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Urban Air Mobility: Demand Estimation and Feasibility Analysis 

Mihir Rimjha 

Abstract 

This dissertation comprises multiple studies surrounding demand estimation, feasibility and 

capacity analysis, and environmental impact of the Urban Air Mobility (UAM) or Advanced Air 

Mobility (AAM). UAM is a concept aerial transportation mode designed for intracity transport of 

passengers and cargo utilizing autonomous (or piloted) electric vehicles capable of Vertical Take-Off 

and Landing (VTOL) from dense and congested areas. While the industry is preparing to introduce this 

revolutionary mode in urban areas, realizing the scope and understanding the factors affecting the 

attractiveness of this mode is essential. The success of UAM depends on its operational efficiency and 

the relative utility it offers to current travelers. The studies presented in this dissertation primarily 

focus on analyzing urban travelers' current behavior using revealed preference data and estimating the 

potential UAM demand for different trip purposes in multiple U.S. urban areas. 

Chapter II presents a methodology to estimate commuter demand for UAM operations in the 

Northern California region. A mode-choice model is calibrated from the commuter mode-choice 

behavior observed in the survey data. An integrated demand estimation framework is developed 

utilizing the calibrated mode-choice model to estimate UAM demand and place vertiports. The 

feasibility of commuter UAM operations in Northern California is further analyzed through a series of 

sensitivity analyses. This study was published in Transportation Research Part A: Policy and Practice 

journal. 

In an effort to analyze the feasibility of UAM operations in different use cases, demand 

estimation frameworks are developed to estimate UAM demand in the airport access trips segment. 

Chapter III and Chapter IV focus on developing the UAM Concept of Operations (ConOps) and 

demand estimation methodology for airport access trips to Dallas-Fort Worth International Airport 

(DFW)/Dallas Love Field Airport (DAL) and Los Angeles International Airport (LAX), respectively. 

Both studies utilize the latest available originating passenger survey data to understand arriving 

passengers' mode-choice behavior at the airport. Mode-choice conditional logit models are calibrated 

from the survey data, further used to estimate UAM demand. The former study is published in the 



 

 

 

AIAA Aviation 2021 Conference proceeding, and the latter is published in ICNS 2021 Conference 

proceedings. 

UAM vertiport capacity may be a barrier to the scalability of UAM operations. A heavy 

concentration of UAM demand is observed in specific areas such as Central Business Districts (CBD) 

during the spatial analysis of estimated UAM demand. However, vertiport size could be limited due to 

land availability and high infrastructure costs in CBDs. Therefore, operational efficiency is critical for 

capturing maximum UAM demand with limited vertiport size. The study included in Chapter V 

focuses on analyzing factors impacting vertiport capacity. A discrete-event simulation model is 

developed to simulate a full day of commuter operations at the San Francisco Financial District's 

busiest vertiport. Besides calculating the capacity of different fundamental vertiport designs, sensitivity 

analyses are carried to understand the impact of several assumptions such as service time at landing 

pads, service time at parking stall, charging rate, etc. The study explores the importance of pre-

positioning UAM vehicles during the time of imbalance between arrival and departure requests. This 

study is published in ICNS 2021 Conference proceedings. 

Community annoyance from aviation noise has often been a reason for limiting commercial 

operations at several major airports globally. Busy airports are located in urban areas with high 

population densities where noise levels in nearby communities could govern capacity constraints. 

Commercial aviation noise is only a concern during landing and take-offs. Hence, the impact is limited 

to communities close to the airport. However, UAM vehicles would be operated at much lower 

altitudes and have more frequent taking-off and landing operations. Since the UAM operations would 

mostly be over dense urban spaces, the noise potential is significantly high. Chapter VI includes a 

study on preliminary estimation of noise levels from commuter UAM operations in Northern 

California and the Dallas-Fort Worth region. This study is published in the AIAA Aviation 2021 

Conference proceedings. 

The final chapter in this dissertation explores the impact of airspace restrictions on UAM 

demand potential in New York City. Integration of UAM operations in the current National Airspace 

System (NAS) has been recognized as critical in developing the UAM ecosystem. Several pieces of 

urban airspace are currently controlled by Air Traffic Control (ATC), where commercial operation 

density is high. Even though the initial operations are expected to be controlled by the current ATC, 



 

 

 

the extent to which UAM operations would be allowed in the controlled spaces is still unclear. As the 

UAM system matures and the ecosystem evolves, integrating UAM traffic with other airspace 

management might relax certain airspace restrictions. Relaxation of airspace restrictions could increase 

the attractiveness of UAM due to a decrease in travel time/cost and relatively more optimal placement 

of vertiports. Quantifying the impact of different levels of airspace restrictions requires an integrated 

framework that can capture utility changes for UAM under different operational ConOps. This analysis 

uses a calibrated mode-choice model, restriction-sensitive vertiport placement methodology, and 

demand estimation process. This study has been accepted for ICNS 2022 Conference. 
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General Audience Abstract 

Urban Air Mobility (UAM) or Advanced Air Mobility (AAM) are concept transportation 

modes currently in development. It proposes transporting passengers and cargo in urban areas using 

all-electric Vertical Take-Off and Landing (eVTOL) vehicles. UAM is a multi-modal concept 

involving low-altitude aerial transport. The high capital costs involved in developing vehicles and 

infrastructure suggests the need for meticulous planning and strong strategy development in the rolling 

out of UAM. Moreover, urban travelers are relatively more sensitive to travel time savings and travel 

time reliability; therefore, the efficiency of UAM is critical for its success.  This dissertation comprises 

multiple studies surrounding demand estimation, feasibility and capacity analysis, and the 

environmental impact of UAM.  

To estimate the potential for UAM, we need first to understand the mode-choice making 

behavior of urban travelers and then estimate the relative utility UAM could possibly offer. The studies 

presented in this dissertation primarily focus on analyzing urban travelers' current behavior and 

estimating the potential UAM demand for different trip purposes in multiple U.S. urban areas. The 

system planners would need to know the individual or combined effect of various parameters in the 

system, such as cost of UAM, network size of UAM, etc., on UAM potential. Therefore, sensitivity 

analyses with respect to UAM demand are performed against various framework parameters. 

Capacity constraints are not initially considered for potential demand estimation. However, like 

any other transportation mode, UAM could suffer from capacity issues that can cause operational 

delays. A simulation study is dedicated to model UAM operations at a vertiport and estimating factors 

affecting vertiport capacity. After observing the demand potential for certain optimistic scenarios, we 

realized the possibility of a large number of low-flying vehicles, which could cause annoyance and 

environmental impacts. Therefore, the following study focuses on developing a noise estimation 

framework from a full-day of UAM operations and estimating a highly annoyed population in the Bay 

Area and Dallas-Fort Worth Region. 
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In our studies, modeling restricted airspaces (due to commercial operations at large airports) 

was always a critical part of the analysis. The urban airspaces are already quite congested in some 

urban areas, and we assumed that UAM would not operate in the restricted airspaces. The last study in 

this dissertation focuses on quantifying the impact of different levels of airspace restrictions on UAM 

demand potential in New York. It would help system planners gauge the level of integration required 

between the UAM and National Airspace System (NAS). 
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1. Introduction 

Urban Air Mobility (UAM) or Advanced Air Mobility (AAM) is a concept transportation mode 

which proposes to solve ground congestion problems by adding another dimension in urban mobility. 

The concept involves utilizing all electric Vertical Take-Off and Landing (eVTOL) vehicles for aerial 

transport of passengers and cargo inside urban ecosystem. Even though most of the developments in 

UAM occurred in recent years, the concept is not entirely novel. On-demand helicopter taxi services 

were offered during the 1970s in Boston and other cities [1]. New York Airways started offering 

helicopter taxis from the Pan Am Building to the airline’s terminal at John F. Kennedy Airport (JFK) 

in 1965 [2]. However, these services could not sustain the operating cost and had strong opposition 

from the community due to increased noise and potential accident hazards [3]. Helicopter taxi services 

are still operating but limited to a few metropolitan areas due to high travel costs. BLADE currently 

offers airport shuttle services to all New York airports from three heliports in Manhattan [4]. Until 

recently, Voom used to offer helicopter services in São Paulo, Mexico City, and the San Francisco Bay 

Area [5]. Uber offers door-to-door multi-modal helicopter taxis from Manhattan to JFK airport [6]. 

While these services are currently being offered, they are far from the UAM ecosystem in 

development. UAM would involve autonomous (or piloted) electric vehicles with Vertical Take-Off 

and Landing (VTOL) capabilities to operate from congested urban spaces. UAM system plans to 

accommodate a larger population by offering services at lower cost by virtue of automation, economies 

of scale, and government subsidies [7]. 

Although the flying taxi concept sounds exciting, the system needs to be very efficient to attract 

travelers regularly. A system can only scale if there is sufficient demand. Therefore, for UAM to grow, 

it is paramount to attract passengers. Travel-time savings is the major attraction of UAM in urban 

settings. The UAM concept is multi-modal in design, putting it at a disadvantage as travelers dislike 

transfers in the urban transportation system. However, if the overall time-savings through UAM are 

significant compared to alternative modes, it could attract urban travelers. 

Moreover, the travel-time savings should come at a reasonable marginal cost if UAM wants to 

target a larger population. Otherwise, it would be limited to a few similar to current helicopter taxi 

services. Therefore, analyzing the target population is essential for the scalability of UAM. UAM 
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attractiveness is subjected to travelers’ Willingness-To-Pay (WTP) and their trip requirements. Hence, 

understanding the demographics of the target population, travel patterns, and mode-choice behavior is 

vital for efficient system design. A more efficient system can be tailored if the planners and operators 

know the factors influencing UAM demand. 

Realizing the scope is the primary step in the development of the UAM system. Prior to 

demand estimation analysis, initial screening of the urban areas in the United States is performed using 

characteristics that would promote or inhibit the UAM mode's success. Based on the population, socio-

economic, travel patterns, and weather information, the following four urban areas were chosen 

Northern California (San Francisco Bay Area), Southern California (Los Angeles Area), Dallas-Fort 

Worth, and New York City. Each of the four regions is at the focus of at least one study presented in 

this dissertation. The summary of the initial screening is included in Table 1. 

Table 1: Weather and Socio-Economic Characteristics of Various Metropolitan Areas 

Metropolitan 

Area 

Temperature Wind Precipitation Snow Population Income 

 % 

Time 

below 

32F** 

% Time 

temp<32F & 

(air-dew) 

temp is 

=<2F** 

% Records 

where wind 

speed is >= 

15 knots** 

Average 

annual inches 

Days 

when 

>= 1 

inch* 

MSA 

population 

in 

millions*** 

HHs with 

income 

>100k in 

thousands 

*** 

Atlanta 1.7 0.04 3.7 49.1 0.9 5.8 508.6 

Boston 16.6 0.89 12.1 43 11 4.5 584.8 

Chicago 18.2 1.41 11.5 40.4 12.6 7.2 709.6 

Dallas 3.1 1.14 10.2 35.7 1 7.2 645.5 

Los Angeles 0.04 0.05 15.7 9.4 0 13.4 1,204.1 

Miami 0.9 0.97 3.1 67 0 6.1 437.4 

New York 10.9 0.01 3 43.7 6.7 19.3 1,812.6 

San Francisco 6.9 0.09 16.6 16.8 0 4.7 639.4 

Seattle 9.1 0.12 3.2 41.7 1.7 3.8 433.4 

Washington DC 11.1 1.34 4.8 40.2 4.2 6.2 996.9 

* Source: 2007-2017 ‘Global Summary of the Year’ records from Climate Data Online (NCDC). [8] 

** From 6 AM–8 PM, Source: 2015 ASOS 1-min weather records by NOAA [9] 

*** Using 2009 dollars, Source: CEDDS, Woods and Poole, 2016. [10] 

 

Exploring different trip purposes for UAM potential is required to find UAM use cases to 

expand the reach to a greater population. The airport shuttle market has been identified as an early 

adopter of the UAM due to operational efficiency from demand concentration at one end, existing 
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infrastructure at one end, and the opportunity for collaboration with airlines for premium services [11]. 

However, the scalability of the UAM would require tapping into larger markets such as commuters. 

Even if the UAM demand potential exists, capturing the demand would be challenging for the 

UAM system. Urban travelers are relatively more sensitive to cost and time. Therefore, the reliability 

and efficiency of the UAM system should be high. Major challenges include infrastructure 

development, landside and airspace capacity constraints, setting up the UAM network in already 

congested urban airspaces, community acceptance, handling potential annoyance from noise. Initial 

studies included in this dissertation focuses on building demand estimation frameworks for different 

trip purposes to understand factors influencing the UAM demand. Following studies analyze the 

factors affecting vertiport capacity and potential noise generated from a full day of operations. The last 

study quantifies the impact of different levels of airspace restrictions on UAM demand potential. This 

compilation of studies builds a comprehensive framework to understand the demand potential and 

feasibility of UAM operations.  

1.1 References 

[1] MITRE (2018), Urban Air Mobility Adds a New Dimension to Travel.  

https://www.mitre.org/publications/project-stories/urban-air-mobility-adds-a-new-dimension-to-

travel 

[2] Young, Michelle (2016). There Used to Be a Helipad on the MetLife (Pan Am) Building in NYC. 

https://untappedcities.com/2016/03/07/there-used-to-be-a-helipad-on-the-metlife-pan-am-building-

in-nyc/ 

[3] Urban Air Mobility has failed in the 1960s — Whats different now? 

https://medium.com/technology-the-human-mind/urban-air-mobility-has-failed-in-the-1960s-

whats-different-now-f5ece6de55a3 

[4] BLADE. https://www.blade.com/nyc-airports 

[5] Voom (2020). https://acubed.airbus.com/blog/voom/closing-this-chapter-our-learnings-on-

transforming-how-people-move/ 

[6] Soon, Stella. CNBC (2019). Uber’s $200 helicopter taxi: Manhattan to JFK airport in 8 minutes 

flat.  

https://www.mitre.org/publications/project-stories/urban-air-mobility-adds-a-new-dimension-to-travel
https://www.mitre.org/publications/project-stories/urban-air-mobility-adds-a-new-dimension-to-travel
https://untappedcities.com/2016/03/07/there-used-to-be-a-helipad-on-the-metlife-pan-am-building-in-nyc/
https://untappedcities.com/2016/03/07/there-used-to-be-a-helipad-on-the-metlife-pan-am-building-in-nyc/
https://medium.com/technology-the-human-mind/urban-air-mobility-has-failed-in-the-1960s-whats-different-now-f5ece6de55a3
https://medium.com/technology-the-human-mind/urban-air-mobility-has-failed-in-the-1960s-whats-different-now-f5ece6de55a3
https://www.blade.com/nyc-airports
https://acubed.airbus.com/blog/voom/closing-this-chapter-our-learnings-on-transforming-how-people-move/
https://acubed.airbus.com/blog/voom/closing-this-chapter-our-learnings-on-transforming-how-people-move/


 

 

4 

 

https://www.cnbc.com/2019/11/04/uber-copter-8-minute-helicopter-taxi-to-new-yorks-jfk-

airport.html 

[7] UAM Market Study. 

https://www.nasa.gov/sites/default/files/atoms/files/uam-market-study-executive-summary-v2.pdf 

[8] [dataset] CEDDS, Woods and Poole, 2016 https://www.woodsandpoole.com/product-

category/cedds/ 

[9] [dataset] 'Global Summary of the Year' (2007-2017) records from Climate Data Online (NCDC) 

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00947 

[10] [dataset] ASOS 1-min weather records by NOAA (2015) ftp://ftp.ncdc.noaa.gov/pub/data/asos-

onemin/ 

[11] Booz Allen Hamilton (2018). "Final Report: Urban Air Mobility Market Study".  

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190001472.pdf [accessed September 12, 

2020] 

 

   

https://www.cnbc.com/2019/11/04/uber-copter-8-minute-helicopter-taxi-to-new-yorks-jfk-airport.html
https://www.cnbc.com/2019/11/04/uber-copter-8-minute-helicopter-taxi-to-new-yorks-jfk-airport.html
https://www.nasa.gov/sites/default/files/atoms/files/uam-market-study-executive-summary-v2.pdf
ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/
ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/


 

 

5 

 

2. Commuter demand estimation and feasibility assessment for Urban Air Mobility in 

Northern California 

 

Rimjha, Mihir, et al. "Commuter demand estimation and feasibility assessment for Urban Air Mobility 

in Northern California." Transportation Research Part A: Policy and Practice 148 (2021): 506-524. 

2.1 Abstract 

This study aims to estimate passenger demand for Urban Air Mobility (UAM) and analyze the 

feasibility of operating the system in Northern California. UAM is a concept mode of transportation 

designed to bypass ground congestion for time-sensitive, price-inelastic travelers using autonomous, 

electric aircraft with Vertical Takeoff and Landing (VTOL) capabilities. This study focuses 

specifically on commuting trips, which are frequent and considered relatively more time-sensitive than 

other types of personal trips. The UAM mode's feasibility is studied using sensitivity analysis of UAM 

demand to cost per passenger mile and the number of vertiports placed in the region. This study also 

explores the spatial distribution of UAM demand in Northern California, which further helps in 

identifying the major commuter trip-attraction and trip-production zones for the UAM mode in the 

region. The results indicate that sufficient UAM demand for commuting trips can only be reached at 

optimistically low UAM offered fares.  These fare levels could be challenging to obtain given the high 

real estate cost in Northern California's urban regions. Moreover, the reliability of the UAM mode 

must be comparable to the automobile mode; otherwise, it loses significant demand with increasing 

delays. The results also show that the commuting flows with promising UAM demand in Northern 

California are heavily one-directional, with San Francisco Financial District being a major attraction. 

Other types of trips should also be considered along with commuting trips to generate an economically 

viable system and reduce deadheading. 

Keywords: On-Demand Mobility, Urban Air Mobility, Vertical Takeoff and Landing, Travel 

Demand 
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2.2 Introduction 

On-Demand Mobility (ODM) could change how people travel in the future.  With ODM, 

"vehicle routes and schedules are not fixed a priori; instead, they adapt dynamically to serve incoming 

transport requests" [1]. Today's society has seen implementations of ODM through mobile app-based 

taxi-hailing services, including Lyft and Uber. However, in the future, technologies such as 

autonomous vehicles and 2- or 4-person electric aircraft with vertical takeoff and landing (VTOL) 

capabilities are expected to be fully in service to the general public [2, 3]. ODM's impact will be two-

fold by adding modes to a traveler's choice set and increasing the operational efficiency of existing 

transportation systems during peak-hour commutes.   

The VTOL concept, also known as Urban Air Mobility (UAM), has gained considerable 

attention in recent years for its anticipated appeal to time-sensitive, price-inelastic travelers.  It would 

provide a fast mode of transportation to bypass the congestion of ground transportation systems. 

America's most congested cities have the opportunity to receive the most significant benefit from 

UAM by reducing the delays and overall travel times.  For example, in 2015, "the average San 

Francisco resident spent 230 hours commuting between work and home – that is half a million hours of 

productivity lost every single day" [4].   

The UAM network will consist of vertiports, which, similar to helicopter pads, can be located 

in fields or on building rooftops.  To use the UAM mode, commuters will first need to travel to the 

nearest vertiport to board a UAM aircraft.  For this research, vertiport accessibility modes include 

walking or an ODM ground vehicle such as Uber or Lyft. We assume no public parking available at 

the vertiports.  The commuter will then board a UAM aircraft to fly to the vertiport nearest to their 

destination, similarly relying on walking or ODM for the last-mile transportation.  To date, a few 

companies have offered a similar service to UAM by using helicopters between helipads, such as 

BLADE with shuttle rides in the Bay area, Los Angeles, and New York [5]. However, these services 

are limited to very few Origin-Destination (OD) pairs. Helicopter commuter services are expensive 

compared to the UAM price estimated by Booz-Allen-Hamilton in a study supported by NASA [6] and 

an autonomous aerial vehicle manufacturer, E-hang [7]. The former estimated $6.25 per passenger 

mile in the near-term which could drop by 60% ($2.50) in the long-term, whereas the latter ran a 
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conservative financial model with the unit fare of $4 per passenger mile for the near-term, which could 

drop significantly considering economies of scale and efficiency gains.  

In addition to vertiports, the UAM concept utilizes electric vehicles with advanced avionics and 

VTOL capabilities. UAM aircraft may be fully autonomous in the long-term, but they would include a 

safety pilot in the initial stages of deployment. The aircraft is expected to be a viable mode alternative 

for commuting. UAM aircraft will have a maximum range between 120-183 miles [4, 8] with a top 

cruise speed between 150-200 mph [4].  While this mode will be costly initially, similar to a helicopter, 

it could become more affordable over time, making it more feasible to use on a frequent basis [9].  

Uber has already invested in VTOL by planning an initial offering of its UberElevate product in three 

test cities [10] by the year 2020.  

This study aims to analyze the feasibility of offering UAM services to the commuter market in 

the Northern California region, centered on San Francisco. This study involves developing a model to 

estimate UAM commuter demand for different scenarios with varying vertiports in the region and cost 

per mile (CPM) to the traveler.  The UAM demand model utilizes a calibrated mode-choice conditional 

logit model based on the add-on National Household Travel Survey (NHTS) data.  The demand model 

is used to obtain a network of UAM vertiports placed optimally to maximize the UAM demand 

iteratively. The analysis considers the household income distribution in the region and the number of 

vertiports and CPM. 

2.3 Literature Review 

Existing literature contains several studies that assess the future of UAM.  Booz Allen 

Hamilton performed a comprehensive market study of UAM for the National Aeronautics and Space 

Administration (NASA) [6]. They focused on ten major urban areas in the United States and witnessed 

high variability in UAM demand across the cities.  A logit model was calibrated using two variables, 

travel time and travel cost per median hourly household income, using the American Community 

Survey (ACS) 2016 data and a general population survey that the company conducted. Their Monte 

Carlo simulations estimated a demand of close to 80,000 daily passengers across the United States 

served by 4,000 UAM vehicles for all trip purposes. This study assumed that UAM would use existing 

infrastructure for vertiports, specifically already built helipads and airports. However, the locations of 
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helipads and airports are not optimized to maximize demand. Using existing facilities could 

significantly disadvantage the UAM mode as intermodal distances could increase. The analysis was 

also performed at the census tract level, limiting the ability to estimate the mode choice of individuals 

and mode-specific trip characteristics. 

Fu et al. [11] performed a mode-choice analysis in the UAM environment based in Munich, 

Germany. The study included data collection from an online stated-preference survey and the creation 

of several discrete choice models. The study found that for commuting, public transit is the most 

desirable choice, followed by auto, whereas UAM selection is the least likely. Their model estimates 

suggest a relative increase of acceptance for autonomous modes in the higher-Value-Of Time (VOT) 

group. Since this study is based on a stated-preference survey, it is possible that results could differ 

from actual, revealed-preference behavior. 

Bulusu et al. [12] developed a traffic analysis method to estimate the maximum number of 

people that can benefit from UAM in a metro area. As a sample application, they applied their 

methodology to 327,57 commute trips in San Francisco Bay Area. Their study estimated multi-modal 

UAM trip itineraries and compared travel time savings by UAM compared to the car for different cases 

of vertiport transfer times. Commuters who only shift mode with 50% or more of travel time savings 

are considered to have a high value of time. They found that during high congestion and even with a 

long transfer time of 15 minutes, 45 % of commuters with the high value of time could benefit from 

UAM on a travel time basis. This indicates high UAM demand potential in the region. However, the 

study did not consider commuters' willingness-to-pay, which is essential to estimate total UAM 

passenger demand. 

Balac et al. [13] explored the prospects of the UAM service in Zurich, Switzerland. They 

created experiments with combinations of various UAM passenger processing times, cruising speeds, 

and variable costs, assuming a base fare of 6 Swiss Francs (CHF). Their experiments found that when 

the variable costs exceed 1.8CHF/km, the UAM service failed to attract high passenger demand and, 

therefore, making the service only attractive to the very high-income market segment of the 

population. The study concluded that the UAM market share in small urban areas like Zurich is low, 

but for metro areas with dense populations, the UAM market share in the transportation system could 
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be significant.   Limitations of this study include that the experiments were carried out on only a 10% 

population sample with a pre-defined network of nine-vertiports based on local expertise. Pre-defined 

vertiport locations might not maximize the UAM demand and, therefore, decrease the mode's demand 

potential. Building upon this study, Balac et al. [14] estimated demand for the aerial vehicle in the 

Zurich region using multi-agent-based simulation paired with a mode-choice model. Using Uber Black 

price for the aerial vehicle, the demand was found to be low, and the aerial vehicle would mostly serve 

mid-distance trips requiring high detour factors due to terrain. This study focused on the Zurich region, 

and its findings may not apply to an urban region in the USA due to differences in commuting patterns, 

terrain, congestion, demographics, public transit network, mode choice availability, etc. Nevertheless, 

the study provides significant reference and validation points. 

Similar efforts are being put to explore the human factors involved in the integration of UAM 

into the current transportation system. Analyzing the user's perception and degree of public acceptance 

is equally important in the development of UAM. Al Haddad et al. [15] explored various factors 

affecting the adoption and use of UAM using a stated preference survey. After modeling adoption time 

using exploratory factor analyses and discrete choice models, they found safety and trust, affinity to 

automation, data concerns, social attitude, and socio-demographics as important factors in the adoption 

of UAM. Eker et al. [16] studied individuals' perceptions of benefits and concerns from UAM 

utilization, potentially affecting its adoption by the commuting population. They statistically analyzed 

data (collected through online-survey) using grouped random parameters bivariate Probit models. They 

found that an individual's perception towards the use of UAM is affected by various socio-

demographic, behavioral, and attitudinal attributes. Behme and Planing [17] performed a qualitative 

analysis to study customer acceptance of UAM using individual interviews. They found that UAM 

acceptance would increase if the system is made more relevant and better known to the public. 

Furthermore, the study emphasized coherent intermodal connections for better acceptance of UAM in 

the current transportation system. 

While the authors of this paper are aware of the factors affecting the adoption of UAM in the 

current transportation system, the study assumes full adoption of UAM and focuses on the feasibility 

of operating UAM from an economic perspective. The study presented in this paper builds upon 

previous work completed by Syed et al. [18], where a conditional logit model is calibrated to estimate 
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UAM demand in the Northern California region.  This study builds on Syed et al. [18] by creating a 

new robust mixed conditional logit mode-choice model that captures the unobserved heterogeneity, 

which follows the method described in Greene et al. [19].  Eker et al. [20] discuss in detail the 

unobserved heterogeneity present with regards to the public's perceptions of UAM vehicles.  The study 

presented in this paper incorporates segregated travel times (In-Vehicle Travel Time and Out-of-

Vehicle Travel Time), income categories in the model, and other significant variables like the number 

of transfers. Additionally, the simulation of alternate trip modes in the model calibration and demand 

estimation (or model application) is improved by using Application Programming Interfaces (API) [21, 

22], which uses real trip data for estimating the trip characteristics with high accuracy.  Moreover, the 

parking cost is calculated by developing a function based on economic density and monthly parking 

costs [23]. The transit cost calculation is improved by including mode-based, OD cost functions built 

upon fare charts of respective transit agencies [24]. The resolution of the analysis is also refined from 

census tract to census block-group to improve accuracy. 

2.4 Study Area 

Northern California, centered on San Francisco, was defined as the study area for this analysis, 

given its UAM potential for commuting trips.  Specifically, the success of the UAM depends on the 

performance of other modes in the region. The San Francisco Bay Area ranks consistently in the top 

five congested cities globally [25]. During peak hours, commuters in the San-Francisco area have lost 

nearly five days every year to traffic congestion [26]. The region's unique polycentric commuting 

pattern commutes by ground modes in peak hours even more difficult [27]. Also, UAM could be 

affordable to a high portion of the population as the Bay area has the second-highest household income 

levels in the United States, second only to Washington DC [28], and also has around 640,000 

households with an annual household income greater than $100k [29].  

The weather in Northern California also benefits the UAM mode with reduced inclement 

weather events. Inclement weather conditions can prevent the operation of UAM, similar to the 

operation of air transportation today. Even with advanced avionics and automation, it would be 

challenging to provide reliable passenger service in poor weather conditions. Using 11 years of 

aggregated weather data from National Climate Data Center (NCDC) [30] and 1-min weather records 

by National Oceanic and Atmospheric Administration (NOAA) [31], it was found that on average, the 
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San Francisco metro area receives only 16 inches of precipitation annually and has zero days of snow 

with more than an inch. However, San Francisco is impacted by wind, where 16% of the time the wind 

is above a 15-knot speed between 8 AM-6 PM [31], fog and seismic activity could affect the operation 

of a UAM system. The promising commute patterns, population demographics, and generally, 

favorable weather conditions compared to other U.S. regions support Northern California's selection to 

investigate UAM operations. 

In total, the study area consists of 17 counties (7,106 block-groups) centered around the San 

Francisco area. The selection of counties in the study area matches the range of proposed UAM 

aircraft, where counties with population centroid within 150 miles of any of the Bay Area cities (San 

Francisco, San Jose City, Oakland) were selected. Figure 1 shows a map of the study area.  No 

commuting trips from the county areas outside of the 150-mile radius were considered in this study. 
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Figure 1: Northern California 17-County Study Area 

2.5 Data and Methodology 

This study includes two tasks.  The first was calibrating the mode choice model to quantify 

how commuters make decisions given the mode alternatives available to them and those alternatives' 

attributes. The second was applying the mode choice model to all of the commuters in the study area.  

In the application, the vertiports are first placed, and then the UAM demand for the region was 

quantified for the given set of vertiports.  Table 2 summarizes the datasets supporting the tasks. 

