
A Cost-E�cient Digital ESN Architecture on FPGA

Victor M. Gan

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial ful�llment of the requirements for the degree of

Master of Science

in

Computer Engineering

Yang Yi, Chair

Haibo Zeng

Peter M. Athanas

July 6, 2020

Blacksburg, Virginia

Keywords: reservoir computing, echo state network, �eld-programmable gate array, FPGA

design, DSP48, symbol detection, OFDM, wireless communication

Copyright 2020, Victor M. Gan

A Cost-E�cient Digital ESN Architecture on FPGA

Victor M. Gan

(ABSTRACT)

Echo State Network (ESN) is a recently developed machine-learning paradigm whose processing

capabilities rely on the dynamical behavior of recurrent neural networks (RNNs). Its performance

metrics outperform traditional RNNs in nonlinear system identi�cation and temporal information

processing. In this thesis, we design and implement ESNs through Field-programmable gate array

(FPGA) and explore their full capacity of digital signal processors (DSPs) to target low-cost and

low-power applications. We propose a cost-optimized and scalable ESN architecture on FPGA,

which exploits Xilinx DSP48E1 units to cut down the need of con�gurable logic blocks (CLBs).

The proposed work includes a linear combination processor with negligible deployment of CLBs,

as well as a high-accuracy non-linear function approximator, both with the help of only 9 DSP

units in each neuron. The architecture is veri�ed with the classical NARMA dataset, and a symbol

detection task for an orthogonal frequency division multiplexing (OFDM) system on a wireless

communication testbed. In the worst-case scenario, our proposed architecture delivers a matching

bit error rate (BER) compares to its corresponding software ESN implementation. The performance

di�erence between the hardware and software approach is less than 6.5%. The testbed system is

built on a software-de�ned radio (SDR) platform, showing that our work is capable of processing

the real-world data.

ii

A Cost-E�cient Digital ESN Architecture on FPGA

Victor M. Gan

(GENERAL AUDIENCE ABSTRACT)

Machine learning is a study of computer algorithms that evolves itself by learning through

experiences. Currently, machine learning thrives as it opens up promising opportunities of solving

the problems that is di�cult to deal with conventional methods. Echo state network (ESN), a

recently developed machine-learning paradigm, has shown extraordinary e�ectiveness on a wide

variety of applications, especially in nonlinear system identi�cation and temporal information

processing. Despite the fact, ESN is still computationally expensive on battery-driven and cost-

sensitive devices. A fast and power-saving computer for ESN is desperately needed. In this thesis,

we design and implement an ESN computational architecture through the �eld-programmable

gate array (FPGA). FPGA allows designers to build highly �exible customized hardware with rapid

development time. Our design further explores the full capacity of digital signal processors (DSP)

on Xilinx FPGA to target low-cost and low-power applications. The proposed cost-optimized and

scalable ESN architecture exploits Xilinx DSP48E1 units to cut down the need of con�gurable logic

blocks (CLBs). The work includes a linear combination processor with negligible deployment of

CLBs, and a high-accuracy non-linear function approximator, both with the help of only 9 DSP

units in each neuron. The architecture is veri�ed with the classical NARMA dataset, and a symbol

detection task for an orthogonal frequency division multiplexing (OFDM) system in a wireless

communication testbed. In the worst-case scenario, our proposed architecture delivers a matching

bit error rate (BER) compares to its corresponding software ESN implementation. The performance

di�erence between the hardware and software approach is less than 6.5%. The testbed system is

iii

built on a software-de�ned radio (SDR) platform, showing that our work is capable of processing

the real-world data.

iv

Acknowledgments

The completion of the thesis would not have been possible without Dr. Yang Yi’s constructive

advice during planning and establishing of this research work. I would also like to extend my

deepest gratitude to Dr. Haibo Zeng, Dr. Peter Athanas, and Dr. Dong Ha for their inspiring

guidance throughout my graduate career. Great thanks are given to Yibin Liang for his generous

sharing of knowledge of FPGA, and to Lianjun Li for his technical support on wireless communication.

I also cannot leave Virginia Tech without mentioning all my extraordinary labmates in MICS,

Hongyu An, Kangjun Bai, Kian Hamedani, Shiya Liu, Qiyuan An, Jiayuan Zhang, Moqi Zhang,

Fabiha Nowshin, Jinhua Wang, and Jiayu Li, for their professional assistance and invaluable

encouragement in the past two years. Finally, special thanks should also go to my family and

my close friends Hao-Hsuan Chang, Ruici Lin, and Ningyuan Liu for their company and supports

during the unforeseen quarantine life amid COVID-19.

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Organization . 2

2 Background and Literature Review 4

2.1 Echo State Network . 4

2.1.1 Fundamental Structure of Echo State Network 4

2.1.2 Training . 5

2.1.3 State-of-art ESN Implementations on FPGA 7

2.2 Field Programmable Gate Array . 8

2.2.1 FPGA vs. ASIC . 8

2.2.2 Con�gurable Logic Blocks . 12

2.2.3 Xilinx DSP48 Units . 15

vi

3 ESN FPGA Design 20

3.1 Numerical System . 20

3.2 Reservoir Synapses - Linear Combination Without CLBs 21

3.3 Non-Linear Function Units - Hyperbolic Tangent 23

3.3.1 Piece-wise Linear Approximation . 24

3.3.2 Hardware Tanh Implementation . 32

4 Experimental Results and Analysis 34

4.1 NARMA10 Datasets . 34

4.1.1 Experiment Results . 35

4.2 OFDM Symbol Detection . 38

4.2.1 OFDM System . 39

4.2.2 ESN-based Symbol Detection . 41

4.2.3 Experiment Results . 42

5 Conclusions and Future Works 47

5.1 Conclusions . 47

5.2 Future Works . 47

5.2.1 Power, Performance, & Cost . 48

5.2.2 Expansion of Utility . 49

Bibliography 51

vii

List of Figures

2.1 An illustration of a typical ESN structure with M input nodes, N reservoir neurons,

and L output nodes . 5

2.2 DSP48E1 architecture . 16

3.1 Reservoir neuron architecture . 22

3.2 Example DSP con�gurations for each phase . 23

3.3 The zoomed-in absolute error before applying the improvement. 28

3.4 The minimum and maximum local absolute error before improvement 29

3.5 The absolute error comparison before and after the improvement 30

3.6 The architecture of the non-linear function (tanh) unit 33

4.1 NARMA10 performances in NMSE (lower the better) 37

4.2 ESN inferences vs. NARMA . 38

4.3 OFDM system procedures . 39

4.4 The software-de�ned radio test bed . 42

4.5 Performance of hardware/software ESN-based symbol detection, LMS, Comb and

LS. 43

4.6 Analysis of BER variance for ESN symbol detection 44

4.7 HW vs. SW ESN on the symbol detection task in time domain 45

viii

4.8 Relative di�erence between HW and SW ESN outputs 45

4.9 Example constellation diagrams . 46

ix

List of Tables

2.1 Comparison between FPGA and ASIC . 11

2.2 Available resources of typical Xilinx FPGA devices 18

3.1 Errors on the interval [0,8] and memory usage of the tanh approximator 31

4.1 Major ESN architecture di�erences between two applications. 35

4.2 NARMA experimental setup and performances . 36

4.3 Analysis of BER variance (%) for ESN symbol detection 44

x

List of Abbreviations

ALM Adaptive Logic Module

APR Automatic Place & Route

ASIC Application Speci�c Integrated Circuit

BER Bit Error Rate

BPSK Binary Phase-Shift Keying

CLB Con�gurable Logic Block

Comb Comb Pilot Interpolation

CP Cyclic Pre�x

CPU Central Processing Unit

D-FF D-type Flip-Flop

DFR Delayed Feedback Reservoir

DSP Digital Signal Processor

EDA Electronic Design Automation

ESN Echo State Network

FF Flip-Flop

FFT Fast Fourier Transform

xi

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

IFFT Inverse Fast Fourier Transform

IP Intellectual Property

LAB Logic Array Block

LE Logic Element

LMS Least Mean Square

LOS Line-Of-Sight

LS Least Square

LSM Liquid State Machine

LUT Look-Up Table

MSE Mean Square Error

MUX Multiplexer

NMSE Normalized Mean Square Error

NN Neural Network

OFDM Orthogonal Frequency Division Multiplexing

QPSK Quadrature Phase-Shift Keying

RAM Random Access Memory

RC Reservoir Computing

xii

RLS Recursive Least Squares

RNN Recurrent Neural Network

SDR Software-De�ned Radio

SRAM Static Random-Access Memory

UAV Unmanned Aerial Vehicle

xiii

Chapter 1

Introduction

1.1 Motivation

Neural network (NN) has shown extraordinary e�ectiveness on a wide variety of applications,

such as image recognition [52, 63], speech processing [26, 48], and wireless communication [73].

The success greatly propels the evolution of hierarchical neural network architecture. Recurrent

neural network (RNN), as a sub-category of NN, evolves a loop back structure, creating temporal

memory for the network. This advancement profoundly expands the capability of NN in processing

time-dependent data. However, RNNs are notoriously di�cult to train, in terms of computational

complexity.

Reservoir computing (RC), a recently developed machine-learning paradigm whose processing

capabilities rely on the dynamical behavior of RNN, greatly simpli�es the training procedure in

that only the weights in output neurons have to be trained. RC has proved its power e�ciency

in various applications [54], including pattern classi�cation [45, 47, 57], time series forecasting

[31], pattern generation [32], channel equalization [33], etc. Currently, there are three kinds of

RC systems, speci�cally, liquid state machine (LSM) [34], delayed feedback reservoir (DFR) [7],

and echo state network (ESN) [30].

