 4.1: TTFS vs ISI, Tx = 2 , Rx = 2

Method SNR(db) AUC
SDFR-Latency -10dB 0.92
SDFR-Latency -20dB 0.7
SDFR-Latency -30dB 0.51

SDFR-ISI -10dB 0.97
SDFR-ISI -20dB 0.76
SDFR-ISI -30dB 0.54

98



4.4.2 Comparison With Other Methods

We perform our simulations for different SNRs(dB), and number of antennas and the simula-

tion results show that the introduced hybrid SDFR and MLP training algorithm outperform

the other approaches. First, we perform our experiment at SNR(dB)=0dB, and all the

methods regardless of the number of antennas achieve 100% of AUC. Then, we compare the

performance of hybrid SDFR+MLP against deep long-short term memory (LSTM) which

is a well-known RNN, support vector machines (SVMs) with radial basis function (RBF)

kernel that has already shown to be effective for spectrum sensing, and square-law com-

bining (SLC) which is a traditional energy detection based method at lower SNRs(dB). In

this part, we assume that there is only one SU and one PU in the DSS environment. In

this section, we show a single layer SDFR’s capability to extract the temporal correlation

between the received signals and use that information to identify available spectrum holes at

low SNRs(dB). In Figure 4.5, the ROC curve of our simulation results at SNR(dB) = -20dB

for different numbers of transmit and receive antennas are presented.

As it can be seen in Figure 4.5 for all the scenarios, the hybrid SDFR+MLP training approach

outperforms the SLC and SVM because SDFR+MLP covers more AUC compared with the

other two approaches. We assume that the channel is a fading Rayleigh channel. In Table 4.2,

the AUC for other SNRs(dB) are presented as well. Table 4.2 shows that for SNR(dB)=-10dB

regardless of the number of transmit and receive antennas the hybrid SDFR+MLP and the

SLC energy detection based approach achieve equal performances. This observation implies

that for -10dB≤ SNR(dB), there is no need to use learning based techniques for MIMI-

OFDM spectrum sensing. However, as the SNR(dB) goes below -10dB the performance

of the energy detection drops significantly and at these low SNRs(dB) the learning based

techniques achieve much higher AUCs compared with classical energy detection approach. It

can be observed that at low SNRs(dB) even SVM which is not able to extract the temporal

99



Figure 4.5. ROC curves for different sensing approaches and different number of antennas
at SNR(dB) = -20dB .

100



Table 4.2: AUC of Different MIMO-OFDM Spectrum Sensing Methods at Different
SNR(dB)

Method SNR(dB) Tx antenna Rx antenna AUC
SLC -10dB 2 2 0.98
SLC -10dB 4 4 1
SLC -10dB 6 6 1
SVM -10dB 2 2 0.95
SVM -10dB 4 4 1
SVM -10dB 6 6 1

Deep LSTM -10dB 2 2 0.98
Deep LSTM -10dB 4 4 1
Deep LSTM -10dB 6 6 1
SDFR+MLP -10dB 2 2 0.98
SDFR+MLP -10dB 4 4 1
SDFR+MLP -10dB 6 6 1

SLC -20dB 2 2 0.11
SLC -20dB 4 4 0.7
SLC -20dB 6 6 0.97
SVM -20dB 2 2 0.71
SVM -20dB 4 4 0.92
SVM -20dB 6 6 0.98

Deep LSTM -20dB 2 2 0.75
Deep LSTM -20dB 4 4 0.95
Deep LSTM -20dB 6 6 0.99
SDFR+MLP -20dB 2 2 0.75
SDFR+MLP -20dB 4 4 0.95
SDFR+MLP -20dB 6 6 0.99

SLC -30dB 2 2 0
SLC -30dB 4 4 0
SLC -30dB 6 6 0
SVM -30dB 2 2 0.46
SVM -30dB 4 4 0.57
SVM -30dB 6 6 0.62

Deep LSTM -30dB 2 2 0.55
Deep LSTM -30dB 4 4 0.62
Deep LSTM -30dB 6 6 0.71
SDFR+MLP -30dB 2 2 0.55
SDFR+MLP -30dB 4 4 0.62
SDFR+MLP -30dB 6 6 0.71

101



correlation, outperforms the energy detection based method. However, the learning based

techniques undergo a training process which adds up some overhead compared with the

classical approaches. Therefore, at high SNRs(dB) it is more efficient to use the classical

methods, and use the learning based techniques only at low SNRs(dB). The average AUCs

of SLC, SVM, deep LSTM, and SDFR+MLP for all the SNRs(dB) and all the transmit and

receive antennas configurations are equal to 0.53, 0.8, 0.84, and 0.84 respectively. The

deep LSTM and hybrid SDFR+MLP achieve the same AUC in this scenario. However, in

the deep LSTM 30 neurons are adopted in the recurrent layer which makes the deep LSTM

model inefficient both in terms of computational complexity and the power consumption

of hardware implementation. Our introduced SDFR model achieves the same performance

of deep LSTM while the number of the neurons are much less. There is only one spiking

neuron in the SDFR which is intrinsically energy efficient. To further evaluate the effect

of larger number of antennas at low SNRs(dB), we increase the number of Tx, and Rx to

14. However, SLC still fails (AUC=0). This observation implies that at very low SNRs(dB)

increasing the number of antennas cannot help traditional methods like SLC. Therefore, it

is required to adopt the techniques which rely on temporal information.

4.4.3 SSDFR Performance for Cooperative Spectrum Sensing

In Section 4.2, we introduced SSDFR as an approach to extract the spatial and temporal

correlations simultaneously while there are multiple SUs in a DSS environment. We as-

sume that there are totally three SUs and one PU in the given DSS environment. The

SUs are located in positions that sense MIMO-OFDM signals with -20dB, -25dB, and -30dB

SNRs(dB), respectively. We compare the performance of SSDFR against a SVM with RBF

kernel, deep LSTM, and deep CNN in terms of AUC and the training overhead. The CNNs

have shown to be very effective in image classification and recently have been introduced to

102



be used in spectrum sensing as well [64]. Figure 4.6, shows the AUCs of the aforementioned

Figure 4.6. Average ROC curves of different methods in cooperative DSS environment.

methods. SSDFR+MLP, deep LSTM, deep CNN, and SVM achieve 0.96, 0.96, 0.89, and

0.88 of average AUCs, respectively. In the cooperative DSS the performance of all methods

improve. However, the improvement that is brought by the hybrid SSDFR+MLP is more

significant. The performance of hybrid SSDFR+MLP is improved by 12%. On the other

hand the performance of SVM is improved by 8%. This because the SVMs cannot exploit

the spatio-temporal correlation as much as SSDFR+MLP and deep LSTM. In Section 4.4.2,

the LSTM could achieve its maximum performance when the number of recurrent units was

30. However, in the cooperative scenario with this number of recurrent units the deep LSTM

cannot achieve its maximum performance. In this part, we perform hyperparameter tuning

103



to identify the optimal number of recurrent units such that the deep LSTM can achieve its

maximum performance. To achieve the best performance by the deep LSTM, 100 recurrent

neurons are required. In the hybrid SSDFR+MLP, only three stacked layers are adopted

while we achieve equal performance with deep LSTM. This observation shows the signifi-

cant computational complexity superiority of SSDFR over deep LSTM. In Section 4.4.4, we

will make a comprehensive comparison between the computational complexities of different

spectrum sensing approaches. The CNN achieves slightly better performance than SVM due

to its capability to extract the spatial correlations. However, the temporal correlations are

completely underutilized while CNN is leveraged for spectrum sensing.

4.4.4 Computational Complexity Analysis

The computational complexity of the SLC is the lowest, as it does not require any training.

However, it suffers from very low performances at low SNRs(dB). Therefore, in this section

we compare the computational complexities of SSDFR+MLP, deep LSTM, deep CNN and

SVM with RBF kernel in the cooperative spectrum sensing scenario. In the learning based

approaches, the computational complexity corresponds to the training time [69]. All our

simulations are run on an Intel(R), Core (TM)-i5, @3.4 GHz.

Table 4.3: Computational Complexity Analysis

Algorithm Training Time
deep LSTM 189s

hybrid SSDFR+MLP 62
deep CNN 57s

SVM 1s

As it can be seen in Table 4.3, the training time of the hybrid SSDFR+MLP method is

much lower than the deep LSTM while they achieve the same performance in terms of AUC.

This is mostly because the unsupervised feature extraction in SSDFR does not require any

104



training. On the other hand, the end-to- end system of the deep LSTM is supervised and all

the weights undergo training. Another factor that causes this meaningful difference between

the computational complexities of SSDFR+MLP and deep LSTM, is the number of the

neurons that are adopted in the feature extraction layers of each model. There are only

three spiking neurons in the feature extraction layer of SSDFR, but in order to achieve a

similar performance we need to adopt 100 neurons in the feature extraction layer of the

deep LSTM which makes the training time of the deep LSTM very long. The computational

complexity of the hybrid SSDFR+MLP is mostly caused by the spike to analog current block

of the feature extraction layer and training the weights of the output MLP. SVM and deep

CNN have shorter training times, but their detection accuracy is significantly lower.

4.4.5 Effect of Delay on Performance

The delay value of the reservoir layer is an important hyperparameter that requires tuning.

It has been shown in [181] that the delay feedback loops can form short-term memory and

show high-dimensional behavior only if their delay value is tuned somehow that they can

operate at the edge of chaos. The dynamic behavior of the delay loop shifts from periodic

to edge of chaos and to completely chaotic. There are several evidences that the neurons of

our brain also operate at the edge of chaos [182]. Therefore, it is essential to tune the delay

value of our introduced model such that it can operate at the edge of chaos. Plotting the

phase portraits is one common method to analyze the dynamic behavior of delay feedback

loop systems.

Solving the DDE equation of a delay system helps us to further investigate the dynamic

behavior. In fact, by using the phase portraits we can visualize the dynamic behavior of

a delay feedback system in long term run. Figure 4.7 demonstrates an example of a phase

portrait corresponding to a delay feedback system. As it can be seen, by increasing the delay

105



Figure 4.7. Phase Portrait.

value the dynamic behavior of a delay feedback system can shift from ordered to edge of

chaos, and completely chaotic.

We investigate the effect of the delay value on SDFR and identify the optimal delay value

in this section. Figure 4.8 shows the AUC of SDFR for different values of the delay. AUC

is very low for small values of the delay, however, it improves as the delay increases. We

can see that our introduced model achieves the highest AUC for τ = 30ms. Furthermore,

when τ > 30ms, the AUC starts to reduce. This observation along with the phase portrait

imply that τ = 30ms is the optimal delay value of our introduced model to analyze the

MIMO-OFDM DSS spectrum occupancy time-series. Therefore, we can conclude that for

τ = 30ms SDFR operates at the edge of chaos and can form a short-term memory and show

high-dimensional behavior. Accordingly, we set τ = 30ms in this chapter [183].

106



Figure 4.8. Delay effects: SNR(dB)=−20dB, Tx=4, Rx=4.

4.4.6 MIMO-OFDM Symbols Augmentation Using cGAN

Table 4.4 represents the AUC of our introduced approach while it is trained by 25 training

samples and the test dataset is unchanged. For SNR(dB)=-10dB while we use 25 training

samples the AUC does not drop. However, as the SNR(dB) goes below -10dB or the number

of transmit and receive antennas is reduced the impact of a smaller training dataset is more

significant on reducing AUC. In this section we introduce to use cGAN to synthesize more

training data for the situations that suffer more from a small training dataset. The cGAN

structure consists of two competing DNNs. The DNN corresponding to the generator network

consists of two hidden layers with 20 neurons at each layer. The activation function that we

107



Table 4.4: AUC of hybrid SDFR+MLP spectrum sensing of 25 training samples

SNR(dB) Tx antenna Rx antenna AUC
-10dB 2 2 0.97
-10dB 4 4 1
-10dB 6 6 1
-20dB 2 2 0.61
-20dB 4 4 0.85
-20dB 6 6 0.99
-30dB 2 2 0.48
-30dB 4 4 0.46
-30dB 6 6 0.7

use for all the layers of the generator is a leaky-rectified linear unit (leaky-RELU) function.