Table 2: Datasets Used in the Analysis 

Datasets Data Resolution Task 

National Household Travel Survey-2017 

Add-on Data [32] 

Location Coordinates Mode Choice Model Calibration 

Longitudinal Employer-Household 

Dynamics Origin-Destination Employment 

Block-group 

 

Parking Cost Estimation 

Model Application 
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Statistics (LODES) [33]  

American Community Survey-2017 [34] Block-group Mode Choice Model Calibration 

Model Application  

 

2.5.1  Mode Choice Model Calibration 

To estimate the demand for UAM, the mode choice decision-making process of commuters 

must be understood. This involved reconstructing each individual's mode alternatives choice set (i.e., 

modes available to them) and estimating how trade-offs are made between attributes of those 

alternatives such as time and cost. For the mode choice model, we calibrated a mixed conditional logit 

model.  The conditional logit model is a type of logit model that only includes independent variables 

that vary between the modes for a single commuter (called generic variables- e.g., travel time, cost, 

distance). Alternative-specific variables that do not vary, such as number of household vehicles, could 

not be included because the coefficients for the UAM mode cannot be estimated as it is never the 

chosen mode in the study's revealed-preference mode choice dataset.   

McFadden formulated the conditional logit analysis in detail [35], which became a popular 

method for mode choice studies in transportation, including [36, 37, 38, 39]. However, there are 

certain limitations to the conditional logit model. It assumes the same preferences for all individuals, 

which depend only on observable characteristics. The Independence of Irrelevant Attributes (IIA) 

property of the conditional logit model causes proportional substitution between the alternatives. The 

mixed logit model overcomes these limitations by allowing for random taste variation, unrestricted 

substitution patterns, and correlation in unobserved factors over time [40]. In mixed conditional logit 

models, a commuter is expected to make mode choice decisions based on the utility derived from the 

mode. The utility that individual n derives from choosing alternative j on choice occasion t is given by 

𝑈𝑛𝑗𝑡 = 𝛽𝑛
′ 𝑥𝑛𝑗𝑡 + 𝜀𝑛𝑗𝑡 [41], where 𝛽𝑛

′  is a vector of individual-specific coefficients, 𝑥𝑛𝑗𝑡 is a vector of 

observed attributes relating to individual n and alternative j on choice occasion t, and 𝜀𝑛𝑗𝑡 is a random 

term that is assumed to be an independently and identically distributed extreme value. For known  𝛽𝑛 , 

the probability of individual n choosing alternative i on choice occasion t is given by Equation 1, 

which is standard conditional probability. 
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𝐿𝑛𝑖𝑡(𝛽𝑛) =
exp(𝛽𝑛

′ 𝑥𝑛𝑖𝑡)

∑  𝐽
𝑗=1 exp(𝛽𝑛

′ 𝑥𝑛𝑗𝑡)
 (1) 

The unconditional probability of the commuter's observed sequence of choices is obtained by 

integrating 𝐿𝑛𝑖𝑡 over the distribution of 𝛽, given by Equation 2. 

𝑃𝑛(𝜃) = ∫ 𝑆𝑛(𝛽)𝑓( 𝛽 ∣∣ 𝜃 )𝑑𝛽 (2) 

Where: 

𝑓( 𝛽 ∣∣ 𝜃 ) = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑜𝑟 𝛽, 𝑤ℎ𝑒𝑟𝑒 𝜃 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠  

𝑆𝑛(𝛽𝑛) is the probability of the observed sequence of choices for known 𝛽𝑛 and is given by 

Equation 3, where 𝑖(𝑛, 𝑡) denotes the alternative chosen by individual 𝑛 on choice occasion 𝑡 and 𝑇 is 

the total number of choices. 

𝑆𝑛(𝛽𝑛) = ∏  

𝑇

𝑡=1

𝐿𝑛𝑖(𝑛,𝑡)𝑡(𝛽𝑛) (3) 

The coefficients are estimated by maximizing using a log-likelihood maximizing methodology 

dependent on characteristics of the trip when using that mode. The log-likelihood of the mixed logit 

model is given by LL(𝜃) = ∑  𝑁
𝑛=1 ln 𝑃𝑛(𝜃), where N is the number of individuals. It is approximated 

using the simulation method because it cannot be solved analytically. The simulated log-likelihood is 

then given by Equation 4, where R is the number of replications and 𝛽𝑟 is the 𝑟th draw from 𝑓( 𝛽 ∣∣ 𝜃 ). 

SLL(𝜃) = ∑  

𝑁

𝑛=1

ln {
1

𝑅
∑  

𝑅

𝑟=1

𝑆𝑛(𝛽𝑟)} (4) 

 

The mixed conditional logit was estimated using the National Household Travel Survey 

(NHTS) add-on data.  Since the NHTS data contains multiple trip purposes and the focus of this study 

was solely on commuting trips, the following filters were applied to the NHTS data trips.  A trip was 

only included in the study if it: 1) Started and ended inside the study area, 2) Linked home to work or 
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vice-versa, 3) Occurred on a weekday, and 4) Was not completed by walking or biking.  Therefore, the 

trips included either chose auto or transit. 

It is important to note that only the chosen mode is reported in the NHTS data, and the 

unchosen modes had to be generated.  Also, some of the travel survey responses were suspicious (e.g., 

fare paid, travel time) as this is manually reported by the survey respondent and prone to human error.  

To overcome this data limitation, fare, mileage cost, and parking costs were collected separately for all 

samples in this study. Figure 2 and the following sections describe in detail how the data was cleaned 

and supplemented with data that had an automated collection.  
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Figure 2: Framework Used to Prepare the Survey Data for Model Calibration 

2.5.2 In-Vehicle Travel Time and Out-of-Vehicle Travel Time 

Driving trips, including the unchosen driving alternatives for chosen transit trips, were 

simulated in Open Street Routing Machine (OSRM), which is an API built upon the open-source 

database of OpenStreetMap (OSM) [42]. It provided unimpeded IVTT travel time, travel distance, and 

routes between the OD pair. The unimpeded IVTT travel time was further adjusted using the Texas 

Transportation Institute Congestion Indices [43] to consider the impact of congestion. Travel time 

index (TTI) is a comparison between the travel conditions in the peak period to free-flow conditions 

[44]. The Congestion Indices are published by urban areas, where for example, the congestion factor 
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for the San Francisco-Oakland area is 1.41, and San Jose is 1.38.  For the driving alternative OVTT, a 

constant 3-min OVTT was assumed. 

Transit trips, including the unchosen transit alternates for chosen driving trips, were simulated 

in the Open Trip Planner (OTP) server. It is based upon a transit network built using General Transit 

Feeds Specifications (GTFS) from 52 transit agencies across the study area. The distribution of 

walking access distance was generated from the simulation output of the chosen transit trips in the 

NHTS data, and the 95th percentile of the distribution was selected as the reasonable walking distance 

to access the transit stations. Separate thresholds were estimated for heavy transit systems (commuter 

rail, subway) and light transit systems (bus, tram) as it is believed that people travel farther to access 

heavier modes [45]. The park-and-ride option was simulated for trips with the nearest heavy-rail mode 

station further than the reasonable walking distance. Transit alternatives involving more than three 

transfers or with a walking distance more than the reasonable walking distance for transit trips were 

considered infeasible and therefore discarded. The OTP simulation output included the travel time, 

distance, and travel mode for every segment of the trip. IVTT was then calculated by adding the time 

inside the transit vehicles or auto (in case of auto access trips). OVTT was calculated by adding time 

walking to the station, waiting at the station, walking between stations, and walking to the destination 

from the station. 

2.5.3 Travel Cost 

The driving cost was calculated using the AAA cost per mile [46] for a Sedan with an annual 

mileage of 15,000 miles, which was $0.60 per mile. For parking, costs vary drastically inside the 

central business districts and throughout the study area. Therefore, a constant parking cost was not 

suitable for all driving trips. Since no public datasets for parking costs were available, we developed a 

method to estimate the parking costs in the study area. After analyzing the parking rates provided by 

BestParking by Parkwhiz [23] for different urban regions inside the study area, we defined a 

relationship between economic activity and parking fares. The number of workers per square mile was 

extracted from the LODES-2015 data at the census tract level to quantify economic activity. Monthly 

parking rates were manually collected at the census tract level, and a function was generated to 

calculate the parking cost given the worker density of the census tract. Parking costs for the driving 

trips were calculated according to the work location's census tract. 
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For transit, costs provided by the OTP API were often incomplete and used single-trip fares. 

For this study, it was assumed that transit commuters purchase monthly passes1 for transit trips if 

offered by the agency; otherwise, a distance-based cost function was used. We developed transit cost 

functions for all major modes based on the region's transit costs for subway, commuter rail, bus, light 

rail, ferry, and cable car. We manually collected the transit fares for representative agencies in every 

transit sub-mode and generated a distance-based cost function using linear regression (see Table 3). 

Since the OTP API output has detailed information about the distance traveled in every segment of the 

trip, the transit cost is cumulative of costs incurred during every segment of the trip using the cost 

functions developed. For Park-and-Ride transit trips, a parking cost is added, which is half of the 

corresponding driving parking cost in the census tract of the origin transit station because parking at 

transit station is often subsidized to promote public transit use. 

Table 3: Transit Cost Functions 

Transit Sub-Mode Fixed Cost ($) Per-Mile Cost ($) 

Commuter Rail 1.60 0.079 

Subway 3.10 0.086 

Bus 1.823 0.158 

Light Rail (Tram)1 1.823 0.158 

Ferry 6.0 - 

Cable Car 2 - 
1Light Rail and Bus services are usually provided by the same agency and follow a similar fare 

structure. 

2.5.4 Income Categories 

Besides attributes of the mode, the mode-choice is also influenced by the individual's 

characteristics, such as their Value Of Time (VOT). In transportation, the value of time for commuting 

is often estimated for different income levels as it is assumed that high-income individuals have a 

higher value of VOT than low-income individuals [47]. Due to the lack of records in the NHTS data, 

full segmentation, i.e., separate models for different income categories, was not feasible. Therefore, a 

partial segmentation (i.e., including variables interacting cost with income bins) was employed to 

account for the impact of income on an individual's mode choice. The model included three income 

 

1 Transit agencies monthly passes costs were either fixed or distance-based on origin-destination zones. 
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categories, Low-Income, Mid-Income, and High-Income. The brackets were estimated using the 30th 

percentile ($45,000) and the 90th percentile ($152,000) of the household income distribution in the 

region [48]. Since the LODES data lacked income information, the home block-group's median 

household income was used as an indicator. This information was extracted from the 2017 ACS 5-year 

estimates2. The block-group level was the finest resolution at which median household income is 

reported. Figure 3 shows the income distribution in the study area based on the categories employed in 

the analysis. 

 

Figure 3: Income Distribution using Income Categories in the Study Area 

 

 

2 Table B19013: Median household income in the past 12 months (in 2017 inflation-adjusted dollars) 
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2.5.5 Model Application 

The calculation of UAM demand was an integrated process that worked in conjunction with the 

placement of vertiports. We developed an algorithm that used the calibrated mode choice model to 

place the vertiport in a way to maximize UAM demand for a given number of vertiports in the region. 

This model application used LODES-2015 data at the block-group level to estimate the number of 

commuting trips. The home block-group was the origin, and the work block-group was the destination 

for the home-to-work trip and vice-versa for the work-to-home trip. The commutes were then 

simulated to gather the trip characteristics needed to apply the mode choice model. The driving trips 

were simulated using the OSRM API, and transit trips were simulated using the OTP API. The UAM 

alternative was added to the mode choice set by considering both accessing the vertiport and the UAM 

trip itself. The access part of the trip was assumed to be completed by walking if the vertiport was 

within reasonable walking distance from the location. Walking time was estimated assuming an 

average walking speed of 3.1 mph; otherwise, the trip was simulated in OSRM API with taxi/cab 

characteristics. Similar assumptions were made for traveling from the destination vertiport to the final 

destination. In addition, the ingress and egress times were assumed to represent the out-of-vehicle time 

spent at the vertiport (ticketing, boarding, and alighting the UAM vehicle).  The UAM part of the trip 

was simulated on the designated path, which was designed to avoid protected commercial airspace 

keeping a minimum distance between OD. Figure 4 shows an example of a UAM OD route avoiding 

approach and departure surfaces of precision runways at commercial airports in the Bay Area. 

Therefore, the total UAM trip travel time consisted of the following five parts; walking or taxi time to 

get to vertiport from origin location, ingress time (five-minutes), UAM flight time,  egress time (five-

minutes), and walking or taxi time to get to the final destination. Table 4 outlines the assumptions 

made for the UAM alternative.   
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Figure 4: Example of a UAM OD Route Avoiding Approach and Departure Surfaces of Precision 

Runways at Commercial Airports 

Table 4: Assumed Parameters for UAM Trip Calculations 

Parameter Value 

Walkable Distance To/From Vertiport 0.40 mi 

Ingress1 Time 5 min 

Egress Time 5 min 

Average UAM Vehicle Speed 120 mph 

Average Walking Speed 3.1 mph 

Minimum Trip Distance for UAM Eligibility 10 miles 

Taxi/Cab Fare 

Structure ($) 

Base Fare 2.20 

Per Minute 0.42 

Per Mile 1.60 

Service Fee 1.70 

Minimum Fare 7.20 
1Ingress/Egress times account for processing and boarding/alighting the vehicle at the vertiport.  

They do not account for trip delays. 

 

The probability of each available mode was calculated for every origin-destination (OD) pair in 

the LODES data. There were 4.63 million daily commuters inside the study area sharing 2.3 million 

OD pairs. Applying the mode choice probability and the total number of trips between the OD pair, the 
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mode-specific demand was calculated. The total UAM demand was calculated by combining the UAM 

demand for all OD pairs.  

The UAM demand analysis required the number of vertiports and UAM CPM value as inputs. 

For this study's purposes, vertiports are assumed to be open to operation 24 hours a day, 7 days a week.  

The framework for vertiport placement is shown in Figure 5.  The process started with the highest 

resolution, i.e., placing a vertiport at each block-group centroid in the region. Every blockgroup has a 

vertiport assigned to it (closest to the blockgroup centroid). In each iteration, the mode choice model 

was used to calculate the UAM demand at each vertiport. At the end of the iteration, the vertiports set 

was sorted by descending UAM demand, and only the vertiports in the upper half of the set were 

retained. The location of some of the retained vertiports was modified to accommodate for the demand 

generated from blockgroups that lost their assigned vertiport in the last iteration. The iterations were 

stopped when the number of vertiports reached the desired number of vertiports. After the final 

iteration, vertiports in high-demand areas are generally found at blockgroup centroids, whereas 

vertiports in low-demand areas are generally found at the demand weighted mean of multiple 

blockgroup centroids. For this study's purposes, it is assumed that these final vertiports have the 

number of parking stalls and landing pads needed to serve all demand (i.e., the demand does not 

exceed the capacity).  The sizing of vertiports is outside the scope of this study. 
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Figure 5: Placement of Vertiports Workflow    

2.6 Calibrated Mode Choice Model Results 

The selection of variables in the model was influenced by both prediction power and data 

capabilities. For data capabilities, variables that were in the NHTS mode-choice data but not in the 

LODES application data could not be included in the calibrated mode choice model.  Table 5 includes 

the variables which resulted in the best fit for the calibrated model.  In the final model, the income and 

cost variables interacted in order to allow for income to be incorporated as income by itself is an 

alternative-specific variable. The income interacted cost variables were then randomized to account for 

heterogeneity in the data. The negative sign of the income interacted cost variables is required for 

reasonable UAM demand estimation. If the mode choice analysis is performed with a positive 

coefficient for travel cost, an unreasonably high probability is observed for the UAM mode in mid to 

long-distance trips. The lognormal distribution was selected to avoid such infeasible demand estimates. 

The unavailability of variables related to traveler's characteristics in application data restricted us from 

capturing heterogeneity due to traveler's characteristics in the model. The number of steps for 

simulation in both model calibration and demand estimation was kept at 100 because there was a 

negligible improvement in model fit above 100. 
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Table 5: Model Variable Definitions 

Variable Definition Unit 

IVTT In-vehicle travel time: time spent in a motorized vehicle, such as 

auto, subway train, or UAM aircraft 

Minutes 

OVTT Out-of-vehicle travel time: time spent out of a motorized vehicle, 

such as walking or waiting 

Minutes 

Cost Monetary cost: includes costs such as transit fares, fuel costs, 

parking costs, etc. 

$ 

Transfers Number of transit-to-transit transfers on the route.  Driving-to-

transit or transit-to-driving do not count as transfers. 

Transfers 

Low Income Income less than 30th percentile for the region 

(<$45,000) 

Binary 

Medium Income Income between 30th and 90th percentiles for the region ($45,000-

$152,000) 

Binary 

High Income Income greater than 90th percentile for the region (>$152,000) Binary 

 

Table 6 presents the coefficients for the mixed conditional logit mode choice model for 

Northern California.   The model is statistically significant because the p-value is less than 0.000.  The 

model includes both IVTT and OVTT coefficients, the number of transfers required for the trip, and 

interactions between the trip cost and the traveler's household income.  Validation of mode-share by 

distance is included in the Appendix. 

Table 6: Mode Choice Logit Model 

Variable Coefficient Standard 

Error 

z P>|z| 95% Conf. 

Interval 

Mean 

IVTT -0. 0517868 0.0000147 -1823.47 0.000 [-0.0518, -0.0517] 

OVTT -0. 0901427 0.0000129 -3529.78 0.000 [-0.0902, -0.0901] 

Transfers 0. 3857525 0.000195 -4606.01 0.000 [0.3853, 0.3861] 

Ln(-Low Income X Cost) -1.059794 0.000201 1977.81 0.000 [-1.0601, -1.0593] 

Ln(-Medium Income X Cost) -1.214655 0.0001078 -5252.23 0.000 [-1.2148, -1.2144] 

Ln(-High Income X Cost) -1.689608 0.0004159 -1.1000 0.000 [-1.6904, -1.6887] 

Transit Constant -0.6572835 0.0003605 -4062.82 0.000 [-0.6579, -0.6565] 

Standard Deviation 

Lognormal Std. Dev. (-Low 

Income X Cost) 

0.0014603 0.0004115 3.55 0.000 [0.0006, 0.0022] 

Lognormal Std. Dev. (-Medium 

Income X Cost) 

0.3733613 0.0001538 2426.96 0.000 [0.3730, 0.3736] 

Lognormal Std. Dev. (-High 

Income X Cost) 

1.119758 0.0006354 1762.43 0.000 [1.1185, 1.1210] 

Median IVTT VOT (per hr.) $8.97, $10.47, $16.83 
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Median OVTT VOT (per hr.) $15.7, $18.22, $29.30 

Number of estimated 

parameters 

10 

Log-likelihoodInitial -2.42x108 

Final Log-likelihoodFinal -2.3x108 

Likelihood chi-square test 

statistic (Degree of Freedom:3) 

6349661.4 

Number of observations 10,012 

Prob>χ2 0.0000 

 

Since UAM was not available in Northern California during the 2017 NHTS data collection, 

there was no revealed-preference data for the mode.  This means that the UAM mode constant could 

not be estimated on the NHTS data.  Instead, the UAM constant needed to be computed based on a 

stated-preference survey that captures the population's willingness-to-pay for the UAM mode. There 

are several UAM stated-preference surveys in literature, including [49] (used in this study) and [50].   

To create our mode choice model, we first calibrated a mixed logit model using a lognormally 

distributed sampling of the income interacted cost variable.  The distribution was bounded by the 5th 

and 95th percentile. This revealed-preference (RP) model had a transit constant with drive alone as a 

reference alternative, as shown in Equation 5.  This model did not include a UAM constant as this 

mode is not an existing commuting alternative.  VRP is the estimated utility for the ith commuter to take 

mode alternative j. 

𝑉𝑅𝑃𝑖𝑗
= 𝛽1𝑋𝑖𝑗 + 𝛽2𝑋𝑖𝑗 + ⋯ +  𝛽𝑛𝑋𝑖𝑗 +  𝜀𝑅𝑃_𝑇𝑟𝑎𝑛𝑠𝑖𝑡     (5) 

Next, to transfer the constants, Dr. Garrow's research group calibrated a model on stated-

preference (SP) survey data [49] using the same model methodology, sampling distribution type, and 

variables as the RP model.  The exact SP model we requested from Dr. Garrow's research group 

(variables and estimation method) is not in the thesis [49].  It is important to note that the RP model 

was estimated only on Northern California travel behavior.  The SP surveys were distributed across 

five U.S. cities.  The Northern California income breaks would not be the same for the five regions, 

given the cost-of-living differences.  Therefore, the SP model includes a continuous income variable.  

As shown in Equation 6, this model included the constants of transit and drive alone, with UAM as the 

reference alternative.   
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𝑉𝑆𝑃𝑖𝑗
= 𝛽1𝑋𝑖𝑗 + 𝛽2𝑋𝑖𝑗 + ⋯ +  𝛽𝑛𝑋𝑖𝑗 +  𝜀𝑆𝑃_𝑇𝑟𝑎𝑛𝑠𝑖𝑡 + 𝜀𝑆𝑃_𝐷𝑟𝑖𝑣𝑒𝐴𝑙𝑜𝑛𝑒   (6) 

The probabilities calculated from mixed logit models are driven by the differences in utilities 

between the available modes.  Therefore, it was important to preserve the differences in constants from 

the SP model when creating the UAM constant in the RP model.  Due to scalability between models, 

the differences between the SP constants were transferred by translating to an equivalent in-vehicle 

travel time utility.  This followed the constants transferability method proposed by Cherchi et al. [51].  

This made UAM is the new reference alternative in the RP model.  Unfortunately, due to IRB 

restrictions, we were unable to calibrate an RP-SP pooled model, which could provide us the scaling 

parameter. Therefore, we resorted to the method presented in Chen and Naylor [52] where authors 

estimated the Bus Rapid Transit (BRT) constant for an RP-based model using the constants from an 

SP-based market research model. The constant coefficients are converted into bias time constants by 

dividing the constant-coefficient by the in-vehicle time coefficient.  

𝑏𝑚 =
𝑐𝑚

𝑐ivtt 
 (7) 

Where 𝑏𝑚 is bias time constant for mode m; 𝑐𝑚 is constant-coefficient for mode m and 𝑐ivtt is 

the in-vehicle travel time coefficient in the SP model. The bias time constants derived from the SP 

model were used in the estimation of UAM constants for the RP model. The UAM constant was 

calculated by a linear interpolation method using the auto constants, transit constants, and bias time 

constants estimated. 

Δ𝑈𝐴𝑀 = Δ𝑃𝑇 + (Δ𝐴𝑢𝑡𝑜 − Δ𝑃𝑇) (
𝑏𝑈𝐴𝑀 − 𝑏𝑃𝑇

𝑏𝐴𝑢𝑡𝑜 − 𝑏𝑃𝑇
) (8) 

Where Δ𝑈𝐴𝑀 is UAM constant, Δ𝑃𝑇 is public transit constant, Δ𝐴𝑢𝑡𝑜 is auto constant in the RP 

model; 𝑏𝑈𝐴𝑀 is UAM bias time constant, 𝑏𝑃𝑇 is public transit bias time constant, and 𝑏𝐴𝑢𝑡𝑜 is auto bias 

time constant. Δ𝑈𝐴𝑀was estimated to be 0.020569. 

In this study, the SP data was not accessible for this study, so additional comparisons and 

statistical tests between the SP data and RP data could not be performed, such as in Washington et al. 
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[53].  Therefore, while this study's methodology for transferring constants from an SP survey to RP 

application aligned with the literature, this study was limited in the detailed comparison of the 

underlying data of the models. 

 

2.7 Demand Model Application Results 

The calibrated mode choice model, including the calculated UAM constant, was applied to 

Northern California commuting trips. Figure 6 outlines the sensitivity of demand with respect to the 

CPM offered by the UAM operating agency, assuming a constant 75 vertiports in the region.  At a $1 

CPM, there is a 42,140 UAM round trip demand per day, where increasing the CPM by just 20 cents 

reduces the demand by 34%.  The sensitivity analysis results provide supportive evidence that a low 

CPM value is required for the system's success.  The reduction in demand for higher CPMs reduces the 

revenue significantly and prevents the mode from covering fixed costs such as vertiport land and 

maintenance costs. 

 

Figure 6: Daily UAM Demand Sensitivity to CPM (75 Vertiports) 

Figure 7 illustrates the sensitivity of demand when the number of vertiports is changed, keeping 

the CPM at a constant $1.80. The vertiports for each scenario (e.g., 50, 75, 100 vertiports) are placed to 

maximize the UAM demand for a given number of vertiports in an iterative manner.  To clarify, the 

vertiports location in the 50-vertiport set is not necessarily a subset of a larger vertiport set.  As the 

number of vertiports increase, there is a direct relationship with the number of commuters in the 
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catchment area, which increases the demand for the mode.  It is evident that there are core vertiports 

that serve the majority of the demand and feeder vertiports that provide UAM service in lowered 

demand areas.  Comparing the 50 vertiport and 400 vertiport scenarios shows that reducing the number 

of vertiports by 87.5% reduces the demand by 47%.  This concentration of demand at a small portion 

of the vertiports is similar to the current airport system in the United States with hub airports and 

regional airports.  However, at a closer look, it becomes evident that a large number of vertiports is not 

economically viable for Northern California at a $1.80 CPM.  For the 400 vertiport scenario, 196 of the 

vertiports have a demand of fewer than 50 UAM operations3  per day. 

 

Figure 7: Daily UAM Demand Sensitivity to Number of Vertiports ($1.80 CPM) 

The following sections analyze UAM demand further by evaluating two scenarios: 1) A high 

demand scenario with a large number of vertiports and low CPM (200 vertiports at $1.20) and 2) A 

low demand scenario with a small number of vertiports and high CPM (75 vertiports at $1.80).  These 

two scenarios are used to provide a sensitivity analysis of demand and do not necessarily estimate the 

upper and lower bounds for demand in the region as it is possible that the UAM system, if built, would 

have to exceed a $1.80 CPM to recover costs. In both scenarios, vertiports are placed in an iterative 

manner, explained in Section 4.2. 

 

3 UAM operation means a landing or a take-off. UAM operations are estimated from UAM passenger trips 

assuming 60% load factor or 2.4 passengers per flight. 
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2.7.1 High Demand Scenario (200 vertiports, $1.20 CPM) 

To generate the high demand scenario, a 200 vertiport system offering trips at $1.20 CPM was 

estimated. Figure 8 shows the vertiport placement that maximizes the person-trip demand for this 

scenario in an iterative manner.  It is shown that the areas with a higher concentration of vertiports 

have both a high worker density, high population density, and a high median income.  An example of 

this is the Central Business District (CBD) of San Francisco, shown in Figure 8's inset.  There are 

around 514,000 employees in San Francisco CBD and 196,000 people who live there (87,000 of which 

are employed inside CBD) [54]. Due to such a high concentration of work locations and households in 

CBD, the high demand vertiports are nearby.  

The busiest vertiport is estimated to have 5,740 UAM operations per day. The Financial 

District is a big attractor of UAM trips because of the work location density and heavy disutility in 

driving due to parking rates and congestion. Unfortunately, the departure time information for 

application data was missing. To reflect the true nature of commuting trips, commuters' departure time 

distribution was extracted from NHTS data. Using that cumulative density function, the total person-

trips between each OD pair were distributed over the day.  Of that 5,740 UAM operations, 61% are 

expected to occur during the core commuting hours, between 6 AM - 9 AM and 4 PM – 7 PM. 

There are more than ten vertiports placed with significantly high demand in the San Francisco 

CBD using the demand-driven approach. In the future, if the system increases to higher demand levels, 

it could be challenging to manage the peak-hour demand as it is concentrated in a small area from the 

perspective of airspace service providers. Moreover, results suggest that demand is very one-

directional, where morning peak hour trips are into the city centers such as the San Francisco CBD, 

Mountain View, Cupertino, and the San Jose CBD, and the afternoon peak hour trips leave these city 

centers.  This suggests that the commuter UAM system will require a large proportion of deadheading, 

where the aircraft will fly at times with a zero load factor. From Figure 3, the high-income areas can be 

observed around the bay and areas North-West of Oakland.  It is evident that most of the feeder 

vertiports are placed in these areas, thereby reinforcing the influence of high-income earners on 

vertiport location when vertiports are placed for maximum UAM demand in an iterative manner.   
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Figure 8: High Demand Scenario Vertiport Placement and Demand 

Our analysis assumes a 5-minute ingress and 5-minute egress time of the UAM vehicle as well 

as a 0-minute delay waiting for the UAM vehicle to arrive. Figure 9 shows that UAM commuting 

demand is highly sensitive to any delay in the system, where the demand is cut in half by adding 10 

minutes of delay.  This inability for the system to take delay provides supportive evidence that for 

commuting purposes, the UAM system will either need to: 1) have low load factors as there is little 

time to group people up with the same OD pair or 2) rely on advanced trip bookings to group 

passengers resulting in a scheduled departure time that ideally would not be delayed.  
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Figure 9:  Sensitivity of UAM Demand with person wait time  

2.7.2 Low Demand Scenario (75 vertiports, $1.80 CPM) 

UAM is expected to be a costly mode and, therefore, will cater more towards higher-income 

households.  Results indicate that the market share of high-income households will increase as the 

CPM increases.  Specifically, in this low demand scenario, the market share of low-, mid-, and high-

income households is 3%, 26%, and 71%, respectively.  This is in comparison with the previous high 

demand scenario, where the low-, mid-, and high-income market shares were 2%, 39%, and 53%. 

Figure 10 shows that when the CPM is increased, and the number of vertiports are reduced, the 

surviving vertiports are located in dense employment areas or household areas with a higher than 

average income level.  The feeder vertiports are cut due to low demand.  Also, the largest vertiport in 

this scenario has 1,702 UAM operations, compared to the 5,740 UAM operations from the largest 

vertiport in the high-demand scenario. 
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Figure 10: Low Demand Scenario Vertiport Placement and Demand 

Figure 11 shows that the percent reduction per minute of added delay is similar to that of the 

high demand scenario, where 10 minutes of delay reduces the demand by half.  This is especially 

problematic in this low-demand scenario, as with 10 minutes of delay, the system would have to rely 

heavily on other trip purposes to cover the system costs as it is estimated there is only a 4,569 

commuting roundtrip demand total for the Northern California region. 
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Figure 11: Sensitivity of UAM Demand with person wait time 

2.8 Conclusions and Policy Implications 

This study provided a sensitivity analysis of UAM demand in Northern California solely for 

commuting purposes.  It considered the mode alternatives of UAM, drive alone, and transit.  Findings 

include that, first, the UAM mode's success is hugely dependent on the mode's popularity with 

travelers in the high-income market segment.  Therefore, it is essential for UAM to be a competitive 

mode for these travelers and to increase their level of trust and comfort in the system. 