There is an urgent need for RC hardware design to provide“fast, less expensive and more energy-

e�cient” computing platforms [30–32]. In spite of the improved training strategy, the inference

1

2 Chapter 1. Introduction

operation of ESN is still costly due to the nature of vector-matrix operations and non-linear

functions. Calculation using conventional von Neumann architecture is time and energy consuming,

making it unattractive for power/cost-sensitive platforms, such as mobile device and unmanned

aerial vehicle (UAV) [31]. Field-programmable gate array (FPGA) provides a good opportunity for

the digital hardware designers to take advantage of the parallel essence of ESN. Several FPGA

approaches have been made, but none of them have explored the full capacity of DSP blocks to

target low-cost/low-power FPGA devices [41–43, 62].

1.2 Objectives

In this thesis, we introduce a cost-optimized, scalable ESN architecture on FPGA which exploits

Xilinx DSP unit, DSP48E1. To be more speci�c, the proposed work includes a linear combination

processor with negligible deployment of con�gurable logic blocks (CLBs), and a high-accuracy non-

linear function approximator, both with the help of only 9 DSP units in each neuron. Furthermore,

we cut down the need of CLBs in the ESN FPGA implementation, which makes our design ideal for

the low-cost Xilinx Artix-7 devices by o�ering a higher DSP-CLB ratio. Our design is veri�ed by

the classical NARMA10 dataset and a symbol detection task on a physical Wi-Fi communication

system. The test bed is built on a software-de�ned radio (SDR) platform, showing that our work

is capable of processing the real-world data.

1.3 Thesis Organization

The organization of this thesis are summarized as the following: Chapter 2 introduces the background

of ESN, the critical components in an FPGA, a comparison between FPGA and ASIC, a functional

review of Xilinx DSP48E1, as well as a literal survey of state-of-the-art ESN implementations

1.3 . Thesis Organization 3

on FPGA; Chapter 3 focuses on our proposed hardware architecture, including a cost-e�cient

synapse design, and a high-accuracy hardware hyperbolic tangent function with no additional

DSP cells required; Chapter 4 demonstrates how we apply the proposed ESN hardware to 1) the

classical NARMA dataset and 2) a real-world symbol detection task on GNU software-de�ned

radio platform [40] along with its performances; Chapter 5 summarizes our work and discusses

potential future improvements.

Chapter 2

Background and Literature Review

2.1 Echo State Network

2.1.1 Fundamental Structure of Echo State Network

The basic structure of ESN is illustrated in Figure 2.1. The computational model consists of three

layers: an input layer takes in data from the user, a reservoir layer evaluates the current state

using both a memorized state and current inputs, and an output layer predicts the outcome based

on the given state.

Consider a typical ESN structure with M input nodes, N reservoir neurons, and L output nodes, we

denote inputs of time step n as u(n)= (u1(n), u2(n), · · · , nM(n)) . Reservoir states are written as

x(n)= (x1(n), x2(n), · · · , xN(n)) ; y(n)= (y1(n), y2(n), · · · , yT (n)) represents the output predictions.

The calculation of the current state x(n) and the prediction y(n) are represented by the following

equations:

x(n) = f
(
Winu(n) + Wx(n− 1) + Wfby(n− 1)

)
(2.1)

y(n) = f out (Woutz(n)) , (2.2)

4

2.1 . Echo State Network 5

where extended state z(n)={x(n);u(n);y(n−1)}; f= (f1, f2, · · · , fN) are the activation functions

used in the reservoir neurons (usually hyperbolic tangent or sigmoid functions), and f out= (f out
1 , f out

2 , · · · , f out
N)

are the activation functions used in the output layer (usually linear functions).

Figure 2.1: An illustration of a typical ESN structure with M input nodes, N reservoir
neurons, and L output nodes. Win, with shape N×M, maps u(n) into the reservoir
neurons; Wfb has the shape N× L and brings in the last output y(n− 1); W is the
reservoir weight with the form N× N, which is the critical part to create “echo” (short
term memory). Wout has the form L× (N + M + L) and is the only weight set to be
trained in ESN.

2.1.2 Training

The major reason that ESN is so popular is due to the simplicity of training compared with

traditional RNNs. Only output weights Wout need training in order to match the application. ESN

is commonly trained by supervised learning methods, given a set of training input Utraining ∈

RM×T and desired output Ylabel ∈ RL×T with a training length T time steps. A good approach

tries to �ndWout such that the mean square error (MSE) between Ytrained andYlabel is minimized,

6 Chapter 2. Background and Literature Review

where Ytrained ∈ RL×T is the inferential output of ESN. The MSE can be de�ned as equation (2.3):

MSE =
1

L

(
Ylabel −Ytrained)T (Ylabel −Ytrained) (2.3)

Regard an ESN with linear functions applied as output activation functions and with no Wfb.

Ytrained can be depicted by equation (2.4):

Ytrained = WoutZ, (2.4)

whereZ ∈ R(N+M)×T is the row-wise concatenation of {X;Utraining}, andX is derived by equation

(2.1), running through the whole training time steps T.

The training then becomes a simple linear regression problem. The well-known normal equation

method shown as equation (2.5) is often used to solve such a problem:

Wout = YlabelZT
(
ZZT

)−1 (2.5)

To mitigate the impact of over�tting and penalize extreme large Wout, Tikhonov regularization

[44] is commonly added to (2.5). The training of ESN then can be rewritten as:

Wout = YlabelZT
(
ZZT + βI

)−1 (2.6)

where β is the regularization factor and I is an identity matrix.

2.1 . Echo State Network 7

2.1.3 State-of-art ESN Implementations on FPGA

FPGA is an ideal platform to build acceleration hardware of arti�cial neural networks (ANNs),

since developers can largely exploit its parallel nature. For the same reason, application-speci�c

integrated circuits (ASICs) are options to researchers too. Previously, cutting-edge ASIC implementation

using delay-based RC has been realized. Bai at el. design and fabricate a pure analog delay-based

RC integrated circuit on the CMOS 130-nm technology node, veri�ed by NARMA dataset [13]. A

series of related research work is conducted in the following publication: [12, 14–17, 39]. However,

ASIC design of RC consumes longer development time and cost much more on experienced

personnel and testing equipment, compared with the FPGA design.

FPGAs, on the other hand, provides a great balance between power, performance, area, and �exibility.

Several FPGA implementations of ESN have been investigated. Yi et al. introduce the use of

FPGA to reservoir computing with on-board training capability [62]. Liao et al. realize pattern

recognition and sinusoidal wave generation with on-board batch training on a 65-nm Intel Stratix

III high-performance FPGA [41–43]. Antonik et al. show the potential of applying recursive least

squares (RLS) online training [23] on FPGA when solving the channel equalization problem [6].

Another group of research on ESN hardware tries to improve the e�ciency using stochastic

bitstream neurons [11]. Signals in stochastic neurons are represented by a series of bitstream,

where the information is encoded as the probability of “1”s. With stochastic neurons, complex

arithmetic such as multiplication and non-linear functions can be implemented with reduced

hardware. The idea is �rst introduced to reservoir computing in [57], and a proof-of-concept

implementation is presented in [4, 5]. Furthermore, Huang et al. propose a scalable ESN hardware

generator [27]. The use of high-level synthesis reasonably reduces the development time. However,

none of the above fully utilizes the advantage of DSP blocks on contemporary FPGAs. To our best

knowledge, the work presented in this thesis is for the �rst time exploiting the full capacity of

8 Chapter 2. Background and Literature Review

Xilinx DSP48 units to minimize the cost of the physical RC.

2.2 Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) are semiconductor devices whose function can be

programmed to mimic a wide variety of digital circuit designs. A common FPGA device contains

con�gurable logic blocks, I/Os, and fabric routing resources. More advanced devices often comes

with dedicated arithmetic units and built-in soft-cores/intellectual properties (IPs). A FPGA designer

usually writes hardware description languages (HDLs), e.g., Verilog or VHDL, to “sketch” a desired

digital circuit system. Contemporary FPGA development environments, e.g., Intel Quartus Prime

[20] and Xilinx Vivado [61], read the HDL code and synthesize them into cells and nets delivered

by the target device. Such technique is referred to as “inference”. Next, the tool automatically

decide the physical location of each cell and route them together using available wiring resources.

This step is also known as automatic place & route (APR). Finally, the tool generates a bit-stream

�le that can be sent to the FPGA through a device programmer. Then the designated function

can be run on the programmed FPGA chip. In the following sections, we compare the major

di�erences between FPGA and ASIC, and two key components of FPGAs that regularly impact a

designer’s decision.

2.2.1 FPGA vs. ASIC

ASIC, or application speci�c integrated circuit, is another popular option of realizing high-speed

operations. It’s extremely high e�ciency has attracted the industry for decades. Similar to FPGA,

digital circuit designers can freely implement arithmetic units, customized logic, memory, and

even analog modules in an ASIC. The comparison between FPGA and ASIC can start from four

2.2 . Field Programmable Gate Array 9

major aspects: recon�gurability, cost, time to market, and e�ciency. These four considerations

a�ects our decision on which platform is more suitable for building a dedicated ESN hardware. A

comparison is summerised in Table 2.1.

Recon�gurability

The production procedure of ASICs requires masking, which contains the design pattern of the

circuit of each production step. Once the mask is created and the pattern is etched onto the wafer,

it is almost impossible to change it. Redesign of the mask is not only time consuming, but costly.

