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Abstract—Wireless network virtualization is emerging as a po-
tential game-changer for fifth-generation wireless networks. Virtu-
alization of network resources (e.g., infrastructure and spectrum)
brings several advantages. One key advantage is that various
network operators can robustly share their virtualized network
resources to extend coverage, increase capacity, and reduce costs.
However, inherent features of wireless communications, e.g., the
uncertainty in user equipment locations and channel conditions,
impose significant challenges on virtualization and sharing of the
network resources. In this context, we propose a novel three-layered
virtualization framework, based on a matching game model and
stochastic resource allocation. Our proposed architecture aims at
guaranteeing user satisfaction and maximizing the revenue for op-
erators, with reasonable computational complexity, and affordable
network overhead.

Index Terms—Dynamic slicing, matching markets, Poisson point
process (PPP), stochastic resource allocation, wireless network
virtualization.

I. INTRODUCTION

IN WIRELESS networks, resource sharing (e.g., infrastruc-
ture and spectrum) has been a common practice for decades.

To decrease operational expenditures and to extend network cov-
erage, mobile network operators (MNO) share their infrastruc-
ture based on agreements and market policies [1]–[3]. However,
increasing demand for coverage and capacity, heterogeneous
quality-of-service (QoS) demands of various wireless services,
scarcity of spectrum, and huge capital expenditures related to
technology update motivate us to develop an efficient model of
resource sharing via virtualization of network resources.

An important approach to wireless network virtualization is to
create a resource pool by combining the resources of MNOs and
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create logical partitions (slices) among these resources based
on the QoS requirements of different wireless services and
applications [4], [5]. These pooled, partitioned resources are
called virtual resources because the wireless services and appli-
cations executed with them are decoupled from the underlying
physical network. Thus, virtualization enables efficient resource
sharing among heterogeneous services and maximizes resource
utilization. Additionally, it improves service coverage and ca-
pacity. To fully utilize the potential of virtualization, market
models and resource slicing schemes need to be investigated
thoroughly.

Our contributions could be summarized as follows.
1) First, we propose a robust architecture for virtualized

wireless networks comprising multiple service providers
(SPs) and resource providers (RPs).

2) Second, we implement a matching mechanism that pairs
SPs with existing virtual network builders (VNBs) accord-
ing to their particular trading preferences. We apply a solid
matching algorithm that has proven successful in many
fields to spectrum trading, which permits us to work with
more expressive markets where technical and nontechnical
parameters are considered in the resource selection pro-
cess. This allows us to explore more comprehensive mar-
ket landscapes and their underlying optimization and/or
auction mechanisms.

3) Third, we propose a new model for characterizing SP
demands. The requested virtual network of an SP is fully
characterized using four parameters: the minimum data
rate, minimum rate coverage probability, UE intensity, and
the geographical area to be covered.

4) Fourth, we propose a stochastic-programming-based op-
timal virtual resource allocation framework for cellular
networks. Stochastic programming provides a powerful
mathematical tool to handle optimization under uncer-
tainty. It has been recently exploited to optimize resource
allocation in various types of wireless networks operating
under uncertainties (examples include [6]–[18]). In this
paper, using chance-constrained stochastic programming,
we design an optimal virtual resource allocation mech-
anism that maximizes the utilization of the resources
while satisfying the SP demands in the presence of the
uncertainty in UE locations and channel conditions. This
optimization framework can be used also for other service
specific design criteria (e.g., delay, jitter).

5) Finally, we evaluate our proposed framework via simula-
tion of a sample scenario.

The rest of the paper is organized as follows. Section II
explores existing work. Section III presents an overview of our
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proposed framework. Section IV describes the system model. In
Section V, we present the matching game model. In Section VI,
we formulate our resource allocation problem. The settings
for the analysis of our model are presented and discussed in
Section VII. We present our concluding remarks and future work
in Section VIII.

II. RELATED WORK

In an attempt to find an efficient market model, previous
research works have proposed 2-layered [19]–[23] and 4-layered
models [24]–[26]. In 2-layered models, network resources are
owned, operated, and sliced by one party, known as the MNO.
Other parties known as SPs are solely responsible for QoS
management of the end users. Hence, the SPs lease and allo-
cate virtual resources to end-users. According to some authors,
the MNO is only responsible for resource ownership, while
SPs lease, partition, and allocate resources to their users [19].
In 4-layered architectures, the MNOs are further divided into
infrastructure providers and mobile virtual network providers
(MVNP). The SPs are divided into mobile virtual network
operators (MVNOs) and SPs. MVNPs lease resources from
infrastructure providers and virtualize them. MVNOs assign
these virtual resources to the SPs.

In terms of matching algorithms, several authors have ex-
plored matching-based mechanisms for spectrum allocation,
mainly in the context of cognitive radio (CR) networks. In [27],
the authors utilize the deferred acceptance algorithm to pair
resource users with available channels, based on the individual
preferences of these entities. The objective of this paper is to
find the optimal stable matching solution. In [28], the authors
utilize different matching-based frameworks to explore the per-
formance of CR systems under complete, partially incomplete,
and incomplete information settings. The authors model the
CR networks as one-to-one matching markets where PUs can
be matched with at most one SU and vice versa. In [29], the
authors focus on the ability of matching theory to form “mu-
tually beneficial relationships”. In this way, the authors apply
the one-to-many matching approach to pair SUs with PUs in
a CR network. The authors consider that both entities seek to
maximize their utility. In the case of SUs, their utility is given
by the achievable transmission data rate. For PUs, since they
charge a flat rate to each SU they are paired with, they seek to
maximize their revenue by attempting to match with as many
SUs as possible.

In other contexts, matching markets have been utilized to
study spectrum sharing settings in device-to-device communica-
tions. The authors in [30] utilize a hierarchical matching market
model, where device-to-device links can either share spectrum
with existing cellular subscribers or apply for exclusive sub-
bands. This sharing approach is then handled as two submarkets
to access shared and exclusive-use spectrum. Another approach
is presented by Gu et al. in [31]. Here, the authors rely on a
student-project matching model, for resource allocation in a
LTE-unlicensed setting. They propose the matching algorithm
as a tractable solution to a NP-hard optimization problem that
seeks to maximize the throughput in a system where current
cellular operators seek to leverage unlicensed bands to improve
their transmission capabilities. In this way, resource allocation in
the system is handled by matching cellular users with unlicensed
subbands. The authors propose an additional subroutine for solv-
ing possible externalities of the matching game, and ensuring
network stability and QoS.

Fig. 1. Virtualized network architecture.

III. FRAMEWORK OVERVIEW

We propose a matching game based on a three-layer market
model, as shown in Fig. 1. The participants in this three-layered
model are described as follows.

1) RPs are the owners of physical resources (e.g., infrastruc-
ture, electromagnetic spectrum) and they have the option
of making these resources available, as virtualized com-
modities, in a pool that may be accessed by VNBs. Tradi-
tional MNOs, cloud computing providers, and enterprise
wireless network operators are examples of potential RPs.

2) VNBs are in charge of creating virtual networks for SPs
by composing and aggregating resources that have been
made available, i.e., pooled, by existing RPs.