Also, the success of UAM is dependent on the operational efficiency of the system.  Even 

without accounting for deadheading and higher fares levels due to vertiport costs, the demand is small, 

and it will be difficult for the system to be profitable on commuting trips alone.  It seems this system 

has to be "errorless" for commuting purpose.  The system's efficiency is a top priority as every very 

minute of additional wait time greatly impacts the mode's demand.  The UAM system must 

have policies that lead to a minimum delay, or else the driving alternative quickly becomes a more 

attractive mode for commuters. 

The construction and operation of a future UAM system will be complex and require intricate 

long-term planning.  Based on our findings, several policies will be needed to promote the system's 

success and economic feasibility.  Many of these policies are implemented in some form for other 

transportation systems (e.g., aviation or driving), so the lessons learned in their implementations will 

be of use to the UAM system. 
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First, similar to road transportation, UAM commuting demand had morning and afternoon peak 

hours and is very concentrated in short time periods.  Unless other trip purposes can make the UAM 

demand more uniform throughout the day, operators of the UAM system will need to implement some 

form of congestion pricing.  Otherwise, the system's infrastructure will be overbuilt to serve the peak 

hours while being mostly empty the majority of the day.  There is flexibility in how this congestion 

pricing would be implemented as the ticket purchase process is unknown at this time.  

Second, as stated in the results, not only will UAM have peak hours for commuting, but also 

each peak hour will be very unidirectional, requiring a significant amount of deadheading.  While 

UAM will be fully electric, policies to reduce energy consumption due to deadheading may need to be 

implemented.  Deadheading is seen in ride-hailing services today, and the effects have been analyzed 

for environmental impacts.  For example, due to increased carbon emissions of ride-hailing, California 

has proposed regulations on the industry [55].   

Lastly, vertiports with the highest demand are located in downtown areas with limited land 

available.  These two conflicting trends will require similar policies as expanding airports in downtown 

regions today (land acquisition, noise complaints, etc.).  Vertiport constraints are different from 

airports (e.g., can build on the roof), but the general ideas are the same.  Currently, the UAM system is 

described as being run and operated by a private company (e.g., UberElevate), but this land issue 

shows the large roles that the government will most likely have in the initial setup of the 

system.  Policies similar to that of expanding airports in downtown regions may need to be considered 

in building the UAM system. 

2.9 Study Limitations and Future Research 

The findings presented in this paper are for scenarios that do not include the impacts of weather 

conditions on demand and operations, vertiport or airspace capacity issues, additional wait time for 

deadheading flight to arrive, and reliability issues of UAM. This study assumed ideal conditions in 

each of these areas.  However, adding these factors to the analysis would improve the accuracy of the 

demand estimation. It is recommended for future region-specific UAM demand models, like the one 

presented in this paper, to include UAM system capacity as well as customer perception of the UAM 

system’s reliability, safety [56], and trip experience. Important trip experience factors found in the 
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literature, for example, include “familiarity, value, fun factor, wariness of new technology, fear and 

happiness” [57]. 

Limited variables could be used in model calibration due to a lack of individual-level 

information in the application data (LODES). The model application could improve by including 

variables such as 'number of household vehicle' and 'household size,' which would improve the model's 

estimation of how travelers access the UAM system. This analysis assumed that the commuter would 

always choose the closest vertiport to the home/workplace and would either walk (if the distance is less 

than the walking threshold) or take a taxi to the vertiport. In future research, these assumptions could 

be relaxed by instilling some probabilistic behavior in vertiport selection and considering more ways to 

reach vertiport such as drop-off and parking if available. 

Similarly, there are multiple routes one can choose from when commuting.  The data collected 

through the OSRM API assumed that commuters take the fastest route available and would travel non-

stop to their home or workplace, removing the effects of trip-chaining on UAM demand. This is a 

limitation that needs to be addressed in the future. 

Estimating travel costs for transit connections depended on the transit agencies that involved 

both distance-based fare structures and flat-rate monthly passes. The flat-rate bias could impact the 

calibrated model, i.e., increased preference for the service offering flat-rate (monthly passes) instead of 

pay-per-use. Flat-rate travel cost functions could have caused bias in the public transit coefficient [58]. 

Although not addressed in this study, flat-rate bias should be considered in future research. 

While our study included the effects of Willingness-To-Pay (WTP) with respect to travel time 

on mode choice, the literature suggests that the value of travel time reliability (VOR) is also a 

significant factor.  When unaccounted for, VOR can impact WTP values [59].  Our study used 

deterministic travel times and, therefore, the WTP values were constrained to be negative.  Future 

studies using stochastic travel times should consider the effects of VOR separately from WTP for 

travel time savings on mode choice. 

Another limitation of the study is the inability to account for dynamic delays that occur in all 

modes.  It used a congestion factor to account for road delays but considered the dynamic nature of 

congestion could certainly improve driving time estimation for driving trips and the intermodal 
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connection of UAM trips. Similarly, delays due to UAM charging should also be added to future 

simulations when this information becomes known about the new technology. 

Lastly, future studies should consider additional trip purposes, including personal trips.  This 

would give additional demand to the system without expanding the UAM system infrastructure by 

increasing trips to the non-peak hours.  Adding these trips would provide more justification for the 

UAM system. 
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2.12 Appendix: Model Validation 

 

Figure 12: Market Share by Distance 

 

Figure 13: Comparison of Survey Responses and Model Predictions for Driving rips 

 
Figure 14: Comparison of Survey Responses and Model Output for Transit Trips 
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3. Airport Ground Access Demand Estimation for Urban Air Mobility (Dallas-Fort Worth) 

 

Rimjha, Mihir, et al. " Urban Air Mobility: Airport Ground Access Demand Estimation." 2021 AIAA 

AVIATION FORUM (p. 3209).   

3.1 Abstract 

This study aims to estimate passenger demand of Urban Air Mobility (UAM) for airport ground 

access trips while considering airspace restrictions in the Dallas-Fort Worth region. UAM is a concept 

mode of transportation designed to bypass ground congestion for time-sensitive, price-inelastic 

travelers using autonomous, electric aircraft with Vertical Takeoff and Landing (VTOL) capabilities. 

Airport ground access trips constitute a trip purpose that can utilize this mode. This study analyzes 

originating ground access trips for two major airports in the Dallas-Fort Worth region: Dallas-Fort 

Worth International Airport (DFW) and Dallas Love Field Airport (DAL). First, a mode choice model 

is calibrated on the existing airport ground access behavior. UAM demand is then estimated using the 

developed model, airspace restrictions, and the results from UAM demand stated-preference surveys in 

literature. Airspace restrictions consist of unusable pieces of airspaces based on current air traffic 

patterns, where the placement of UAM vertiports and overflying of UAM vehicles are prohibited. The 

demand model considers the trajectories of the UAM vehicles, which navigate on pre-defined routes 

inside Class-B airspace to prevent Air Traffic Control (ATC) involvement requirements. This study 

includes sensitivity analyses of UAM demand to the cost per passenger mile (CPM), number of 

vertiports placed in the region, and other secondary factors like vertiport location, intermodal cost, 

fixed cost, and average speed. Corridors with significant UAM demand are identified from the spatial 

distribution of demand and potential bottlenecks in the UAM network. The findings predict up to 4% 

market share of UAM for trips to the airport at the optimistically lower fare of $2 per passenger mile 

(in addition to the fixed cost of $23) and a 50-vertiport UAM network. Average Value of Times 

(VOTs) for business and non-business travelers are estimated to be around $57/hr. and $36/hr., 

respectively. Business travelers comprise three-quarters of the total UAM demand because of 

relatively higher VOTs. Airport access trips in Dallas-Fort Worth region have considerable potential 

for UAM if the trip's price is below $4 per passenger mile (in addition to the fixed cost of $23). 
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3.2 Introduction 

Urban Air Mobility (UAM) refers to an on-demand air transportation mode designed to avoid 

ground congestion. It uses electric vehicles equipped with advanced avionics and Vertical Take-Off 

and Landing (VTOL) capabilities [1]. The Concept of Operations (ConOps) consists of UAM 

passengers traveling to the nearest vertiport (VTOL airport) using a ground transportation mode, such 

as walking or car.  After boarding the two or four-seater electric aircraft, the passenger is flown to the 

vertiport nearest their destination.  Ground modes are then used for last-mile access to their final 

destination. 

The initial timeline estimates urban public UAM operations as early as 2023 [2], where Uber 

announced plans to launch air-taxi service in Dallas, Los Angeles, and Melbourne with an eVTOL 

developed by Joby Aviation [3]. Several major players in the industry and government are working 

towards shaping the concept of UAM [4, 5]. Rapid developments in concept vehicles [6, 7, 8] and 

efforts to safely integrate UAM into the National Airspace System (NAS) [9] have further bolstered 

the UAM vision. However, for efficient development and operation of UAM, it is equally important to 

understand the demand side. Demand estimation for UAM is complex, where the system can be used 

for different trip purposes. Existing literature contains demand studies for commuting, cargo, airport 

access. [10, 11, 12, 13, 14, 15, 16].   

Fu et al. [15] estimated UAM demand in the greater Munich area through agent-based transport 

simulation platform MATSim and Microscopic transportation orchestrator (MITO). However, their 

airport access UAM demand estimation does not capture the entire airport access traffic as MATSim 

and MITO focus on local inhabitants. Therefore, the share of airport passengers is underestimated. Roy 

et al. [16] estimated UAM demand for airport access trips to Atlanta International Airport (ATL) using 

a multi-commodity network flow approach. Their approach was limited to existing infrastructure and 

assumed a direct, straight-line path without considering airspace restrictions. The purpose of this study 

is to fill this gap in the literature. Dallas-Fort Worth region is among the top prospective regions for 

UAM [17]. Therefore, a UAM demand estimation framework focusing on full-day of airport access 

trips to/from Dallas-Fort Worth International Airport (DFW) and Dallas-Love Field Airport (DAL) is 

developed considering airspace restrictions in the region. 
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3.3 Background 

Analyzing different trip purposes for their UAM potential is critical to tailor the concept 

development and infrastructure investment. A study by Booz Allen Hamilton identified three focus 

markets for UAM; Airport Shuttle (transporting passengers to, from, or between airport over fixed 

routes), Air Taxi (on-demand point to point passenger transportation), Air Ambulance (travel to/from 

hospital for emergencies and potential hospital visits) [18]. Their market evaluation is based on the 

legacy market's value and size and technical, economic, and operational challenges. They predicted 

Airport Shuttle to be an early adopter of UAM due to operational efficiency from demand 

concentration at one end, existing infrastructure at the airport, and opportunity for collaboration with 

airlines for premium services [19]. McKinsey & Company studied UAM use cases for last-mile parcel 

delivery, Air Metro, and Air Taxi [20]. Their study predicts a commercially viable market for last-mile 

parcel delivery and Air Metro, whereas limited profitable cases for Air Taxi service. The Korean 

Urban Air Traffic (K-UAM) Roadmap includes plans to establish commercial UAM operation links 

for Incheon airport by 2025 [21]. Multiple studies have identified the potential for UAM in the airport 

ground access market. With Dallas-Fort Worth being one of the proposed early adopters of UAM 

operations, it is crucial to estimate potential ridership and factors affecting its feasibility in the airport 

access market. 

Analyzing the airport ground access trips to develop predictive models is in practice for over 50 

years. Ellis et al. [22] performed one of the earliest efforts to model airport ground passenger trips. 

Often airport access mode-choice models are developed for applied studies that are not published in 

the literature. Gosling surveyed 105 different organizations (airport authorities, regional and state 

planning agencies, surface transportation planning, airport consulting firms, selected universities, and 

other research organizations) and identified 52 studies between 1995-2005 that involved creating 

airport access mode-choice models [23]. The synthesis includes technical summaries of airport ground 

access studies performed at ten airports, including major US airports such as Hartsfield–Jackson 

Atlanta International Airport (ATL), Boston Logan International Airport (BOS), Chicago O'Hare 

International Airport (ORD), and Chicago Midway (MDW), etc. The motivation for calibrating an 

airport ground access mode choice model varied largely in these studies. However, they could be 

broadly categorized in either of the following: analyzing current trip generation [24], estimating 
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ridership for a new mode [25] or an extension of an existing mode [26, 27], and planning of an 

integrated facility [28] or other airport elements like Automated People Mover (APM) [29, 30]. 

Calibrating a mode-choice model to estimate potential ridership for a new mode and understanding the 

factors that affect demand is a common practice in transportation analysis.  

Tam [31] studied the factors affecting the demand for rail mode in the airport ground access 

market of Hong Kong International Airport (HKIA). A multinomial logit model was calibrated using 

the survey data collected at HKIA. Travel cost was identified as the key factor affecting the rail mode 

demand along with party size and the number of baggage pieces. Gupta et al. [32] developed a 

combined airport and ground access choice model for both business and non-business travelers in the 

New York metropolitan region. They developed both a nested logit and a multinomial logit model but 

found the latter statistically significant. Access time and access costs were found to be significant for 

airport ground access mode choice. Access time was found to be relatively more onerous for business 

travelers due to higher VOTs. They also found that air passengers most appreciate airport access 

options guaranteeing fast and reliable service. This emphasizes the importance of mode reliability for 

airport trips, and the planning of UAM operations for airport trips should regard it as a critical factor. 

Akar [33] examined ground access mode choice for passengers traveling to Port Columbus 

International Airport (CMH), Ohio. The factors affecting the mode choice were studied using the 

survey collected at the airport. Using binary logit models, the author analyzed the passenger's interest 

in taking alternative modes of transportation. Like DFW, mode share for ground access at CMH is 

dominated by automobile modes with a small public transit share. For alternative modes of 

transportation to be competitive with the automobile, they should offer reliability, shorter travel times, 

flexibility in departure time (which may require frequent service times), and comfort for more people 

to consider taking them. This indicates that in regions with a high automobile share in airport ground 

access, UAM mode could capture some market share if it is fast, reliable, and comfortable. 

Rimjha et al. [34] estimated airport access demand for Los Angeles International Airport 

(LAX) trips. They calibrated a two-segment (business and non-business) mode-choice model, which is 

later utilized to calculate UAM passenger demand. Their methodology is broadly similar to the 

methodology adopted in this paper with significant region-specific modifications. They found that 
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UAM could capture 3.6% of the LAX passenger trips at the cost of $2 per passenger mile, in addition 

to a base cost of $15 per passenger and a $20 landing cost per flight. Roy et al. [35] developed a 

methodology to estimate the expected user base of a UAM business airport shuttle using discrete 

choice modeling. Their findings reveal a considerable potential user base for air taxi business airport 

shuttle services if the operating cost of UAM vehicles could be reduced and improved load factors 

could be obtained. 

To summarize, multiple studies found the importance of travel time, travel cost, mode 

reliability, and comfort in airport ground access mode-choice decision. Party size and number of 

baggage pieces are also found to influence the access mode-choice among travelers. However, there is 

no airport ground access model developed recently for the Dallas-Fort Worth region, which is 

publicly-available. The study presented in this paper calibrates an airport ground access model for 

UAM demand estimation.  

3.4 Study Area 

Figure 15 shows the study area of the analysis includes 12 counties surrounding the Dallas-Fort 

Worth metro area. Population centroid of all selected counties are within the operating range of 

reference vehicle (Joby S4) from Dallas CBD. The spatial resolution of the analysis is Census Block 

Groups. There are 4,801 Block Groups in the study area, with a total population of 6.82 million in 

2015 [36]. 
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Figure 15: Dallas-Fort Worth Study Area 

3.5  Data 

The primary dataset used in this analysis is the 2015 originating passenger survey conducted by 

UNISON consulting at Dallas-Fort Worth International Airport (DFW) and Dallas Love Field Airport 

(DAL) on behalf of the North Central Texas Council of Governments (NCTCOG). The surveys were 

distributed to capture updated originating information regarding departing passengers' travel patterns 

and trip-making behavior. The survey data is used to analyze the regional distribution of trip origins 

and mode-choice behavior. First, records with trip origins outside the study area were filtered out. Data 

is segregated into four segments after observing significant mode selection and trip characteristics 

differences: Resident Business, Resident Non-Business, Visitor Business, and Visitor Non-Business. 

Table 7 includes the number of records and the daily number of trips estimated from provided weights, 

where 82.4% of the originating passengers in the region use DFW, and the remaining 17.6% of 

originating passengers use DAL. 

Table 7: Originating Passenger Survey Data by Segment (DFW and DAL) 

Segment 
Number of Records 

Number of Trips 

(Weighted) 

Percentage of Total 

Trips 

DFW DAL DFW DAL DFW DAL 

Resident Business 2,189 538 16,020 3,507 29% 30% 

Resident Non-Business 2,342 620 17,037 3,990 31% 34% 
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Visitor Business 2,083 406 14,305 2,289 26% 19% 

Visitor Non-Business 1,285 374 8,118 2,056 14% 17% 

Total 7,899 1,938 55,481 11,852 100% 100% 

 

Understanding current mode-choice behavior is required to identify the scope and estimate the 

demand for UAM. Figure 16 illustrates the mode share observed in the survey data by segment. For 

residents, driving and parking their vehicle at the airport was the most common airport access method 

among business travelers, whereas drop-off was the most common among non-business travelers. 

Parking at the airport is relatively costly but convenient and preferred for shorter visits or when the 

cost is reimbursed. According to the survey data, travel cost is reimbursed for most business travelers 

(95% according to the survey data). This parking cost helps the UAM business case, where the UAM 

ConOps will have a higher CPM than other modes but no parking costs.  For trips made by Visitors, a 

rental car is the most common airport access mode among business travelers, whereas drop-off is most 

popular among non-business. Visitor’s non-business travelers usually have family members or 

acquaintances who drop them off at the airport. Theoretically, the travelers who either park their 

vehicle, be dropped off at the airport, or use a taxi/uber could potentially benefit from UAM. UAM use 

cases for trips currently being done by courtesy vehicles such as hotel shuttle, courtesy van, etc., 

cannot be justified. Therefore, these trips are filtered out from the analysis. 
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Figure 16: Observed Mode Share in Survey Data. Top Left: Resident Business, Top Right: Resident 

Non-Business, Bottom Left: Visitor Business, Bottom Right: Visitor Non-Business. 

Significant travel time savings by UAM could occur in two scenarios: either long-distance 

ground trips or heavily congested ground trip alternatives. Origin-Destination (OD) pairs with a 

minimum of 10 miles flying distance are considered for UAM mode. UAM is assumed to be infeasible 

for any trip shorter than 10 miles. Attributing to the location DFW in the region, the median driving 

distance of access trips is 20.1 miles. DFW is located close to the region's population center and almost 

equidistant from Dallas CBD and Fort Worth CBD. Figure 17shows the distribution of driving 

distances for access ground trips in the survey data. Visitors tend to live closer to the airport during 

their stay. The distribution for visitor business travelers has two peaks. The segregation is probably 

attributed to some travelers staying at the airport or very close to the airport. Overall, a significant 

portion of the trips are shorter than the minimum distance for UAM eligibility and, therefore, not 

considered in the analysis. Resident ground access trips to the airport have a median driving distance 

of 22.5 miles, making them a promising segment for UAM. 
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Figure 17: Distribution of Driving Distance of Airport Access Trips for Originating Passengers 

Class-B airspace is controlled airspace surrounding the nation's busiest airports. It is 

individually tailored and generally extends vertically up to 10,000 feet from Mean Sea-Level (MSL) 

and lateral limit up to 30 nm radius [37]. The innermost 10 nm area extends to the top, segment area 

between 10 nm and 20 nm has the floor between 2,800 feet to 3,000 feet above airport elevation. The 

area floor between 20 nm and 30 nm lies between 5,000 feet and 6,000 feet above airport elevation 

[38]. Currently, any operation in class-B airspace requires clearance from Air Traffic Control (ATC). 

The UAM ConOps developed for this study assumes the independence of UAM operations from ATC. 

However, it is only feasible when pre-defined ATC-approved routes are designed for UAM navigation 

inside class-B airspace.  

 Figure 18 shows the unusable airspace pieces and routes developed by the National 

Aeronautics and Space Administration (NASA) Ames Research Center after analyzing flight 

trajectories for both south and north flow, with expert guidance from ATC controllers in the region. 

The routes are developed to navigate UAM vehicles inside class-B airspace and bring UAM in and out 

of the airports. Class-D airspace extends from the surface to 2,500 feet above airport elevation. Aircraft 

are required to establish two-way radio communication with ATC before entering and thereafter in 

class-D airspace. There are ten class-D controlled airspaces in the region centered at secondary or 

military airports. The ConOps in this analysis involves detouring the UAM around unusable class-D 
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airspaces. It should be noted that the class-D airspace of Addison airport is considered similar to class-

B airspaces due to the proximity to DAL airspace and the density of DAL commercial traffic. 

 

 

Figure 18: Unusable Airspaces and Routes Developed by NASA to Navigate UAM inside Class-B 

Airspace 

3.6  Methodology 

There are three main tasks in estimating UAM demand for airport ground access trips: a) 

Mode-Choice Model Calibration, b) Vertiport Placement, and c) UAM demand estimation. The 

calibrated mode-choice model is adjusted to estimate UAM demand for a given number of vertiports. 

Figure 19 illustrates the workflow adopted in this analysis. The vertiport placement method utilizes the 

mode-choice model to estimate the near-optimal location of vertiports, which are further used to 

estimate the final UAM demand for a given number of vertiports. 
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Figure 19: Workflow of UAM Demand Estimation for Airport Ground Access Trips 

3.6.1 Mode-Choice Model Calibration 

Understanding existing modes of transportation and traveler's mode choice behavior is critical 

to estimating the demand for a new mode of transportation. Therefore, a mode-choice model is 

calibrated to understand the choice-making behavior of travelers for airport ground access. Airport trip 

characteristics are significantly different from other trips like commuting, shopping, and sightseeing. 

First, they are performed with less frequency. Second, reliability is more critical because delays in the 

access trip can be costly if one misses a flight. Third, a relatively high number of trips getting their cost 

reimbursed, which affects affordability. These differences can sometimes create challenges in airport 

ground access trip modeling, which is not uncommon [39]. 

Two conditional logit models are calibrated for the mode-choice model, one for business trips 

and another for non-business trips. Each model partially segments the value of time by residents and 

visitors of the region. The conditional logit model only includes independent variables that vary 

between the modes for a single traveler (called generic variables- e.g., travel time, cost, distance). 

Alternative-specific variables that do not vary across the modes (e.g., income, gender) could not be 
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included as the coefficients for UAM alternative-specific variables could not be calibrated because the 

mode is not chosen in the revealed-preference data.  In conditional logit models, an individual is 

expected to make mode choice decisions based on the utility derived from the mode. The utility is 

estimated using a log-likelihood maximizing methodology dependent on the trip characteristics when 

using that mode.  The traveler's probability of taking each mode in their choice set is then derived from 

the estimated utilities, as shown in Equation 1 [40]. 

𝑃𝑖𝑗 =
𝑒𝑈𝑖𝑗

∑ 𝑒𝑈𝑖𝑗𝑛
𝑗=1

 (1) 

Where: 

𝑃𝑖𝑗 =  probability of selecting for mode 𝑗 over n alternative modes for 𝑖𝑡ℎ traveler 

𝑈𝑖𝑗 =  utility associated with mode 𝑗 for 𝑖𝑡ℎ traveler 

 

The conditional logit model was estimated using the dataset prepared from the Originating 

Passenger Survey. The originating passenger survey is a revealed-preference survey, and only the 

chosen mode is reported. Therefore, alternative mode characteristics have to be estimated. Required 

trip characteristics for a mode-choice model were not included in the survey, such as travel time, travel 

cost, etc. All trip characteristics for both chosen and alternative modes were estimated separately. 

There are six modes in the final dataset: drive-park, drive-drop, taxi, rental car, public transit, and 

ridesharing (Uber, Lyft, or similar). Driving trips for all OD pairs were simulated in Open Street 

Routing Machine (OSRM), which is an Application Programming Interface (API) built upon the 

database of OpenStreetMap [41]. It provided driving directions, unimpeded in-vehicle travel time 

(IVTT), and driving distance. Unimpeded travel times were further adjusted using Texas 

Transportation Institute Congestion Indices [42] to account for congestion. 

Furthermore, three minutes of out-of-vehicle travel time (OVTT) was considered for all driving 

modes. Transit directions for all OD pairs were simulated in Open Trip Planner [43], and transit's 

IVTT and OVTT were extracted. Transit options with reasonable travel times were considered 

feasible. Table 8 summarizes the estimation of travel times and travel costs for all the mode considered 
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in the analysis. Travel times and travel costs are measured in minutes and US dollars, respectively. 

Once the trip characteristics for chosen and available options were estimated, the mode-choice model 

is calibrated. 

Table 8: Data Sources for Travel Time and Travel Cost Estimation 

Mode Travel Time Travel Cost 

IVTT OVTT 

Drive & Park 1) Congestion adjusted 

OSRM output 

2) Shuttle time based on 

the parking lot 

1) 3-min OVTT 

assumption 

 

2) Based on Parking 

Lot4 

1) Driving cost based on 

IRS per mile cost 

reimbursement rate 

[44] for business 

travelers 

2) Driving cost based on 

operating cost of the 

car according to AAA 

2015 [45] for non-

business travelers 

3) Parking cost based on 

the parking lot5 

Drop-off6 Twice the congestion 

adjusted OSRM output 

 

3-min OVTT assumption 

 

No cost 

Taxi Congestion adjusted 

OSRM output 

5-min waiting time 

assumption 

Yellow cabs fare structure 

[46] 

Rental Car 1) Congestion adjusted 1) 3-min OVTT 1) 25% of the daily cost 

 

4 Economy parking lot requires more waiting for shuttle than express parking lot. Terminal 

parking lot does not require shuttle. 

5 The parking location for drive and park is included in the survey. Total parking cost was 

estimated using the rates reported on the airport website for different parking locations and stay 

duration reported in the survey. Only half of the total parking cost applies to the access trip cost for 

drive and park. 

6 This analysis assumed zero travel cost because often drop-off is motivated by other factors 

like well-wishing and vehicle unavailability, and twice the driving time for drop-off, assuming the 

driver performs a round trip. 
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OSRM output 

2) Shuttle time from 

rental car center 

assumption 

2) 15-min processing 

time at rental car 

center and waiting 

time for the shuttle 

of a rental car in 2015 

from popular rental 

agencies [47] 

2) Fuel and daily 

insurance cost from 

AAA [45] 

Public Transit OTP output 1) OTP output 

2) Half of the headway7 

Flat-rate ticket cost [48] 

Rideshare Congestion adjusted 

OSRM output 

5-min waiting time 

assumption 

Uber fare structure [49] 

 

3.6.2 Vertiport Placement 

UAM ConOps in this study requires the traveler to access the nearest vertiport by a rideshare 

service assumed to work in collaboration. Travelers will access vertiport by walk if the walking 

distance is less than or equal to one-tenth of a mile. Luggage constraints are the reason for assuming a 

small plausible walking distance. After five minutes of assumed ingress time (processing and 

boarding), travelers would UAM vehicle, which would take them to their airport (DFW or DAL). The 

UAM vehicle is routed using the shortest path algorithm applied on a network made up of vertiports 

and the routes inside class-B airspace. Routes in the network are not allowed to overfly class-D 

airspaces and must detour around them. Also, no vertiports are allowed inside class-B and class-D 

unusable airspaces (see Figure 18). Five minutes of egress time is added for alighting the UAM vehicle 

and reach the terminal. UAM vertiport at the airport is assumed to be located at an equivalent 

"curbside" location to avoid the involvement of shuttle services, which could increase the travel time 

and inconvenience for UAM travelers.   

Vertiports' location is critical for UAM's success. Vertiport placement in this analysis aims at 

capturing maximum UAM demand for a given number of vertiports and placement restrictions. There 

are 1,932 unique blockgroups in the survey data. Survey methodology uses stratified sampling based 

on destination zones share, airlines market share, and time of day [43]. The sampling and weighting 

methodology used in the survey resulted in a trip-origin distribution representative of daily airport 

trips. The initial step in the vertiport placement estimates UAM trip potential for each blockgroup in 

 

7 OTP does not include initial waiting time at the origin public transit stop. 
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daily UAM trips to the airports, utilizing the calibrated mode-choice model. UAM trip potential uses 

UAM trip parameters mentioned in Table 9 (further explained in section 3.7). Using the Fuzzy C-

means clustering method [44], an appropriate number of clusters is developed. The fuzzy c-means 

method has a similar objective function as hard k-means. However, instead of assigning each data 

point to a cluster, the data point belongs to each cluster to some degree specified by a membership 

grade (based on its vicinity to the cluster centers). This feature of Fuzzy C-means is utilized since we 

were aware of the raw optimal solution's infeasibility caused by airspace restrictions. Data points for 

clustering are developed from a random selection of census blocks centroids of a census blockgroup 

weighted by its UAM potential. Random selection induced some variability in trip origin location 

inside a blockgroup and helped in better convergence. Clusters falling inside unusable airspaces are 

removed from the analysis. A subset of retained clusters that maximizes the overall membership for a 

given number of vertiports is selected as a vertiport set, e.g., top 50 or 75 clusters, which would 

maximize the combined membership of all data points in the clustering analysis.  

