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ABSTRACT

Unmanned aerial vehicles (UAVs) attract increasing attention for various wireless network

applications by using UAVs’ reliable line-of-sight (LoS) paths in air-ground connections and

their flexible placement and movement. As such, the wireless network architecture is be-

coming three-dimensional (3D), incorporating terrestrial and aerial network nodes, which is

more dynamic than the traditional terrestrial communications network. Despite the UAVs’

advantages of high LoS path probability and flexible mobility, the challenges of UAV com-

munications need to be considered in the design of integrated air-ground networks, such

as spectrum sharing, air-ground interference management, energy-efficient and cost-effective

UAV-assisted communications. On the other hand, in wireless networks, users request not

only reliable communication services but also execute computation-intensive and latency-

sensitive tasks. As one of the enabling technologies in wireless networks, edge computing

is proposed to offload users’ computation tasks to edge servers to reduce users’ latency and

energy consumption. However, this requires efficient utilization of both communication re-

sources and computation resources. Furthermore, integrating UAVs into edge computing

networks brings many benefits, such as enhancing offloading ability and extending offload-

ing coverage region. This dissertation makes a series of fundamental contributions to UAVs

and edge computing in wireless networks that include: 1) Reliable UAV communications, 2)

Efficient edge computing schemes, and 3) Integration of UAV and edge computing.

In the first contribution, we investigate UAV spectrum access and UAV swarm-enabled aerial



reconfigurable intelligent surface (SARIS) for achieving reliable UAV communications. On

the one hand, we study a 3D spectrum sharing between device-to-device (D2D) and UAVs

communications. Specifically, UAVs perform spatial spectrum sensing to opportunistically

access the licensed channels occupied by the D2D communications of ground users. The

results show that UAVs’ optimal spatial spectrum sensing radius can be obtained given

specific network parameters. On the other hand, we study the beamforming and placement

design for SARIS networks in downlink transmissions. We consider that the direct links

between the ground base station (BS) and mobile users are blocked due to obstacles in the

urban environment. SARIS assists the BS in reflecting the signals to randomly distributed

mobile users. The results show that the proposed SARIS network significantly improves the

weighted sum-rate for ground users, and the placement design plays an essential role in the

overall system performance.

In the second contribution, we develop a joint communication and computation resource

allocation scheme for vehicular edge computing (VEC) systems. The full channel state

information (CSI) in VEC systems is not always available at roadside units (RSUs). The

channel varies fast due to vehicles’ mobility, and it is pretty challenging to estimate CSI and

feed back the RSUs for processing the VEC algorithms. To address the above problem, we

introduce a large-scale CSI-based partial computation offloading scheme for VEC systems.

Using deep learning and optimization tools, we minimize the users’ energy consumption

while guaranteeing their offloading latency and outage constraints. The results demonstrate

that the introduced resource allocation scheme can significantly reduce the total energy

consumption of users compared with other computation offloading schemes.

In the third contribution, we present novel frameworks for integrating UAVs to edge comput-

ing networks to achieve improved computing performance. We study mobile edge computing

(MEC) in air-ground integrated wireless networks, including ground computational access



points (GCAPs), UAVs, and user equipment (UE), where UAVs and GCAPs cooperatively

provide computation resources for UEs. The resource allocation algorithm is developed based

on the block coordinate descent method by optimizing the subproblems of users’ association,

power control, bandwidth allocation, computation capacity allocation, and UAV placement.

The results show the advantages of the introduced iterative algorithm regarding the reduced

total energy consumption of UEs.

Finally, we highlight directions for future works to advance the research presented in this dis-

sertation and discuss its broader impact across the wireless networks industry and standard-

making.
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GENERAL AUDIENCE ABSTRACT

The fifth-generation (5G) cellular network aims to achieve a high data rate by having greater

bandwidth, deploying denser networks, and multiplying the antenna links’ capacity. How-

ever, the current wireless cellular networks are fixed on the ground and thus pose many

disadvantages. Moreover, the improved system performance comes at the cost of increased

capital expenditures and operating expenses in wireless networks due to the enormous energy

consumption at base stations (BS) and user equipment (UE). More spectrum and energy-

efficient yet cost-effective technologies need to be developed in next-generation wireless net-

works, i.e., beyond-5G or sixth-generation (6G) networks.

Recently, unmanned aerial vehicle (UAV) has attracted significant attention in wireless com-

munications. Due to UAVs’ agility and mobility, UAVs can be quickly deployed to support re-

liable communications, resorting to its line-of-sight-dominated connections in the air-ground

channels. However, the sufficient available spectrum for extensive UAV communications is

scarce, and the co-channel interference in air-air and air-ground connections need to be con-

sidered in the design of UAV networks. In addition to users’ communication requests, users

also need to execute intensive computation tasks with specific latency requirements. As such,

edge computing has been proposed to integrate wireless communications and computing by

offloading users’ computation tasks to edge servers in proximity, reducing users’ compu-

tation energy consumption and latency. Besides, integrating UAVs into edge computing

networks makes efficient offloading schemes by leveraging the advantages of UAV commu-



nications. This dissertation makes several contributions that enhance UAV communications

and edge computing systems performance, respectively, and present novel frameworks for

UAV-assisted three-dimensional (3D) edge computing systems.

This dissertation addresses the fundamental challenges in UAV communications, including

spectrum sharing, interference management, UAV 3D placement, and beamforming, allowing

broadband, wide-scale, cost-effective, and reliable wireless connectivity. Furthermore, this

dissertation focuses on the energy-efficient vehicular edge computing systems and mobile

edge computing systems, where the UAVs are applied to achieve 3D edge computing sys-

tems. To this end, various mathematical frameworks and efficient joint communication and

computation resource allocation algorithms are proposed to design, analyze, optimize, and

deploy UAV and edge computing systems. The results show that the proposed air-ground

integrated networks can deliver spectrum-and-energy-efficient yet cost-effective wireless ser-

vices, thus providing ubiquitous wireless connectivity and green computation offloading in

the future beyond-5G or 6G wireless networks.
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Chapter 1

Introduction

1.1 Background

The fifth-generation (5G) cellular network aims to achieve high data rate, low latency, mas-

sive connectivity by having greater bandwidth, deploying denser networks, and multiplying

the antenna links’ capacity [1]. The construction of 5G terrestrial network contains hetero-

geneous infrastructures, e.g., cellular network, mobile ad hoc network, and wireless local area

network. In particular, the cellular network has been widely developed in recent decades to

support various services. With the help of the 5G cellular network’s key technologies, such

as ultra-dense network (UDN), massive multiple-input-and-multiple-output (MIMO), and

millimeter-wave (mmWave) communication, the terrestrial network is capable of providing

high data rate (10 Gbits/s) with relatively low latency (1 ms). However, the terrestrial

network has obvious restrictions on limited global coverage. Moreover, the improved system

performance comes at the cost of increased capital expenditures and operating expenses due

to the enormous energy consumption generated by active hardware components. In future

wireless networks, i.e., beyond-5G or the sixth-generation (6G) network, more spectrum and

energy-efficient yet cost-effective technologies need to be developed.

In next-generation wireless networks, it is expected for the network to provide global cov-

erage, utilize all spectrum, support full applications, ensure strong security, etc. Future

networks have to exploit all possible resources by interconnecting space, air, and ground

1
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network segments to provide seamless wireless coverage and support various and stringent

service requirements. Unmanned aerial vehicle (UAV) and satellite communication networks

are important for fast response in harsh and difficult environments. In addition to the de-

mand for communications, users also increasingly need adequate computation resources to

efficiently process their computation tasks to save on-board energy and reduce latency, espe-

cially in vehicular networks. Due to the limited computing capability of the central process-

ing unit (CPU) at some local devices, their latency requirements for processing computation

tasks may not be guaranteed. Moreover, due to the severe energy consumption of locally

computing, merely processing all tasks at one device reduces its battery lifetime. Mobile edge

computing (MEC) is proposed to be a promising solution for tackling the above peculiarities,

where edge servers offload users’ computation tasks through wireless communications. Re-

cently, a new paradigm of reconfigurable intelligent surface (RIS)-assisted wireless networks

has drawn extensive attention due to its low-cost characteristic and high spectral and energy

efficiency. RIS is a planar surface comprising a large number of low-cost passive reflect-

ing elements. By adjusting the amplitudes and phase shifts of the reflecting elements, RIS

can achieve fine-grained reflection-beamforming. Since RIS does not require radio frequency

(RF) chains to transmit or receive the signals, it enjoys low energy consumption but achieves

significantly improved spectral efficiency.

1.2 Unmanned Aerial Vehicle

In future wireless networks, as UAVs become more available, mobile users will not be re-

stricted to terrestrial mobile stations. There are many applications for UAVs in wireless net-

work such as UAV swarm networks in disasters, UAV-assisted vehicle-to-everything (V2X)

communications [2], UAV enabled smart city, traffic offloading in hotspots, and surveillance
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Figure 1.1: Applications of UAV in wireless networks.

and Internet-of-Things (IoT) networks, as shown in Fig. 1.1.

The wireless network architecture will become a three-dimensional (3D) structure, incorpo-

rating terrestrial and aerial network nodes that are more dynamic than the fixed terrestrial

communications network that we have today. In the development of aerial platforms, the

spectrum access for UAV communications is of significance in the design and management

of the holistic communications network. Different from the non-line-of-sight (NLoS) trans-

missions in most ground communications, aerial communications including air-to-air (A2A),

air-to-ground (A2G) and ground-to-air (G2A) enjoy reliable wireless transmissions resorting

to the lower signal attenuation due to fewer obstacles. In A2A communications, the signal

experiences approximately free-space propagation. In A2G and G2A communications, the
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occurrence probability of line-of-sight (LoS) connection or NLoS connection is a function of

the elevation angle between the UAV and ground node and the environment such as rural,

urban, dense urban or others.

UAV communications typically happen in unlicensed spectrum, including the 2.4 GHz and

5.8 GHz ISM bands [3]. For small and medium range UAV applications, multi-hop 802.11

or Zigbee technologies are considered according to their throughput and range demands [4].

For high throughput applications, additional wireless technologies and spectrum need to be

considered. When operating in unlicensed spectrum, UAVs may suffer from security threats

and attacks which impact the transmission of confidential information. Moreover, with the

drastic increase in the number of wireless devices (such as tablets, smartphones, and sensors)

which also operate in unlicensed spectrum, the unlicensed spectrum is becoming overcrowded

and UAVs will be facing spectrum scarcity in near future.

The use of licensed spectrum, on the other hand, would enable wide-scale and high-quality

connectivity for UAVs with enough capacity to support various services and increasing usage

levels. Sharing the licensed spectrum that is used for cellular communications, for instance,

with UAVs can significantly improve the communication performance of UAVs. However, the

interference generated by the UAVs needs to be well managed to limit its effect on primary

users. Therefore, network designers need to take the negative impact of implementing UAV

communications into account and come up with efficient spectrum sharing strategies for the

coexistence of UAVs and terrestrial communications devices. Enabling spectrum sensing for

UAVs will allow UAVs to opportunistically exploit licensed spectrum holes and improve the

area spectral efficiency (ASE) of the overall wireless ecosystem.
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1.3 Edge Computing

In the IoT and the 5G wireless networks, enormous computation tasks are generated by the

users [5]. These computation tasks are usually computation-intensive, which require a large

amount of computation capacity, and also latency-sensitive with stringent latency require-

ments. However, users’ computation capacity is limited, and thus the latency requirements

would not be guaranteed when users locally execute tasks. In addition, entirely computing

the tasks at users consumes much energy. Due to the limited battery capacity of device,

locally processing the computation tasks will reduce the device’s lifetime. Therefore, it is

imperative to explore innovative, energy-efficient, yet Quality-of-Service (QoS) guaranteed

solutions for computing in future IoT and beyond-5G wireless networks.

MEC has emerged as an effective solution to help users deal with computation-intensive

and latency-sensitive tasks [6]. MEC enables users to offload their computational tasks to

edge servers, thus reducing users’ computation burden. As such, MEC helps users to save

their energy and ensure their latency requirements. Unlike traditional cloud computing,

offloading users’ computational tasks to edge servers reduces data transmission delay. By

carefully designing MEC algorithms that jointly optimize communication and computation

resources allocation, one can improve network performance.

However, there are some drawbacks to terrestrial MEC networks. First, the edge servers and

base stations (BSs) are usually deployed at fixed locations or far away from users located

in remote areas, which poses disadvantages for dynamically and randomly distributed users.

Second, the data transmissions in terrestrial MEC networks usually experience significant

signal attenuation due to the large-scale path loss and shadow fading resulting from obsta-

cles like buildings and trees. Thus, the uplink data rate for computation offloading can be

unsatisfactory, allowing fewer data to be offloaded while guaranteeing the latency require-
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Figure 1.2: UAVs in MEC networks where some BSs are disabled.

ment. Third, terrestrial MEC networks can be disabled during disasters or in remote areas.

Moreover, the edge servers usually incur the site-rent cost.

Based on the drawbacks of terrestrial MEC networks, UAV-enabled MEC has been proposed,

where the edge server is mounted on UAV to provide computation offloading for users [7, 8].

Compared with the traditional terrestrial MEC networks, the UAV-enabled MEC network

supports reliable LoS paths to users and can be deployed with flexible mobility [9]. Moreover,

in disasters, the terrestrial networks are destroyed due to damage. The terrestrial MEC

network may be disabled. In this case, we can deploy UAVs to assist terrestrial computing

and/or enable aerial computing for ground users, as shown in Fig. 1.2.

However, there are still some critical issues of UAV-enabled MEC. First, mounting the edge

server on a UAV increases the UAV’s load and propulsion-related energy consumption. Since

the UAV’s battery capacity is scarce but limited, this reduces the UAV’s service time. Second,

offloading users’ computational tasks to the UAV increases the UAV’s computation-related
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energy consumption. In general, computation-related energy consumption is greater than

communication-related energy consumption, emphasizing the importance of considering an

energy-efficient UAV-enabled MEC design when aiming to prolong the UAV’s service time.

Third, deploying an additional edge server on a UAV increases the UAV’s production cost.

Therefore, research on finding new cost-effective yet energy-efficient technologies for MEC

is still of considerable interest.

1.4 Aerial Reconfigurable Intelligent Surface

RIS has been introduced as a new technology to improve wireless networks’ spectrum and

energy efficiency [10, 11]. An RIS is a planar surface comprising a large number of low-cost

passive reflecting elements. By adjusting the amplitudes and phase shifts of the reflect-

ing elements, an RIS can achieve fine-grained reflection-beamforming. Moreover, with the

full-duplex mode in operation and no noise-addition characteristics, an RIS is more spectrum-

efficient than the conventional relay technology. In addition, an RIS does not require RF

chains to transmit or receive signals, and thus it enjoys low energy consumption but achieves

significantly improved spectral efficiency. Therefore, RIS can be deployed in wireless net-

works to achieve significantly improved overall system performance.

Instead of being limited to only terrestrial deployment, wireless networks are gradually evolv-

ing to air-ground integrated networks to achieve ubiquitous wireless connectivity and up-

graded network capacity. Recently, UAVs have attracted significant attention in wireless

communication. Due to the agility and mobility, UAVs can be quickly deployed in hotspots

or disaster regions to support reliable communication, resorting to its LoS-dominated con-

nections in the air-to-ground channels [2]. As an aid to this, an RIS can be mounted on

UAVs to enable aerial RIS (ARIS) to achieve 3D signal reflection. Such an ARIS is not re-
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Figure 1.3: Applications of UAV swarm-enabled aerial RIS in wireless network.

stricted to the 180◦ half-space reflection, but instead, it provides a 360◦ panoramic full-angle

reflection [12]. With the UAV’s flight ability in 3D space, an ARIS is more flexible in de-

ployment than the conventional terrestrial RIS (TRIS), which is usually deployed on facades

of a building or at a dedicated site. Attaining an appropriate place for the TRIS installa-

tion would not be easy in practice due to excessive site-rent and urban landscape impact.

Moreover, the ARIS’s cascaded reflection channel is more desirable than the TRIS’s, which

shows the potential to improve system performance further. From the above discussion, it

is practically appealing to investigate the combination between UAVs and RISs. In Fig. 1.3,

we illustrate the applications of UAV swarm-enabled aerial RIS in wireless networks.

One of the challenges in designing ARIS-assisted networks is the trade-off between NLoS
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Figure 1.4: An illustration of the trade-off between NLoS excessive path loss and doubled
path loss.

excessive path loss and the doubled path loss due to signal reflection. In the ARIS-assisted

network, two links are cascaded together, i.e., one is between the user and ARIS, the other

is between the ARIS and BS, shown in Fig. 1.4. In the cascaded channel, the doubled path

loss severely deteriorates the network performance [13]. In terrestrial RIS-assisted wireless

networks, it is better to deploy an RIS near the user or BS to minimize the doubled path loss

in the cascaded channel. However, this deployment strategy may not be directly applied to

an ARIS in air-ground channels. This is because an ARIS’s 3D position determines the large-

scale path loss of the cascaded channel, and it also changes the LoS and NLoS probabilities

in air-ground channels.

Specifically, the probability of the NLoS path decreases with the ARIS’s elevation angle. As

such, deploying the ARIS near the BS reduces the elevation angle between the user and the

ARIS. Thus, this increases the probability of NLoS path between user and ARIS, as shown
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in Fig. 1.4. It is worth noting that the NLoS excessive path loss deteriorates the user’s signal

strength. On the other hand, deploying the ARIS near the user decreases the elevation angle

between the ARIS and BS. This increases the probability of NLoS path between the ARIS

and the BS. Therefore, there is a trade-off between the NLoS excessive path loss and the

doubled path loss. Nevertheless, the above trade-off analysis is under the single-user case.

If there are multiple users in ARIS-assisted networks, the complexity of the analysis will

increase. Despite the trade-off between NLoS excessive path loss and doubled path loss, the

trade-off between LoS probability and NLoS probability also needs to be considered in the

network design, where the sum of these two probabilities equals one. It is worth noting that

in the LoS path, the aperture gain of ARIS can be achieved based on the array response. As

a result, the 3D deployment of ARIS is significant to the entire network performance.

1.5 Contributions

This dissertation’s main contribution is to develop analytical foundations for design, per-

formance analysis, and optimization of UAV and edge computing wireless networks. In

particular, we introduce various and novel network frameworks for efficient spectrum shar-

ing, UAV placement and movement, performance analysis, and resource allocation of UAV

communications and edge computing systems. Based on the proposed frameworks, we im-

prove the network performance in terms of spectral efficiency, system capacity, latency,

and energy consumption. This dissertation weaves together advanced mathematical tools

such as stochastic geometry, optimization theory, machine learning, deep learning, and re-

inforcement learning. As such, this dissertation develops in-depth performance analysis and

efficient algorithms to design, analyze, optimize, deploy, and operate UAV and edge com-

puting wireless networks. In summary, so far, our contributions are shown as follows:
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• First, in Chapter 2, we analyze a 3D spectrum sharing between device-to-device (D2D)

and UAVs communications. We consider that UAVs perform spatial spectrum sensing

to opportunistically access the licensed channels that are occupied by the D2D com-

munications of ground users. The objective of the considered 3D spectrum sharing

networks is to maximize the ASE of UAV networks while guaranteeing the required

minimum ASE of D2D networks. Using the tools from machine learning, we obtain

the probability of spatial false alarm and the probability of spatial missed detection

at the UAV, which helps us to characterize the density of active UAVs. Then, based

on the Neyman-Pearson criterion, we further derive the coverage probability of D2D

and UAV communications by leveraging the tools from stochastic geometry. In addi-

tion, the ASE of the D2D and UAV networks are also obtained. Simulation results

show that the optimal spatial spectrum sensing radius of UAVs can be obtained given

specific network parameters.

• Second, in Chapter 3, we study MEC in air-ground integrated wireless networks includ-

ing ground computational access points (GCAPs), UAVs, and user equipment (UEs),

where UAVs and GCAPs cooperatively provide computing resources for UEs. Our goal

is to minimize the total energy consumption of UEs by jointly optimizing users’ associ-

ation, uplink power control, channel allocation, computation capacity allocation, and

UAV placement, subject to the constraints on deterministic binary offloading, UEs’

latency requirements, computation capacity, UAV power consumption, and available

bandwidth. Due to the non-convexity of the primary problem and the coupling of vari-

ables, we introduce a coordinate descent algorithm that decomposes the UEs’ energy

consumption minimization problem into several subproblems which can be efficiently

solved. Simulation results demonstrate the advantages of the proposed algorithm in

terms of the reduced total energy consumption of UEs.
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• Third, in Chapter 4, we propose an energy-efficient computation offloading scheme for

vehicular edge computing (VEC) systems, where multiple roadside units assist vehic-

ular users to offload computation tasks to edge servers. Our goal is to minimize the

users’ energy consumption by optimizing users’ association, data partition, transmit

power, and computation resources, subject to the constraints of partial tasks offload-

ing, users’ latency, maximum transmit power, outage performance, and computation

capacity of edge servers. We utilize deep learning for obtaining users’ association and

develop an efficient optimization algorithm to optimize other variables. Moreover, the

complexity and convergence of the algorithm are analyzed. Simulation results demon-

strate that the introduced resource allocation algorithm can significantly reduce the

total energy consumption of users.

• Finally, in Chapter 5, we study a UAV swarm-enabled aerial RIS (SARIS)-assisted

downlink communication system, where RISs can be mounted on UAVs to enable 3D

signal reflections, reliable air-ground connections, and higher configuration flexibility.

The objective of the considered SARIS system is to maximize the weighted sum-rate of

ground users by designing the transmit beamforming at the base station (BS), the phase

shifts of SARIS reflecting elements, and SARIS 3D placement. For joint BS and SARIS

beamforming design, we introduce two beamforming schemes with low computational

complexity. For SARIS placement design, the optimal SARIS 3D position is obtained

by leveraging the tools from stochastic geometry and considering the distributions of

ground users. Simulation results confirm the validity of the analytical derivations. In

particular, the SARIS placement plays a vital role in the system performance when

the distances between users and the BS increase.
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Chapter 2

3D Spectrum Sharing for Hybrid D2D

and UAV Networks

2.1 Introduction

Unmanned aerial vehicles (UAVs) have attracted great attention as they enable various ap-

plications and services [14]. Cellular operators consider UAVs as users or network support

nodes in cellular networks and vehicle-to-everything communications [2]. In addition to oper-

ator deployed UAVs, UAVs may belong to third-party organizations or individuals who want

to enjoy broadband data transmissions for video streaming, content delivery, surveillance re-

port, etc. In the meantime, wireless communication systems for UAV data transmission need

to be carefully designed. Due to the congested unlicensed spectrum, it is desirable for UAVs

to transmit in licensed or shared spectrum [15]. Licensing spectrum for massive/broadband

UAV communications is not feasible; rather, we consider spectrum sharing between UAVs

and ground licensed users to be a viable option.

In the licensed band, device-to-device (D2D) communications enable mobile users that are

close to each other to communicate directly [16, 17]. The D2D operation in the licensed band

includes the underlay mode (using the same spectrum as cellular communications links) and

the overlay mode (using orthogonal spectrum to cellular communications) [18, 19]. D2D

communications in the unlicensed band, on the other hand, need to coexist with WiFi net-

16
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works and typically suffer severe interference [20]. Since D2D transceivers are in proximity

of one another, the received interference power at D2D receivers (D2D-Rxs) from UAVs is

lower, compared to that of the long range regime which occurs when the receiver lies outside

the protection zone of D2D transmitters (D2D-Txs). Therefore, we consider the three dimen-

sional (3D) spatial spectrum sharing between UAV and D2D communications where UAVs

play the role of secondary users and D2D as primary users. To fully utilize the licensed

spectrum in such hybrid D2D and UAV networks, we aim to maximize the area spectral

efficiency (ASE) of UAV networks while guaranteeing the minimum required ASE for D2D

users. From operators’ perspective, sharing the licensed spectrum with UAVs can help them

increase profit margins by charging fees from UAV users. From the UAVs’ perspective, com-

munications can achieve the desired performance in the licensed band, as opposed to the

congested and insecure unlicensed band. Considering that mobile users need to pay monthly

fees to the operator, D2D transmitters (D2D-Txs) are considered the primary and UAVs as

the secondary users in the hybrid D2D-UAV spectrum sharing network. Since it is intractable

to numerically calculate the conditional interference distributions (conditioned on the pres-

ence of D2D-Rx in the intersection of UAV sensing sphere and ground) at a UAV under the

ground-to-air (G2A) channel models, we leverage machine learning tools, i.e., Gaussian ker-

nel nonlinear regression, to approximately obtain the conditional interference distributions,

which are used in the derivation of spatial false alarm and missed detection probabilities in

UAV spatial spectrum sensing. Leveraging tools from stochastic geometry, we analytically

derive the coverage probability of D2D communications and UAV communications. Based

on our proposed model, we can maximize the area spectral efficiency (ASE) of UAV networks

by optimizing the UAV spatial spectrum sensing radius under the constraint of a minimum

ASE of D2D networks.
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2.1.1 Related Works

Spectrum sharing in terrestrial networks has been investigated in [21, 22, 23, 24, 25, 26, 27].

In [21], the authors studied spectrum sharing for D2D communications in cellular networks.

A paradigm for spectrum sharing between cellular communications and radio astronomy sys-

tems was introduced in [22]. In [23], the approach of guard zones (protection regions) around

cellular BSs was introduced. The spatial spectrum sensing-based D2D communications have

been studied in [24, 26] and have been extended to the D2D spectrum access in user-centric

deployed heterogeneous networks [27].

On the other hand, 3D spectrum sharing for UAV networks has largely been unexplored. In

[28], the authors derived the optimal density of spectrum sharing drone networks to maximize

the throughput of the small cell UAV network. However, the considered channel model is

rather simplistic to facilitate closed-form derivations. In [29], a spectrum sharing planning

problem for a full-duplex UAV and underlaid D2D communications was studied, where a

mobile UAV assists the communications between separated nodes without a direct link. In

[30], the performance of a static UAV and a mobile UAV coexisting with D2D users in a finite

area was studied, where the UAVs and D2D communications have the same spectrum access

priority. [31, 32] also studied the coexistence of D2D and UAV communications. However,

these works considered only one UAV in the sky in the absence of mutual interference between

multiple UAVs with various flight heights. To the best of our knowledge, this is the first

work that studies overlay spectrum sharing between UAVs and D2D communications from

a system-level perspective.

2.1.2 Contributions

The main contributions of this chapter are summarized as follows:
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• 3D UAV Spatial Spectrum Sensing Model: A 3D UAV spatial spectrum sensing model

for coexisting D2D and UAV networks is designed. The spatial spectrum sensing is

conditioned on the sensing of D2D-Txs lying in the UAV’s spatial spectrum sensing

sphere. The conditional distributions of the received signal strength at the UAV have

been approximated by log-normal distributions. Given network paramters, a machine

learning-assisted approach is introduced to obtain the approximated distribution pa-

rameters (mean and standard deviation) to interpret the G2A channels. The spatial

false alarm probability and the spatial missed detection probability of a typical UAV

can be obtained using the approximated conditional distributions.

• Coverage Probability and ASE Analysis: We model and analyze the 3D hybrid spectrum

sharing network from a system-level perspective. Our model is flexible enough to

capture any density distributions of UAVs in 3D space, rather than fixing the heights

of UAVs. The coverage probability of D2D and UAV communications are derived by

considering co-tier and cross-tier interference. Based on these analyses, we obtain the

ASE of the D2D and UAV communications, respectively.

• Network Design Insights: The analysis and simulation results provide important net-

work design insights: The optimal spatial spectrum sensing radius of UAVs is obtained

to maximize the ASE of UAV networks under the constraint of a minimum ASE of

D2D networks. It is observed that a decrease in the spatial spectrum sensing radius of

UAVs has a contrasting effect on the coverage probability of UAV communications and

the ASE of UAV networks. The optimal transmit power of UAVs can be also obtained

which maximizes the ASE of UAV networks under the constraint of a minimum ASE

of D2D networks.

The chapter is organized as follows. Chapter 2.2 presents the system model. Chapter
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2.3 gives the probabilities of spatial detection of a typical UAV. Chapter 2.4 shows the

coverage probabilities of D2D and UAV communications, and presents the ASE of UAV and

D2D networks, respectively. Simulation and numerical results are discussed in Chapter 2.5.

Chapter 2.6 concludes the chapter.

2.2 System Model

2.2.1 Network Layout

Figure 2.1: Spectrum sharing for D2D and UAV coexisting networks.

The network architecture is shown in Fig. 2.1. The locations of D2D transmitters (D2D-
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Txs) are modeled as a homogeneous Poisson point process (PPP) on the two dimensional

(2D) ground with the density of λD and the set of D2D-Txs are denoted as ΦD. The

signal-to-interference-plus-noise ratio (SINR) threshold of a D2D receiver (D2D-Rx) is γthD .

The transmit power of a D2D-Tx is PD. Without loss of generality, we assume that UAVs

are distributed in 3D space within the height range of [Hmin, Hmax], where the densities

of UAVs on different horizontal planes follow a certain distribution fH (h). Due to their

flexible mobility, UAVs can fly at different heights and change their heights dynamically.

Our model realistically captures the various heights of UAVs, unlike the state-of-the-art that

assumes UAVs at a fixed height. We denote the 3D allowable flight space for UAVs as

VA = {(x, y, z)|Hmin ⩽ z ⩽ Hmax}. The density of UAVs in VA is λV which is the density

of the ground projection points of UAVs. The set of all UAVs is represented by ΦV . In

this chapter, we consider the case where UAVs intend to transmit data to ground users in

a same channel that is used by the overlaid D2D communications network. The transmit

power of a UAV is denoted by PV and the SINR threshold of the associated ground receiver

is γthV . The transmit power of UAV can be adapted according to the channel conditions and

the user’s quality of service requirement to further enhance the communication performance.