3) SPs offer regular data, voice, and messaging services,
as well as specialized services that handle specific ap-
plications such as the Internet of Things (IoT) or other
over-the-top services. Each SP has a set of end users whose
traffic needs to be covered. To this end, SPs seek to obtain
resources in the network by transacting (i.e., partnering)
with existing VNBs.

Compared with 2- and 4-layered models, this 3-layered model
is more robust and less complex, respectively. By adding a VNB,
the complexity of the model shifts from the RPs and SPs to the
VNB, which acts as a broker-like entity. This provides several
benefits, for instance, VNBs can manage aggregate demand
from their partners, thus reducing the amount of individual
transactions needed to pair RPs with SPs. Additionally, the
presence of a VNB can help address trust, incentive, and infor-
mation protection issues that arise in resource sharing scenarios.
Furthermore, SPs and RPs can rely on an specialized entity to
find the best opportunities for obtaining resources, which can
be an onerous task as the number of market participants grows.
On the other hand, compared to 4-layered models, our proposed
system allows us to better explore the sharing activities among
the main market participants: buyers (SPs) and sellers (RPs).
This model does not preclude possible extensions aiming at
considering different types of buyers (e.g., MVNOs, end users,
etc.); however, it allows us to obtain a deeper understanding
of the core implications of our proposed resource allocation
mechanisms.

Our proposed framework is based on the interactions of the
three aforementioned entities. The overall goal is for the SPs to
gain access to their required resources from the common pool,
via interactions and negotiations with the VNBs. In turn, the
VNBs seek to obtain the appropriate set of resources that can
satisfy the demand of the SPs. As a result of these interactions,
RPs and VNBs should receive compensation for the resources
they share and the composing and aggregating services they
perform. In turn, SPs should be able to satisfy the requirements
of their customers.

This framework could be explained in terms of two sets
of interactions—those between the VNBs and SPs, and those
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between the VNBs and RPs (via the resource pool). The in-
teractions between VNBs and SPs are modeled as a matching
game, which allows both entities to choose the appropriate SPs
or VNB, respectively, that best match their preferences. As a
result, the system works with a set of VNB–SP partners. Once
these partnerships are defined, a VNB can calculate the total
amount of resources it needs to aggregate in order to satisfy
the demand of its partners. Thus, a VNB faces the important
task of aggregating resources, a key step towards the creation
of virtualized environments [5]. It is important to note that the
matching process allows VNBs to preselect the SPs to serve,
hence narrowing down (in quantity and characteristics) the set
of resources that it needs to aggregate. A similar VNB–SP
matching approach is explored, in a broader spectrum sharing
context, in [32] and [33].

The second set of interactions, between VNBs and RPs, cor-
responds to virtual resource allocation. In this paper, the goal of
this task is to maximize end-users’ satisfaction while minimizing
the cost for SPs. This should be achieved irrespective of the
uncertainty regarding users’ location and channel conditions.
In the current literature, virtual resources are allocated to SPs
based on the aggregated demand of their end users [19], [20],
[34]–[37]. However, due to uncertainty, resources allocated to
satisfy aggregated demand cannot guarantee satisfaction of an
individual end user’s demand. Moreover, if the SPs seek re-
sources to satisfy the instantaneous demands of their end users,
the network overhead and computational complexity would be
extremely high. To address these challenges, in this paper, we
propose an efficient virtual resource allocation scheme based on
stochastic geometry and stochastic optimization.

IV. SYSTEM MODEL AND PROBLEM STATEMENT

A. Network Model

We consider a two-dimensional geographical area A that
consists of a set L ⊂ �2 of locations and is covered by a set
of N RPs. Each RP has a set of base stations (BS) deployed in
A, and the union of these sets is denoted by B. There is a set
S = {1, 2, ..., s} of SPs, and a set V = {1, 2, ..., v} of VNBs.
The VNBs in V and the SPs in S play the matching game to
determine their partnerships. Subsequently, each VNB selects
the optimal set of BSs from B and allocates them to partnering
SPs. The VNBs aggregate resources from the pool sequentially,1

so no two VNBs will request the same resource.
We consider that each end-user is served by the nearest BS

within the set of BSs allocated to the user’s SP. The location of
BS b ∈ B is given by lb. BS b operates on bandwidth Wb and
transmits with a constant power 1/μb. Each BS b ∈ B performs
proportionally fair rate allocation for its users, i.e., the rate
allocated to each user is proportional to its spectral efficiency.
Hence, assuming a saturated user queue, the rate of a typical
user associated with BS b is given by

ρb =
Wb

Nb
log2 (1 + SINRb) (1)

where Nb is the total number of users associated with BS b, and
SINRb is the signal-to-interference-plus-noise ratio experienced
by a typical user.

1VNBs access the pool one-by-one according to their own identifier in the
model (e.g.,V1,V2,...,Vn). Future implementations will consider different types
of priority access to the pooled resources.

The channel gains experienced by the end-users from their
associated BSs are assumed to follow a Rayleigh distribution
with mean 1 (i.e., there is no shadowing). Hence, the SINR
experienced by a typical user at an arbitrary distance d from its
associated BS (e.g., BS b) can be expressed as [38]

SINRb =
h d−α

σ2 + I
(2)

where h is the stochastic channel gain, which is exponentially
distributed with mean 1/μb, σ2 is the variance of the additive
noise, α is the pathloss exponent, and I is the cumulative
downlink interference from all other BSs. I can be expressed
as

I =
∑

j∈B/b
gjr

−α
j (3)

where rj is the distance between the typical user and the in-
terfering BS j and gj is the stochastic gain of the channel. We
assume that the interference also experiences Rayleigh fading
without shadowing. Therefore, gj is exponentially distributed
with mean 1/μj .

B. Demand Characterization of SPs

The end users of SP s ∈ S are assumed to be distributed in A
according to a homogeneous Poisson point process (PPP) φs of
intensity λs. Then, SP s ∈ S characterizes its demand as follows.
Any of its UEs located anywhere in A should have at least data
rate κs bps with probability at least βs. Let R̃s be the data rate
of an arbitrary UE of SP s in A. Then, the demand of SP s, is
expressed as the constraint

Pr
{
R̃s ≥ κs

}
≥ βs.

Pr{R̃s ≥ κs} is also known as rate coverage probability. For
ease of discussion, let us denote the demand of SP s as Ds.

C. Matching and Resource Allocation

We characterize the SPs of S based on two parameters—their
minimum rate coverage probability demand βs, and the fee they
are willing to pay for VNB services. Similarly, we characterize
VNBs of V based on two parameters—their reputation (that
stems from their success in satisfying SPs’ demand) and the
fee they charge to their partnering SPs. Note that these are not
the only parameters available for demand characterization and
overall description of the activities of SPs and VNBs. We have
chosen these parameters for an initial test and evaluation our
system model. Future implementations of this model will take
into account a more refined definition of demand as well as other
parameters that may influence preference definitions of SPs and
VNBs.