Table 9: Assumed Parameters for UAM Trip Calculations 

 Parameter Value 

 Walkable Distance To/From Vertiport 0.10 mi 

 Ingress8 Time 5 min 

 Egress Time 5 min 

 Average UAM Vehicle Speed 120 mph 

 Average Walking Speed 3.1 mph 

 Minimum Trip Distance for UAM Eligibility 10 miles 

Average Occupancy 2.4 

UAM Fare Structure 

 Base Cost (per- 

passenger) 
$15 

 Landing Cost (per-

vehicle) 
$20 

 Cost Per Mile (CPM) $2.0 

 

8 Ingress/Egress times account for processing and boarding/alighting the vehicle 

at the vertiport. They do not account for trip delays. 
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3.7  Results 

Results include the calibrated mode choice models and their adjustment to estimate UAM 

demand. This section also includes vertiport sets placed using the demand-driven clustering approach, 

followed by demand estimation for UAM and sensitivity analyses. 

3.7.1 Calibrated Mode Choice Model Results 

 Table 10 includes the variables resulting in the best fit and their estimated coefficient for the 

calibrated model. The pseudo-R2 suggests a good model fit as Lourviere et al. [52] consider values 

between 0.2 to 0.4 to be a very good fit. The model uses segment interacted cost variables that provide 

partial segmentation and captures subtle differences between residents' and visitors' travel cost 

perception. Drop-off is the base alternative in the model. Certain modes were only partially available 

to the segments. Rental car alternative was limited to visitor segment, and Drive & Park alternative 

was limited to residents. Model validation plots are included in the Appendix. 

Since the UAM mode was not a part of the survey data, the UAM mode constant could not be 

estimated during model calibration. Mode constants capture unobserved factors such as safety, 

reliability, comfort, personal preference, etc., which influence mode choice decisions. UAM ConOps 

defines the mode as an aerial ridesharing mode [53]. Therefore, it can be assumed that the 

unobservable factors affect the mode choice for UAM, similar to rideshare modes. This analysis uses 

rideshare mode constant for UAM mode constant. Similar assumptions have been made in UAM 

studies. In a Munich-based study, Ploetner et al. found similarities in terms of excluded attributes of 

UAM and train [54]. They assigned the UAM mode to the transit nest and used train mode's variables 

for UAM except for travel costs, travel time, and assumed VOT values. 

Table 10: Mode Choice Logit Model 

Parameter 

Coefficient (or Estimate) 

Business Trips 
Non-Business 

Trips 

Mode Drive & Park
#
 1.1613* 0.0384 
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Constants Taxi -0.7247* -1.4141* 

Rental Car
##

 0.5772* -0.2281* 

Public Transit -2.333* -1.9685* 

Rideshare (Uber, Lyft, etc.) -1.8706* -1.8531* 

Travel Time Total Travel Time -0.0207* -0.0192* 

Travel Cost 
Travel Cost (Residents) -0.0220* -0.0353* 

Travel Cost (Visitors) -0.0216* -0.0316* 

 Number of Transfers -0.2277* 0.3337* 

Model Fit 
ρ

2
 (Pseudo R

2
) 0.2952 0.2763 

Prob > chi
2
 0.0000* 0.0000* 

Value of 

Time 

Resident VOT ($/hr) 56.45 32.54 

Visitor VOT ($/hr) 57.50 36.38 

Note: Significance: *0.01  

#Only applicable to Resident Business Trips  

##Only applicable to Non-Resident Business Trips   

3.7.2 UAM Demand Estimation 

The UAM alternative was added to the mode choice set after estimating UAM trip 

characteristics for each OD pair. The UAM trips are simulated based on the ConOps described in 

Section IV-3.6.2 and assumptions mentioned in Table 9. All mode probabilities are recalculated for all 

the trips in the dataset using Equation 1. The total number of daily inbound airport trips eligible for 

UAM is 45,070 (to DFW: 38,701 and to DAL: 6,369). The UAM demand is estimated using the 

traveler's UAM probability and daily weight provided in the survey. Joby S4 is the concept vehicle 

used in this analysis; it has a capacity of four passengers. The analysis assumes a 60% load factor (2.4 

passengers per vehicle) for the UAM trips. After exploring prices for various ridesharing and on-

demand services in the region, a Base Cost of $15 per passenger and a Landing Cost of $20 per vehicle 

was assumed. Figure 20 outlines the sensitivity of demand with respect to the CPM offered by the 

UAM operating agency, considering a constant 50 vertiports in the region. Due to the lack of data on 

returning passengers (airport to home/hotel/work), an equal number of UAM originating and returning 
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trips is assumed on OD pair level. At a $2 CPM (additional to Base Cost and Landing Cost), there is a 

3,202 UAM one-way airport trip demand per day, where increasing the CPM by 50 cents (25% 

increase in cost) reduces the demand by 26%. Even though the UAM demand drops quickly on 

increasing the per-mile cost, a considerable number of trips could be observed at a high per-mile cost 

of $4, which is in addition to the Base Cost and Landing Cost. Figure 21 shows segmented demand 

based on traveler's category. The proportion of business travelers in UAM demand is high due to their 

relatively higher VOT than non-business travelers. Even though business travelers make up to 54% of 

the total ground access market in the Dallas-Fort Worth region, they comprise three-quarters of the 

UAM demand for a scenario with 50 vertiports and $2 UAM CPM. The higher cost of UAM is 

expected to affect non-business travelers relatively more due to their relatively lower VOT. Therefore, 

the share of non-business travelers in UAM demand drops to only 17% in the high-cost scenario with 

$4 UAM CPM. 

 

Figure 20: Daily Airport UAM Demand Sensitivity to UAM CPM (50 Vertiports) 
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Figure 21: Daily Airport UAM Demand Sensitivity to UAM CPM (50 Vertiports) by Segment 

Increasing the number of vertiports improves the accessibility of UAM as access times would 

decrease. However, building and operating a large number of vertiports could be an economic burden. 

Therefore, it is essential to evaluate the change in demand with changing network size of vertiports. 

Three vertiport sets with 50, 75, and 100 vertiports are generated where a smaller set is a subset of the 

larger sets. Figure 22 illustrates the sensitivity of UAM demand with the UAM network, i.e., the 

number of vertiports. UAM demand is estimated for all three vertiport sets and $2 UAM CPM 

(additional to $15 Base Cost and $20 Landing Cost). Increasing the network size of 50 vertiports set by 

50% increases daily UAM demand by 12.5%. Adding 25 vertiports to a 75 vertiport set increases the 

UAM demand by 2%. The increase in UAM demand is negligible adding vertiports beyond the 100 

vertiport set. The reason for a nominal increase in UAM demand on increasing the size of vertiport set 

is a heavy concentration of airport trip demand in certain areas. Airport trip access demand in Dallas-

Fort Worth is concentrated in a few parts of the region and, therefore, effectively served by a smaller 

network of vertiports. Additional vertiports are placed in areas with scarce airport access demand and 

thus, resulting in only a minor increase in UAM demand. 
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Figure 22: Daily Airport UAM Demand Sensitivity to UAM Vertiport Set Size (UAM CPM: $2) 

Sensitivity analysis is extended to secondary factors influencing UAM demand in the system. 

Certain parameters usually kept constants during the demand estimation process are varied to 

understand their impact on the UAM demand. The base scenario selected for reference is 50 vertiports 

with $2 UAM CPM (additional to $15 Base Cost and $20 Landing Cost) that estimates 3,202 daily 

airport access UAM passenger trips. Figure 23 shows the impact of changes in secondary factors on 

UAM demand. The demand estimation process is repeated for every change, with the discussed change 

being the only deviation from the reference scenario. The base cost for a UAM trip in the reference 

scenario is $15 per passenger, which aligns with the base cost of mid to premium rideshare services. 

Decreasing the base cost by 50% to $7.5 per passenger could increase the overall UAM demand by 

almost 20%. 

Similarly, the UAM demand could increase by 10.5% if the landing cost charged per flight 

(assuming 2.4 passengers per flight) is reduced by 50% to $10 per flight. The UAM average speed 

assumed in the reference scenario is 120 mph based on the reference vehicle's speed. UAM vehicles 

would travel on designated routes inside Class-B airspace and sometimes make frequent turns. In the 

case of a slower vehicle or congested airspace, maintaining a 120-mph average speed over the entire 

aerial trip could be challenging. UAM's primary attractive feature is travel-time savings, and any drop 
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in average speed is expected to curb UAM demand. UAM demand could reduce by almost 12% if the 

average UAM speed is reduced to 80 mph. 

Intermodal trip or access trip to the origin vertiport is a crucial part of the UAM trip. The 

ConOps assumes intermodal trip would be completed via cab/taxi service if the access distance is more 

than the threshold of one-tenth of a mile. The intermodal cost is calculated using the Uber fare 

structure in the Dallas-Fort Worth region. The intermodal cost is a significant part of the total cost for 

many travelers. If the intermodal cost could be brought down by virtue of collaboration, automation, 

economies of scale, etc., UAM affordability would increase. UAM demand could increase by 7.5% if 

the intermodal cost could get 25% cheaper. On the other hand, vertiport location at the airport could 

affect the UAM's inconvenience and total travel time. The commercial traffic pattern at DFW allowed 

a narrow passage to bring UAM vehicles near the terminal, which was not viable at DAL airport. The 

analysis assumes vertiport to terminal access time of zero and ten minutes at DFW and DAL, 

respectively. However, physical restrictions in vertiport placement could increase the vertiport to 

terminal access time. If vertiport to equivalent curbside access time is increased by 10 minutes at both 

the vertiports, the UAM demand could decrease by 17.5%. 

 

Figure 23: UAM Demand Sensitivity against Multiple Factors. Base Case: 50 Vertiports with 

$2 UAM CPM (additional to $15 Base Cost and $20 Landing Cost) generating 3,202 UAM One-way 

Passengers Trips 
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Figure 24 represents the spatial distribution of UAM demand for DFW airport trips with 50 

vertiports and $2 CPM (additional to $15 Base Cost and $20 Landing Cost). Vertiports with high 

demand are located in Dallas downtown, DAL airport, Fort Worth downtown, and near Richardson. 

The high demand at DAL vertiport suggests the scope for an airport shuttle. Several mid-demand 

vertiports are found in Denton, Arlington, near Benbrook, Dallas and Fort-Worth downtowns, and 

Dallas suburbs. Major corridors can be established between Dallas downtown, Fort-Worth downtown, 

and the DFW airport. The high demand for UAM on these corridors is probably attributed to the high 

number of business travelers. Figure 25 represents the spatial distribution of UAM demand for DAL 

airport trips for the same demand scenario. Since DAL only attracts 14% of UAM eligible trips to the 

airports in the region, the demand at the vertiports is relatively low. There is only one vertiport near 

Arlington with more than 20 daily UAM passenger trips to DAL. The vertiports in Dallas downtown 

have zero for trips to DAL because the flying distance is less than the minimum UAM eligible flying 

distance of ten statute miles. All remaining vertiports have a similar demand level with less than 20 

daily UAM passenger trips to DAL. 

 

Figure 24: Spatial Distribution of UAM Trip Demand to DFW 
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Figure 25: Spatial Distribution of UAM Trip Demand to DAL 

3.7.3 Capacity Discussion 

The demand estimation process does not consider any capacity constraints. It assumes the 

required capacity is always available at the vertiport and in the airspace. However, capacity constraints 

would be a common operational constraint as the demand levels increase. This subsection sheds light 

on the feasibility of UAM operations at DFW vertiport predicted by the demand model with 50 

vertiports and $2 UAM CPM (additional $15 Base Cost and $20 Landing Cost) from a capacity 

perspective. 

Passenger trips are converted to UAM flights assuming 2.4 passengers per UAM flight, i.e., 

60% load factor for the reference vehicle with a capacity of four passengers. Using the scheduled flight 

time reported in the survey and pre-departure distribution observed at the airport, departure times for 

UAM trips are generated. A full day of operations (617 arrivals and 617 departures) at the DFW 

vertiport are then simulated in the discrete-event simulation model developed in Rimjha and Trani 

[55]. According to the simulation results, the operations at the DFW vertiport would require a 

minimum of five pads and 48 parking stalls with reasonable service queues and service waiting times. 

Approximately 0.17 repositioning departures were required for every arrival, and 0.15 repositing 
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arrivals were required for every departure. These ratios are relatively low compared to the ratio found 

in Rimjha and Trani [55] during the simulation of a full day of UAM commuter operations. This is due 

to limited unidirectionality in airport access trips along with little concentration in peak periods. In 

contrast, commuter trips are usually heavily concentrated in peak periods with a high degree of 

unidirectionality. According to the analysis presented in Tarafdar et al. [56] and Tarafdar et al. [57], a 

five pad and 48 parking stall vertiport configuration would require almost 10.5 acres of land. Vertiport 

of that size is difficult to build close to the terminal. Either a smaller vertiport could be built close to 

the terminal, or a vertiport with the required capacity be built relatively far from the terminal. In the 

former option, vertiport would operate under capacity constraints causing delays and increasing 

operational inefficiency, whereas the latter option would increase the access time and thereby decrease 

the UAM demand as observed in the feasibility analysis. 

UAM trips in the analysis are simulated on the designed network, which uses a total of three 

routes in the narrow corridor to bring UAM vehicles in and out of the DFW vertiport. Two of these 

routes are on the south side, and one is on the north side. These routes were designed assuming the 

exceptional navigational performance of the UAM vehicle. While the demand estimation process does 

not account for airspace restrictions, we recognize potential route capacity saturation while operating a 

high number of operations in and out of the DFW vertiport. Figure 26 shows the number of daily 

flights on each route for the scenario with 50 vertiports and $2 UAM CPM (additional to $15 Base 

Cost and $20 Landing Cost). Routes in and out of the DFW vertiport are critical and called spine road 

routes. The spine road route from the north has a demand of almost 500 UAM flights, whereas the 

spine road routes in the south have a demand of 436 (red) and 290 (green) UAM flights. The peak-hour 

demand in airport access trips has a proportion of 8% of the daily demand. Using that fraction, the 

peak-hour demand in the northern spine road route could reach 40 flights/hr. Moreover, peak-hour 

demand for southern spine road routes could reach 35 flights/hr. (red) and 23 flights/hr. (green). 

Assuming separation minima of 2 nm and an average UAM speed of 80 knots in that corridor, the 

route capacity of any spine road route is estimated at 33 UAM operations per hour. Even without 

considering mixed operations, the spine road route in the north and one spine road route in the south 

would be capacity constrained. Route capacity constraints could cause delays and thereby decrease the 
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UAM demand. Therefore, the spine road routes could potentially become bottlenecks in the UAM 

network. 

 

 

Figure 26: Daily UAM Flights by Route. Scenario: 50 Vertiports with $2 UAM CPM (additional to 

$15 Base Cost and $20 Landing Cost) 

3.8  Conclusions 

This paper analyzes the latest originating passengers survey at Dallas-Fort Worth International 

airport and Dallas Love Field to understand current travel patterns and trip-making behavior of 

travelers in the airport ground access segment. Mode-choice models are developed to capture the 

mode-choice behavior of the travelers and estimate UAM demand for airport access trips. UAM could 

capture around 4% market share (3,202 one-way passenger trips) with 50 vertiports and UAM CPM of 

$2 (additional to $15 Base Cost and $20 Landing Cost) in the Dallas-Fort Worth region. Almost three-

quarters of that total UAM demand is from business travelers due to their relatively higher value of 

time than non-business travelers. The sensitivity analysis of UAM demand against UAM CPM found 

that UAM demand drops by 26% if the UAM cost per passenger mile increases by 50 cents. Even at a 
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high price of $4 CPM, UAM could capture about 1% of the market share. Increasing the vertiport 

network size does not significantly impact the UAM demand as airport access demand is concentrated 

in certain areas in the region, therefore, comfortably catered by a smaller vertiport set. UAM demand 

only increases by 12.5% and 2% on increasing number of vertiports from 50 to 75 and 100, 

respectively. 

Sensitivity analysis of UAM demand against changes in secondary factors revealed that UAM 

demand could increase by almost 20% and 10% on 50% reduction in UAM base cost and UAM 

landing cost, respectively. UAM demand could also increase by about 7.5% if intermodal access gets 

25% cheaper by virtue of collaboration, automation, economies of scale, etc. On the other hand, the 

UAM demand could drop by 12% and 17.5% if the average speed of UAM is reduced to 80 mph from 

120 mph and if vertiport to terminal access travel time is increased by 10 minutes at both airports, 

respectively. Therefore, the location of vertiport at the DFW airport should be close to the equivalent 

"curbside" location to reduce access inconvenience. The spatial distribution of UAM demand 

advocates a significant potential of high-demand corridors between DFW airport and Dallas 

downtown, DAL airport, Fort Worth downtown, and Richardson area. Since UAM trips to DAL only 

comprise 14% of all total demand and most of which are spread near uniformly over the region, no 

high demand corridor potential is recognized for DAL airport trips, except the shuttle corridor between 

DAL and DFW. Demand estimation does not consider capacity constraints, but a post-estimation 

analysis suggests potential vertiport capacity constraints at DFW vertiport and route capacity 

constraints for the given route network and UAM demand scenario with 50 vertiports and $2 UAM 

CPM. Even with congested airspace and other scaling constraints, airport access trips in the Dallas-

Fort Worth region are a promising market for UAM operations. 

Future research should incorporate capacity constraints in the demand estimation process. The 

analysis could be enhanced by UAM perception-related information from airport access travelers 

specifically. The impact of other factors like luggage handling, inclement weather, system delays 

should be explored. This analysis assumed no interaction with commercial ATC, and therefore a 

significant part of airspace is unusable. Policies to dynamically reduce unusable airspace through 

limited ATC incorporation should be studied as reducing detours would improve UAM vehicle 

routing. Mature state UAM operations could generate significant noise levels [58]. However, future 
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research should investigate whether the UAM's contribution to noise levels around the airport is 

significant, considering default noise levels from commercial aviation operations. 
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3.11 Appendix 

 

 

Figure 27: Comparison of Market Share by Distance: Chosen vs. Predicted 

 

Figure 28: Comparison of Market Share by Distance: All Segments 
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4. Los Angeles Airport Ground Access Demand Estimation for Urban Air Mobility 

 

Rimjha, Mihir, et al. "Urban Air Mobility Demand Estimation for Airport Access: A Los Angeles 

International Airport Case Study." 2021 Integrated Communications Navigation and Surveillance 

Conference (ICNS). IEEE, 2021. 

4.1 Abstract 

Urban Air Mobility (UAM) or Advanced Air Mobility (AAM) is a concept aerial transportation 

mode being designed for intracity transport of passengers and cargo utilizing autonomous electric 

vehicles capable of Vertical Take-Off and Landing (VTOL) from dense and congested areas. Airport 

ground access trips could be among the early adopters of UAM because of the high customer 

willingness to pay and substantial time savings for long-distance or significantly congested access 

trips. This study aims to estimate demand for UAM in the airport ground access segment of Los 

Angeles International Airport (LAX). Travel behavior is derived from the airport passenger survey 

2019 provided by Los Angeles World Airports (LAWA). A mixed logit model captures the mode-

choice behavior that is later modified to include UAM. Total daily originating passenger trips are 

estimated from the T-100 database. The calibrated model is then applied to calculate the UAM 

demand.  Utilizing the developed UAM demand estimation framework, a feasibility analysis is 

performed through a series of sensitivity analyses with respect to UAM passenger cost per mile (CPM) 

and UAM network size (number of vertiports). Furthermore, the Also, UAM demand in specific high-

demand corridors (according to the ground access traffic) is analyzed. UAM could capture an 

estimated 3.6% market share in airport access trips to/from LAX at $2.00 UAM cost per passenger 

mile, assuming 2.4 passengers per flight (additional to $15 base cost per passenger and $20 landing 

cost per flight). 
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4.2 Introduction 

Los Angeles, California, is expected to be among the early adopters of UAM [1, 2]. Initially, 

commercial UAM services were expected to roll out in Los Angeles by 2023 [3], and the City of Los 

Angeles created a roadmap to support the UAM system planning [4]. Now, alongside the LA 

Department of Transportation (LADOT) and the city’s Urban Movement Labs (UML), the City of Los 

Angeles has announced a UAM partnership to make Los Angeles the leader in UAM adoption [5, 6]. 

As the UAM concept is getting close to implementation, it is essential to estimate its demand potential, 

which will impact various system characteristics, including optimal vertiport placement and passenger 

cost per mile determination. 

Existing literature contains demand studies exploring different trip purposes and their UAM 

potential. Fu et al. developed a simulation-based framework to estimate UAM demand for local 

commuters and airport passengers in the year 2030 for the greater Munich area [7]. They estimated 

around 0.62% market share of UAM with 74 vertiports and UAM cost of 2€/km (additional to 5€/trip). 

Balać et al. investigated the potential market for UAM in Zurich on a 10% population sample [8]. They 

suggest that UAM may only capture a small share of the transportation market in a small city like 

Zurich, but that might not be the case in heavily populated cities with congested ground traffic. 

Roy et al. developed a multi-commodity network flow framework for UAM airport shuttle air taxi 

service in Atlanta [9]. While their focus was on optimizing flight scheduling of UAM vehicles, they 

analyzed the sensitivity of the UAM demand to the ticket price for two scenarios with 3 and 6 

vertiports. Other demand studies in literature focus mainly on commuting, cargo, etc. [10, 11]. 

Booz Allen Hamilton explored market size and recognized three potential markets for UAM: 

Airport Shuttle, Air Taxi, and Air Ambulance [12] in their UAM market study for the National 

Aeronautics and Space Administration (NASA). They found Airport Shuttle and Air Taxi markets to 

be viable and expect the former to be early adopters of UAM because of operational efficiency. The 

need for supply/demand matching is minimized if demand is concentrated at one end of the flight.  

The UAM’s potential in airport access trips and in Los Angeles is recognized in literature, 

separately. However, the literature lacks UAM demand estimation efforts of this trip purpose in Los 
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Angeles. The analysis presented in this paper fills this gap by estimating UAM demand for airport 

access trips to LAX airport, which could be among the earliest commercial services of UAM [13, 14]. 

4.3 Data 

Multiple datasets were used in this analysis. The 2019 Passenger Survey Los Angeles 

International Airport conducted by Unison Consulting on behalf of LAWA is the primary data source 

in this analysis. This survey is part of LAWA's ongoing effort to modernize and improve airport 

ground transportation access, parking, and passenger and terminal facilities at LAX [15]. Nearly 

15,000 survey responses were collected in two waves, February/March 2019 (non-peak) and July 2019 

(peak), with a staggering daily schedule from 5 AM to 1 AM. Unison team claims the samples have a 

margin of error of no greater than ±3 percent at a 95 percent confidence level, which indicates each 

sample can be analyzed individually with a high level of statistical validity. The originating trips 

recorded in this survey are considered to be representative of all the traveler trips arriving at LAX. 

Hence, this dataset is used for mode-choice model calibration and determining regional trip origin 

distribution. The geographical resolution of this survey data was limited to the Zip-Code level.  

This study is a follow-up to the UAM commuter study performed for NASA in 2019-20 [16]. The 

study area is kept consistent with the commuter study. Figure 29 illustrates the study area and 

geographical coverage of the survey data. There are 600 unique zip codes in the survey data, with trip 

origin having their centroid inside the study area.  This study assumed the UAM vehicle has a range of 

150 sm.  All of these zip codes are within this distance of the LAX airport. 
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Figure 29: Study Area and Geographical Coverage of the Survey Data 

Even though the survey included both originating passengers and connecting passengers, the trips 

by connecting passengers were filtered out as the analysis focuses on ground access trips. Originating 

passengers constituted 67% of the survey data. LAX region residents and visitors comprise an almost 

equal proportion of the originating passengers in the region, the former generating 53% of the trips 

whereas the latter generating the remaining 47%.   

The data was segregated into four segments based on mode availability and expected mode-choice 

behavioral differences: Resident Business, Resident Non-Business, Visitor Business, and Visitor Non-

Business. However, due to relatively fewer business travelers, there are not enough trips in all four 

segments for a credible four-segment analysis. Therefore, the data were re-segregated into two 

segments: Business trips and Non-Business trips. Since this UAM demand estimation is based on 

mode choice analysis, trips performed by captive modes like courtesy van, hotel shuttle are filtered out. 

Trips without trip-origin zip code information are also removed. Table 11 includes the remaining 

number of trips by segment. 

Table 11: Originating Passenger Survey Data by Segment 

Segment Number of 

Trips 

Percentage of 

Total Trips 
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Resident 

Business 

1,802 13.6% 

Resident Non-

Business 

2,729 34.5% 

Visitor Business 1,257 15.8% 

Visitor Non-

Business 

2,887 36.3% 

Total 7,955 100% 

 

Determining any new mode's feasibility requires a prior understanding of travel behavior in the 

region, especially mode-choice behavior. Figure 30 shows the mode choice proportions observed in the 

filtered data. Six modes are considered in this analysis: Drop-Off, Drive and Park, Taxi (traditional), 

Rental Car, Public Transit, and Rideshare. There has been substantial change observed in the market 

share captured by Transportation Network Companies (TNC) (or Rideshare) compared to the previous 

edition of this survey (2015) [15]. The TNC market share grew by four times to 28% in 2019 

considering raw survey data, i.e., without filtering. Most of these trips shifted from Private Vehicle and 

Rental Car. Such mode-shift is promising for UAM as it shares similarities with TNC (or Rideshare) 

mode.  
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Figure 30: Observed Mode Share in Survey Data 

UAM mode's utility depends mostly on marginal travel time savings, which can either come about 

by traveling over significantly congested ground traffic or when the Great Circle Distance (GCD) is 

considerably smaller than the alternative ground trip distance. Therefore, analyzing the trip distances 

of these ground access trips is essential for realizing UAM's scope.  

Figure 31 and Figure 32 show the distribution of driving distances observed in the Business and 

Non-Business Segment survey data, respectively. Visitor business trips have a median distance of 15.7 

statute miles (sm), the least among all categories. Many visitor business travelers tend to stay in hotels 

located close to the airport. Similarly, due to a large proportion (60%) of visitor non-business travelers 

residing in hotels close to LAX, the median driving distance is 17 miles. The second peak around 35 

miles is due to several non-business visitors going to Anaheim, where Disneyland is located, making 

the most popular trip origin zip-code. 

Resident business and resident non-business both tend to travel longer distances because often 

residences are located in outskirts or suburbs. Unsurprisingly, 96% of the residents start from their 

homes. Trip distances of travelers from both segments have smoother distribution tail as residence 

zones could be found at different distances from the airport. Average trip distances are above 25 sm for 

all categories except visitor business which is a promising indicator for UAM as marginal travel time 

savings increase with increasing driving distance in general. 
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Figure 31: Distribution of Driving Distances of Access Trips to LAX (Business Segment) 

 

Figure 32: Distribution of Driving Distances of Access Trips to LAX (Non-Business Segment) 

4.4 Airspace Restrictions 

The LAX airport is the second busiest airport in the USA in terms of passenger traffic [17]. The 

commercial traffic in that region is complemented by 14 smaller airports producing a very congested 

airspace. Like all major airports, LAX is surrounded by Class-B airspace controlled by Air Traffic 
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Control (ATC). Class-B airspaces are individually designed and generally extend up to 10,000 feet 

vertically from Mean Sea-Level (MSL) and 30 nautical miles radially [18]. 

According to current guidelines, any unauthorized operation in Class-B airspace is prohibited. The 

UAM Concept of Operations (ConOps) is based on no ATC involvement as that could cause system 

delays and increase the workload of air traffic controllers and ATC resources. Class-D airspace 

requires two-way radio communications with ATC. In addition to LAX Class-B airspace, 14 Class-D 

airspaces surround the secondary or military airports present in the Los Angeles region. Savvy Verma 

and her research group at NASA AMES scrutinized the operations at these airports, and proposed 

restricted airspace envelopes shown in Figure 33.  They develop boundaries of unusable airspaces and 

UAM operational conditions (recommended altitudes) near controlled airspaces.  

 

Figure 33: Restricted Airspace Boundaries (Source: NASA AMES) 

These unusable airspaces are treated as restricted zones for UAM where the placement of 

vertiports and overflying of UAM vehicles are prohibited. UAM routes must detour if the GCD route 

pierces any restricted zones. To avoid placement of vertiports very close to the restricted zones, a 

2,000 ft buffer is used for vertiport placement. Airspace restrictions result in relatively less optimal 
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placement of vertiports and extra travel distance and travel time for UAM trips. Both impacts 

expectedly decrease UAM utility to the traveler and demand for the UAM mode.  

4.5 Mode Choice Model Calibration 

A mode-choice model was calibrated model to capture the airport ground access travelers' 

mode-choice behavior. Specifically, a mixed conditional mode-choice model was found to be suitable 

for this purpose. The conditional logit model only includes trip-related variables or generic variables. 

Due to the lack of traveler-related information in application data, variables relating to traveler's 

characteristics could not be included in the model calibration. 

Utilizing conditional logit models to capture choice behavior is in practice for several decades. 

Mixed logit models are warranted to capture unobserved heterogeneity in the data. Therefore, the 

mixed conditional logit model was significantly better in statistical fit than the conditional logit model 

because of the high variation observed in mode-choice behavior in this particular dataset. According to 

mixed conditional logit models, a traveler's mode-choice decision is based on the utility that can be 

derived from each available mode. The utility that individual n derives from choosing alternative j on 

choice occasion t is given by 𝑈𝑛𝑗𝑡 = 𝛽𝑛
′ 𝑥𝑛𝑗𝑡 + 𝜀𝑛𝑗𝑡 [19], where 𝛽𝑛

′  is a vector of individual-specific 

coefficients, 𝑥𝑛𝑗𝑡 is a vector of observed attributes relating to individual n and alternative j on choice 

occasion t, and 𝜀𝑛𝑗𝑡 is a random error term.  