The leaky-RELU function is a mapping as f(x) = max(αx, x) where α is leaky factor and

in this chapter is set to 0.2. The DNN corresponding to the discriminator has also two

hidden layers. However, there are 200 neurons at each hidden layer. In the discriminator,

leaky-RELU is used in all the hidden layers, but sigmoid function is used at the output layer.

The synthetic MIMO-OFDM symbols are generated in Tensorflow. Figure 4.9 demonstrates

the loss functions of the discriminator and generator. The loss functions of discriminator

and generator play a min-max game together. A min-max game is a game where the two

parties of the game have opposite interests. In the loss function plot of the discriminator and

generator, it can be observed that at the beginning of the training when the loss function

of one party is maximized the loss function of other party is minimized. However, as the

training continues the generator learns how to fool the discriminator and that is where we

call it the steady state of the game. At the steady state the loss functions of neither of

the parties change significantly. This is because that at this point the generator synthesizes

some data that the discriminator is not able to specify whether it is real or fake. Figure 4.9

shows that after 1000 epochs of training the loss function of the discriminator is very close

to 0.5 with not much variations.

After the cGAN is successfully trained, we use the generator to synthesize more training

samples to enlarge the size of the training samples. The combination of the synthetic and

108



0 500 1000

Epochs

0.5

1

1.5

2

2.5

L
o

s
s
 F

u
n

c
ti

o
n

Generator Loss

Discriminator Loss

Figure 4.9. Loss Functions of generator and discriminator.

real samples is used to train our scheme. We perform the test on 5102 real samples, and the

results are demonstrated in Table 4.5. We generate synthetic samples for three of the cases

that are more severely affected by the limited training dataset. The AUCs of our model after

retraining by the combination of the real and synthetic samples are presented in Table 4.5.

Table 4.5: AUC of hybrid SDFR+MLP spectrum sensing using synthetic and real data for
training

SNR(dB) Tx antenna Rx antenna AUC
-20dB 2 2 0.74
-20dB 4 4 0.93
-30dB 4 4 0.6

We can observe that after retraining our scheme the AUC is significantly improved compared

with the case that the training data was very limited. In order to better evaluate the quality

and expressiveness of the synthetic training samples, we compare the ROC curves of our

scheme while we use real training samples with the case that the combination of real and

109



fake samples is adopted.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probabity of false alarm of subcarriers

P
ro

b
a

b
it

y
 o

f 
d

e
te

c
ti

o
n

 o
f 

s
u

b
c

a
rr

ie
rs

 

 

Only Real −20db 2x2
Only Real −20db 4x4
Only Real −30db 4x4
Real & Synthetic −20db 2x2
Real & Synthetic −20db 4x4
Real & Synthetic −30db 4x4

Figure 4.10. ROC curves of real samples VS combined real and fake.

The ROC curves of our introduced hybrid SDFR+MLP spectrum sensing approach demon-

strate very similar performances while we use real samples and combination of real and fake

samples respectively. This observation implies that the synthetic samples are very similar

to the real samples and they are as expressive as the real dataset. In order to perform fur-

ther analysis on the expressiveness of the synthetic dataset, we train and test our scheme

in different scenarios. These scenarios are TSTR, TRTS, TRTR, and TSTS as they were

described in Section 4.3. The presented results in Table 4.6 imply that the synthesized sam-

ples are very expressive and robust as in different train and test scenarios the AUCs of our

introduced hybrid spectrum sensing scheme are very close together. The high quality and

110



Table 4.6: AUC of hybrid SDFR+MLP spectrum sensing in different scenarios using
synthetic and real data for training

SNR(dB) Tx ant. Rx ant. AUC (TRTR) AUC (TSTR) AUC (TRTS) AUC (TSTS)
-20dB 2 2 0.75 0.73 0.74 0.74
-20dB 4 4 0.95 0.93 0.96 0.96

expressiveness of the synthesized training samples is fueled by the power of the SSDFR in

capturing the spatio-temporal correlations even from a very small data. In similar works

that the GANs are introduced to synthesize more training samples for spectrum sensing, it

is assumed that at least 100 training samples are available to train the GANs. However, in

this chapter we train cGAN to synthesize highly expressive training data while we have only

25 available samples. We have shown in this chapter that by combining SDFRs and cGANs

we can reduce the number of real training samples compared against the state-of-the-art

which is really important to reduce the costs of collecting training data.

4.5 Conclusion

In this chapter, we first introduced an energy efficient and easy to train spiking delayed

feedback reservoir (SDFR) model to detect the spectrum availability in a MIMO-OFDM

DSS environment. We showed that the introduced algorithm can effectively capture the

temporal correlations of the received signals in a single SU environment. The introduced

model is specially effective at low SNRs(dB) and outperforms the state-of-the-art spectrum

sensing techniques in terms of the detection accuracy and computational complexity. Then,

we extended the introduced model to a deep stacked SDFR (SSDFR) where multiple layers

of SDFRs are developed in the space domain to capture the spatial and temporal correlations

simultaneously while there are multiple SUs in a DSS environment. The superiority of the

introduced algorithm over other methods is verified through extensive simulations. Two

temporal neural spike encoding schemes (ISI and latency) were mathematically formulated

111



and we observed that ISI encoding is the optimal encoding scheme in terms of detection

accuracy. The training data scarcity problem was also successfully tackled through the

combination of SDFR and cGANs.

112



Chapter 5

Spiking Recurrent Neural Network

with Novel Encoding and Defense

Mechanisms

5.1 Introduction

Artificial spiking neural networks (SNNs) offer several advantages over other, non-spiking,

artificial neural networks (ANNs). First, SNNs are brain-inspired mathematical represen-

tations of the spike signals which are adopted in the human brains [172, 184, 185]. This is

due to: 1) the way information propagates between SNNs’ units; and 2) the advantage that

SNNs are intrinsically sensitive to the temporal characteristics of information transmission

that occurs in the biological neural systems [186]. Second, SNNs are more power efficient.

In fact, SNNs have been the main choice for neuromorphic hardware implementations, such

as Loihi, TruNorth, and SpiNNaker [187–195]. Due to these advantages, SNNs have become

the focus of a number of recent applications [196–199].

113



Despite the advantages of SNNs, their performance suffers from three major drawbacks.

First, the current recurrent structures of SNNs are very difficult if not impossible to train

[172, 200], making them impractical for data that has temporal and/or spatial correlations.

Second, the performance of SNNs depends crucially on how the neural spikes get encoded,

i.e., the encoding scheme. Two main categories have been introduced in the literature,

namely, rate and temporal encoding. Although the two encoding schemes have been shown

to be effective in different scenarios and applications [157,201,202], several questions remain

unanswered. For example, is there an optimal encoding scheme? Can we combine two or

more schemes to encode the spikes? Third, although the vulnerability of SNNs against ad-

versarial attacks has been studied in the literature [203–205], an effective defense mechanism

for SNNs against adversarial attacks is lacking.

This chapter aims at solving the three major drawbacks of SNNs mentioned earlier. More

precisely, we provide three main contributions as follows:

• We present a recurrent structure of SNNs, which is inspired by delayed feedback reser-

voirs (DFRs) [114, 147, 206], to capture the temporal correlation of time-series data.

DFRs are a subcategory of reservoir computing (RC), which is a new class of recurrent

neural networks (RNNs) and is easier to train [20,207]. In the reservoir layer of DFRs,

only one neuron is required and the recurrence is modeled using a delay layer. In this

chapter, we develop a spiking DFR (SDFR) model and show its effectiveness (in terms

of classification accuracy) in capturing the temporal correlation of time-series data.

• For the first time, we introduce the idea of multiplexing two encoding schemes in

artificial SNNs. More specifically, inspired by recent studies in cognitive neuroscience

[157], we multiplex the phase and temporal encoding of the neuron spikes. Under our

SDFR model, we show that our encoding scheme achieves higher classification accuracy,

is more robust to noise, and is more robust to adversarial attacks than existing encoding

114



schemes.

• For the first time, we introduce an effective defense mechanism for SNN against ad-

versarial attacks. We show that using our defense mechanism, SDFR is robust against

adversarial attacks.

In order to evaluate the effectiveness of our SDFR model, encoding scheme, and defense

mechanism, we adopt them in two applications, namely, video-based face recognition and

bad data detection in smart grids (a new generation of power systems which are developed to

provide more efficient, reliable, and intelligent power transmission and distribution) [40,41].

For video-based face recognition, we use the VidTIMIT dataset [208] and the DeepFake-

TIMIT dataset [209], which is a version of VidTIMIT that has been adversarially attacked

by generative adversarial networks (GANs). For smart grids, we use MATPOWER, which

is a MATLAB software package, to simulate the smart grids and generate training data and

testing data.

The rest of the chapter is organized as follows: Section 5.2 describes our introduced recurrent

structure of SNNs, the new multiplexing encoding technique, and the defense mechanism

against adversarial attacks. Section 5.3 presents the simulation results and Section 5.4

concludes this chapter.

5.2 Approach

5.2.1 Spiking Delayed Feedback Reservoir (SDFR)

Recurrent neural networks (RNNs) are the state-of-the-art artificial neural networks to pro-

cess time-series data. To train RNNs easier and faster, reservoir computing (RC) was in-

troduced [20, 207]. In RC, the network is divided into an input layer, a reservoir layer, and

115



an output layer, where the reservoir layer’s parameters are kept fixed and not trained, and

hence, making training easier. It has been shown in [4, 210] that RC networks can outper-

form traditional RNNs in many cases. To further ease the training of the network, delayed

feedback reservoirs (DFRs) were introduced [147,206]. DFRs are subcategory of RC system

where only one neuron is required, and the recurrence is modeled using a delay layer.

Motivated by DFRs, in this chapter we introduce the spiking delayed feedback reservoir

(SDFR), where the neuron required in the reservoir layer is a spiking neuron. In this chapter,

we use the leaky-integrate and fire (LIF) spiking neuron [211, 212]. The SDFR network

consists of three layer: input, reservoir, and output layers. The input and reservoir layers do

not have trainable parameters, and are used only for temporal feature extraction. Figure 5.1

illustrates the structure of SDFR.

Input layer Reservoir(Recurrent) layer Output layer

Input 

time-series

Encoding  

Fully Connected 

LayerFixed 

Weights

Spike to 

current
+ LIF

Spike to 

current

Classification
.

.

.

.
.

.

.

.

=Virtual 

Nodes

xg

Figure 5.1. Structure of the SDFR network.

The input layer of SDFR is composed of two blocks used to pre-process the input time-series

data. First, each input time sample is encoded into a train of spikes using a given encoding

scheme (state-of-the-art schemes will be introduced in Section 5.2.2). The time instants at

116



which the spikes are fired, called {s}i, are then used to generate an analog current:

IPSAC(t) =
∑

si

K(t− si)h(t− si), (5.1)

where IPSAC(t) is the postsynaptic current of the encoding neuron, si is the time in which

the ith spike is fired, h(t) is the Heaviside function, and K(t − si) is an exponential kernel

defined as:

K (t− ti) = N0 ×
(

exp

(

−t− ti
κs

)

− exp

(

−t− ti
κf

))

, (5.2)

where N0, κs, and κf are normalization , slow decay, and fast decay constants, respectively.

The ratio of κs

κf
is fixed at 4 in this chapter. For each sample of the time-series data, the

input layer outputs an analog current using Equation (5.1).

The analog current generated for each time sample of the time-series data is used as an

input to the LIF neuron in the reservoir layer. The LIF neuron converts the current into

membrane voltage according to [211]:

TRC

dv(t)

dt
= −(v(t)− E) + (Inoise + I(t))R, (5.3)

where TRC is a time constant, v(t) is the membrane voltage, E is the resting potential, R

is the membrane resistance, Inoise is the background noise, and I(t) is the input current

(output of the input layer) to the LIF neuron. The LIF neuron generates a spike as soon as

the membrane voltage, v(t), exceeds a certain threshold. The time instances at which the

spikes (output of LIF neuron) are fired will be used as the features to train the output layer.

In order to mimic a recurrent structure, the train of spikes fired by the LIF neuron for a

given input time sample is: 1) shifted in time (delayed) by value of τ 1; 2) converted to an

analog current using Equation (5.1); 3) multiplied by a feedback gain (g); and 4) added to

1τ is a hyper-parameter to be fine-tuned.