The actual matching process between SPs and VNBs is
performed taking into account the preferences of both entities
(defined in terms of the four parameters mentioned above). The
matching process follows the deferred acceptance algorithm,
presented in [39], for the one-to-many matching case. In this
way, each SP is allowed to match with only one VNB, while
VNBs can be matched to as many SPs as currently present in
a geographical area. Note that the final set of matched SPs and
VNBs may not contain all existing SPs and VNBs, given that
any entity may choose to remain unmatched if no options exist
that suit its preferences.
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Once it learns about its partners, each VNB, having prior
knowledge of BS locations, UE, and channel gain distributions,
selects the optimal set of BSs such that the demand, Ds, can
be satisfied. At the end of this process, the reputation of VNBs
is updated based on the satisfaction of its partners. Then, both,
VNBs and SPs, have the opportunity to update their fees (to
request and to pay, respectively). Subsequent iterations of the
model will thus reflect these updated values.

D. Problem Statement

Our goal is to design efficient matching and resource alloca-
tion models. Specifically, we design a matching scheme such that
SPs can choose a specialized entity, i.e., VNB, to aggregate an
adequate set of resources. The choice of a VNB is made in terms
of parameters that are relevant to the operations and constraints
of SPs and VNBs. In other words, both entities can make a choice
based on their particular preferences. Next, we design a scheme
to be executed at the VNBs to optimally perform the virtual
resource allocation, i.e., determining the optimal subset of BSs
to be leased from B. Our optimality criterion is to minimize
the costs of network resource aggregation (i.e., maximize the
utilization of the resources) while satisfying the SP demands.
Hence, we define the optimal virtual resource allocation problem
as: for a given demand of the SPs in S , determine the cheapest
subset of BSs to be leased from B such that, these BSs can meet
all SP demands.

V. MATCHING MODEL DESIGN

The model we propose in this paper focuses on finding an
optimal allocation of resources as well as on finding an ade-
quate negotiation mechanism to support the transfer of resources
from RPs to SPs, via a VNB. Auctions have been an accepted
mechanism for efficient and competitive allocation of spectrum
resources. Auctions were indeed adopted by the FCC with the
goal of assigning licenses in a timely manner to the providers
who would put them to the highest value use [40]. Hence, it is
often expected that, through auctions, resources will end up in
the hands of those who value them most.2

In the specific context of our paper, the VNB can be regarded
as a broker or middleman that, among other objectives, aims
at easing the resource search and assignment process for the
SPs. Hence, our approach considers that SPs and VNBs go
through a matching process that allows them to choose the bro-
ker/customer, respectively, that best fits their needs. This process
is modeled as a one-to-many matching problem. In this section,
we describe the main characteristics of the matching model
that pairs SPs and VNBs. This description corresponds to key
factors of the matching model that apply to the problem at hand
and it includes the process towards defining SPs’ and VNBs’
preferences and characteristics, how these are transformed into
preference vectors and the final matching algorithm.3

A. Risk Profile of SPs and VNBs

Our underlying assumption is that SPs and VNBs face a
certain level of risk by participating in resource sharing arrange-
ments. Here, risk is the likelihood of obtaining resources, with

2For important applications of auctions for resource assignment in next-
generation networks, the reader is referred to [41], [42].

3For a more detailed description of this model and other applications thereof,
please refer to [32], [33].

a given rate coverage probability, for a given price. We consider
that each SP and VNB is willing to bear a certain level of risk,
which determines the risk profile of said participant. Hence, SPs
and VNBs can be risk averse, risk neutral, or risk takers. For
instance, risk averse SPs aim at maximizing their opportunities
of obtaining resources in the system and risk averse VNBs aim
at maximizing their opportunities to find an appropriate set of
resources for their partners. As a consequence, risk profiles
dictate the value that SPs and VNBs assign to their operational
parameters, and their preferences regarding the characteristics
of the members of the opposite set.

To avoid bias towards one particular risk profile in our model,
we assign to all s ∈ S and all v ∈ V , a risk value. This value
is uniformly chosen from {0, 1, 2}. In this way, a risk value of
0 represents risk averseness; a risk value of 1 represents risk
neutrality; and finally a risk value of 2 means that the SP/VNB
is a risk taker. In general terms, the risk profile allows us to
define the behavior of SPs and VNBs. There are many ways in
which risk can be portrayed in a matching model; however, for
this model, we have chosen prices and fees as factors where risk
plays an important role.

B. SPs’ Prices and VNBs’ Fees

In this model, we consider VNBs to be profit-seeking entities
who expect a payment for their resource aggregation services.
In this way, we refer to prices as an SP’s willingness to pay
for VNBs’ services, and fees as the compensation that VNBs
expect to receive for their resource aggregation services.4 From
a market perspective, this permits us to capture the costs that a
VNB incurs in finding the appropriate resources for an SP and
how eager the SPs are to obtain resources from the system we
propose. Thus, these exchanges could be regarded as the trans-
action and opportunity costs for SPs and VNBs from obtaining
and aggregating resources.

C. Characteristics and Preferences of VNBs and SPs

Our matching model relies on the deferred acceptance algo-
rithm [39]. At the core of this algorithm, we find preferences
and characteristics of each set of participants that permit us to
rate the members of the opposing set. This allows us to form
preference vectors that will drive the course of the algorithm
and the resulting matches. Thus, characteristics represent the
value that SPs and VNBs assign to factors related to their
operations, while preferences represent what SPs and VNBs
deem acceptable from the members of the other set.

In what follows, we delve into the details of how these
characteristics and parameters account for the formation of the
preference vectors we require for the matching process.

1) Characteristics of SPs: We have chosen the following
parameters for the preference forming and subsequent matching
processes.

1) Price: VNB fee that an SP is willing to pay.

4In the context of our study, price refers to the value that an entity is willing
to pay for a good or service. Normally, price reflects the cost plus an additional
profit. Fees reflect the value that VNBs would charge for the service they provide
(i.e., resource aggregation). The distinction between price and fees allows us to
capture costs from the perspective of both, SPs and VNBs. Hence, the price that
an SP would pay for the VNBs’ services should be comparable to the cost an SP
would incur to aggregate resources on its own, and how much it values to enter
the market. On the VNB side, the cost stems from the difficulty of aggregating
resources in the system. This cost is then translated into the fee that it decides
to charge.
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TABLE I
SP PREFERENCE VECTORS ACCORDING TO RISK LEVEL

TABLE II
VNBS’ PREFERENCE VECTORS ACCORDING TO THEIR RISK LEVEL

2) Demand: expressed in terms of the required rate coverage
probability, βi, presented in Subsection IV-B.

To simplify our calculations in the matching process, we have
mapped these parameters to three different levels (low, medium,
and high). This allows us to form binary vectors of the SPs’
characteristics that will be used in our implementation of the
deferred acceptance algorithm.

2) Characteristics of VNBs: We consider the following pa-
rameters as relevant from the VNB’s perspective.

1) Quality: A quality level or reputation is randomly assigned
to each VNB in the initialization process. As system
interactions take place, this value is updated according
the performance of each VNB.

2) Fees: This is the price that a VNB charges for its services.
It is consistent with the VNB’s quality level (i.e., higher
quality VNBs are allowed to charge higher prices).

These parameters are also mapped to low, medium, and high
levels to define the corresponding preference vectors.