On the other hand, FPGA o�ers phenomenally great �exibility. The circuit functionality can be

entirely changed even after a previous version has been burned on the chip. The upgrade can also

be done in a reasonable amount time, with nearly no cost.

Cost

Two major costs are involved on both side: development cost and production cost. For development,

FPGA costs apparently lower than ASIC. The former one usually only require one evaluation board,

a set of EDA tools provided by chip vendors, and a small team of personnel; while the latter one

may demand dedicated testing equipment, a more complex EDA tool set, and a larger team with

longer development cycle.

The production cost of FPGA and ASIC is consist of very distinct elements. The manufacturing

steps of ASIC intrinsically bring in higher non-recurring engineering (NRE) costs, including wafers,

masks, and equipment. This could be up in tens of thousand to millions of USD, whereas with

high enough volume, its cost of each die could be in cents. In contrast, FPGAs are sold with zero or

negligible NRE, where the per die price is higher. Generally speaking, the production cost makes

10 Chapter 2. Background and Literature Review

ASIC shines in high volume, while FPGA plays a better role in low to medium volume.

Time to Market

Development time is a signi�cant factor of the adoption of each technology. With both approaches,

engineers write hardware description language, such as Verilog HDL [28] or VHDL[2] for the front-

end design. Modern FPGA EDA tool chains usually can handle the rest of the procedures, including

synthesis, automatic place and route (APR), generation of bit-stream, and chip programming. ASIC

EDA tools are capable of synthesis and APR as well, however, back-end ASIC design involves

more electrical challenges. The unskippable additional probing, testing, and packaging stages take

substantial amount of time too. In fact, FPGA are well-known for its better time-to-market that it

is often used for fast prototyping of digital circuits.

E�ciency

The better operational speed and energy e�ciency are often one of the crucial criteria why ASIC

is chosen in the industry. The top speed of Xilinx 7-series FPGA runs at around 50MHz to few

hundreds of MHz, while an ARM A9 CPU made in ASIC can easily work at 800MHz to few GHz.

This is due to the programming mechanism of FPGAs, whose routing is achieved by programmable

switches and CLBs are mostly made by static random-access memory (SRAM). For the same reason,

excessive devices in FPGA and longer routing distances take away more enerygy, making it not

as e�cient as ASIC approaches.

Best Fit of ESN Hardware

When the target application requires extremely high speed, or when the power consumption

has to be reduced at all cost, ASIC performs better because of its magni�cent e�ciency. Also,

2.2 . Field Programmable Gate Array 11

Table 2.1: Comparison between FPGA and ASIC

Criteria FPGA ASIC

Recon�gurability yes no, or costly

Language for development Verilog HDL or VHDL

Front-end design �ow synthesis, simulation, place, & route

Additional back-end steps programming & testing manufacturing, packaging, & testing

Time to market short to medium long

Product cycle less restriction long

Development cost low to medium high

Best production volume low to medium high volume

Clock speed medium high

Energy E�ciency medium high

Common applications fast prototyping
designs require constant updates

high-e�ciency circuit
high-volume product

12 Chapter 2. Background and Literature Review

when a high volume of production is expected, ASIC might be the superior option in terms of

cost. However, ESN, as well as most machine learning methods, evolve rapidly in this era. We are

under a time when algorithms advance faster than hardware. The reprogrammability nature of

FPGA grant the opportunity to bridge the gap. Furthermore, ESN itself is sensitive to multiple

hyperparameters, such as the number of reservoir neurons and whether applying output feedback

to the reservoir layer. Users may �nd one architecture suits the application better after a more

thorough training or a change of the input scenario. Building the circuit on an FPGA is the only

way for upgrading, while there is nearly no chance or too costly on ASICs. Last but not least,

the lower cost for development and the more compact time to market really makes FPGA stand

out against the ASIC path. We argue that FPGA works best in most cases for specialized ESN

hardware. In the coming sections, we will discuss the critical components in Xilinx FPGAs which

we exploit to improve its e�ciency.

2.2.2 Con�gurable Logic Blocks

Con�gurable logic blocks (CLBs) are the elemental units implementing combinational and sequential

logics in Xilinx FPGAs. As suggested by its name, FPGA engineers can con�gure the function

of CLBs, in order to realize custom logics. In FPGA terminologies, it is also referred to as logic

array block (LAB) or logic element (LE). On Intel FPGA devices, they have a similar unit named as

adaptive logic module (ALM), coming with similar purposes but very di�erent architectures. [21]

Xilinx CLBs provide extraordinary �exibility and high performance for designers. Each CLB

consists of four slices, and each slice contains:

• Four logic-function generators (6-input look-up tables)

• Eight storage elements (�ip-�ops or latches)

2.2 . Field Programmable Gate Array 13

• Wide multiplexers

• High-speed carry logic for arithmetic functions

Look-Up Tables

The look-up table (LUT) in a CLB is the key component making it “con�gurable”. It can work

as any arbitrarily de�ned 6-input boolean function, or two arbitrarily de�ned 5-input boolean

function.

Storage Elements

In the eight storage elements in each slice, four of them can be con�gured as either D-type �ip-�ops

(D-FFs) or latches. When working as D-FFs, they can be accessed by the LUTs directly, performing

registered functional output. The D-FF is driven by clock, clock enable, and optionally set/reset

input signals, creating versatile register options.

Multiplexers

With the help of function generators and built-in multiplexers (MUXs), a 7-series CLB can perform

the following functions:

• 4:1 multiplexers using one LUT (4 MUXs per slice)

• 8:1 multiplexers using two LUTs (2 MUXs per slice)

• 16:1 multiplexers using four LUTs (1 MUX per slice)

14 Chapter 2. Background and Literature Review

Carry Logic

The lookahead carry logic helps perform fast addition and subtraction in a slice. It is speci�cally

reserved for small (less than 16-bit) adder designs. Each slice contains a CIN pin, a COUT pin, as

well as a 4-bit carry logic. The CIN and COUT pin of adjacent slices are wired physically for a

shorter carry delay.

Distributed RAM

One interesting application of CLBs is the distributed RAM1. The CLBs can be con�gured as a

various type of memory cells. The following is the list of con�gurations [58]:

• 32 × 1-bit Single-Port RAM
• 32 × 1-bit Dual-Port RAM
• 32 × 2-bit Quad-Port RAM
• 32 × 6-bit Simple Dual-Port RAM
• 64 × 1-bit Single-Port RAM
• 64 × 1-bit Dual-Port RAM
• 64 × 1-bit Quad-Port RAM
• 64 × 3-bit Simple Dual-Port RAM
• 128 × 1-bit Single-Port RAM
• 128 × 1-bit Dual-Port RAM
• 256 × 1-bit Single-Port RAM

The write operation of distributed RAM is synchronous, while the read operation can be either

synchronous with �ip-�ops or asynchronous without one. The freedom of con�gurations largely

increases the on-chip memory capacity besides dedicated block memories.
1CLBs in Xilinx 7-series consist of two types of slice, SLICEM and SLICEL. The distributed RAM function is only

available in SLICEMs. A typical SLICEL:SLICEM ratio is around 2:1. For detailed numbers of each slice, please consult
[58].

2.2 . Field Programmable Gate Array 15

The Cost of CLB

With aforementioned basic components and functions, combined with fabric wiring resources,

designers can almost freely implement any logics on FPGA, including our goal, an ESN accelerator.

However, the utilization of CLBs is highly related to the “cost” in FPGA design. Using less CLBs

indicates a broader choice of low-cost devices, introducing higher possibility of reducing cost

in large-volume production. This thesis provides a solution deploying the DSP units in Xilinx

FPGAs. The DSP unit is fabricated with dedicated circuit, introducing high-speed and low-power

arithmetic capability. Unlike CLBs, the DSP unit is not fully con�gurable. Some of its ports are

hidden from custom wiring. We must understand the in-depth architecture of it to unlock its full

power, which will be discussed in the next section.

2.2.3 Xilinx DSP48 Units

The basic computation of equation (2.1) and (2.2) is matrix multiplication and accumulation, which

can be e�ciently realized with the Xilinx DSP48 units. DSP48 is a dedicated circuit designed for

arithmetic data path in Xilinx FPGAs, which is widely supported in Xilinx’s product family. It

provides higher performance and lower power consumption for multiplication and accumulation,

compared to using CLBs.

In this section, as well as in our proposed ESN architectural design, DSP48E1 [59] is mainly

discussed and optimized for, speci�cally, for the following reasons:

• DSP48E1 is widely supported in Xilinx’s 7-series product family since announced in 2010.

• The multiplier width is improved from 18× 18 in the previous version, DSP48A1, to 25× 18.

This is critical since in certain circumstances, multiplicands with up to 20 bits are required

in calculating equation (2.1).

16 Chapter 2. Background and Literature Review

• The latest version DSP48E2 [60] is functionally equivalent and backwards compatible with

DSP48E1. The major di�erence is the further extended bit length of inputs.

Figure 2.2: DSP48E1 architecture. (a) The simplified architecture of DSP48E1. Our
design primarily makes use of the multiplier, the 3-input ALU, and PCIN/PCOUT inter-
DSP connection. Unrelated paths and units are hidden in this graph. (b) DSP slices are
cascaded and linked with PCIN/PCOUT ports.

Architecture

Figure 2.2 illustrates the simpli�ed architecture of DSP48E1. It consists of three major arithmetic

units - one 2-input multiplier, one 2-input power-saving pre-adder before the multiplier, and one

3-input ALU at the end of the cell2.