117



the current of the next time sample of the time-series data. Each unit of delay is represented

by a virtual neuron in the reservoir layer, see Figure 5.1. This process is repeated until the

corresponding train of spikes of all the time-series samples are generated. We note that this

feature extraction process does not require training.

The train of spikes (output of the LIF neuron) corresponding to each time sample in the

time-series data is used an the input feature to train the output layer. In this chapter, the

output layer is a fully connected multi-layer perceptron (MLP), which is trained via standard

back-propagation algorithm .

5.2.2 Multiplexing Encoding Scheme

As mentioned in Section 5.2.2, in the input layer, each input sample in the time-series data is

encoded into a train of spikes. In this section, we first present the state-of-the-art encoding

schemes. Then, we present our novel scheme.

5.2.2.1 State-of-the-Art Encoding Schemes

The encoding process can be defined as converting the input into a train of spikes, where

the number of spikes and the time instances at which these spikes are fired depend on the

value of the input as well as the encoding scheme. Two main categories of encoding have

been introduced in the literature, namely, rate and temporal encoding [186, 213–216]. In

rate encoding, all the information about the input is encoded in the number of fired spikes.

In temporal encoding, the information is encoded not only in terms of the spikes number

but also the time instances at which these spikes are fired. Thus, temporal encoding has

been shown to achieve better representation of the input. Therefore, we focus on temporal

encoding. More precisely, we focus on the latency, inter-spike interval (ISI), and phase

118



encoding schemes (sub-categories of temporal encoding).

Latency Encoding: In latency encoding, the input is encoded by the time of the first

spike with respect to the time at which the input onsets [157,217].

ISI Encoding: In ISI encoding, the information about the input is encoded in terms of

the temporal distance between the time instances at which output spikes are fired. If the

ISI encoder has N encoding neurons, the number of output spikes, Ns, is defined as [218]:

Ns = 2N−1. (5.4)

The temporal distance between the output spike fired at time tj and the output spike fired

at time tj−1, where j ∈ {1, · · · , Ns − 1}, is named Dj and can be calculated as:

Dj−1 = tj − tj−1. (5.5)

Figure 5.2 demonstrates an example of ISI encoding with N = 3. Several studies have

shown that ISI achieves better representation of the input compared with latency encoding

[36,219].

Phase Encoding One of the major drawbacks of latency encoding is its dependency on

the accuracy of the measurement of the time difference between the input onset and the

occurrence of the first spike. Inspired by cognitive science, the phase encoding resolves

this issue by relying on an intrinsic internal clock of the neuron, and hence, measuring the

accurate onset of the input and the occurrence of the first spike is not required [219]. In

the cognitive science literature, this intrinsic clock is known as the sub-threshold membrane

119



Figure 5.2. An example of ISI encoding.

oscillations (SMOs), which can be modeled as [219]:

SMOi = A cos (ωt+ φi) , (5.6)

where i ∈ {1, · · · , N} for N being the dimension of the input, A is the magnitude of the

oscillations, ω is the phase angular velocity, and φi is the phase whose value depends on the

value of the current input sample i. Moreover, φi is defined as [219]:

φi = φ0 + (i− 1)∆φ, (5.7)

where φo is the reference initial phase, and ∆φ = 2π
N
.

The time at which a spike is fired is the time instance at which the value of SMOi crosses

120



a given threshold. The value of the threshold is dependent on the sign of the input [136].

Figure 5.3 describes phase encoding.

Figure 5.3. Phase Encoding.In a phase encoding unit, a positive neuron (Pos), a negative
neuron (Neg), and output neuron exist. The Pos is used for encoding the stimulus values
that are positive and the Neg conversely. The output neuron fires a spike at the times

which the corresponding SMO of Pos or Neg crosses its threshold.

5.2.2.2 Multiplexing Phase and ISI Encoding

Despite the different encoding schemes introduced in the literature, several questions remain

unanswered. For example, is there an optimal encoding scheme? Can we combine two or

more schemes to encode the spikes? We introduce a multiplexing encoding scheme to answer

the latter question.

Multiplexing is a process where multiple encoding schemes are combined together to increase

the information which is conveyed about the input. In [202], an experiment was conducted

where the rats used their whiskers to identify the texture of the surface of their surrounding

environment. It was observed that the multiplexed rate and temporal codes conveyed more

information about the input stimulus and the texture of the surface compared with each

121



individual code. The process of multiplexing was named Gamma alignment [219].

Inspired by these findings, we introduce, for the first time, a multiplexing scheme in which

we multiplex the phase and ISI codes. In our multiplexing scheme, the spikes fired by the ISI

code get aligned (shifted) according to the SMO of the phase code. More specifically, first,

the input stimulus (e.g., a pixel of an image) is encoded using ISI encoding. The resulting

output is a train of spikes fired at certain time instances. Second, the SMO of the input

stimulus is generated using phase encoding. Finally, the train of spikes generated via ISI

encoding are shifted to the closest points of the SMO which cross a certain threshold. The

final output is the shifted time instance of the train of spikes. Figure 5.4 demonstrates an

example of the multiplexing process. In this figure, ISI encoding fires three spikes at time

instances t1, t2, and t3, respectively. Then, these time instances are shifted to t
′

1, t
′

2, and t
′

3,

according to the closest time instances at which the SMO crosses a given threshold. After

multiplexing, t
′

1, t
′

2, and t
′

3 are used to encode the given input stimulus conveying information

using of ISI and phase.

5.2.3 Defending SDFR Against Adversarial Attacks

Deep learning models have been shown to be vulnerable to what is called adversarial at-

tacks. In other words, it has been shown that one can synthesize small and imperceptible

perturbations of the input data, called adversarial examples or attacks, and cause the model

to make highly-confident but erroneous predictions [220, 221]. This problem of adversarial

attacks has garnered significant attention recently, resulting in many approaches to defend

deep learning models against these attacks [220,222,223].

The vulnerability of SNNs against adversarial attacks has been studied in [203,204], showing

that 1) SNN is not an exception of deep learning models, i.e., it is vulnerable to adversarial

122



Figure 5.4. Multiplexing Phase and ISI codes.

attacks; and 2) SNNs are more resilient than DNNs against adversarial attacks. Although

the latter observation supports the resilience of SNNs against adversarial attacks, without

a defense mechanism, SNNs are still vulnerable. In this chapter, we introduce for the first

time a defense mechanism for spiking neurons against adversarial attacks.

Generally, to make a deep learning model more robust against the adversarial attacks, its

sensitivity to the variations of input should be decreased [220], [221]. The absolute value of

the Jacobian of a model is a measure usually used to quantify the sensitivity of that model

with respect to its input, and is defined as:

J =

∣

∣

∣

∣

∣

∂F (X)

∂X

∣

∣

∣

∣

∣

, (5.8)

where J denotes the absolute of the Jacobian, F represents the deep learning model, X is

123



the input to deep model, and F (X) is the output of the deep model F with respect to the

input X. Thus, in order to increase the resilience of a model against adversarial attacks, its

Jacobian has to be decreased.

To decrease the Jacobian of our introduced SDFR, we focus on Equation (5.3), which rep-

resents a LIF spiking neuron. The output and input of the LIF neuron are v(t), I(t),

respectively. Therefore, the Jacobian of a spiking LIF neuron is equal to ∂v(t)
∂I(t)

. Our objective

is to reduce the Jacobian of the spiking LIF neuron and that procedure is expressed as:

∣

∣

∣

∣

∣

∣

∣

∣

∂v(t)

∂I(t)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

dv(t)
dt

dI(t)
dt

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

−(v(t)−E)+(Inoise+I(t))R
TRC

dI(t)
dt

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

−(v(t)−E)+(Inoise+I(t))R
RC

dI(t)
dt

∣

∣

∣

∣

∣

∣

∣

∣

(5.9)

=

∣

∣

∣

∣

∣

∣

∣

∣

−(v(t)−E)
RC

+ (Inoise+I(t))
C

dI(t)
dt

∣

∣

∣

∣

∣

∣

∣

∣

, (5.10)

where in Equation (5.9) we used the fact that TRC = RC [211]. Equation (5.10) shows that

to decrease

∣

∣

∣

∣

∣

∣

∣

∂v(t)
∂I(t)

∣

∣

∣

∣

∣

∣

∣

, C (the membrane capacitance of the LIF neuron) should be increased.

This analysis shows that setting the membrane capacitance (C) of the LIF neuron to a large

value at the training time can decrease its sensitivity to small variations of the input and

consequently act as a defense mechanism to protect SNNs against adversarial attacks. We

will demonstrate in Section 5.3 that this technique is effective in detecting the adversarial

124



attacks against SDFR.

Remark 1 Note that our defense mechanism could be applied to any SNN using LIF neu-

rons.

5.3 Results and Analysis

To evaluate the performance and effectiveness of our introduced model and techniques, we

apply them on two applications: 1) video-based face recognition; and 2) false data injection

(FDI) detection in a cyber-physical system (smart grid). In the face recognition application,

we use the VidTIMIT database which is comprised of the video recordings of subjects rotating

their heads in different directions. For the FDI detection, we use MATPOWER software

package of MATLAB to simulate a smart grid. The following subsections are organized as

follows: first, we show the performance of our introduced SDFR network under the state-of-

the-art encoding schemes; second, we show the effect of our multiplexing encoding schemes

on the performance of SDFR in terms of robustness against noise and adversarial attacks;

finally, we show the effectiveness of our defense mechanism. In all our simulations, the

number of spikes, Ns, is set to 1 for phase codes, and 3 for both ISI and multiplexing codes.

We set the values of E, and R to 0.5 Volts, and 1 Mega Ohms, respectively. We run our

simulations on an Intel(R), Core (TM)-i5, @3.4 GHz using MATLAB R2018B.

5.3.1 Performance of the SDFR Network

The VidTIMIT Database: We apply SDFR on videos of 10 subjects rotating their heads

from 0o to 90o. As an example, a few frames are shown in Figure 5.5 . The original size

of the video frames are 512× 384 pixels and we down-sample them to 77× 58. We use the

125



state-of-the-art encoding scheme, i.e., ISI, to encode the pixels of each frame. The output

spikes of all pixels are then used to generate one analog current according to Equation (5.1).

For each subject, we use the first 2
3
of the frames for training and validation, and the last 1

3

for testing. To evaluate the performance of SDFR on video frames, the accuracy metric is

used which is defined as,

Accuracy =
NF

TF
, (5.11)

where NF is the number of frames that are classified correctly, and TF is the total number

of frames.

Figure 5.5. A few frames of VidTIMIT.

Table 5.1 summarizes the accuracy of SDFR in comparison to two baseline MLPs, i.e.,

MLP1 and MLP2. MLP1 is a fully connected neural network with one hidden layer with

30 neurons. It is worth mentioning that MLP1 is the same as the MLP used in the output

layer of SDFR. MLP2 is a fully connected neural network with two hidden layers with 80

126



Table 5.1: Classification accuracy of SDFR for face recognition.

Method Accuracy

SDFR ≈ 97%
MLP1 ≈ 50%
MLP2 ≈ 93%

and 40 neurons, respectively. It can be observed in Table 5.1 that SDFR outperforms MLP1

by 47%, and hence, this shows the capability of SDFR in capturing temporal correlations.

The performance of MLP2 is much higher than MLP1, yet still outperformed by SDFR by

4%. Note that the number of trainable parameters in SDFR is much less than MLP1 and

MLP2. This is because the size of the input layer of MLP1 and MLP2 is equal to the number

of pixels, i.e., 4466, while the size of the input layer of the MLP in SDFR is equal to the

number of features extracted by the reservoir layer which is 20. In this experiment, we set

C = 10µ Farads (µF ), and fine tune the value of τ .

False Data Injection (FDI) Detection in Smart grids: Before we present our results

on smart grids, a brief introduction to the system model of smart grids is introduced. Smart

grids are new infrastructure that integrate energy with many different technologies, such as

telecommunication, internet, and electronic devices [41,224]. One of the main challenges for

smart grids is the vulnerability to cyber-attacks [41], specially False data injection (FDI)

attacks [225]. In a smart grid system, a control center observes a measurement vector z

defined by [226]:

z = Hx+ e, (5.12)

where x is the state vector which in this case is the voltage phase of the smart grid’s

buses [226], H is a matrix transforming the state vector x into measurement z, and e is the

environment noise.