3) Preferences of SPs: SPs express their preferences re-
garding a VNB’s reputation or quality, and its advertised fee.
These preferences are expressed as vectors, which represent
the preference for a low, medium or high value for each of
the aforementioned parameters. Here, the risk profile plays
an important role. We use it to justify the preference of SPs
for particular levels in the VNBs’ characteristics. Thus, each
preference vector, quality preference qpi or price preference ppi,
is a 1× 3 vector, where the kth element takes a value of 0 or 1,
depending on the preference of an SP as illustrated in Table I.
Indeed, we observe that if SP si is risk averse, it will prefer
VNBs with a high reputation and it is willing to pay a high price
to obtain its required resources. On the other hand, if SP si is
risk taker, it is indifferent to the level of reputation and the price
charged by a VNB so, it is willing to form partnerships with any
type of VNB.

4) Preferences of VNBs: A VNB expresses its preferences re-
garding an SP’s advertised price, and its demand level espressed
by the rate coverage probability βi.

As with the SPs, the values of these parameters are assigned
according to the risk level of each VNB. The vector correspond-
ing to each risk profile is presented in Table II.

In Table II, we observe that a risk averse VNB prefers SPs
with lower prices and lower demand levels, given that its priority
is to be matched and fulfill the total demand of its customers.

Our assumption is that these preferences would increase the
probability of the VNB to gain partners from the matching
process and subsequently reach a high reputation level through
repeated successful interactions.

D. Comparing Preferences and Values

The process described in the previous subsections allows us to
create the individual binary characteristic and preference vectors
of SPs and VNBs. For the actual matching process, we compare
the characteristics of SPs with the preferences of VNBs, and vice
versa, to define a final preference vector for each SP and VNB.
This permits each entity to rank the members of the opposing
set, allowing us to apply the matching algorithm. To this end, we
create a matrix for each of the preference parameters. In the case
of SPs, the ijth matrix element is the result of multiplying the
reputation and price preference vector of SP si by the transpose
of the corresponding characteristic vectors of VNB vj , as shown
in (4) and (5). Here, qpi and ppi are the quality and price
preference vectors of SP si, respectively, and qvj and pvj are
the quality and price characteristic vectors of VNB vj

Qs(i, j) = qpi ∗ qvTj (4)

Rs(i, j) = ppi ∗ pvTj . (5)

For the VNBs, the ijth element of the preference matrices
results from multiplying the demand and price vectors of SP si
times the transpose of the corresponding preference vectors of
VNB vj . Equations (6) and (7) show these operations, where
dvi and pvi are the demand and price characteristic vectors
of SP si, respectively, and dpj and ppj are the demand and
price preference vectors of VNB vj . It is thus expected that
the ijth element of any of these matrices will be 1 only if the
corresponding preferences and characteristics are compatible
between SP si and VNB vj

Db(i, j) = dvi ∗ dpTj (6)

Rb(i, j) = pvi ∗ ppTj . (7)

The outcome of this analysis gives us four matrices, two per
VNB and SP, that show which SPs and VNBs are compatible.
We utilize these matrices to define the utility that each SP and
VNB would derive from a given partnership. This utility is given
as follows:

Us(i, j) = Qs(i, j) +Rs(i, j) (8)

Ub(i, j) = Db(i, j) +Rb(i, j). (9)

To define the final matching preferences of each SP and VNB,
we take into account the joint utility from matching si with vj . To
this end, we define the matrix A, as expressed in the following:

A(i, j) = Us(i, j) + Ub(i, j). (10)

The values in the joint utility matrix are utilized for creating
the final preference vectors of SP si and VNB vj . Given the
previous calculations, the maximum joint utility value is 4 and
the minimum is 0. These values are utilized to rank each member
of the opposite group and choose those that will be part of the
final preference vector. We assume that an SP and a VNB which
have the lowest utility value for their partnership should not be
included in each other’s preference vector. Hence we define a
minimum utility threshold, which is currently set as the middle
point between the two utility extremes.
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The subset of feasible partnerships will form the final prefer-
ence vector of SP si and VNB vj , i.e., partnerships with an
acceptable joint utility value. This final preference vector is
utilized to execute the matching algorithm described in the next
subsection.

E. Matching SPs and VNBs

As pointed out by Roth in [39] regarding the marriage problem
posed by Gale and Shapley, “[p] references can be represented
as rank order lists of the form P (mi) = w3, w2, ...mi, denoting
that man mi’s first choice is w3, his second choice w2[w3 >mi

w2] and so on, until at some point he prefers to remain unmatched
(i.e., matched to himself).” The same applies to the problem at
hand. In this case, the preference vector of SP si and VNB vj
will contain a subset of members of the opposite set with whom
it is possible to form a partnership (11), (12). These subsets,
or final preference vectors, are ranked in descending order of
preference

P (si) = vk, vl, vm, ..., si (11)

P (vj) = so, sp, sq, ..., vj . (12)

The matching between SPs and VNBs is implemented uti-
lizing the deferred acceptance algorithm for the many-to-one
matching case. This means that a VNB can form a partnership
with n SPs, where n refers to a VNB’s quota or partnership
size; while an SP can form a partnership with only one VNB.
This algorithm has been implemented following the definition
presented in [39], [43]–[45].

The outcome of this matching algorithm is a matching μ :
S ∪ V → S ∪ V , such that v = μ(s) if and only if μ(v) = s.
For all s and v, either μ(s) is in V or μ(s) = s; and, either μ(v)
is in S or μ(v) = v. This means that the outcome matches SPs
with VNBs, or to themselves, and if s is matched to v, then v is
matched to s [39]. It is important to note that we consider the
case in which the SPs propose a partnership first, which leads to
an SP-optimal matching, μS [39].

Once the matching process is over and we obtain the final
matching μ, each VNB learns which are its partners and each
SP learns the ID of the VNB with whom it will be working. In the
following step, the matched SPs communicate their demand and
resource price parameters to their VNB partners. Upon receiving
the demands from the SPs, VNBs aggregate virtual resources,
i.e., BSs from the common pool and allocate them to the SPs
such that their demands can be satisfied.

VNBs can opt for specific market mechanisms, such as auc-
tions, for competitively aggregating resources from the common
pool. In this paper, we have focused on designing a scheme that
is executed at the VNB level to determine the optimal subset of
BSs from B to be allocated to the SPs. Our optimality criterion
is to minimize the costs of resource aggregation while satisfying
the SPs’ demand.

VI. OPTIMAL VIRTUAL RESOURCE AGGREGATION

In this section, we propose the optimal virtual resource aggre-
gation scheme adopted by the VNBs. Consider VNB v, v ∈ V .
A set of SPs (say, S′ ⊆ S) is associated with VNB v. VNB
v needs to select the optimal subset of BSs from the pool of
BSs B and allocate them to the SPs in S′. Now, to find the
optimal subset of BSs from B, we first formulate the problem of
VNB v.