The probability of individual n choosing alternative i on choice occasion t is given by standard 

conditional probability: 

𝐿𝑛𝑖𝑡(𝛽𝑛) =
exp(𝛽𝑛

′ 𝑥𝑛𝑖𝑡)

∑  𝐽
𝑗=1 exp(𝛽𝑛

′ 𝑥𝑛𝑗𝑡)
 (1) 

The unconditional probability of the individual's choices is obtained by integrating 𝐿𝑛𝑖𝑡 over 

the distribution of 𝛽: 

𝑃𝑛(𝜃) = ∫ 𝑆𝑛(𝛽)𝑓( 𝛽 ∣∣ 𝜃 )𝑑𝛽 (2) 

Where: 

𝑓( 𝛽 ∣∣ 𝜃 ) is density according to the selected distribution. 
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𝑆𝑛(𝛽𝑛) is the probability of the observed sequence of choices for known 𝛽𝑛:  

𝑆𝑛(𝛽𝑛) = ∏  

𝑇

𝑡=1

𝐿𝑛𝑖(𝑛,𝑡)𝑡(𝛽𝑛) (3) 

The log-likelihood of the mixed logit model is given by LL(𝜃) = ∑  𝑁
𝑛=1 ln 𝑃𝑛(𝜃), where N is 

the number of individuals. It is approximated using the simulation method because it cannot be solved 

analytically. The simulated log-likelihood is then given by: 

SLL(𝜃) = ∑  

𝑁

𝑛=1

ln {
1

𝑅
∑  

𝑅

𝑟=1

𝑆𝑛(𝛽𝑟)} (4) 

where R is the number of replications and 𝛽𝑟 is the 𝑟th draw from 𝑓( 𝛽 ∣∣ 𝜃 ). The coefficients are 

estimated by maximizing the simulated log-likelihood. The number of replications was fixed at 100 as 

little improvement was observed in statistical fit beyond that. 

Originating passenger survey was a revealed-preference survey, and only chosen mode is 

included. The choice dataset is created by reconstructing each traveler's mode alternatives. Trip 

attributes are not part of the survey, and therefore, all trip attributes or model variables were estimated 

externally. Driving and transit directions were simulated for all the trips in the dataset using Open 

Street Routing Network (OSRM) [20] and Open Trip Planner (OTP) [21], respectively. The output of 

OSRM contains route directions, unimpeded travel time, and driving distance. Unimpeded travel times 

are adjusted for congestion using Texas Transportation Institute Congestion Indices [22]. Similarly, the 

OTP output contains transit itineraries which are processed to extract in-vehicle travel time, out-of-

vehicle travel time, and number of transfers. If the walking distance to the closest transit station is 

more than the reasonable distance of a quarter-mile, car-and-park itineraries are chosen. 

Trip attributes for the chosen and valid alternatives from all the modes considered in this 

analysis (Figure 30) are estimated based on certain derived functions and assumptions. In-vehicle 

travel time (IVTT) for all driving modes (Drop-Off, Drive-Park, Taxi, Rental, and Rideshare) is 

derived from congestion-adjusted driving time. Additional shuttle time is included if applicable (rental 

car, off-site parking). Assumed Out-of-Vehicle Time (OVTT) is included in Table 12.  
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Table 12: OVTT Assumptions 

Mode OVTT 

Drop-Off 3-min 

Drive-and-Park 
3-min + Shuttle time if 

parked off-site 

Taxi 5-min waiting time 

Rental Car 

3-min + 15 min processing 

and waiting time for the 

shuttle 

Public Transit OTP output 

Rideshare 5-min waiting time 

 

Travel cost estimations are based on standard fare structures and certain assumptions.  

• Drop-Off is considered to have no cost. 

• Drive-and-Park travel cost comprises driving cost and parking cost. For business travelers, driving 

cost is estimated from IRS per mile cost reimbursement rate [23], whereas AAA's 2019 operating 

cost of the car [24] is used for non-business travelers. Parking cost is based on parking location and 

number of days away. Only half of the total parking cost is applied to the one-way access trip. 

• Taxi cost is based on the yellow cab fare structure in Los Angeles [25]. 

• Rental car cost comprises a quarter of the fixed rental daily cost, fuel cost, and daily insurance cost 

based on AAA 2019 [24]. 

• Public transit cost is based on the transit agency cost function [26, 27]. 

• Rideshare cost is based on Uber fare structure [28]. 

Selective mode availability is applied based on the traveler's category to avoid unreasonable mode 

alternatives. A rental car is not considered a valid alternative for residents. Similarly, Drive-and-Park is 

not considered a valid alternative for visitors. After estimating trip attributes for all chosen and their 
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valid alternatives, the model choice model is calibrated. Calibrated mode-choice model is included in 

Table 13, and its validation plot is included in Appendix-I.  

Business and Non-Business travelers show a difference in mode-choice behavior because business 

trips are usually reimbursed, increasing the individual's willingness to pay. A partially segmented 

model is chosen to capture the differential mode-choice behavior of Business and Non-Busines 

travelers. Rideshare mode is chosen as the reference alternative for being the most popular. Lognormal 

distribution was selected for the travel cost variable to avoid positive values of travel cost coefficient in 

the application process. Normal distribution was selected for Number of Transfers. The heterogeneity 

in travel time was not significant; therefore, a fixed coefficient for travel time was selected. 

Table 13: Mixed Logit Model Coefficients 

Parameter Coefficient (or Estimate) 

Mean 

Mode Constants 

Drop-Off -2.9133* 

Drive & Park 1.1236* 

Taxi -0.9381* 

Rental Car 0.4761* 

Public Transit -0.1324* 

Travel Time Total Travel Time -0.0358* 

Travel Cost† Travel Cost (Business) -3.1694* 

Travel Cost (Non- Business) -2.3487* 
 Number of Transfers -0.5648* 

Standard Deviation 

Travel Cost† 
Travel Cost (Business) 1.4928* 

Travel Cost (Non- Business) 1.7732* 

 Number of Transfers 0.5487* 

Model Fit Prob > chi
2

 0.0000* 

Median Value of 

Time 

Business VOT ($/hr) 52 

Non-Business VOT ($/hr) 22 

*Significance: 0.01 

†Logarithmic Coefficient 

 

4.6 UAM Concept of Operations 

UAM ConOps is briefly discussed to help readers understand the UAM system considered in 

this analysis and its demand estimation results. The centroid of the traveler's census blockgroup is the 

reference trip origin location for the access trip. The traveler is expected to always access the closest 
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vertiport from its origin location. If the vertiport is located further than 0.2 miles, the vertiport access 

trip is simulated using rideshare characteristics to access the vertiport. Otherwise, the vertiport access 

trip is assumed to be performed by walking. At all the vertiports, ingress and egress times of 5 minutes 

each are assumed to reflect processing time and boarding/alighting time. Since no vertiports are 

allowed inside restricted zones, a couple of vertiports are placed at the edge of restricted zones on the 

north and the south side of LAX, as shown in Figure 34.  These are the two vertiports used for airport 

access. 

 

Figure 34: Vertiports Location at LAX 

The closest LAX vertiport from the trip origin location is selected as the destination vertiport. 

The UAM trip is then simulated at an average speed of 120 mph on the UAM network using the 

shortest path algorithm. The UAM network consists of vertiports as nodes and valid edges that do not 

pierce restricted zones. While detouring, UAM vehicles are programmed to navigate slightly away 

(200 ft) but along the edge of a restricted zone to minimize detour factors. After exiting the destination 

vertiport near LAX, a shuttle with a headway of 10 minutes is assumed to take passengers to the 

terminal. The access travel time to the terminal from either vertiport is around 6 minutes. Hence, the 

total travel time by UAM is the sum of access time from trip origin to origin vertiport, ingress time at 

the vertiport, UAM trip time from origin vertiport to destination vertiport, egress time at the 
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destination vertiport, average shuttle wait time, and terminal access time from destination vertiport to 

the terminal. 

Total travel cost for UAM consists of a base cost (payable per passenger), landing cost (payable 

per landing), and UAM trip cost. UAM trip cost includes access trip cost from the trip origin to origin 

vertiport using the Uber fare structure (if access trip is not made by walking), and distance-based fare 

using UAM cost per passenger mile (CPM) for origin vertiport to destination vertiport. The shuttle 

service from the destination vertiport to the terminal is assumed to be complementary. This analysis's 

reference vehicle is Joby S4 [29], with a capacity of 4 passengers. All UAM operations are assumed to 

operate at a 60% load factor (2.4 passengers per flight). 

Since the model is calibrated on a revealed-preference survey that does not contain UAM 

mode, the mode constant for UAM could not be calculated. The mode constants' role is to capture 

mode-specific unobserved factors that influence mode-choice, such as safety, reliability, comfort, etc. 

The defined UAM ConOps is quite close to current operating models of rideshare modes, and UAM is 

sometimes referred to as aerial ridesharing. Therefore, it can be assumed that the unobserved factors 

would impact the traveler's utility of UAM, similar to Rideshare. Hence, UAM utility calculation uses 

the Rideshare mode constant.   

4.7 Demand Estimation Methodology and Vertiport Placement 

The originating passenger survey data is believed to have a credible geospatial distribution of 

LAX ground access trip origins. However, it does contain weights for the records to represent daily 

traffic. The daily number of originating passengers at LAX is required to estimate daily UAM airport 

access demand in the region. Monthly enplanements are extracted from the T-100 database maintained 

by the Bureau of Transportation Statistics (BTS) (shown in Figure 35), and the average daily combined 

enplanements are estimated at 121,379. These enplanements include both originating and connecting 

passengers. 



 

 

90 

 

 

Figure 35: Monthly Enplanements in 2019 at LAX 

LAWA reported in the Fiscal Year 2019 annual Report that approximately 81.6% of 

enplanements were from originating, and the remaining 18.4% enplanements were from connecting 

passengers [30]. Using the same ratio, the daily number of originating passengers at LAX was 

estimated to be 99,045. These daily originating trips were then distributed to the zip code level using 

the distribution ratio observed from the survey data. Figure 36 includes the trip origin ratios of zip 

codes, i.e., the number of trips (all categories) generating from each zip-code compared to the total 

number of trips (all categories). 

 

Figure 36: Trip Origin Percentage for all the Zip-Codes 

This study is a follow-up to the commuter study [16], which was performed on census 

blockgroup level. To maintain consistency in the geographical resolution of demand results, Zip code-

level trips were further distributed to census blockgroup level based on the population of each 
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blockgroup inside their zip code. Traveler's category was assigned to each trip based on the ratios 

observed in the survey. Unfortunately, the number of records in the survey data was not enough to 

capture resident/non-resident and business/non-business ratio credibly for every zip-code. Therefore, it 

was assumed that each zip-code would have the average ratio of resident/non-resident and 

business/non-business travelers observed in overall data.  

Once the traveler's category and trip origin at blockgroup level were assigned, trip attributes for 

all valid mode alternatives were estimated for every Origin-Destination (OD) pair in the application 

dataset (Destination is LAX vertiports). Each mode's utility is calculated for every traveler using the 

calibrated model, and their mode-choice probability is estimated. UAM demand for each OD pair is 

cumulative of every traveler's probability on that OD pair. The total originating UAM demand is the 

sum of UAM demand on all OD pairs in the region. Due to the lack of data on returning passengers 

(airport to home), it is assumed that return UAM demand on each OD pair would be equal to its 

originating UAM demand. 

4.8 Vertiport Placement 

The placement of vertiport is critical for the success of UAM. Ideally, vertiports should be placed 

where there is potential for high UAM demand. This problem is quite complicated, and the process of 

optimally locating the vertiports is challenging. A demand-driven vertiport placement methodology has 

been developed in a parallel effort for NASA [31], which is utilized in this study. The method is 

discussed only briefly to avoid digressing from the focus of the paper. 

After distributing the daily access trip to blockgroups, 12,699 unique blockgroups were present in 

the application dataset. The initial step in vertiport placement is to estimate blockgroup UAM demand 

potential. Blockgroup potential is calculated by running a demand model with a vertiport at every 

blockgroup centroid and estimating the number of UAM trips generated by each blockgroups. The idea 

is to calculate the maximum UAM trips a blockgroup can generate with an ideal vertiport location. 

Using blockgroup potential and the Fuzzy C-means clustering method, a certain number of clusters are 

placed in the region. Clusters falling inside restricted zones are removed, and a subset of clusters 

maximizing overall membership for the desired number of vertiports is selected as vertiports set 

location.  Figure 37 shows the location of optimally placed vertiport sets for three different UAM 

network sizes: 50, 75, and 100 vertiports. A smaller set of vertiport is a subset of the more extensive 
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set. Therefore, all 50 vertiports are present in the 75 vertiport set, and all 50 and 75 vertiports are 

present in the 100 vertiport set. Due to overlapping with the subset, only new vertiports are visible in 

the 75 and 100 vertiport sets. 

 

Figure 37: Vertiport Locations in 50, 75, and 100 Vertiport Sets 

Vertiports are heavily concentrated in the Los Angeles Central Business District (CBD) and Santa 

Monica-Beverly hills corridor, even in the smallest vertiport set, suggesting high UAM airport access 

trips potential from these areas. As we move from 50 Vertiport Set to 75 Vertiport Set, more vertiports 

can be found in Santa Ana, Santa Clarita, San Marino, Riverside, and Santa Barbara. These areas had 

almost limited or no access to UAM with 50 vertiports. Moreover, with 100 vertiports, more vertiports 

can be found in suburbs or areas with relatively fewer airport trips. 

4.9 UAM Demand Estimation Results 

After placing the vertiport sets, UAM demand estimation simulations are performed for 

selected UAM fare structures to estimate daily UAM passenger trip demand. To analyze UAM 

demand's sensitivity towards changing UAM CPM, multiple demand estimation simulations are 
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performed with increasing UAM CPM values. Figure 38 shows estimated UAM demand at different 

UAM CPM for UAM network size of 75 vertiports. The blue bars correspond to the left Y-axis 

representing daily UAM LAX access passenger trips for originating and returning passengers 

combined. The orange line corresponds to the right Y-axis representing UAM market share at every 

UAM CPM. In addition to distance-based cost, $15 base cost per passenger and $20 landing cost per 

UAM landing fee is also charged for every UAM passenger trip. At $3 CPM, the UAM can capture a 

2.4% market share in LAX airport access trips. The UAM demand dropped by 16.5% on increasing 

CPM cost by 40 cents from $1.80 to $2.20. 

 

Figure 38: UAM Demand and its Sensitivity with UAM CPM (75 Vertiports) 

Traveler's category (Business or Non-Business) has a significant impact on the sensitivity of 

UAM demand towards changing UAM. Figure 39 includes UAM market share by distance (all 

categories) for two different simulations at $2.0 UAM CPM and $3.0 UAM CPM. Due to the higher 

value of time, business travelers comprise a higher proportion of total demand than non-business trips. 

Business Visitors can benefit from UAM more than other categories because they do not have other 

convenient modes like Drop-Off and Drive-Park available to them. UAM demand by trip distance also 

varies significantly with changing UAM CPM values. UAM is not considered viable for trips with a 

driving distance of less than 10 sm. As expected, at higher CPM values, long-distance trips by UAM 

become costlier, and the demand decreases. Therefore, market share for all segments (blue line) is 
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almost the same in all distance ranges (Low distance: <20 sm, Mid-distance: 20-40 sm, and Long-

distance:>40 sm) for a $2.0 UAM CPM run. Whereas the UAM market share drops steadily as trip 

distance increases for $3.0 UAM CPM run because of Mid- and Long-distance trips becoming 

substantially costlier. 

 

Figure 39: UAM Market Share by Distance (75 Vertiports) 

4.9.1 Spatial Distribution of Demand 

The spatial distribution of UAM demand is essential for regional planning of the UAM network. 

The importance of every vertiport must be identified before its feasibility is analyzed.  

Figure 40 and Figure 41 illustrate the spatial distribution of UAM demand in terms of outbound 

passenger trip demand generated at individual vertiport with 75 vertiports set for $2.0 UAM CPM and 

$3.0 UAM CPM, respectively. 

For the demand scenario with $2.0 UAM CPM, the vertiport in LA downtown has the highest 

demand, unsurprisingly. Other high demand (> 100 outbound passenger trips to LAX) vertiports are 

located in Long Beach, Riverside, San Marino, Covina, and North Hollywood.  The corridor between 

Beverly Hills and Hollywood has more than a quarter of the mid-demand (50-100) vertiports in the 

region. Anaheim also has closely placed three mid-demand vertiports.  Also, the vertiport in San Diego 

is generating more than 50 passenger trips per day to LAX. Vertiports near LAX airport have zero 
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demand because trips from these vertiports are too short to be feasible by UAM (minimum feasible 

distance is ten sm). 

As UAM CPM is increased to $3.0, the outbound passenger trip demand decreases by ~33%. The 

most significant decrease in demand is observed at previously classified high-demand vertiports. There 

are no vertiports with more than 100 outbound passenger trips except the vertiport in LA downtown, 

which remains in the same category (150+ outbound passenger trips).  Most of these high-demand 

vertiports (previously classified) were located far from the airport. As the UAM mode became 50% 

costlier in variable cost, trips from these vertiports became significantly costlier. The vertiports which 

lost less than average demand when UAM CPM increased are the ones with minimum or detour for 

trips to the airport. Detouring increases travel distance which in turn increases travel time and travel 

cost.  Vertiports with UAM route to airport unaffected by airspace restrictions can better sustain 

increased cost in UAM CPM. UAM routes with significant detours lose demand more rapidly with the 

increasing cost of UAM because of added disutility from detours getting worse at higher costs. 

 

Figure 40: Spatial Distribution of Originating Demand. Daily Outbound Passenger Trips to LAX 

with 75 Vertiports and $2.00 UAM CPM. Total Originating Trips: 3,554 
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Figure 41: Spatial Distribution of Originating Demand. Daily Outbound Passenger Trips to LAX with 

75 Vertiports and $3.00 UAM CPM. Total Originating Trips: 2,36

4.9.2 Top Demand Corridors 

The final report of originating passenger survey [15] reported Top 10 Areas of Origins based on 

the number of trips originating from each zip code. These are popular corridors for airport access trips 

currently. The study analyzed UAM demand in these corridors using the 75-vertiport set and a UAM 

CPM of $2.0. Figure 42 shows the top 10 zip codes' location, and Table 14 includes the Areas 

(corresponding to these zip codes) and their respective share in current ground access trips to LAX. It 

also includes outbound UAM passenger trips demand to LAX from blockgroups inside these zip codes. 

Moreover, the percentage share of UAM demand from these areas is also reported.  

Four of the ten top origin areas have zero demand for UAM because of UAM's infeasibility. 

They are either too close to the airport (LAX Area, El Segundo, Inglewood) or are located in restricted 
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zones, and their closest vertiport is too close to the LAX vertiports (Venice). Among the remaining 

areas, Downtown LA captures the highest share of total UAM demand (6%). Anaheim is the top area 

in terms of total trip origins and could capture 5.4% of outbound UAM demand. Hollywood and Long 

Beach both attract substantial UAM demand capturing 4.3% and 3.3% of the total UAM demand, 

respectively. 

 

Figure 42: Top 10 Areas of Origin (Yellow Polygons) 

Table 14: UAM Demand in Top 10 Areas of Origin by Current Ground Access Survey 

Area Zip Code 

% of 

ground 

access trips 

Outbound 

UAM 

Passenger Trips 

% of Total 

Outbound 

UAM 

Passenger Trips 

Anaheim 92802 4.1% 192.2 5.4% 

Downtown LA 90013 3.8% 217.8 6.1% 

LAX Area 90045 3.2% 0 - 

Hollywood 90028 2.5% 154.0 4.3% 

Long Beach 90802 2.4% 119.4 3.3% 

Pacific Palisades 90272 2.2% 90.9 2.5% 
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El Segundo 90245 1.8% 0 - 

Beverly Hills 90210 1.5% 80.3 2.2% 

Inglewood 90301 1.5% 0 - 

Venice 90291 1.4% 0 - 

4.10 UAM Demand Sensitivity with Number of Vertiports 

All demand results presented until this point use the 75 vertiport set. The number of vertiports or 

UAM network size is a critical element in the demand estimation process. As the number of vertiports 

increase, the mode becomes more accessible, and access time decreases. However, building more 

vertiports is not always better, especially from an economic point of view. Given the infrastructure and 

real estate cost in metro areas, building vertiports can be very costly. If they only serve a handful of 

passengers over the day, it is not economically feasible. Therefore, the potential demand impact of the 

addition/removal of vertiport should be analyzed. 

Figure 43 shows the daily UAM demand by vertiport size, keeping the UAM CPM at $2.00. The 

total UAM demand increases by only 12% and 5.7% when vertiport size increases from 50 to 75 and 

75 to 100, respectively. The small increase in UAM demand on adding more vertiports is probably due 

to the heavy concentration of airport access trip demand in certain areas of the region. When demand is 

concentrated in certain areas rather than evenly spread, a small vertiport set is more efficient, as 

witnessed. 
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Figure 43: Total Daily UAM Demand by Vertiport Set Size (UAM CPM: $2.0) 

4.11 Conclusions 

UAM has considerable potential in airport access trips to LAX. With a network size of 75 

vertiports, UAM could capture 3.6% (7,109 UAM passenger trips) and 2.4% (4,730 UAM passenger 

trips) market share at $2.0 UAM CPM and $3.0 UAM CPM, respectively (additional to $15 base cost 

per passenger and $20 landing cost per flight, assuming 2.4 pax per flight). The total airport access 

demand is geospatially concentrated in certain areas; therefore, the UAM demand is not very sensitive 

to UAM network size. Increasing the number of vertiports from 50 to 100 only increases UAM 

demand by 18.5%. LAX to LA downtown, Anaheim, Hollywood, and Long Beach, are the top four 

UAM corridors in order. 

4.12 Limitations and Future Research 

The UAM demand results presented in this study are subjected to certain assumptions. 

Awareness and acceptance of UAM among travelers are assumed to be similar to current Rideshare 

modes (Uber, Lyft, etc.). The reliability of the UAM system should be high to achieve presented 

demand results. The analysis assumes that UAM is always available to travelers whenever requested. 

Potential delays due to vertiport congestion, inclement weather conditions, and unavailability of UAM 
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vehicles are recognized but not considered in the demand estimation process. Future research is 

recommended to include the impact of these factors to get more constrained UAM demand results. 

 The lack of information on travelers in application data restricted us from including traveler 

characteristics variables directly in the model. Household income, number of household vehicles, 

household size, and other traveler's related variables could strengthen calibrated model and result in 

more credible demand estimation results. Nevertheless, the UAM demand results presented in this 

paper are reasonable considering currently available data. 
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4.15 Appendix I: Model Validation Plot 

 

 

Figure 44: Comparison of Market Share by Distance 
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5. Factors Affecting Vertiport Capacity 

Rimjha, M., & Trani, A. (2021, April). Urban Air Mobility: Factors Affecting Vertiport 

Capacity. 2021 Integrated Communications Navigation and Surveillance Conference (ICNS) (pp. 

1-14). IEEE.  

5.1 Abstract 

This study aims at analyzing critical factors impacting vertiport capacity in urban areas. 

Urban Air Mobility (UAM) or Advanced Air Mobility (AAM) is a concept transportation mode 

being designed for intracity transport of passengers and cargo utilizing autonomous electric 

vehicles capable of Vertical Take-Off and Landing (VTOL) from dense and congested areas. The 

vertiports are expected to be placed on rooftops in Central Business Districts (CBD), limiting 

vertiports' size and suggesting high infrastructure costs. Therefore, vertiport capacity analysis is 

critical for an efficient UAM network as operations could be tailored for maximum efficiency. 

This analysis uses the vertiport designs developed for a previous study using current guidelines 

for heliports by Federal Aviation Administration (FAA). The minimum area of all designs was 

estimated for single and dual taxi-lanes configurations. From a preliminary geospatial analysis of 

San Francisco CBD, the rooftops' sizes are less likely to accommodate vertiports with more than 

three landing pads, even with tailored modifications. Therefore, this capacity analysis only 

considers vertiports with one, two, and three landing pads. A Discrete Event Simulation (DES) 

model is developed in MATLAB to simulate UAM operations and determine vertiport capacity. 

A high-demand vertiport in San Francisco Financial District is selected to understand the impact 

of unidirectional flows on a vertiport's passenger serving capacity. The analysis focuses on the 

utilization of various elements of vertiport, as they comprise the overall efficiency of the 

vertiport operations.  Moreover, vertiport capacity sensitivity against elements such as the 

charging rate, service times at landing pads, and parking stalls are included in the findings.  
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5.2 Introduction 

As the industry is preparing its vehicles for commercial UAM operations [1, 2], cities and 

authorities are generating roadmaps for better adoption of this transportation mode [3]. The 

UAM is expected to create a significant impact on the economy [4, 5]. While the UAM vehicles 

could be ready to operate commercially by the year 2024 [6, 7], is the infrastructure ready? The 

early adopters of UAM would probably be the airport access trips [8] partly because the 

foundational infrastructure for takeoff/landing areas exists on at least one side of the flight. FAA 

also believes initial UAM operations could use existing helicopter infrastructure (routes, 

helipads, etc.), and no UAM unique structure is needed [9]. However, the UAM market is 

expected to grow rapidly at a compound annual growth of 11.3% over the next ten years [10]. It 

would be challenging to build an infrastructure capable of catering to high UAM demand levels 

in urban spaces with limited land availability, especially in CBDs. The operational efficiency of 

vertiports is crucial in capturing maximum UAM demand potential. 

Vascik et al. developed an Integer Programming approach to determine deterministic 

vertiport capacity envelopes. They believe the ratio of gates to Touchdown and Liftoff (TLOF) 

pads as a key design factor [11] and found 7-8 gates per pad as "potentially efficient topology". 

Their analysis recommends having staging stands to handle unbalanced arrivals or departures. 

Even though staging stands require a smaller footprint than gates, they could increase the total 

vertiport footprint.  

The vertiport designers and system planners could benefit from this analysis's results 

because the utility of the UAM depends significantly on the marginal time-savings, and any 

inefficiency in the system will affect the traveler's utility from UAM. 

5.3 Data 

The findings of a previous UAM demand estimation study [12] performed for the National 

Aeronautics and Space Administration (NASA) in the year 2019-20 comprise a significant part 

of the data used in this analysis. The demand estimation study focused only on commuters. It 

involved calibrating a mode-choice model using the National Household Travel Survey (NHTS) 

– 2017 Add-On data [13], developing a demand-driven vertiport placement method, and 

predicting the UAM demand using the LEHD Origin-Destination Employment Statistics 
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(LODES) data [14]. The demand analysis findings include the vertiport level Origin-Destination 

(OD) demand with departure and arrival times based on the actual departure times for commuters 

observed in NHTS data. The vertiport level OD demand acts as the input for the DES model 

developed in this analysis. 

Even though the demand analysis was performed for four metro areas in the United States 

(Northern California, Dallas-Fort Worth, Southern California, and New York City), this analysis 

only focuses on Northern California. Nevertheless, the results could be easily extrapolated to 

other metro areas because Northern California poses a challenging case with a heavy UAM 

demand concentration in small airspace around San Francisco CBD. Also, high infrastructure 

costs, limited or no vacant land availability, and heavy congestion in road travel are standard 

features of other CBDs. The UAM demand results are dependent on the UAM cost structure and 

the UAM network size or number of vertiports. The demand model predicted a 0.04% market 

share for UAM at $2.50 per passenger mile with a $10 base cost and 75 vertiports, estimating 

around 1,923 UAM passenger commuter round trips from 4.6 million daily commuters in the 

region. Such demand levels are expected in the early to mid-term or when the UAM system 

gains some maturity. Hence, this demand set is considered suitable for the capacity analysis. 

Figure 45 illustrates vertiport locations in San Francisco CBD and their demand level for the 

selected demand set. There are five vertiports in/near the Financial District, and the study will be 

focusing on the one with the highest demand (322 operations). Passenger trip demand is 

converted to daily UAM flight demand assuming a 60% load factor with a four-seater UAM 

vehicle. An operation is defined as either a takeoff or a landing. 
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Figure 45: Daily UAM Operations at Vertiports in San Francisco CBD (Selected Demand Set) 

The vertiport capacity is, of course, connected to the size of the vertiport. The demand 

analysis scope did not involve consideration of vertiport size or design. However, the vertiport 

locations and designs are closely studied in a parallel effort performed for NASA [15, 16]. There 

are no guidelines published yet for the UAM operations near and on vertiport. Therefore, the 

vertiport designs are developed using current guidelines for heliports by Federal Aviation 

Administration (FAA) in Advisory Circular 150/5390-2C [17]. Determining the minimum area 

required for vertiports of different configurations and compare it with land availability was the 

primary motive for developing vertiport designs. The designs include Clear Approach/ Departure 

Paths, Clear Area for Ground Maneuvers, FATO (Final Approach and Takeoff Area), TLOF 

(Touchdown and Liftoff Area), Safety Area Design, Parking Stalls, Safety Net (for elevated 

landing site), Wind Cone, Passenger Lounge Area/ Waiting Room, and Hangars and Lighting. 

Table 15 includes the minimum area required for vertiport designs considered in the capacity 

analysis. Appendix I includes the vertiport designs themselves. 
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Table 15: UAM Vertiport Minimum Area Requirements 

Landing 

Pads 

Parking 

Stalls 

Landing Pad Safety 

Area (acres) 

Total Area in Ground 

Taxi Operation (acres) 

1 8 0.25 1.97 

2 16 0.25 3.87 

3 24 0.25 5.84 

 

5.4 Methodology 

The basic framework involves utilizing a DES model to estimate the vertiport capacity with 

different configurations and in different settings. The DES model developed in MATLAB during 

this study involves a significant number of variables with assumed values because either the 

value of that variable is unknown or uncertain (for example, UAM range, UAM battery charging 

rate, etc.). The assumed values are based on either concept vehicle manufacturers or expected 

performance values based on current technology. Some of these variables have a more 

substantial impact on the capacity than the others, and it is crucial to study them through 

sensitivity analyses. The initial step in the analysis was the development of the DES model. 

A DES model can model operations in a system as a series of events over time [18]. These 

events cause a change of state in the system, and no change is assumed between the events. 