Our model is applicable for many power control mechanisms such as the semi-static power

control mechanism [33]. For ease of analysis, in this chapter we assume fixed transmit power

at UAVs.
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2.2.2 Radio Propagation Model

The SINR of a typical D2D-Rx udk associated with the corresponding D2D-Tx dk is given by

SINR
(
udk
)
=
PDhdkudk

∥∥dk − udk
∥∥−αGG

IV
udk

+ ID
udk

+ σn2

where

IVudk
=

∑
vj∈Φact

V

PLOS
(
vj, u

d
k

)
PV gvjudk∥∥vj − udk
∥∥αAG

+
∑

vj∈Φact
V

PNLOS
(
vj, u

d
k

)
ηPV gvjudk∥∥vj − udk
∥∥αAG

IDudk
=

∑
dj∈ΦD,dj ̸=dk

PDhdjudk

∥∥dj − udk
∥∥−αGG ,

(2.1)

where hxy denotes the channel power gain between ground nodes x and y which follows the

Rayleigh distribution, ∥a− b∥ the distance between a and b, and αGG the path loss exponent

from a ground node to another ground node. IV
udk

is the aggregate interference power at udk
from active UAVs, ID

udk
is the aggregate interference power at udk from D2D-Txs, σn2 is the

noise power, and Φact
V denotes the set of active UAVs which successfully access the channel

through spatial spectrum sensing. For a ground D2D-Rx, the received interfering signals

from active UAVs include LOS signals, Non-LOS (NLOS) signals, and multiple reflected

components which cause multipath fading [34, 35]. PLOS
(
vj, u

d
k

)
and PNLOS

(
vj, u

d
k

)
denote

the occurrence probabilities of the LOS and NLOS links between the jth UAV vj and the

typical D2D-Rx udk, where the summation of these two occurrence probabilities equals to

one. Parameter αAG is the path loss exponent of the A2G link. The path loss is higher in a

NLOS than in a LOS connection because of shadowing and indirect signal paths. Parameter

η < 1 is the excessive attenuation factor for NLOS. The Nakagami distribution can be used

to describe the small scale fading in A2G and G2A channels [36, 37]. We use gxy to denote

the channel power gain between x and y in A2G and G2A connections which follows a

normalized gamma distribution with parameter M .
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Specifically, according to [35], we have

PLOS
(
vj, u

d
k

)
=

1

1 + C exp [−B (θ − C)]
,

where

θ =
180

π
arctan

(
hvj
rvjudk

)
,

(2.2)

where C and B are constant values depending on the communications environment, e.g.

rural, urban, or dense urban, hvj is the height of the UAV vj, and rvjudk denotes the horizontal

distance between UAV vj and D2D-Rx udk. In addition, we have

PNLOS
(
vj, u

d
k

)
= 1− PLOS

(
vj, u

d
k

)
. (2.3)

The SINR of a typical UAV receiver (UAV-Rx) uvi associated with UAV vi is given by

SINR (uvi ) =
PVL (vi, u

v
i ) gviuvi ∥vi − uvi ∥

−αAG

IVuvi + IDuvi + σn2

where

L (vi, u
v
i ) = PLOS (vi, u

v
i ) + ηPNLOS (vi, u

v
i ) ,

IDuvi =
∑
dj∈ΦD

PDhdjuvi ∥dj − uvi ∥
−αGG

IVuvi =
∑

vj∈Φact
V ,vj ̸=vi

PLOS (vj, u
v
i )PV gvjuvi

∥vj − uvi ∥
αAG

+
∑

vj∈Φact
V ,vj ̸=vi

PNLOS (vj, u
v
i ) ηPV gvjuvi

∥vj − uvi ∥
αAG

,

(2.4)

where PLOS (vi, uvi ) and PNLOS (vi, u
v
i ) are the occurrence probabilities of LOS and NLOS

connections between the typical UAV vi and its associated receiver uvi . The term IVuvi in (2.4)

represents the aggregate interference power at the typical ground UAV-Rx uvi caused by the

active UAVs . IDuvi is the aggregate interference power at uvi caused by the D2D-Txs.
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2.2.3 Spatial Spectrum Sensing

We define the spatial spectrum sensing sphere of a typical UAV vi at the height of hvi as

Svi =
{
υ (xυ, yυ, zυ) ∈ V3

∣∣ ∥vi − υ∥ ⩽ Rs

}
and ∥vi − υ∥ =

√
(xvi − xυ)

2 + (yvi − yυ)
2 + (hvi − zυ)

2,

(2.5)

where xυ, yυ and zυ represent the coordinates of the point υ, V3 denotes the 3D space,

∥vi − υ∥ is the spatial distance between UAV vi and υ (xυ, yυ, zυ), and Rs is the spatial

spectrum sensing radius of UAV. The intersection between Svi and the ground is denoted by

Avi = Svi ∩ R2, where R2 is the horizontal ground plane. More specifically, we have

Avi =

{
m (xm, ym) ∈ R2

∣∣ ∥vi −m∥ ⩽
√

Rs
2 − hvi

2

}
and ∥vi −m∥ =

√
(xvi − xm)

2 + (yvi − ym)
2,

(2.6)

where m (xm, ym) denotes a point located in Avi , and (xm, ym) are its coordinates. Expression

∥vi −m∥ is the horizontal distance between UAV vi and ground point m. Fig. 2.2 illustrates

the geometrical setup and parameters.

Let H0 be the event that there is no D2D-Tx in Avi , and H1 be the event that there is at

least one D2D-Tx in Avi . We assume that in each time slot of duration T , all UAVs first

perform spatial spectrum sensing of duration τ , and the UAVs which access the channel

transmit data in the remaining time duration T − τ . At UAV vi, the received signals y [n]

during spatial spectrum sensing for the events H0 and H1 are given in (2.7) and (2.8), where

n is the sample index, sdk [n] is the nth sample from D2D-Tx dk, and the noise n0 [n] is i.i.d.

circularly symmetric complex Gaussian with zero mean and variance σn2:

H0 : y [n] =
∑

dk∈ΦD,dk /∈Avi

PLOS (dk, vi)

√
PDgdkvi

∥dk − vi∥αGA
sdk [n]

+
∑

dk∈ΦD,dk /∈Avi

PNLOS (dk, vi)

√
PDηgdkvi

∥dk − vi∥αGA
sdk [n] + n0 [n] ,

(2.7)
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Figure 2.2: Ground intersection of spectrum sensing region of a typical UAV.

H1 : y [n] =
∑

dk∈ΦD,ΦD∩Avi ̸=∅

PLOS (dk, vi)

√
PDgdkvi

∥dk − vi∥αGA
sdk [n]

+
∑

dk∈ΦD,ΦD∩Avi ̸=∅

PNLOS (dk, vi)

√
PDηgdkvi

∥dk − vi∥αGA
sdk [n] + n0 [n] .

(2.8)

The test statistics of the received signals at a typical UAV are given by

Γ| Iϖ = 1
Ns

∑Ns−1

n=0
|y [n]|2, ϖ = {0, 1} , (2.9)

where Ns denotes the number of samples. When Ns is large, the distribution approaches a

conditional Gaussian distribution because of the central limit theorem, i.e.,

Γ| Iϖ ∼ N

(
Iϖ + σn

2,
(Iϖ + σn

2)
2

Ns

)
. (2.10)

The mean and the variance of the conditional Gaussian distribution depend on the hypothesis

[26, 38]. Note that I0 and I1 are random variables that depend on the network topology,

D2D-Tx density and transmit powers, channel conditions, height of the sensing-based UAV
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and its spatial spectrum sensing radius. I0 and I1 are expressed as

I0 =
∑

dk∈ΦD,dk /∈Avi

PLOS (dk, vi)
PDgdkvi

∥dk − vi∥αGA
+

∑
dk∈ΦD,dk /∈Avi

PNLOS (dk, vi)
PDηgdkvi

∥dk − vi∥αGA
,

(2.11)
I1 =

∑
dk∈ΦD,ΦD∩Avi ̸=∅

PLOS (dk, vi)
PDgdkvi

∥dk − vi∥αGA
+

∑
dk∈ΦD,ΦD∩Avi ̸=∅

PNLOS (dk, vi)
PDηgdkvi

∥dk − vi∥αGA
.

(2.12)

The spatial false alarm probability and the spatial missed detection probability of a UAV

are given by

Pfa = EI0
{
P
(
Γ > ε|H0

)}
, (2.13)

Pmd = EI1
{
P
(
Γ < ε|H1

)}
, (2.14)

where ε is the energy detection threshold. The essential difference of spectrum sharing be-

tween 3D and 2D networks is the unknown conditional distribution of the aggregated received

power at the UAV which determines the false alarm and missed detection probabilities.

If the test statistics received power Γ at a UAV is greater than ε, the UAV will transmit with

probability β1, otherwise, it will transmit with probability β0, where β0 > β1. Therefore, for

event H0, a UAV will access the licensed channel with probability

P 0 = Pfaβ1 + (1− Pfa) β0. (2.15)

For event H1, a UAV will access the licensed channel with probability

P 1 = (1− Pmd) β1 + Pmdβ0. (2.16)

Note that Pfa and Pmd are key performance metrics for the UAVs spatial spectrum sens-

ing, affecting the density of active UAVs and the co-channel interference to UAV and D2D

communications. This will provide useful insights to design efficient spectrum sharing strate-

gies that balance the aggressive spectrum reuse and the resulting co-channel interference.



2.3. FALSE ALARM PROBABILITY AND MISSED DETECTION PROBABILITY ANALYSIS 27

Compared with the modeling and analysis in conventional heterogeneous networks [39], the

technical challenges of analyzing spectral sharing opportunities between UAV and D2D net-

works include modeling the height dependent spectrum access, determining the distributions

of the aggregated received power during spectrum sensing, and characterizing network in-

terference in 3D.

2.3 False Alarm Probability and Missed Detection Prob-

ability Analysis

In this section, we provide the intermediate technical results for the system-level performance

analysis, where we characterize the probability of spatial false alarm and the probability of

spatial missed detection of a typical UAV. These probabilities will be used to determine the

density of active UAVs and the interference from active UAVs.

2.3.1 Probability of Spatial False Alarm

For a typical UAV vi at the height of hvi , since I0 in (2.11) is a random variable relying on

the network parameters, the probability of spatial false alarm Pfa in (2.13) is given by

Pfa =

∫ ∞

0

P
(
Γ > ε|H0, I0 = x

)
fI0 (x)dx, (2.17)

where fI0 (x) is the probability density function (PDF) of I0.
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Then we derive the Laplace transform of I0 when Rs > hvi to determine its distribution as

L I0|Rs>hvi
(s)

= E
{

exp
(
−s I0

∣∣Rs > hvi
)}

= EΦD

 ∏
dk∈ΦD,dk /∈Avi

Eg
{

exp
(
−sPLOS (dk, vi)PDgdkvi

∥dk − vi∥αGA
− s

PNLOS (dk, vi)PDηgdkvi
∥dk − vi∥αGA

)}
(a)
= exp

{
−2πλD

∫ ∞

√
Rs

2−hvi
2

[
1− (1 + ξ (x, PD) + Θ (x, PD))

−M
]
xdx

}

where

ξ (x, PD) =
sPD

(
x2 + hvi

2
)−αGA

2

/
M

1 + C exp [−B (E arctan (hvi/x)− C)]

Θ (x, PD) =
sPDη

(
x2 + hvi

2
)−αGA

2

M
− ηξ (x, PD) ,

(2.18)

where (a) is obtained from the expectation of the normalized gamma distribution. In addi-

tion, when Rs ⩽ hvi , we have

L I0|Rs⩽hvi (s) = exp
{
−2πλD

∫ ∞

0

[
1− (1 + ξ (x, PD) + Θ (x, PD))

−M
]
xdx

}
. (2.19)

Using the Probability Density Function (PDF) of I0, i.e., f I0|· (t), the Laplace transform of

I0 is expressed as

L I0|· (s) = E
{
e−sI0

}
=

∫ ∞

0

e−stf I0|· (t)dt, (2.20)

where I0| · denotes the event I0 under Rs > hvi or Rs ⩽ hvi . The PDF can then be derived

by taking the inverse Laplace transform:

f I0|· (t) = L−1
{
L I0|· (s)

}
=

1

2πi
lim
T→∞

∫ γ+iT

γ−iT
estL I0|· (s)ds. (2.21)

Note that there are several other methods for deriving the distributions of I0 and I1 such as

the inverse transform of characteristic function. However, these analytical methods involve
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multiple integrals and integrals in a complex domain which impede the tractable algorithms

design.

The probability of spatial false alarm can be calculated by combining (2.21) into (2.17), as

follows:

Pfa =


∫∞
0
ζ (x) f I0|Rs>hvi

(x)dx,Rs > hvi∫∞
0
ζ (x) f I0|Rs⩽hvi (x)dx,Rs ⩽ hvi

, (2.22)

where ζ (x) = Q
(
ε−x−σn2

x+σn2

√
N
)

and Q (·) is the Q-function.

2.3.2 Probability of Spatial Missed Detection

Similar to the derivation of Pfa, the Laplace transform of I1 when Rs > hvi is obtained as

L I1|Rs>hvi
(s)

= E
{

exp
(
−s I1

∣∣Rs > hvi
)}

= EΦD

 ∏
dk∈ΦD∩Svi ,ΦD∩Avi ̸=∅

Eg
{

exp
(
−sPLOS (dk, vi)PDgdkvi + PNLOS (dk, vi)PDηgdkvi

∥dk − vi∥αGA

)}
· EΦD

 ∏
dk∈ΦD∩Ac

vi

Eg
{

exp
(
−sPLOS (dk, vi)PDgdkvi + PNLOS (dk, vi)PDηgdkvi

∥dk − vi∥αGA

)}
=
e−2πλD

∫∞
0 [1−(1+ξ(x,PD)+Θ(x,PD))−M ]xdx

1− exp
[
−λDπ

(
Rs

2 − hvi
2
)] −

L I0|Rs>hvi
(s) exp

(
−λDπ

(
Rs

2 − hvi
2
))

1− exp
[
−λDπ

(
Rs

2 − hvi
2
)] ,

(2.23)

where ξ (x) and Θ(x) are given in (2.18).

Therefore, the probability of spatial missed detection can be expressed as

Pmd =


∫∞
0

(1− ζ (x)) f I1|Rs>hvi
(x)dx,Rs > hvi

0,Rs ⩽ hvi

. (2.24)

Remark 2.1. In terrestrial communications with 2D Poisson distributed interfering nodes,

the closed form PDF of I0 can be approximated by the inverse Gaussian distribution [40]
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and the log-normal distribution [41] by taking the first, second and/or third order cumu-

lants. However, these approximations do not match well with the exact values of I0 and I1

in 3D networks. Therefore, it is crucial to obtain the simple and tractable approximated

distributions of the aggregate interference for 3D UAV spectrum sensing to provide useful

system design guidelines.

2.3.3 Machine Learning-Assisted Approach

It is difficult to compute Pfa and Pmd numerically in (2.22) and (2.24) due to multiple

integrals in the calculation of the inverse Laplace transform. The nonlinear regression tech-

nique can be used to obtain the approximated PDFs of I0 and I1 to facilitate system-level

performance analysis [42]. Based on the distance-dependent path-loss, the PDFs of the ag-

gregated received signal strength I0 and I1 have more values within a specific region and

have a long tail. By comparing some well-known continuous distributions, we select the Log-

normal distribution with appropriate mean and standard deviation values to approximate

the distributions of I0 and I1.

Proposition 2.2. The PDFs of the received signal strength I0 and I1 for the events H0

and H1 can be well approximated by the log-normal distribution with appropriate mean and

standard deviation values. More specifically, we have

fIϖ (x) ≈ 1

xσIϖ
√
2π

exp
[
−(lnx− µIϖ)

2

2σIϖ2

]
, (2.25)

where µIϖ and σIϖ are the mean and the standard deviation variables.

Note that other families of distributions such as the inverse gamma or scaled inverse chi-

squared can be used to approximate the distributions and show similar performance. We

do not focus on the optimal approximation and distribution selection, but we are more

interested in the system-level performance evaluation.
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In terrestrial communications with 2D Poisson distributed interfering nodes, the values of µI0

and σI0 can be obtained by calculating the first and second cumulants of I0 [40]. However,

the results obtained by the first and second cumulants of I0 are no longer accurate under 3D

UAV channels due to the LOS and NLOS nature of G2A connections. The Gaussian kernel

nonlinear regression is used to explore the relationship between input (network parameters)

and output (mean and the standard deviation of log-normal distribution). In Fig. 2.3, the

input network parameters are the density λD of D2D-Txs, UAV’s flight height hvi , UAV’s

spatial spectrum sensing radius Rs, and the channel power gain M of G2A transmission. The

output is the mean or the standard deviation of the approximated log-normal distribution

of Iϖ, ϖ = {0, 1}.

Figure 2.3: Input and output of the machine learning-based approach.

Remark 2.3. In the training process, the transmit power of D2D-Txs is not set as an input.

We use the scaling property of the log-normal distribution to update the mean value of

the approximated log-normal distribution, i.e, if Iϖ ∼ Lognormal (µIϖ , σIϖ), then we have

aIϖ ∼ Lognormal (µIϖ + ln a, σIϖ).

We use Monte Carlo simulations with diverse input values to generate the data set for

training. For this data set generation, the mean and the standard deviation values of the
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log-normal distribution can be obtained as follows

µIϖ = ln

 E{Iϖ}2√
E
{
(Iϖ)2

}
 , (2.26)

σIϖ =

[
ln
(
E
{
(Iϖ)2

}
E{Iϖ}2

)] 1
2

. (2.27)

We denote the input variables as x(i) =
[
x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4

]
(corresponding to the network

parameters λD, hvi , Rs, M). The output variable is denoted by y(i) (corresponding to the

µIϖ or σIϖ , ϖ = {0, 1}), where (i) indicates the data set index. To balance the weights of

the different inputs, we normalize the input variables between 0 and 1 as follows

x̃
(i)
j =

x
(i)
j − min (xj)

max (xj)− min (xj)
, j = 1, · · · , 4, (2.28)

where xj =
[
x
(1)
j , · · · , x(L)j

]
and L is the number of input-output pairs in the generated data

set. We then obtain the normalized input variables x̃(i) =
[
x̃
(i)
1 , x̃

(i)
2 , x̃

(i)
3 , x̃

(i)
4

]
.

To estimate the output value given the input network parameters, we use the Gaussian

Kernel function to calculate the weighted average output values as follows

f (x) =
1√

2πσG2
exp

[
−(x− µG)

2

2σG2

]
, (2.29)

where µG and σG are the mean and the standard deviation of the Gaussian kernel function.

The query point is denoted by q = [q1, q2, q3, q4], which collects the local information of the

data set. The distance between the query point q and the normalized data point x̃(i), i.e.,

D
(
q, x̃(i)

)
, is given by

D
(
q, x̃(i)

)
=

√
(q − x̃(i)) (q − x̃(i))

T
. (2.30)

Note that the term 1√
2πσG2

in (2.29) will not impact the weighted average value at the query
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point q. Therefore, the kernel function in the training process can be expressed as

K
(
q, x̃(i)

)
= exp

(
−
D
(
q, x̃(i)

)2
2σG2

)
, (2.31)

where D
(
q, x̃(i)

)
is given in (2.30). Then, the estimate output value at the query point q is

ŷ (q) =

L∑
i=1

(
K
(
q, x̃(i)

)
y(i)
)

L∑
i=1

K (q, x̃(i))

, (2.32)

where K
(
q, x̃(i)

)
represents the weight value of the input-output pair

(
x̃(i), y(i)

)
. After

evaluating (2.32) over a range of query points, given an input combination of the network

parameters, we can search the nearest query point to the inputs and obtain the corresponding

output value. After that, we use the approximated PDFs of I0 and I1 in (2.22) and (2.24)

to obtain the approximated spatial false alarm probability and spatial missed detection

probability.

In detection theory, the Neyman-Pearson criterion says that one can minimize the spatial

missed detection probability Pmd while not allowing the spatial false alarm probability Pfa

to exceed a predefined value Pfa∗, i.e., Pfa ⩽ Pfa
∗, or minimize Pfa subject to a constraint

on Pmd. In this chapter, we assume a constant Pfa = Pfa
∗. Therefore, the spatial spectrum

sensing radius and the energy detection threshold of a UAV are coupled through the UAV’s

spatial spectrum sensing. In practical engineering design, based on the policy Pfa = Pfa
∗, we

can adjust the energy detection threshold to change the spatial spectrum sensing radius. It

is worth noting that the proposed machine learning-assisted approach is applicable to other

user distributions such as Poisson cluster process and Poisson hole process. However, the

exact closed-form analytical expression of energy detection threshold cannot be derived for

these, which provides few information in performance optimization.
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2.4 System-Level Performance Analysis

In this section, we derive the coverage probability of a typical D2D communication network

and the coverage probability of a typical UAV communication network conditioned on the

UAV’s flight height hvi and the distance rvi between UAV-Rx uvi and the projection of its

associated UAV vi on the ground. These results will be used to determine the ASE of the

D2D and UAV networks.

Note that a UAV can access the licensed channel with probability P 0 = Pfaβ1+(1− Pfa) β0

for event H0 and with probability P 1 = (1− Pmd) β1 + Pmdβ0 for event H1, where Pfa

and Pmd are given in (2.22) and (2.24), respectively, and the PDFs of I0 and I1 are given in

Proposition 2.2 with its parameters trained using a Gaussian nonlinear kernel-based machine

learning method.

Lemma 2.4. In the spatial spectrum sensing process, the channel access probability P 0 under

event H0 is greater than the channel access probability P 1 under event H1.

Proof. Please refer to Appendix A.1 for the proof.

It’s worth noting that UAVs at different heights experience different aggregated received

powers from D2D transmissions because of the varying elevation angles and intersection

region between the spatial spectrum sensing sphere and ground. The specific aggregated

received power at each UAV leads to different secondary channel access probabilities. In

other words, UAVs at different flight heights will generate different levels of interference to

the primary D2D network on the ground. For analytical tractability, we uniformly divide

the height VA into N sub-regions with a common thickness of ∆H, i.e.,

Hmax −Hmin = N ·∆H. (2.33)
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Hn approximates the height of UAVs in the nth sub-region V (x, y,Hn). In V (x, y,Hn), we

assume that UAVs are uniformly distributed on the horizontal plane at height Hn. The set

of UAVs in V (x, y,Hn) is denoted as ΦV,Hn . Considering the randomness of UAV locations,

we assume that ΦV,Hn follows a homogeneous PPP with density

λV,Hn = λV

∫ Hn + ∆H

Hn

fH (h)dh. (2.34)

If Rs > Hn, the active probability of UAVs in ΦV,Hn is statistically equivalent to the case

where all UAVs in ΦV,Hn transmit with probability P 1 and additionally the UAVs in ΦV,Hn ,

which have no D2D-Txs within their spatial spectrum sensing spheres, transmit with prob-

ability P 0 − P 1. Thus, the average channel access probability of UAVs at height Hn is

P act,n
UAV = P 1 +

(
P 0 − P 1

)
e−πλD(Rs

2−Hn
2). (2.35)

For analytical tractability, we approximate the locations of active UAVs in V (x, y,Hn) as

randomly distributed with the density of P act,n
UAV λV,Hn . ΦL

V,Hn
denotes the set of active UAVs

in V (x, y,Hn).

If Rs ⩽ Hn, all UAVs in V (x, y,Hn) will transmit with probability P 0. Thus, the locations

of active UAVs are modeled by a PPP ΦS
V,Hn

with density P 0λV,Hn .

We are now in the position of computing the coverage probability of a typical D2D commu-

nication network and a typical UAV communication network.

2.4.1 Coverage Probability of D2D Communications

We obtain the coverage probability of a typical D2D-Rx in the following theorem.

Theorem 2.5. The coverage probability of a typical D2D-Rx udk conditioned on the D2D
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serving distance ldk is given in equation (2.36).

PcD| ldk

= exp

−
2π2λDγ

th
D

2
αGG

(
ldk
)2

αGG sin
(

2π
αGG

) − 2π

Nh∑
n=1

P act,n
UAV λV,Hn

∫ ∞

√
Rs

2−Hn
2

xΩ (x,Hn)dx


· exp

(
−2π

N∑
n=Nh+1

P 0λV,Hn

∫ ∞

0

xΩ (x,Hn)dx−
γthD σn

2

PD
(
ldk
)−αGG

)

where

P act,n
UAV = P 1 +

(
P 0 − P 1

)
e−πλD(Rs

2−Hn
2)

Ω (x,Hn) = 1−

1 + ∆ (x,Hn)
ηMγ

th
DPV

(
x2 +Hn

2
)−αAG

2

MPD
(
ldk
)−αGG

+(1−∆(x,Hn))
ηMγ

th
DPV η

(
x2 +Hn

2
)−αAG

2

MPD
(
ldk
)−αGG

−M

∆(x,Hn) =
1

1 + C exp [−B (E arctan (Hn/x)− C)]

ηM =M(M !)−
1
M , .

(2.36)

Proof. Please refer to Appendix A.2 for the proof.

2.4.2 Coverage Probability of UAV Communications

A typical ground UAV-Rx receives interference from D2D and UAV communications. Note

that the desired serving link distance of a typical UAV vi is dependent on UAV’s flight height

and distance rvi which is the distance between UAV-Rx and the projection of UAV on the

ground.

Theorem 2.6. The coverage probability of the attached UAV-Rx uvi conditioned on the
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distance rvi and the UAV’s flight height hvi is given in (2.37).

PcV | rvi , hvi

≈
M∑
m=1


 M

m

 (−1)m+1 exp

−
2π2λD

(
mςV γ

th
V PD

PV L(vi,uvi )

) 2
αGG

αGG sin
(

2π
αGG

) (
(rvi )

2 + (hvi)
2)αAG

αGG


· exp

(
−2π

Nh∑
n=1

P act,n
UAV λV,Hn

∫ ∞

0

xΞ (m,x,Hn, r
v
i , hvi)dx

)

· exp
(
−2π

N∑
n=Nh+1

P 0λV,Hn

∫ ∞

0

xΞ (m,x,Hn, r
v
i , hvi)dx

)

· exp

− mηMγ
th
V σn

2

PVL (vi, uvi )
(
(rvi )

2 + (hvi)
2)−αAG

2


where

L (rvi , hvi) =
1

1 + C exp
[
−B

(
E arctan

(
hvi
rvi

)
− C

)]
+ η

1− 1

1 + C exp
[
−B

(
E arctan

(
hvi
rvi

)
− C

)]


Ξ (m,x,Hn, r
v
i , hvi) = 1−

1 + ∆ (x,Hn)
mηMγ

th
V

(
x2 +Hn

2
)−αAG

2

ML (vi, uvi )
(
(rvi )

2 + (hvi)
2)−αAG

2

+(1−∆(x,Hn))
mηMγ

th
V η
(
x2 +Hn

2
)−αAG

2

ML (vi, uvi )
(
(rvi )

2 + (hvi)
2)−αAG

2

−M

,

(2.37)

Proof. Please refer to Appendix A.3 for the proof.

2.4.3 Area Spectral Efficiency

The ASE of UAV and D2D networks can be obtained from the previous results. We denote

the PDF of the distance between UAV-Rx and the ground projection of its associated UAV
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as frvi (r). For example, if we consider that rvi is uniformly distributed in a circular region

centered at the projection of UAV vi with radius Rmax, then we have frvi (r) =
2r

Rmax2 , r ⩾ 0.

The ASE of UAV networks is given by

ASEV

=
T − τ

T

(
Nh∑
n=1

P act,n
UAV λV,Hn PcV

∣∣Hn +
N∑

n=Nh+1

P 0λV,Hn PcV
∣∣Hn

)
log2

(
1 + γthV

)
,

(2.38)

where Nh satisfies that HNh
≈ Rs, PcV

∣∣Hn = Er {PcV | r,Hn}, PcV | r,Hn is given in Theorem

2, and P act,n
UAV is obtained in (2.35).

The ASE of D2D networks is given by

ASED = λDPcDlog2

(
1 + γthD

)
, (2.39)

where PcD = El {PcD| l} and PcD| l is given in (2.36).

Based on our analytical framework, we can maximize the ASE of UAV networks while

guaranteeing that the ASE of D2D networks is not below a certain value ϑ, as follows

max
Rs

ASEV

s.t. ASED ⩾ ϑ,

(2.40)

where ASEV and ASED are given in (2.38) and (2.39), respectively, ϑ denotes the ASE

threshold of D2D networks. It is worth noting that decreasing Rs leads to a more aggressive

spectrum reuse for UAV communications; however, it also generates more severe co-channel

interference, which reduces the D2D communications performance. Therefore, there is a

clear trade-off between aggressive spectrum reuse and co-channel interference. Alternatively,

based on our model, one can evaluate the entire network performance using the weighted

Tchebycheff method [43] and obtain the Pareto-optimality criterion for spectrum sharing

between UAV and D2D communications. To solve the problem (2.40), we leverage the one-

dimensional numerical search method using the closed-form expressions of ASEs for both
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the UAV and D2D networks. It is worth noting that the ASE of both the UAV and D2D

networks can be approximated by the machine learning approach. However, it involves many

input network parameters which makes the data set generation difficult. In addition, when

the operation of networks changes, the scalability of the approach that directly approximates

the ASE by machine learning is insufficient.

2.5 Simulation Results and Discussion

In this section, we verify our analysis by simulations and evaluate the performance of the D2D

and UAV spectrum sharing networks. The simulated network uses the following parameter

settings, unless otherwise stated: λD = 1 × 10−5/m2, λV = 1 × 10−5/m2, PD = 20mW,

PV = 20mW, M = 1, N = 10, Hmin = 10m, Hmax = 100m, αGG = 4, αGA = αAG = 2.1,

Pfa
∗ = 0.1, σn2 = −110dBm, β0 = 0.8, β1 = 0.16 [26], η = 0.1, B = 0.136 and C = 11.95 [35].