127



In a smart grid system, an attacker can compromise the state estimation by injecting false

data a, in which case, the compromised measurements are:

z = Hx+ a+ e, (5.13)

FDI attacks can be categorized into four categories, namely, direct-single-period, direct-

dynamic, hidden-single-period, and hidden-dynamic attacks. The most challenging of them

to detect is the latter [227], which is the category considered in this chapter. In hidden-

dynamic attacks, the attack vector is defined as a = Hc, where c is a vector whose elements

ci vary with time according to:

ci(t) = Mni cos (2πfct) , (5.14)

where M is the magnitude of the attack, fc is the frequency of the attack2, ni is drawn from

standard normal distribution, i.e., N (0, 1).

Now we present the performance of SDFR for FDI detection in smart grids. We generate

6000 training smart grid measurements z, each of size 33, using MATPOWER [110] (a

package in MATLAB). We divide the 6000 measurements into two sets, a safe (not attacked)

set of size 5000 and a compromised (attacked) set of size 1000. The attacks are performed

based on Equations (5.13) and (5.14). For each measurement z, we assume the attacker

could compromise as many of its 33 elements depending on the level of access it has to the

system. For testing, we also generate another 6000 measurements and divide them into safe

and compromised similarly as the training set. We train the SDFR to distinguish the safe

measurements from the compromised ones. We use the F1 measure as the evaluation metrics

2In this subsection, M = 1 and fc = 1.

128



of this application which is defined as,

F1 = 2
Precision× Recall

Precision + Recall
, (5.15)

where Precision = TP
TP+FP

, Recall = TP
TP+FN

, and TP, FP, and FN correspond to true pos-

itive, false positive, and false negative values, respectively. Figure 5.6 demonstrates the

0 10 20 30

# of Compromised meters

0

20

40

60

80

100

F
1

SDFR

MLP

Figure 5.6. F1 value of attack detection.

comparison between the performance of SDFR and an MLP with one hidden layer with 40

neurons, which is the same MLP used in SDFR in this task. The figure shows that SDFR

significantly outperforms MLP, and hence, demonstrating its capability to capture temporal

correlation, despite having only one spiking neuron. In this experiment, we set C = 10µ

Farads (µF ), and fine tune the value of τ .

129



5.3.2 Effect of Multiplexing

In this section, we show that our multiplexing scheme is more robust to noise and adversarial

attacks compared to state-of-the-art encoding schemes.

5.3.2.1 Robustness Against Noise:

The VidTIMIT Database: Different levels of salt & pepper noise is added to the frames

of each subject. The videos of subjects without noise is used for training and the noisy frames

are used for testing while the subjects rotate their heads from 0o to 90o. The accuracy

of SDFR for each encoding mechanism with respect to different levels of noise is shown

in Figure 5.7. The figure shows that the accuracy of SDFR under multiplexing is much

more robust to noise compared to the accuracy of ISI or phase encoding. Our result

1 2 3 4 5

noise(%)

20

40

60

80

100

A
c

c
u

ra
c

y
(%

)

Multiplexing

ISI

Phase

Figure 5.7. Accuracy of each encoding with respect to noise.

130



Table 5.2: F1 values of smart grid attack detection of SDFR for different encoding schemes.

Encoding Variance of noise F1

Multiplexing 1 ≈ 94.36%
ISI 1 ≈ 88.35%
Phase 1 ≈ 91.49%
Multiplexing 2 ≈ 88.17%
ISI 2 ≈ 81%
Phase 2 ≈ 86%
Multiplexing 10 ≈ 60%
ISI 10 ≈ 41%
Phase 10 ≈ 41%

verifies the findings in the cognitive science research that the information that the biological

neurons convey with respect to an input stimulus is increased through multiplexing. In this

experiment, we set C = 10µ Farads (µF ), and fine tune the value of τ .

False Data Injection (FDI) Detection in Smart grids: The value of noise is controlled

by the variance of e. We show that as the magnitude of the variance of e becomes larger, the

F1 value of attack detection drops. However, SDFR with multiplexing codes shows more

robustness against more noise.

Table 5.2 shows the average F1 values of smart grid attack detection of SDFR for different

encoding schemes. Note that the magnitude of attack, M , used to generate the training and

testing sets is the same. Table 5.2 shows that as the variance of e increases, the F1 value for

all the encoding schemes decreases. However, the performance of SDFR with multiplexing

is improved. In this experiment, we set C = 10µ Farads (µF ), and fine tune the value of τ .

5.3.2.2 Robustness Against Adversarial Attacks:

The DeepfakeTIMIT Database: Figure 5.8 shows two examples of the subjects in the

DeepfakeTIMIT database, which is a version of the VidTIMIT database, which has been

adversarially attacked by GANs. We train the SDFR model on the VidTIMIT database,

131



and test it on the DeepfakeTIMIT database. To evaluate the performance of SDFR against

adversarial attacks, we use the attack success rate as the evaluation metric. The attack

success rate is defined as the number of the frames that are misclassified by SDFR.

Figure 5.8. Adversarial attacks on video frames.

The performance of SDFR against adversarial attacks under different encoding schemes is

shown in Table 5.3. The table shows that the adversary achieves the lowest success rate

when multiplexing is adopted as the encoding scheme of SDFR. In this experiment, we set

C = 10µ Farads (µF ), and fine tune the value of τ .

False Data Injection (FDI) Detection in Smart grids: To perform adversarial attacks

in smart grids, we assume that the magnitude of the attack ,M , in the testing data is

significantly smaller than the magnitude of the attack in the training data. In other words,

132



Table 5.3: Success rate of the attacker while performing adversarial attacks on video
frames.

Encoding Attack success rate %

Multiplexing ≈ 20%
ISI ≈ 25%
Phase ≈ 34%

Table 5.4: F1 values of smart grid attack detection of SDFR for different encoding schemes.

Encoding Attack success rate %

Multiplexing ≈ 44%
ISI ≈ 75%
Phase ≈ 76%

we assume the training takes into consideration the possibility of attacks, but with a certain

magnitude. However, the attacker uses much smaller values, making detection of those

attacks hard. More specifically, we set the magnitudes of train and test equal to M = 10,

and M = 1, respectively.

The results in Table 5.4 verify the robustness of multiplexing codes over the state-of-the-art

codes against adversarial attacks. In this experiment, we set C = 10µ Farads (µF ), and fine

tune the value of τ .

5.3.3 Defending SDFR against Adversarial Attacks

In this section, we verify the effectiveness of the introduced defense mechanism in SDFR.

We showed in Equation (5.10) that the sensitivity of the Jacobian of the spiking LIF neuron

can be decreased through increasing the membrane capacitance (C). In Figure 5.9, the effect

of increasing the membrane capacitance of the LIF neuron (C) on defending SDFR against

adversarial attacks is shown for the VidTIMIT database and smart grids.

133



The figure shows an interesting behavior. It can be seen that increasing C can reduce the

success rate of the attacker up to a certain point. For VidTIMIT, the success rate of the

attacker drops from 48% to 12% as we increase the capacitance from 0.1µF to 50µF , then

the success rate increases again. The same behavior can be observed for smart grid as well,

where the success of the attacker drops from 100% to 44% as the capacitance is increased

from 0.1µF to 10µF , then the success rate increases again. This suggests a trade-off between

power efficiency (decreasing C) and robustness of spiking neurons against adversarial attacks

(increasing C) has to be made.

The reason why the attacker success rate increases after a certain point is due to the fact

that increasing C to very large values, decays the current, i.e., I(t)
C
≈ 0 according to Equa-

tion (5.3), and hence, decreasing the information conveyed through the current, which decays

the representation power of the SDFR model.

0 50 100 150 200

Capacitance (uf)

20

40

60

80

100

A
tt

a
c

k
 S

u
c

c
e

s
s

 r
a

te
 (

%
)

VidTIMIT

Smart Grid

Figure 5.9. Effect of increasing the capacitance on adversarial attacks.

134



It can also be observed that larger capacitance values work better for VidTIMIT compared

to the smart grid data. The reason is that the I(t) of video frames are constituted of 4466

pixels, but the smart grid data has only 33 measurements which make the corresponding I(t)

of the smart grid smaller than the I(t) of video frames. Therefore, a larger C is required to

decay the I(t) of video frames, and hence, larger C values are more effective on VidTIMIT

than smart grid.

5.4 Conclusion and Future work

In this chapter, inspired by delayed feedback reservoirs, we introduced a spiking recurrent

neural network, named SDFR. Our simulation results show the effectiveness of SDFR in

capturing temporal correlations, compared with multi-layer perceptrons. We also demon-

strated that multiplexing the state-of-the-art encoding schemes leads to more robustness

against noise and adversarial attacks. Finally, for the first time, we showed that increas-

ing the membrane capacitance of a spiking neuron (up to a certain point) can strengthen

the resilience of SDFR against adversarial attacks. However, the growth of the membrane

capacitance also increases power consumption, which requires a trade-off to balance.

For the future work, we will focus on: 1) verifying our proposed encoding and defense

mechanisms in other existing structures of SNNs; and 2) designing more effective defense

mechanisms for SNNs that do not increase the underlying power consumption.

135



Chapter 6

Conclusion and Open Problems

In this dissertation inspired by delayed feedback reservoirs, spiking recurrent neural network,

named SDFR was introduced which was both easy to train and energy efficient. The effec-

tiveness of this model was evaluated in solving different problems, namely, attacks detection

in smart grids, MIMO-OFDM spectrum sensing, and video-based face recognition. More-

over, the model was extended in space to capture the spatial correlation as well. For the first

time, cGANs were combined with SDFR to solve the data scarcity problem of AI enabled

MIMO-OFDM spectrum sensing. Multiplexing different neural codes which is inspired from

rats was formulated and implemented which leads to more robustness against noise and

adversarial attacks. Finally, for the first time, it was shown that increasing the membrane

capacitance of a spiking neuron (up to a certain point) can strengthen the resilience of SDFR

against adversarial attacks.

136



6.1 Open Problems

• Defending SNNs against adversarial attacks without increasing the value of the mem-

branes capaciatance of LIF neuron.

• Multiplexing several codes together, i.e., time, rate, and phase.

• Implementing an end-to-end SDFR model on FPGA.

• Implementing SDFR on multi-class tasks.

• Extending a deep SDFR model in time domain through multiple layers of SDFR.

137



Bibliography

[1] J. Li, C. Zhao, K. Hamedani, and Y. Yi, “Analog hardware implementation of spike-

based delayed feedback reservoir computing system,” in 2017 International Joint Con-

ference on Neural Networks (IJCNN). IEEE, 2017, pp. 3439–3446.

[2] C. Zhao, B. T. Wysocki, C. D. Thiem, N. R. McDonald, J. Li, L. Liu, and Y. Yi, “En-

ergy efficient spiking temporal encoder design for neuromorphic computing systems,”

IEEE Transactions on Multi-Scale Computing Systems, vol. 2, no. 4, pp. 265–276,

2016.

[3] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural net-

works for sequence learning,” arXiv preprint arXiv:1506.00019, 2015.

[4] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Nu-

mata, D. Nakano, and A. Hirose, “Recent advances in physical reservoir computing:

A review,” Neural Networks, 2019.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations

by error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science,

Tech. Rep., 1985.

138



[6] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,

and L. D. Jackel, “Handwritten digit recognition with a back-propagation network,”

in Advances in neural information processing systems, 1990, pp. 396–404.

[7] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE trans-

actions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[8] A. L. Blum and R. L. Rivest, “Training a 3-node neural network is np-complete,”

Neural Networks, vol. 5, no. 1, pp. 117–127, 1992.

[9] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient

descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–166,

1994.

[10] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Pro-

ceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[11] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural

networks,” in International conference on machine learning, 2013, pp. 1310–1318.

[12] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully

recurrent neural networks,” Neural computation, vol. 1, no. 2, pp. 270–280, 1989.

[13] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with recurrent neural

networks,” in Proceedings of the 28th international conference on machine learning

(ICML-11), 2011, pp. 1017–1024.