Usually, a system consists of servers, resources, and queues. In this analysis, the vertiport is 

considered our system, and operations (arrival or departure) are considered entities. These 

entities move through the system and change the state of the system. The landing pads and the 

parking stalls are modeled as resources, and the UAM vehicles in the environment are modeled 

as modified resources. There are three First-In-First-Out (FIFO) queues in the system: Arrival 

Queue, Service Queue, and Departure Queue. The DES model and the simulation flow are 

shown in Figure 46.  
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Figure 46: Discrete Event Simulation Model Workflow 

The DES model has three components that share common resources: Arrival Section, Service 

Section, and Departure Section. There are two independent entity generators (Arrival and Departure) 

that are not connected initially, but their mutual influence would be explained when introducing 

repositioning operations. 

Arrival Section handles the arrival requests. If a pad is available, the pad is assigned the landing 

is completed by Arrival Service Time assigned to that operation. After landing, the operation is 

transferred to Service Section if any parking stall is available. Otherwise, the vehicle does not release 

the pad, and the operation is added to the service queue. The pad is released if a stall is assigned and 

there are no more arrivals in the queue. If the arrival queue is not empty, arrival operations in the 

queue are addressed before releasing the pad. 

Once released from the pad, the vehicle is taxied to the assigned stall where the Service starts. 

Service includes bringing the vehicle to a complete stop for safely alighting the vehicle for passenger 
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arrivals. Service End is dictated by assigned Service Time at Stall for that operation. After Service End, 

the UAM vehicle is added to the available UAM vehicles at the vertiport and prepared for departure 

requests. Unlike arrivals, the service end does not release the stall as it is occupied by the vehicle, and 

the Service operation waiting in the queue must be processed at another available stall. 

Departure Section handles all departure requests. When a departure request arrives, all UAM 

vehicles at the vertiport are checked for availability. If no vehicle is available, a repositioning arrival is 

requested. However, if vehicles are available, the one with the highest battery charge is assigned to the 

departure. The Departure Launch is scheduled after the assigned Departure Service Time at Stall for 

that operation. After the Departure Service Time at Stall is over, the vehicle battery level is checked 

against the minimum charge required for the assigned trip (including reserve). As soon as the vehicle is 

ready, landing pad availability is checked, and takeoff is scheduled.   

5.5 Initial Vertiport Capacity Estimation 

Baseline capacity metrics should be developed to understand the impact of various elements on 

vertiport capacity. The dissension between arrival and departure schedule is expected to reduce the 

passenger serving capacity of vertiport due to repositioning operations. However, the vertiports could 

achieve maximum passenger serving capacity with equal arrival and departure rates which would be an 

ideal scenario and rarely be the case in real-world UAM operations. UAM operations are simulated 

with arrivals and departures generated from the Poisson distribution with equal rates for baseline 

capacity. The simulations are carried out for 60 minutes to determine the maximum arrival and 

departure capacity of the vertiport configurations. 

5.6 Passenger Serving Capacity of the Vertiport 

The practical or passenger serving capacity of vertiports could be substantially less for actual 

commuting patterns. This part of the analysis focuses on the operations at the selected high-demand 

vertiport in San Francisco Financial District. There are 167 arrival flight requests, and an equal number 

of departure flight requests spanned across 24-hr. A full day of UAM operations is simulated with 

actual arrival and departure times of commuter flights estimated in the demand estimation study. 

Figure 47 shows the arrival/departure time distribution of passenger operations at the selected 

vertiport. The San Francisco CBD has a high employment density, making it the most significant trip 

attractor in the region. The selected vertiport does not produce any outbound commuter roundtrips, 
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which is expected given the vertiport location and surrounding expected given the location and 

surrounding demographics. All the inbound commuter trips arrive in the morning, starting before 5 

AM and peaking around 8:45 AM. The return trips of these commuters peak at 5 PM. The commuter 

flow at this vertiport is completely unidirectional in both the morning and the afternoon.   

 

Figure 47: Distribution of Arrival and Departure Times of Flights at the Selected Vertiport 

The flying distances of departures are also considered in the analysis, as they impact the service 

time of the departure or time taken to prepare for departure. The assigned UAM must have enough 

charge (with 20% reserve) for the flight. The UAM demand model assumes that UAM trips are 

infeasible below 10 miles. UAM provides significant travel time savings for mid-distance trips (20-30 

miles) by bypassing ground congestion en-route to San Francisco Financial District. Also, UAM 

becomes very costly for long-distance trips; therefore, UAM trips in mid-range are relatively popular. 

Figure 48 shows the flight distances of departures from the selected vertiport. 

As commuting traffic flows at the vertiport are unidirectional for a significant amount of time 

during the day, it poses a challenge for UAM operations as the proportion of UAM repositioning 

operations increases and the effective passenger carrying capacity of the system reduces. The 
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repositioning operations are an economic burden and also add to vertiport and airspace congestion. The 

imbalance between arrival and departure request times impacts the proportion of repositioning flights, 

which is analyzed in this study. 

 

Figure 48: Distribution of Departure Flight Distances. Total Departures: 167 

5.7 Repositioning Algorithm 

Repositioning or dead-headed flight are generated when one type of operation (arrival or 

departure) dominates over another for a significant period of time. If arrival flight requests are 

dominating over departure flight requests, the rate of occupying the parking stalls at the vertiport 

would be higher than the release rate. This would eventually exhaust the vertiport capacity, and no 

more arrivals could be allowed before force releasing empty UAM vehicles through repositioning 

departures. Similarly, if departure flight requests are dominating over arrival flight requests, dead-

headed arrivals would be required to bring empty UAM vehicles in order to serve departure requests 

once they exhaust the UAM availability at the vertiport. 

Although repositioning operations are usually in response to instantaneous lack in supply, pre-

planning repositioning operations could be conducive in efficient vertiport operation during peak 

periods, especially in this scenario where arrival and departure requests are heavily imbalanced. The 

reason for the recommendation of pre-planning is the use of the same resources at vertiport by 

repositioning operations and also the time it takes to perform repositioning operations. For example, if 

we wait till arrivals completely saturate the stall capacity and then force repositioning departure 
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operation, it could cause significant delays as arrivals would be blocked till the vehicle is pushed and 

has departed from the vertiport. The repositioning departure would also use the same landing pads 

where the arrival queue has already started building up due to saturation. Similarly, if repositioning 

arrivals are only requested when no UAM vehicle on vertiport is available, significant delays could be 

incurred. Requesting repositioning flight, flying a dead-headed UAM vehicle, landing, and bringing it 

to a stall where departure service could proceed, would take a considerable amount of time and 

reliability issues. 

In this study, knowledge of arrival and departure times is already fed to the system. Such 

information is not usually available to the operators of an on-demand service. However, predicting 

expected traffic using the data of completed trips (or traffic patterns of existing modes) as the system 

matures is already practiced and known to boost the system's operational efficiency [19]. This is also 

practiced in modern supply chains [20] for lower delays and higher productivity. 

The DES model utilized in this study is programmed to enforce repositioning departures when 

50% of the vertiport stalls are occupied and the number of completed arrival requests is less than the 

95th percentile of all expected passenger-carrying arrivals. Similarly, the model requests repositioning 

arrivals if the occupied stalls are less than 50% of total stalls at the vertiport and the number of 

completed departures are more than the 5th percentile of all expected passenger-carrying departures. 

Besides pre-positioning, certain thresholds are embedded in the Simulation to enforce required 

repositioning operations and maintain stability in the system, such as requesting immediate 

repositioning arrival if no UAM is available at the vertiport for departure request or forcing immediate 

repositioning departure if service queue increases beyond taxiway limit of four vehicles. 

5.8 Results 

Variables with assumed values play a critical role in any discrete event simulation model. This 

model has assumed values for several variables such as Arrival Landing Time or Departure Take-Off 

Time at Pads, Arrival or Departure Taxi Times, Service Times (Boarding or Alighting), etc. Some of 

these variables are later varied in the sensitivity analysis to quantify their impact on vertiport capacity 

or operational efficiency. Table 16 includes the assumed values for these variables in initial operations 

capacity estimation and actual passenger serving capacity estimation. Distribution is assumed for all 
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the service times instead of fixed values to provide randomness observed in real-time operations. The 

lognormal distribution is selected to avoid unrealistic negative service times. 

Table 16: Assumed Parameters and their Values in the Simulation Model 

Parameter Value Distribution Variance 

Arrival Service Time at Pad 90 sec Lognormal 30 sec 

Arrival/ Departure Taxi Time 60 sec - 15 sec 

Arrival Service Time at Stall (Passenger) 5 min Lognormal 1 min 

Arrival Service Time at Stall 

(Repositioning) 

2 min Lognormal 15 sec 

Charging Rate (per min) 8%  - - 

Max. Charge (80% SOC) 100 mi - - 

Reserve Ratio 20% - - 

Departure Service Time at Stall 

(Passenger) 

5 min Lognormal 1 min 

Departure Service Time at Stall 

(Repositioning) 

1 min Lognormal 15 sec 

Departure Service Time at Pad 60 sec Lognormal 15 sec 

 

5.8.1 Initial Vertiport Capacity Results 

The baseline simulation runs provide vertiport capacity metrics for balanced arrival, and departure 

operations generate from a Poisson distribution. All three vertiport configurations' operation handling 

capacity is calculated, keeping all assumptions mentioned in Table 16. Figure 49 illustrates the number 

of arrivals and departures handled by different vertiport configurations. Full utilization of Pads and 

Stalls was observed during multiple times during Simulation. Each configuration's interarrival times 

were tailored to avoid the arrival/service/departure queue threshold of five/five/six operations. Pre-

staged UAM vehicles are defined as ready UAM vehicles already present at the vertiport at the 

Simulation start. Pre-staged UAM vehicles are kept at 33% of vertiport stall capacity. Table 17 

includes the maximum number of passengers carrying operations observed in these simulations. 
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Table 17: Maximum Number of Operations in One-Hour Simulation 

[Pads/Stalls] 
Pre-Staged UAM 

Vehicles 

Maximum Arrivals 

(Passenger Carrying) 

Maximum 

Departures 

(Passenger Carrying) 

[1 / 8] 3 16 20 

[2 / 16] 5 22 25 

[3 / 24] 8 43 35 

 

 

Figure 49: Hourly Capacity of Different Vertiport Configuration under Balanced Operation 

5.8.2 Vertiport Capacity Results of Selected Vertiport 

Following are the important observations from a full-day simulation of operations at the selected 

vertiport. Initial Simulation was attempted with three Pads – 24 Stalls vertiport configuration but, it 

could not handle the traffic, and vertiport resources were exhausted with infeasible queues. Figure 50 

shows the queue limit breaching and exhausting resources, after which Simulation cannot continue 

without discarding arrival or departure operations. 
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Figure 50: Queue and Utilization for 3 Pads - 24 Stalls 

A minimum of four pads and 36 stalls would be required to serve the demand at our vertiport 

without discarding any operation. This configuration could be developed using combinations of the 

fundamental configurations and designs presented in this paper. A vertiport with four pads and 36 

stalls would require almost 6.96 acres. Such a large area is difficult to find on rooftops or in vacant 

spaces in the Financial District. Perhaps, the vertiport could be split into two smaller (2 Pads -18 

Stalls) vertiports or could be moved off-shore.  Although convenient, the latter would add some extra 

access time and might decrease the demand. 

Following are the simulation results with four Pads - 36 Stalls configuration. Figure 51 

illustrates the utilization of resources (Pads and Stalls) at the vertiport during a full 24-hr Simulation. 

The increased utilization during peak periods is expected due to increased arrival and departure request 

rates. Arrivals are expected to take more time than departures at the pad and are programmed to 

occupy the pad for 30 seconds more than the departures (Table 16). Therefore, the pad-utilization is 

maximum for a more extended period of time during arrival peak (or morning peak) than during 

departure peak (or afternoon peak). The parking stall utilization is connected to the repositioning 

algorithm to some extent. The pre-positioning threshold dictates the maximum or the minimum 

number of UAM vehicles on the ground. The threshold is set at 50% or 18 gates for departures, i.e., if 
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the occupied gates drop below the threshold, repositioning arrivals are requested. This is evident from 

the stall-utilization profile during the afternoon. 

Similarly, during morning peak hours, repositioning departures are forced if more than 50% of 

the stalls are occupied. However, due to minimum service time at stall and departures competing for 

same pads with arrival priority in place, the stall-utilization is rapidly increasing during peak arrival 

period, and stall-capacity gets exhausted by the end of arrival peak (around 9 AM). The highest 

number of hourly arrival requests is 42, from 7 AM-8 AM. However, due to the high proportion of 

repositing flights and short interarrival times, the vertiport operates at maximum capacity for a 

significant amount of time in the morning. 

 

Figure 51: Pads' and Stalls' Utilization during 24-hour Simulation (4 Pads - 36 Stalls) 

Analyzing the queue is a vital part of a discrete event simulation analysis. Understanding the 

factors controlling the queue helps in efficient planning. The vertiport in our model operates under 

arrival priority. Increasing service queue indicates gridlock potential at the vertiport, especially during 

peak periods when operation requests are on the higher side. Figure 52 shows the status of all three 

queues during the Simulation. Since the vertiport operates under arrival priority, the arrival queue does 



 

 

118 

 

not exceed two. During arrival peak hours, repositioning departures shoot the gap between passenger-

carrying arrivals. Finding the gap becomes difficult as the rate of arrivals increases, and therefore, the 

departure queue extends to six during peak arrival hours. Without pre-positioning, this issue can 

aggravate as the system waits for capacity saturation before it starts forcing repositioning departures. 

The long queue of departures indicates a slow release of stalls, resulting in an increase of service queue 

if the vertiport stall occupancy is near maximum. This is also explained by the service queue's graph 

between 8 AM-10 AM. 

Moreover, the abnormal increase in-service queue is attributed to the repositioning algorithm. 

The pre-positioning algorithm stops requesting repositioning departures if completed passenger 

arrivals are already over the 95th percentile (Clock~ 10.1 hours) of expected arrivals. Therefore, the 

remaining arrivals wait for service as vertiport stalls were already near exhaustion. It should be noted 

that besides pre-positioning, instantaneous repositioning requests can also be triggered by vertiport 

congestion. 
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Figure 52: Queue Status during Simulation 

The imbalance between arrival request times and departure request times can affect the 

passenger-carrying operations a vertiport can handle. The 4 Pads- 36 Stalls vertiport is saturated 

because many repositioning flights are required consistently. Figure 53 depicts the steady requirement 

of repositioning departures and arrivals during arrival and departure peak periods, respectively. 

Repositioning operations are essential to keep vertiport operational for passenger operations. 

Table 18 includes the total number of completed operations by the end of the Simulation. 46% 

of the arrival operations are repositioning operations, and 47% of the departure operations are 

repositioning operations. Due to the heavy imbalance, 0.90 repositioning departures are required per 

passenger arrival, and 0.85 repositioning arrivals are required passenger departure. 

 

Figure 53: Number of Passenger Carrying and Repositioning Operations throughout Simulation 

Table 18: Number of Completed Operations in a 24-hr Simulation 

Operation Type Total Number of 

Completed 
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Operations 

Passenger Arrivals 167 

Repositioning 

Departures 

151 

Passenger Departures 167 

Repositioning Arrivals 142 

 

The UAM vehicles are considered a modified resource because individual vehicles are recorded 

and handled in the Simulation. The availability of UAM vehicles and departure wait times are closely 

related. The core motivation behind UAM vehicle pre-positioning is to make a vehicle available at the 

time of expected departure request. During departure peak hours, UAM vehicle availability drops 

quickly while repositioning arrivals are on the way or being processed. This can be observed in Figure 

54. During arrival peak hours, the consistent gap between total UAM vehicles on the ground and 

available vehicles is due to the service time before the UAM is considered available for departures.  

 

Figure 54: Number of UAM Vehicles on the Vertiport throughout Simulation 

5.9 Sensitivity Analysis 

Several factors are controlling the efficiency of the vertiport operations. Table 16 includes the 

default assumptions in the DES model. It is crucial to analyze the impact of these variables. 
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• Arrival Service Time at Stall: Figure 55 shows the Simulation service queue when the stall's arrival 

service time is increased by two minutes and variance by one minute. The service queue increases 

by three and exceeds the stable limit of five operations. Quick Service of the vehicles during peak 

arrival time is essential to avoid delays.  

 

Figure 55: Increased Service Queue due to Increased Service Time and Variance for Passenger 

Arrivals 

• Arrival Service Time at Pad: If the mean pad occupancy time of arrivals could be reduced by 30 

seconds (90 seconds to 60 seconds per arrival), the same demand could be served by three Pads and 

30 Parking Stalls without discarding any operation. The three Pads - 30 Stalls configuration 

requires almost 6.38 acres, 0.6 acres less than the default four Pads – 36 Stalls configuration. 

Figure 56 displays the pad utilization during a simulation with three Pads – 30 Stalls serving the 

same demand due to a 33% reduction in mean arrival service time at the pad. 
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Figure 56: Pad Utilization during Simulation with Reduced Arrival Mean Service Time at Pad 

• Repositioning Arrival Request Time: Since it is a single vertiport environment, UAM vehicle 

movement outside vertiport is not tracked. Repositioning arrival vehicle is assumed to arrive at the 

vertiport in 7.5 minutes from the time of the request. However, it could be argued. Also, the pre-

positing algorithm is connected to the time it takes to bring repositioning the arrival vehicle. The 

impact of this variable is significant, which can be observed in Figure 57. Repositioning arrival 

request time is increased to 10 minutes keeping the same pre-positioning thresholds. The influx of 

repositioning arrivals during departure peak and when the vertiport operates under departure 

priority causes an infeasible arrival queue. This indicates the importance of the pre-positioning 

threshold in a multi-vertiport system or high variation in dead-headed arrivals' repositioning time. 

 

Figure 57: Increased Arrival Queue during the Departure Peak due to Increased Repositioning Arrival 

Request Time 

The sensitivity of capacity against other variables such as battery charging rate and number of 

pre-staged vehicles was also analyzed. However, it was not found to be significant with given settings. 
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Since simulation starts at midnight and arrivals precede departures, pre-staged aircraft are not useful in 

this circumstance. However, pre-staged aircraft is found to be useful in hourly simulations with 

balanced arrival and departure rates. The pre-positioning of the UAM vehicle allowed enough time for 

vehicles to be charged at the stall before being assigned to a departure. Therefore, the battery charging 

rate was not impacting vertiport capacity in these settings. However, vehicles often must wait for 

sufficient charge during mixed or balanced operations before they can be launched for departure. 

5.10 Conclusions 

Vertiports are a critical part of the UAM system, and the system's overall efficiency depends on 

them to a significant extent. Central Business Districts have the potential for UAM demand but at the 

same time building large vertiports is difficult due to high infrastructure and real estate costs. 

Therefore, the operational efficiency of limited-sized vertiports is essential. Hourly vertiport capacity 

for three basic vertiport configurations was estimated using a DES model with balanced arrival and 

departure rates. Furthermore, a full day of UAM operations at a busy vertiport in the San Francisco 

Financial District area were simulated to estimate the effective passenger serving capacity of vertiports 

under unidirectional flows. The disproportion between arrival and departure requests controls the 

requirement of repositioning operations at any vertiport. For the given passenger arrival and departure 

schedule at the selected vertiport, 0.9 repositing departures and 0.85 repositing arrivals are required of 

every passenger arrival and departure, respectively. The requirement of repositioning flights could be 

reduced by adding other trip purposes for UAM such as airport access trips, shopping, etc. The 

importance of pre-positioning UAM vehicles for efficient operations and avoidance of gridlock at the 

vertiport is explained in this study. 

 Sensitivity analysis found vertiport capacity to be sensitive against changes in service times at 

stalls, service times at pads, and time between repositioning request and its completion. On the other 

hand, vertiport capacity was not sensitive towards battery charging rate and the number of pre-staged 

vehicles in this particular simulation setting. 

5.11 Limitations and Future Research 

Certain simplifications were performed due to the limited scope of this analysis. The study 

environment included a single vertiport and assumed that repositioning flights are always available 
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within a reasonable time. However, repositioning flights would be requested from or forced to nearby 

vertiports subjected to the availability of resources in reality. A multi-vertiport analysis is 

recommended for a more credible analysis of repositioning operations. Although realistic, discarding 

or diverting arrival and departure requests was not in the scope of this Simulation. The analysis was 

limited to commuter operations, and it is recommended to include other trip types in future research.  
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5.13 Appendix I: Vertiport Designs 

 

Figure 58: Vertiport Design using Current Heliport Standards for One Landing Pad and Eight Parking 

Stall Configuration 
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Figure 59: Vertiport Design using Current Heliport Standards for Two Landing Pads and 16 Parking 

Stall Configuration 
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Figure 60: Vertiport Design using Current Heliport Standards for Three Landing Pad and 24 Parking 

Stall Configuration 
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6. Preliminary Noise Analysis of Commuter Operations 

Rimjha, Mihir, et al. " Urban Air Mobility: Preliminary Noise Analysis of Commuter Operations." 

2021 AIAA AVIATION FORUM (p. 3204). 

6.1 Abstract 

This study aims to estimate potential noise levels generated due to Urban Air Mobility (UAM) 

commuter operations in the Northern California and the Dallas-Fort Worth regions. UAM is a concept 

aerial transportation mode designed to bypass ground congestion using an electric vehicle with 

Vertical Take-Off and Landing (VTOL) capabilities. UAM vehicles are expected to be significantly 

quieter than traditional helicopters, but operate on a much larger scale. Commuter travel demand will 

not be uniformly distributed with operations concentrated in a small geographical area such as Central 

Business Districts (CBD) and short time windows such as morning or evening peak periods. The 

objective of this study is to evaluate the aircraft noise annoyance generated by commuter UAM 

operations using flight trajectories developed in a previous study estimating UAM commuter demand. 

This study estimates the noise level from overflying UAM vehicles in a full day of operation (24 

hours) and identifies areas where the noise levels may pose a challenge to future UAM operations. 

Noise estimation is performed at the Census Block group level using the Day-Night Level (DNL) 

metric. We run a parametric analysis considering two scenarios in each region: the UAM vehicle has a 

10 dBA and 15 dBA noise reduction compared to the Robinson R-44 helicopter. The findings indicate 

a considerable difference between the 10 dBA and 15 dBA reduction scenarios. Although challenging, 

achieving a 15-dBA reduction compared to a 10- dBA reduction could reduce land area with DNL 

value above 50 dBA by 94% and highly annoyed population by 91% in Northern California. Similarly, 

in Dallas-Fort Worth, achieving a 15-dBA reduction compared to a 10-dBA reduction could reduce the 

land area with DNL value above 50 dBA by 80% and a highly annoyed population by 85%. Lastly, we 

analyze the high-demand vertiport in the San Francisco Financial District in the Aviation 

Environmental Design Tool (AEDT) to observe the DNL contours for the varying noise performance 

scenarios. 
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6.2 Introduction 

Community annoyance due to aircraft noise around major airports has been a topic of interest 

for several decades [1, 2, 3]. Studies have shown that aviation noise disrupts sleep, adversely affects 

children's academic performance, and increases the risk for cardiovascular disease of people living in 

the vicinity of airports [4]. Urban Air Mobility (UAM) technology may be deployed in the National 

Airspace System (NAS) in significant numbers in urban areas and it is important to evaluate the 

magnitude of increased noise levels due to such operations. 

UAM is a proposed aerial urban transportation mode involving advanced electric Vertical 

Take-Off and Landing (VTOL) vehicles. The concept of urban transportation using an aerial vehicle is 

not entirely novel. Multiple companies offered transportation services in New York using helicopters 

between Manhattan and airports in the region from the mid-1950s to the late 1970s [5, 6]. Besides 

safety concerns, the locals opposed these operations due to the high noise level generated [7]. 

Companies like BLADE, Uber, and Voom offer scheduled and on-demand helicopter trips between 

urban centers and airports [8, 9]. Even after utilizing advanced and relatively quiet helicopters like the 

Bell 206L-4, these services generated noise annoyance for Brooklyn residents [10]. Helicopter services 

operate on a considerably smaller scale than proposed UAM concepts, which indicates that UAM 

could significantly impact urban noise levels and potentially contribute to community annoyance. The 

UAM system demand is likely to be small in the initial phase of deployment. However, under 

favorable economic conditions, the UAM system could achieve maturity requiring thousands of flights 

daily in the U.S. [11, 12, 13, 14, 15, 16]. Unless the vehicles are considerably quieter compared to 

present helicopter technology, demand is unlikely to reach such numbers unprotested from the 

community, especially in densely populated regions. 

This study presents a preliminary assessment of noise generated from a full day of UAM 

operations in two major urban areas in the United States: Northern California Bay Area and Dallas-

Fort Worth. While multiple studies have estimated noise impacts through trajectory and concept 

vehicle simulations, there has not been much work performed on the potential noise levels generated 

from a mature UAM system with data based on a UAM demand analysis. This study fills this gap in 

the literature and creates critical links between UAM forecasted demand, vehicle noise performance, 

and expected noise annoyance. In addition, we extend the analysis to include a high-demand vertiport 
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in San Francisco Financial District in the Aviation Environmental Design Tool (AEDT) tool to closely 

observe the DNL contours for the varying noise performance of UAM vehicles. 

6.3  Background 

Yedavalli and Mooberry performed a study to understand public perception of UAM utilizing 

expert interviews and 1,540 survey responses across Los Angeles, Mexico City, New Zealand, and 

Switzerland [17]. The findings show that communities ranked noise generation as second in their top 

concerns (both the type of sound and volume), with UAM vehicle safety ranking first. The individual 

parameters producing the highest average concern from overflying UAMs across all combinations are: 

the resemblance between the sound of a UAM and that of a helicopter at 51%, the low flying UAMs at 

51%, and the frequency of UAMs flying (100 times per hour) at 51%. The study concluded with an 

emphasis on noise mitigation in the UAM system design for better adoption of the mode.  

Vascik and Hansman identified decreased community acceptance due to UAM noise as one of 

the strong scaling constraints for UAM [18]. The study identified the significant non-acoustic factors 

and mapped the acoustic and non-acoustic impacts of UAM operations to noise annoyance. The 

authors point out the challenge of representing community acceptance of aircraft noise constraints with 

a single metric. Furthermore, they determined the percentage of people highly annoyed in a community 

to be a salient metric for community acceptance in their proposed two-stage approach to understanding 

scalability limitations due to community acceptance.  

Bent et al. studied the barriers associated with UAM noise that may hamper UAM vehicle entry 

into service and recommended high-level goals to address them [19]. The study focuses on four areas 

of interest: Tools and Technologies, Ground and Flight Testing, Human Response and Metrics, and 

Regulation and Policy. The authors recognize the importance of the human response to UAM noise for 

public acceptance and the success of UAM. Therefore, the study recommends the development of 

surrogate or other reduced order models so that designers can quickly determine the effects of design 

changes on noise early in the design process.  

There has been a great interest and rapid development in the UAM vehicle sector from many 

aviation and automobile industry leaders in recent years [ 20, 21, 22, 23]. Polaczyk et al. summarized 

current technology (2019) and research in UAM [24]. Their report discusses forty-four eVTOL 
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prototypes currently being designed and implemented. The UAM vehicle concepts vary broadly from 

multi-rotors, multi-rotors with fixed wings, multi-rotors with foldable wings, etc., with different 

passenger capacity, payload capacity, battery, etc. Aircraft noise is an intrinsic property partly 

influenced by various factors such as structural design, the number of rotors/engines, operational noise 

of rotors/engines installed, and other design factors incorporated to mitigate noise specifically. Since 

all design concepts have varying components and the Federal Aviation Administration (FAA) is yet to 

certify a UAM vehicle capable of transporting passengers safely, the aircraft noise profiles of this 

vehicle are a major unknown.  

Glaab et al. performed system-level simulations for a fleet of notional UAM vehicles for two 

different scenarios in New York [25]. The noise analysis is performed with AEDT using linearly 

scaled-down (20% lower) version of Noise Power Distance (NPD) curves of the Eurocopter AS350D 

light helicopter. The first scenario analyzes trips to the airport from current heliports in Manhattan 

representing near case, whereas the second scenario involved "hubs" located inside Manhattan based 

on the assumption of "early adopters" representing a farther term use case with commuters. The study 

assumes the number of operations parametrically (8, 32, and 128 operations per hour) to develop DNL 

contours at the airports for the first scenario and at the hubs in the second scenario. Using a notional 

target of 50 dBA, the findings suggest that the first scenario using 32 vehicles per hour did not exceed 

the target value for populated areas outside the vertiport vicinity. However, with 128 vehicles per hour, 

the study estimated 55 dBA in the interior of Manhattan and 65 dBA near vertiports. For the farther 

term scenario, the study found noise levels of less than 50 dBA. While the study displays the ability to 

simulate a different number of operations and estimate DNL contours around vertiports, it lays little 

emphasis on noise generated by overflying vehicles along the route and focuses only on areas around 

vertiports. The parametric analysis helps understand the cause-effect relationship but does not 3 reflect 

the region's actual travel patterns. Nevertheless, the study developed a sound methodology to estimate 

noise levels from NPD curves available in AEDT.  

The typical UAM vehicle is likely to be a multi-rotor with a capacity of 2-4 passengers. We use 

the Robinson R-44, a two-bladed, single-engine four-seat, light utility helicopter, as the baseline 

vehicle for this analysis. The assumption is that the UAM vehicle would likely be quieter than the R-

44, but the magnitude is unknown. Uber indicated that VTOLs would initially be 15 dBA or more 



 

 

134 

 

quieter than existing helicopters [26]. Jia and Lee studied the acoustics of a one-passenger and a six-

passenger quadrotor Urban Air Mobility (UAM) aircraft designs in level flight based on high-fidelity 

Computational Fluid Dynamics (CFD) approach [27]. The study found significantly lower noise from 

their UAM aircraft than a traditional 4-seat helicopter (such as the Bell 430). However, the difference 

reduces to less than 10 dBA at 1,000 Hz, where the human ear perception of noise annoyance is 

critical. The study concludes that a goal of 15 dBA quieter UAM than a traditional helicopter would be 

challenging to achieve. Eißfeldt suggests a potential reduction of 3-5 dBA from reduced tip speed, 

swept blades, increased blade count, or 1-2 dBA from reduced blade loading [28]. Due to the wide 

variation of the potential reduction in noise generated from UAM vehicles in literature, the study 

presented in this paper performs a parametric analysis concerning the noise profile (SEL curves) of 

UAM vehicles, i.e., multiple noise profiles are generated from different reduction values from baseline 

noise profile (SEL curves) of Robinson R-44. This analysis is performed at two reduction levels from 

the baseline noise profile: 10 dBA, 15 dBA. 