In Fig. 2.4, we show a 3D network for the coexistence of D2D and UAV communications.

D2D-Txs are uniformly distributed on the ground with the density λD = 1×10−5/m2. D2D-

Rxs are located at positions with random directions and distances to its associated D2D-Txs

between 20m and 80m. The UAVs are uniformly distributed in the aerial 3D space at a height

of [10m, 100m]. The density of the projections of UAVs on the ground is λV = 1× 10−5/m2.

Fig. 2.5 compares the PDF of the received signal strength at a UAV for the event H0, where

the UAV is at a height of 60m and has the spatial spectrum sensing radius of Rs = 150m. The

results are obtained from Monte-Carlo simulations, whereas the red dashed line is obtained

by the proposed machine learning-based approximation in Section 2.3.3. We observe that

the proposed approximation method accurately depicts the PDF of the received aggregated

power generated from ground D2D communications for the event H0 during spatial spectrum

sensing. The complexity of the Monte-Carlo simulations are more time-consuming than the
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Figure 2.4: Simulation scenario where D2D-Txs are uniformly distributed on the ground and
UAVs are uniformly distributed in the allowable flight space within the height of [10m, 100m].

proposed ML-based approach. This is because the ML-based approach needs to collect the

data set in the early stage before the training process, whereas the trained distributions can

be used permanently. However, for the Monte-Carlo simulations, we need to average multiple

independent trials to obtain a stable performance, and, in each trial, the calculation of the

network interference at each node is time-consuming.

Fig. 2.6 shows the cumulative distribution functions (CDFs) of the received signal strength

at a UAV for the event H0. We observe that the machine learning-based approximation

method well approximates the distribution of the received aggregate power from D2D com-

munications for the event H0. In addition, we observe that when the UAV flight height

increases, the received signal strength improves. This is because an increase in UAV height

results in a decrease of the radius of Avi defined in (2.6) and improves the probability of

LOS connections between D2D-Txs and UAV due to the increased elevation angle. Besides,
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Figure 2.5: PDF of a the received signal strength at the UAV during spatial spectrum sensing
for the false alarm case and the flight height of hv = 60m, Rs = 150m.

a higher value of small-scale fading parameter M improves the received signal strength.

In Fig. 2.7, the CDFs of received signal strength at a UAV for the event H1 are shown.

When Rs increases, the received signal strength at a UAV under H1 decreases, because

of the longer distances between D2D-Txs and the UAV and the higher probability of their

NLOS connections in these scenarios. In addition, when a UAV’s flight height increases, the

received signal strength increases. The reason behind this is similar to that of Fig. 2.6.

In Fig. 2.8, we compare the UAV energy detection threshold ε with respect to UAV spatial

spectrum sensing radius Rs. Using the Neyman-Pearson criterion and assuming Pfa = P ∗
fa,

there exists a mapping between Rs and ε. It can be observed that ε decreases with Rs. This

is because the received signal strength I0 under H0 decreases as Rs increases. To achieve

the target P ∗
fa, the energy detection threshold needs to be accordingly reduced. In addition,

when the UAV’s flight height hv increases, its energy detection threshold increases, because
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Figure 2.6: CDF of a UAV’s received signal strength during spatial spectrum sensing for the
false alarm case, where Rs = 150m.

UAVs at higher heights receive more power from D2D communications under the event H0

as shown in Fig. 2.6. In Fig. 2.8, we observe that the proposed machine learning-based

approximation cannot exactly describe the simulated ε. The reason for this is that the

distribution of I0 is not coincidentally the assumed log-normal distribution. However, we

train the log-normal distribution parameters to approach the real I0 distribution.

Fig. 2.9 plots the UAV channel access probability which is given in (2.35) over the UAV

spatial spectrum sensing radius Rs. It can be observed that the UAV channel access proba-

bility decreases with Rs. This can be explained as follows: under the assumption of β0 > β1,

increasing Rs results in a decrease of the UAV energy detection threshold according to Fig.

2.8. Thus, a UAV has a high probability of transmitting with probability β1. Therefore,

adjusting Rs can regulate the density of active UAVs and hence, the interference power due

to UAV communications. More specifically, decreasing Rs leads to more severe interference
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Figure 2.7: CDF of a UAV’s received signal strength during spatial spectrum sensing in
missed detection for different UAV flight heights and spatial spectrum sensing radiuses.

generated from UAVs. It can be observed from Fig. 2.9 that when the density of D2D-Txs

becomes large, the UAV channel access probability reduces accordingly due to the incre-

mental received signal strength from D2D-Txs at a UAV during spatial spectrum sensing.

We can also find that, when Rs is small, increasing the UAV’s flight height improves the

UAV channel access probability. However, when Rs is large, increasing the UAV’s height

decreases its channel access probability. The rationale behind this is that when Rs is small,

increasing the height largely increases the UAV’s energy detection threshold. The energy de-

tection thresholds for different UAV flight heights is not obvious when Rs is large, according

to Fig. 2.8. On the other hand, based on the observation from the simulations, the values of

total signal strength received from D2D-Txs are more concentrated around small values for a

lower flight height than that for higher heights. Therefore, these can illustrate the behaviour

of the crossover point of the UAV channel access probability for different flight height with
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respect to the UAV’s spatial spectrum sensing radius.

It is observed from Fig. 2.9 that when hv is high and Rs is small, there are discrepancies

between analytical results and simulation results. This can be explained as follows. When

hv increases, I0 increases, due to the reduced intersection region Avi and the increased

line-of-sight (LoS) probability between D2D-Txs and UAV. When I0 increases, the UAV

energy detection threshold ε increases accordingly to achieve the target spatial false alarm

probability. When ε increases, the spatial missed detection probability (Pmd) increases, and

thus the probability P 1 increases. When hv is high and Rs is small, the average channel

access probability of UAV at height hv (P act
UAV ) is dominated by P 1. Since P 1 depends on

ε, a deviation in ε leads to a discrepancy in P act
UAV . According to Fig. 2.8, we observe that

when hv is large and Rs is small, the discrepancy of ε between the approximate results

and simulation results becomes large. This is because when hv is high and Rs is small, the
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Figure 2.9: UAV channel access probability with respect to the UAV spatial spectrum sensing
radius Rs.

values of total received signal strength at a UAV are widely distributed. The approximate

distribution may not accurately depict the distribution, and the statistical characteristics

are not very accurate. Nevertheless, when hv is small, the values of total received signal

strength at a UAV concentrate around small values. Thus, the approximate distribution can

characterize the distribution, and the statistical characteristics are satisfied. Therefore, we

have the discrepancy between analytical results and simulation results when hv is large and

Rs is small. Moreover, this discrepancy does not have an obvious impact on the system-level

performance, such as coverage probability and area spectrum efficiency.

In Fig. 2.10, the coverage probability of D2D communication is presented with respect to

the UAV’s spatial spectrum sensing radius Rs. As can be seen, increasing Rs is beneficial

to D2D communications. This is so because a larger value of Rs makes the UAV more

sensitive of the radio environment and reduces its channel access probability, which reduces
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Figure 2.10: Coverage probability of a typical D2D communication vs. the UAV spatial
spectrum sensing radius Rs, where ldk = 30m.

the interference from UAVs to D2D communications. Besides, reducing the density of UAVs

improves the coverage probability of D2D communications. Furthermore, from Fig. 2.10 we

can observe that when Rs is small, the SINR threshold of D2D communications γthD has a

significant impact on the D2D communications coverage probability.

Fig. 2.11 plots the coverage probability of UAV communication as a function of the UAV’s

spatial spectrum sensing radius Rs. It can be observed that the coverage probability of a

typical UAV communication link increases with Rs due to the reduced co-channel interference

generated from active UAVs. The coverage probability decreases with increasing density of

UAVs λV and the increasing flight height hV . The decrease of hV results in the reduction

of the serving link distance and thus enhances the desired signal strength at the UAV-Rx,

despite the decreasing LOS occurrence probability. Compared with Fig. 2.9, when Rs is

small, there is a trade-off between UAV channel access probability and coverage probability.
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Figure 2.11: Coverage probability of a typical UAV communications vs. the UAV’s spatial
spectrum sensing radius Rs, where rv = 30m.

On the other hand, when Rs is large, it is advantageous for a UAV that has a lower flight

height in terms of both coverage probability and channel access probability.

In Fig. 2.12, we compare the relate between the ASE of UAV networks ASEV and the UAV’s

spatial spectrum sensing radius Rs. The ASEV decreases with Rs since the reduction of

UAV channel access probability dominates the ASE of UAV networks. According to (2.40),

when the ASE of D2D networks is guaranteed not less than a certain value ϑ, according to

Fig. 2.10, we can obtain a minimum Rs which maximizes ASEV . Besides, when increasing

the UAV’s transmit power PV , we observe that the ASEV increases. This is because of the

improvement of the desired signal strength of UAV communications, while the impact of

interference from D2D-Txs gradually diminished. However, increasing PV deteriorates the

coverage probability of D2D communications and thus the ASE of D2D networks. Therefore,

there exists an optimal transmit power for UAVs to maximize the ASE of UAV networks
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Figure 2.12: ASE of UAV networks vs. the UAV’s spatial spectrum sensing radius Rs, where
rv = 30m, PD = 0.2W .

under the constraint of the minimum ASED. Also, when the density of D2D-Txs increases,

ASEV decreases due to the increased interference from D2D communications.

2.6 Summary

In this chapter, we develop a machine learning-assisted stochastic geometry framework for

spectrum sharing between ground D2D and UAV communications. The D2D-Txs are re-

garded as the primary users while UAVs opportunistically access the licensed channel by

implementing spatial spectrum sensing. We first analyze the spatial false alarm probability

and the spatial missed detection probability of a typical UAV. Then, we derive the coverage

probability of typical D2D-Rx and typical UAV-Rx, respectively. The ASEs of D2D and

UAV networks are also characterized. The results show that a decrease in the spatial spec-
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trum sensing radius of UAVs reduces the coverage probability of UAV communications, but

it improves the ASE of UAV networks although the inter-UAV interference increases. The

proposed tools allow obtaining the optimal spatial spectrum sensing radius of UAVs to max-

imize the ASE of UAV networks while guaranteeing the minimum ASE of D2D networks.

In addition, the optimal transmit power of UAVs can be obtained to maximize the ASE of

UAV networks while guaranteeing the performance of D2D communications.



Chapter 3

Energy Optimization for Air-Ground

Integrated MEC Networks

3.1 Introduction

Mobile edge computing (MEC) allows mobile user equipment (UE) to offload computation

tasks onto network edges such as cellular base stations (BSs), rather than computing locally,

to reduce the computation latency and energy consumption of mobile device [44]. Differ-

ent from traditional cloud computing, offloading computation tasks onto MEC servers in

proximity can reduce the transmission delay [45]. However, the computation capacity of

a MEC server is generally limited. How to efficiently allocate the limited computation re-

sources of the MEC servers to UEs becomes a critical problem. Furthermore, due to the

constrained battery capacity at the UE, new energy-saving methods are expected to be ex-

plored to prolong UE’s lifetime [46]. Since the energy consumption for computing is usually

higher than that for data transmission, offloading UEs’ computation tasks to MEC servers

can potentially reduce UEs’ energy consumption.

In the meantime, unmanned aerial vehicle (UAV), owing to its desired channel conditions to

ground UEs and the agility for convenient deployment [2], has been witnessed as a ground-

breaking technique to provide extensive coverage, reliable line-of-site (LoS) connections and

additional computation capabilities for UEs in future wireless networks [14]. Suppose that

50
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UAVs can be equipped with MEC servers to implement ground UEs’ computation tasks

offloading. Compared with the ground infrastructure-based MEC, the UAV-assisted MEC

support reliable LoS connections to UEs and can be deployed with flexible mobility. There-

fore, UEs can transmit more data to UAVs and offload more computation tasks through the

LoS channels within a certain time period, or UEs can transmit a certain amount of data

with lower transmit power to UAVs, so as to save energy at UEs. In line with the obvious

advantages of UAV-assisted MEC, researches were recently started and concentrated only

on the UAV enabled MEC platform. However, the cooperation between the existing infras-

tructure and UAVs in MEC networks still remains unknown [47]. Such air-ground integrated

MEC networks including ground computational access points (GCAPs) and UAVs need to

be carefully designed to work cooperatively and efficiently. To be specific, the resources

(including computation capacity, spectrum resources and power resources, etc) are well al-

located in the air-ground integrated MEC networks. The location placement of UAVs can

be managed to cooperatively offload computation tasks with GCAPs.

In this chapter, we aim to minimize the total energy consumption at UEs in air-ground

integrated MEC networks which includes multiple GCAPs and multiple UAVs. An efficient

resource allocation algorithm is proposed by jointly optimizing users’ association, uplink

power control, channel allocation, computation capacity allocation, and UAV placement. We

consider the constraints of binary offloading, UEs latency, computation capacity, UAV en-

ergy consumption and available bandwidth. The primary energy consumption minimization

problem is decomposed into several subproblems with block coordinate descent algorithm.

To be specific, we apply Lagrangian dual method to solve the users’ association and channel

allocation subproblems. The uplink power control is obtained in cLoSed-form considering

the constraints of UEs’ latency requirements. The computation capacity allocation subprob-

lem is decoupled into some parallel subproblems. In each parallel subproblem, forming a
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difference of convex (DC) functions programming, it is solved by convex-concave procedure

and Karush–Kuhn–Tucker (KKT) conditions to achieve suboptimal solutions. In addition,

UAV placement subproblem is proved to be a standard convex problem which can be solved

efficiently. Different from existing works which only consider one UAV in MEC networks,

our work extends to multiple UAVs and multiple GCAPs performing as MEC servers coop-

eratively towards multiple UEs while minimizing UEs’ total energy consumption.

3.1.1 Related Works

Different from the ground MEC networks [48, 49, 50], UAV-assisted MEC possesses more

reliable LoS connections for computation offloading, flexible mobility management and wide

coverage connections [14, 47]. In [51], a mobile cloud computing system based on UAV-

mounted cloudlet was studied to minimize the total mobile energy consumption, where both

orthogonal and nonorthogonal access were considered. In [52], a UAV-assisted MEC network

with stochastic computation tasks was investigated. The designed network only considered

one UAV as MEC server to minimize the average weighted energy consumption of UEs

and the UAV by designing the trajectory flying scheduling of the UAV. In [53], a one by

one access scheme for UAV-aided MEC network was designed to minimize the total energy

consumption of terminal devices, where only one UAV is served as MEC server. In [54], a

UAV-enabled MEC network was studied where a UAV equipped with computing resources

can server a number of ground users. The system in [54] aimed to minimize the sum of the

maximal delay among all UEs in each time slot with joint offloading and trajectory design.

However, the existing works related to the flying MEC only considered one UAV as the

MEC server to provide computation and communication capabilities for UEs with reliable

wireless connections [55]. Few works studied the multiple UAVs in MEC network and their

cooperation with ground MEC networks. In [56], the MEC network with multiple UAVs
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was studied to minimize the network power consumption by optimizing the beamwidth and

altitude of all UAVs. However, the objective of energy minimization was not considered, and

the cooperation between UAVs and the existing ground infrastructure was not studied. In

[57], a multi-UAV enabled system was established, where the deployment of UAVs and tasks

scheduling were optimized to minimize the system energy consumption. However, the uplink

power control and the channel allocation for ground-to-air connections were not considered.

In [47, 58], the integration of air and ground for mobile edge networks was proposed to

address the emerging computation-heavy Internet of Things (IoTs) applications. However,

it lacks the practical algorithms design and detailed system analysis for such air-ground

integrated MEC networks.

3.1.2 Contributions

We summarize the contributions of this chapter as follows:

• We consider a joint optimization problem with the aim of minimizing UEs’ total en-

ergy consumption in air-ground integrated MEC networks while guaranteeing UEs’

latency constraints, power constraints, computation capacity constraints and band-

width constraint, which has not been investigated in the literature to the authors’

best knowledge. Since the energy is usually limited at UEs, the considered energy

minimization problem is practically appealing.

• An efficient iterative algorithm is proposed to solve the resulting problem by leveraging

the block coordinate descent method. For computation capacity allocation, we first

decompose the original problem into multiple small optimization problems and formu-

late a DC programming for each problem. Then, we utilize convex-concave procedure

and KKT conditions to obtain suboptimal computation capacity allocation. The pro-
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posed algorithm can be executed in a parallel manner. We also show that the proposed

algorithm is guaranteed to converge.

• We investigate a cooperative computation offloading scheme in air-ground integrated

MEC networks, where UAVs’ three dimensional (3D) placement can be managed to

cooperatively offload UEs’ computation tasks with GCAPs. Intuitively, owing to the

agility and flexible mobility, UAVs can be placed above the regions where there are few

GCAPs and/or a large number of UEs. The height dependent path-loss channel model

is considered for ground-to-UAV communications. Accordingly, the flight heights of

UAVs are optimized together with UAVs horizontal coordinates.

The remainder of this chapter is organized as follows. In Chapter 3.2, the system model and

problem formulation are illustrated. Chapter 3.3 studies the proposed algorithm, and after

which the simulation results are given and investigated in Chapter 3.4. Finally, conclusions

are drawn in Chapter 3.5.

3.2 System Model

3.2.1 Network Layout

We consider an integrated UAV and GCAP network as shown in Fig. 1, where multiple

GCAPs and multiple UAVs equipped with MEC servers provide computation capabilities

for ground UEs. The set of GCAPs is denoted by MG =
{
1, 2, · · · ,MG

}
where MG is the

number of GCAPs. The set of UAVs is given by MA =
{
MG + 1, · · · ,MG +MA

}
where

MA is the number of UAVs. K UEs are distributed on the ground and the set is denoted by

K = {1, 2, · · · , K}. Here, we consider that GCAPs and UAVs are based on cellular networks
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Figure 3.1: MEC in air-ground integrated networks.

in licensed band. The total bandwidth of the system is B Hz. The minimum and maximum

allowable flight height of UAV are denoted by Hmin and Hmax, respectively.

3.2.2 Offloading Protocol

In this subsection, we present users’ association in a time slot. We consider the deterministic

binary offloading scheme where the highly integrated or simple task has to be executed as

a whole either at the mobile device or offloaded onto a GCAP or a UAV [45]. The set of

possible servers is denoted by M′ =
{
0, 1, 2, · · · ,MG,MG + 1, · · · ,MG +MA

}
, where the

first element in M′ indicates the local server at UE itself. The association verctor of kth UE

is ak =
{
ak0, · · · , ak(MG+MA)

}
which is a MG +MA + 1 dimensional vector, where

akm =

 1, if UE k offloads onto server m, ∀k ∈ K, m ∈ M′

0, otherwise
. (3.1)

For ak0 = 1, it represents that kth UE locally processes its computation task. The system

works in a time-slotted fashion. In each time slot, each UE decides to offload its computation
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task whether onto a UAV or a GCAP, or it processes the task locally. Therefore, we have

MG+MA∑
m=0

akm = 1, ∀k ∈ K. (3.2)

We consider that mth server has limited number of UEs associated with it, i.e.,
K∑
k=1

akm ⩽ Um, ∀m ∈ ME, (3.3)

where ME =
{
MG ∪MA

}
denotes the set of edge servers.

The computation task of UE k is denoted by Uk = (Dk, Tk, Fk) , ∀k ∈ K, where Dk is the

computation offloading data size of UE k, Tk is the latency constraint of the task and Fk is

the required number of central processing unit (CPU) cycles of the task.

3.2.3 Communication Model

UEs are assumed to operate in non-overlapping frequency bands such that the severe inter-

ference in LoS ground-to-air uplinks can be avoided. Denote the wireless channel bandwidth

for UE k which offloads computation task onto MEC server m as Bkm where k ∈ K,m ∈ ME,

and we have the bandwidth constraint as follows
MG+MA∑
m=1

K∑
k=1

akmBkm ⩽ B. (3.4)

Given the transmit power pkm of UE k offloaded onto GCAP m, the data rate of UE k is

RG
km = Bkmlog2

(
1 +

hGkmpkm
Bkmn0

)
, ∀k ∈ K, m ∈ MG, (3.5)

where n0 represents the noise spectral density and hGkm indicates the channel gain between

UE k and GCAP m, and can be computed as

hGkm = hG0 g
G
km

(
LGkm

)−α
, ∀m ∈ MG, (3.6)
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where hG0 is the channel power gain at reference distance, gGkm accounts for possible fading,

LGkm is the distance between UE k and GCAP m and α is the path-loss exponent.

Denote the horizontal coordinates of UE k are (xk, yk) and the horizontal coordinates of

UAV m are
(
xAm, y

A
m

)
. The horizontal distance between UE k and UAV m is given by

LAkm =

√
(xAm − xk)

2 + (yAm − yk)
2, ∀k ∈ K, m ∈ MA. (3.7)

According to the height dependent path-loss channel model [59], the uplink channel gain

between UE k and UAV m is

hAkm = hA0

(√
(zAm)

2 + (LAkm)
2

)−max(α1−α2log10(zAm),2)
, (3.8)

where hA0 is the channel power gain at the reference distance, α1 and α2 are constant values

depending on the communications environment, e.g. rural, urban, or dense urban.

If UE k decides to offload its task onto UAV m, the uplink data rate is calculated by

RA
km = Bkmlog2

(
1 +

hAkmpkm
Bkmn0

)
. (3.9)

3.2.4 Computation Model

The computation capacity of GCAP m allocated to UE k is fGkm (the number of allocated

CPU cycles per second), and the computation capacity constraint for GCAP m is
K∑
k=1

akmf
G
km ⩽ fG,max

m , ∀m ∈ MG, (3.10)

where fG,max
m is the maximal computation capacity of GCAPm. In addition, the computation

capacity of UAV m allocated to UE k is denoted by fAkm, and the computation capacity

constraint for UAV m is
K∑
k=1

akmf
A
km ⩽ fA,max

m , ∀m ∈ MA, (3.11)
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where fA,max
m is the computation capacity of UAV m.

Based on wireless transmissions, it makes sense for UEs to offload computation tasks onto

proximate MEC servers as much as possible. If the wireless communications resources are

sufficient, the more offloaded tasks, the less energy can be consumed at UEs and the earlier

the tasks can be completed. The latency constraint of UE k is given by

ak0
Fk
fk0

+
MG∑
m=1

akm

(
Dk

RG
km

+
Fk
fGkm

)
+

MG+MA∑
m=MG+1

akm

(
Dk

RA
km

+
Fk
fAkm

)
⩽ Tk, ∀k ∈ K, (3.12)

where fk0 is the local computation capacity of UE k. In (3.12), the latency includes trans-

mission latency and computation latency [45].

3.2.5 Energy Model

According to [60], the power consumption of GCAP m is

pGm = ρm
(
fGm
)ς
, ∀m ∈ MG, (3.13)

where ρm is a constant depending on the circuit average switched capacitance, ς ⩾ 2 is a

constant representing the average activity factor, and fGm =
K∑
k=1

akmf
G
km is the number of

allocated CPU cycles at GCAP m per second. The maximal power of GCAP m is pG,max
m .

Similarly, the computation power consumption of UAV m is given by

pA,cm = ρm
(
fAm
)ς
, ∀m ∈ MA, (3.14)

where fAm =
K∑
k=1

akmf
A
km is the number of allocated CPU cycles at UAV m per second.

Consider that the propulsion power consumption of UAV m is pA,fm . Then, the total power

consumption of UAV m is given by

pAm = pA,cm + pA,fm , ∀m ∈ MA. (3.15)
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The maximal allowable power of UAV m is pA,max
m . If UE k executes its task locally, the

power consumption of UE k is given by

pue,ck = ρk(fk0)
ς , ∀k ∈ K, (3.16)

where ρk depends on the average switched capacitance.

3.2.6 Problem Formulation

We focus on the UEs’ total energy consumption minimization problem, which is given by

min
a,p,f,q,b

K∑
k=1

Fk
fk0

ak0p
ue,c
k +

K∑
k=1

MG∑
m=1

akmpkm
Dk

RG
km

+
K∑
k=1

MG+MA∑
m=MG+1

akmpkm
Dk

RA
km

, (3.17)

s.t. (3.2), (3.3), (3.4), (3.10), (3.11), (3.12),

ρm

(
K∑
k=1

akmf
G
km

)ς

⩽ pG,max
m , ∀m ∈ MG (3.17a)

ρm

(
K∑
k=1

akmf
A
km

)ς

+ pA,fm ⩽ pA,max
m , ∀m ∈ MA (3.17b)

akm = {0, 1} , ∀k ∈ K,m ∈ M′ (3.17c)

0 ⩽ fGkm, ∀k ∈ K,m ∈ MG (3.17d)

0 ⩽ fAkm, ∀k ∈ K, ∀m ∈ MA (3.17e)

0 ⩽ pkm ⩽ pmax
k , ∀k ∈ K, m ∈ ME (3.17f)

0 ⩽ Bkm, ∀k ∈ K, m ∈ ME (3.17g)

Hmin ⩽ zAm ⩽ Hmax, m ∈ MG, (3.17h)

where a = {akm}k∈K,m∈ME , p = {pkm}k∈K,m∈ME , f =
{

fG, fA
}

, fG =
{
fGkm
}
k∈K,m∈MG ,

fA =
{
fAkm
}
k∈K,m∈MA , q =

{(
xAm, y

A
m, z

A
m

)}
m∈MA , b = {Bkm}k∈K,m∈ME . In (3.17), the

objective function contains the UEs’ transmission energy and computation energy.
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3.3 Proposed Algorithm

In this section, we study an efficient algorithm to solve the UEs’ energy minimization problem

(3.17). In the following, a coordinate descent optimization algorithm is introduced to obtain

a suboptimal solution with an iterative mechanism.

3.3.1 Users’ Association

By temporarily relaxing the constraints on a, the user association problem is given by

min
a

K∑
k=1

Fk
fk0

ak0p
ue,c
k +

K∑
k=1

MG∑
m=1

akmpkm
Dk

RG
km

+
K∑
k=1

MG+MA∑
m=MG+1

akmpkm
Dk

RA
km

(3.18)

s.t. (3.2), (3.3), (3.10), (3.11), (3.12), (3.17a), (3.17b)

0 ⩽ akm ⩽ 1, ∀k ∈ K,m ∈ M′. (3.18a)

We use Lagrangian dual decomposition method to obtain the integer solutions of a. The

partial Lagrangian function of the users’ association subproblem is given in (3.19),

L
(
akm, βm, γ

G
m, γ

A
m, µm, λm, κk

)
=

K∑
k=1

Fk
fk0

ak0p
ue,c
k +

K∑
k=1

MG∑
m=1

akmpkm
Dk

RG
km

+
K∑
k=1

MG+MA∑
m=MG+1

akmpkm
Dk

RA
km

+
MG+MA∑
m=1

βm

(
K∑
k=1

akm − Um

)
+

MG∑
m=1

γGm

(
K∑
k=1

akmf
G
km − fG,max

m

)

+
MG+MA∑
m=MG+1

γAm

(
K∑
k=1

akmf
A
km − fA,max

m

)
+

MG∑
m=1

µm

(
K∑
k=1

akmf
G
km −

(
pG,max
m

ρm

) 1
ς

)

+
MG+MA∑
m=MG+1

λm

(
K∑
k=1

akmf
A
km −QA

m

)
+

K∑
k=1

κk

MG∑
m=1

akmT
G
m +

MG+MA∑
m=MG+1

akmT
A
m + ak0

Fk
fk0

− Tk

,
(3.19)
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where QA
m = ρm

− 1
ς

(
pA,max
m − pA,fm

) 1
ς , TGm = Dk

RG
km

+ Fk

fGkm
, TAm = Dk

RA
km

+ Fk

fAkm
, {βm}m∈M′ ,

{
γGm
}
m∈M′ ,{

γAm
}
m∈M′ , {µm}m∈M′ , {λm}m∈M′ and {κk}k∈K are Lagrange multipliers associated with the

constraints in problem (3.18).

The Lagrange dual function of the users’ association subproblem is given by

g (Ω) =



min
a

L (akm,Ω)

s.t.
M+1∑
m=0

akm = 1, ∀k ∈ K

0 ⩽ akm ⩽ 1, ∀k ∈ K,m ∈ M′

, (3.20)

where Ω is the set of Lagrange multipliers.

We now separate the users’ association for GCAPs, UAVs and no association to MEC server.

The following function Fkm is defined to obtain the optimal integer users’ association, shown

as follows

Fkm =



pkm
Dk

RG
km

+ βm + γGmf
G
km + µmf

G
km + κkT

G
m , ∀k ∈ K, m ∈ MG

pkm
Dk

RA
km

+ βm + γAmf
A
km + λmf

A
km + κkT

A
m , ∀k ∈ K, m ∈ MA

Fk
fk0

pue,ck + κk
Fk
fk0

, ∀k ∈ K, m = 0

. (3.21)

Thus, the users’ association a can be expressed as

a∗km =


1, if m = arg min

m∈M′
Fkm

0, otherwise
, (3.22)

where the results have multiple linear calculations with low complexity.

After obtaining the optimal users’ association a∗ = {a∗km}k∈K,m∈M′ , we update the dual

variables in each iteration. The dual problem of (3.18) is given by

max
Ω

g (Ω), s.t. Ω ⩾ 0. (3.23)
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Based on the sub-gradient of dual variables, the updating procedure is given as follows

βt+1
m =

[
βtm + φ1 (t)

(
K∑
k=1

akm − Um

)]+
, (3.24)

γG,t+1
m =

[
γG,tm + φ2 (t)

(
K∑
k=1

akmf
G
km − fG,max

m

)]+
, (3.25)

γA,t+1
m =

[
γA,tm + φ3 (t)

(
K∑
k=1

akmf
A
km − fA,max

m

)]+
, (3.26)

µt+1
m =

[
µtm + φ4 (t)

(
K∑
k=1

akmf
G
km −

(
pG,max
m

ρm

) 1
ς

)]+
, (3.27)

λt+1
m =

[
λtm + φ5 (t)

(
K∑
k=1

akmf
A
km −QA

m

)]+
, (3.28)

κt+1
k =

κtk + φ6 (t)

MG∑
m=1

akmT
G
m +

MG+MA∑
m=MG+1

akmT
A
m + ak0

Fk
fk0

− Tk

+

, (3.29)

where [x]+ = max {x, 0} and φi (t) , i = {1, · · · , 6} are the dynamically chosen step-size

sequence.