[14] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and

saving energy in wireless communication,” science, vol. 304, no. 5667, pp. 78–80, 2004.

139



[15] Y. Yi, Y. Liao, B. Wang, X. Fu, F. Shen, H. Hou, and L. Liu, “Fpga based spike-

time dependent encoder and reservoir design in neuromorphic computing processors,”

Microprocessors and Microsystems, vol. 46, pp. 175–183, 2016.

[16] R. Shafin, L. Liu, J. Ashdown, J. Matyjas, M. Medley, B. Wysocki, and Y. Yi, “Realiz-

ing green symbol detection via reservoir computing: An energy-efficiency perspective,”

in 2018 IEEE International Conference on Communications (ICC). IEEE, 2018, pp.

1–6.

[17] H. An, Z. Zhou, and Y. Yi, “Memristor-based 3d neuromorphic computing system

and its application to associative memory learning,” in 2017 IEEE 17th International

Conference on Nanotechnology (IEEE-NANO). IEEE, 2017, pp. 555–560.

[18] M. A. Ehsan, Z. Zhou, and Y. Yi, “Neuromorphic 3d integrated circuit: A hybrid,

reliable and energy efficient approach for next generation computing,” in Proceedings

of the on Great Lakes Symposium on VLSI 2017, 2017, pp. 221–226.

[19] H. An, Z. Zhou, and Y. Yi, “Opportunities and challenges on nanoscale 3d neuromor-

phic computing system,” in 2017 IEEE International Symposium on Electromagnetic

Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2017, pp. 416–421.

[20] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent neural

network training,” Computer Science Review, vol. 3, no. 3, pp. 127–149, 2009.

[21] D. Verstraeten, B. Schrauwen, M. d’Haene, and D. Stroobandt, “An experimental

unification of reservoir computing methods,” Neural networks, vol. 20, no. 3, pp. 391–

403, 2007.

[22] H. An, M. A. Ehsan, Z. Zhou, and Y. Yi, “Electrical modeling and analysis of 3d

neuromorphic ic with monolithic inter-tier vias,” in 2016 IEEE 25th Conference on

140



Electrical Performance Of Electronic Packaging And Systems (EPEPS). IEEE, 2016,

pp. 87–90.

[23] H. An, M. A. Ehsan, Z. Zhou, F. Shen, and Y. Yi, “Monolithic 3d neuromorphic

computing system with hybrid cmos and memristor-based synapses and neurons,”

Integration, vol. 65, pp. 273–281, 2019.

[24] K. Hamedani, L. Liu, R. Atat, J. Wu, and Y. Yi, “Reservoir computing meets smart

grids: attack detection using delayed feedback networks,” IEEE Trans. Ind. Informat.,

vol. 14, no. 2, pp. 734–743, 2018.

[25] K. Hamedani, L. Liu, S. Hu, J. Ashdown, J. Wu, and Y. Yi, “Detecting dynamic at-

tacks in smart grids using reservoir computing: A spiking delayed feedback reservoir

based approach,” IEEE Transactions on Emerging Topics in Computational Intelli-

gence, 2019.

[26] K. Hamedani, Z. Zhou, K. Bai, and L. Liu, “The novel applications of deep reservoir

computing in cyber-security and wireless communication,” in Intelligent System and

Computing. IntechOpen, 2019.

[27] T. Akiyama and G. Tanaka, “Analysis on characteristics of multi-step learning echo

state networks for nonlinear time series prediction,” in 2019 International Joint Con-

ference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.

[28] C. Gallicchio, A. Micheli, and L. Pedrelli, “Deep reservoir computing: A critical ex-

perimental analysis,” Neurocomputing, vol. 268, pp. 87–99, 2017.

[29] A. Katumba, M. Freiberger, P. Bienstman, and J. Dambre, “A multiple-input strategy

to efficient integrated photonic reservoir computing,” Cognitive Computation, vol. 9,

no. 3, pp. 307–314, 2017.

141



[30] K. Bai, S. Liu, and Y. Yi, “High speed and energy efficient deep neural network for edge

computing,” in Proceedings of the 4th ACM/IEEE Symposium on Edge Computing,

2019, pp. 347–349.

[31] K. Bai, Q. An, L. Liu, and Y. Yi, “A training-efficient hybrid-structured deep neural

network with reconfigurable memristive synapses,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 2019.

[32] C. Zhao, Q. An, K. Bai, B. Wysocki, C. Thiem, L. Liu, and Y. Yi, “Energy efficient

temporal spatial information processing circuits based on stdp and spike iteration,”

IEEE Transactions on Circuits and Systems II: Express Briefs, 2019.

[33] C. Zhao, L. Liu, and Y. Yi, “Design and analysis of real time spiking neural network

decoder for neuromorphic chips,” in Proceedings of the International Conference on

Neuromorphic Systems, 2019, pp. 1–4.

[34] H. An, Q. An, and Y. Yi, “Realizing behavior level associative memory learning

through three-dimensional memristor-based neuromorphic circuits,” IEEE Transac-

tions on Emerging Topics in Computational Intelligence, 2019.

[35] S. Liu and Y. Yi, “Quantized neural networks and neuromorphic computing for em-

bedded systems,” in Intelligent System and Computing. IntechOpen, 2020.

[36] C. Zhao, K. Hamedani, J. Li, and Y. Yi, “Analog Spike-Timing-Dependent Resis-

tive Crossbar Design for Brain Inspired Computing,” IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 38–50, 2017.

[37] J. Li, K. Bai, L. Liu, and Y. Yi, “A deep learning based approach for analog hard-

ware implementation of delayed feedback reservoir computing system,” in 2018 19th

International Symposium on Quality Electronic Design (ISQED). IEEE, 2018, pp.

308–313.

142



[38] N. D. Haynes, M. C. Soriano, D. P. Rosin, I. Fischer, and D. J. Gauthier, “Reservoir

computing with a single time-delay autonomous boolean node,” Physical Review E,

vol. 91, no. 2, p. 020801, 2015.

[39] R. Atat, L. Liu, J. Wu, G. Li, C. Ye, and Y. Yang, “Big data meet cyber-physical

systems: A panoramic survey,” IEEE Access, vol. 6, pp. 73 603–73 636, 2018.

[40] G. Liang, L. Zhao, F. Luo, S. Weller, and Z.Dong, “A review of false data injection

attacks against modern power systems,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp.

1630–1638, Jul. 2017.

[41] M. Ozay, I. Esnaola, F. Vural, S. Kulkarni, and H. Poor, “Machine learning methods

for attack detection in the smart grid,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,

no. 48, pp. 1773–1786, Aug. 2016.

[42] M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, and Z. Han, “Detecting stealthy false

data injection using machine learning in smart grid,” IEEE Systems Journal, vol. 11,

no. 3, pp. 1644–1652, 2017.

[43] J. Yan, B. Tang, N. Nguyen, and H. He, “Detection of false data attacks in smart

grid with supervised learning,” In International Joint Conference on Neural Networks

(IJCNN), pp. 1395–1402, 2016.

[44] M. Mohammadpourfard, A. Sami, and Y. Weng, “Identification of false data injection

attacks with considering the impact of wind generation and topology reconfigurations,”

IEEE Trans. Sustain. Energy, vol. 9, no. 3, pp. 1349–1364, Jul 2018.

[45] J. Zhao, G. Zhang, M. L. Scala, Z. Dong, C. Chen, and J. Wang, “Short-term state

forecasting-aided method for detection of smart grid general false data injection at-

tacks,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1580–1590, Jul 2017.

143



[46] A. M. R. Moslemi and J. Velni, “A fast, decentralized covariance selection-based ap-

proach to detect cyber attacks in smart grids,” IEEE Trans. Smart Grid, vol. 6, no. 5,

pp. 14 930–4941, Sep 2018.

[47] T. Xiong, Y.-D. Yao, Y. Ren, and Z. Li, “Multiband spectrum sensing in cognitive radio

networks with secondary user hardware limitation: Random and adaptive spectrum

sensing strategies,” IEEE Trans. Wireless Commun, vol. 17, no. 5, pp. 3018–3029,

2018.

[48] A. Kumar and P. NandhaKumar, “Ofdm system with cyclostationary feature detection

spectrum sensing,” ICT Express, vol. 5, no. 1, pp. 21–25, 2019.

[49] P.-R. Lin, Y.-Z. Chen, P.-H. Chang, and S.-S. Jeng, “Cooperative spectrum sensing

and optimization on multi-antenna energy detection in rayleigh fading channel,” in

2018 27th Wireless and Optical Communication Conference (WOCC). IEEE, 2018,

pp. 1–5.

[50] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, “Machine learning

paradigms for next-generation wireless networks,” IEEE Trans. Wireless Commun.,

vol. 24, no. 2, pp. 98–105, 2017.

[51] K. M. Thilina, K. W. Choi, N. Saquib, and E. Hossain, “Machine learning techniques

for cooperative spectrum sensing in cognitive radio networks,” IEEE Journal on se-

lected areas in communications, vol. 31, no. 11, pp. 2209–2221, 2013.

[52] L. Li, L. Liu, J. Bai, H.-H. Chang, H. Chen, J. D. Ashdown, J. Zhang, and Y. Yi,

“Accelerating model free reinforcement learning with imperfect model knowledge in

dynamic spectrum access,” IEEE Internet of Things Journal, 2020.

144



[53] Z. Zhou, L. Liu, S. Jere, Y. Yi et al., “Rcnet: Incorporating structural information

into deep rnn for mimo-ofdm symbol detection with limited training,” arXiv preprint

arXiv:2003.06923, 2020.

[54] H. Jiang, L. Li, H. He, and L. Liu, “Evolutionary search for energy-efficient distributed

cooperative spectrum sensing,” in 2020 International Conference on Computing, Net-

working and Communications (ICNC). IEEE, 2020, pp. 567–571.

[55] H. Jiang, H. He, and L. Liu, “Dynamic spectrum access for femtocell networks: A

graph neural network based learning approach,” in 2020 International Conference on

Computing, Networking and Communications (ICNC). IEEE, 2020, pp. 927–931.

[56] H. Song, J. Bai, Y. Yi, J. Wu, and L. Liu, “Artificial intelligence enabled internet of

things: Network architecture and spectrum access,” IEEE Computational Intelligence

Magazine, vol. 15, no. 1, pp. 44–51, 2020.

[57] Z. Zhou, L. Liu, V. Chandrasekhar, J. Zhang, and Y. Yi, “Deep reservoir computing

meets 5g mimo-ofdm systems in symbol detection,” in Proceedings of the 34th AAAI

Conf on Artificial Intell. AAAI Press, 2020.

[58] L. Li, H. Chen, H.-H. Chang, and L. Liu, “Deep residual learning meets ofdm channel

estimation,” IEEE Wireless Communications Letters, 2019.

[59] Z. Zhou, L. Liu, and H.-H. Chang, “Learning for detection: Mimo-ofdm symbol de-

tection through downlink pilots,” IEEE Transactions on Wireless Communications,

2020.

[60] B. Shang and L. Liu, “Machine learning meets point process: Spatial spectrum sensing

in user-centric networks,” IEEE Wireless Communications Letters, vol. 9, no. 1, pp.

34–37, 2019.

145



[61] R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang, “Artificial

intelligence-enabled cellular networks: A critical path to beyond-5g and 6g,” IEEE

Wireless Communications, 2020.

[62] C. Clancy, J. Hecker, E. Stuntebeck, and T. O’Shea, “Applications of machine learning

to cognitive radio networks,” IEEE Wireless Communications, vol. 14, no. 4, 2007.

[63] W. Lee, M. Kim, and D.-H. Cho, “Deep cooperative sensing: Cooperative spectrum

sensing based on convolutional neural networks,” IEEE Trans. Veh. Technol, vol. 68,

no. 3, pp. 3005–3009, 2019.

[64] D. Han, G. C. Sobabe, C. Zhang, X. Bai, Z. Wang, S. Liu, and B. Guo, “Spectrum

sensing for cognitive radio based on convolution neural network,” in 2017 10th Int.

Congr. Image Signal Process., Biomed. Eng. Inform (CISP-BMEI). IEEE, 2017, pp.

1–6.