6.4  Data 

The analysis presented in this paper utilizes the UAM demand estimated during the commuter 

demand estimation study [29, 13]. The four-dimensional flight trajectories are generated after 

distributing daily UAM demand using departure time distribution of commuter trips extracted from the 

National Household Travel Survey -2017 Add-on data (Figure 61). A flight trajectory consists of a set 

of waypoints generated every second, keeping track of the flight's coordinates, altitude, and timestamp. 

The UAM Coordination and Assessment Team (UCAT) at the National Aeronautics and Space 

Administration (NASA) 's Aeronautics Research Mission Directorate has defined a series of UAM 

Maturity Levels (UMLs) [30]. UML levels represent development levels of UAM ecosystem through 

density and complexity of UAM operations. This analysis uses a UAM traffic level, which corresponds 

to "Intermediate State" or UML-3 and UML-4 [31, 32]. In Northern California, the desired daily UAM 

traffic level is obtained with 100 vertiports and $1.85 UAM Cost per Passenger Mile (CPM). Figure 62 

shows the two-dimensional view of all flight trajectories (5,818) with 100 vertiports placed via a 

demand-driven approach. The scope of the demand analysis was seventeen counties surrounding the 

bay area. However, the scope shrinks to five or six counties around the bay area when the demand-

driven approach places the vertiports to extract maximum UAM demand for a given number of 
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vertiports. The Concept of Operation (ConOps) in the demand analysis assumes UAM operations 

being independent of Air Traffic Control (ATC). Therefore, UAM flights are routed to avoid approach 

and departure surfaces of precision runways to avoid any conflict with aircraft operations at 

commercial airports [33, 34]. 

 

 

Figure 61: Distribution of Departure Times of UAM Commuter Trips 

 

Figure 62: UAM 2-D Flight Trajectories. Left: All 100 Vertiports. Right: Focused on San Francisco 

CBD 

Similarly, in Dallas-Fort Worth, the desired daily UAM traffic level is obtained with 75 

vertiports and $1.30 UAM CPM. Figure 63 shows the two-dimensional view of all flight trajectories 
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(5,398), with 75 vertiports placed via the demand-driven approach. The scope of the demand analysis 

was 12 counties surrounding the Dallas-Fort Worth area. Similar to the Bay Area, the approach and 

departure surfaces at Dallas-Fort Worth International Airport (DFW) and Dallas Love Field (DAL) are 

protected. 

 

 

Figure 63: UAM 2-D Flight Trajectories. Left: All 100 Vertiports. Right: Focused on Dallas CBD 

6.5 Methodology 

Noise generated by a flying event (flyover, approach, departure) is measured in Sound 

Exposure Level (SEL). SEL is a single event metric that combines the acoustic energy generated by an 

event accumulated in one second. The AEDT tool developed by the Federal Aviation Administration 

(FAA) contains NPD curves for several airplanes and helicopters in their database. NPD curves model 

the variation in SEL with the distance of measuring point, i.e., noise generated by an event at a certain 

distance. NPD curves vary by event type, i.e., they are different for approach, departure, and flyover. 

Moreover, different NPD curves apply to different engine types. Using the baseline NPD curves of R-

44, UAM vehicle NPD curves are developed for different reductions. Figure 64 shows the NPD curves 

developed from R-44 for all three operations (approach, departure, and level-fly) and the assumed 

NPDs for UAM vehicles for two scenarios (10 dBA and 15 dBA levels of noise reduction). 
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Figure 64: Noise Power Distance Curves of R44 and UAM for Different Modes 

Figure 65 illustrates the workflow adopted for block group level noise analysis. The steps or 

data sources outlined in red are found to have the most decisive influence on final DNL values or 

annoyance levels. The following subsections explain the DNL value and annoyance level estimation in 

detail. 
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Figure 65: Adopted Workflow for Blockgroup Level Noise Analysis 

6.6 Estimation of Block Group Level DNL Values 

There are 7,106 and 4,158 block groups in the Northern California and Dallas-Fort Worth study 

area. For every Block Group, taking the population centroid as the representative point, SEL generated 

by each flying event is calculated. It is assumed that the flight trajectory's closest point is the most 

impactful part of the event. Therefore, the waypoint in the flight trajectory closest to the concerned 

Block Group centroid is selected to determine the SEL. Figure 66 shows an example of the closest 

point in the trajectory to a Block Group population centroid. A flight trajectory is made from 3-

dimensional waypoints (blue) and population centroid is denoted by the red dot. The NPD curve 

selection depends on the relative position of the selected waypoint in its trajectory, i.e., if the closest 

waypoint is during the approach phase of the flight, the approach NPD curve is selected. 
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Figure 66: Example of Closest Point in the Flight Trajectory 

Furthermore, the combined metric used to understand the noise generated by all the flying 

events in a day is the Day-Night Average Sound Level (DNL). Equation 1 calculates the value of DNL 

value at each Block Group centroid due to all flying events combined. 

𝐿𝐷𝑁 = 10 log [
1

𝑇
∑ 10

(𝑆𝐸𝐿𝑖+𝑊)𝑖
10

𝑁

𝑖=1

] (1) 

 

𝐿𝐷𝑁 = 𝐷𝑎𝑦 − 𝑁𝑖𝑔ℎ𝑡 𝑆𝑜𝑢𝑛𝑑 𝐿𝑒𝑣𝑒𝑙 (𝑑𝐵𝐴) 

𝑆𝐸𝐿𝑖 = 𝑆𝑜𝑢𝑛𝑑 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑙𝑒𝑣𝑒𝑙 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑓𝑙𝑦𝑜𝑣𝑒𝑟 

𝑇 = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑖𝑚𝑒 (86,400 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑎𝑦) 

𝑊 = 10 𝑖𝑓 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑁𝑖𝑔ℎ𝑡 (10 𝑃𝑀 𝑡𝑜 7 𝐴𝑀) 

6.7 Estimation of Annoyance Levels 

Human annoyance levels are estimated from DNL values for better interpretation of noise 

levels generated. Annoyance summarizes people's adverse reactions towards the noise that causes 

interference with speech, sleep, and the desire for a tranquil environment [35]. The noise was 

recognized as an environmental pollutant in l950's, and since then, several social surveys have been 
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conducted to understand the societal impact of noise. Schultz developed one of the first dose-response 

relationships between noise exposure and subjective responses from eighteen social surveys on noise 

annoyance worldwide [36]. FAA's current noise policy uses the updated dose-response curves 

developed by Schultz. Miedema and Oudshoorn modeled the distribution of noise annoyance with the 

mean varying as a function of the noise exposure measured in DNL or Day-Evening-Night-Level 

(DENL) [37]. They fitted the model to data from several noise annoyance studies and developed a 

polynomial approximation of these relationships, which can be used for practical applications.  

FAA undertook a multi-year research effort to quantify the impacts of aircraft noise exposure 

on communities around commercial service airports in the United States (U.S.) [38]. In this effort, their 

research team performed the Neighborhood Environmental Survey targeting communities around 

airports with at least 100 daily jet operations and where at least 100 people exposed to DNL higher 

than 65 dB and between 60 dB- 65 dB each. They analyzed "highly annoyed" responses and associated 

DNL to generate dose-response curves for each individual airport and a national dose-response curve. 

Their findings revealed that substantially more people are highly annoyed for a given DNL aircraft 

noise exposure level compared to previous studies. Therefore, we used the national dose-response 

relationship 7 to estimate the fraction of the "Highly Annoyed" population at the Census Block Group 

level. The logistic relationship is shown by equation 2. Further, we used the American Community 

Survey (ACS) Population Estimates [39] to estimate the number of annoyed people at the Census 

Block Group level. 

Percent HA =
100 exp(−8.4304 + 0.1397𝐷𝑁𝐿)

1 + exp(−8.4304 + 0.1397𝐷𝑁𝐿)
 (2) 

6.8 Generation of DNL Contours using AEDT 

High noise levels are observed in San Francisco CBD. The second part of the analysis involves 

developing noise contours around the busiest vertiport from a full day of observation. The DNL 

contours provide a better understanding of noise propagation at the vertiport level and could be 

conducive to planning noise-mitigation techniques on the operations front. The operations (landing and 

take-off) are simulated in AEDT 3c, and noise contours are examined closely. The vertiport in the San 

Francisco district is generated as a heliport in the AEDT scenario. The UAM equipment is generated 

from Robinson R44 Raven/Lycoming O-540-F1B5 equipment in the AEDT database but with a 
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modified noise profile based on the reduction level scenario (10-dBA or 15-dBA). Multiple flight 

tracks are generated from analysis of popular azimuths in arrival and departure flight trajectories. A 

receptor grid of 300 latitudinal and 300 longitudinal points separated 0.05 nm with vertiport in the 

center is generated for the analysis. Based on the arrival and departure times of the UAM flights, 

hourly-binned operations are created in the AEDT environment. A full day of operations is simulated 

to estimate DNL levels at each receptor, which are then used to develop noise contours around the 

vertiport. 

6.9 Results 

The estimated Block Group level DNL values and annoyance levels are presented in this 

Section. In addition, both metrics' results are compared to understand better the impact of vehicle noise 

performance on noise level generated from a full day of operation. 

6.9.1 Northern California 

Figure 67 displays the spatial distribution of DNL values for both scenarios; the map on the left 

represents the 10-dBA reduction scenario, and the map on the right represents the 15-dBA reduction 

scenario. As suspected, high DNL values are observed in the San Francisco CBD due to the high 

concentration of UAM demand. It was found from the demand analysis that high employment density 

(especially high-income earners), high congestion levels, and costly parking costs resulted in high 

UAM demand for San Francisco CBD [13]. In the 10-dBA reduction scenario, the Financial District's 

DNL value reaches 63 dBA, with several block groups in the CBD region experiencing DNL values 

above 50 dBA. Besides San Francisco CBD, DNL values of 50 and above are observed all around the 

bay, in San Jose CBD and Oakland CBD. The DNL values drop significantly in the 15-dBA reduction 

scenario all around the region. DNL levels drop below 60 dBA in the Financial District and below 50 

dBA in most of the CBD. DNL values have also dropped considerably all around the bay and on the 

east side of the bay. Due to the detouring of UAM around the approach and departure surfaces of 

precision runways at commercial airports, the block groups falling below the protected surfaces have a 

low noise level. However, it should be noted that expected UAM noise would be in addition to existing 

noises due to aviation, industry, ground transportation, etc. 
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Figure 67: Spatial Distribution of DNL Values in dBA. Inset Focuses on San Francisco CBD. Left: 10 

dBA Reduction Scenario. Right: 15 dBA Reduction Scenario. 

The percentage of the highly annoyed population is calculated using the estimated DNL values. 

Figure 68 shows and compares the highly annoyed population's spatial distribution for both the 

reduction scenarios. As expected, the majority of the highly annoyed population is in San Francisco. 

For the 10-dBA reduction scenario, the highly annoyed population can be found in significant numbers 

(>500 per blockgroup) near San Jose CBD, Oakland CBD, Mountain View, Cupertino, Dublin, 

Antioch, San Rafael, and Livermore. However, the highly annoyed population drops substantially in 

the 15-dBA reduction scenario than the 10-dBA reduction scenario. In the 15-dBA reduction scenario, 

very few block groups have more than 200 highly annoyed people. 

It should be noted that achieving a 15 dBA reduction compared to a helicopter could be 

challenging for UAM vehicle designers. Since the demand scenario analyzed in this study belongs to 

an intermediate maturity level (expected at the end of the decade), achieving a 15 dBA reduction 

maybe possible in that timeframe. Moreover, the noise level generated in the region could be reduced 

substantially if a 15 dBA reduction is achieved. Table 19 compares the DNL values and annoyance 
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level output for both scenarios. If the noise levels of future UAM vehicles achieve a 15 dBA reduction, 

the land area affected by noise could decrease by 80%. The total highly annoyed population would be 

reduced by 80%. 

Table 19: Comparison of DNL values and Annoyance levels for both Scenarios (Northern California) 

DNL 

Category 

Area under Influence (sq. 

mi.) 

Population Impacted 

by Noise 

Highly Annoyed 

Population 

Reduction 

Scenario 

10 dBA 15 dBA 10 dBA 15 dBA 10 dBA 15 dBA 

45-50 dBA 97.0 22.7 657,946 159,270 87,126 21,828 

50-55 dBA 22.7 1.15 159,270 12,844 38,435 2,870 

55-60 dBA 1.15 0.32 12,844 3,317 4,699 1,209 

60-63 dBA 0.32 0 3,317 0 1,776 0 

Total 121.2 24.2 833,377 175,431 132,036 25,907 
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Figure 68: Spatial Distribution of Highly Annoyed Population. Inset Focuses on San Francisco CBD. 

Left: 10 dBA Reduction Scenario. Right: 15 dBA Reduction Scenario. 

6.9.2 Dallas-Fort Worth 

Figure 69 illustrates the spatial distribution of Block Group level DNL values for both the 

scenarios; the map on the left represents the 10-dBA reduction scenario, and the map on the right 

represents the 15-dBA reduction scenario. For the 10-dBA reduction scenario, high DNL values could 

be observed in Dallas CBD, Carrollton, Lewisville, Plano, Duncanville, Mesquite, and Dallas suburbs. 

Compared to the Bay Area, the generated noise is spatially more distributed in Dallas-Fort Worth and 

relatively smaller levels in the CBD region due to lesser concentration. Moreover, a significant part of 

Dallas downtown falls under the protected surface of DAL. For the 15-dBA reduction scenario, like 

the Bay Area, the DNL values drop substantially compared to the 10-dBA reduction scenario. A 

limited number of block groups have DNL values of more than 45 dBA. 
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Figure 70 compares the spatial distribution of the highly annoyed population by Census Block 

Group. Dallas-Fort Worth has a smaller population density compared to Northern California. With 

lower DNL values, the total number of highly annoyed people is significantly less than the Bay Area 

for a similar UAM maturity level. For the 10-dBA reduction scenario, the Census Block Groups with 

more than 250 highly annoyed people can be found near major feeder vertiports, forming a circular 

pattern around the Dallas CBD. The same block groups can also be observed distinctively in the 15-

dBA reduction scenario but with fewer highly annoyed populations. The annoyance caused in the 15-

dBA scenario is significantly lower than the annoyance in the 10-dBA scenario. Table 20 compares the 

DNL values and annoyance level output for both scenarios. Suppose the reduction level could be 

increased from 10 dBA to 15 dBA. In that case, the area under the influence could decrease by 78%. 

The total population under the influence could reduce by 72%. The total highly annoyed population 

could reduce by 74%. 

Table 20: Comparison of DNL values and Annoyance levels for both Scenarios (Dallas-Fort Worth) 

DNL Category Area under Influence 

(sq. mi.) 

Population under 

Influence 

Highly Annoyed 

Population 

Reduction 

Scenario 

10 dBA 15 dBA 10 dBA 15 dBA 10 dBA 15 dBA 

45-50 dBA 50.6 11.2 188,688 58,284 24,832 8,776 

50-55 dBA 11.2 2.8 58,284 14,514 15,252 3,121 

Figure 69: Spatial Distribution of DNL Values. Inset Focuses on Dallas CBD. Left: 10 dBA 

Reduction Scenario. Right: 15 dBA Reduction Scenario. 
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55-60 dBA 2.8 0 14,514 0 5,145 0 

Total 64.6 14.0 261,486 72,798 45,229 11,897 

 

6.10 Results of Vertiport Level Analysis in AEDT 

 

A full day of simulation at the Financial District vertiport in AEDT consists of 458 arrivals and 

an equal number of departures. Figure 71(left panel) shows the first and last three-mile segment of all 

departures and arrivals, respectively. Figure 71 (right panel) displays the distribution of arrival and 

departure times of operation at this vertiport. This vertiport has a unique operation schedule because no 

commuters live near that vertiport who wants to commute to other parts of the region using UAM. 

Therefore, all of the arrivals are concentrated in the morning hours when commuters are flowing into 

that vertiport. All the departures are concentrated in evening hours when the same commuters return. 

The analysis in this paper only considers passenger-carrying operations. However, such an unbalanced 

operations schedule leads to many repositioning flights (i.e. deadheading), as observed in Rimjha and 

Trani [40]. They found that the 0.9 repositioning departures and 0.85 repositioning arrivals are 

required of every passenger arrival and departure, respectively. Considering repositioning operations 

would significantly inflate the noise levels generated from operations at this vertiport. The DNL 

contours presented in this Section are generated from passenger-carrying operations only. 

Figure 70: Spatial Distribution of Highly Annoyed Population. Inset Focuses on Dallas CBD. 

Left: 10 dBA Reduction Scenario. Right: 15 dBA Reduction Scenario. 
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UAM routes are designed to detour approach and departure surfaces at commercial airports 

following the shortest path. All the traffic to/from any place south of SFO detours around protected 

surfaces of 1-19 runways at SFO; thus, there is a heavy concentration of flight trajectories on that path. 

Similarly, a significant portion of flights to/from the other side of the bay detours around the protected 

surface at 12-30 runway at Oakland International Airport (OAK), causing a concentration of flight 

trajectories on that path (Figure 71). The heavy concentration of flight trajectories on both paths will 

influence the shape of noise contours significantly. DNL calculation considers nighttime operations 

(10 PM to 7 AM) to be more onerous and, therefore, artificially increases noise level measurements for 

night operations by 10 dB. Out of 916 operations, 15.2% of operations occur during nighttime hours. 

     

Figure 71: Flight Operations at Financial District Vertiport. Left: Flight Trajectories of Departures 

(Blue) and Arrivals (Red). Right: Time of Operations. 

Figure 72 illustrates the DNL contours developed from a full day of operations at the Financial 

District vertiport. The varying concentration of flight trajectory defines the shape of noise contours 

around the vertiport. Unsurprisingly, the basic shape of noise contour is concentric circles, and it has 

concentration-based elongated spikes along the flight tracks. The length of elongation depends on the 

reduction scenario too. DNL contours for the 10-dBA reduction scenario encompass a significantly 

large area than DNL contours for the 15-dBA reduction scenario. The 45 DNL contour extends at least 

1.2 miles and 0.75 miles in all directions for 10-dBA and 15-dBA reduction scenarios, respectively. 

The length along flight tracks is greater in the 10-dBA scenario and extends across the bay. Table 21 

summarizes the comparison of DNL contours from both the reduction scenarios. In contrast to 10-dBA 
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reduction scenario, the area under 45, 55, 65, and 75 DNL contour in 15-dBA reduction scenario 

shrink by 83%, 53%, 50%, and 48%, respectively. The population exposed under each DNL contour is 

estimated using the population exposure functionality in the AEDT tool based on Census Data. The 

highly annoyed population is further calculated from the exposed population and national dose-

response curve discussed in Section IV-B. In contrast to the 10-dBA reduction scenario, the highly 

annoyed population under 45, 55, 65, and 75 DNL contour in the 15-dBA reduction scenario reduce by 

74%, 64%, 58%, and 66%, respectively. 

 

Figure 72: DNL Contours from Operations at Financial District Vertiport. Left: 10 dBA Reduction 

Scenario. Right: 15 dBA Reduction Scenario. 

Table 21: Comparison of DNL Contours from both Reduction Scenarios 

DNL Area under DNL 

Contour (sq. mi.) 

Population under DNL 

Contour 

Highly Annoyed 

Population 

Reduction 

Scenario 

10-dBA 15-dBA 10-dBA 15-dBA 10-dBA 15-dBA 

45 10.89 1.81 110,811 28,764 21,133 5,485 

55 0.70 0.33 11,655 4,213 5,687 2,055 

65 0.16 0.08 1,596 677 1,267 537 

75 0.03 0.0155 272 93 256 87 

85 0.006 - 2 - 2 - 

95 0.0002 - - - - - 

 



 

 

149 

 

San Francisco CBD has a high employment density. Although current regulations in 14 CFR 

Part 150 Airport Noise Compatibility do not address noise levels below 70 dB in commercial zone 

[41], high noise levels could cause nuisance to employees as people are now more sensitive to aviation 

noise [38]. Moreover, we have only considered single vertiport and passenger-carrying operations. 

With multiple vertiport and repositioning flights, noise levels in CBD can reach excessive levels. 

Therefore, the impact on the daytime population should also be considered. Daytime population from 

ESRI demographics [42] is analyzed inside DNL contours for both reduction scenarios, as shown in 

Figure 73. The finest resolution of the daytime population is census tracts which are unfortunately too 

big for individual contour analysis. Therefore, we calculated the daytime population under 45 DNL 

outer boundary for both reduction scenarios. The daytime population of 22 census tracts encompassed 

by 45 DNL boundary is 379,527 for 10-dBA reduction scenarios. Whereas in the 15-dBA reduction 

scenario, the daytime population inside the 45 DNL boundary is 207,256, 45% lower than that of the 

10-dBA scenario. 

 

Figure 73: DNL Contours and Daytime Population. Left: 10-dBA Reduction Scenario, Right: 15-dBA 

Reduction Scenario 

6.11 Conclusions 

This paper presents a framework to estimate noise levels from a full day of UAM operations in 

Northern California and Dallas-Fort Worth regions. UAM flight trajectories are derived from an output 

of mature-state demand analysis. Using Robinson R44 as a surrogate UAM vehicle and modifying its 

NPD curves, Block Group level DNL values are estimated for two reduction scenarios (10-dBA and 
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15-dBA). According to the current state of knowledge, 10-dBA reduction from the traditional 

helicopter is achievable, but 15-dBA reduction could be challenging. Noise results from both scenarios 

are compared to understand the impact of extra 5-dBA reduction. In Northern California, the area 

impacted (>45 DNL) decreases by 80% and population under influence decreases by 79%, on 

increasing reduction level from 10 dBA to 15 dBA. In Dallas-Fort Worth, the area and under influence 

(>45 DNL) decreases by 78% and population impacted decreases by 72%, on increasing reduction 

level from 10 dBA to 15 dBA. 

The Highly Annoyed population is estimated from DNL values for every scenario for a better 

interpretation of results. The total highly annoyed population is calculated using the national dose-

response curve from Neighborhood Environmental Survey and ACS 5-year population estimates at the 

block group level. In Northern California, the total highly annoyed population for the 10-dBA scenario 

is estimated at 132,036, which reduces by 80% on increasing the reduction level to 15-dBA. Similarly, 

in Dallas-Fort Worth, the total highly annoyed population for the 10-dBA scenario is estimated at 

45,229, which reduces by 74% on increasing reduction level to 15-dBA.  

A vertiport level analysis was performed in the AEDT tool to develop DNL contours from 

UAM operations at Financial District vertiport in San Francisco. The area, population, and daytime 

population under DNL contours significantly change based on the reduction levels. The shape of the 

DNL contour is influenced by geographic travel patterns and airspace restrictions. The findings 

indicate that a massive reduction in the noise footprint of UAM operations is observed on an increasing 

reduction level. Therefore, achieving reduction levels close to 15-dBA is recommended for mature 

state operations. 

The results presented in this paper only consider passenger-carrying operations. We believe a 

significant fraction of repositioning operations would be required to serve commuting demand. 

Considering repositioning operations is recommended for future studies as that would increase noise 

footprint. Since the noise performance of the UAM vehicle is not available at the time of this analysis, 

we assumed noise reductions of 10 dBA and 15 dBA compared to the Robinson R44 light helicopter. 

Future research should use the noise performance of UAM vehicles once the exact noise profiles are 
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known. Noise level estimation could also be improved by simulating the operations for an entire 

network in the AEDT tool, which would be computationally expensive. 
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7. Impact of Airspace Restrictions on Urban Air Mobility Commuter Demand Potential 

Rimjha, M., Hotle, S., Li, M., Trani, A., & Hinze, N. (Accepted 2022). Impact of Airspace 

Restrictions on Urban Air Mobility Commuter Demand Potential ICNS 2022 Conference, 20 - 23 

April 2022 

7.1 Abstract 

This study aims to understand the impact of airspace restrictions on Urban Air Mobility 

(UAM) commuter demand potential in the New York City region. The potential for UAM is 

higher in congested cities with substantial commuter populations, but often these cities are 

served by one or more airports with congested airspaces encompassing over a large part of the 

urban area. The integration between commercial airspaces and future UAM airspace is among 

the major challenges to overcome. This study analyzes UAM demand potential with three 

scenarios of airspace restrictions- No Restrictions, Class-B restrictions only, Class-B/D 

restrictions. Close to 10 million commuters reside in the New York City area. The city is served 

by three major commercial airports (JFK, EWR, LGA), making it ideal for this study. A UAM 

demand estimation framework is built to estimate UAM demand potential for different scenarios. 

The airspace restrictions significantly affect the UAM demand potential by resulting in less 

optimal placement of vertiports and increased travel distances. Based on the UAM fares used in 

the simulation, the airspace restrictions decrease UAM demand by 40% - 57%, compared to the 

unrestricted scenarios. 
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7.2 Introduction 

Urban Air Mobility (UAM) or Advanced Air Mobility (AAM) is a concept transportation 

mode being designed for intracity transport of passengers and cargo utilizing autonomous 

electric vehicles capable of Vertical Take-Off and Landing (VTOL) from dense and congested 

areas. Urban transportation is currently limited to the surface modes, and UAM proposes adding 

another dimension to the urban travel ecosystem. It is a multi-modal concept involving aerial 

transport at lower altitudes within urban and suburban spaces [1]. However, the urban airspaces 

are not unoccupied. On the contrary, the airspaces are most congested above urban regions due 

to the heavy commercial aviation operations. Therefore, the integration of UAM in the current 

airspace is considered a critical step in developing a safe and sustainable UAM ecosystem [2, 3]. 

The spatial distribution of airspace congestion depends on the runway configuration and 

operational flow configuration adopted at every airport. The airspace management is relatively 

more complicated, and airspace congestion is more complex in multi-airport cities (e.g., Dallas-

Fort Worth, New York, Washington D.C.). 

The UAM system could only sustain if there is enough demand. Therefore, some aspects 

of the systems would be tailored to capture maximum UAM demand while considering several 

operational constraints [4]. The system planners and authorities recognize the requirement of 

different levels of integration at different maturity levels [3]. The integration policies are often 

governed by safety standards, expected technology, and arrangements in the system. However, 

the development and innovation in integration could be driven by the demand, i.e., if the UAM 

demand is sensitive to different integration levels between the UAM ecosystem and current 

airspace system, it could motivate innovative and unprecedented changes in airspace 

management. The UAM system's development would thrive on its ability to capture as much 

UAM demand potential as it can. Therefore, it is crucial to analyze the impact of different 

integration policies on the UAM mode's attractiveness. The New York region is selected for this 

analysis because its urban airspace is quite congested and presents a challenging case due to 

three major commercial airports and Newark Liberty International Airport (EWR), LaGuardia 

Airport (LGA), and John F. Kennedy International Airport (JFK) and other small airports. 

Moreover, the unique characteristics of the New York region portray a promising scenario for 

the UAM, such as very high population and employment density (Manhattan), relatively higher 
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disutility in driving due to increased costs (parking, tolls, etc.), and traffic congestion, longer 

commuting times [5].  

The study involves developing a region-specific demand estimation framework using a 

mode-choice model calibrated from the commuting behavior observed in the National Household 

Travel Survey-2017 (NHTS)- Addon data and creating a demand-driven vertiport placement 

methodology that could accommodate spatial restrictions. Three different scenarios are built for 

airspace restrictions depicting different integration levels between UAM and airspace 

management. The impact of airspace restrictions on critical UAM trip-related parameters such as 

vertiport access times and UAM aerial trip time are analyzed to understand the sensitivity of 

scenario-based demand estimations. The findings elucidate on UAM demand potential trade-off 

with relaxation or constraining of airspace restrictions. The analysis could help system planners 

gauge the requirement for integration between the UAM ecosystem and current commercial 

airspace. 

7.3 Background 

The importance of airspace integration for UAM operations has been realized in the 

literature. Thipphavong et al. [6] developed high-level initial airspace integration concepts for 

emergent and early expanded UAM operations. They believe that UAM aircraft should be safe, 

efficient, and predictable. UAM operations should have minimal impact on existing airspace 

operations to integrate UAM into the airspace system. The authors emphasize the requirement of 

UAM vehicles and systems to be interoperable with each other and those of existing airspace 

users to overcome the safety and efficiency barriers of airspace restrictions. While they believe 

that the initial UAM flights would require ATC to provide air traffic services and management, 

ATC workload might limit the expansion of UAM in the early expanded stage. They also suggest 

that the key to achieving higher-density, higher-frequency UAM operations is developing 

concepts, technologies, and procedures that will enable UAM integration into the airspace 

system and manage without tactical intervention from ATC. 

Vascik et al. [7] explored various challenges that upcoming UAM operations could 

present for ATC in the United States. The authors believe that the ATC scalability constraint 

would hamper addressing the challenges created by UAM through increased number of 
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operations, increased density of operations, and low altitude operations. When ATC-managed 

airspaces reach saturation, no more aircraft (or UAM) would be allowed to enter the airspace. 

Their analyses in Los Angeles, Boston, and Dallas found ATC-controlled airspaces covered 

approximately 43%, 65%, and 56% of the urban area, respectively. Henceforth, if the airspace is 

saturated, the ATC may not allow UAM to access more than half of the city's surface area. These 

findings further emphasize the importance of advanced integration of UAM operations in the 

current airspace system. 