3.3.2 Uplink Power Control

In this subsection, we obtain the closed-form power controls for UEs’s data transmissions.

Proposition 3.1. The energy consumption of UE k associated with GCAP m is non-

decreasing with respect to the uplink transmit power pkm.

Proof. Please refer to Appendix B.1 for the proof.

Since the energy consumption of a UE increases with the UE’s transmit power, the optimal

transmit power of UEs can be obtained by satisfying the latency constraints.
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Theorem 3.2. The optimal transmit power of UE k to GCAP m is given by

p∗km = min
{
ξGkm

Bkmn0

hGkm
, pmax

k

}
, (3.30)

where ξGkm = 2

Dk

Bkm

(
Tk− Fk

fG
km

)
− 1. The optimal transmit power of UE k to UAV m is given by

p∗km = min


ξAkmBkmn0

hA0

(
(zAm)

2 + (LAkm)
2
)−αGA(zAm)

2

, pmax
k

 , (3.31)

where ξAkm = 2

Dk

Bkm

(
Tk− Fk

fA
km

)
− 1.

Proof. Please refer to Appendix B.2 for the proof.

3.3.3 Channel Allocation

In this section, we solve the channel allocation subproblem. Owing to the nature of LoS

connections between air and ground nodes, UAVs may suffer severe co-channel interference

from other ground UEs, and the UEs connected to GCAPs can be interfered by UAVs

in downlink computation results collection. In this chapter, we allocate channels to UEs to

make the communications links orthogonal to avoid the severe interference in such air-ground

integrated MEC networks.

The channel allocation subproblem is given by

min
b

MG+MA∑
m=1

K∑
k=1

a∗kmp
∗
km

Dk

Rkm

(3.32)

s.t. (3.4), (3.17g)

MG+MA∑
m=1

a∗km
Dk

Rkm

+ CB
k ⩽ 0, ∀k ∈ K, (3.32a)
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where CB
k =

MG∑
m=1

a∗kmFk

fGkm
+

MG+MA∑
m=MG+1

a∗kmFk

fAkm
+a∗k0

Fk

fk0
−Tk, Rkm = RG

km if m ∈ MG and Rkm = RA
km

if m ∈ MA. The total bandwidth should be fully utilized to provide reliable data rate in

order to minimize the UEs’ total energy consumption.

Proposition 3.3. Problem (3.32) is a convex problem.

Proof. Please refer to Appendix B.3 for the proof.

It’s worth noting the convex problem (3.32) can be solved by the optimization tools such

as CVX [61]. In this chapter, to achieve low complexity of the algorithm, we leverage

Lagrangian dual method to solve the problem (3.32) efficiently by analytically exploring the

form of solution. The Lagarange function of (3.32) is in (3.33),

L (b,v, λb) =
MG+MA∑
m=1

K∑
k=1

a∗kmp
∗
km

Dk

Rkm

+
K∑
k=1

vk

MG+MA∑
m=1

a∗km
Dk

Rkm

+ CB
k


+ λb

MG+MA∑
m=1

K∑
k=1

a∗kmBkm − B

−
MG+MA∑
m=1

K∑
k=1

a∗kmωkmBkm,

(3.33)

where b = {Bkm}k∈K,m∈ME , v = {vk}k∈K, v and λb are dual variables, CB
k is given in (3.32a).

It can be observed that L (b, υ, λb) is convex with respect to Bkm.

The dual problem of (3.32) is expressed by

max
v,λb

min
b

L (b,v, λb)

s.t. v ⩾ 0, λb ⩾ 0.

(3.34)

In the following theorem, we obtain the channel allocation strategy for each UE.

Theorem 3.4. Given the dual variables v and λb, the channel allocation for UE k connected
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to MEC server m is given by

B∗
km = max

{
ψ−1

(
λb − ωkm

(p∗km + vk)Dk ln 2

)
, 0

}
,

where ψ (Bkm) =
ln
(
1 +

hkmp
∗
km

Bkmn0

)
− hkmp

∗
km

hkmp
∗
km+Bkmn0

Bkm
2
[
ln
(
1 +

hkmp
∗
km

Bkmn0

)]2 ,

(3.35)

and ψ−1 (·) is the inverse function of ψ (·).

Proof. Please refer to Appendix B.4 for the proof.

Proposition 3.5. Function ψ (Bkm) decreases with Bkm, and we can use bisection method

to obtain the optimal B∗
km.

Proof. Please refer to Appendix B.5 for the proof.

In addition, the dual variables can be updated with subgradient method in each iteration as

follows

vt+1
k =

vtk + ϕv (t)

MG+MA∑
m=1

a∗km
Dk

Rkm

+ CB
k

+

, (3.36)

λt+1
b =

λtb + ϕb (t)

MG+MA∑
m=1

K∑
k=1

a∗kmBkm − B

+

, (3.37)

ωt+1
km =

[
ωtkm − ϕω (t)Bkm

]+
, (3.38)

where ϕk (t), ϕb (t) and ϕω (t) are the dynamically chosen step-size sequences in the iteration.

3.3.4 Computation Capacity Allocation

In this section, we optimize the computation capacity allocation for UEs given the op-

timized users’ association, power control, bandwidth allocation. Define the set Km =



66 CHAPTER 3. ENERGY OPTIMIZATION FOR AIR-GROUND INTEGRATED MEC NETWORKS

{k ∈ K| akm = 1} as the set of UEs associated with MEC server m based on the results

in Section III-A. The problem of computation capacity allocation can be reformulated as

min
fG,fA

MG∑
m=1

∑
k∈Km

p∗kmDk

RG
km

∗ +
MG+MA∑
m=MG+1

∑
k∈Km

p∗kmDk

RA
km

∗ (3.39)

s.t. (3.12), (3.17d), (3.17e),∑
k∈Km

fGkm ⩽ min
{
fG,max
m , fG,P,max

m

}
, ∀m ∈ MG (3.39a)

∑
k∈Km

fAkm ⩽ min
{
fA,max
m , fA,P,max

m

}
, ∀m ∈ MA, (3.39b)

where fG,P,max
m =

(
pG,max
m

ρm

) 1
ς , fA,P,max

m =
(
pA,max
m −pA,f

m

ρm

) 1
ς , and we integrate the MEC server’s

maximal computation capacity by considering its maximal power consumption.

By substituting the uplink transmit power in (3.39) with the optimal power consumption

obtained in Section III-B and considering the latency constraint of each UE, we can further

reformulate the computation capacity allocation problem as follows

min
fG,fA

MG∑
m=1

∑
k∈Km

2

Dk

B∗
km

(
Tk− Fk

fG
km

)
− 1

 B∗
kmn0

hGkm

(
Tk −

Fk
fGkm

)

+
MG+MA∑
m=MG+1

∑
k∈Km

2

Dk

B∗
km

(
Tk− Fk

fA
km

)
− 1

 B∗
kmn0

(
Tk − Fk

fAkm

)
hA0

(
(zAm)

2 + (LAkm)
2
)−αGA(zAm)

2

(3.40)

s.t.
∑
k∈Km

fGkm ⩽ fG,pracm , ∀m ∈ MG (3.40a)

∑
k∈Km

fAkm ⩽ fA,pracm , ∀m ∈ MA (3.40b)

fG,min
km ⩽ fGkm, ∀k ∈ Km,m ∈ MG (3.40c)

fA,min
km ⩽ fAkm, ∀k ∈ Km,m ∈ MA (3.40d)
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where

fG,pracm = min
{
fG,max
m ,

(
pG,max
m

ρm

) 1
ς

}
,

fA,pracm = min
{
fA,max,

(
pA,max
m − pA,fm

ρm

) 1
ς

}
,

fG,min
km = max

Fk
[
Tk −

Dk

R∗G,max
km

]−1

, 0

 ,

fA,min
km = max

Fk
[
Tk −

Dk

R∗A,max
km

]−1

, 0


R∗G,max
km = B∗

kmlog2

(
1 +

hGkmp
max
k

B∗
kmn0

)
,

R∗A,max
km = B∗

kmlog2

(
1 +

hAkmp
max
k

B∗
kmn0

)
.

B∗
km is the optimal bandwidth of UE k associated with MEC server m obtained in Section

III-C.

Given the optimized users’ association, power control, bandwidth allocation, the computa-

tion capacity allocation strategies are uncorrelated among different MEC servers. Therefore,

problem (3.40) can be decomposed into MG +MA parallel subproblems. For GCAP m, the

computation capacity allocation problem is given by

min
fGm

∑
k∈Km

2

Dk

B∗
km

(
Tk− Fk

fG
km

)
− 1

 B∗
kmn0

hGkm

(
Tk −

Fk
fGkm

)
, (3.41)

s.t.
∑
k∈Km

fGkm ⩽ fG,pracm , (3.41a)

fG,min
km ⩽ fGkm, ∀k ∈ Km. (3.41b)
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In addition, for UAV m, the computation capacity allocation problem is given by

min
fAm

∑
k∈Km

2

Dk

B∗
km

(
Tk− Fk

fA
km

)
− 1

(Tk − Fk
fAkm

)

·

B∗
kmn0

((zAm)2 + (LAkm)2)αGA(zAm)
2


hA0

, (3.42)

s.t.
∑
k∈Km

fAkm ⩽ fA,pracm , (3.42a)

fA,min
km ⩽ fAkm, ∀k ∈ Km. (3.42b)

Since (3.41) and (3.42) have the same form with respect to the computation capacity allo-

cation (i.e., fGkm and fAkm), we will focus on the problem (3.41) in the sequel.

The objective function of (3.41) can be transformed as follows

min
fGm

∑
k∈Km

2

Dk

B∗
km

(
Tk− Fk

fG
km

)
− 1

 B∗
kmn0

hGkm

(
Tk −

Fk
fGkm

)

= min
fGm

∑
k∈Km

F
(
fGkm
)
−G

(
fGkm
)
,

where

F
(
fGkm
)
= C22

FkDk

B∗
km

Tk(TkfG
km

−Fk) − B∗
kmn0

hGkm
Tk +

B∗
kmn0Fk
hGkm

1

fGkm
,

G
(
fGkm
)
=
C1B

∗
kmn0Fk

hGkmf
G
km

2

FkDk

B∗
km

Tk(TkfG
km

−Fk) ,

(3.43)

and fGm =
{
fG1m, f

G
2m, · · · , fGKmm

}
, C1 = 2

Dk
B∗
km

Tk , C2 = 2
Dk

B∗
km

Tk
B∗

kmn0

hGkm
Tk, and functions F

(
fGkm
)

and G
(
fGkm
)

are expressed in (3.43).

Proposition 3.6. Problem (3.41) is a difference of convex (DC) functions programming.
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Proof. Define the function h (x) = e
1
x and g (x) = e

1
x
1
x
. We have h′′ (x) > 0 and g′′ (x) =

e
1
x

(
1
x3

+ 4
x4

+ 1
x5

)
> 0. Therefore, functions F

(
fGkm
)

and G
(
fGkm
)

are convex with respect

to fGkm. In addition, the constraints in (3.41) are also convex. Since a summation of DC

functions is still convex, problem (3.41) is a DC programming.

In this chapter, the convex-concave procedure is used to solve the above DC programming

[62]. In DC programming literature [63], the local optimization approach often yields the

global optimum, and the starting-point choosing and regularization methods can also assist

the local optimization approach to find global optimum. Since G
(
fGkm
)

is a convex function

of fGkm, G
(
fGkm
)

is lower bounded by its first order Taylor expansion [64] as follows

G
(
fGkm
)
⩾ G

(
fGkm (t)

)
+G′ (fGkm (t)

) (
fGkm − fGkm (t)

)
where

G′ (fGkm (t)
)

=
C1B

∗
kmn0Fk

hGkmf
G
km (t)

2

FkDk

B∗
km

Tk(TkfG
km

(t)−Fk)

[
− ln 2FkDk

B∗
km(Tkf

G
km (t)− Fk)

2 − 1

fGkm (t)

]
,

(3.44)

where fGkm (t) is the last optimal allocated computation capacity for UE k associated with

GCAP m. Therefore, the objective function in (3.43) can be approximated OF where

OF

=
∑
k∈Km

F
(
fGkm
)
−
[
G
(
fGkm (t)

)
+G′ (fGkm (t)

) (
fGkm − fGkm (t)

)]
=
∑
k∈Km

C22

FkDk

B∗
km

Tk(TkfG
km

−Fk) − B∗
kmn0

hGkm
Tk +

B∗
kmn0Fk
hGkm

· 1

fGkm
− C1B

∗
kmn0Fk

hGkmf
G
km (t)

2

FkDk

B∗
km

Tk(TkfG
km

(t)−Fk)

+
C1B

∗
kmn0Fk

hGkmf
G
km (t)

2

FkDk

B∗
km

Tk(TkfG
km

(t)−Fk)
(
fGkm − fGkm (t)

)
·

[
ln 2FkDk

B∗
km(Tkf

G
km (t)− Fk)

2 +
1

fGkm (t)

]
.

(3.45)
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Problem (3.41) can be approximately reformulated by

min
fGm

∑
k∈Km

C22

FkDk

B∗
km

Tk(TkfG
km

−Fk) +
B∗
kmn0

hGkm

(
Fk
fGkm

− Tk

)
− ω

(
fGkm (t)

)
+ τ

(
fGkm (t)

) (
fGkm − fGkm (t)

)
(3.46)

s.t. (49a), (49b)

where

ω
(
fGkm (t)

)
=
C1B

∗
kmn0Fk

hGkmf
G
km (t)

2

FkDk

B∗
km

Tk(TkfG
km

(t)−Fk) , (3.46a)

τ
(
fGkm (t)

)
= ω

(
fGkm (t)

) [ ln 2FkDk

B∗
km(Tkf

G
km (t)− Fk)

2 +
1

fGkm (t)

]
. (3.46b)

It can be observed that problem (3.46) is a convex problem due to the fact that the sum of

multiple convex functions is still a convex function. An iterative algorithm can be developed

to update the variable fGkm (t) with a stopping criterion OF

(
fGkm (t)

)
−OF

(
fGkm (t+ 1)

)
⩽ εF ,

where εF is set to be a small value. In each iteration, the optimal solution is obtained in the

following theorem.

Theorem 3.7. Given users’ association, uplink optimal power control and optimal channel

allocation, the computation capacity allocation for UE k associated with GCAP m is obtained

as follows.

(1) When
∑

k∈Km

max
(
ΨG
km

−1 (
τ
(
fGkm (t)

))
, fG,min
km

)
> fG,pracm , we have

fGkm = max
(
ΨG
km

−1 (
λf + τ

(
fGkm (t)

))
, fG,min
km

)
, k ∈ Km, (3.47)

where λf is calculated by

∑
k∈Km

max
(
ΨG
km

−1 (
λf + τ

(
fGkm (t)

))
, fG,min
km

)
= fG,pracm , (3.48)
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and

ΨG
km (y) = 2

FkDk
B∗
km

Tk(Tky−Fk)
C2 ln 2FkDk

B∗
km(Tky − Fk)

2 +
B∗
kmn0Fk

hGkm(y)
2 . (3.49)

(2) When
∑

k∈Km

max
(
ΨG
km

−1 (
τ
(
fGkm (t)

))
, fG,min
km

)
⩽ fG,pracm , we have

fGkm = max
(
ΨG
km

−1 (
τ
(
fGkm (t)

))
, fG,min
km

)
, k ∈ Km, (3.50)

where fG,min
km is given in problem (3.40).

Proof. Please refer to Appendix B.6 for the proof.

For UAV m, the computation capacity allocation problem in (3.42) can be solved by the

convex-concave procedure which is similar to that of problem (3.41) and it is omitted here

to save space.

3.3.5 UAV Placement

UAVs’ placement can be managed to cooperatively offload UEs’ computation tasks with

GCAPs [47]. According to the height dependent path-loss channel model, increasing UAV’s

flight height decreases the path-loss exponent, however, it also increases the communicating

distance. Therefore, the 3D UAVs’ positions need to be optimized. The UAV placement

problem is presented in the following

min
q

MG+MA∑
m=MG+1

∑
k∈Km

2

Dk

B∗
km

(
Tk− Fk

fA∗
km

)
− 1

 B∗
kmn0

hA0

·
[(
zAm
)2

+
(
LAkm

)2]max(α1−α2log10(zAm),2)
2

(
Tk −

Fk
fAkm

)
(3.51)

s.t. Hmin ⩽ zAm ⩽ Hmax, ∀m ∈ MA, (3.51a)
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where Hmin and Hmax denotes the minimum and maximum flight height of UAV, respectively.

The problem (3.51) can be decomposed into MA subproblems and the subproblem for UAV

m is given by

min
xAm,y

A
m,z

A
m

∑
k∈Km

Cq
km

[(
zAm
)2

+
(
xAm − xk

)2
+
(
yAm − yk

)2]max(α1−α2log10(zAm),2)
2 (3.52)

s.t. Hmin ⩽ zAm ⩽ Hmax, (3.52a)

where (3.52b)

Cq
km =

2

Dk

B∗
km

(
Tk− Fk

fA∗
km

)
− 1

 B∗
kmn0

hA0

(
Tk −

Fk
fA∗km

)
. (3.52c)

It can be verified that in (3.52), given horizontal coordinates
(
xAm, y

A
m

)
, the objective function

is neither convex nor concave with respect to zAm. The problem (3.52) is a non-convex

problem.

To solve the problem (3.52), we discrete the feasible set of UAV’s flight height [Hmin, Hmax]

into {H1, H2, · · · , HNH
}, and we optimize the variables

(
xAm, y

A
m

)
given a zAm, as follows

min
xAm,y

A
m

∑
k∈Km

Cq
km

[(
zAm
)2

+
(
xAm − xk

)2
+
(
yAm − yk

)2]max(α1−α2log10(zAm),2)
2

. (3.53)

Then, we repeat the above procedure over all discrete values of UAV’s flight height. Finally,

we select the optimal zAm with the minimum objective value in (3.53).

Note that the problem (3.53) is a convex problem and it can be solved by the optimization

tools such as CVX [61]. To solve the problem (3.53) more efficiently, we use the bisection

method as follows. According to the stationarity of KKT conditions of problem (3.53), we
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have
∂Om

Q

∂xAm
=
∑
k∈Km

2Cq
kmα

AG
m

(
xAm − xk

) [(
zAm
)2

+
(
xAm − xk

)2
+
(
yAm − yk

)2]αAG
m −1

= 0,

(3.54)

and
∂Om

Q

∂yAm
=
∑
k∈Km

2Cq
kmα

AG
m

(
yAm − yk

) [(
zAm
)2

+
(
xAm − xk

)2
+
(
yAm − yk

)2]αAG
m −1

= 0,

(3.55)

where Om
Q is the objective function of problem (3.53) and αAGm = 1

2
max

(
α1 − α2log10

(
zAm
)
, 2
)
.

By using the bisection method, we obtain the optimal values of xAm and yAm, respectively.

In addition, due to the limited number of the elements in {H1, H2, · · · , HNH
}, the proposed

approach is tractable and has low complexity.

3.3.6 Iterative Algorithm and convergence

The iterative algorithm for solving the problem (3.17) is given in Algorithm 1, where Et
UEs

represents the total energy consumption of UEs in tth iteration.

Denote O (a,b, f,q,p) as the objective value of original problem (3.17). In step 3 of Al-

gorithm 1, since a(t) is one suboptimal users’ association of problem (3.18) with the fixed

b(t−1), f(t−1), q(t−1) and p(t−1), we have

O
(
a(t−1),b(t−1), f(t−1),q(t−1),p(t−1)

)
⩾ O

(
at,b(t−1), f(t−1),q(t−1),p(t−1)

)
.

(3.56)

In step 4 of Algorithm 1, for given a(t), f(t−1), q(t−1) and p(t−1), bt is the optimal channel

allocation of problem (3.32) since the strong duality holds for the dual problem, and we have

O
(
at,b(t−1), f(t−1),q(t−1),p(t−1)

)
⩾ O

(
at,bt, f(t−1),q(t−1),p(t−1)

)
.

(3.57)
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In step 5 of Algorithm 1, since G
(
fGkm
)

is lower bounded by its the first-order Taylor expan-

sion as shown in (3.44), the objective value of convex problem (3.46) serves an upper bound

of that of the DC programming (3.41). Denote Oub,t (·) as an upper bound of UEs’ total

energy consumption which is calculated based on the optimization problem in (3.46) with

respect to the computation capacity allocation f. For given
(
a(t),b(t), f(t−1),q(t−1)

)
, it follows

O
(
at,bt, f(t−1),q(t−1),p(t−1)

)
⩾ O

(
at,bt, f(t−1),q(t−1),p∗ (bt, f(t−1),q(t−1)

))
(a)
= Oub,t−1

(
at,bt, f(t−1),q(t−1),p∗ (bt, f(t−1),q(t−1)

))
(b)

⩾Oub,t (at,bt, ft,q(t−1),p∗ (bt, ft,q(t−1)
))

(c)

⩾O
(
at,bt, ft,q(t−1),p∗ (bt, ft,q(t−1)

))
,

(3.58)

where p∗ (·) denotes the function of optimal power control as stated in Theorem 1. In (3.58),

(a) holds since the first-order Taylor expansions in (3.44) are tight at the given local points,

which means that the solution of problem (3.46) serves the same value of UEs’ total energy

consumption as that of problem (3.17); (b) holds since in step 5 of Algorithm 1 with given at,

bt and q(t−1), problem (3.46) is solved optimally with solution ft; (c) holds since Oub,t
F is the

upper bound of the objective value of original problem (3.17) at ft. The inequality in (3.58)

suggests that although only an approximate optimization problem is solved for obtaining the

computation capacity allocation, the objective value of the original problem (3.17) is still

non-increasing after each iteration.

In step 6 of Algorithm 1, given
(
at,bt, ft,q(t−1)

)
, we have

O
(
at,bt, ft,q(t−1),p∗ (bt, ft,q(t−1)

))
⩾ O

(
at,bt, ft,qt,p∗ (bt, ft,qt))

= O
(
at,bt, ft,qt,pt

)
.

(3.59)

Inequality (3.59) holds because qt is the optimal 3D positions of UAVs regarding problem
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Algorithm 1 Iterative resource allocation for air-ground integrated MEC networks.
Require:

Set the initial solution
(
a(0),p(0),b(0), f(0),q(0)

)
, the iteration index t = 0, the tolerance

of objective function εobj, the maximal iteration number Nmax
itera.

Ensure:
The near-optimal resource allocation strategies for air-ground integrated MEC networks;
The minimum UEs’ total energy consumption.

1: while
(
Et+1
UEs − Et

UEs

)/
Et
UEs ⩾ εobj or t ⩽ Nmax

itera do
2: Updating iteration index t = t+ 1;
3: With fixed

(
b(t−1), f(t−1),q(t−1),p(t−1)

)
, optimize a(t) according to problem (3.18);

4: With fixed
(
a(t), f(t−1),q(t−1),p(t−1)

)
, optimize b(t) from problem (3.32);

5: With fixed
(
a(t),b(t), f(t−1),q(t−1)

)
, optimize f(t) from problem (3.41) and problem

(3.42);
6: With fixed

(
a(t),b(t), f(t)

)
, optimize q(t) from problem (3.51);

7: With fixed
(
a(t),b(t), f(t),q(t)

)
, obtain p(t) in closed-form based on Theorem 1;

8: Obtain objective value Et
UEs = O (at,bt, ft,qt,p∗ (bt, ft,qt));

9: end while
10: return The near-optimal resource allocation strategies for air-ground integrated MEC

networks, (a∗,p∗,b∗, f∗,q∗);
The minimum UEs’ total energy consumption, E∗

UEs.

(3.51) with fixed at, bt and f(t).

Thus, the UEs’ total energy consumption is non-increasing after the updates of users’ as-

sociation, channel allocation, computation capacity allocation, UAV placement and uplink

power allocation. In addition, the UEs’ total energy consumption is always positive. Since

the UEs’ total energy consumption is non-increasing in each iteration and is lower bounded

by zero, Algorithm 1 converges.

3.3.7 Complexity Analysis

To solve the users’ association problem (3.18), the complexity of updating users’ association

according to (3.22) is O
(
K
(
MG +MA

))
. The complexity of updating dual variables in

(3.24)-(3.29) is also O
(
K
(
MG +MA

))
. Denote the number of iterations for dual method
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of problem (3.18) is NA. The total complexity of problem (3.18) is O
(
NAK

(
MG +MA

))
.

For problem (3.32), denote the complexity of obtaining the inverse function as O
(

1
ε1

)
. The

complexity of updating dual variables in (3.36)-(3.37) is O (K). Thus, the total complexity

of problem (3.32) is O
(
NBKlog2

(
1
ε1

))
, where NB is the number of iterations in problem

(3.32).

For problem (3.39), denote the complexity of obtaining the inverse function (3.47) or (3.50)

as O
(

1
ε2

)
. The complexity of solving (3.48) is denoted by O

(
1
ε3

)
. The total complexity of

problem (3.39) is given by O
((
MG +MA

)
Klog2

(
1
ε2

)
log2

(
1
ε3

))
.

Denote the complexity of solving (3.54) is O
(

1
ε4

)
. The complexity of solving problem (3.53)

is O
(
2log2

(
1
ε1

))
. The total complexity of problem (3.51) is given by O

(
2MANH log2

(
1
ε1

))
,

where NH is the number of discrete values of UAV’s flight height.

Thus, the total complexity of Algorithm 1 is given by

O

(
N0

(
NBKlog2

(
1

ε1

)
+
(
MG +MA

)
K (NA

+log2

(
1

ε2

)
log2

(
1

ε3

))
+ 2MANH log2

(
1

ε1

)))
,

(3.60)

where N0 is the number of outer iterations.

3.4 Simulation Results and Discussion

In this section, we provide numerical results based on our proposed resource allocation

algorithm and evaluate the performance of the computation offloading in such air-ground

integrated MEC networks. The simulated system works on the parameter settings shown in

Table I, unless otherwise stated.

An illustration of the simulated scenario is presented in Fig. 3.2. UEs are uniformly dis-
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Table 3.1: Default Parameter Setup

Parameter Value
K, MA, MG 100, 10, 10
Hmin, Hmax 10 m, 120 m

UE max power Pmax
k 0.5 W

fG,maxm , fA,maxm 1× 1010 cycles/s, 1× 1010 cycles/s
UE data size Dk 5× 105 bits

Latency Tk 1000 ms [56]
Bit and cycle conversion cbc 1× 103 cycles/bit [54]

UE computation capacityfmaxk 2× 109 cycles/s
Coefficients ρ, ς 1× 10−27, 3 [54]

Maximal connected UEs UG, UA 30, 10 [56]
Total bandwidth B 10 MHz [52]

Noise spectral density n0 -104 dBm/Hz [52]
Path-loss exponent α 3

tributed on the ground within the region of interest form by 1000 m × 1000 m, where there

are 100 UEs. There are 10 GCAPs which are uniformly distributed on the ground. The

number of UAVs is 10. We consider the uniform distributed UAVs as the initial solutions

of UAV placement, and the 3D positions of UAVs will be optimized based on the proposed

algorithm in the sequel. In Fig. 3.2, we presented the optimized 3D positions of UAVs. Our

simulations are run on Matlab using a computer with the CPU processor @ 1.8GHz and

1.99GHz. The small-scale power channel gain for ground wireless communications is as-

sumed to be exponential distribution with mean value 1 [42]. We consider equal parameters

for all GCAPs and UAVs (i.e., equal maximal computation capacity, equal maximal number

of associated UEs). In simulations. we suppose that all UEs have equal computation tasks

(i.e., equal computing data size, equal computation capacity).

In Fig. 3.3, we compare the total energy consumption of UEs with respect to the itera-

tion number of the proposed algorithm. It can be observed that the objective value of the

Problem (3.17), i.e., the total energy consumption of UEs, decreases rapidly within sev-

eral iterations. The total energy consumption of UEs obtained by the proposed algorithm
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Figure 3.2: Air-ground integrated MEC networks.

outperforms that conducted by the original method where all UEs’ computation tasks are

executed locally at mobile devices denoted as iteration 0. In addition, according to Fig. 3.3,

when the maximal computation capacity at MEC servers (fmax) increases, UEs can save

more energy through computation offloading while guaranteeing their latency constraints.

This is because, with the increase of the maximal computation capacity at MEC servers,

more UEs can be offloaded onto UAVs and GCAPs, and thus UEs will only consume less

energy for data transmissions than the great energy for locally computing. It can also be

observed that the total energy consumption of UEs can be further reduced if the available

system bandwidth increases. This is because the increased bandwidth compensate for the

reduced transmit power at a UE to achieve a desired data rate. Therefore, the total en-

ergy consumption for transmissions at UEs reduces with the increase of available system

bandwidth. Besides, the increased bandwidth allows more UEs to offload onto MEC servers

through wireless communications while guaranteeing their latency constraints.
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Figure 3.3: Energy consumption of UEs with respect to iteration numbers.

In Fig. 3.4, we compare the total energy consumption of UEs obtained by the proposed

algorithm with respect to the computation capacity of UE. It can be observed that the

total energy consumption of UEs increases with the UEs computation capacity. This can

be explained as follows, when the UEs computation capacity increases, the execution time

of computation tasks is reduced. However, the power consumption of computation increases

more rapidly based on the average activity factor ς which is usually greater than 2 [60].