Four inputs are brought into one cell at the same time. Each input drives a series of con�gurable

registers before fed into the next stage. A proper setting of the registers can be handful in pipelining
2Additionally, DSP48E1 has a built-in pattern recognizer, which extends its application by including more “�ags”

available to designers. However, it it not essential in building an ESN accelerator. Please check the DSP48E1 user
guide [59] for the very detailed information.

2.2 . Field Programmable Gate Array 17

and increasing clock speed. The pre-adder is prestigiously useful for �lter designs. Depending on

the structure, Ahmed Akif demonstrates that building �nite impulse response (FIR) �lters with

the help of pre-adders can reduce either latency or the demand of CLBs [3].

The DSP48E1 multiplier accepts 18-bit × 25-bit inputs with two’s complement number capability.

The multiplication result is then optionally stored in register M. Before the number goes into the

next ALU, a stage of MUXs is deployed to control the three inputs of the arithmetic unit. In the

end, the �nal number is stored in register P as the output, which can �nally be accessed by fabric

routing resources.

Operations

The three MUXs (X, Y, and Z), along with the input register setting, de�ne the functionality of

the DSP cell. By careful planning, users can almost freely determine the arithmetic equation of

P3. The general equation of output P can be expressed as:

P = C ± (B × (A±D)) (2.7)

One advanced feature that can be exploited is the PCIN/PCOUT inter-DSP connection. These

two ports cannot be accessed by custom logics, but they are wired with high-speed connections

between cells, as shown in Figure 2.2 (b). Also, DSP48E1 provides a 48-bit [A:B] concatenation bus

as an option of inputs of the �nal stage ALU. By carefully selecting OPMODE, one can con�gure

the operation of DSP48E1 into 3-input adders as equation (2.8a) & (2.8b):

3When multiplication is activated, product M occupies both MUXs X and Y. This fact is due to the multiplier
design, which register M actually holds two partial products of the multiplier, taking two of the three inputs of the
ALU.

18 Chapter 2. Background and Literature Review

P = PCIN + C + P (2.8a)

P = [A : B] + C + P (2.8b)

This feature is greatly useful when building the compressor in synapses. In section 3.2, we will

further describe how we utilize the advanced features to improve cost-e�ciency.

Table 2.2: Available resources of typical Xilinx FPGA devices

CLB

Family Device Slices

Max
Distributed
RAM (Kb) DSP Slices

CLB-DSP
Ratio

Block
RAM (Kb)

Spartan-7 XC7S100 16,000 1,100 160 100 4,320

Artix-7 XC7A200T 33,650 2,888 740 45 13,140

Kintex-7 XC7K325T 50,950 4,000 840 60 16,020

Virtex-7 XC7VX485T 75,900 8,175 2,800 27 37,080
Kintex

UltraScale KU040 60,600 7,100 1,920 31 21,000
Virtex

UltraScale VU095 134,400 4,800 768 175 60,800

*We list the devices whose native Xilinx evaluation boards are available on the market.

The Adoption of DSP48E1

Naturally, designers tend to avoid placing multipliers to minimize cost in digital circuit design.

However, it is not true when working on a FPGA, where DSP blocks are pre-planned and already

included inside the chip. In contrast, utilizing DSP blocks largely reduce the need of CLBs, making

2.2 . Field Programmable Gate Array 19

the design compatible with low-cost FPGAs. Xilinx Artix-7 family devices are good examples

falling into this category, whose DSP-to-CLB ratio is greater than their 7-series brothers. Table

2.2 lists the resources available of typical Xilinx FPGAs.

Chapter 3

ESN FPGA Design

3.1 Numerical System

In hardware arithmetic, dealing with fractional numbers can be challenging. There are two major

ways to represent fractional numbers, �oating-point and �xed-point expression. The �rst one

usually follows the IEEE 754 standard [1] with either single-precision (32 bits) or double-precision

(64 bits) format. They are widely used in general purpose computers due to a wide representative

value range and a better precision. However, the down-side of �oating-point expression is also

obvious. It takes more storage space for each number and it is more complex to build the arithmetic

unit with �oating-points. This approach is often not desirable for application-dedicated hardware,

such as our work.

In our implementation, unless otherwise stated, all fractional numbers are stored in signed �xed-

point interpretation. We denote the numbers using < l, f > expression, where l represents the

total bit length and f represents the number of fractional bits reserved. Negative numbers are

depicted by the 2’s complements of their absolute value. The maximum precision loss is 2−f , and

the value range can be declared as following:

[
−2l−f−1, + 2l−f−1 − 2−f

]
20

3.2 . Reservoir Synapses - Linear Combination Without CLBs 21

A conversion between the nominal value vnom and representative value vrep can be written in

equation (3.1)

vrep =


vnom × 2−f , when vMSB = 0

−vnom × 2−f , when vMSB = 1

, (3.1)

where vnom is the 2’s complement of vnom, and vMSB is the most signi�cant bit of the stored

number.

3.2 Reservoir Synapses - LinearCombinationWithoutCLBs

Synapses in reservoir computing take the analogy from neural science, where a synapse connects

between neuron cells and takes in information. In ESN, reservoir synapses receive data from both

input and reservoir layer, applying pre-de�ned weights to the data accepted. Data here indicate

the extended states z(n) and the process is mathematically modeled by equation (2.8a) as the

linear combination before the sum-of-product is fed into non-linear functions f .

The two fundamental operations in a linear combination are multiplication and accumulation.

Consider an ESN without feedback connections andWfb. Each neuron involves (M+N) multiplications

and (M+N-1) additions in each time step. A naïve implementation may try to instantiate (M+N)

DSP cells as the multiply-accumulator followed by 2dlog2 (M+N)e − 1 fabricated adders as the

compressor tree, where d·e represents the ceiling function. Nonetheless, such design is unscalable

and not suitable for a larger neural network. Moreover, building the compressor using CLBs

consumes more power and execution time than adopting dedicated DSP blocks [59].

In our work, a reservoir synapse using DSP blocks almost eliminates the need of CLBs. In fact,

22 Chapter 3. ESN FPGA Design

we con�gure individual DSP unit such that it explores the full function introduced in equation

(2.7) & (2.8). The same DSP block is reused in the compressing stage and as well as the non-linear

function calculation. Figure 3.1 demonstrates the architecture of the entire reservoir neuron.

Figure 3.1: Reservoir neuron architecture. The whole neuron consists of 9 DSP48E1
slices, a local weight memory (16 bits × 9 words), and two look-up tables for the
approximative coe�icients of tanh.

Each neuron has only 9 �xed DSP blocks. A local weight memory is introduced to store the ith

reservoir weights and input weights. The extended state z(n) is brought in by a bus connected

to the global state memory. As shown in Figure 3.2, we then divide the computation of equation

(2.1) into three phases:

• Multiplication and Accumulation (MACC): 9 groups of weight and state are multiplied

and accumulated every clock cycle. Partial sum-of-products (SoPs) are saved inside P registers.

• Compression I: With 3 DSP blocks as a group, the 9 SoPs are compressed into three. For

3.3 . Non-Linear Function Units - Hyperbolic Tangent 23

example: P10 = P00 + P10 + P20.

• Compression II: Finally, the 3 SoPs are compressed into one. We can express this step as

P12 = P10 + P11 + P12. The �nal result xi(n) is store in the register P12.

The example con�gurations of each DSP are given in Figure 3.2:

Figure 3.2: Example DSP configurations for each phase. In MACC stage, all DSPs have
the same setup. In Compression I, 3 DSPs are combined as a group. The inputs of upper
and lower DSPs are tied to 0 to prevent washing out of P registers. The three partial
SoPs are cached in P10, P11, & P12. In Compression II, DSP12 is assigned to compute
the final linear combination result. Last but not least, the result is sent to non-linear
function LUTs, and DSP22 is arranged to close up the calculation.

3.3 Non-Linear Function Units - Hyperbolic Tangent

In software, users can precisely approach hyperbolic tangent (tanh) using Cody-Waite polynomial

[19], with high precision �oating-point numbers, whereas, our work use �xed-point number

system and the polynomial approach is surely too expensive.

24 Chapter 3. ESN FPGA Design

The required accuracy for tanh hardware approximation may di�er from one application to

another. The di�erence majorly stems from the dynamic range of output weights, due to the

nature of the applications. Take our two experiments for example, in 10 individual test runs, the

teacher labels from NARMA10 dataset are no smaller than 0.2 and no larger than 0.8, yielding

the trained output weights in the range of (-200, 200). In contrary, in the symbol detection task,

some output weights can go up to ±100,000. The large weight numbers can magnify any small

accuracy/precision loss in the reservoir states x (the output of tanh), and thus mess up the �nal

prediction. The bit-length of x, as well as the tanh approximator has to be carefully designed.

3.3.1 Piece-wise Linear Approximation

To compensate the large weights while reducing resources, we apply a 1st-order piece-wise linear

approximation to tanh. Let f(s) = tanh(s), |s| < 16, where s is the 36-bit compressed sum-of-

product from the linear combination stage; | · | denotes the absolute value. The method tries to

�nd the approximated function f̂(s), such that:

x = f̂(s) = slope×∆s+ intercept

∆s = s− round(s),

(3.2)

where round(s) is the rounded s to a certain precision; slope and intercept are two sets of

constants such that ∆f(s) = f̂(s)− f(s) is minimized.

This work employs two look-up tables (LUTs) to store slope and intercept, respectively.

3.3 . Non-Linear Function Units - Hyperbolic Tangent 25

Number Formats

Dynamic range, precision, and accuracy are three key factors for constructing the approximator.