[65] Q. Cheng, Z. Shi, D. Nguyen, and D. Erik, “Sensing ofdm signal: A deep learning

approach,” IEEE Trans. Commun, vol. 67, no. 11, pp. 7785–7798, Nov 2019.

[66] R. Shafin, H. Chen, Y. H. Nam, S. Hur, J. Park, J. Zhang, J. Reed, and L. Liu,

“Self-tuning sectorization: Deep reinforcement learning meets broadcast beam opti-

mization,” IEEE Transactions on Wireless Communications, 2020.

[67] H. Chen, L. Liu, H. S. Dhillon, and Y. Yi, “Qos-aware d2d cellular networks with

spatial spectrum sensing: A stochastic geometry view,” IEEE Transactions on Com-

munications, vol. 67, no. 5, pp. 3651–3664, 2018.

[68] H.-H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Distributive dynamic

spectrum access through deep reinforcement learning: A reservoir computing based

approach,” IEEE Internet of Things Journal, 2018.

146



[69] S. Mosleh, L. Liu, C. Sahin, Y. R. Zheng, and Y. Yi, “Brain-inspired wireless commu-

nications: Where reservoir computing meets mimo-ofdm,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 29, no. 10, pp. 4694 – 4708, 2017.

[70] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks: A com-

prehensive survey,” IEEE Commun. Surveys Tuts, vol. 20, no. 4, pp. 2595–2621, 2018.

[71] T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P.

Way, E. Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman et al., “Opportunities and

obstacles for deep learning in biology and medicine,” J. Roy. Soc. Interface, vol. 15,

no. 141, p. 20170387, 2018.

[72] H. Jiang, H. He, L. Liu, and Y. Yi, “Q-learning for non-cooperative channel access

game of cognitive radio networks,” in 2018 International Joint Conference on Neural

Networks (IJCNN). IEEE, 2018, pp. 1–7.

[73] R. Atat, L. Liu, H. Chen, J. Wu, H. Li, and Y. Yi, “Enabling cyber-physical com-

munication in 5g cellular networks: challenges, spatial spectrum sensing, and cyber-

security,” IET Cyber-Physical Systems: Theory & Applications, vol. 2, no. 1, pp. 49–54,

2017.

[74] H. Chen, L. Liu, T. Novlan, J. D. Matyjas, B. L. Ng, and J. Zhang, “Spatial spec-

trum sensing-based device-to-device cellular networks,” IEEE Transactions on Wire-

less Communications, vol. 15, no. 11, pp. 7299–7313, 2016.

[75] L. Liu, R. Chen, S. Geirhofer, K. Sayana, Z. Shi, and Y. Zhou, “Downlink mimo in lte-

advanced: Su-mimo vs. mu-mimo,” IEEE Communications Magazine, vol. 50, no. 2,

pp. 140–147, 2012.

[76] L. Cheng, Y.-C. Wu, J. Zhang, and L. Liu, “Subspace identification for doa estimation

in massive/full-dimension mimo systems: Bad data mitigation and automatic source

147



enumeration,” IEEE Transactions on Signal Processing, vol. 63, no. 22, pp. 5897–5909,

2015.

[77] L. Liu, Y. Li, and J. Zhang, “Doa estimation and achievable rate analysis for 3d

millimeter wave massive mimo systems,” in 2014 IEEE 15th International Workshop

on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2014,

pp. 6–10.

[78] L. Liu, G. Miao, and J. Zhang, “Energy-efficient scheduling for downlink multi-user

mimo,” in 2012 IEEE International Conference on Communications (ICC). IEEE,

2012, pp. 4394–4394.

[79] L. Liu, Y. Yi, J.-F. Chamberland, and J. Zhang, “Energy-efficient power allocation

for delay-sensitive multimedia traffic over wireless systems,” IEEE transactions on

vehicular technology, vol. 63, no. 5, pp. 2038–2047, 2014.

[80] B. Kerrigan, F. L. Pour, and D. S. Ha, “System design of a high-temperature downhole

transceiver: Part i–receiver,” in 2019 IEEE 62nd International Midwest Symposium

on Circuits and Systems (MWSCAS). IEEE, 2019, pp. 818–821.

[81] Y. Mao, Y. Luo, J. Zhang, and K. B. Letaief, “Energy harvesting small cell networks:

feasibility, deployment, and operation,” IEEE Communications Magazine, vol. 53,

no. 6, pp. 94–101, 2015.

[82] E. F. Camacho, T. Samad, M. Garcia-Sanz, and I. Hiskens, “Control for renewable

energy and smart grids,” The Impact of Control Technology, Control Systems Society,

pp. 69–88, 2011.

[83] P. He and L. Zhao, “Noncommutative composite water-filling for energy harvesting and

smart power grid hybrid system with peak power constraints,” IEEE Transactions on

Vehicular Technology, vol. 65, no. 4, pp. 2026–2037, 2016.

148



[84] J. Wu, S. Guo, J. Li, and D. Zeng, “Big data meet green challenges: Greening big

data,” IEEE Systems Journal, vol. 10, no. 3, pp. 873–887, 2016.

[85] S. Soter and R. Wegener, “Development of induction machines in wind power tech-

nology,” in Electric Machines & Drives Conference, 2007. IEMDC’07. IEEE Interna-

tional, vol. 2. IEEE, 2007, pp. 1490–1495.

[86] B. Kerrigan, F. L. Pour, and D. S. Ha, “System design of a high-temperature downhole

transceiver: Part ii–transmitter,” in 2019 IEEE 62nd International Midwest Sympo-

sium on Circuits and Systems (MWSCAS). IEEE, 2019, pp. 822–825.

[87] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable

states: A new framework for neural computation based on perturbations,” Neural

computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[88] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent neural

network training,” Computer Science Review, vol. 3, no. 3, pp. 127–149, 2009.

[89] S. Mosleht, C. Sahint, L. Liut, R. Zheng, and Y. Yit, “An energy efficient decoding

scheme for nonlinear mimo-ofdm network using reservoir computing,” in Neural Net-

works (IJCNN), 2016 International Joint Conference on. IEEE, 2016, pp. 1166–1173.

[90] S. Mosleh, L. Liu, C. Sahin, Y. R. Zheng, and Y. Yi, “Brain-inspired wireless com-

munications: Where reservoir computing meets mimo-ofdm,” IEEE Transactions on

Neural Networks and Learning Systems, 2017.

[91] H. Jaeger, “The “echo state” approach to analysing and training recurrent neural

networks-with an erratum note,” Bonn, Germany: German National Research Center

for Information Technology GMD Technical Report, vol. 148, no. 34, p. 13, 2001.

149



[92] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview of reservoir

computing: theory, applications and implementations,” in Proceedings of the 15th Eu-

ropean Symposium on Artificial Neural Networks. p. 471-482 2007, 2007, pp. 471–482.

[93] X. Hinaut and P. F. Dominey, “On-line processing of grammatical structure using reser-

voir computing,” in International Conference on Artificial Neural Networks. Springer,

2012, pp. 596–603.

[94] L. Appeltant et al., “Reservoir computing based on delay-dynamical systems,” Ph.D.

dissertation, Universitat de les Illes Balears, 2012.

[95] S. Panzeri, N. Brunel, N. K. Logothetis, and C. Kayser, “Sensory neural codes using

multiplexed temporal scales,” Trends in neurosciences, vol. 33, no. 3, pp. 111–120,

2010.

[96] D. S. Reich, F. Mechler, K. P. Purpura, and J. D. Victor, “Interspike intervals, receptive

fields, and information encoding in primary visual cortex,” Journal of Neuroscience,

vol. 20, no. 5, pp. 1964–1974, 2000.

[97] S. M. Chase and E. D. Young, “First-spike latency information in single neurons in-

creases when referenced to population onset,” Proceedings of the National Academy of

Sciences, vol. 104, no. 12, pp. 5175–5180, 2007.

[98] J. Lisman, “The theta/gamma discrete phase code occuring during the hippocampal

phase precession may be a more general brain coding scheme,” Hippocampus, vol. 15,

no. 7, pp. 913–922, 2005.

[99] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve mem-

brane,” Biophysical journal, vol. 1, no. 6, pp. 445–466, 1961.

150



[100] C. Kayser, M. A. Montemurro, N. K. Logothetis, and S. Panzeri, “Spike-phase coding

boosts and stabilizes information carried by spatial and temporal spike patterns,”

Neuron, vol. 61, no. 4, pp. 597–608, 2009.

[101] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estima-

tion in electric power grids,” ACM Transactions on Information and System Security

(TISSEC), vol. 14, no. 1, p. 13, 2011.

[102] R. Xu, R. Wang, Z. Guan, L. Wu, J. Wu, and X. Du, “Achieving efficient detection

against false data injection attacks in smart grid,” IEEE Access, vol. 5, pp. 13 787–

13 798, 2017.

[103] S. Tan, D. De, W.-Z. Song, J. Yang, and S. K. Das, “Survey of security advances in

smart grid: A data driven approach,” IEEE Communications Surveys & Tutorials,

vol. 19, no. 1, pp. 397–422, 2017.

[104] ——, “Survey of security advances in smart grid: A data driven approach,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 1, pp. 397–422, 2017.

[105] R. Deng, G. Xiao, and R. Lu, “Defending against false data injection attacks on power

system state estimation,” IEEE Transactions on Industrial Informatics, vol. 13, no. 1,

pp. 198–207, 2017.

[106] S. Bi and Y. J. Zhang, “Graphical methods for defense against false-data injection

attacks on power system state estimation,” IEEE Transactions on Smart Grid, vol. 5,

no. 3, pp. 1216–1227, 2014.

[107] M. Cramer, P. Goergens, and A. Schnettler, “Bad data detection and handling in

distribution grid state estimation using artificial neural networks,” in PowerTech, 2015

IEEE Eindhoven. IEEE, 2015, pp. 1–6.

151



[108] A. Anwar, A. N. Mahmood, and Z. Tari, “Identification of vulnerable node clusters

against false data injection attack in an ami based smart grid,” Information Systems,

vol. 53, pp. 201–212, 2015.

[109] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre,

B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single

dynamical node as complex system,” Nature communications, vol. 2, p. 468, 2011.

[110] R. D. Zimmerman, C. E. Murillo-Sánchez, R. J. Thomas et al., “Matpower: Steady-

state operations, planning, and analysis tools for power systems research and educa-

tion,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–19, 2011.

[111] Y.-H. Liu and X.-J. Wang, “Spike-frequency adaptation of a generalized leaky

integrate-and-fire model neuron,” Journal of computational neuroscience, vol. 10, no. 1,

pp. 25–45, 2001.

[112] J. Li, L. Liu, C. Zhao, K. Hamedani, R. Atat, and Y. Yi, “Enabling sustainable cyber

physical security systems through neuromorphic computing,” IEEE Transactions on

Sustainable Computing, vol. 3, no. 2, pp. 112–125, 2018.

[113] J. Li, C. Zhao, and Y. Yi, “Energy efficient and compact analog integrated circuit

design for delay-dynamical reservoir computing system,” in Proc. IEEE Int. Joint

Conf. Neural Netw., 2017.

[114] K. Bai and Y. Yi, “Dfr: An Energy-efficient Analog Delay Feedback Reservoir Comput-

ing System for Brain-inspired Computing,” ACM Journal on Emerging Technologies

in Computing Systems (JETC), vol. 14, no. 4, pp. 1–22, 2018.

[115] K. Bai and Y. Y. Bradley, “A path to energy-efficient spiking delayed feedback reservoir

computing system for brain-inspired neuromorphic processors,” in 2018 19th Interna-

tional Symposium on Quality Electronic Design (ISQED). IEEE, 2018, pp. 322–328.

152



[116] L. S. Smith, “Neuromorphic systems: past, present and future,” in Brain Inspired

Cognitive Systems 2008. Springer, 2010, pp. 167–182.

[117] A. Basu and P. E. Hasler, “Nullcline-based design of a silicon neuron,” IEEE Trans-

actions on Circuits and Systems I: Regular Papers, vol. 57, no. 11, pp. 2938–2947,

2010.

[118] K. Ramanaiah and S. Sridhar, “Hardware implementation of artificial neural net-

works,” i-Manager’s Journal on Embedded Systems, vol. 3, no. 4, p. 31, 2014.