Therefore, the energy consumption for local computing at each UE increases with UE’s

computation capacity.

According to the above property, the MEC servers will consume more energy for the same

tasks if MEC servers have higher computing capability. The motivation behind that UEs

choose to offload computation tasks onto MEC servers is discussed as follows. Since energy

is usually scarce at mobile devices, to prolong the battery life-time of mobile devices, UEs

are willing to offload their computation tasks onto MEC servers to reduce their energy
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Figure 3.4: Energy consumption of UEs with respect to UE’s computation capacity under
different numbers of UAVs, where Dk = 1× 106 bits.

consumption at mobile devices. On the other hand, higher computing capability of MEC

servers facilitates more computation tasks offloaded from UEs to MEC servers, which brings

more income to service provider by charging from UEs while at the price of consuming

more energy at MEC servers. Thus, both UEs and service provider would benefit from the

computation offloading.

In addition, in Fig. 3.4, by comparing different numbers of UAVs, i.e, MA, we observe that

the total energy consumption of UEs decreases with MA. This is because when MA increases,

more UEs can be offloaded onto UAVs for computation offloading with LOS connections,

where some UEs transfer from GCAPs to UAVs to achieve lower transmit power, or get rid

of locally computing, which decreases the total energy consumption of UEs. In Fig. 3.4,

we also compare the performance of the proposed algorithm for air-ground integrated MEC

networks and that of the method of local computing. It can be observed that much energy
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Figure 3.5: Energy consumption of UEs with respect to the data size of UE’s computation
task under different latency constraints.

can be saved at UEs based on the proposed algorithm in computation offloading.

In Fig. 3.5, we examine the total energy consumption of UEs with respect to the data

size of UE’s computation task. When the data size of UE’s computation task increases, the

total energy consumption of UEs improves. On one hand, more data needs to be transmitted

from UEs to MEC serves and thus this consumes additional energy for data transmission. On

the other hand, the limited computation capacity at MEC servers restricts some UEs to be

offloaded onto MEC servers due to the unsatisfied latency constraints. The increased number

of UEs which compute locally leads to the improvement of the total energy consumption of

UEs. In addition, if the latency constraints of UEs increases, more UEs would prefer to wait

for the computation results returned from MEC servers. Therefore, increasing the latency

requirement of UEs reduces the total energy consumption of UEs. This makes UEs balance

their computing data size and latency constraints in terms of their energy consumption in
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the MEC networks.

3.5 Summary

In this chapter, we developed an energy efficient resource allocation algorithm for an inte-

grated UAV and ground mobile edge computing (MEC) network. We aimed to minimize the

total energy consumption of UEs by optimizing users’ association for computation offload-

ing, uplink transmit power, allocated bandwidth, computation capacity and UAV placement.

To solve the primary problem, we decomposed it into several manageable subproblems and

alternatively optimizing each subproblem. Simulation results demonstrated the advantages

of our proposed algorithm compared with the local computing method.



Chapter 4

Deep Learning-Assisted

Energy-Efficient Task Offloading in

Vehicular Edge Computing Systems

4.1 Introduction

In vehicular networks, vehicles need to process a significant amount of data in real-time for

road traffic services such as safety, sensing, localization, and decision making [65, 66, 67].

In-vehicle users also require infotainment applications involving the execution of data. Due

to the extensive workloads and the limited computation capacity at both vehicles and in-

vehicle users, it is quite difficult to meet the latency requirements when they locally process

their computation tasks [68]. Moreover, as vehicles and in-vehicle users are mobile, they are

often subject to strict energy consumption restrictions. Besides, as the energy consumption

of computation is usually greater than that of data transmission, it is expected to develop

energy-efficient methods to reduce users’ energy consumption and guarantee their latency

requirements in computing. Vehicular edge computing (VEC) has become a promising com-

puting architecture for vehicular networks, where users’ computation tasks are offloaded to

edge servers via roadside units (RSUs) which have wireless communications capability for

receiving data from users and sending back computation results [69, 70]. Compared to locally

83
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executing computation tasks at users, VEC systems enjoy two main advantages of energy

saving and latency guarantee, which benefit from the increased computation capability and

the short communication distance.

In terrestrial mobile edge computing (MEC) systems [71], full channel state information

(CSI) is assumed to be available at base stations [45, 72, 73]. This assumption does not

hold anymore in VEC systems, since the channel varies fast due to the high speed of moving

vehicles and it is quite difficult to estimate CSI and feed back to the RSUs [74, 75]. Therefore,

it is expected to take into account the channel uncertainty in designing VEC systems. In

many computation services and applications, the latency is required to be just below a

given threshold, while users seek to achieve lower energy consumption as possible [9, 76].

Under the uncertainty of small-scale fading, it remains an open queation as to how to jointly

allocate both communication and computation resources based on large-scale fading channel

information in VEC systems to minimize the total energy consumption of users. The main

differences of this work from the existing works related to VEC are presented as follows: a)

the unknown small-scale fading in vehicular-to-RSU (V2R) channels is taken into account;

b) multiple edge servers and users are considered; c) a practical partial offloading assumption

is made for VEC systems; d) the objective is to minimize total energy consumption of users.

Based on these differences and considerations, in this chapter, we minimize the total energy

consumption of users by jointly optimizing the variables of users’ association, data partition,

transmit power, and computation resources at edge servers, subject to the constraints of

partial offloading, the maximum transmit power, users’ latency, outage performance, and

computation capacity of edge servers. Such a computation offloading problem is practically

appealing but has not been studied in the literature to the best of authors’ knowledge.



4.1. INTRODUCTION 85

4.1.1 Related Works

In existing works, various aspects of VEC have been investigated in the literature such as

latency minimization in the integrated cloud and edge computing [77], VEC systems utility

maximization in vehicle-assisted computation offloading ground users [78], federated learning

in VEC systems [79], etc. However, there are few works addressing the energy minimization

problem for VEC systems [80, 81]. In [80], the authors studied an energy-efficient workload

offloading problem based on consensus alternating direction method of multipliers. However,

[80] only considered the workload problem in one RSU’s coverage and it lacks the cooperation

between multiple RSUs and edge servers while the road traffic is dynamic and inhomogeneous

along the road. Besides, the problem only optimized the portion of the workload, but did

not investigate the joint communication and computation resource allocation problem. In

[81], the authors studied an optimization problem to minimize the overall system energy

consumption by optimizing the decisions between local and offloading and the number of

allocated resource blocks; however, it did not consider the partial offloading in VEC systems

as well as the joint communication and computation resource allocation among multiple

edge servers. In addition, the above works did not consider the channel uncertainty in VEC

systems caused by high-speed motion of vehicles.

4.1.2 Contributions

We summarize the contributions of this chapter as follows:

• We develop a computation offloading algorithm for VEC systems. Specifically, we

minimize the total energy consumption of users by jointly optimizing the variables of

user association, data partition, transmit power, and computation resources at edge

servers, subject to the constraints of partial offloading, the maximum transmit power,
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user latency, outage performance, and computation capacity of edge servers.

• We consider the unknown small-scale fading in V2R channels and the outage perfor-

mance in VEC systems. Moreover, our work is not restricted to a single RSU and

an edge server. We consider multiple edge servers and users in VEC systems. Fur-

thermore, we focus on the partial offloading model for computation tasks, making it

possible to implement fine-grained computation offloading in VEC systems.

• We utilize deep learning method to obtain user association and integrate it with the de-

veloped optimization algorithm. Based on this approach, the computational complex-

ity for obtaining the user association is very low, where the input network parameters

simply go through a designed neural network model.

The remainder of this chapter is organized as follows. In Chapter 4.2 presents the system

model. Chapter 4.3 studies the introduced algorithm. Numerical results are given and

discussed in Chapter 4.4. Finally, conclusions are drawn in Chapter 4.5.

4.2 System Model

4.2.1 Network Layout

We consider a VEC system with M edge servers and K users as shown in Fig. 4.1. The

set of edge servers is denoted by M = {1, 2, · · · ,M}, and the set of users is indicated

by K = {1, 2, · · · , K}. Each RSU has a wire-connected edge server that has a certain

computation resource to process users’ computation tasks.
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Figure 4.1: An architecture of vehicular edge computing systems.

4.2.2 Communication Model

Based on the channel modeling for vehicular communications in [74, 75], the V2R channel

between k-th user and m-th RSU at time slot t is given by hkm (t) = hLkmgkm (t), where

hLkm = href ςkm(Lkm)
−α accounts for the large-scale fading component and gkm (t) represents

the small-scale fading component at time slot t. Specifically, href is channel power gain

at reference distance, ςkm is the shadowing component, Lkm denotes the distance between

k-th user and m-th RSU, and α is the pathloss exponent. The instantaneous uplink data

rate Rkm (t) of the k-th user connected to the m-th RSU at the time slot t is given by

Rkm (t) = Blog2

(
1 + hkm(t)pk

N0

)
, where B is the channel bandwidth, pk indicates the transmit

power of the k-th user and N0 represents the noise power. We consider that users are

allocated with orthogonal resources for uplink transmissions in a specific road segment. The

adjacent road segments operate on different frequency bands. Thus, the interference from

other road segments on the same frequency band is neglected. The maximum transmit power

of the k-th user is denoted by pmax
k .
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In the time domain, time is equally divided by time slots of length T on the order of hundreds

of microseconds. Many consecutive time slots construct a time block on the order of hundreds

of milliseconds. The large-scale fading component is typically determined by users’ locations

which vary little within each time block. We assume that the large-scale fading component

is known at RSUs, because the locations of vehicles are usually available at RSUs. However,

the small-scale fading component varies rapidly during a time block due to the high mobility

of vehicles, which is unavailable at RSUs, but its statistical characterization is assumed to be

known. We assume that the small-scale fading component remains constant during one time

slot but fluctuates as an independent and identically distributed (i.i.d.) random variable

across different time slots. We consider the Rayleigh distribution for small-scale fading with

parameter λg [74].

Rkm =

∫ ∞

0

Blog2

(
1 +

hLkmpk
N0

x

)
fg (x)dx

=
Bλg
ln 2

∫ ∞

0

e−λgx

x+ N0

hLkmpk

dx =
Bλg
ln 2

Φ

(
N0λg
hLkmpk

)
,

(4.1)

where fg (x) = λge
−λgx, Φ (x) = exE1 (x), E1 (x) =

∫∞
x

e−y

y
dy (x ⩾ 0) is the exponential

integral function, and the exponential distribution of small-scale fading component (i.e.,

fg (x)) is introduced.

4.2.3 Computation Offloading

In partial computation offloading, the k-th user offloads βk (βk ∈ [0, 1]) portion of its data to

an edge server, while the remaining 1− βk portion of data is executed locally at the k-th user.

The association vector of the k-th user is given by ak = {ak1, · · · , akM}, where akm = 1 is

defined as if partial task of the k-th user is offloaded on the m-th server, otherwise, akm = 0.
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Each user can offload partial data to only one edge server, obeying the constraint as follows
M∑
m=1

akm = 1, ∀k ∈ K. (4.2)

Note that if the k-th user executes all of its data locally, we can set βk to zero, regardless

of the values of ak. In (4.2), each user is associated with one RSU, facilitating the control

information exchange in VEC systems.

The computation task of the k-th user is expressed as Vk = (Dk, Tk, Fk) , ∀k ∈ K, where Dk is

the data size of its computation task, Tk is the latency requirement of this task and Fk is the

required number of central processing unit (CPU) cycles for processing this task. In general,

the required number of CPU cycles is given by Fk = cbcDk, where cbc is the coefficient for

bit and cycle conversion [45].

4.2.4 Computation Model

Each edge server has limited computation capacity, upper bounded by fmax
m , which indicates

the maximum number of allocated CPU cycles per second at the m-th edge server. The

allocated computation resource for the k-th user at m-th edge server is denoted by fkm,

∀k,m. The computation capacity constraint at the m-th edge server is given by
K∑
k=1

akmfkm ⩽ fmax
m , ∀m ∈ M. (4.3)

We consider that the k-th user transmit at Rkm in a time block to reduce implementation

complexity. Accordingly, the latency constraint of the k-th user is given by

max
{

M∑
m=1

akmβk

(
Dk

Rkm

+
Fk
fkm

)
,
(1− βk)Fk

fk0

}
⩽ Tk, (4.4)

where fk0 denotes the local computation capacity of the k-th user. The computation power

consumption of k-th user is given by pCk = ρ(fk0)
ς , ∀k ∈ K, where ρ and ς are constants that

depend on the average switched capacitance and the average activity factor, respectively [45].



90
CHAPTER 4. DEEP LEARNING-ASSISTED ENERGY-EFFICIENT TASK OFFLOADING IN VEHICULAR

EDGE COMPUTING SYSTEMS

4.2.5 Outage Probability

The outage probability of data transmission for the k-th user connected to the m-th RSU

in a time slot is given by Pokm = P {Rkm (t) ⩽ Rkm}. In addition, the required number

of time slots for data transmission is denoted by Nkm, where Nkm = βkDk

TRkm
. We consider

that the user’s average number of outage time slots is less than a certain threshold µo,

i.e., NkmP {Rkm (t) ⩽ Rkm} ⩽ µo, ∀k ∈ K, where µo denotes the threshold of the expected

maximum outage time slots for transmitting βk portion of data to the RSU.

Lemma 4.1. The outage constraint of the k-th user connected to the m-th RSU is given by

M∑
m=1

{
1− exp

[
−

(
2

λg
ln 2

Φ

(
N0λg

hL
km

pk

)
− 1

)
N0λg
hLkmpk

]}
akmβkDk ln 2

TBλgΦ
(
N0λg
hLkmpk

) ⩽ µo, ∀k ∈ K. (4.5)

Proof. Please refer to Appendix C.1 for the proof.

4.2.6 Problem Formulation

In this paper, we focus on minimizing the total energy consumption of users, as follows

min
a,b,p,f

K∑
k=1

(1− βk)Fkp
C
k

fk0
+

K∑
k=1

M∑
m=1

akmpk ln 2βkDk

BλgΦ
(
N0λg
hLkmpk

) (4.6)

s.t. (4.2), (4.3), (4.4), (4.5),

akm = {0, 1} , ∀k ∈ K, ∀m ∈ M, (4.6a)

0 ⩽ pk ⩽ pmax
k , ∀k ∈ K, (4.6b)

0 ⩽ βk ⩽ 1, ∀k ∈ K, (4.6c)

0 ⩽ fkm, ∀k ∈ K, ∀m ∈ M, (4.6d)
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where a = {akm}k∈K,m∈M is users’ association, b = {βk}k∈K indicates users’ data partition,

p = {pk}k∈K denotes users’ transmit power, and f = {fkm}k∈K,m∈M represents computation

resource allocation. In the objective function of (4.6), the first term is the energy consump-

tion for users’ local computing, and the second term captures the energy consumption of

users’ data transmission. The constraints of problem (4.6) includes partial tasks offload-

ing constraints, edge servers’ computation capacity constraints, users’ latency constraints,

the outage performance constraints, the maximum transmit power of users, and feasible

value constraints. Note that (4.6) is a non-convex problem due to the coupled variables in

non-convex objective and constraints.

4.3 Proposed Algorithm

We study an efficient algorithm to solve the users’ energy consumption minimization problem

(4.6) in VEC systems.

4.3.1 Joint Data Partition and Computation Resource Allocation

Given the user’s association a and power allocation p, we jointly optimize users’ data parti-

tion b and computation resource allocation f, where the sub-problem is given by

min
b,f

K∑
k=1

(1− βk)Fkp
C
k

fk0
+

K∑
k=1

akmpkβkDk

Rkm

(4.7)

s.t. (4.3), (4.5), (4.6c), (4.6d),
akmβkDk

Rkm

+
akmFkβk
fkm

− Tk ⩽ 0, ∀k ∈ K, (4.7a)

(1− βk)Fk
fk0

− Tk ⩽ 0, ∀k ∈ K. (4.7b)
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It can be verified that the left hand side (LHS) of constraint (4.7a) is not jointly convex for

βk and fkm. For ease of analysis, we introduce γk =
√
βk to transform (4.7) as follows

min
c,f

−
K∑
k=1

γk
2ck (4.8)

s.t. (4.3), (4.6d),
akmγk

2Dk

Rkm

+
akmγk

2Fk
fkm

− Tk ⩽ 0, ∀k ∈ K, (4.8a)

γlbk ⩽ γk ⩽ γub,1k , ∀k ∈ K, (4.8b)

where ck = Fk

fk0
pCk−

akmpkβkDk

Rkm
, γlbk = max

{
1− Tkfk0

Fk
, 0
} 1

2 , γub,1k = min
{
1,

√
µoTBλg
ln 2Dk

Θ
(
N0λg
hLkmpk

)}
,

Θ(·) is given by

Θ(x) = Φ (x)

[
1− exp

(
1− e

(
1−2λgΦ(x)/ln 2

)
x

)]−1

. (4.9)

Proposition 4.2. The LHS of constraint (4.8a) is jointly convex for γk and fkm.

Proof. Please refer to Appendix C.2 for the proof.

However, the convexity of the objective function of problem (4.8) depends on ck, k ∈ K. We

partition the set of users K into two subsets K− and K+, where K− = {k| k ∈ K, ck ⩽ 0},

K+ = {k| k ∈ K, ck > 0}. With the successive convex optimization technique, in each itera-

tion, the objective concave functions are approximated by more tractable functions at given

local points. Recall that any concave function is globally upper-bounded by its first-order

Taylor expansion at any point. For k ∈ K+, we have

−
∑
k∈K+

γk
2ck ⩽ −

∑
k∈K+

((
γik
)2
ck + 2γikck

(
γk − γik

))
, (4.10)
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where γik is the value of γk in the ith iteration. Given γik, problem (4.8) is reformulated by

min
c,f

−
∑
k∈K−

γk
2ck −

∑
k∈K+

γikck
(
2γk − γik

)
, (4.11)

s.t. (4.3), (4.6d), (4.8a), (4.8b),

which is a convex problem. In the sequel, we apply the Lagrangian dual method to solve the

problem in (4.11) efficiently by investigating the analytical form of solutions. The Lagarange

function of (4.11) is given by

min
c,f

L (c, f, ϖ, ϑ) , (4.12)

where L (c, f, ϖ, ϑ) is given in (4.13) as follows

L (c, f, ϖ, ϑ) =−
∑
k∈K−

γk
2ck −

∑
k∈K+

γikck
(
2γk − γik

)
+

M∑
m=1

ϖm

(
K∑
k=1

a∗kmfkm − fmax
m

)
+

K∑
k=1

ϑk

(
a∗kmγk

2Dk

R∗
km

+
a∗kmγk

2Fk
fkm

− Tk

)
,

(4.13)

where {ϖm}m∈M and {ϑk}k∈K are the Lagrangian multipliers.

Since (4.12) is convex, we use the coordinate descent method to find the optimal solution to

(4.12). Specifically, given f, we first optimize c; then, given the optimized c, we optimize f,

which are shown as follows

cj+1 = arg min
c

L
(
c, fj, ϖ, ϑ

)
, (4.14)

fj+1 = arg min
f

L
(
cj+1, f, ϖ, ϑ

)
, (4.15)

where cj+1 and fj+1 denote the optimized c and f in the (j + 1)th iteration, respectively.
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Theorem 4.3. Given fj, for k-th user, if ck ⩽ 0, we have γj+1
k = γlbk ; if ck > 0, we have

γj+1
k =


γubk , if γubk ⩽ γoptk

γoptk , if γlbk ⩽ γoptk < γubk

γlbk , if γoptk < γubk

, (4.16)

where (4.17)

γoptk = γikck

(
ϑk

M∑
m=1

akmDk

Rkm

+
akmFk

f jkm

)−1

, (4.18)

γubk = min
{
Tk

/
M∑
m=1

akmDk

Rkm

+
akmFk

f jkm
, γub,1k

} 1
2

. (4.19)

Given the optimized cj+1, the optimal f j+1
km is given by

f j+1
km = γj+1

k

(
ϑkFk
ϖm

) 1
2

. (4.20)

Proof. Please refer to Appendix C.3 for the proof.

Once obtaining the optimized c and f, we update Lagrangian multipliers, as follows

ϖi+1
m =

[
ϖi
m + πϖ

(
K∑
k=1

akmfkm − fmax
m

)]+
, (4.21)

ϑi+1
k =

[
ϑik + πϑ

(
γk

2akm

(
Dk

Rkm

+
Fk
fkm

)
− Tk

)]+
, (4.22)

where πϖ and πϑ are the chosen step-sizes.

By optimizing c, f, and updating ϖ, ϑ, we obtain the optimal c and f. Then, we calculate

back b from c.
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4.3.2 Power Allocation

Given the user’s association a, data partition b, and computation resource allocation f, the

power allocation sub-problem is given by

min
p

K∑
k=1

M∑
m=1

akmpk ln 2βkDk

BλgΦ
(
N0λg
hLkmpk

) (4.23)

s.t. (4.5), (4.6b),
M∑
m=1

akm ln 2βkDk

BλgΦ
(
N0λg
hLkmpk

) +
akmβkFk
fkm

⩽ Tk, ∀k ∈ K. (4.23a)

Problem (4.23) can be decomposed into K sub-problems. For ease of analysis, we introduce

the variable ηk = N0λg
hLkmpk

. The power allocation sub-problem for the k-th user is given by

min
ηk

ln 2βkDkN0

BhLkmΦ (ηk) ηk
(4.24)

s.t. ln 2βkDk

BλgΦ (ηk)
+
βkFk
fkm

⩽ Tk, (4.24a)(
1− e

(
1−2λgΦ(ηk)/ln 2

)
ηk

)
βkDk ln 2

TBλgΦ (ηk)
⩽ µo, (4.24b)

ηk ⩾
N0λg

hLkmp
max
k

. (4.24c)

In the following, we provide the optimal expression of ηk regarding the problem (4.24).

Theorem 4.4. The optimal ηk in (4.24) is given by

η∗k = max
{
ηlbk ,min

{
ηub,1k , ηub,2k

}}
, (4.25)

where ηlbk = N0λg
hLkmp

max
k

, ηub,1k = Φ−1
(

ln 2βkDkfkm
Bλg(Tkfkm−βkFk)

)
, and ηub,2k = Θ−1

(
βk ln 2Dk

µoTBλg

)
. Φ−1 (·) and

Θ−1 (·) are the inverse functions of Φ (·) and Θ(·) (defined in (4.9)), respectively.
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Proof. Please refer to Appendix C.4 for the proof.

Then, we can reach the optimal pk by using pk = N0λg
hLkmηk

.

4.3.3 Users’ Association

We apply a deep neural network (DNN) to obtain user association schemes. The motivation

is two-fold: a) this achieves a low computational complexity by simply going through a

neural network model implemented in a real-time manner; b) we can enlarge and update

the training dataset to obtain the desired system performance. The inputs of the DNN are

the large-scale fading components h =
{
hkm

}
, users’ data size D = {Dk}, and user latency

requirements T = {Tk}, while the output of the DNN is the user association scheme.

We utilize a exploitation and exploration policy to generate the dataset. Specifically, given

h,D,T, we first obtain a user association scheme based on the nearest RSU association

scheme. Then, we develop one-step exploration, where we change the association scheme

of one of the K users while keeping other user associations the same. Since each user can

access the other M − 1 RSUs in the one-step exploration, there are None = K (M − 1)

possible schemes in the whole one-step exploration. Next, Nran user association schemes are

generated with random exploration, where each user randomly selects one of M RSUs with

probability 1
M

. Given each user association scheme, by optimizing b, f, and p, we select the

one with the lowest energy consumption from 1 +None +Nran schemes as the output of the

data pair.

In Fig. 4.3, we show the deep learning model for obtaining a in VEC systems. In the output

layer, we obtain the output values with the value range of [0, 1] by using Sigmoid functions.

Then, we obtain the binary output values by selecting the RSU with the maximum output

value for each user. Considering the difference of input values, we execute the data pre-
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Fig 4.2: Deep learning model for obtaining user association a in VEC systems.

processing procedure, including the integration and normalization methods, as shown in Fig.

4.3. Specifically, for any k and m, we obtain xkm = 10 log
(
e
Dk/(106Tk)−1

hkm

)
by considering

the units of the variables. Then, we normalize the inputs based on xkm−min{x}
max{x}−min{x} to scale

input values between 0 and 1. The numbers of neurons in the input and output layers are

equal to KM . After the training phase, we can use the trained DNN to calculate a for any

h,D,T.

4.3.4 Algorithm, Convergence and Complexity

Algorithm

Algorithm 2 shows an iterative algorithm for solving problem (4.6), where Ei = E (bi,pi, fi)

represents the total energy consumption of users in the i-th iteration.
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Algorithm 2 Energy-efficient RSU-assisted VEC algorithm.
Require:

The tolerance εobj , the maximum iteration number Nmax
itera.

Ensure:
1: Given network conditions, obtain a with deep learning;
2: while i ⩽ Nmax

itera do
3: Updating iteration index i = i+ 1;
4: With fixed p(i−1), jointly optimize b(i) and f(i) according to problem (4.7);
5: With fixed b(i) and f(i), optimize p(i) in problem (4.23);
6: Obtain the objective value E

(
bi,pi, fi

)
;

7: If
(
Ei−1 − Ei

)/
Ei ⩽ εobj : Break; End If;

8: end while
9: return (a∗,b∗,p∗, f∗); The minimized total energy consumption of users E∗.

Convergence

Algorithm 2 has theoretical guarantee of convergence which is shown as follows

E
(
bi−1,pi−1, fi−1

) (a)
= Eub

(
bi−1,pi−1, fi−1

)
(b)

⩾Eub
(
bi,pi−1, fi

) (c)

⩾E
(
bi,pi−1, fi

) (d)

⩾ E
(
bi,pi, fi

)
,

(4.26)

where Eub denotes the total energy consumption of users based on problem (4.11), (a) holds

since the first-order Taylor expansions in (4.10) is tight at given local points, (b) holds since

bi and fi are jointly solved optimally in problem (4.11); (c) holds since Eub is an upper

bound of E with bi and fi; (d) holds since p(i) is the optimal solution to problem (4.23).

Therefore, we have E (bi−1,pi−1, fi−1) ⩾ E (bi,pi, fi). Since E is always positive, Algorithm

1 converges.

Complexity

Algorithm 2 incurs polynomial complexity in computation. The complexity to obtain a

by DNN is CDL =
∑Layers

l=1

(
n(l)n(l−1) + n(l)

)
+ KM , where n(l) is the number of neurons

including the bias unit in the l-th layer. To solve problem (4.7), the complexity of updating

c and f in (4.12) is O (K) due to the closed-form solutions based on Theorem 1. The
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Table 4.1: Default Parameters Setup

Parameter Value
K, M , pmaxk 10, 2, 0.5 W

Server’s computation capacity fmaxm 1× 1010 cycles/s
Data size Dk [0.5,1.5] Mbits

Latency requirement Tk, time slot T 500 ms, 1 ms
Bit and cycle conversion cbc 1× 103 cycles/bit

User’s computation capacity fk0 2× 109 cycles/s
Coefficients ρ, ς 1× 10−27, 3

Threshold of outage time slots µo 250
Noise spectral density n0 -80 dBm

Path loss exponent α, bandwidth B 3, 0.5 MHz

complexity of updating dual variables is O (K +M). The total complexity of problem (4.7)

is O (Nbf (K +M)), where Nbf denotes the number of iterations of problem (4.7).

To solve problem (4.23), denote the complexity of inverse functions Φ−1 (·) and Θ−1 (·) as

O
(

1
ε1

)
and O

(
1
ε2

)
, respectively. Since the solution to (4.24) is in closed-form, the total

complexity of problem (4.23) is O
(
Klog2

(
1

ε1ε2

))
.

The total complexity of Algorithm 2 is given by

O

(
NI

(
Nbf (K +M) +Klog2

(
1

ε1ε2

))
+ CDL

)
, (4.27)

where NI is the number of outer iterations of Algorithm 2.

4.4 Numerical Results and Discussions

In this section, numerical results are provided to assess the proposed algorithm for VEC

systems. Default parameter settings are shown in Table I. The length of the road is 200

m and the number of lanes is 4. RSUs are equally spaced beside the road. Users are

randomly distributed on the lanes. Given an average data size Dave = 1 Mbits, user’s data

size randomly generated within [0.5Dave,1.5Dave]. For each setup, the result is averaged on
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Figure 4.3: Average users’ energy consumption versus fk0.

1,000 tests. The learning rate is 0.01 with decay rate 0.1. The number of samples is 2,048.

The number of neurons in hidden layer is 800. The size of mini-batch is 10. The number of

random exploration Nran is 50.

In Fig. 4.3, we compare the total energy consumption of users, i.e., E, versus user’s compu-

tation capacity, i.e., fk0, under various computing schemes. The developed energyefficient

computation offloading scheme saves much energy for users compared to the traditional local

computing scheme. Furthermore, it is observed that E increases with fk0 due to the domi-

nated increased computation power consumption. Moreover, when fk0 becomes large, it is

vital to offload computation tasks to edge servers to save users’ energy.

In Fig. 4.4, we compare the average energy consumption of users, versus the number of

users, under different methods. When K increases, users will consume more energy to ex-

ecute their computation tasks due to the reduced allocated computation resource for each

user. In addition, we compare the proposed deep learning method with other methods, in-
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Figure 4.4: Average users’ energy consumption versus K.

cluding exhaustive search, Lagrangian dual method [9], nearest RSU association, and random

RSU association. It shows that the proposed deep learning-assisted computation offloading

method approaches the optimal one (i.e., exhaustive search). Moreover, it achieves a smaller

E than the other three methods. This is because the DNN model can capture the rela-

tionships between input and output data pairs, and thus it gives a near-optimal solution.

Moreover, note that connecting to the nearest RSUs leads to reliable data rates, but the

system neglects the cooperation among edge servers for load balancing.