A. Problem Formulation

We assume that VNB v knowsφs, s ∈ S′, the UE distributions
of the SPs in S′. The cost for leasing BS b is cb. Let xbs, b ∈
B, s ∈ S′, be a binary decision variable indicating whether to
lease/allocate BS b for SP s or not. xbs equals one if a BS will
be selected for SP s and it equals zero otherwise. Then, for
given rate coverage probability demands of the SPs in S′, the
optimal virtual resource aggregation problem for VNB v can be
formulated as follows:

Problem 1: Optimal virtual resource aggregation

minimize{ xbs

b∈B,s∈S′
}
∑

b∈B

∑

s∈S′
cbxbs (13)

Subject to:

Pr
{
R̃s ≥ κs

}
≥ βs, ∀b ∈ B, ∀s ∈ S′ (14)

∑

s∈S′
xbs ≤ 1, ∀b ∈ B (15)

xbs ∈ {0, 1} , ∀b ∈ B, ∀s ∈ S′. (16)

The objective function (13) represents the cost of the leased
BSs. Constraint (14) ensures the demand satisfaction of the SPs
in S′. Constraint (15) ensures that a BS is allocated to no more
than one SP. Keeping the demand of SPs as a constraint, VNB
v aggregates the minimum cost BSs from the pool (i.e., RPs).

B. Solution Approach

In order to solve Problem 1, first, we need to find a closed
form expression for constraint (14). Specifically, we need to
find a closed form expression of the rate coverage probability
obtained by SP s, s ∈ S′.

Stochastic geometry has been widely applied for analyzing
rate coverage probability [38]. Existing stochastic geometry
works analyze the rate coverage probability assuming uncer-
tainty in the locations of both UEs and BSs. BS locations were
modeled stochastically in the existing works in order to obtain
analytical results that are valid for a variety of BS deploy-
ments. In contrast, here, we need to consider locations, operating
bandwidth, transmission power, and costs of individual BSs to
determine the optimal subset of BSs. Therefore, we derive a
closed form expression of the rate coverage probability obtained
by SP s, s ∈ S′ as follows.

Let Bs be the set of BSs allocated to SP s. Then, from
[46, Th. 1], the rate coverage probability obtained by SP s is
given by (17) as shown at the bottom of the next page. In (17),
Pb is the region of the voronoi cell of BS b. Ab is the area
of the geographical area A. Du is a circular disc of radius u
centered at lb. d is the distance between BS b and a typical UE
of SP s. db,j is the distance between BS b and a neighboring
BS j. rj =

√
d2+d2

b,j−2 d db,j cos θj and θj is the angle between
the two lines—the line connecting BS b with the typical UE,
and the line connecting BS b and neighboring BS j as shown
in Fig. 2.

In (17), part (i) is the probability of a typical UE of SP s being
associated with BS b. Part (ii) to part (v) all together represent
the probability density function (PDF) of R̃b, defined as the rate
obtained by a typical UE of SP s from BS b with its full service
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Fig. 2. Voronoi tessellation of a set of BSs.

time, for any real numberρwithin the support of R̃b. Specifically,
part (v) is the PDF of d̃, the distance of a typical UE of SP s from
its associated BS b, for any real numberuwithin the support of d̃.
Part (iv) is the PDF of Ĩ , the cumulative interference experienced
by a typical UE located at distance u from its associated BS b,
for any real number cwithin the support of Ĩ . Part (iii) originates
from the PDF of the SINR received by a typical UE located at
distance u from its associated BS b and experiencing cumulative
interference c. Finally, part (ii) originates from the distribution
of BS load.

Replacing the expression of Pr{R̃s ≥ κs} from (17) in con-
straint (14), problem 1 is solved numerically.

VII. FRAMEWORK EVALUATION

In this section, we evaluate our proposed market-driven
stochastic virtual resource allocation framework. We relied on
MATLAB to build the corresponding model, and on the sta-
tistical and mathematical tools provided by Python to evaluate
and analyze our results.5 The model we propose and design
is rather complex and it applies to a wide range of scenarios.
Nevertheless, in this paper, we focus on one specific case of
interest, which allows us to portray how our model operates and
the results it provides.

5We relied on the capabilities of MATLAB for defining, coding and simulating
our agent-based model. The results obtained were then exported to Python, for
data analysis and visualization purposes. We think that exploiting the capabilities
of these platforms allows us to present results that are more appealing to the
readers, without affecting the quality of our underlying model.

Fig. 3. Locations of 10 BSs, as obtained from a realization of a homogeneous
PPP of intensity 2.5/km2.

A. Simulation Environment

The simulation setup is described as follows: the network and
market participants are 4 SPs, 3 VNBs, and 5 RPs. We consider a
geographical area of 2 × 2 km2, where 10 BSs are deployed by
the RPs as shown in Fig. 3. All BSs operate over a bandwidth of
10 MHz. The BSs’ transmission power is set to 40 dBm and σ2

is set to −104 dBm. The path loss exponent, α, is set to 4. The
set of SPs is denoted by S = {1, 2, 3, 4}. We set βs, s ∈ S , the
rate coverage probability demand of these SPs, as : β1 = 0.5,
β2 = 0.7, β3 = 0.8 and β4 = 0.9.

The market-related parameters of each SP and VNB are
defined following the description presented in Section V. Ad-
ditionally, for experimental purposes, we have considered SPs
and VNBs assigning different weights to their preference pa-
rameters. In this manner, these weights take low values in the
range from (0.1–0.5) or high values in the range (0.6–1). Con-
sidering we have two different preference parameters per SP and
VNB, we can have four different combinations of these weights
resulting in four experimental groups, one with each weight
combination. Then, SPs and VNBs are randomly assigned to one
of those four groups. Note that, initially, a VNB’s reputation is
randomly assigned. Nevertheless, this value is adjusted accord-
ing to historical VNB performance as we run the simulations.

B. Experiments and Results

In our first experiment, we vary the rate demand of the SPs
while fixing their user intensity at 20/km2. In Fig. 4, we show
the distribution of the actual satisfaction index of each SP while
taking into account different rate coverage probabilities, β. Note
that the satisfaction index of an SP is the ratio of the obtained
and requested rate coverage probabilities. As it can be observed,

Pr
{
R̃s ≥ κs

}
= 1− 1

2πA

∑

b∈Bs

⎡

⎣e−λAb
log 2

Wb

∞∑

n=0

λnAn
b

(n− 1)!

∫ ρs

0

2
nρ
Wb

∫ ∞

0

∫ |lb−vb|

0

×
{
μb u

α
(
σ2 + c

)
exp

(
−μb u

α
(
2

nρ
Wb − 1

) (
σ2 + c

))}

×
⎧
⎨

⎩

∫ ∞

−∞

⎧
⎨

⎩
e−iωc

2π

∏

j∈Bs\b

∫
μj r

α
j

μj rαj − iω
dv

⎫
⎬

⎭ dω

⎫
⎬

⎭
d [∇{Pb ∩Du}]

du
du dc dρ

⎤

⎦ (17)
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Fig. 4. Distribution of SPs’ demand satisfaction. We show the level of demand
satisfaction obtained for different values of β (rate coverage probability). Note
that the level of demand satisfaction ranges from 0 to 1, and the values of β we
have considered are 0.5, 0.7, 0.8, and 0.9.

Fig. 5. VNBs’ reputation distribution according to the number of SP partners
and their risk profile. The VNBs’ risk profile varies from 0: risk averse to 2: risk
taker. For each value of SP partners, the left-most box corresponds to risk averse
VNBs and the right-most box corresponds to risk takers. As we can observe, we
find risk averse VNBs matching with two SPs at most, while the distribution of
risk-taking VNBs spans across all SP configurations.