[119] M. A. Ehsan, H. An, Z. Zhou, and Y. Yi, “Design challenges and methodologies in 3d

integration for neuromorphic computing systems,” in 2016 17th International Sympo-

sium on Quality Electronic Design (ISQED). IEEE, 2016, pp. 24–28.

[120] ——, “A novel approach for using tsvs as membrane capacitance in neuromorphic 3-d

ic,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 37, no. 8, pp. 1640–1653, 2017.

[121] H. An, J. Li, Y. Li, X. Fu, and Y. Yi, “Three dimensional memristor-based neuromor-

phic computing system and its application to cloud robotics,” Computers & Electrical

Engineering, vol. 63, pp. 99–113, 2017.

[122] M. A. Ehsan, Z. Zhou, and Y. Yi, “Hybrid three-dimensional integrated circuits: A

viable solution for high efficiency neuromorphic computing,” in 2017 International

Symposium on VLSI Design, Automation and Test (VLSI-DAT). IEEE, 2017, pp.

1–2.

[123] H. An, K. Bai, and Y. Yi, “The roadmap to realize memristive three-dimensional

neuromorphic computing system,” Advances in Memristor Neural Networks-Modeling

and Applications, 2018.

153



[124] M. A. Ehsan, Z. Zhou, and Y. Yi, “Modeling and analysis of neuronal membrane

electrical activities in 3d neuromorphic computing system,” in 2017 IEEE Interna-

tional Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EM-

CSI). IEEE, 2017, pp. 745–750.

[125] ——, “Modeling and optimization of tsv for crosstalk mitigation in 3d neuromorphic

system,” in 2016 IEEE International Symposium on Electromagnetic Compatibility

(EMC). IEEE, 2016, pp. 621–626.

[126] C. Zhao, J. Li, and Y. Yi, “Making neural encoding robust and energy efficient: an ad-

vanced analog temporal encoder for brain-inspired computing systems,” in Proceedings

of the 35th International Conference on Computer-Aided Design, 2016, pp. 1–6.

[127] C. Zhao, B. T. Wysocki, Y. Liu, C. D. Thiem, N. R. McDonald, and Y. Yi, “Spike-

time-dependent encoding for neuromorphic processors,” ACM Journal on Emerging

Technologies in Computing Systems (JETC), vol. 12, no. 3, pp. 1–21, 2015.

[128] M. Tateno and A. Uchida, “Nonlinear dynamics and chaos synchronization in mackey-

glass electronic circuits with multiple time-delayed feedback,” Nonlinear Theory and

Its Applications, IEICE, vol. 3, no. 2, pp. 155–164, 2012.

[129] R. N. Anderson, A. Boulanger, W. B. Powell, and W. Scott, “Adaptive stochastic

control for the smart grid,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1098–1115,

2011.

[130] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks on the smart

grid,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp. 645–658, 2011.

[131] J. Yan, B. Tang, and H. He, “Detection of false data attacks in smart grid with su-

pervised learning,” in Neural Networks (IJCNN), 2016 International Joint Conference

on. IEEE, 2016, pp. 1395–1402.

154



[132] Y. Kumar, “Study of power and renewable systems modeling and simulation tools,”

2015.

[133] O. Bekri, M. Fellah, and M. Benkhoris, “Impact of the wind generator on the power flow

in the electric grid,” in Environmental Friendly Energies and Applications (EFEA),

2014 3rd International Symposium on. IEEE, 2014, pp. 1–6.

[134] W. T. P. Calculations, “Rwe npower renewables,” Mechanical and Electrical Engineer-

ing Power Industry, The Royal Academy of Engineering, 2012.

[135] A. Patrascu and V.-V. Patriciu, “Cyber protection of critical infrastructures using

supervised learning,” in Control Systems and Computer Science (CSCS), 2015 20th

International Conference on. IEEE, 2015, pp. 461–468.

[136] Q. Yu, H. Tang, K. C. Tan, and H. Li, “Precise-spike-driven synaptic plasticity: Learn-

ing hetero-association of spatiotemporal spike patterns,” Plos one, vol. 8, no. 11, p.

e78318, 2013.

[137] K. Hamedani, S. A. Seyyedsalehi, and R. Ahamdi, “Video-based face recognition and

image synthesis from rotating head frames using nonlinear manifold learning by neural

networks,” Neural Computing and Applications, vol. 27, no. 6, pp. 1761–1769, 2016.

[138] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on

Knowledge & Data Engineering, no. 9, pp. 1263–1284, 2008.

[139] F. Wu, X.-Y. Jing, S. Shan, W. Zuo, and J.-Y. Yang, “Multiset feature learning for

highly imbalanced data classification.” in AAAI, 2017, pp. 1583–1589.

[140] K. Yang, J. Ren, Y. Zhu, and W. Zhang, “Active learning for wireless iot intrusion

detection,” IEEE Wireless Commun., vol. 25, no. 6, pp. 19–25, December 2018.

155



[141] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estima-

tion in electric power grids,” ACM Transactions on Information and System Security

(TISSEC), vol. 14, no. 1, p. 13, 2011.

[142] J. Kim, L. Tong, and R. J. Thomas, “Dynamic attacks on power systems economic

dispatch,” in Signals, Systs and Computers (ACSSC), 2014 48th Asilomar Conf on.

IEEE, 2014, pp. 345–349.

[143] S. Cui, Z. Han, S. Kar, T. T. Kim, H. V. Poor, and A. Tajer, “Coordinated data-

injection attack and detection in the smart grid: A detailed look at enriching detection

solutions,” IEEE Signal Process. Mag., vol. 29, no. 5, pp. 106–115, 2012.

[144] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor, “Machine learning

methods for attack detection in the smart grid,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 27, no. 8, pp. 1773–1786, 2016.

[145] J. Yan, B. Tang, and H. He, “Detection of false data attacks in smart grid with

supervised learning,” in Neural Nets (IJCNN), 2016 Intl Joint Conf on. IEEE, 2016,

pp. 1395–1402.

[146] Y. He, G. J. Mendis, and J. Wei, “Real-time detection of false data injection attacks in

smart grid: A deep learning-based intelligent mechanism,” IEEE Trans. Smart Grid,

vol. 8, no. 5, pp. 2505–2516, 2017.

[147] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre,

B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single

dynamical node as complex system,” Nature communications, vol. 2, p. 468, 2011.

[148] K. Bai, Q. An, and Y. Yi, “Deep-dfr: A memristive deep delayed feedback reservoir

computing system with hybrid neural network topology,” in 2019 56th ACM/IEEE

Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

156



[149] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopou-

los, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo, P. Datta, A. Amir,

B. Taba, M. D. Flickner, and D. S. Modha, “Convolutional networks for fast, energy-

efficient neuromorphic computing,” Proceedings of the National Academy of Sciences

(NAS), vol. 113, no. 41, pp. 11 441–11 446, 2016.

[150] C. Zhao, B. T. Wysocki, Y. Liu, C. D. Thiem, N. R. McDonald, and Y. Yi, “Spike-

time-dependent encoding for neuromorphic processors,” J. Emerg. Technol. Comput.

Syst., vol. 12, no. 3, pp. 23:1–23:21, Sep. 2015.

[151] C. Zhao, B. T. Wysocki, C. D. Thiem, N. R. McDonald, J. Li, L. Liu, and Y. Yi, “En-

ergy efficient spiking temporal encoder design for neuromorphic computing systems,”

IEEE Trans. Multi-Scale Comput. Syst., vol. 2, no. 4, pp. 265–276, 2016.

[152] K. Ramezanpour, P. Ampadu, and W. Diehl, “A statistical fault analysis methodol-

ogy for the ascon authenticated cipher,” in 2019 IEEE International Symposium on

Hardware Oriented Security and Trust (HOST). IEEE, 2019, pp. 41–50.

[153] ——, “Fima: Fault intensity map analysis,” in International Workshop on Construc-

tive Side-Channel Analysis and Secure Design. Springer, 2019, pp. 63–79.

[154] ——, “Fault intensity map analysis with neural network key distinguisher,” in Pro-

ceedings of the 3rd ACM Workshop on Attacks and Solutions in Hardware Security

Workshop, 2019, pp. 33–42.

[155] M. Esmalifalak, G. Shi, Z. Han, and L. Song, “Bad data injection attack and defense

in electricity market using game theory study,” IEEE Trans. Smart Grid, vol. 4, no. 1,

pp. 160–169, 2013.

[156] J. Hu, H. Tang, K. C. Tan, H. Li, and L. Shi, “A spike-timing-based integrated model

for pattern recognition,” Neural computation, vol. 25, no. 2, pp. 450–472, 2013.

157



[157] S. Panzeri, N. Brunel, N. K. Logothetis, and C. Kayser, “Sensory neural codes using

multiplexed temporal scales,” Trends in neurosciences, vol. 33, no. 3, pp. 111–120,

2010.

[158] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “Span: Spike pattern asso-

ciation neuron for learning spatio-temporal spike patterns,” International journal of

neural systems, vol. 22, no. 04, p. 1250012, 2012.

[159] K. Bai, J. Li, K. Hamedani, and Y. Yi, “Enabling an new era of brain-inspired com-

puting: Energy-efficient spiking neural network with ring topology,” in 2018 55th

ACM/ESDA/IEEE Design Automation Conf. (DAC), 2018, pp. 1–6.

[160] C. L. Giles and T. Maxwell, “Learning, invariance, and generalization in high-order

neural networks,” Applied optics, vol. 26, no. 23, pp. 4972–4978, 1987.

[161] R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay

feedback systems,” Physical review letters, vol. 81, no. 3, p. 558, 1998.

[162] T. J. Gawne, T. W. Kjaer, and B. J. Richmond, “Latency: another potential code

for feature binding in striate cortex,” Journal of neurophysiology, vol. 76, no. 2, pp.

1356–1360, 1996.

[163] Z. Nadasdy, “Information encoding and reconstruction from the phase of action po-

tentials,” Frontiers in systems neuroscience, vol. 3, p. 6, 2009.

[164] C. Zhao, W. Danesh, B. T. Wysocki, and Y. Yi, “Neuromorphic encoding system design

with chaos based cmos analog neuron,” in 2015 IEEE Symposium on Computational

Intelligence for Security and Defense Applications (CISDA). IEEE, 2015, pp. 1–6.

158



[165] R. Shafin, L. Liu, J. Zhang, and Y.-C. Wu, “Doa estimation and capacity analysis

for 3-d millimeter wave massive-mimo/fd-mimo ofdm systems,” IEEE Transactions on

Wireless Communications, vol. 15, no. 10, pp. 6963–6978, 2016.

[166] Y. Li, P. Fan, A. Leukhin, and L. Liu, “On the spectral and energy efficiency of

full-duplex small-cell wireless systems with massive mimo,” IEEE Transactions on

Vehicular Technology, vol. 66, no. 3, pp. 2339–2353, 2016.

[167] R. Shafin and L. Liu, “Superimposed pilot for multi-cell multi-user massive fd-mimo

systems,” IEEE Transactions on Wireless Communications, 2020.

[168] ——, “Multi-cell multi-user massive fd-mimo: Downlink precoding and throughput

analysis,” IEEE Transactions on Wireless Communications, vol. 18, no. 1, pp. 487–

502, 2018.

[169] F. E. Mahmood, E. S. Perrins, and L. Liu, “Energy consumption vs. bit rate analysis

toward massive mimo systems,” in 2018 IEEE International Smart Cities Conference

(ISC2). IEEE, 2018, pp. 1–7.

[170] W. Xu, W. Xiang, M. Elkashlan, and H. Mehrpouyan, “Spectrum sensing of ofdm

signals in the presence of carrier frequency offset,” IEEE Trans. Veh. Techno, vol. 65,

no. 8, pp. 6798–6803, 2015.

[171] T. J. O’Shea, S. Hitefield, and J. Corgan, “End-to-end radio traffic sequence recogni-

tion with recurrent neural networks,” in 2016 IEEE Global Conference on Signal and

Information Processing (GlobalSIP). IEEE, 2016, pp. 277–281.

[172] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct Training for Spiking Neural

Networks: Faster, Farger, Better,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, 2019, pp. 1311–1318.

159



[173] K. Davaslioglu and Y. E. Sagduyu, “Generative adversarial learning for spectrum sens-

ing,” IEEE International Conference on Communications (ICC), 2018.