In Fig. 4.5, we examine the different algorithms in terms of E. Specifically, we compare

the proposed deep learning + joint b,p, f optimization (Opt) method (labeled as ‘DL-Opt’),

the deep learning + equal computation resource allocation (ECA) method (labeled as ‘DL-

ECA’), the Lagrangian dual + Opt method (labeled as ‘Lag-Opt’), the Lagrangian dual +

ECA method (labeled as ‘Lag-ECA’), the random RSU association + Opt method (labeled

as ‘Ran-Opt’), the random RSU association + ECA method (labeled as ‘Ran-ECA’). It is
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Figure 4.5: Average users’ energy consumption versus Dave.

observed that the proposed algorithm achieves the lowest energy consumption than other

algorithms, which demonstrates the advantage of this work. Note that connecting to the

nearest RSUs leads to reliable data rates, but the system neglects the cooperation among

edge servers with load balancing. Moreover, it is observed that the proposed optimization

algorithm saves much energy compared to the equal computation resource allocation algo-

rithm, which validates the significance of this work.

4.5 Summary

In this chapter, we developed a deep learning-assisted energy-efficient computation offload-

ing algorithm for VEC systems. The algorithm can solve the complex VEC problem and

find a sub-optimal solution in a real-time manner with low complexity. Simulation results

indicated the advantages of the proposed algorithm in substantially reducing users’ total
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energy consumption compared with other methods.



Chapter 5

UAV Swarm-Enabled Aerial

Reconfigurable Intelligent Surface

5.1 Introduction

Reconfigurable intelligent surface (RIS) has attracted significant attention in wireless net-

works, which is a planar surface comprising of a large number of low-cost passive reflect-

ing elements. It improves communication performance by achieving fine-grained reflection-

beamforming and reduces system energy consumption without requiring radio frequency

(RF) chains [10, 13]. Moreover, with the full-duplex mode in operation without the addition

of noise, RIS is more spectral-efficient than the conventional relay technology [11, 82, 83].

On the other hand, as a killer application in wireless networks, unmanned aerial vehicles

(UAVs) can support various wireless services and are becoming more readily available nowa-

days [2, 84, 85, 86, 87]. UAVs have two main advantages, i.e., a) flexible placement and b)

reliable air-ground communication links. As such, UAVs can be quickly placed in hotspots

or during disasters to support reliable wireless communications.

Combining the above two promising technologies, i.e., RIS and UAVs, we can realize a new

paradigm of aerial RIS (ARIS) to achieve efficient three-dimensional (3D) signal reflection,

where RIS is mounted on a UAV. Compared to terrestrial RIS (TRIS), ARIS has the following

three main advantages. First, ARIS is not restricted to the 180◦ half-space reflection such

104
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as TRIS, but instead, it provides a 360◦ panoramic full-angle reflection [12]. Second, with

a UAV’s agility and mobility in 3D space, ARIS is more flexible in placement than TRIS.

Note that TRIS is usually placed on facades of a building or at a dedicated site requiring

excessive site rental fees. Third, The path loss exponent in air-ground communications is

usually smaller than that in terrestrial communications [35, 88]. Therefore, in most cases,

the signal attenuation in ARIS’s cascaded channel is usually smaller than that in TRIS’s

especially in the context of doubled path loss phenomena. To sum up, it is appealing from

a practical standpoint to investigate the combination of UAVs and RIS, which shows the

potential to improve system performance [89]. Although ARIS’s location can be adjusted

flexibly, there are some limitations for a single UAV-enabled ARIS in practical engineering.

For example, due to the UAV’s limited payload, ARIS usually has a restricted number of

reflecting elements to guarantee flight stability and flexibility. In addition, deploying a single

UAV usually incurs a low-rank channel matrix due to the dominated line-of-sight (LoS) air-

ground connections. As a result, the significant aperture gain of a single UAV-enabled ARIS

would not be guaranteed.

Compared to ARIS, UAV swarm-enabled ARIS (SARIS) system has the following advan-

tages. First, SARIS increases the aperture gain by increasing the number of UAVs. Second,

SARIS guarantees UAV flight stability and flexibility by allowing moderate-sized RIS on each

UAV, especially under bad weather conditions or air turbulence. Third, SARIS supports spa-

tial multiplexing for a large number of users by providing a rich scattering environment with

different UAVs’ positions. Forth, with the reduced RIS size on each UAV, the production

cost of RIS can be decreased, and the flight time of the UAV can be prolonged.

In this chapter, we study a SARIS system, where multiple UAVs mounted with RIS assist

the downlink transmissions between a base station (BS) and ground users. The beamforming

and placement design for the SARIS system are investigated.
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5.1.1 Related Works

For reflection in the sky, the combination between UAVs and RIS were investigated in [90, 91,

92, 93, 94, 95]. In general, these works fall into two categories. One is the TRIS-assisted UAV

communications [90, 91, 92], and the other is the ARIS-assisted communications [93, 94, 95].

In [90], a joint UAV trajectory and TRIS passive beamforming design was investigated

to maximize the ground user’s average achievable rate. In [91], the authors leveraged the

decaying deep Q-network to minimize ground users’ energy consumption by jointly designing

the UAV movement, the TRIS phase shift, and power allocation policy. In [92], a UAV was

introduced to help the TRIS reflect its signals to the BS and enhance the UAV transmission

by passive beamforming at the TRIS.

For ARIS-assisted communications, the transmitter and the receivers are on the ground.

Thus, the channels (i.e., between transmitter and ARIS, and between ARIS to receivers)

are air-ground channels. Furthermore, ARIS’s position determines the array response in the

LoS passive signal reflections. In [93], the authors utilized ARIS to maximize the worst-case

signal-to-noise ratio (SNR) in a target area. However, the authors considered LoS air-ground

connections. The NLOS connections influenced by ARIS’s position were neglected. More-

over, the maximization of the worst-case SNR only considered the single-user beamforming.

In [94], the authors investigated the ARIS-assisted uplink secure communications by op-

timizing the UAV trajectory, the ARIS phase shift, user association, and transmit power.

However, ARIS’s altitude was fixed in [94], and the NLOS air-ground connections and mul-

tiple antennas at the BS were not considered.

On the other hand, ARIS placement design plays a critical role in ARIS-assisted communi-

cations due to the significant far-field doubled path loss [96, 97]. The ARIS placement was

studied in [93] where the ideal LoS air-ground channel was assumed. In [95], authors focused
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on the ARIS placement between fixed source and destination nodes. However, the random

spatial distributions of ground users need to be considered in performance evaluation. Note

that the existing works that integrated UAVs and RIS focused on single UAV networks. To

the best of our knowledge, the multiple UAV-enabled ARIS systems have not been inves-

tigated. The formed UAV swarm network facilitates an increased aperture gain in passive

signal reflections.

5.1.2 Contributions

The main contributions of our work are summarized in the following:

• SARIS Beamforming Design: A joint BS’s transmit beamforming and SARIS’s pas-

sive beamforming is designed. We aim to maximize the weighted sum-rate of ground

users in the SARIS-assisted downlink communication system, subject to the maximum

transmit power constraint and phase shift constraints. We utilize the alternating op-

timization technique to develop two beamforming schemes in SARIS systems, namely

multi-user beamforming and weighted Round-Robin (WRR) single-user beamforming.

• SARIS Placement Design: We model and analyze the 3D SARIS system by considering

the large-scale path loss and LoS/NLoS opportunistic connections. The randomness

and correlations of UAVs’ and users’ positions are modeled by leveraging the tools from

stochastic geometry. Specifically, the conditional probability density functions (PDFs)

of the distance between the BS and a UAV, and the distance between a UAV and a

user are derived, respectively. Moreover, we obtain the average channel power gain for

an arbitrary user in SARIS-assisted downlink communication. The analytical model

reflects the trade-off between the doubled path loss and the excessive NLoS path loss

in the SARIS system, and the trade-off between the distance-dependent path loss and
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the excessive NLoS path loss.

• Network Design Insights: The analysis and simulation results provide network design

insights. First, the multi-user beamforming scheme achieves a 1-30% performance gain

compared to the WRR single-user beamforming scheme. However, the latter has a rel-

atively lower computational complexity than the former. Second, the analytical model

allows obtaining the optimal SARIS 3D position. With placement optimization, the

SARIS system achieves a 20-500% performance gain compared to the system without

placement optimization. Third, it is optimal to place SARIS above the BS when users

are relatively near the BS. However, it is optimal to place SARIS “between” the BS

and users when users are far from BS. Fourth, the channel estimation for NLoS com-

ponents can be ignored to reduce system overhead at the cost of slight performance

degradation.

5.1.3 Organization and Notations

The chapter is organized as follows. Chapter 5.2 presents the system model. Chapter 5.3

develops SARIS beamforming schemes. Chapter 5.4 derives an analytical framework for

SARIS placement design. Simulation results are discussed in Chapter 5.5. Chapter 5.6

concludes the chapter.

The notations used in this chapter are listed in the following. For any matrix A, A†, AT,

and AH denote the conjugate, the transpose, and the conjugate transpose of A, respectively.

For a square matrix B, B−1 denotes the inverse of B. For any vector x, ∥x∥ denotes the

Euclidean norm. For any complex number x, |x| and Re {x} denote the absolute value and

the real part of x, respectively. E {·} denotes statistical expectation.
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Fig. 5.1: An illustration of SARIS-assisted downlink communication system.

5.2 System Model

5.2.1 Network Layout

The network architecture is shown in Fig. 5.1. There are L ARIS forming a SARIS, and the

set of ARISs is denoted by ΨA = {1, 2, · · · , L}. Each ARIS comprises of a uniform linear

array with N passive reflecting elements, separated by the distance dA < λ, where λ is the

carrier wavelength. The horizontal position of the l-th ARIS is ql = [xal , y
a
l ]

T, where xal is

the coordinate of ARIS l on the x-axis and yal is the coordinate of ARIS l on the y-axis. In

this chapter, we consider the first reflection element of the AIRS as its reference point. The

altitude of the SARIS is denoted by H. Considering the random locations of UAVs in a UAV

swarm, we assume that the L ARISs are uniformly distributed in a circular region with the

radius of RA. The coordinate of the center of SARIS on the x-axis is denoted by xA.

The BS is equipped with M antennas, and each antenna is separated by the distance dB < λ.

The BS is located at the origin of a 3D Cartesian coordinate system. The maximum allowable

transmit power at the BS is Pmax. The distance between the BS and the l-th ARIS is given
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by

dG
l =

√
∥ql∥2 +H2 =

√
(xal )

2 + (yal )
2 +H2. (5.1)

There are K single-antenna users randomly distributed in a ground circular region with the

radius of RU . The set of users is denoted by ΨU = {1, 2, · · · , K}. The horizontal position

of the k-th user is uk = [xuk , y
u
k ]

T, where xuk is the user’s coordinate on x-axis and yuk is the

user’s coordinate on y-axis. The distance between the l-th ARIS and the k-th user is given

by

dh
l,k =

√
∥ql − uk∥2 +H2 =

√
(xal − xuk)

2 + (yal − yuk )
2 +H2. (5.2)

5.2.2 Channel Model

Let ϕRl denote the zenith angle of arrival (AoA) of the signal transmitted from the BS to the

l-th ARIS, i.e., the angle between the wave propagation direction and the positive z-axis, as

illustrated in Fig. 5.1. Let ηRl denote the azimuth AoA of the signal transmitted from the BS

to the l-th ARIS, i.e., the angle between the horizontal projection of the wave propagation

direction and the positive x-axis. Thus, the receive array response for the l-th ARIS is given

by

aRl =
[
1, e−j2π

dA
λ
ϕ
R
l , · · · , e−j2π(N−1)

dA
λ
ϕ
R
l

]T
, (5.3)

where ϕRl = sin
(
ϕRl
)

cos
(
ηRl
)
=

xal
dG
l

, and dG
l is given in (5.1).

Let ϕDl denote the zenith angle of departure (AoD) of the signal transmitted from the BS to

the l-th ARIS, as illustrated in Fig. 5.1, and we have sin
(
ϕDl
)
= cos

(
ϕRl
)
. The departure

array response for the l-th ARIS is given by

aDl =
[
1, e−j2π

dB
λ
ϕ
D
l , · · · , e−j2π(M−1)

dB
λ
ϕ
D
l

]T
, (5.4)

where ϕDl = sin
(
ϕDl
)
= cos

(
ϕRl
)
= H

dG
l

, and dG
l is given in (5.1).
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Denote the channel matrix between the BS and the l-th ARIS by Gl ∈ CN×M , and we have

Gl =
√
βG
l︸ ︷︷ ︸

Path loss

√µLoSPLoS
l GLoS

l︸ ︷︷ ︸
LoS component

+
√
µNLoSPNLoS

l GNLoS
l︸ ︷︷ ︸

NLoS component


=
√
βG
l µLoSPLoS

l GLoS
l +

√
βG
l µNLoSPNLoS

l GNLoS
l

(5.5)

where βG
l = β0

∥ql∥2+H2 = β0

(xal )
2
+(yal )

2
+H2

is the large-scale distance-dependent path loss be-

tween the BS and the l-th ARIS, β0 denotes the path loss at the reference distance, µLoS and

µNLoS represent the excessive path loss in LoS and NLoS connections, respectively, since the

signal attenuation in NLoS path is more severe than that in LoS path due to reflection, ab-

sorption, diffraction, and scattering. Moreover, PLoS
l is the probability of the LoS connection

between the BS and the l-th ARIS, which can be expressed as [35]

PLoS
l =

1

1 + ηa exp (−ηb (ϕDl − ηa))
, (5.6)

where ηa and ηb are constant values depending on the communications environment, e.g.

rural, urban, or dense urban. In addition, the probability of the NLoS connection between the

BS and the l-th ARIS is given by PNLoS
l = 1−PLoS

l . Note that both LoS and NLoS connections

may exist in the air-ground propagation. We use the probabilities of occurrence of LoS and

NLoS connections to obtain a spatial expectation of the path loss given a common elevation

angle. Furthermore, in (5.5), GLoS
l is the channel matrix for LoS connection between the BS

and the l-th ARIS, which is given by GLoS
l = e−j

2πdG
l

λ aRl
(
aDl
)H where aRl and aDl are given

in (5.3) and (5.4), respectively. GNLoS
l is the channel matrix for NLoS connection between

the BS and the l-th ARIS, which has i.i.d. circularly symmetric complex Gaussian (CSCG)

entries with zero mean and unit variance. This accounts for the small-scale fading which is

assumed to be Rayleigh fading. In addition, the longer delay in NLoS path incurs a phase

shift of the signal. When multiple independent NLoS signal paths combine at the receiver,

the CSCG distribution captures the random phase shift. Note that Gl in (5.5) consists of
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the large-scale path loss, deterministic LoS component, uncertain NLoS component, and the

occurrence probabilities of LoS and NLoS connections.

For the communication link between the l-th ARIS and the k-th user, let ϕFl,k denote the

zenith AoD of the signal and ηFl,k denote the azimuth AoD of the signal. Then, the reflect

array response at the l-th ARIS is given by

aFl =
[
1, ej2π

dA
λ
ϕ
F
l,k , · · · , ej2π(N−1)

dA
λ
ϕ
F
l,k

]T
, (5.7)

where ϕFl,k = sin
(
ϕFl,k
)

cos
(
ηFl,k
)
=

xal −x
u
k

dh
l,k

, and dh
l,k is given in (5.2).

Let hH
l,k ∈ C1×N be the channel matrix between the l-th ARIS and the k-th user, and we

have

hH
l,k =

√
βh
l,k︸ ︷︷ ︸

Path loss

√µLoSPLoS
l,k hLoS

l,k︸ ︷︷ ︸
LoS component

+
√
µNLoSPNLoS

l,k hNLoS
l,k︸ ︷︷ ︸

NLoS component


=
√
βh
l,kµLoSPLoS

l,k hLoS
l,k +

√
βh
l,kµNLoSPNLoS

l,k hNLoS
l,k ,

(5.8)

where βh
l,k = β0

∥ql−uk∥2+H2 = β0

(xal −xuk)
2
+(yal −yuk)

2
+H2

is the large-scale distance-dependent path

loss between the l-th ARIS and the k-th user, and PLoS
l,k is the probability of the LoS connec-

tion between the l-th ARIS and the k-th user, which is given by

PLoS
l,k =

1

1 + ηa exp
(
−ηb

(
π
2
− ϕTl,k − ηa

)) . (5.9)

The probability of the NLoS connection between the l-th ARIS and the k-th user is expressed

as PNLoS
l,k = 1 − PLoS

l,k . The channel matrix for the LoS connection in (5.8) is given by

hLoS
l,k = e−j

2π
λ
dh
l,k
(
aFl
)H, while each element in hNLoS

l,k for the NLoS connection follows the

CSCG distribution with zero mean and unit variance, i.e., hNLoS
l,k,n ∼ CN (0, 1).

The phase shift matrix of the l-th ARIS is �l =
√
ηRdiag [θl,1, · · · , θl,N ], which is a diagonal

matrix, where ηR indicates the reflection efficiency and θl,n = ejφl,n (φl,n ∈ [0, 2π]) [93, 98, 99].

The adopted RIS model assumes that each reflecting element individually alters the phase
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shift of the impinging electromagnetic wave. Other theoretical RIS models for wireless

communications, such as the physics-based model and impedance network-based model [98],

could also be integrated into SARIS systems.

5.2.3 Problem Formulation

Denote the data symbol for the k-th user by sk. The transmitted signal at the BS is given

by

x =
K∑
k=1

wksk, (5.10)

where wk ∈ CM×1 is the transmit beamforming for the k-th user at the BS. The received

signal at the k-th user is given by

yk =
L∑
l=1

hH
l,k�lGlx + nk, (5.11)

where yk ∈ C1×1, nk ∼ CN (0, σ0
2) is the additive white Gaussian noise at the k-th user with

the variance σ02. The signal-to-interference-plus-noise ratio (SINR) of the k-th user is given

by

γk =

∣∣∣∣ L∑
l=1

hH
l,k�lGlwk

∣∣∣∣2
K∑

i=1,i ̸=k

∣∣∣∣ L∑
l=1

hH
l,k�lGlwi

∣∣∣∣2 + σ02

=

∣∣∣hH
k wk

∣∣∣2
K∑

i=1,i ̸=k

∣∣∣hH
k wi

∣∣∣2 + σ02
,

(5.12)

where hH
k =

L∑
l=1

hH
l,k�lGl and hH

k ∈ C1×M .
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The users’ weighted sum-rate maximization problem in SARIS system is shown as follows

max
W,�,Q

K∑
k=1

ωk log (1 + γk) (5.13)

s.t. θl,n ∈ F , ∀l, ∀n, (5.13a)
K∑
k=1

∥wk∥2 ⩽ Pmax, (5.13b)

where W = [w1,w2, · · · ,wK ] ∈ CM×K , � = {�l}∀l∈ΨA
, Q = {ql}∀l∈ΨA

, ωk is the weight for

the k-th user, and F = {ejφ| 0 ⩽ φ ⩽ 2π}. Note that in (5.13) beamforming provides the

aperture gain and the SARIS placement impacts the large-scale fading. In the following, we

study the beamforming and placement design for SARIS systems.

5.3 SARIS Beamforming Design

In this section, we utilize the alternating optimization approach to obtain the transmit

beamforming at the BS and the passive beamforming at SARIS in downlink communications.

5.3.1 Problem Transformation

Based on [100], we can reformulate the problem (5.13) by introducing the auxiliary variables

α = [α1, α2, · · · , αK ]T, as follows

max
W,�,α

K∑
k=1

ωk log (1 + αk) (5.14)

s.t. (M13a), (M13b),

αk ⩽ γk, ∀k. (5.14a)
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Problem (5.14) can be thought of as an outer optimization of {W, �} and an inner optimiza-

tion of α given fixed {W, �}. Since the inner problem is a convex problem over α, the strong

duality holds and it is equivalent to its dual problem as follows

min
λ

max
α

L (λ,α)

where

L (λ,α) =
K∑
k=1

ωk log (1 + αk)−
K∑
k=1

λk (αk − γk)

(5.15)

is the Lagrangian function and λ = [λ1, λ2, · · · , λK ]T is the dual variable. Let (λ∗,α∗) be

the saddle point of (5.15). We have α∗
k = γk and λ∗k = ωk

1+α∗
k
= ωk

1+γk
, by letting ∂L(λ,α)

∂λk
= 0

and ∂L(λ,α)
∂αk

= 0, respectively. Substituting λ∗k into L (λ,α) and combining with the outer

optimization for {W, �}, we have the reformulated objective function as follows

f1 (W, �,α) =
K∑
k=1

ωk log (1 + αk)−
K∑
k=1

ωkαk +
K∑
k=1

ωk (1 + αk) γk
1 + γk

, (5.16)

where α∗
k = γk, ∀k. For a fixed α, optimizing W and � is equivalent to the following problem

max
W,�

K∑
k=1

ωkγk
1 + γk

(5.17)

s.t. (5.13a), (5.13b), (5.17a)

where ωk = ωk (1 + αk). Next, we apply the block coordinate method to optimize W and �.
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5.3.2 Transmit Beamforming

Given a fixed �, the transmit beamforming problem is given by

max
W

K∑
k=1

ωk

∣∣∣hH
k wk

∣∣∣2
K∑
i=1

∣∣∣hH
k wi

∣∣∣2 + σ02
(5.18)

s.t. (5.13b). (5.18a)

Note that (5.18) is a multiple-ratio fractional programming problem. We utilize the quadratic

transform proposed in [101] to reformulate the problem as

max
W,β

f2 (W,β) =
K∑
k=1

(
2
√
ωk Re

{
β†
kh

H
k wk

}
− |βk|2

(
K∑
i=1

∣∣∣hH
k wi

∣∣∣2 + σ0
2

))
(5.19)

s.t. (5.13b). (5.19a)

where β = [β1, β2, · · · , βK ]T is a vector containing auxiliary variables. Considering that

(5.19) is a biconvex optimization problem, we alternatively update W and β.

It can be observed that for a given W, the optimal β is given by.

β∗
k =

√
ωkh

H
k wk

K∑
i=1

∣∣∣hH
k wi

∣∣∣2 + σ02
, ∀k, (5.20)

For a given β, optimization problem for W is given by

min
W

K∑
k=1

(
|βk|2

(
K∑
i=1

∣∣∣hH
k wi

∣∣∣2 + σ0
2

)
− 2

√
ωk Re

{
β†
kh

H
k wk

})
(5.21)

s.t. (5.13b). (5.21a)

Problem (5.21) is a convex function. We use the Lagrangian dual method to obtain the
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optimal W. The Lagrangian function of (5.21) is given by

L (W, µP ) =
K∑
k=1

(
|βk|2

(
K∑
i=1

∣∣∣hH
k wi

∣∣∣2 + σ0
2

)
− 2

√
ωk Re

{
β†
kh

H
k wk

})

+ µP

(
K∑
k=1

∥wk∥2 − Pmax

)
,

(5.22)

where µP is the dual variable for the power constraint. Based on (5.22), the dual problem

of (5.21) is given by

max
µP

min
W

L (W, µP ) (5.23)

s.t. µP ⩾ 0. (5.23a)

Regarding the dual problem (5.23), given a µP , the optimal wk is obtained by letting
∂L(W,µP )

∂wk
= 0, and we have

w∗
k =

√
ωkβk

(
µP IM +

K∑
i=1

|βi|2hih
H
i

)−1

hk, (5.24)

where IM denotes the M ×M identity matrix. The updating procedure for µP is given by

µtw+1
P =

[
µtwP + λP

(
K∑
k=1

∥wk∥2 − Pmax

)]+
, (5.25)

where µtwP denotes the value of µP in the tw-th iteration in the optimization of W, and λP

is the updating step-size.

Based on (5.20), (5.24) and (5.25), we can obtain the optimal W.
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5.3.3 Passive Beamforming

Given fixed W, the passive beamforming problem is given by

max
�

K∑
k=1

ωk

∣∣∣∣ L∑
l=1

θH
l vl,k,k

∣∣∣∣2
K∑
i=1

∣∣∣∣ L∑
l=1

θH
l vl,k,i

∣∣∣∣2 + σ02

(5.26)

s.t. (5.13a), (5.26a)

where θl = [θl,1, · · · , θl,N ]H ∈ CN×1 and vl,k,i =
√
ηRdiag

(
hH
l,k

)
Glwi ∈ CN×1. Furthermore,

(5.26) can be expressed as

max
θ

K∑
k=1

ωk
∣∣θHvk,k

∣∣2
K∑
i=1

∣∣θHvk,i
∣∣2 + σ02

(5.27)

s.t. (5.13a), (5.27a)

where θ = vec
(
θ̃
)

∈ CNL×1, θ̃ = [θ1, · · · ,θL] ∈ CN×L, vec (·) denotes the vectorization

manipulation, vk,i = vec (ṽk,i) ∈ CNL×1, and ṽk,i = [v1,k,i, · · · ,vL,k,i] ∈ CN×L.

Note that (5.27) is a multiple-ratio fractional programming problem. Based on the quadratic

transform, we reformulate the problem (5.27) as follows

max
θ,δ

f3 (θ, δ) =
K∑
k=1

(
2
√
ωk Re

{
δ†kθ

Hvk,k
}
− |δk|2

(
K∑
i=1

∣∣θHvk,i
∣∣2 + σ0

2

))
(5.28)

s.t. (5.13a), (5.28a)

where δ = [δ1, · · · , δK ]T consists of auxiliary variables.
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It can be observed from (5.28) that for a given θ, the optimal δ is obtained by

δ∗k =

√
ωkθ

Hvk,k
K∑
i=1

∣∣θHvk,i
∣∣2 + σ02

. (5.29)

For a given δ, the problem for θ is expressed as

max
θ

− θHAθ + 2Re
{
θHb

}
+ c (5.30)

s.t. (5.13a), (5.30a)

where A =
K∑
k=1

|δk|2
K∑
i=1

vk,ivH
k,i ∈ CNL×NL, b =

K∑
k=1

√
ωkδ

†
kvk,k ∈ CNL×1, and c = −

K∑
k=1

|δk|2σ02.

In the following, we iteratively optimize one of the NL reflection coefficients in θ while

keeping others fixed. With some linear manipulations, the subproblem for optimizing the

n-th element in θ, i.e., θn, is given by

max
θn

− θ†nAn,nθn + 2Re
{
θ†nbn −

NL∑
j=1,j ̸=n

θ†nAn,jθj

}
(5.31)

s.t. θn ∈ F , (5.31a)

where An,n denotes the n-th row and m-th column element in A, bn is the n-th element in

b. It can be derived that the optimal θn is given by

θ∗n = exp
(
j∠ ϖn

|ϖn|

)
,where ϖn = bn −

NL∑
j=1,j ̸=n

An,jθj. (5.32)

Based on (5.32), we can optimize all the reflection coefficients in SARIS iteratively. Note

that this iterative updating method guarantees convergence and has a relatively low complex-

ity compared to the conventional semidefinite relaxation (SDR) method [96]. Specifically,

updating (5.32) has the complexity of O (NL), and the complexity of overall updating is

O (N2L2). However, the complexity of SDR method is O (N6L6).
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Complexity: We use bid-O notation to represent the computational complexity of the AO

method. The computational complexity of updating β is O (KNLM). Since updating wk

requires the matrix inversion, the computational complexity of updating wk is O (KM3Iw),

where Iw is the number of iterations for updating wk. Moreover, the computational com-

plexity of updating δ is O (KNLM). The complexity for obtaining θ∗n is O (NL). Since

we need to solve all the reflecting elements, the computational complexity of updating θ is

O (N2L2Iθ), where Iθ is the iteration number of updating θ. The total complexity of the

AO method is O (I0 (2KNLM +KM3Iw +N2L2Iθ)), where I0 is the number of iterations.

Convergence: denote f1 (Wt, �t, αt) as the objective function in (M14) at the t-th iteration.

Then, we have

f1
(
Wt, �t,αt

)
≤ f1

(
Wt+1, �t,αt

)
≤ f1

(
Wt+1, �t+1,αt

)
≤ f1

(
Wt+1, �t+1,αt+1

)
, (5.33)

since we optimize the block in each subproblem. Due to the maximum allowable power

constraint, the users’ SINRs are bounded. Thus, f1 (Wt, �t, αt) converges when t increases.

Optimality: Given a fixed �, the subproblem (M17) for optimizing the variables W and β is

a biconvex optimization problem, and each of variables is uniquely and optimally obtained.

Since the function f2 (W,β) is bounded from above and continuous, and the set of W is a

compact set, the obtained solution (W∗,β∗) is a partial optimum [102]. Similarly, given a

fixed W, (θ∗, δ∗) is a partial optimum for the subproblem (M26). Moreover, since W∗ and

�∗ are uniquely attained in the subproblems, respectively, the converged solution (W∗, �∗) is

suboptimal and stationary [103].

5.3.4 Single-User Beamforming in SARIS Systems

In this subsection, we develop a WRR single-user beamforming scheme for SARIS systems.

The single-user beamforming has closed-form solutions and achieves a low computational
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complexity.

In a single-user case, the transmitted signal for the k-th user at the BS is given by

xk =
√
Pmaxwksk, (5.34)

where wk ∈ CM×1 is the transmit beamforming for the k-th user at the BS. For the k-th

user, the optimization problem of wk and � is given by

max
wk,�

∣∣∣hH
k wk

∣∣∣2 (5.35)

s.t. (5.13a), (5.35a)

∥wk∥2 ⩽ 1, (5.35b)

where hH
k =

L∑
l=1

hH
l,k�lGl.