SPs with higher demand rates can reach a higher (maximum)
satisfaction index, especially in the case of SPs with β = 0.9.
This reflects the priority that these providers are given at resource
assignment. The relationship between obtained and requested
rate coverage probabilities, provides us with a measure of the
reputation of the VNBs. Indeed, the reputation of a VNB results
from the average value of the demand satisfaction index of all
its customers. In Fig. 5, we present the distribution of matched
VNBs’ reputation. The box plots represent the reputation rank-
ing, taking into account the number of SP partners and the risk
profile of VNBs. Note that in this figure, risk level values of
0, 1, and 2 refer to risk averse, neutral, and taker profiles,
respectively. In general terms, VNBs with less SP partners
maintain higher reputation levels, which translates into a higher
ability to satisfy the demand of their partners. Additionally,

Fig. 6. Distribution of SPs’ surplus, according to their risk profile. The
different boxes show the distribution of the surplus perceived by SPs, from their
negotiations with VNBs. Positive surplus values indicate profits while negative
values indicate losses incurred by the SPs. The risk profile of SPs (x-axis) is
presented as a numeric value, where 0: risk averse, 1: risk neutral, and 2: risk
taker.

Fig. 7. Distribution of VNBs’ surplus, according to their total number of
partners. The box plots represent the distribution of the surplus perceived by
VNBs from their negotiations with SPs. Positive values correspond to profits,
while negative values represent losses incurred by the VNBs. The x-axis shows
the number of SP partners of each VNB.

more conservative risk approaches, allow VNBs to keep their
reputation distribution higher. Indeed, our results show that risk
averse and neutral VNBs do not take more than two partners.
As presented in our model description, VNBs expect a payment
for their resource aggregation activities. Both entities, SPs and
VNBs, may shade their real service valuation, which can yield
a possible (positive or negative) surplus for either one of them.
In what follows, we present the resulting surplus distribution,
perceived by VNBs and SPs. It is important to note that the
surplus we present stems only from payments made/received by
SPs/VNBs for the resource aggregation services. These surplus
values do not include resource payments. Fig. 6 presents the
surplus obtained by the SPs, and Fig. 7 shows the distribution
of the surplus obtained by the VNBs.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GOMEZ et al.: MARKET-DRIVEN STOCHASTIC RESOURCE ALLOCATION FRAMEWORK 9

In the case of SPs, we observe that those with a less conserva-
tive risk profile (risk takers) obtain higher surplus values. This
stems from the level of price shading these SPs apply to their real
valuation. In this way, they risk not being matched to a VNB, by
offering lower payments; however, if they are indeed matched,
their gains are larger than other, more risk averse, SPs. In the
case of VNBs, we explore the surplus in terms of the number
of partners they have. In this way, it remains more profitable for
them (in the same way as with the reputation) to match with a
smaller number of SPs. From price offer/demand differences, a
VNB can incur in losses at the moment of receiving its payment.
In this manner, even a small loss incurred with a larger set of
partners, may result in negative surplus results.

C. Model Complexity

The framework we propose results in a tractable means to
analyze a rather complex problem. For matching VNBs with
SPs, we utilize a SP-proposing deferred acceptance algorithm.
This algorithm presents a tractable method for matching one or
more SPs to one VNB. Indeed, at its worst, the complexity of
this algorithm in time and space is O(V S) [47] for V VNBs and
S SPs. Note that this algorithm results in an SP-optimal stable
matching. Now, another important step of the matching scheme
is to perform the virtual resource allocation. We compute the
complexity of the virtual resource allocation scheme as follows.
Consider a VNB v, v ∈ V . The VNB v needs to serve S ′ number
of SPs. In that case, for B number of BSs in the resource pool,
the virtual resource allocation scheme for VNB v has complexity
of O(S ′B). Hence, at its worst, the complexity of our overall
scheme is O(V SSB) or, O(V S(B+1)) for V VNBs, S SPs and
B BSs.

VIII. CONCLUSION

The model we propose in this paper, represents a novel system
to allocate virtualized wireless network resources. Our system
is composed of three main entities—current resource owners, or
RPs, resource buyers or SPs, and a resource aggregator or VNB.
Our analysis relies on the combination of technical and market
definitions of demand, resource aggregation, and allocation.
More specifically, we technically define resource demand and an
optimal resource allocation model, while relying on a matching
market model to define the interactions between SPs and VNBs.
Our system differs from other three-layered proposals in that
we adopt a comprehensive view on the different factors that
play a role in a resource allocation process. In this way, not only
can we evaluate optimal allocation performance , but also the
profitability of the participating entities; hence allowing us to
shed light on the overall viability of our proposed system.

Currently, our demand metric for the matching model is the
rate coverage probability. In future versions of this model, our
objective is to take into account a more complex metric for
demand characterization, which considers different rates and
additional user densities or distributions. Additionally, we aim at
exploring how more flexible definitions of rate requirements may
influence the outcome of our model. From a market-oriented
perspective, we are interested in exploring how our optimal
resource aggregation model compares to an auction model.
Additionally, we aim at analyzing our model within the context
of particular applications and network configurations, such as
those required for 5G and the systems it enables.

REFERENCES

[1] S. M. Greenstein and P. T. Spiller, “Modern telecommunications infras-
tructure and economic activity: An empirical investigation,” Ind. Corpo-
rate Change, vol. 4, no. 4, pp. 647–665, 1995.

[2] J. P. Doh, H. Teegen, and R. Mudambi, “Balancing private and state own-
ership in emerging markets’ telecommunications infrastructure: Country,
industry, and firm influences,” J. Int. Bus. Stud., vol. 35, no. 3, pp. 233–250,
2004.

[3] T. Li and L. Bai, “Model of wireless telecommunications network in-
frastructure sharing & benefit-cost analysis,” in Proc. Inf. Manag., Innov.
Manag. Ind. Eng. Conf., 2011, vol. 2, pp. 102–105.

[4] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some
research issues, and challenges,” IEEE Commun. Surv. Tut., vol. 17, no. 1,
pp. 358–380, First quarter 2015.

[5] M. Richart, J. Baliosian, J. Serrat, and J.-L. Gorricho, “Resource slicing in
virtual wireless networks: A survey,” IEEE Trans. Netw. Service Manag.,
vol. 13, no. 3, pp. 462–476, Sep. 2016.

[6] M. J. Abdel-Rahman and M. Krunz, “Stochastic guard-band-aware
channel assignment with bonding and aggregation for DSA networks,”
IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 3888–3898, Jul.
2015.

[7] N. Y. Soltani, S. J. Kim, and G. B. Giannakis, “Chance-constrained
optimization of OFDMA cognitive radio uplinks,” IEEE Trans. Wireless
Commun., vol. 12, no. 3, pp. 1098–1107, Mar. 2013.

[8] K. V. Cardoso, M. J. Abdel-Rahman, A. B. MacKenzie, and L. A. DaSilva,
“Virtualization and programmability in mobile wireless networks: Archi-
tecture and resource management,” in Proc. IEEE Workshop Mobile Edge
Commun., 2017, pp. 1–6.

[9] M. J. Abdel-Rahman, K. Cardoso, A. B. MacKenzie, and L. A. DaSilva,
“Dimensioning virtualized wireless access networks from a common pool
of resources,” in Proc. IEEE Annu. Consumer Commun. Netw. Conf., 2016,
pp. 1049–1054.