[174] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[175] M. Wellens, A. de Baynast, and P. Mahonen, “Exploiting historical spectrum occu-

pancy information for adaptive spectrum sensing,” in 2008 IEEE Wireless Communi-

cations and Networking Conference (WCNC). IEEE, 2008, pp. 717–722.

[176] H. Song, X. Fang, and Y. Fang, “Unlicensed spectra fusion and interference coordi-

nation for lte systems,” IEEE Trans. Mobile Comput., vol. 15, no. 12, pp. 3171–3184,

2016.

[177] Y.-C. Liang, Y. Zeng, E. C. Peh, and A. T. Hoang, “Sensing-throughput tradeoff for

cognitive radio networks,” IEEE transactions on Wireless Communications, vol. 7,

no. 4, pp. 1326–1337, 2008.

[178] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, 2014, pp. 2672–2680.

[179] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint

arXiv:1411.1784, 2014.

[180] R. Brasselet, S. Panzeri, N. K. Logothetis, and C. Kayser, “Neurons with stereotyped

and rapid responses provide a reference frame for relative temporal coding in primate

auditory cortex,” J. of Neuroscience, vol. 32, no. 9, pp. 2998–3008, 2012.

[181] M. Bertram, C. Beta, M. Pollmann, A. S. Mikhailov, H. H. Rotermund, and G. Ertl,

“Pattern formation on the edge of chaos: Experiments with co oxidation on a pt (110)

160



surface under global delayed feedback,” Physical Review E, vol. 67, no. 3, p. 036208,

2003.

[182] L. Chua, V. Sbitnev, and H. Kim, “Neurons are poised near the edge of chaos,” Intl

J. of Bifurcation and Chaos, vol. 22, no. 04, p. 1250098, 2012.

[183] K. Hamedani, L. Liu, S. Liu, H. He, and Y. Yi, “Deep spiking delayed feedback reser-

voirs and its application in spectrum sensing of mimo-ofdm dynamic spectrum shar-

ing,” in Proceedings of the 34th AAAI Conf on Artificial Intell. AAAI Press, 2020.

[184] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep

Learning in Spiking Neural Networks,” Neural Networks, vol. 111, pp. 47–63, 2019.

[185] A. Gilra and W. Gerstner, “Non-linear Motor Control by Local Learning in Spiking

Neural Networks,” in Proceedings of the 35th International Conference on Machine

Learning, vol. 80. PMLR, 10–15 Jul 2018, pp. 1773–1782.

[186] H. Mostafa, “Supervised Learning Based on Temporal Coding in Spiking Neural Net-

works,” IEEE transactions on neural networks and learning systems, vol. 29, no. 7, pp.

3227–3235, 2017.

[187] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and S. B. Furber,

“Spinnaker: Mapping Neural Networks onto a Massively-Parallel Chip Multiproces-

sor,” in 2008 IEEE International Joint Conference on Neural Networks (IEEE World

Congress on Computational Intelligence). Ieee, 2008, pp. 2849–2856.

[188] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,

B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A million spiking-neuron

integrated circuit with a scalable communication network and interface,” Science, vol.

345, no. 6197, pp. 668–673, 2014.

161



[189] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,

P. Joshi, N. Imam, S. Jain et al., “Loihi: A Neuromorphic Many core Processor with

On-Chip Learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[190] H. An, Z. Zhou, and Y. Yi, “3d memristor-based adjustable deep recurrent neural net-

work with programmable attention mechanism,” in Proceedings of the Neuromorphic

Computing Symposium, 2017, pp. 1–6.

[191] H. An, M. S. Al-Mamun, M. K. Orlowski, and Y. Yi, “Learning accuracy analysis of

memristor-based nonlinear computing module on long short-term memory,” in Pro-

ceedings of the International Conference on Neuromorphic Systems, 2018, pp. 1–7.

[192] Y. Yi, “Neuron design in neuromorphic computing systems and its application in wire-

less communications,” The University of Kansas Center for Research, Inc. Lawrence,

Tech. Rep., 2017.

[193] M. A. Ehsan, Z. Zhou, and Y. Yi, “Three dimensional integration technology applied

to neuromorphic hardware implementation,” in 2015 IEEE International Symposium

on Nanoelectronic and Information Systems. IEEE, 2015, pp. 203–206.

[194] K. Bai and Y. Yi, “Opening the “black box” of silicon chip design in neuromorphic

computing,” in Bio-Inspired Technology. IntechOpen, 2019.

[195] Y. Yi, “Analog integrated circuit design for spike time dependent encoder and reservoir

in reservoir computing processors,” University of Kansas Center for Research, Inc.

Lawrence United States, Tech. Rep., 2018.

[196] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving Spiking Neural Networks

for Audiovisual Information Processing,” Neural Networks, vol. 23, no. 7, pp. 819–835,

2010.

162



[197] B. Meftah, O. Lezoray, and A. Benyettou, “Segmentation and Edge Detection Based on

Spiking Neural Network Model,” Neural Processing Letters, vol. 32, no. 2, pp. 131–146,

2010.

[198] A. Tavanaei and A. Maida, “Bio-Inspired Multi-Layer Siking Neural Network Extracts

Discriminative Features from Speech Signals,” in International conference on neural

information processing. Springer, 2017, pp. 899–908.

[199] S. Loiselle, J. Rouat, D. Pressnitzer, and S. Thorpe, “Exploration of Rank Order

Coding with Spiking Neural Networks for Speech Recognition,” in Proceedings. 2005

IEEE International Joint Conference on Neural Networks, 2005., vol. 4. IEEE, 2005,

pp. 2076–2080.

[200] W. Zhang and P. Li, “Spike-Train Level Backpropagation for Training Deep Recurrent

Spiking Neural Networks,” in Advances in Neural Information Processing Systems,

2019, pp. 7800–7811.

[201] R. H. Fujii and K. Oozeki, “Temporal Data Encoding and Sequence Learning with

Spiking Neural Networks,” in International Conference on Artificial Neural Networks.

Springer, 2006, pp. 780–789.

[202] Y. Zuo, H. Safaai, G. Notaro, A. Mazzoni, S. Panzeri, and M. E. Diamond, “Comple-

mentary Contributions of Spike Timing and Spike Rate to Perceptual Decisions in Rat

S1 and S2 Cortex,” Current Biology, vol. 25, no. 3, pp. 357–363, 2015.

[203] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and M. Shafique, “Snn

Under Attack: Are Spiking Deep Belief Networks Vulnerable to Adversarial Exam-

ples?” arXiv preprint arXiv:1902.01147, 2019.

163



[204] L. Liang, X. Hu, L. Deng, Y. Wu, G. Li, Y. Ding, P. Li, and Y. Xie, “Exploring Ad-

versarial Attack in Spiking Neural Networks with Spike-Compatible Gradient,” arXiv

preprint arXiv:2001.01587, 2020.

[205] A. Bagheri, O. Simeone, and B. Rajendran, “Adversarial Training for Probabilistic

Spiking Neural Networks,” in 2018 IEEE 19th International Workshop on Signal Pro-

cessing Advances in Wireless Communications (SPAWC). IEEE, 2018, pp. 1–5.

[206] G. Dion, S. Mejaouri, and J. Sylvestre, “Reservoir Computing with a Single Delay-

coupled Non-linear Mechanical Oscillator,” Journal of Applied Physics, vol. 124, no. 15,

p. 152132, 2018.

[207] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, “Reservoir Computing

Using Dynamic Memristors for Temporal Information Processing,” Nature communi-

cations, vol. 8, no. 1, p. 2204, 2017.

[208] C. Sanderson and B. C. Lovell, “Multi-Region Probabilistic Histograms for Robust

and Scalable Identity Inference,” in International conference on biometrics. Springer,

2009, pp. 199–208.

[209] P. Korshunov and S. Marcel, “Deepfakes: A New Threat to Face Recognition? As-

sessment and Detection,” arXiv preprint arXiv:1812.08685, 2018.

[210] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, and

M. Jacquot, “High-speed Photonic Reservoir Computing Using a Time-delay-based

Architecture: Million Words per Second Classification,” Physical Review X, vol. 7,

no. 1, p. 011015, 2017.

[211] A. N. Burkitt, “A Review of the Integrate-and-Fire Neuron Model: I. Homogeneous

Synaptic Input,” Biological cybernetics, vol. 95, no. 1, pp. 1–19, 2006.

164



[212] W. Nicola and C. Clopath, “Supervised Learning in Spiking Neural Networks with

FORCE Training,” Nature communications, vol. 8, no. 1, pp. 1–15, 2017.

[213] Q. Yu, H. Tang, K. C. Tan, and H. Yu, “A Brain-inspired Spiking Neural Network

Model with Temporal Encoding and Learning,” Neurocomputing, vol. 138, pp. 3–13,

2014.

[214] M. J. Tovee, E. T. Rolls, A. Treves, and R. P. Bellis, “Information Encoding and

the Responses of Single Neurons in the Primate Temporal Visual Cortex,” Journal of

Neurophysiology, vol. 70, no. 2, pp. 640–654, 1993.

[215] W. Mau, D. W. Sullivan, N. R. Kinsky, M. E. Hasselmo, M. W. Howard, and H. Eichen-

baum, “The Same Hippocampal Ca1 Population Simultaneously Codes Temporal In-

formation Over Multiple Timescales,” Current Biology, vol. 28, no. 10, pp. 1499–1508,

2018.

[216] Y. Zheng, S. Li, R. Yan, H. Tang, and K. C. Tan, “Sparse Temporal Encoding of Visual

Features for Robust Object Recognition by Spiking Neurons,” IEEE transactions on

neural networks and learning systems, vol. 29, no. 12, pp. 5823–5833, 2018.

[217] Q. Yu, H. Tang, J. Hu, and K. C. Tan, “A Spike-Timing Based Integrated Model for

Pattern Recognition,” in Neuromorphic Cognitive Systems. Springer, 2017, pp. 43–63.

[218] C. Zhao, B. T. Wysocki, C. D. Thiem, N. R. McDonald, J. Li, L. Liu, and Y. Yi,

“Energy Efficient Spiking Temporal Encoder Design for Neuromorphic Computing

Systems,” IEEE Transactions on Multi-Scale Computing Systems, vol. 2, no. 4, pp.

265–276, 2016.

[219] M. Tatsuno, Analysis and Modeling of Coordinated Multi-Neuronal Activity. Springer,

2015.

165



[220] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation As a Defense to

Adversarial Perturbations Against Deep Neural Networks,” in 2016 IEEE Symposium

on Security and Privacy (SP). IEEE, 2016, pp. 582–597.

[221] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The

Limitations of Deep Learning in Adversarial Settings,” in 2016 IEEE European sym-

posium on security and privacy (EuroS&P). IEEE, 2016, pp. 372–387.

[222] G. Goswami, N. Ratha, A. Agarwal, R. Singh, and M. Vatsa, “Unravelling robustness

of deep learning based face recognition against adversarial attacks,” in Thirty-Second

AAAI Conference on Artificial Intelligence, 2018.

[223] N. Akhtar and A. Mian, “Threat of Adversarial Attacks on Deep Learning in Computer

Vision: A Survey,” IEEE Access, vol. 6, pp. 14 410–14 430, 2018.

[224] G. Dalal, E. Gilboa, and S. Mannor, “Hierarchical Decision Making in Electricity Grid

Management,” in International Conference on Machine Learning, 2016, pp. 2197–2206.

[225] Y. Liu, P. Ning, and M. Reiter, “False data injection attacks against state estima-

tion in electric power grids,” ACM Transactions on Information and System Security

(TISSEC), vol. 14, no. 1, pp. 21–32, 2011.

[226] A. Sanjab and W. Saad, “Data Injection Attacks on Smart Grids with Multiple Ad-

versaries: A Game-Theoretic Perspective,” IEEE Transactions on Smart Grid, vol. 7,

no. 4, pp. 2038–2049, 2016.

[227] J. Kim, L. Tong, and R. J. Thomas, “Dynamic Attacks on Power Systems Economic

Dispatch,” in 2014 48th Asilomar Conference on Signals, Systems and Computers.

IEEE, 2014, pp. 345–349.

166

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