The optimal transmit beamforming for the k-th user is given by

w∗
k =

hk∥∥∥hH
k

∥∥∥ =

L∑
l=1

GH
l �Hl hl,k∥∥∥∥ L∑

l=1

hH
l,k�lGl

∥∥∥∥ , (5.36)

which is obtained by maximum ratio transmission (MRT) precoding. In addition, the passive

beamforming problem is given by

max
θ

∣∣θHvk,k
∣∣2 (5.37)

s.t. |θn| = 1, ∀n ∈ {1, · · · , NL} , (5.37a)

To solve (5.37), we iteratively optimize one of theNL reflection coefficients in θ while keeping

others fixed. Thus, the optimal n-th phase shift on the l-th ARIS is given by

θ∗l,n = exp
(
φ0 − ∠

(
hH
l,k,ngH

l,nwk

))
= exp

(
φ0 − ∠

(
hH
l,k,n

)
− ∠

(
gH
l,nwk

))
, (5.38)
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where φ0 = ∠
(
θHvk,k

)
is a constant, hH

l,k,n ∈ C1×1 is the n-th element of hHl,k, gH
l,n ∈ C1×M is

the n-th row of Gl.

Based on (5.36) and (5.38), we can obtain the optimal W and �. Moreover, the users are

scheduled based on the WRR policy, where the weight is ωk for the k-th user. Note that

updating (5.38) has the complexity of O (M), and we need to solve NL times for all the

NL reflection coefficients in θ. Thus, the overall complexity of updating � is O (MNL). In

addition, updating W is based on a closed-form solution, which has relatively low complexity

compared to the iterative methods for multi-user beamforming.

5.4 SARIS Placement Design

In the previous section, we study two beamforming schemes for the SARIS system given the

air-ground channel conditions. In practical engineering, the SARIS placement problem is

also significant in the system design, which involves large-scale fading and thus transmission

distance distributions. In this section, we develop a theoretical framework to analyze the

impact of SARIS placement and nodes distributions on the overall system performance. The

closed-form beamforming strategies in the previous section will be used to derive the average

channel power gain for an arbitrary user in SARIS systems.

5.4.1 Intermediate Results

In this subsection, we obtain some intermediate results that will be used to derive the average

channel power gain for an arbitrary user in the SARIS-assisted downlink communication

system.

We consider a scenario that SARIS is placed to serve ground users in a circular region,
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as shown in Fig. 5.2. Users could be located in hotspots or disaster regions, whereas the

direct links between the BS and users are blocked due to obstacles. We utilize a Poisson

cluster process (PCP) to model the spatial distribution of users. The average number of

users is denoted by nU . In this chapter, we consider Matérn cluster process, which assumes

symmetric uniform spatial distribution of users around a cluster center within a circular disc

of radius RU . The PDF of each user is given by

fU (u) =


1

πRU
2 , if ∥u∥ ⩽ RU

0, otherwise
, (5.39)

where u is a realization of random vector U. As shown in Fig. 5.2, the coordinate of the

users’ cluster center is denoted by cU (xU , 0, 0), where xU is the distance between the BS and

cU .

Considering that a UAV swarm usually has a dynamic network topology and sometimes

without flight formation, we use random spatial models to capture UAV locations. The

PDF of each UAV is given by

fA (a) =


1

πRA
2 , if ∥a∥ ⩽ RA

0, otherwise
, (5.40)

where a is a realization of random vector A, and RA is UAV swarm radius. The SARIS

coordinate on the x-axis is denoted by cA (xA, 0, 0), where xA is the distance between the BS

and cA.

Lemma 5.1. Given the distance between the BS and SARIS coordinate on x-axis, i.e., xA,

and the SARIS flight height H, the conditional PDF of the distance between the BS and an
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Fig 5.2: An illustration of SARIS 3D coordinate system.

arbitrary ARIS, i.e., lBA, is given by

fLBA
( lBA| xA, H) =

2lBA

πRA
2Ω
(
xA,
√
lBA

2 −H2, RA

)
,

where Ω (a, b, c) = arccos
(
a2 + b2 − c2

2ab

)
,√

(max {0, xA −RA})2 +H2 ⩽ lBA ⩽
√

(xA +RA)
2 +H2.

(5.41)

Proof. Please refer to Appendix D.1 for the proof.

Lemma 5.2. Given the distance between the projection of the SARIS coordinate on the

ground and the users’ cluster center, i.e., xAU = xU − xA, and the SARIS flight height H,

the conditional PDF of the distance between an arbitrary ARIS and an arbitrary user, i.e.,

lAU , is given by

if xAU ⩾ RU , then

fLAU
( lAU | xA, H) =

4lAU

π2RA
2RU

2

∫ xAU+RU

xAU−RU

xΩ

(
x,
√
l2AU −H2, RA

)
Ω (xU − xA, x, RU)dx,

where
√

(xAU − (RA +RU))
2 +H2 ⩽ lAU ⩽

√
(xAU +RA +RU)

2 +H2,

(5.42)
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and if xAU < RU , then

fLAU
( lAU | xA, H) =

4lAU

πRA
2RU

2

∫ RU−xAU

0

xΩ

(
x,
√
l2AU −H2, RA

)
dx

+
4lAU

π2RA
2RU

2

∫ xAU+RU

RU−xAU

xΩ

(
x,
√
l2AU −H2, RA

)
Ω (xU − xA, x, RU)dx,

where H ⩽ lAU ⩽
√

(xAU +RA +RU)
2 +H2.

(5.43)

Proof. Please refer to Appendix D.2 for the proof.

5.4.2 Performance Evaluation

For ease of analysis, we consider the single-user case in the SARIS system for performance

evaluation. The approximate absolute value of the k-th user’s cascaded channel is given by∣∣∣∣∣
L∑
l=1

hH
l,k�lGlwk

∣∣∣∣∣ =
∣∣∣∣∣
L∑
l=1

N∑
n=1

hH
l,k,nθl,ngH

l,nwk

∣∣∣∣∣
⩽

L∑
l=1

∣∣∣∣∣
N∑
n=1

hH
l,k,nθl,ngH

l,nwk

∣∣∣∣∣ =
L∑
l=1

N∑
n=1

√
ηR
∣∣hH
l,k,n

∣∣ ∣∣gH
l,nwk

∣∣
(a)
≈

L∑
l=1

N∑
n=1

√
ηRΥ

AU
l,k

∣∣gH
l,nwk

∣∣ = L∑
l=1

√
ηRΥ

AU
l,k

N∑
n=1

∣∣gH
l,nwk

∣∣
(b)

⩽
L∑
l=1

√
ηRΥ

AU
l,k

N∑
n=1

∥∥gH
l,n

∥∥ ∥wk∥

(c)
≈

L∑
l=1

√
ηRΥ

AU
l,k

N∑
n=1

ΥBA
l

∣∣∣∣∣
M∑
m=1

ejω
G
n,m

∣∣∣∣∣
∥∥∥∥∥∥∥∥∥

L∑
l=1

GH
l �Hl hl,k∥∥∥∥ L∑

l=1

hH
l,k�lGl

∥∥∥∥

∥∥∥∥∥∥∥∥∥
=

L∑
l=1

√
ηRΥ

AU
l,k Υ

BA
l N

√
M,

(5.44)

where ΥAU
l,k =

√
βh
l,k

(√
µLoSPLoS

l,k +
√
µNLoSPNLoS

l,k

)
,

ΥBA
l =

√
βG
l

(√
µLoSPLoS

l +
√
µNLoSPNLoS

l

)
.
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In (5.44), (a) is obtained based on (5.8) where hH
l,k =

{∣∣hH
l,k,n

∣∣ ejωh
n

}
n=1,··· ,N

. Denote JLoS
l,k =√

βh
l,kµLoSPLoS

l,k and JNLoS
l,k =

√
βh
l,kµNLoSPNLoS

l,k . Specifically, we have
∣∣hH
l,k,n

∣∣ ⩽ ∣∣JNLoS
l,k hNLoS

l,k,n

∣∣+∣∣∣JLoS
l,k e

−j 2π
λ (dh

l,k+(n−1)dAϕ̄
F
l,k)
∣∣∣. Since Eh

∣∣JNLoS
l,k hNLoS

l,k,n

∣∣ = JNLoS
l,k E

∣∣hNLoS
l,k,n

∣∣ > JNLoS
l,k and the modu-

lus value
∣∣∣e−j 2πλ (dh

l,k+(n−1)dAϕ̄
F
l,k)
∣∣∣ = 1, we have

∣∣hH
l,k,n

∣∣ ≈ JLoS
l,k +JNLoS

l,k . (b) follows the Cauchy–

Schwarz inequality. Moreover, (c) is obtained based on (5.5), where Gl =
{
|Gl,n,m| ejω

G
n,m

}
for n = 1, · · · , N, m = 1, · · · ,M and |Gl,n,m| ≈

√
βG
l µLoSPLoS

l +
√
βG
l µNLoSPNLoS

l . The trans-

mit beamforming wk is obtained based on (5.36) for the k-th user.

The average channel power gain for an arbitrary user in SARIS systems is given by

E


∣∣∣∣∣
L∑
l=1

hH
l,k�lGlwk

∣∣∣∣∣
2
 (a)

⩽ E


∣∣∣∣∣
L∑
l=1

√
ηRΥ

AU
l,k Υ

BA
l N

√
M

∣∣∣∣∣
2


= ηRL
2N2MEΨA,ΨU

{∣∣ΥAU
l,k Υ

BA
l

∣∣2} ,
= ηRL

2N2MEΨA,ΨU

{
βh
l,kβ

G
l

(
µLoSPLoS

l,k + µNLoSPNLoS
l,k + 2

√
µLoSPLoS

l,k µNLoSPNLoS
l,k

)
·
(
µLoSPLoS

l + µNLoSPNLoS
l + 2

√
µLoSPLoS

l µNLoSPNLoS
l

)}
(b)
≈ ηRL

2N2MEΨA,ΨU

{
βh
l,k

(
µLoSPLoS

l,k + µNLoSPNLoS
l,k

)
βG
l

(
µLoSPLoS

l + µNLoSPNLoS
l

)}
= ηRL

2N2ME
{

β0
2

l2AU l
2
BA

µLoS + µNLoSξ (lAU , H)

1 + ξ (lAU , H)

µLoS + µNLoSξ (lBA, H)

1 + ξ (lBA, H)

}
(c)
≈ ηRL

2N2Mβ0
2

∫ lmax
AU

lmin
AU

∫ lmax
BA

lmin
BA

fLBA
( lBA| xA, H) fLAU

( lAU | xA, H)

· (µLoS + µNLoSξ (lAU , H)) (µLoS + µNLoSξ (lBA, H))

l2AU l
2
BA (1 + ξ (lAU , H)) (1 + ξ (lBA, H))

dlBAdlAU

where

lmin
AU =

√
(max (0, xU − xA − (RA +RU)))

2 +H2,

lmax
AU =

√
(xU − xA +RA +RU)

2 +H2,

lmin
BA =

√
(max (0, xA −RA))

2 +H2, lmax
BA =

√
(xA +RA)

2 +H2,

ξ (lAU , H) = ηa exp
(
−ηb

(
180

π
arcsin

(
H

lAU

)
− ηa

))
.

(5.45)
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Note that fLBA
( lBA| xA, H) and fLAU

( lAU | xA, H) in (5.45) are given in Lemma 1 and Lemma

2, respectively. Specifically, (a) in (5.45) is obtained based on (5.44), (b) is derived by

neglecting the root-related term since these are relatively small compared to other terms,

and (c) is characterized by assuming the independence of ΨA and ΨU . It is worth noting

that in (5.45), there exist two trade-offs in the large-scale fading resulted from the placement

of SARIS. One is the trade-off between the doubled path loss and the excessive NLoS path

loss. The other is the trade-off between the distance-dependent path loss and the excessive

NLoS path loss.

Based on the above analysis, the optimal SARIS 3D position can be obtained by solving the

following problem

max
xA,H

E


∣∣∣∣∣
L∑
l=1

hH
l,k�lGlwk

∣∣∣∣∣
2
 (5.46)

s.t. 0 ⩽ xA ⩽ xU , (5.46a)

Hmin ⩽ H ⩽ Hmax, (5.46b)

where Hmin and Hmax denote the minimum and maximum allowable SARIS flight height,

respectively. Note that in (5.46), we can set the discrete feasible values for xA and H to

reduce the feasible region while achieving a desired performance. Note that in (5.46), we

optimize the 3D position of SARIS cluster center for analytical tractability. The randomness

in the cascaded large-scale fading, due to the random locations of ARISs in UAV swarm and

users, is averaged in the objective function of (5.46).
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Fig 5.3: Simulation setup.

5.5 Simulation Results and Discussion

In this section, we do simulations to verify our analysis and evaluate the performance of the

SARIS system. The simulation setup is shown in Fig. 5.3. We consider that the SARIS-

assisted downlink transmissions from the BS to the ground users. The default parameters

are given by M = 16, N = 20, Pmax = 1 W. We consider the dense urban environment [35],

where ηa = 12.1190, ηb = 0.5137, µLoS = 0.6918, µLoS = 0.005. Simulation results are

averaged over 100 experiments. The noise power is -80 dBm [13]. We set equal weights

for all users. Other parameters are set as follows: RA = 10 m, RU = 100 m, β0 = −30

dB, Hmin = 10 m, Hmax = 200 m, λ = 0.1 m, dA = dB = λ/2, ηR = 0.9, unless specified

otherwise.

In Fig. 5.4, Fig. 5.5, Fig. 5.6, and Fig. 5.7, the user’s average channel power gains are

shown versus the x-axis and z-axis of the SARIS’s center under xU = 200 m, xU = 400 m,

xU = 600 m, and xU = 1000 m, respectively. The BS’s position is (0, 0, 0). The analytical

results are obtained based on Section IV, and the simulation results are obtained based on

Monte Carlo simulations. It is observed that the derived analytical results well approximate
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(a) Analytical results. (b) Monte Carlo simulation results.

Fig 5.4: Average channel power gain versus SARIS 3D position (analysis (left) and simulation
(right)), where xU = 200 m.

the simulation results. In addition, there exists an optimal 3D position for SARIS given a

xU . When xU is small, e.g., xU = 200 m, it is optimal to place SARIS between the BS and

users. When xU is large, e.g., xU = 1000 m, it is optimal to place SARIS above the BS.

Intuitively, if SARIS is close to the BS or user, the doubled path loss is minimized, but the

excessive path loss originated from NLoS connections becomes severe. Moreover, SARIS’s

higher altitude makes it easy to establish LoS connections between SARIS and BS/user,

whereas this leads to an increased signal attenuation due to the increase of communication

distance. Therefore, in SARIS placement, there is a trade-off between doubled path loss and

excessive path loss. Furthermore, there is also a trade-off between distance-dependent path

loss and NLoS probability, which is mainly due to the SARIS flight height. As such, SARIS

placement is different from TRIS placement, where TRIS’s optimal placement is to place

the TRIS close to the BS or user. This is because the product of two path-loss models in

negative exponential form.

In Fig. 5.8, we examine the weighted sum-rate versus xU in the SARIS system with and

without placement optimization, where K = 4, M = 8, L = 10. We evaluate the perfor-
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(a) Analytical results. (b) Monte Carlo simulation results.

Fig 5.5: Average channel power gain versus SARIS 3D position (analysis (left) and simulation
(right)), where xU = 400 m.

mance of the SARIS system with the following algorithms:

Scheme 1: Multi-user beamforming scheme in Section III.

Scheme 2: Weighted round-robin beamforming scheme in Section III-D.

Analysis: Analytical results in Section IV-B with the SARIS placement optimization.

Random phase shifts: Random phase shifts at SARIS and WMMSE transmit beamform-

ing at the BS [104].

WMMSE+SDR: WMMSE transmit beamforming at the BS and SDR technique for SARIS

passive beamforming [96].

Ground RIS: Multi-user beamforming scheme in Section III, where RIS is near to the

ground at the height of 10 m above the users.

The SARIS placement optimization is based on Section IV. In the case without SARIS place-

ment optimization, we suppose that SARIS is at the altitude of Hmax−Hmin
2

above the ground

users. Fig. 5.8 shows that the weighted sum-rate is significantly improved by optimizing

SARIS placement. The weighted sum-rate improvement by optimizing the SARIS placement

is notable when xU becomes large, since the impacts of doubled path loss and excessive path
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(a) Analytical results. (b) Monte Carlo simulation results.

Fig 5.6: Average channel power gain versus SARIS 3D position (analysis (left) and simulation
(right)), where xU = 600 m.

loss on the system performance are obvious. Moreover, Fig. 5.8 shows that the weighted

sum-rate decreases with xU since the communication distance increases. Note that the per-

formance gap between scheme 1 and scheme 2 decreases with xU . This is because when xU

is large, the impact of path loss dominates the impact of beamforming gain on the system

performance.

Regarding the beamforming algorithms, scheme 1 outperforms scheme 2, while scheme 2

achieves the closed-form solution which is tractable in calculation, and thus there is a trade-

off between system performance and algorithmic complexity. Furthermore, it is observed

that the performance of scheme 1 and scheme 2 are close when the SARIS placement is

not optimized. As shown in Fig. 5.8, the analytical result in Section IV-B serves as an

upper bound for scheme 2, which validates our analysis. As such, the analytical result can

be used to evaluate the SARIS performance and determine the near optimal placement. In

addition, for multi-user beamforming, the introduced scheme 2 achieves almost the same

performance with the algorithm of WMMSE+SDR. However, the former has a lower algo-

rithmic complexity. Last but not least, compared to the ground RIS, the SARIS system



132 CHAPTER 5. UAV SWARM-ENABLED AERIAL RECONFIGURABLE INTELLIGENT SURFACE

(a) Analytical results. (b) Monte Carlo simulation results.

Fig 5.7: Average channel power gain versus SARIS 3D position (analysis (left) and simulation
(right)), where xU = 1000 m.

achieves significant weighted sum-rate improvement, which demonstrates the advantages of

the introduced SARIS system.

In Fig. 5.9, we compare the weighted sum-rate versus RA under different Pmax, where SARIS

placement is optimized, xU = 400 m, and L = 10. It is observed that the weighted sum-rate

decreases with RA. This is because the UAV swarm center is optimized in 3D space, and

UAV’s apparent deviation from the optimal position will impact the system performance.

Thus, we have a design insight of reducing RA in SARIS. In addition, one can increase Pmax

with scheme 1 to achieve the same weighted sum-rate with scheme 2. In this way, the system

performance and algorithmic complexity are guaranteed with the cost of increased energy

consumption at the BS.

In Fig. 5.10, we evaluate the weighted sum-rate versus the number of UAVs L, where

K = 4, M = 8, xU = 400 m. It is observed that the SARIS placement optimization plays

a significant role in the system performance, which dominates the beamforming strategy.

Furthermore, when L is large, the performance gap between scheme 1 and scheme 2 increases

due to the increased aperture gain for multi-user spatial multiplexing. In Fig. 5.10, it is
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Fig 5.8: Weighted sum-rate versus XU with and without placement optimization, where
K = 4, M = 8, L = 10.

shown that under random phase shifts, although the SARIS placement is optimized enjoying

a high probability of having LoS links, the weighted sum-rate is still undesirable compared

to other schemes. This is because the random phase shifts incur severe mutual interference

among users.

In Fig. 5.11, we examine the weighted sum-rate versus N , where the SARIS placement is

optimized. It is observed that the weighted sum-rate increases with N , since a larger N

provides a better aperture gain. Moreover, the increasing rate of the weighted sum-rate

decreases with N , due to the logarithmic rate function.

In Fig. 5.12, we compare the impact of different channel state information (CSI) for SARIS

system, where the SARIS placement is optimized, K = 4, M = 8, xU = 400 m. We

simulate the full CSI-based optimization and the LoS CSI-based optimization. The latter

only considers the path loss and the LoS component determined by each ARIS’s position,
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Fig 5.9: Weighted sum-rate versus RA with placement optimization, where xU = 400 m,
L = 10.

and the NLoS component is omitted. It is observed from Fig. 5.12 that the performance

has not decreased much when shifting from full CSI-based optimization to LoS CSI-based

optimization. This is because the phase shifts of LoS components dominate that of NLoS

components when SARIS placement is optimized. On the one hand, the NLoS probability is

small given an optimized SARIS 3D position. On the other hand, the excessive NLoS path

loss reduces the signal power strength of NLoS components. Therefore, we can utilize the

ARISs’ positions in the beamforming design and omit the channel estimation for small-scale

fading, which reduces the system overhead. Moreover, to estimate the ARISs’ positions,

we can select a UAV leader to measure and store the mutual distances and directions from

other UAVs to the UAV leader. As such, the UAVs’ positions in the UAV swarm could

be calculated based on the UAV leader’s position. The estimation of signal parameters

via rotational invariance techniques (ESPRIT) can be used to estimate the UAV leader’s

position [105]. In this way, the channel estimation overhead can be further reduced, where
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Fig 5.10: Weighted sum-rate versus L with and without placement optimization, where
K = 4, M = 8, xU = 400 m.

only the UAV leader’s position needs to be measured.

5.6 Summary

We model and analyze a UAV swarm-enabled aerial reconfigurable intelligent surface (SARIS)

system. Specifically, we consider a multi-user MISO system where SARIS is placed to as-

sist the downlink transmissions for ground users. We introduce two beamforming schemes,

namely multi-user beamforming and weighted WRR single-user beamforming. Furthermore,

considering the random distributions of ground users and UAVs, we develop an analytical

framework to characterize the average channel power gain of the SARIS system and op-

timize the SARIS 3D placement. The results show that when users are far from the BS,

placing SARIS near the BS achieves a better performance. However, when users are near
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Fig 5.11: Weighted sum-rate versus N with placement optimization, where L = 10, xU =
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the BS, placing SARIS between the BS and users can balance the doubled path loss and

the excessive NLoS path loss. Moreover, simulation results demonstrate that the NLoS

components can be ignored, which reduces the system overhead for channel estimation. In

future work, the energy consumption of the SARIS system will be considered [106], where

the energy supply technologies (e.g., wireless power transfer and energy harvesting [107]) and

the energy-efficient communication protocols will be investigated to improve the operational

time of the SARIS system.
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Chapter 6

Conclusions and Open Problems

In this chapter, we the main contributions of this dissertation and a few promising future

research opportunities.

6.1 Summary of Contributions

In the last few years, UAVs have been widely developed from experiment to civilian use.

Researchers started thinking about how to integrate UAVs into the wireless network for im-

proving communication performance. In the meantime, users require intensive computation

resources to execute their tasks in an energy-saving but low-latency way. Edge computing

has been proposed to offload users’ computation tasks to the edge servers. This dissertation

focused on these two emerging technologies in wireless networks and explored a combination

of their strengths in developing energy-and-spectrum-efficient cyber-physical systems.

Thus far, the main contributions of our work in this dissertation are summarized as follows.

In Chapter 1, we presented the fundamentals and motivations when deploying UAVs, edge

computing, and RIS. The limitations on the design of these communication networks were

discussed. Then, we investigated the technical challenges and corresponding solutions of

these emerging technologies in wireless networks.

In Chapter 2, we utilized machine learning and stochastic geometry to model and optimize

138
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the spectrum sharing policy among ground D2D and UAV users. In the considered scenario,

the D2D-Txs are primary users, and UAVs are secondary users. UAVs opportunistically

access the licensed spectrum by performing spatial spectrum sensing. To model such 3D

spectrum sharing networks, we first obtain the probabilities of spatial false alarm and spatial

missed detection of a typical UAV in the hybrid network. The coverage probability of

a typical D2D-Rx and a typical UAV-Rx are derived based on the intermediate results.

Finally, we characterize the ASEs of D2D and UAV networks, respectively. Simulation results

show that reducing the spatial spectrum sensing radius of UAVs decreases the coverage

probability of UAV communications. However, this improves the ASE of UAV networks

despite the increasing inter-UAV interference. Based on the developed model, we can obtain

the optimal spatial spectrum sensing radius of UAVs, which maximizes the ASE of UAV

networks and guarantees the minimum ASE of D2D networks. Furthermore, the UAVs’

optimal transmit power is optimized to maximize the ASE of UAV networks, given the

requirement of minimum ASE of D2D networks.

In Chapter 3, we considered that UAV can provide computation resources for the ground

users together with the GCAPs. In such air-ground integrated MEC systems, we developed

an energy-efficient resource allocation algorithm. In the algorithm, we minimized the energy

consumption of ground users by optimizing users’ association, users’ uplink transmit power,

allocation bandwidth for data transmissions, assigned computation resources, and UAVs

placement. We decomposed the primary energy consumption minimization problem into

several manageable subproblems, and optimized each subproblem alternatively. Numerical

results demonstrated the advantages of our proposed iterative algorithm compared with

other computing method.

In Chapter 4, we focused on the VEC system, where the vehicle and in-vehicle users request

computation offloading with the help of RSU and edge servers. Specifically, we developed
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a deep learning-assisted energy-efficient computation offloading algorithm for VEC systems.

The developed algorithm aims to minimize the vehicle and in-vehicle users’ energy con-

sumption, while satisfying their latency constraints and outage constraints. By optimizing

the users’ association, data partition, transmit power, and computation resource allocation,

we can efficiently leverage the computation resources at road-side edge servers. With the

help of deep learning method for users’ association, the algorithm can solve the complex

VEC problem and find a near-optimal solution in a real-time manner with low complexity.

Simulation results demonstrated the advantages of the proposed algorithm in substantially

reducing users’ total energy consumption compared with other methods.

In Chapter 5, we focused on enhancing the communication performance with UAV and RIS.

We modeled and analyzed a SARIS system where RIS are mounted on UAVs to assist the

blocked cellular downlink communications. Specifically, we considered a multi-user MISO

system where SARIS was placed to assist the downlink transmissions for ground users. We

introduced two beamforming schemes, namely multi-user beamforming and weighted WRR

single-user beamforming. Furthermore, considering the random distributions of ground users

and UAVs, we developed an analytical framework to characterize the average channel power

gain of the SARIS system and optimized the SARIS 3D placement. The results showed that

when users are far from the BS, placing SARIS near the BS achieves a better performance.

However, when users are near the BS, placing SARIS between the BS and users can bal-

ance the doubled path loss and the excessive NLoS path loss. Moreover, simulation results

demonstrated that the NLoS components can be ignored, which reduces the system overhead

for channel estimation.
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6.2 Open Problems

There are numerous open research opportunities of the works presented in this dissertation.

Few of the potential research directions on UAV and edge computing are listed below.

6.2.1 Efficient Aerial RIS-Assisted MEC Design

In previous chapters, we introduce aerial RIS (ARIS) mounted on UAVs and UAV-enabled

MEC, respectively. Furthermore, we can bring ARIS to MEC. Specifically, RIS is mounted

on UAV instead of the edge server to reflect users’ signals to the BS for computation offload-

ing. Such an ARIS-assisted MEC network enjoys many benefits. First, due to UAV’s agility

and mobility, ARIS can be quickly deployed in wireless networks. Its movement and place-

ment can be designed to further improve the network performance. Second, the ARIS can

provide LoS paths in air-ground channels to support reliable uplink transmissions for compu-

tation offloading, where the communication performance scales with the number of reflecting

elements on ARIS. Third, different from the terrestrial RIS, ARIS achieves three-dimensional

(3D) signal reflection, which is not restricted to the 180◦ half-space reflection, but instead,

it provides a 360◦ panoramic full-angle reflection. Forth, ARIS does not have energy-hungry

issues of the computation-related and communication-related energy consumption. This is

because ARIS is light in weight and only reflects the signals rather than decoding, forward-

ing, and computing the information. Fifth, the cost of the ARIS-assisted MEC network is

less than that of the UAV-enabled MEC network, resorting to the ease of RIS hardware

implementation, which is made of two-dimensional digital metamaterial. Therefore, it is at-

tractive but significant to investigate the orchestra of UAV, RIS, and MEC in both industry

and academia. A comprehensive comparison of different MEC networks is given in Fig. 6.1,

including the MEC without UAV, the UAV-enabled MEC, and the ARIS-assisted MEC.
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Figure 6.1: A comprehensive comparison of different MEC networks.

Notwithstanding its many benefits, the ARIS-assisted MEC network constitutes active (user,

BS, UAV) and passive (ARIS) components. Moreover, it involves a joint movement and/or

placement, communication, and computation design, thus differing significantly from the tra-

ditional MEC network. This motivates us to introduce ARIS into MEC network. Moreover,

new transformative applications of ARIS in MEC networks are shown in Fig. 6.2.

In the following, we illustrate some potential but significant research opportunities for inte-

grating ARIS into MEC networks.

Multi-Hop RIS in Air-Ground Cooperative Computing. RISs would be deployed in

terrestrial networks as a part of the infrastructure in beyond-5G and the sixth-generation

(6G) networks. Designing an efficient ARIS-assisted MEC network in the presence of TRISs

is worth investigating. For example, multi-hop RIS-assisted cooperative computation offload-
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Figure 6.2: Applications of ARIS in MEC.

ing through ARISs and TRISs can be designed, providing extended coverage and improved

achievable data rate. TRISs can be deployed near BSs, while ARISs enjoy flexible mobility to

provide reliable uplink data rates for ground users in their computation offloading. As such,

the ARISs’ movement/placement design, computation resource allocation, and the phase

shifts of ARISs and TRISs can be jointly optimized to improve the network performance.

ARIS-Assisted Distributed Computing. Distributed computing serves as a privacy-

preserving approach for multiple distributed devices to train a learning algorithm without

exchanging their private data samples. Based on the partially observed data, the devices

compute data locally and exchange their training parameters to improve learning accuracy.

In the exchange of training parameters, a model aggregator is usually required. However,
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a ground model aggregator is sometimes challenging to be deployed in specific areas, such

as disasters, and remote areas. Therefore, ARISs can be deployed to enable the parameters

exchange and model aggregation, by providing reliable uplink and downlink data rates for

devices with aperture gain and flexible mobility. Moreover, the trajectory and the frequency

of model aggregation can be optimized to minimize UAV’s energy consumption.

UAV Swarm-Enabled Cooperative ARIS for MEC. The number of reflecting elements

on a single UAV is constrained resulting from the UAV’s limited payload and flight stability.