[10] M. J. Abdel-Rahman, M. AbdelRaheem, A. B. MacKenzie, K. Cardoso,
and M. Krunz, “On the orchestration of robust virtual LTE-U networks
from hybrid half/full-duplex Wi-Fi APs,” in Proc. IEEE Wireless Commun.
Netw. Conf., 2016, pp. 1–6.

[11] M. J. Abdel-Rahman, M. AbdelRaheem, and A. B. MacKenzie, “Stochas-
tic resource allocation in opportunistic LTE-A networks with heteroge-
neous self-interference cancellation capabilities,” in Proc. IEEE Int. Symp.
Dyn. Spectrum Access Netw. Conf., 2015, pp. 200–208.

[12] R. Atawia, H. Abou-zeid, H. S. Hassanein, and A. Noureldin, “Joint
chance-constrained predictive resource allocation for energy-efficient
video streaming,” IEEE J. Sel. Areas Commun., vol. 34, no. 5, pp. 1389–
1404, May 2016.

[13] K. Teague, M. J. Abdel-Rahman, and A. B. MacKenzie, “Joint base station
selection and adaptive slicing in virtualized wireless networks: A stochastic
optimization framework,” in Proc. Int. Conf. Comput. Netw. Commun.,
2019, pp. 859–863.

[14] A. Nabil, M. J. Abdel-Rahman, and A. B. MacKenzie, “Adaptive channel
bonding in wireless LANs under demand uncertainty,” in Proc. IEEE Int.
Symp. Pers., Indoor, Mobile Radio Commun., 2017, pp. 1–7.

[15] M. J. Abdel-Rahman, E. A. Mazied, K. Teague, A. B. MacKenzie, and S. F.
Midkiff, “Robust controller placement and assignment in software-defined
cellular networks,” in Proc. Int. Conf. Comput. Commun. Netw., 2017,
pp. 1–9.

[16] M. N. Soorki, M. J. Abdel-Rahman, A. MacKenzie, and W. Saad, “Joint
access point deployment and assignment in mmWave networks with
stochastic user orientation,” in Proc. Int. Symp. Model. Optim. Mobile,
Ad Hoc, Wireless Netw., 2017, pp. 1–6.

[17] M. J. Abdel-Rahman, E. A. Mazied, A. MacKenzie, S. Midkiff, M. R. Rizk,
and M. El-Nainay, “On stochastic controller placement in software-defined
wireless networks,” in Proc. IEEE Wireless Commun. Netw. Conf., 2017,
pp. 1–6.

[18] M. J. Abdel-Rahman, F. Lan, and M. Krunz, “Spectrum-efficient stochastic
channel assignment for opportunistic networks,” in Proc. IEEE Global
Commun. Conf., 2013, pp. 1272–1277.

[19] F. Fu and U. C. Kozat, “Stochastic game for wireless network virtualiza-
tion,” IEEE Trans. Netw., vol. 21, no. 1, pp. 84–97, Feb. 2013.

[20] E. Datsika, A. Antonopoulos, N. Zorba, and C. Verikoukis, “Matching
game based virtualization in shared LTE-A networks,” in Proc. Global
Commun. Conf., 2016, pp. 1–6.

[21] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “Nvs: A substrate
for virtualizing wireless resources in cellular networks,” IEEE/ACM Trans.
Netw., vol. 20, no. 5, pp. 1333–1346, Oct. 2012.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

[22] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in your
spare time,” ACM SIGCOMM Comput. Commun. Rev., vol. 37, no. 1,
pp. 61–64, 2007.

[23] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “Cellslice: Cellular
wireless resource slicing for active ran sharing,” in Proc. 5th Int. Conf.
Commun. Syst. Netw., 2013, pp. 1–10.

[24] A. Belbekkouche, M. M. Hasan, and A. Karmouch, “Resource discov-
ery and allocation in network virtualization,” IEEE Commun. Surv. Tut.,
vol. 14, no. 4, pp. 1114–1128, Fourth quarter 2012.

[25] R. Bless and C. Werle, “Network virtualization from a signaling perspec-
tive,” in Proc. IEEE Int. Conf. Commun. Workshops, 2009, pp. 1–6.

[26] G. Schaffrath et al., “Network virtualization architecture: Proposal and
initial prototype,” in Proc. 1st ACM Workshop Virtualized Infrastructure
Syst. Architectures, 2009, pp. 63–72.

[27] C. An, L. Zhang, and W. Liu, “A spectrum allocation algorithm based on
matching game,” in Proc. 5th Int. Conf. Wireless Commun., Netw. Mobile
Comput., 2009, pp. 1–3.

[28] X. Feng et al., “Cooperative spectrum sharing in cognitive radio networks:
A distributed matching approach,” IEEE Trans. Commun., vol. 62, no. 8,
pp. 2651–2664, Aug. 2014.

[29] Y. Zhang, Y. Gu, M. Pan, and Z. Han, “Distributed matching based
spectrum allocation in cognitive radio networks,” in Proc. IEEE Global
Commun. Conf., 2014, pp. 864–869.

[30] Y. Xiao, K.-C. Chen, C. Yuen, and L. A. DaSilva, “Spectrum sharing for
device-to-device communications in cellular networks: A game theoretic
approach,” in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw., 2014,
pp. 60–71.

[31] Y. Gu, Y. Zhang, L. X. Cai, M. Pan, L. Song, and Z. Han, “Exploit-
ing student-project allocation matching for spectrum sharing in LTE-
unlicensed,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

[32] M. M. Gomez, M. B. Weiss, G. McHenry, and L. Doyle, “Matching
markets for spectrum sharing,” in Proc. TPRC Conf. Paper, 2017, pp. 1–6.
[Online]. Available: https://ssrn.com/abstract=2944197

[33] M. M. Gomez, “Secondary spectrum markets: From ‘naked’ spectrum to
virtualized commodities,” Ph.D. dissertation, School of Inf. Sci., Univ. of
Pittsburgh, 2017.

[34] R. Mahindra, G. Bhanage, G. Hadjichristofi, I. Seskar, D. Raychaudhuri,
and Y. Zhang, “Space versus time separation for wireless virtualization on
an indoor grid,” in Proc. Next Gener. Internet Netw., 2008, pp. 215–222.

[35] G. Smith, A. Chaturvedi, A. Mishra, and S. Banerjee, “Wireless virtual-
ization on commodity 802.11 hardware,” in Proc. 2nd ACM Int. Workshop
Wireless Network Testbeds, Exp. Eval. Characterization, 2007, pp. 75–82.

[36] S. Parsaeefard, V. Jumba, M. Derakhshani, and T. Le-Ngoc, ‘Delay-aware
power-efficient resource allocation in virtualized wireless networks,” in
Proc. Wireless Commun. Netw. Conf., 2016, pp. 1–6.

[37] T. LeAnh, N. H. Tran, D. T. Ngo, and C. S. Hong, “Resource allocation for
virtualized wireless networks with backhaul constraints,” IEEE Commun.
Lett., vol. 21, no. 1, pp. 148–151, Jan. 2017.

[38] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to
coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59,
no. 11, pp. 3122–3134, Nov. 2011.