Vascik and Hansman [8] studied the effectiveness of airspace cutouts in mitigating ATC 

restrictions to Advanced Air Mobility (AAM) scaling. They developed multiple “ATC ConOps 

Scenarios” to study the effect of airspace cutouts and other airspace integration strategies. Their 

study involved estimating potential demand for AAM services. The potential commuter demand 

was estimated from The Census Transportation Planning Product (CTPP), assuming commuters 

who travel more than 60 minutes one way represent potential demand for UAM. They studied 

mission coverage for different ATC scenarios, ranging from current-day baseline scenarios that 

prohibit UAM operations in controlled airspaces to scenarios that open up special use airspaces 

and low-traffic controlled airspaces for UAM operations. The authors observe highly varying 

UAM mission coverage by urban areas. They conclude that UAM could access only 34% of 

long-distance commuter workplaces in the median U.S. city without ATC interaction. However, 

allowing UAM operations in special use airspace and low traffic controlled airspaces increase 

median mission coverage for long-distance commuters to 54% and 35%, respectively. This study 

provides a fundamental framework for analyzing the impact of different ATC ConOps on UAM 

mission coverage. However, it does not calculate UAM demand for different scenarios. 

While there are studies focusing on integration concepts and analyzing UAM potential 

for different integration scenarios, the direct impact of varying airspace restriction levels on 

UAM demand is missing in the literature. This study proposes to fill that gap in the literature by 

developing an integrated framework to analyze different levels of airspace restrictions and their 

direct impact on UAM demand. 
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7.4 Study Area 

The study area selection is driven by the concept vehicle range and commuter flow 

patterns in the region. Most economic activity in the region is concentrated in New York City, 

comprising five counties: Manhattan, Bronx, Queens, Kings, and Hudson counties. Joby S4 is 

selected as the reference vehicle. It has a design range of 150 miles. Considering NYC as the 

center, counties with their centroid within the design range of the Joby S4 are included in the 

study area. Figure 74 shows the study area, consisting of 33 counties made up of 17,294 census 

blockgroups with 9.94 million daily commuters [9]. 

 

Figure 74: Study Area. Inset focuses on New York City. 

7.5 Data and Methodology 

The airspace restriction scenarios are developed using the Class Airspace data published 

by the U.S. Department of Transportation, Federal Aviation Administration-Aeronautical 

Information Services [10]. Restricted airspaces are designated by different classes and have 

varying levels of restrictions. Class-B airspace is controlled airspace surrounding the nation's 

busiest airports. It is individually tailored and generally extends vertically up to 10,000 feet from 

Mean Sea-Level (MSL) and lateral limit up to 30 nm radius [11]. The Class-B airspaces in our 

study areas extend up to 7,000 ft. The Class-B airspace has several layers with varying altitudes. 

Generally, the innermost 10 nm area extends to the top, segment area between 10 nm and 20 nm 
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has a floor between 2,800 feet to 3,000 feet above airport elevation. The area floor between 20 

nm and 30 nm lies between 5,000 feet and 6,000 feet above airport elevation [12]. Parts of Class-

B airspace which extend from the ground are considered in this analysis, assuming UAM could 

navigate below the restricted pieces of airspaces that have a bottom layer above the ground. Air 

Traffic Control (ATC) clearances are required for operating in Class-B airspace. Figure 75 

illustrates all the 19 restricted airspaces in the study area. There are two Class-B airspaces; one 

surrounds JFK and LGA airport, and the other surrounds EWR airport. 

 

Figure 75: Restricted Airspaces in the Study Area. Inset focuses on New York City. 

The other 17 restricted airspaces in the study area are Class-D airspaces. Class-D airspace 

is also part of controlled airspaces and generally surrounds smaller or military airports. Class-D 

airspace extends from the surface to 2,500 feet above airport elevation. Current guidelines 

require aircraft to establish two-way radio communication with ATC before entering and 

thereafter in class-D airspace. Three scenarios of airspace restriction applicable to UAM 

operations are built based on different levels of integration. We believe that the highest 

integration level would result in maximum relaxation in airspace restrictions for UAM 

operations. 
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Moreover, completely independent operations would represent the lowest level or no 

integration. Scenario 1 is the ideal or baseline scenario with no airspace restrictions for UAM 

operations which can only be achieved when UAM traffic is managed by the ATC or with a 

seamless transition between UAM traffic management and the ATC. There are no restrictions in 

vertiport placement and overflying of UAM in Scenario 1. Scenario 1 may not be entirely 

realistic considering current regulations, but the relaxation in airspace restrictions in mature state 

ecosystems could tend towards the Scenario 1 environment. 

Class-B airspaces are more congested than Class-D airspaces. A mid-term scenario of 

airspace restrictions for UAM operations could represent partial integration. Scenario 2 describes 

the mid-term scenario where vertiport placement and UAM overflying are still prohibited inside 

congested Class-B airspaces but allowed in Class-D airspaces. Furthermore, Scenario 3 is built to 

represent minimum integration. No ATC involvement in UAM traffic management, i.e., vertiport 

placement and UAM overflying, is prohibited inside Class-B and Class-D airspaces. Scenario 3 

represents a near-term scenario from an integration perspective. Prohibition of vertiport 

placement means vertiports are not allowed to be placed inside certain areas because operations 

(landings or take-offs) at vertiports, if not managed by ATC, could be a safety concern for 

commercial aviation. 

Similarly, the prohibition of UAM overflying means UAM routes cannot pass through 

restricted spaces and must detour around them. The introduction of such restrictions would result 

in certain disutility in UAM operations compared to the ideal scenario. For example, detouring 

increases UAM travel time and could also increase UAM travel costs. Spatial restrictions in 

vertiport placement could result in less optimal placement, causing a relative increase in access 

time to/from the vertiports. These inefficiencies transfer to a decrease in the UAM demand as the 

mode becomes less attractive. UAM operations in Scenario-I are expected to experience 

minimum delays and detours with relatively efficient placement of vertiports.  

Table 22: Defining Scenarios of Airspace Restrictions 

Scenario 
Restrictions 

Vertiport Placement UAM Overflying 

Scenario-1 None None 
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Scenario-2 Only in Class-B Airspace Only in Class-B Airspace 

Scenario-3 
In Class-B and Class-D 

Airspace 

In Class-B and Class-D 

Airspace 

 

Comparison of different scenarios for their quantitative impact on UAM demand requires 

building a demand estimation framework. Several UAM demand studies have been carried in 

recent years [13, 14, 15, 16, 17]. The demand estimation framework uses the UAM demand 

estimation methodology adopted in Rimjha et al. [18]. The demand estimation framework 

includes three fundamental pillars: region-specific calibrated mode-choice model, vertiport 

network, and model application, as shown in Figure 76. Different scenarios have different sets of 

airspace restrictions. Airspace restrictions impact vertiport placement and calculation of UAM 

trip characteristics (travel time, travel cost, etc.), thereby affecting total UAM demand. 

Estimating UAM Utility 
for all Commuters

Calibrated Mode-
Choice Model

Comparing UAM 
Utility with other 

Modes and Estimating 
UAM Probability

Estimating Total UAM 
Demand

Calculating UAM Trip 
Characteristics

Vertiport Network
Model Application 

Data

Airspace 
Restrictions

 

Figure 76: Upper-Level Demand Estimation Framework 

7.5.1 Mode-Choice Model Calibration 

Understanding the commuters' current mode-choice behavior in the region is critical for 

the estimation of UAM demand. A conditional logit model is calibrated using the methodology 

mentioned in Rimjha et al. [18]. A brief overview of the calibration workflow is presented here; 

please refer to Rimjha et al. [18] for detailed methodology. Commuter trips from NHTS-2017 
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New York Add-On Data are extracted, and a choice dataset is created. NHTS-2017 is a revealed 

preference survey and includes only the chosen mode. The trip-related characteristics for survey 

responses had to be estimated separately due to limited accuracy in travel time and travel cost 

information reported in the survey. The geographical resolution of trip origin and destination is 

census-blockgroup, and therefore, blockgroup centroids are used as a surrogate for trip 

origin/destination location. Estimating mode-specific trip characteristics for every Origin-

Destination (OD) pair is performed using the methods mentioned in Rimjha et al. [18], with a 

few modifications required to address New York-specific data issues.  

A significant modification is applied in the calculation of congested travel time for 

driving trips. Unimpeded travel time obtained from the driving simulator is adjusted to account 

for congestion using Texas Transportation Institute’s (TTI) congestion indices in Rimjha et al. 

[18, 19, 20]. However, this method was not suitable for the New York region in its raw form. 

The congestion indices are reported at the urban area level. New York - New Jersey - 

Connecticut (NY-NJ-CT) is one urban area with a single value for congestion index, i.e., the 

variation in congestion could not be captured inside the urban area (shown in Figure 77a). New 

York City is among the most congested cities [21], and using a single congestion index reported 

in TTI results in underestimating congestion levels in New York City.  

 

Figure 77: Left (a): Spatial Extent of NY-NJ-CT Urban Area. Right (b): New NYC Zone for the 

Congestion Index Calculation 

 To address this issue, we estimated the congestion index for New York City region from 

empirical data. Using more than 5 million yellow cab trips data reported by New York City Taxi 
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Limousine Corporation [22], a distribution of congestion indices is generated. Only peak period 

trips within five boroughs (Manhattan, Bronx, Queens, Brooklyn, and Staten Island) of New 

York City are used in the analysis. The trips are simulated in a driving simulator to estimate 

unimpeded travel time using the origin and destination taxi zones reported in the data. The 

unimpeded travel time is then compared to the travel time reported in the taxi data to calculate 

the empirical congestion index. As expected, a slight variation is observed among indices in each 

borough. However, due to computational limitations and the given scope of the study, all five 

boroughs were combined to form New York City Zone, as shown in Figure 77b. The mean value 

from the distribution of empirical congestion indices is selected for New York City Zone. The 

corresponding TTI congestion indices are used for remaining and other urban areas. Figure 78 

shows the distribution of empirical congestion indices calculated from the taxi data. The mean 

value of the distribution is 2.77. 

 

Figure 78: Distribution of Calculated Congestion Indices 

The mode-choice dataset is prepared after estimating trip characteristics for every 

commuter in the survey dataset. A conditional logit model is calibrated to capture the mode 

choice behavior. A conditional logit model predicts the probability of choosing a particular mode 

based on trip-related characteristics. The probability of a mode depends on the relative utility an 

individual can gather from it. Conditional logit models only contain generic variables such as 

travel time, travel cost, etc., or interacted variables but do not contain alternate-specific variables. 

The logit models expect travelers to behave fully rationally. Therefore, the probability of 



 

 

165 

 

choosing a mode depends on the utility a traveler can gather from the mode. The household 

income often influences mode-choice decisions as Value Of Time (VOT) or Willingness To Pay 

(WTP) varies with income. Therefore, partial segmentation concerning household income is used 

in the calibration process to capture varying VOTs. After observing the data, it is segmented 

using four income (annual household income) categories: Low-income (less than $50,000), 

Lower-mid ($50,000-$100,000), Upper-mid ($100,000-$150,000), and High-income (greater 

than $150,000). The UAM constant is later estimated according to the method mentioned in 

Rimjha et al. [18]. 

7.5.2 Vertiport Placement Methodology 

The network of vertiports is a critical element in the UAM system. Ideally, vertiports 

should be placed to capture maximum UAM demand. There are various elements of the vertiport 

network which affect the utility of UAM and thereby affect UAM demand. Therefore, the 

problem of optimal placement of vertiports is complicated. Moreover, the placement 

methodology should be able to accommodate spatial restrictions. The proposed methodology is 

based on a demand-driven clustering approach. The method is based on the vertiport placement 

methodology used in Rimjha et al. [19], which was limited to airport access trips. Blockgroup 

level commuter demand potential is first estimated by placing vertiport at every blockgroup 

centroid and calculating UAM demand potential. Based on initial demand results, vertiports are 

placed using Fuzzy-C means clustering method while considering airspace restrictions. The 

methodology is explained in detail in Rimjha et al. [19]. Moreover, a minimum separation of 

2,000 ft is maintained between the vertiports considering air traffic management feasibility. All 

vertiports in this analysis are assumed to have the required capacity. However, studies in the 

literature have analyzed the potential problem with commuter flows and effective vertiport 

capacity [23].  

7.5.3 Model Application 

The calibrated mode-choice model is applied to the application dataset to calculate daily 

UAM passenger demand.  The LEHD Origin-Destination Employment Statistics (LODES) data 

[9] at the census blockgroup-level is used for model application. It provides the home and work 

location (or blockgroup) of the commuters in the region. Assuming all workers commute daily, 

OD pairs are generated at blockgroup levels. For the home-to-work trip, the home blockgroup 
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centroid is assumed as the trip origin location, and the work blockgroup centroid is assumed as 

the trip destination, and vice-versa for the return trip. Trip characteristics for the application 

dataset would be estimated from simulation of driving and transit directions for each OD pair. 

For calculating UAM trip characteristics, a traveler is expected to choose the closest vertiport at 

both ends of the trip. The access parts of the UAM trip, i.e., home (or work) to origin vertiport 

and destination vertiport to work (or home), are expected to be done by walking if the access 

distances are less than the reasonable walking distance of a quarter-mile. Otherwise, the access 

part is simulated in the driving simulator using taxi/cab characteristics. Five minutes of ingress 

and egress time are assumed at origin and destination vertiport, respectively, to account for 

processing, boarding, and alighting time. The aerial part of the UAM trip is simulated on the 

network of vertiports using the shortest-path algorithm. The In-Vehicle Travel Time (IVTT) 

comprises time spent inside the UAM vehicle and access time (if access trip is made by taxi). 

Out-of-Vehicle Travel Time (OVTT) comprises ingress/egress time and walking time (if access 

trip is made by walking). Similarly, total travel costs consist of distance-based flying cost, base 

cost, and access cost (if access trip is made by taxi). 

After calculating UAM trip characteristics for every OD pair in the application data, 

utilities from different modes are calculated using a calibrated model for each available mode in 

every OD pair. Furthermore, the UAM demand for every OD pair is estimated. This demand 

estimation process is repeated for all the scenarios. 

7.6 Results and Discussion 

Table 23 includes the calibrated mode choice model for the New York region. The p-

value (less than 0.000) suggests the model is statistically significant. All the variables included in 

the final model are also statistically significant with reasonable coefficients. In-vehicle Value of 

Time per hour (IV-VOT) of Low, Lower Mid, Upper Mid, and High-Income travelers is 

estimated at $16.9, $18.8, $21.8, and $29.0, respectively. Similarly, the Out of Vehicle Value of 

Time per hour (OV-VOT) is estimated at $19.3, $21.3, $24.7, and $32.9. The estimated UAM 

constant is 0.7496. 

Table 23:  Mode Choice Logit Model 

Variable Coefficient Standard Error z P>|z| 
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IVTT -0.2027318 0.0000355 -5757.46 0.000 

OVTT -0.2299768 0.0000662 -3501.37 0.000 

Transfers -0.5384475 0.000457 -1006.55 0.000 

Low Income X Cost -0.7157321 0.0014569 -1544.01 0.000 

Lower Mid Income X Cost -0.6472583 0.001233 -5458.31 0.000 

Upper Mid Income X Cost -0.5581929 0.000993 -6141.34 0.000 

High Income X Cost -0.4187676 0.000948 -4454.54 0.000 

Transit Constant -0.1033775 0.0011107 -91.02 0.000 

Log-likelihoodInitial -3.138e8 

Final Log-likelihoodFinal -0.503e8 

Likelihood chi-square test 

statistic (Degree of Freedom:8) 

9.010e8 

Number of observations 12,168 

Pseudo Rsq. 0.8995 

 

The vertiport placement method uses the calibrated model to place vertiports through a 

demand-driven approach. Due to the higher VOTs, High and Upper-mid income commuters are 

relatively more likely to attract UAM travel time savings. Therefore, commuters’ 

household/workplace density, especially those of the High and Upper-mid income category, 

dominates the placement of vertiports. Figure 79 and Figure 80 shows population density and 

income distribution in the area. It should be noted that only commuters traveling more than ten 

miles are eligible for UAM. Therefore, short-distance commuters’ home/workplace density does 

not affect vertiport placement. 
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Figure 79: Population Density Distribution [24] 

 

Figure 80: Median Household Income Distribution [24] 

New York Boroughs surrounding Manhattan, i.e., Bronx, Brooklyn, Queens, have high 

population density but consist primarily of short-distance commuters and high density of low to 

mid-income households. Therefore, the demand-driven approach places vertiports where demand 

is high due to either longer/congested commutes or large detours due to water bodies. Figure 81 
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includes 100 vertiports placed via a demand-driven approach for all three scenarios. In Scenario 

1, vertiports are placed most optimally as there are no airspace restrictions. Vertiports are heavily 

concentrated in the Manhattan region due to high employment density. Other smaller clusters can 

be seen in western Queens and south-east Kings because a large number of commuters commute 

to Manhattan. 

Similarly, significant high-income commuters from Long Island and Connecticut coast 

commute to Manhattan, Jersey City, and Brooklyn. In Scenario 2, a large portion of Manhattan, 

Queens, and Kings County is blocked by restricted airspace surrounding JFK, LGA, and EWR 

airports. Therefore, more vertiports are located in Long Island, Westchester, and Connecticut. In 

Scenario 3, the additional airspace restrictions have a relatively more minor impact on vertiport 

placement. Connecticut coast is the most impacted by additional restrictions. 
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Figure 81: 100 vertiports placed via demand-driven approach in (a) Scenario 1, (b) Scenario 2, 

(c) Scenario 3. (d)- Number of commuters with a vertiport within 10 minutes of drive-time 

 The airspace restrictions result in less optimal placement of vertiports, thereby 

decreasing UAM accessibility. Figure 81 (a, b, c) also includes a 10-min drive time polygon 

from the whole vertiport network. The changes in overall vertiport network accessibility Figure 

81 (d) illustrates the comparison of the number of commuters having a vertiport within 10-

minutes of driving time across the scenarios. The number of those commuters drops by 22.6% in 

Scenario 2 compared to Scenario 1 and further drops by 21.7% in Scenario 3. The commuters in 

Low and Lower-Mid income categories are affected relatively more because of the JFK-LGA 

Class-B airspace blocking the majority of Queens and Kings County. 

(c) 

(a) (b) 

(d) 



 

 

171 

 

In addition to less optimal placement of vertiports, airspace restrictions add to the 

disutility of UAM mode in two major ways: (a) Increasing intermodal times and (b) Increasing 

aerial trip time/cost. The former is due to the closest vertiport being relatively far at either or 

both ends of the trip, and the latter is because of detouring around the restricted airspaces. Figure 

82 (left) illustrates the intermodal or access times distribution for commuter OD Pairs with at 

least one daily UAM round trip demand. The average intermodal time is 15.7 mins, 17.5 mins, 

and 20.9 mins in Scenario 1, Scenario 2, and Scenario 3, respectively. However, the introduction 

of airspace restrictions significantly changes UAM travel's feasibility compared to the 

unrestricted scenario. The average intermodal times for the Scenario-1 commuter OD pairs 

increase from 15.7 mins to 47.9 mins and 56.2 mins in Scenario 2 and 3, making it highly 

unfavorable. 

 

Figure 82: Left: Distribution of UAM Intermodal Trip Times. Right: Distribution of UAM Aerial 

Trip Distances. 

Figure 82 (right) compares the distribution of aerial trip distances of commuter OD Pairs 

with at least one daily UAM round trip demand. Since there are no restrictions in Scenario 1, the 

UAM vehicle travels a great circle path from origin to destination vertiport. However, when 

airspace restrictions are in place (Scenario 2 and 3), UAM vehicle is detoured around the 

restricted airspaces along the great circle path, increasing travel time and travel cost. The average 
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aerial trip distances are 15.6 miles, 21.0 miles, and 22.1 miles in Scenario 1, Scenario 2, and 

Scenario 3, respectively.  The increase in average aerial trip distance causes UAM trips to be 

longer and costlier. The extra disutility in UAM travel in restricted scenarios compared to an 

unrestricted scenario affect the UAM demand. 

Figure 83 includes the UAM demand results for each scenario and their respective 

sensitivity with UAM cost. UAM cost consists of a fixed cost ($10 per person) and a variable 

cost based on aerial trip distance (cost per passenger mile). The cost of the intermodal trip is also 

added if they are completed via taxi/cab. The expected decrease in UAM demand due to airspace 

restrictions can be observed. For UAM CPM of $2.50, the UAM demand in Scenario 2 is 45% 

less than in Scenario 1, and the UAM demand in Scenario 3 is 9.5% less than in Scenario 2. 

Overall, Class-B airspace restrictions result in a decrease of 15%-54% (depending on the UAM 

cost) in UAM demand compared to the unrestricted scenario. Additional Class-D restrictions 

result in a further 8%-29% decrease, depending on the UAM cost. The commuters consisting 

major share of the UAM demand at lower fares are more sensitive to increased cost due to 

detours. Therefore, the effect of airspace restrictions on total UAM demand is more prominent at 

lower UAM fares.  

 

Figure 83: Daily UAM Demand with 100 Vertiports. Left- UAM Demand Sensitivity. Right- 

UAM Commuter Market Share. 

Increasing UAM cost causes demand to decrease quickly as UAM utility drops 

significantly. In Scenario 1, increasing the UAM CPM by 25 cents (from $2.00 to $2.25) 

decreases the UAM demand by 40%, also the UAM market share drops from 0.60% to 0.35%. 
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Similar sensitivity towards UAM cost is observed for restricted scenarios too. Lower UAM fares 

are essential to capture significant demand because, at $4 UAM CPM, which is the expected fare 

by multiple vehicle manufacturers, the demand is negligible in all the scenarios. At $3 UAM 

CPM, UAM could capture 0.50% market share in the restricted scenario and 0.80% in 

unrestricted scenarios. Due to being a big and dense commuter market, even this tiny market 

share results in 10,000 to 18,000 commuter passenger trips. It must be noted that all the scenarios 

are simulated with 100 vertiports. The UAM demand is found to be sensitive to the number of 

vertiports in previous studies.  

7.7 Conclusions 

This study examines the impact of different levels of airspace restrictions on UAM 

commuter demand potential in the New York region. A UAM demand estimation framework is 

developed and utilized to estimate the UAM demand for different scenarios of airspace 

restrictions. A conditional logit model calibrated on NHTS-2017 Add-on data captures the travel 

behavior in the region. The in-vehicle value of time and out-of-vehicle value of time of the 

commuters in the region is estimated to be $17 - $29 per hour and $19 - $33 per hour, 

respectively, based on the income category. 

The impact of airspace restrictions on UAM demand potential and vertiport placement is 

substantial.  The demand-driven vertiport placement method places several vertiports in 

Manhattan and Queens in the unrestricted scenario. A sizeable part of Manhattan and Queens is 

blocked by Class-B airspace of JFK-LGA airports, decreasing UAM accessibility in restricted 

scenarios. The airspace restrictions also increase the average UAM travel time and travel cost 

due to detours. The extra disutility in UAM travel caused by airspace restrictions affects the 

UAM demand. At lower UAM CPM of $2 to $3, the UAM demand in restricted scenarios 

decreases by as much as 55%, compared to the unrestricted scenario. 

Several assumptions and some limitations in the process adopted in this analysis can be 

overcome in future research. The consideration of airspace restrictions is rather rudimentary, and 

future studies should consider custom-tailored pieces of Class-B/C/D airspaces based on the 

density of flight tracks. Future research should also consider the impact of inclement weather on 

UAM operations in New York City. However, this study builds the foundation to assess the 
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broader impact of airspace restrictions on UAM demand potential and help develop airspace 

integration policies. 
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8. Chapter VIII: Conclusions 

Studies presented in this dissertation explore multiple aspects of Urban Air Mobility 

(UAM). The first study presents a methodology to build a UAM demand estimation framework 

and presents the potential commuter demand for UAM in the Northern California region. The 

study concludes that the UAM fares have to be optimistically low to capture a significant market 

share in Northern California. Sensitivity analysis indicates that UAM could lose almost half of 

the demand with a ten-minute average delay. Hence travel time reliability is vital for UAM to 

attract commuters. The travel time savings from UAM comes at a relatively higher cost which 

attracts high-income individuals in higher proportions. Therefore, UAM must gain their trust and 

become a competitive alternative. San Francisco CBD has a high economic activity 

concentration and significantly high travel time/cost for commuters traveling to and from the 

bay. Therefore, UAM demand is heavily concentrated in San Francisco CBD, which presents a 

challenging case for airspace management and infrastructure development. Moreover, UAM 

cannot rely on commuter flows because of their unidirectional nature. Commuter flows are 

concentrated temporally (in peak periods) and geographically, requiring a high proportion of 

repositioning flights, thereby decreasing the system's efficiency. 

Building on the recommendations of the first study, the following two studies presented 

in this dissertation analyze the feasibility of UAM in airport access market segments in two 

metro areas: Dallas-Fort Worth and Los Angeles. Airport travelers are expected to be among the 

early adopters of UAM due to relatively longer access trips and higher value of time. The higher 

value of time is because airport access trips are performed less frequently, and business travelers 

can get the cost reimbursed. The findings of both studies indicate significant potential for UAM 

in the airport ground access market. Modeling UAM routes considering airspaces restrictions due 

to commercial operations at DFW, DAL, and LAX was a critical part of both the studies. 

Considering airspace restrictions, UAM in the airport ground access market could capture 3.2% 

and 3.7% share in Los Angeles and Dallas-Fort Worth, respectively, with a 50-vertiport set and 

$2.0 UAM CPM (additional to $15 base cost per passenger and $20 landing cost per flight). 

Even though the predicted market share of UAM is smaller in Los Angeles, the daily number of 

airport access UAM flights estimated in Los Angeles is 2,630, about 85% more than that in 

Dallas-Fort Worth (1,418). The airport access UAM demand is slightly more sensitive against 
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UAM CPM in Los Angeles than in Dallas-Fort Worth because 54% of the travelers to 

DFW/DAL are business travelers, which is significantly more than the proportion at LAX (30%). 

Business travelers are less sensitive to increasing costs as their costs are reimbursed. The airport 

access UAM demand drops by 26% and 20% in Los Angeles and Dallas-Fort Worth, 

respectively, when increasing UAM CPM from $1.50 to $2.0.  

All demand estimation studies in this dissertation assume that the vehicle is always 

available at the desired vertiport without delay, and also, there are no capacity constraints at the 

vertiport. Most of the high demand vertiports are located in the CBDs, where infrastructure for 

UAM is limited and costly. Therefore, understanding factors affecting the vertiport capacity is 

essential for efficient operations. In the fourth study, a discrete-event choice model is developed 

to simulate operations at the San Francisco CBD vertiport, the busiest vertiport with 

unidirectional flows. The findings indicate that pre-positioning UAM vehicles at the vertiport are 

critical for minimizing delays. However, that reduces the effective passenger serving capacity of 

the vertiport. For the given passenger arrival and departure schedule at the selected vertiport, 0.9 

repositing departures and 0.85 repositing arrivals are required of every passenger arrival and 

departure, respectively. Several important variables in the simulation were varied in the 

sensitivity analyses to understand their quantitative influence on vertiport capacity. 

Some optimistic demand scenarios estimate thousands of UAM flights daily in an urban 

area in a mature UAM ecosystem. Even though the UAM vehicles are expected to be much 

quieter than existing rotorcraft technology, their proposed scale of operation at low altitudes 

could possibly create significant community annoyance due to noise. The fifth study estimates 

the blockgroup level noise generated from a full day of UAM operations in Northern California 

and Dallas-Fort Worth. The flight trajectories and schedule generated in the demand estimation 

study are used as input in the noise estimation study. Using the modified NPD curves of the 

Robinson R-44 helicopter, the blockgroup level DNL values are estimated, which are used along 

with the new dose-response curves developed in the Neighborhood Environmental Survey (NES) 

to calculate the highly annoyed population. In Northern California, the total highly annoyed 

population for the 10-dBA scenario is estimated at 132,036, which reduces by 80% on increasing 

the reduction level to 15-dBA. Similarly, in Dallas-Fort Worth, the total highly annoyed 
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population for the 10-dBA scenario is estimated at 45,229, which reduces by 74% on increasing 

reduction level to 15-dBA. 

Modeling airspace restrictions is a crucial part of the UAM simulation, where UAM trip 

characteristics are calculated. All the demand estimation studies in this dissertation assumed no 

interaction between commercial aviation and UAM traffic. To model that, airspace restrictions 

are considered. The first commuter-based study uses approach and departures surfaces at 

commercial airports as restricted airspaces for UAM, where the placement of vertiports and 

UAM routing is prohibited. More sophisticated restricted airspaces are used in the airport access 

studies, which are developed at NASA AMES research center after scrutinizing commercial 

traffic at DFW/DAL and LAX airport. Either way, the airspace restrictions result in less optimal 

placement of vertiports and extra disutility in UAM travel due to increased travel time/cost. The 

quantitative impact of the restriction on-demand potential is an intricate problem that depends on 

commercial airports, runway layouts, trip production/attraction zone’s location, and UAM fare 

structure. The final study in this dissertation sheds light on this problem by modeling the UAM 

system and estimating demand potential for commuters with different levels of airspace 

restrictions. The presence of three big commercial airports and a large commuter population 

made New York the ideal choice for this analysis. A sizeable part of Manhattan and Queens is 

blocked by Class-B airspace of JFK-LGA airports, decreasing UAM accessibility in restricted 

scenarios. At lower UAM CPM of $2 to $3, the UAM demand in restricted scenarios decreases 

by as much as 55%, compared to the unrestricted scenario. 

The models included in all the studies are built on revealed preference and have a little 

knowledge of traveler’s perception of UAM. Future research should calibrate pooled models 

with stated and revealed preference, both. The demand estimation studies assumed a vehicle is 

always available at the nearest vertiport. However, that’s an ideal scenario and therefore, future 

demand estimation research should consider repositioning delays. Even though the vertiport 

capacity is analyzed in a separate study, demand studies have assumed that required airspace and 

vertiport capacity is always available. It is recommended that the future studies should consider 

capacity related delays in the network. The noise profiles of Robinson-R44 are modified and 

considered as a surrogate for the UAM vehicle. Future noise analyses should use noise profiles 

of a prototype or actual UAM vehicle. 