Thanks to the characteristics of tanh, the neuron output x is always within the range of [-1, 1],

meaning that we can grant all the bits to the fractional part except for the �rst sign bit. Precision

loss is introduced by the �xed-point number system. We can calculate the appropriate fractional

bit length, as long as the precision loss is less than the application requirement. For example, given

the output weights from the symbol detection task (Table 4.1), 2× 10−6 is a safe precision setting.

A reasonable number of fractional bits can be calculated by:

#fractional bits =
⌈
− log2

(
2× 10−6

)⌉
= 19, (3.3)

where d·e denotes the ceiling function. Therefore, x is safely applied with a < 20, 19 > format.

Accuracy, on the other hand, is a relative complex problem, since it is impacted by how the slope

and intercept tables are generated, as well as the number format of each table entry. Further

experiments and analysis are needed, which we will discuss more in the following subsections.

The Generation of slope and intercept

Before working on the table, we �rst need to de�ne the interval I = [G,H], where G < H and

all input of the approximator lies within. Due to the symmetry nature of tanh function, the two

tables only need to serve the positive half of input s. Moreover, when s > 8, tanh(s) is very close

to 1 (error < 10−6). Combining the above two reasons, we set I = [G,H] = [0, 8].

Next, let a denotes the address bit-length of the tables. This divides the interval I into 2a sections

26 Chapter 3. ESN FPGA Design

by entry points. The ith entry point is denoted as si = 0 + (8− 0)× i× 2−a. The intercept is then

derived by:

intercepti = tanh (si);

each entry of slope is further extended as:

slopei =
(intercepti+1 − intercepti)

8× 2−a
.

Analysis of The First Approach

An analysis is performed to verify if the �rst approach is optimal. Four metrics are useful to

evaluate the e�ectiveness of the approximation. We follow the de�nitions in [18] & [56]. The

metrics are de�ned as follows.

For function f : I = [G,H]→ R, the approximation f̂ : I → R has the absolute error of f(s)−

f̂(s), where there are K uniformly sampled s in interval I . (Please note that the “absolute” here

intend to distinguish itself from the “relative” errors. It has nothing to do with the mathematical

absolute value.) That is,

AverageAbs.Error =

∑K−1
i=0 |f(si)− f̂(si)|

K
, (3.4)

where si = G+ i× δ, and δ = (H −G)/K . Analogously, we de�ne the maximum absolute error

as:

MaximumAbs.Error = max
s∈I
|f(si)− f̂(si)|. (3.5)

3.3 . Non-Linear Function Units - Hyperbolic Tangent 27

Next, we have the average relative error de�ned as:

AverageRel.Error =

∑K−1
i=0

∣∣∣f(si)−f̂(si)f(si)

∣∣∣
K

, (3.6)

and the maximum relative error is de�ned as:

MaximumRel.Error = max
s∈I

∣∣∣∣∣f(si)− f̂(si)

f(si)

∣∣∣∣∣ . (3.7)

For hyperbolic tangent function, relative errors always approach in�nity when s is close to 0,

since tanh 0 is 0. Thus, the following paragraph will mainly discuss absolute errors.

Figure 3.3 shows that the error �uctuates between intervals. Zooming in on a single sub-interval,

we �nd the error goes from nearly 0 to a local maximum, and goes down again, forming a convex

and parabola-like trend in the graph. It makes sense that the error are closer to 0 on both ends,

since they are calculated by the tanh function exactly. The error only arises from the precision

loss of �xed-point numbers. But the convex shape, along with the all positive error, suggest that

this method can be improved.

Improved intercept Table

In Figure 3.4, the whole interval [0,8] is divided into 210 sub-intervals. We extract the maximum

and minimum absolute error in each sub-interval and plot them in the graph. The �gure further

con�rms our hypothesis that all errors are positive. That is, it is possible to decrease the absolute

error f(s)− f̂(s), by lifting the approximation f̂(s) slightly. The idea is to o�set downward the

positive, parabolic error curve, such that the local minimum decreases from nearly 0 to a negative

number, and the local maximum is reduced to |local minimum|. This modi�cation potentially

28 Chapter 3. ESN FPGA Design

Figure 3.3: The zoomed-in absolute error before applying the improvement. In this
graph, each table has 210 entries; slope has the format < 10, 10 >; intercept is stored
with < 19, 19 > numbers; δs consumes 8 bits.

3.3 . Non-Linear Function Units - Hyperbolic Tangent 29

Figure 3.4: The minimum and maximum local absolute error before improvement. The
experiment follows the same se�ing in Figure 3.3.

moves the error curve “closer” to the y-axis, decreasing the average and maximum absolute error.

The improved intercept table is updated by the following steps:

1) Calculate o�set = 1
2
(Max.Abs.Err.+Min.Abs.Err.) in each sub-interval.

2) Add the o�set back to each intercept entry.

Figure 3.5 demonstrate the absolute error before and after the advancement. The maximum

absolute error within [0,8] declines from 12 × 10−6 to around 6 × 10−6, which is nearly half

of the original value. Table 3.1 lists the experimental result of the tanh approximation with

various con�gurations. The results displays that the improved intercept table e�ectively mitigates

approximation errors.

30 Chapter 3. ESN FPGA Design

Figure 3.5: The absolute error comparison before and a�er the improvement. The
absolute error using the improved intercept table is about half of our first approach. The
number formats follows the same se�ing in Figure 3.3.

Let us look deeper into the data. Unsurprisingly, larger LUT entries and wider LUT instances

yield better results. Using 8-bit LUT address (256 entries) with the improved method, generates

7× 10−6 to 5× 10−5 average absolute error, while the maximum error is about one magnitude

higher (5× 10−5 to 5× 10−4). By widen the LUT address to 10 bits (1024 entries), the maximum

and average error can go down to 7.6 × 10−6 and 1.6 × 10−6, respectively, almost approaching

the limit of <20,19> output numbers1. But the cost of memory usage of 10-bit-entry LUTs is four

times higher than using 8-bit-entry ones. It is truly a performance-cost trade-o� that a designer

should consider. Table 3.1 provides a handy reference for building a 1-st order piecewise-linear

tanh approximation.

1The LSB of a <20,19> number represents 2−19, which is about 2×10−6. The maximum error 7.6×10−6 indicates
that only the last two bits are o�.

3.3 . Non-Linear Function Units - Hyperbolic Tangent 31

Table 3.1: Errors on the interval [0,8] and memory usage of the tanh approximator

Absolute Error
Absolute Error
(Improved Method)

LUT
Addr.

intercept
Format

slope
Format δs Avg. Max. Avg. Max.

Memory
Usage (Kb)

8 bits <15,15> <8,8> 6 bits 7.467e-5 5.294e-4 4.904e-5 4.530e-4 5.75

8 bits 5.270e-5 2.145e-4 2.752e-5 1.229e-4

<10,10> 6 bits 6.448e-5 4.694e-4 4.558e-5 4.201e-4 6.25

8 bits 4.193e-5 1.608e-4 2.346e-5 9.304e-5

<19,19> <8,8> 6 bits 5.098e-5 4.798e-4 3.369e-5 4.223e-4 6.75

8 bits 3.851e-5 1.574e-4 1.308e-5 7.924e-5

10 bits 2.870-e5 1.578e-4 1.308e-5 7.961e-5

<10,10> 6 bits 3.911e-5 4.186e-4 2.876e-5 3.844e-4 7.25

8 bits 1.642e-5 1.084e-4 7.248e-6 5.502e-5

10 bits 1.650e-5 1.090e-4 7.243e-6 5.526e-5

10 bits <19,19> <8,8> 6 bits 1.168e-5 1.228e-4 8.094e-6 1.086e-4 27

8 bits 6.131e-6 3.354e-5 2.852e-6 1.758e-5

10 bits 6.190e-6 3.389e-5 2.851e-6 1.758e-5

<10,10> 6 bits 9.001e-6 1.002e-4 7.237e-6 9.720e-5 29

8 bits 3.355e-6 1.368e-5 1.610e-6 7.602e-6

10 bits 3.378e-6 1.386e-5 1.611e-6 7.602e-6

32 Chapter 3. ESN FPGA Design

3.3.2 Hardware Tanh Implementation

Here we take the most precise approximation setting in Table 3.1, where each LUT has a 10-bit

address; intercept is 19-bit wide, holding <19,19> numbers; slope is 10-bit wide, holding <10,10>

numbers; δs has 8 bits available.

Figure 3.6 depicts the overall architecture of the non-linear function block. Before the linear

combination sum-of-product s is sent to the tanh unit, the module �rst derive the absolute value

of it and omit the most signi�cant bit (MSB) (sign bit), as well as redundant least signi�cant bits

(LSBs), truncating it down to a 10-bit number.

For convenience, we use sC to denote the < 10, 10 > converted positive number in the rest of

this section.

sC = |s|34:25 (3.8)

In our design, each LUT takes the whole 10 bits of sC as input. Now the approximation can be

expressed as:

f̂(s) =


−f̂ (|s|) , s < 0

1− 2−19 , s ≥ 8(
slope(sC)× |s|24:18 + intercept(sC)

)
× 2−19 , 0 ≤ s ≤ 8

(3.9)

3.3 . Non-Linear Function Units - Hyperbolic Tangent 33

Figure 3.6: The architecture of the non-linear function (tanh) unit.