[39] A. E. Roth, “Deferred acceptance algorithms: History, theory, practice,
and open questions,” Int. J. Game Theory, vol. 36, no. 3/4, pp. 537–569,
2008.

[40] P. Cramton, “The FCC spectrum auctions: An early assessment,” J. Econ.
Manag. Strategy, vol. 6, no. 3, pp. 431–495, 1997.

[41] X. Gao, P. Wang, D. Niyato, K. Yang, and J. An, “Auction-based time
scheduling for backscatter-aided rf-powered cognitive radio networks,”
IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1684–1697, Mar. 2019.

[42] Z. Zheng, F. Wu, and G. Chen, “A strategy-proof combinatorial het-
erogeneous channel auction framework in noncooperative wireless net-
works,” IEEE Trans. Mobile Comput., vol. 14, no. 6, pp. 1123–1137,
Jun. 2015.

[43] A. E. Roth and M. Sotomayor, “Two-sided matching,” in Handbook of
Game Theory With Economic Applications, vol. 1. New York, NY, USA:
Elsevier, 1992, pp. 485–541.

[44] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” Amer. Math. Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[45] M. Sotomayor, “The multiple partners game,” in Equilibrium and Dynam-
ics, M. Majumdar, Ed, Cham, Switzerland: Springer, 1992, pp. 322–354.

[46] S. Chatterjee, M. J. Abdel-Rahman, and A. B. MacKenzie, “Optimal base
station deployment with downlink rate coverage probability constraint,”
IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 340–343, Jun. 2018.

[47] T. Veskioja, Stable Marriage Problem and College Admission. Ph.D.
thesis, Dept. Inf., Tallinn Univ. Technol., Tallinn, Estonia, 2005.

Marcela M. Gomez (M’15) received the master’s
degree in telecommunication and the Ph.D degree in
information science specializing in telecommunica-
tions from the School of Information Science of the
University of Pittsburgh, Pittsburgh, PA, USA.

She is a Visiting Research Assistant Professor
with the Department of Informatics and Networked
Systems in the School of Computing and Informa-
tion, University of Pittsburgh. Her research interests
include intersection of technology, policy, and eco-
nomics. She has applied concepts from these disci-

plines in the study of systems where spectrum is shared and traded. In her
research, she has designed and built agent-based models for the analysis of
complicated systems that rely on electromagnetic spectrum. Her projects include
the study of the viability of secondary spectrum markets and enforcement in
cooperative spectrum sharing. Beyond spectrum, she is interested in governance
of socio-technical systems and expanding her understanding of complicated
systems via modeling. Examples of this include the study of governance in
blockchain-based systems and extrapolating public health models to understand-
ing technology adoption, and trust and incentives in governance mechanisms.

Shubhajeet Chatterjee (M’16) is currently working
toward the Ph.D. degree under supervision of Prof.
Allen B. MacKenzie at Virginia Tech, Blacksburg,
VA, USA. His research interests include applications
of stochastic optimization to wireless networks.

Mohammad J. Abdel-Rahman (M’15) received the
Ph.D. degree from the Electrical and Computer Engi-
neering Department, University of Arizona, Tucson,
AZ, USA, in 2014.

He is currently an Acting Department Head and an
Associate Professor with the Electrical Engineering
Department, Al Hussein Technical University (HTU),
Amman, Jordan. He is also an Associate Professor
with the Computer Science Department, HTU, and an
Adjunct Assistant Professor with the Electrical and
Computer Engineering Department, Virginia Tech,

Blacksburg, VA, USA. He serves as a reviewer for several international con-
ferences and journals. His research interests include software-defined networks,
integration of millimeter-wave technology into networks, cognitive networks,
and the analysis of wireless systems and networks using stochastic optimization
and game theory, focusing on wireless communications systems and networks.

Allen B. MacKenzie (SM’08) received the Ph.D.
degree in electrical and computer engineering from
Cornell University, Ithaca, NY, USA, in 2003.

He is currently a Professor with the Bradley De-
partment of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, USA, where he has
been on the faculty since 2003. He is also the Asso-
ciate Director of Wireless with Virginia Tech. During
2012–2013 academic year, he was an E. T. S. Walton
Visiting Professor with Trinity College Dublin. He
is the author of more than 90 refereed conference

and journal papers and a co-author of the book Game Theory for Wireless
Engineers (Morgan & Claypool Publishers, 2006). His past and current research
sponsors include the National Science Foundation, Science Foundation Ireland,
the Defense Advanced Research Projects Agency, and the National Institute of
Justice. His current research interests include integration of millimeter wave
technology into networks, cognitive radio and cognitive network architectures,
and the analysis of wireless systems and networks using game theory and
stochastic optimization, focusing on wireless communications systems and
networks.

Prof. MacKenzie is a member of the ASEE and the ACM. He is currently
an Area Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS and an As-
sociate Editor for the IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS

AND NETWORKING. He was a member of the U.S. Department of Commerce’s
Spectrum Management Advisory Committee (CSMAC) from 2016 to 2018.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GOMEZ et al.: MARKET-DRIVEN STOCHASTIC RESOURCE ALLOCATION FRAMEWORK 11

Martin B. H. Weiss (M’76) received the B.S.E.
degree in electrical engineering from Northeastern
University, Boston, MA, USA, the M.S.E. degree in
computer, control, and information engineering from
the University of Michigan, Ann Arbor, MI, USA,
and the Ph.D. degree in engineering and public policy
from Carnegie Mellon University, Pittsburgh, MA,
USA.

He is a Professor and the Chair of the Department
of Informatics and Networked Systems in the School
of Computing and Information at the University of

Pittsburgh. His overall research theme is the analysis of situations where com-
peting firms must cooperate technically; this has expressed itself in studying
the standardization process, internet interconnection, and, most recently, radio
spectrum sharing. His current research interests include dynamic spectrum
access and intelligent wireless systems. He is currently studying spectrum
sharing and spectrum trading with a focus on understanding the system-level
factors supporting and constraining the adoption of these technologies. Recent
aspects of this have involved studying enforcement in cooperative spectrum
sharing approaches, secondary users constraints and decisions using decision
analysis and real options analysis. Past projects include technical and cost studies
new technologies, bandwidth markets, interconnection of packet networks that
support quality-of-service (QoS), and technical standards.

Luiz DaSilva (F’16) received the B.S., M.S., and
Ph.D. degrees in electrical engineering from the Uni-
versity of Kansas, Kansas, KS, USA, in 1986, 1988,
and 1998, respectively.

He holds the Chair of Telecommunications with
Trinity College Dublin, where he is currently the Di-
rector of CONNECT, the Science Foundation Ireland
Research Centre for Future Networks and Commu-
nications. Prior to joining Trinity College, he was a
Tenured Professor with the Bradley Department of
Electrical and Computer Engineering, Virginia Tech.

His research interests include distributed and adaptive resource management in
wireless networks, and in particular radio resource sharing and the application
of game theory to wireless networks. He is also a Principal Investigator on
research projects funded by the Science Foundation Ireland and the European
Commission.

Prof. DaSilva is a Fellow of Trinity College Dublin, and a Fellow of the IEEE,
for contributions to cognitive networks and to resource management in wireless
networks.