Note that an ARIS with a large size is sensitive to air turbulence. However, with moderate

ARIS size, UAV swarm-enabled cooperative ARISs can be applied in MEC to increase the

aperture gain for computation offloading [89]. In this scenario, UAV swarm deployment

needs to be designed, given specific ground users’ and BS’s distributions. On the other

hand, multiple ARISs can form a single-hop reflection together or realize multi-hop reflections

cooperatively between users and the BS. The above two schemes are expected to be compared

given specific network settings so that we can determine which one performs better under

different circumstances.

Energy-Efficient ARIS Trajectory Design. In ARIS-assisted MEC networks, the propulsion-

related energy consumption accounts for the vast majority of the ARIS’s sum energy con-

sumption, which is dissipated for supporting the hovering and mobility of the ARIS. For the

rotary-wing ARIS, energy consumption is related to its velocity and acceleration. Thus, to

maximize the ARIS’s service time of computation offloading (i.e., minimize the ARIS en-

ergy consumption), we can jointly design the ARIS trajectory and phase shift matrix while

guaranteeing users’ latency requirements. As such, ARISs can form cascaded virtual LoS

links between users and the BS, and decide whether to move or maintain hovering status

for maximizing its long-term benefits. Moreover, in aerial computing networks with ARISs

(e.g., Section II-C and II-D), it is worth to investigate the UAV’s energy balance between
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the computation-related and propulsion-related energy consumption to maximize the service

time of aerial computing.

ARIS-Assisted Wireless Powered MEC. Wireless power transfer (WPT) allows the

BS to transmit energy by electromagnetic waves for energy-constrained devices. The con-

vergence of WPT and MEC has fostered the rise of wireless powered MEC to prolong the

battery’s operation time. Traditional wireless powered MEC relies on the BS’s multi-antenna

beamforming technique, constrained to the BS’s fixed deployment. By deploying an ARIS

for both WPT and MEC, one can adjust the phase shift matrix and the ARIS movement to

enhance the pointed beams’ signal strength and form the cascaded virtual LoS paths. Users

utilize their harvested energy of WPT to upload their computational tasks. In such a new

3D cascaded wireless channel, the doubly near-far problem in WPT needs to be revisited,

and the computational tasks heterogeneity in MEC needs to be considered.

ARIS-Assisted Vehicular Edge Computing. Vehicular edge computing has become

a promising computing architecture in vehicular networks [108]. Edge servers can offload

vehicle users’ computational tasks via roadside units. However, enormous vehicles sometimes

dramatically appear on certain roads during the peak hours, and thus the computation

resources of the edge servers on these saturated roads may not satisfy the users’ intensive

computation demands. In this case, ARISs can be quickly deployed on the saturated roads,

offloading part of vehicle users’ computational tasks to the edge servers on other roads

that have available computation resources. The ARIS-assisted computation offloading and

computation balancing for vehicular edge computing networks are worth to be investigated.
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6.2.2 Computing in Space-Air-Ground Integrated Networks

The space-air-ground integrated network (SAGIN) is an exemplary network architecture in

6G networks to provide ubiquitous connectivity as shown in Fig. 6.3. In SAGINs, there are

three network segments, namely terrestrial network, aerial network, and space network[109].

Aerial networks and space networks belong to non-terrestrial networks. In previous chapters,

we study aerial network-enabled edge computing. In SAGINs, the space network can also

help on offloading tasks for ground users. Assume that the geostationary orbit (GEO)

satellites, medium earth orbit (MEO) satellites, and low earth orbit (LEO) satellites have

the computing ability and/or act as relay nodes to forward the computation tasks from

overloaded ground edge servers to available ground edge servers. However, the computing

capability of satellites is usually limited due to their restricted size, weight, and onboard

energy. Computing in SAGINs should be operated in a cooperative way where the three

network segments collaboratively offload the computation tasks.

The cooperative computing over SAGINs can be utilized in many scenarios. In the following,

we present some examples.

Computing in disasters. In disasters, the terrestrial base stations (BSs) are destroyed

and disabled due to damage. The aerial network can be quickly deployed to support the

computing services. In the meantime, the space network can assist the terrestrial network

and aerial network in offloading computation tasks by forwarding the tasks to other available

edge servers and/or the remote cloud servers. In this scenario, the system design should

consider the impact of propagation delay resulting from space networks on edge computing

performance.

Computing for remote Internet-of-Things (IoT). The current network can usually

not cover remote areas such as forests, vast oceans, and other arduous environments due to



6.2. OPEN PROBLEMS 147

Figure 6.3: Computing architecture of space-air-ground integrated networks.

the limited network coverage capability. In these remote areas, IoT devices may be widely

deployed to complete specific tasks requiring data computing. However, the battery capacity

of a remote IoT device is limited, which restricts the IoT device from executing extensive

computation tasks. To this end, SAGINs can be used to offload these remote IoT devices’

computation tasks to edge/cloud servers to save their energy and provide globally scalable

connectivity.

Computing for Internet-of-Space-Things (IoST). In non-terrestrial networks, satellites

usually require computation resources to execute their intensive tasks. Due to the limited

computation capacity and restricted onboard energy at satellites such as CubeSats, the tasks
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can be offloaded to other network segments to save energy consumption and reduce compu-

tation latency. The cooperative task offloading in SAGINs is worth to be investigated in the

future. Note that the relative orbital velocity of satellites to other network components is

usually significant, which generates the phase noise and frequency offset due to the Doppler

frequency shift. As such, the orthogonality among sub-carriers would be destroyed. There-

fore, new modulation schemes, such as orthogonal time-frequency space, can be utilized in

information transmission.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Lemma 2.4

Considering that there is at least one D2D-Tx in the Avi under the case of H1, we can

straightforwardly obtain the test statistics Γ under H1 is greater than that under H0, as

follows

P
(
Γ > ε|H1, I1

)
> P

(
Γ > ε|H0, I0

)
⇔ (1− Pmd) > Pfa, (A.1)

where ε is the energy detection threshold. In addition, we have

P 0 − P 1 = (Pfa − 1 + Pmd) β1 + (1− Pfa − Pmd) β0

= − [(1− Pmd)− Pfa] β1 + [(1− Pmd)− Pfa] β0 = [(1− Pmd)− Pfa] (β0 − β1) > 0,

(A.2)

where β0 > β1 in the system model.

Therefore, P 0 > P 1 holds, which completes the proof.
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A.2 Proof of Theorem 2.5

According to (2.1), conditioned on the D2D serving distance ldk =
∥∥dk − udk

∥∥, the coverage

probability of a typical D2D-Rx udk is given by

PcD| ldk

= P
{
SINR

(
udk
)
⩾ γthD

}
= P

hdkudk ⩾
γthD

(
IV
udk

+ ID
udk

+ σn
2
)

PD
(
ldk
)−αGG

∣∣∣∣∣∣ ldk = ∥∥dk − udk
∥∥

= LID
ud
k

(
γthD

PD
(
ldk
)−αGG

)
LIV

ud
k

(
γthD

PD
(
ldk
)−αGG

)
exp

(
− γthD σn

2

PD
(
ldk
)−αGG

)
.

(A.3)

More specifically, we have

LID
ud
k

(s)

= E

exp

−s
∑

dj∈ΦD,dj ̸=dk

PDhdjudk

∥∥dj − udk
∥∥−αGG


= exp

−2π2λD(sPD)
2

αGG

αGG sin
(

2π
αGG

)
 .

(A.4)

We define an integer Nh satisfying ΦV,Hn will HNh
≈ Rs. The interference power generated

from UAVs is obtained by a summation of each sub-region as follows

IVudk
=

Nh∑
n=1

IV,n
udk

+
N∑

n=Nh+1

IV,n
udk
, (A.5)

The Laplace transform of the interference power from UAVs at a typical D2D-Rx udk is

LIV
ud
k

(s) =

Nh⋃
n=1

LIV,n

ud
k

(s)
∞⋃

n=Nh+1

LIV,n

ud
k

(s). (A.6)
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In addition, we have

Nh⋃
n=1

LIV,n

ud
k

(s)

= E

exp
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≈ exp
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UAV λV,Hn
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√
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x
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−M
]
dx

}
,

and

ξ′ (x, PV , Hn) =
sηMPV

(
x2 +Hn
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)−αAG

2

/
M

1 + C exp [−B (E arctan (Hn/x)− C)]

Θ′ (x, PV , Hn) =
ηMPV η

(
x2 +Hn

2
)−αAG

2

M
− ηξ′ (x, PV ) ,

(A.7)

where in (A.7) we approximately consider the interference at the typical D2D-Tx instead of

at the typical D2D-Rx for analytical tractability.

When n > Nh, the flight heights of UAVs exceed the spatial spectrum sensing radius Rs.

Thus, based on the anlytical framework, UAVs will transmit with probability P 0. Therefore,

the Laplace transform of
N∑

n=Nh+1

IV,n
udk

is obtained by substituting P 0 for P act,n
UAV in (A.7) and

letting the lower limit of integral to be zero.

Combining (A.4), (A.6) into (A.3), we obtain the coverage probability of a typical D2D-Rx

as in (2.36), which completes the proof.

A.3 Proof of Theorem 2.6

The serving distance of UAV uvi is denoted by lvi , where lvi 2 = rvi
2 + hvi

2.
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According to (2.4), conditioned on rvi and hvi , the coverage probability of UAV-Rx uvi is
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(A.8)

where Iagguvi
= IVuvi + IDuvi + σn

2 is the aggregated interference and noise power at uvi , s =

nηMγthV

PV L(vi,uvi )(lvi )
−αAG

and L (vi, u
v
i ) = PLOS (vi, u

v
i )+ ηPNLOS (vi, u

v
i ) is given in (2.37), (a) is ob-

tained by the approximation of normalized gamma distribution of gviuvi [110], (b) is obtained

from Binomial theorem. Specifically, we have

LID
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(A.9)

Similar to (A.5) and (A.6), the Laplace transform of the interference power from UAVs is

LIV
uv
i

(s) =

Nh⋃
n=1

LIV,n
uv
i

(s)
N⋃

n=Nh+1

LIV,n
uv
i

(s). (A.10)

The results of (A.10) can be obtained with the similar methods to (A.7).

Finally, combining (A.9) and (A.10) into (A.8), we can obtain the desired results.
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Proofs for Chapter 3

B.1 Proof of Proposition 3.1

The energy consumption ΥG
km of UE k associated with GCAP m is given by

ΥG
km =

pkmDk ln 2

Bkm ln
(
1 +

hGkmpkm
Bkmn0

) . (B.1)

The first order derivative of ΥG
km with respect to Pkm is

∂ΥG
km

∂pkm
=
Dk ln 2

Bkm

ln
(
Bkmn0+hGkmpkm

Bkmn0

)
− hGkmpkm

Bkmn0+hGkmpkm[
ln
(
1 +

hGkmpkm
Bkmn0

)]2 . (B.2)

Letting x =
Bkmn0+hGkmpkm

Bkmn0
, we have x ⩾ 1, 1 − 1

x
=

hGkmpkm
Bkmn0+hGkmpkm

. The numerator of

(B.2) can be expressed as gp (x) = ln (x)−
(
1− 1

x

)
and its first order derivative is given by

∂gp(x)

∂x
= 1

x
− 1

x2
= x−1

x2
⩾ 0. Thus, we have gp (x) ⩾ 0 and ∂ΥG

km

∂pkm
⩾ 0, which indicates that

ΥG
km is non-decreasing with pkm.

The energy consumption of UE k associated with UAV m is given by

ΥA
km =

pkmDk ln 2

Bkm ln

1 +
hA0 pkm

Bkmn0

(
(zAm)2+(LA

km)
2
)αGA(zAm)

2


.

(B.3)

where αGA
(
zAm
)
= max

(
α1 − α2log10

(
zAm
)
, 2
)
. It can also be proved that ∂ΥA

km

∂pkm
⩾ 0 which

indicates that ΥA
km is non-decreasing with the respect to Pkm.
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B.2 Proof of Theorem 3.2

To minimize the power consumption of UE k associated with GCAPm, the latency constraint

should be satisfied, i.e., Dk

RG
km

+ Fk

fGkm
= Tk, and we have

log2

(
1 +

hGkmpkm
σ2

)
=

Dk

Bkm

(
Tk − Fk

fGkm

) . (B.4)

Similarly, when UE k is connected to UAV m, the maximal latency constraint is expressed

as Dk

RA
km

+ Fk

fAkm
= Tk. In addition, we have

pkmDk

ΥA
kmBkm

=
Dk

Bkm

(
Tk − Fk

fAkm

) . (B.5)

By calculating the transmit power in (B.4) and (B.5), we obtain the closed-form expressions

as shown in Theorem 1, which completes the proof.

B.3 Proof of Proposition 3.3

We define the function f (x) = x ln
(
1 + b

ax

)
, x ⩾ 0, a > 0, b > 0, and we have

f ′ (x) = ln
(
1 +

b

ax

)
− b

b+ ax
= ln (y) +

1

y
− 1, (B.6)

where y = ax+b
ax

⩾ 1, 1 − 1
y
= b

ax+b
. We define the function h (y) = ln (y) + 1

y
, and we have

h′ (y) = 1
y
− 1

y2
⩾ 0 and h (1) = 1. Thus, we have h (y) ⩾ 1 and f ′ (x) ⩾ 0.

The second order derivative of f (x) is given by

f ′′ (x) = − b2

x(b+ ax)2
< 0, (B.7)

which indicates that function f (x) is a concave function with respect to x. Thus, Rkm is

a concave function with respect to Bkm, and 1
Rkm

is a convex function of Bkm accordingly

which means the objective function of (3.32) is a convex function.
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In addition, due to the fact that constraints of (3.32) are convex, problem (3.32) is a convex

problem, which completes the proof.

B.4 Proof of Theorem 3.4

Since min
b

L (b,v, λb) is a convex problem and the slater’s condition is satisfied, we solve it

by using KKT conditions and letting ∂L(b,υ,λb)
∂Bkm

= 0.

Then, based on KKT conditions, we have

λb − ωkm
(p∗km + vk)Dk ln 2

=
ln
(
1 +

hkmp
∗
km

Bkmn0

)
− hkmp

∗
km

hkmp
∗
km+Bkmn0

Bkm
2
[
ln
(
1 +

hkmp
∗
km

Bkmn0

)]2 , (B.8)

where a∗km = 1, which completes the proof.

B.5 Proof of Proposition 3.5

By denoting SNRkm =
hkmp

∗
km

n0
, the function ψ (x) is given by

ψ (x) =
ln
(
1 + SNRkm

x

)
− SNRkm

SNRkm+x

x2
[
ln
(
1 + SNRkm

x

)]2 . (B.9)

In addition, the first order derivative of ψ (x) is given by

∂ψ (x)

∂x
= −

SNRkm

(SNRkm+x)

(
1
x
− 1

SNRkm+x

)
x2
[
ln
(
1 + SNRkm

x

)]2 −
2
[
ln
(
1 + SNRkm

x

)
− SNRkm

SNRkm+x

]2
x3
[
ln
(
1 + SNRkm

x

)]3 . (B.10)

Since 1
x
− 1

SNRkm+x
> 0, we have ∂ψ(x)

∂x
< 0, which completes the proof.
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B.6 Proof of Theorem 3.7

The Lagrangian function of problem (3.46) is given as follows

L
(
fGm, λf

)
=
∑
k∈Km

[
C22

FkDk

B∗
km

Tk(TkfG
km

−Fk) +
B∗
kmn0

hGkm

(
Fk
fGkm

− Tk

)

−ω
(
fGkm (t)

)
+ τ

(
fGkm (t)

) (
fGkm − fGkm (t)

)]
+ λf

(∑
k∈Km

fGkm − fG,pracm

)
,

(B.11)

where λf is the multiplier of (3.41a).

Since problem (3.46) is a convex problem and the Slater’s conditions are satisfied, we can

use KKT conditions to obtain the optimal solutions, which are expressed as follows

∂L
(
fGm, λf

)
∂fGkm

= 0, k ∈ Km

λf

(∑
k∈Km

fGkm − fG,pracm

)
= 0

∑
k∈Km

fGkm ⩽ fG,pracm , andfG,min
km ⩽ fGkm, k ∈ Km

λf ⩾ 0

. (B.12)

More specifically, the derivative of (B.11) is given by

∂L
(
fGm, λf

)
∂fGkm

=− 2

FkDk

B∗
km

Tk(TkfG
km

−Fk) C2 ln 2FkDk

B∗
km(Tkf

G
km − Fk)

2

− B∗
kmn0Fk

hGkm(f
G
km)

2 + τ
(
fGkm (t)

)
+ λf , k ∈ Km.

(B.13)

It can be observed that ∂L(fGm,λf)
∂fGkm

increases with fGkm. We consider the following two cases,

i.e., λf > 0 and λf = 0.

Case 1: When λf > 0, according to the fact that λf
( ∑
k∈Km

fGkm − fG,pracm

)
= 0, we have∑

k∈Km

fGkm = fG,pracm .
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In addition, since ∂L(fGm,λf)
∂fGkm

= 0, k ∈ Km, we have

2

FkDk

B∗
km

Tk(TkfG
km

−Fk) C2 ln 2FkDk

B∗
km(Tkf

G
km − Fk)

2 +
B∗
kmn0Fk

hGkm(f
G
km)

2

= λf + τ
(
fGkm (t)

)
, k ∈ Km.

(B.14)

Define the function ΨG
km (y) as in (3.49). Then, we obtain the optimal fGkm by (3.47)

and λf is obtained by (3.48). Since ΨG
km (y) decreases with y, we can determine that

ΨG
km

−1 (
λf + τ

(
fGkm (t)

))
decreases with λf .

Owing to λf > 0, we have
∑

k∈Km

max
(
ΨG
km

−1 (
τ
(
fGkm (t)

))
, fG,min
km

)
> fG,pracm .

Case 2: When λf = 0, fGkm is obtained by letting λf = 0 as shown in (3.50). According to

the constraint
∑

k∈Km

fGkm ⩽ fG,pracm , we have
∑

k∈Km

max
(
ΨG
km

−1 (
τ
(
fGkm (t)

))
, fG,min
km

)
⩽ fG,pracm ,

which completes the proof.
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Proofs for Chapter 4

C.1 Proof of Lemma 4.1

First, given akm, we have Nkm = βkDk

TRkm
= βkDk

T
Bλg
ln 2

Φ

(
N0λg

hL
km

pk

) . According to the distribution of

small-scale fading, we have

NkmP {Rkm (t) ⩽ Rkm}

=
βkDk

T Bλg
ln 2

Φ
(
N0λg
hLkmpk

)P{log2

(
1 +

hLkmpkgkm (t)

N0

)
⩽ λg

ln 2
Φ

(
N0λg
hLkmpk

)}

=
βkDk ln 2

TBλgΦ
(
N0λg
hLkmpk

)P{gkm (t) ⩽
(
2

λg
ln 2

Φ

(
N0λg

hL
km

pk

)
− 1

)
N0

hLkmpk

}

=
βkDk ln 2

TBλgΦ
(
N0λg
hLkmpk

) {1− exp
[
−

(
2

λg
ln 2

Φ

(
N0λg

hL
km

pk

)
− 1

)
N0λg
hLkmpk

]}
.

(C.1)

Then, according to NkmP {Rkm (t) ⩽ Rkm} ⩽ µo, ∀k ∈ K, we have

1− exp
[
−

(
2

λg
ln 2

Φ

(
N0λg

hL
km

pk

)
− 1

)
N0λg
hLkmpk

]
TBλg

βkDk ln 2
Φ
(
N0λg
hLkmpk

) ⩽ µo, ∀k ∈ K. (C.2)

Considering the user association akm, we have

M∑
m=1

akm

{
1− exp

[
−

(
2

λg
ln 2

Φ

(
N0λg

hL
km

pk

)
− 1

)
N0λg
hLkmpk

]}
βkDk ln 2

TBλgΦ
(
N0λg
hLkmpk

) ⩽ µo, ∀k ∈ K.

(C.3)
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C.2 Proof of Proposition 4.2

Define a function Zk as follows

Zk =
γk

2Dk

R∗
km

+
γk

2Fk
fkm

− Tk. (C.4)

Then, the Hessian matrix HZk
of Zk with respect to γk and fkm is given by

HZk
=

 2Dk

R∗
km

+ 2Fk

fkm
−2γk

Fk

fkm
2

−2γk
Fk

fkm
2 2γk

2 Fk

fkm
3

 . (C.5)

It can be observed that the first-order principal minors are non-negative, i.e., ∂2Zk

∂γk2 ⩾ 0,
∂2Zk

∂fkm
2 ⩾ 0. In addition, the second-order principal minor, given by |HZk

| = 4Dkγk
2Fk

R∗
kmfkm

3 ⩾ 0,

is also non-negative. Thus, according to Sylvester’s criterion, the Hessian matrix HZk
is a

positive semi-definite matrix, which indicates that HZk
is jointly convex for γk and fkm.

C.3 Proof of Theorem 4.3

If ck ⩽ 0, L (c, f, ϖ, ϑ) is a quadratic function with respect to γk, and it is monotonically

increasing with respect to γk when γk ⩾ 0. Therefore, the optimal γk is obtained at its lower

bound value γlbk which is obtained from (4.8b).

If ck > 0, L (c, f, ϖ, ϑ) is a quadratic function and it is convex with respect to γk. By taking

the first order derivative of L (c, f, ϖ, ϑ) with respect to γk, we have

∂L (c, f, ϖ, ϑ)
∂γk

= −2γikck + ϑk2γka
∗
km

(
Dk

R∗
km

+
Fk
fkm

)
. (C.6)

Letting ∂L(c,f,ϖ,ϑ)
∂γk

= 0, we obtain γoptk which minimizes L (c, f, ϖ, ϑ). From (4.8a), we obtain

the upper bound of γk, i.e., γubk , which is given in (4.19), and the optimal γk is expressed in

(4.16) by considering lower bound and upper bound of γk.
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Given the optimized cj+1, for the kth user connected with the mth edge server, the first-order

derivative of L (cj+1, f, ϖ, ϑ) with respect to fkm is given by

∂L (cj+1, f, ϖ, ϑ)
∂fkm

= ϖm − ϑk
(
γj+1
k

)2 Fk

fkm
2 . (C.7)

Letting ∂L(cj+1,f,ϖ,ϑ)
∂fkm

= 0, we obtain the optimal fkm, i.e., f optkm , as follows

f optkm =

√
ϑk
(
γj+1
k

)2
Fk

ϖm

. (C.8)

In addition, the computation resource allocation needs to meet user’s latency requirement.

According to (4.8a), we have fkm ⩾ f lbkm = Fk
Tk

(γj+1
k )

2−
Dk

R∗
km

. Combining (C.8) and f lbkm, we obtain

(4.20), which completes the proof.

C.4 Proof of Theorem 4.4

Due to the fact that ∂Φ(x)x
∂x

= Φ(x) x+ Φ(x)− 1 ⩾ 0, the function Φ (x) x increases with x.

Thus, the objective value in (4.24) decreases with ηk, and the optimal η∗k takes as large value

as possible. Since ∂Φ(x)
∂x

= Φ(x) − 1
x
⩽ 0, the LHS of (4.24a) increases with ηk. The upper

bound of ηk in (4.24a), i.e., ηub,1k , is obtained by taking equality in (4.24a). In addition, the

LHS of (4.24b) is an increasing function with respect to ηk. Thus, the upper bound of ηk in

(4.24b), i.e., ηub,2k , is obtained by taking equality in (4.24b). Combining the upper bounds

(i.e., ηub,1k , ηub,2k ) and the lower bound of ηk (i.e., ηlbk = N0λg
hLkmp

max
k

), we obtain the desired results.



Appendix D

Proofs for Chapter 5

D.1 Proof of Lemma 5.1

In the Cartesian 3D coordinate system as shown in Fig. 5.2, the BS is located at the origin.

Denote the projection of an arbitrary ARIS on the ground by a0 = (xa, ya, 0), where xa is

the ARIS coordinate on x-axis and ya is the ARIS coordinate on y-axis. Then, the horizontal

distance between the BS and a0 is given by lhBA =
√
xa2 + ya2. The conditional cumulative

distribution function (CDF) of lhBA is given by

FLh
BA

(
lhBA
∣∣ xA)

=

∫∫
√
xa2+ya2⩽lhBA

fA (xa − xA, ya)dxadya

=

∫ xa=lhBA

xa=−lhBA

∫ ya=
√
(lhBA)

2
−xa2

ya=−
√
(lhBA)

2
−xa2

fA (xa − xA, ya)dxadya,

(D.1)

where fA (·) is given in (5.40).

Thus, the conditional PDF of LhBA is obtained by Leibniz’s rule for differentiation, as follows

fLh
BA

(
lhBA
∣∣ xA) = ∂FLh

BA

(
lhBA
∣∣ xA)

∂lhBA

=

∫ lhBA

−lhBA

lhBA

[
fA

(
xa − xA,

√(
lhBA
)2 − xa2

)
+ fA

(
xa − xA,−

√(
lhBA
)2 − xa2

)]
√(

lhBA
)2 − xa2

dxa.

(D.2)
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By substituting (5.40) in (D.2), we have

fLh
BA

(
lhBA
∣∣ xA) = 2

πRA
2

∫ lhBA

max

−lhBA,
xA

2+(lhBA)
2
−RA

2

2xA


lhBA√(

lhBA
)2 − xa2

dxa

(a)
=

2lhBA
πRA

2

∫ lhBA

xA
2+(lhBA)

2
−RA

2

2xA

1√(
lhBA
)2 − xa2

dxa

(b)
=

2lhBA
πRA

2

∫ arccos

xA
2+(lhBA)

2
−RA

2

2xAlh
BA


0

1dτ

=
2lhBA
πRA

2 arccos
(
xA

2 +
(
lhBA
)2 −RA

2

2xAlhBA

)
,

(D.3)

where (a) is obtained because if xA ⩾ RA, then xA−RA ⩽ lhBA ⩽ xA+RA, thus xA
2+(lhBA)

2
−RA

2

2xA
⩾

−lhBA; if xA < RA, then RA − xA ⩽ lhBA ⩽ RA + xA, thus xA
2+(lhBA)

2
−RA

2

2xA
⩾ −lhBA, in (b), we

let xa = lhBA cos τ .

The distance between the BS and an arbitrary ARIS is given by lBA =
√(

lhBA
)2

+H2.

Therefore, the conditional PDF of the lBA is given by

fLBA
( lBA| xA, H) = fLh

BA

(
lhBA
∣∣ xA) ∣∣∣∣∂lhBA∂lBA

∣∣∣∣∣∣∣∣
lhBA=

√
lBA

2−H2

=
2lBA

πRA
2 arccos

(
xA

2 + lBA
2 −H2 −RA

2

2xA
√
lBA

2 −H2

)
,

(D.4)

which completes the proof.

D.2 Proof of Lemma 5.2

As shown in Fig. 5.2, for an arbitrary ground user, we denote the distance between the

ground user and the projection of the SARIS coordinate on the ground by lUcA . Denote the

horizontal distance between the ground user and the projection of an arbitrary ARIS on the
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ground by lhAU . Conditioned on lUcA , the conditional PDF of lhAU is given by

fLh
AU

(
lhAU
∣∣ lUcA) = 2lhAU

πRA
2Ω
(
lUcA , l

h
AU , RA

)
, max {0, lUcA −RA} ⩽ lhAU ⩽ lUcA +RA. (D.5)

Furthermore, if xAU ⩾ RU , the conditional PDF of lUcA is given by

fLUcA
( lUcA | xA) =

2lUcA
πRU

2Ω (xU − xA, lUcA , RU) , 0 ⩽ lUcA ⩽ xAU +RU . (D.6)

If xAU < RU , the conditional PDF of lUcA is given by

fLUcA
( lUcA | xA) =


2lUcA

πRU
2Ω (xU − xA, lUcA , RU) , RU − xAU ⩽ lUcA ⩽ xAU +RU

2lUcA

RU
2 , 0 ⩽ lUcA ⩽ RU − xAU

, (D.7)

Note that in (D.7), if 0 ⩽ lUcA ⩽ RU − xAU , we have P {0 ⩽ lUcA ⩽ RU − xAU} = (RU−xU+xA)2

RU
2

and fLUcA
( lUcA | 0 ⩽ lUcA ⩽ RU − xAU) =

2lUcA

(RU−xU+xA)2
. Therefore, we have

fLUcA
( lUcA , 0 ⩽ lUcA ⩽ RU − xAU | xA)

= P {0 ⩽ lUcA ⩽ RU − xAU} fLUcA
( lUcA | 0 ⩽ lUcA ⩽ RU − xAU)

=
2lUcA
RU

2 .

(D.8)

Now, we are in the position of removing the condition of lUcA from lhAU . The conditional

PDF of lhAU , which is conditioned on xA, is given by

if xAU ⩾ RU , then fLh
AU

(
lhAU
∣∣ xA)

=

∫ xAU+RU

xAU−RU

2lhAU
πRA

2Ω
(
x, lhAU , RA

) 2x

πRU
2Ω (xU − xA, x, RU) dx,

(D.9)

and
if xAU < RU , then fLh

AU

(
lhAU
∣∣ xA)

=
4lhAU

πRA
2RU

2

∫ xAU+RU

RU−xAU

x

π
Ω
(
x, lhAU , RA

)
Ω (xU − xA, x, RU)dx

+
4lhAU

πRA
2RU

2

∫ RU−xAU

0

xΩ
(
x, lhAU , RA

)
dx.

(D.10)
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The distance between an arbitrary ARIS and an arbitrary user is given by lAU =
√(

lhAU
)2

+H2.

Then, conditioned on xA andH, the conditional PDF of lAU can be obtained by fLAU
( lAU | xA, H) =

fLh
AU

(
lhAU
∣∣ xAU) ∣∣∣∂lhAU

∂lAU

∣∣∣∣∣∣
lhAU=

√
l2AU−H2

, which completes the proof.
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