As shown in Figure 3.6, the multiplication and addition is dispatched back the DSP array in each

neuron, more speci�cally, DSP22, to eliminate the need of additional arithmetic units. The only part

that uses CLBs are simple MUXs, concatenations, and a 2’s complement generator. Furthermore,

two LUTs are comprised of two-port block memories, that is, one Tanh core can serve two reservoir

neurons simultaneously, making our design more e�cient.

Chapter 4

Experimental Results and Analysis

To verify our work, the hardware ESN architecture is tested on two distinct tasks. Two major

versions of ESN are implemented, targeting two di�erent applications. The �rst one is tested and

optimized for the classical nonlinear autoregressive moving average (NARMA) dataset [49]; The

second is �ne tuned for a a real-world symbol detection task in an orthogonal frequency division

multiplexing (OFDM) system [40]. The major di�erences between these two applications in terms

of hardware architecture are summarized in table 4.1. In short, the symbol detection task requires

more accurate approximation of the non-linear function, which is explained in more details in

section 3.3.

All experiments are conducted using post-synthesis timing simulation with Xilinx Vivado 2018.3.

The environment targets Virtex-7 VC707 FPGA evaluation board. The initial reservoir weights

and output weights are trained on a Ubuntu server using Python 3.7 and a modi�ed pyESN [36]

framework.

4.1 NARMA10 Datasets

First introduced in [10], the NARMA system is widely used for testing RNN performances. We

follow the 10th-order parameter setup in [49] to build the testing vectors. Modeling such system

is challenging since the nonlinearity and the relative long-term memory are being stressed. The

34

4.1 . NARMA10 Datasets 35

Table 4.1: Major ESN architecture di�erences between two applications.

NARMA10 Dataset Wireless Symbol Detection

of input nodes 1 4
of reservoir neurons 20/50/100 16
of output neurons 1 2
Range of inputs normalized to (−1, 1)

Range of training labels1 (0.1, 0.8) (-8, 8)
Range of learned output weights1 (-20, 20) (-50,000, 50,000)
Sustainable tanh accuracy loss |4× 10−3| |4× 10−5|

Tanh output bit length 16 bits 20 bits

system can be described as:

y(t+ 1) = 0.3y(t) + 0.05y(t)
9∑

i=0

y(t− 1) + 1.5y(t− 9)y(t) + 0.1 (4.1)

4.1.1 Experiment Results

The ESN is trained with three di�erent settings. Small-size (20-neuron) to midium-size (100-

neuron) ESNs are tested to demonstrate the scalability and versatility of the architecture. Table 4.2

lists the experimental setup of three implementations using the same proposed architecture. All

three sizes of ESN are achieved by only 20 physical neurons in the circuit. That is, the same

smaller size ESN core is capable of processing larger size ESN data, with the help of proper

peripheral circuits. For example, updating 100 neurons using 20 physical neurons can be realized

by calculating each 20 neuron outputs at a time. This is a design trade-o� between speed and

resources. In this case, �ve iterations are taken to �nish up one time step of the ESN. Circuit

1The range of training labels and learned output weights may vary depending on random seeds in NARMA dataset
and real test data in the wireless communication.

36 Chapter 4. Experimental Results and Analysis

designers can choose the optimal number of physical neurons for the target application and

device. Our solution uses a temporary cache to store the partial calculated states. The global state

memory will then updates its value from the cache once all 100 neuron outputs are calculated.

To carry out the best performance, the length of the training and testing sequence are varied.

Distinct regularization factors in equation (2.6) are selected to mitigate over-�tting. Detailed

numbers are also summarized in Table 4.2.

Table 4.2: NARMA experimental setup and performances

20 Neurons 50 Neurons 100 Neurons

of physical neurons 20
Training sequence (steps) 1000 2000 8000
Regularization factor 0 10−8 2× 10−7

Testing sequence (steps) 200 1000 1000
Training NMSE 0.136 0.142 0.203
Testing NMSE 0.246 0.132 0.103
Testing NMES (HW) 0.228 0.141 0.126

We test the performance of ESN in both software and circuit simulation using the metric, normalized

mean square error (NMSE):

NMSE =
1
n

∑n
t=1

∣∣ytest(t)− ylabel(t)∣∣2
1

n−1
∑n

t=1 |ylabel(t)− E (ylabel(t))|2

E
(
ylabel(t)

)
=

1

L

L−1∑
i=0

ylabeli (t),

(4.2)

where ytest(t) is the ESN output given the test set in time step t; ylabel is the ground truth; and | · |

denotes the Euclidean norm. NMSE gives an idea of how well the prediction follows the actual

4.1 . NARMA10 Datasets 37

NARMA system. The smaller the number, the better the system is inferred.

Figure 4.1 shows that our design models NARMA10 system genuinely well, almost as good as using

the Python model. In the case of 20 neurons, the outcome from the hardware circuit performs

even slightly better than the Python inference. We believe this is due to the small output deviation

between the hardware and software intrinsically introduced by the �xed-point numerical system.

The hardware model tries to follow the software prediction as precise as possible, but the small

deviation may fall closer to the actual NARMA output. A slightly better NMSE could possibly be

obtained. This situation does not appear in the case of 50 and 100 neurons, where software and

hardware ESNs both perform excellently, leaving smaller gap for the deviation to “luckly” drive

NMSE better.

Figure 4.1: NARMA10 performances in NMSE (lower the be�er).

Figure 4.2 further visualizes the performance of our hardware implementation. The dotted green

line indicates the actual NARMA system output; the blue and orange line represents the ESN

inferences using software and hardware, respectively. As shown in the graph, the pattern of

38 Chapter 4. Experimental Results and Analysis

ESN outputs follow ground truth NARMA pretty well. Furthermore, hardware ESN produce

almost identical numbers as software ESN. This demonstrates the performance capability of the

architecture.

Figure 4.2: ESN inferences vs. NARMA. This graph shows the partial output of the
100-neuron ESNs.

4.2 OFDM Symbol Detection

In wireless communications systems, the training overhead is extremely costly and limited. ESN,

due to its fast convergence property, becomes a perfect candidate for wireless communications

related applications. In this section, we show the ESN-based symbol detection application in

orthogonal frequency division multiplexing (OFDM) wireless communications systems introduced

by Lianjun Li et al. [40]. More related works are conducted in [25, 46, 50, 51, 53, 71, 72].

4.2 . OFDM Symbol Detection 39

Figure 4.3: OFDM system procedures.

4.2.1 OFDM System

In this section, we brie�y introduce the working mechanism of an OFDM wireless communications

systems, which bene�ts understanding the symbol detection problem discussed later. In OFDM

systems, data are packaged and transmitted in the unit of “OFDM frame”. Each OFDM frame is

comprised of “OFDM symbols”. The transmitting-receiving procedure is depicted in Figure 4.3.

At the transmitter side, the ith OFDM symbol in frequency domain is denoted as:

Xi , [Xi(0), · · · , Xi(k), · · · , Xi(Nsc − 1)]T ∈ CNsc , (4.3)

where ·T is the matrix transpose operator;Nsc represents the total number of sub-carriers;Xi(k) is

the major information symbol carried on sub-carrierk, randomly chosen from a de�ned modulation

table. For instance, {+1,−1} is the table of binary phase-shift keying (BPSK) modulation, while

{+1+ j,−1+ j,+1− j,−1− j} is the table of quadrature phase-shift keying (QPSK) modulation.

Afterward, Xi is converted to time domain via inverse fast Fourier transform (IFFT). The last Ncp

samples of the time domain signal is then copied and attached to the beginning of the signal as a

cyclic pre�x (CP). The ith transmitted OFDM symbol in time domain can be expressed as:

xi , [xi(0), · · · , xi(n), · · · , xi(Ncp +Nsc − 1)]T ∈ C(Ncp+Nsc), (4.4)

40 Chapter 4. Experimental Results and Analysis

where xi(n) is the nth sample of the ith OFDM symbol in time domain. Note that Xi can be

reversely obtained by removing the CP of xi followed by a fast Fourier transform (FFT). The time

domain OFDM frame is a series of OFDM symbols, expressed as:

x , [(x0)
T , · · · , (xi)

T , · · · , (xN−1)
T]T ∈ CN(Ncp+Nsc) (4.5)

where N is the total number of OFDM symbols in a frame. The frame x is then transmitted to the

receiver over the wireless channel. The received time domain OFDM frame y can be denoted as:

y = f(x~ h) + σ, (4.6)

where f is the function represents the non-linear e�ects of the transmitting-receiving procedure;

~ is the convolution operator; σ is the Gaussian noise; h = [h0, h1, · · · , hNcp]T ∈ C(Ncp+1)

indicates the wireless channel. At the receiver side, the ith received time domain OFDM symbol

can be denoted similarly as at the transmitter:

yi , [yi(0), · · · , yi(n), · · · , yi(Ncp +Nsc − 1)]T ∈ C(Ncp+Nsc) (4.7)

The main objective of a symbol detection task is recovering the transmitted OFDM symbol Xi

from received time domain information yi. Usually, training overhead is pre-de�ned in OFDM

systems to accommodate symbol detection. For example, in Wi-Fi system [29], the �rst four OFDM

symbols are arranged as the training sequence known by both side. In the next subsection, we

will discuss how the training overhead can be utilized in ESN-based symbol detection.

4.2 . OFDM Symbol Detection 41

4.2.2 ESN-based Symbol Detection

Conventional symbol detection methods are model-based, they often �rst evaluate the wireless

channel h, and then apply various signal processing techniques to recover the transmitted symbol.

However, due to the non-linearity of the channel, x and y is di�cult to model. Conventional

methods often su�er from model mismatch. On top of that, the accuracy of symbol detection

highly depends on the channel estimation, hence su�ers from estimation mismatch as well.

On the other hand, ESN-based symbol detection is a learning-based method which does not

require explicit channel estimation. It is designed to learn the direct mapping from y to x without

the interference of estimation mismatch. The nature of ESN solves aforementioned issues of

conventional methods. Furthermore, the ESN-based symbol detection only utilizes the training

overhead in existing OFDM systems. Unlike other learning-based symbol detection methods

whose frame de�nition has to be modi�ed, this method can be directly applied to OFDM systems

with less e�ort. The training and testing procedure of ESN-based symbol detection is described

as below.

The ESN is trained over the �rst four OFDM symbols in an OFDM frame. An input-label tuple is

used to express the training data set:

Φ , {I,D} = {[y1,y2,y3,y4], [x1,x2,x3,x4]} (4.8)

Upon completion of the training , the rest of received OFDM symbols yi(4 < i < N) are sent into

ESN to recover the transmitted symbols.

42 Chapter 4. Experimental Results and Analysis

4.2.3 Experiment Results

The performance of symbol detection using ESN, as well as three conventional methods, i.e., least

mean square (LMS), least square (LS), and Comb pilot interpolation (Comb) [24], are evaluated

on a software de�ned radio platform (Figure 4.4), built with GNU Radio and two USRP N210

transceivers. This means the experiment data is acquired on a real system but not from simulations.

Figure 4.4: The so�ware-defined radio test bed. © IEEE. Reprinted, with permission,
from Lianjun Li et al., 2020 29th Wireless and Optical Communications Conference
(WOCC), p.1-6 (2020) [40].

The experiment includes three scenarios. The �rst scenario is line-of-sight with near distance

(LOS_Near), where the transmitter and receiver have a 10-inch direct LOS path. The second

scenario is LOS with further distance (LOS_Far), where the distance between transceivers is

increased to 10 feet. In addition, a 30dB attenuator is added on the receiver to further decrease the

signal power. The last scenario is non-line-of-sight (NLOS), where no direct paths occur between

the transmitter and receiver. The distance between the transceiver is set to 5 feet, and a 30dB

attenuator is deployed on the receiver as well. The bit error rate (BER) of symbol detection task

using the �ve methods (namely, LMS, Comb, LS, software ESN, and the hardware ESN) under

these 3 scenarios are shown in Figure 4.5.

As suggested in Figure 4.5, ESN-based methods achieve the best performance amongst all. We

4.2 . OFDM Symbol Detection 43

argue that this is due to the e�cient learning capability of ESN. A direct mapping from the input

to the output can be inferred without exploring channel estimation as required by other three

conventional methods. The hardware ESN generates slightly worse result than software ESN,

nevertheless, it still dominates the other three algorithms. This demonstrates that our work o�ers

a great opportunity of solving the real-world wireless communication challenge.

Figure 4.5: Performance of hardware/so�ware ESN-based symbol detection, LMS,
Comb and LS.

To ensure the proposed data is not merely a special case, the experiment is repeated 20 to 28 times,

depending on the data length collected under each scenario. Table 4.3 and Figure 4.6 summarizes

the analysis of variance using software (SW) and hardware (HW) ESN symbol detector. With the

LOS_Far and NLOS setup, both shows one data point having around 15% BER, indicating a strongly

interfered packet. Excluding the two data points, Figure 4.6 shows a clear trend which BER steps

up from LOS_Near to LOS_Far to NLOS. The standard deviation of BER also increases when the

transmission condition becomes harder. It is expected due to the longer physical distance and

the added attenuator. The low standard deviation suggests that except under the very rare worst

conditions, the ESN-based method is stable and produces consistent results.

44 Chapter 4. Experimental Results and Analysis

Table 4.3: Analysis of BER variance (%) for ESN symbol detection

Setup # of data Mean Medium Standard deviation

LOS_Near SW 28 0.30 0.05 0.67

LOS_Near HW 28 0.39 0.06 0.77

LOS_Far SW 23 1.23 0.10 3.13

LOS_Far HW 23 1.43 0.19 3.83

NLOS SW 21 2.31 0.33 3.77

NLOS HW 21 2.47 0.36 3.95

Figure 4.6: Analysis of BER variance for ESN symbol detection.

To verify the performance of the hardware architecture, Figure 4.7 & 4.8 provide the direct

visualization of the ESN output. The �rst one illustrates the actual raw output of both software

and hardware ESN. The data is divided into two parts since there are two output nodes in the

network, representing the real part and imaginary part of the number, respectively. The following

4.2 . OFDM Symbol Detection 45

one depicts the relative di�erence between the two implementations. As suggested in the graphs,

our ESN hardware predictor follows the software version tightly in time domain.

Figure 4.7: HW vs. SW ESN on the symbol detection task in time domain.

Figure 4.8: Relative di�erence between HW and SW ESN outputs.

In the frequency domain, Figure 4.9 demonstrates a comparison between the constellation diagram

of the predicted symbol detection results. The upper diagrams are generated by the software ESN

46 Chapter 4. Experimental Results and Analysis

approach, while the bottom two are yielded by the corresponding hardware implementation.

Figure 4.9 (a) represents an easy data point where both SW and HW ESN predicts nearly perfect

results. Figure 4.9 (b) describes a worse data point whose inferred symbols scatter in a larger

area, resulting a BER at around 3.5%. As shown in the �gure, our hardware ESN design produces

very similar output as the more precise software version, even after the data is transferred from

the time domain back to the frequency domain. This reinforces that the proposed architecture is

capable of processing complex information, such as real-world communication data.

Figure 4.9: Example constellation diagrams. The constellation diagrams of the
prediction result using so�ware and hardward ESN show very similar pa�ern with
slight variation. (a) represents a good data point where the BER for both HW and SW
are zero. (b) depicts a worse data where the BERs are around 3.5%.

Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we propose a cost-e�cient ESN architecture on FPGA, which exploits the advanced

feature of Xilinx DSP48E1 DSP unit. The proposed work includes a linear combination processor

with negligible deployment of CLBs, and a high-accuracy non-linear function approximator, through

the help of only 9 DSP units in each neuron. This architecture is especially suitable for low-cost

Xilinx Artix-7 family devices, which o�ers a higher DSP-CLB ratio. It also adapts to all Xilinx

devices with DSP48E1 & DSP48E2 units. The ESN FPGA implementation is veri�ed by NARMA

10 dataset, showing the FPGA implementation of ESN could reach comparable performances

as the software-based ESN with various neural con�gurations. In addition, the work is tested

on an OFDM symbol detection task, whose data is gathered from a physical SDR platform. The

experiment result demonstrates that the FPGA based ESN outperforms the conventional channel

equalization methods in a wide-variety of environments.

5.2 Future Works

There are several improvements that can be extended to the ESN architecture. In terms of evaluating

a digital design work, there are three main aspects we care about, power, performance, and cost.

The following subsection 5.2.1 will cover the future works that could enhance the three key metrics.

47

48 Chapter 5. Conclusions and Future Works

On the other hand, one can expand the utility of the ESN hardware by introducing it to the existing

eco-system, which will be discussed in subsection 5.2.2

5.2.1 Power, Performance, & Cost

The current design can process 9 input data in the multiply-accumulation stage in each neuron.

This is fairly fast, yet not all 9 multiplications are necessary. Almost 20-60% of the reservoir weights

in matrices are sparse, indicating that applying these weights always give a zero and thus can be

skipped. Since the reservoir weight matrix is given prior to the start of the computation, we can

add a table storing the sparsity information, telling the DSP units to avoid the redundant weights

and leap to useful data. This advancement can potentially cut-down the execution time and save

memory space.

A large use of the block-memory stems from the two look-up-tables in the activation function

core. When the trained output weights are large, users may have no choice but increase the size

of the tables to remain accuracy. This problem can be solved if the models are pre-trained with

hardware-friendly activation functions, e.g., hard tanh and K-Tanh[37]. If the model can achieve

a comparable performance compared to using the conventional hyperbolic tangent, the hardware

approximation may be largely simpli�ed.

In addition, power consumption, due to the arising number of battery driven devices, can be

decisive when choosing the applicable implementation. Human brain can easily contains 1012

neurons connected through 1015 synapses [22], while powered by only 25 Watts [35]. Spiking

neural network (SNN), mimicking the mechanism of biological neural system, has shown a great

potential in reducing power expenditure of arti�cial neurual networks [55]. There is a possibility

5.2 . Future Works 49

adopting spikes with temporal encoding scheme [14, 38, 64–70] in the ESN architecture to further

mitigate the need of multipliers and power consumption.

5.2.2 Expansion of Utility

ESN can work well in unmanned aerial vehicles [31]. It is also e�ective for dealing with the symbol

detection problem in the physical layer of wireless communication, as demonstrated in section

4.2. However, the ESN computational hardware cannot work solely in a practical scene.

Several pre-processing can be included, such as weight initialization and the on-board learning

ability. At the beginning of the ESN environment setup, the internal weights are chosen randomly

with regularization. This could be approached by implementing a chain of 16-bit linear feedback

shift registers to generate a set of random numbers. The next step is hard but worth exploring,

since generating W requires calculating the maximum eigenvalue of the matrix. The good news

is, we can simply apply a smaller user-de�ned spectral radius to avoid complex computation. This

is doable in most cases, since ESN is tolerant when the maximum eigenvalue is only slightly larger

than 1 [32, 44]. Furthermore, the initialization of the weights is only required once upon powering-

on. Processing speed would not be the highest priority. Instead of placing a huge parallel block,

we could utilize iterations to �nd the maximum eigenvalue if necessary.

On-board training capability can also be extremely useful when combined with on-line training

algorithms. This is especially true for applications that may require model re-training on-the-�y,

such as wireless communication. A popular on-line learning method is the recursive least square

(RLS) method [23], which has been proven to work well on FPGA in [6] & [42].

Finally, an easy solution to dock with the existing eco-system is critical for developers. The current

design has a register interface for parameters and con�gurations. The work can be extended to

50 Chapter 5. Conclusions and Future Works

support standard module-to-module interfaces, such as AMBA AXI4[8] and AXI4-Stream[9]. A

possible approach could be using AXI4/AXI4-lite for con�guration and using AXI4-Stream for

input data �ows. The support of standard protocols could provide simpler accessibility for ARM

soft-cores, which are widely embedded in Xilinx Zync-7000 System-on-Chips (SoCs). A soft-core

is easier to program and �exible, thus making the ESN more versatile and adaptable in diverse

scenarios.

Bibliography

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70, August 2008.

doi: 10.1109/IEEESTD.2008.4610935.

[2] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Revision of IEEE Std

1076-2002), pages 1–640, January 2009. doi: 10.1109/IEEESTD.2009.4772740.

[3] Ahmed Akif. FIR Filter Features on FPGA. PhD thesis, 2018.

[4] M. L. Alomar, V. Canals, V. Martínez-Moll, and J. L. Rosselló. Low-cost hardware

implementation of Reservoir Computers. In 2014 24th International Workshop on Power

and Timing Modeling, Optimization and Simulation (PATMOS), pages 1–5, September 2014.

doi: 10.1109/PATMOS.2014.6951899.

[5] Miquel L. Alomar, Vincent Canals, Nicolas Perez-Mora, Víctor Martínez-Moll, and Josep L.

Rosselló. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting.

https://www.hindawi.com/journals/cin/2016/3917892/, December 2015. ISSN 1687-5265.

[6] Piotr Antonik, Anteo Smerieri, François Duport, Marc Haelterman, and Serge Massar. FPGA

Implementation of Reservoir Computing with Online Learning. In 24th Belgian-Dutch

Conference on Machine Learning (BENELEARN), 2015.

[7] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre,

B. Schrauwen, C. R. Mirasso, and I. Fischer. Information processing using a single dynamical

node as complex system. Nature Communications, 2(1):468, September 2011. ISSN 2041-1723.

doi: 10.1038/ncomms1476.

51

52 BIBLIOGRAPHY

[8] Arm. AMBA AXI and ACE Protocol Speci�cation: AXI3, AXI4, and AXI4-Lite ACE and

ACE-Lite, 2003.

[9] Arm. AMBA 4: AXI4-Stream Protocol Speci�cation, 2010.

[10] A.F. Atiya and A.G. Parlos. New results on recurrent network training: Unifying the

algorithms and accelerating convergence. IEEE Transactions on Neural Networks, 11(3):697–

709, May 2000. ISSN 1941-0093. doi: 10.1109/72.846741.

[11] S.L. Bade and B.L. Hutchings. FPGA-based stochastic neural networks-implementation. In

Proceedings of IEEE Workshop on FPGA’s for Custom Computing Machines, pages 189–198,

April 1994. doi: 10.1109/FPGA.1994.315612.

[12] Kangjun Bai and Yang Yi Bradley. A path to energy-e�cient spiking delayed feedback

reservoir computing system for brain-inspired neuromorphic processors. In 2018 19th

International Symposium on Quality Electronic Design (ISQED), pages 322–328, March 2018.

doi: 10.1109/ISQED.2018.8357307.

[13] Kangjun Bai and Yang Yi. DFR: An Energy-e�cient Analog Delay Feedback Reservoir

Computing System for Brain-inspired Computing. ACM Journal on Emerging Technologies in

Computing Systems, 14(4):45:1–45:22, December 2018. ISSN 1550-4832. doi: 10.1145/3264659.

[14] Kangjun Bai, Jialing Li, Kian Hamedani, and Yang Yi. Enabling An New Era of Brain-inspired

Computing: Energy-e�cient Spiking Neural Network with Ring Topology. In 2018 55th

ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6, June 2018. doi: 10.1109/

DAC.2018.8465938.

[15] Kangjun Bai, Qiyuan An, and Yang Yi. Deep-DFR: A Memristive Deep Delayed Feedback

Reservoir Computing System with Hybrid Neural Network Topology. In 2019 56th ACM/IEEE

Design Automation Conference (DAC), pages 1–6, June 2019.

BIBLIOGRAPHY 53

[16] Kangjun Bai, Qiyuan An, Lingjia Liu, and Yang Yi. A Training-E�cient Hybrid-Structured

Deep Neural Network With Recon�gurable Memristive Synapses. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 28(1):62–75, January 2020. ISSN 1557-9999. doi:

10.1109/TVLSI.2019.2942267.

[17] Kangjun Bai, Yang Yi, Zhou Zhou, Shashank Jere, and Lingjia Liu. Moving Toward

Intelligence: Detecting Symbols on 5G Systems Through Deep Echo State Network. IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, 10(2):253–263, June 2020.

ISSN 2156-3365. doi: 10.1109/JETCAS.2020.2992238.

[18] Mariusz Bajger and Amos Omondi. Low-error, High-speed Approximation of the Sigmoid

Function for Large FPGA Implementations. Journal of Signal Processing Systems, 52(2):137–

151, August 2008. ISSN 1939-8115. doi: 10.1007/s11265-007-0140-z.

[19] William James Cody. Software Manual for the Elementary Functions. Prentice-Hall, Inc., USA,

1980. ISBN 978-0-13-822064-8.

[20] Intel Corporation. Intel Quartus Prime Software User Guides.

https://www.intel.com/content/www/us/en/programmable/products/design-

software/fpga-design/quartus-prime/user-guides.html.

[21] Intel Corporation. Intel Stratix 10 Logic Array Blocks and Adaptive Logic Modules User

Guide, April 2020.

[22] Egidio D’Angelo, Sergio Solinas, Jesus Garrido, Claudia Casellato, Alessandra Pedrocchi,

Jonathan Mapelli, Daniela Gandol�, and Francesca Prestori. Realistic modeling of neurons

and networks: Towards brain simulation. Functional Neurology, 28(3):153–166, 2013 -10- 17.

ISSN 0393-5264.

54 BIBLIOGRAPHY

[23] Behrouz Farhang-Boroujeny. Adaptive Filters: Theory and Applications. John Wiley & Sons,

2013.

[24] Joseph A. Fernandez, Daniel D. Stancil, and Fan Bai. Dynamic channel equalization for IEEE

802.11p waveforms in the vehicle-to-vehicle channel. In 2010 48th Annual Allerton Conference

on Communication, Control, and Computing (Allerton), pages 542–551, September 2010. doi:

10.1109/ALLERTON.2010.5706954.

[25] Kian Hamedani, Lingjia Liu, Shiya Liu, Haibo He, and Yang Yi. Deep Spiking Delayed

Feedback Reservoirs and Its Application in Spectrum Sensing of MIMO-OFDM Dynamic

Spectrum Sharing. Proceedings of the AAAI Conference on Arti�cial Intelligence, 34(02):1292–

1299, April 2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i02.5484.

[26] Geo�rey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,

Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury.

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of

Four Research Groups. IEEE Signal Processing Magazine, 29(6):82–97, November 2012. ISSN

1558-0792. doi: 10.1109/MSP.2012.2205597.

[27] Nan-Sheng Huang, Jan-Matthias Braun, Jørgen Christian Larsen, and Poramate Manoonpong.

A scalable Echo State Networks hardware generator for embedded systems using high-level

synthesis. In 2019 8th Mediterranean Conference on Embedded Computing (MECO), pages 1–6,

June 2019. doi: 10.1109/MECO.2019.8760065.

[28] IEEE. IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005

(Revision of IEEE Std 1364-2001), pages 1–590, April 2006. doi: 10.1109/IEEESTD.2006.99495.

[29] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci�cations

Amendment: Enhanced Broadcast Service (Std 802.11-2012), 2012.

BIBLIOGRAPHY 55

[30] Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural

networks-with an erratum note. Bonn, Germany: German National Research Center for

Information Technology GMD Technical Report, 148(34):13, 2001.

[31] Herbert Jaeger. Adaptive nonlinear system identi�cation with Echo state networks. In

Proceedings of the 15th International Conference on Neural Information Processing Systems,

NIPS’02, pages 609–616, Cambridge, MA, USA, January 2002. MIT Press.

[32] Herbert Jaeger. A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF

and the "echo state network" approach. 2005.

[33] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and

saving energy in wireless communication. Science, 2004. doi: 10.1126/science.1091277.

[34] Azarakhsh Jalalvand, Glenn Van Wallendael, and Rik Van De Walle. Real-Time Reservoir

Computing Network-Based Systems for Detection Tasks on Visual Contents. In 2015 7th

International Conference on Computational Intelligence, Communication Systems andNetworks,

pages 146–151, June 2015. doi: 10.1109/CICSyN.2015.35.

[35] Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum, and A. J.

Hudspeth, editors. Principles of Neural Science, Fifth Edition. McGraw-Hill Education /

Medical, New York, 5th edition edition, October 2012. ISBN 978-0-07-139011-8.

[36] Clemens Korndörfer. pyESN.

[37] Abhisek Kundu, Alex Heinecke, Dhiraj Kalamkar, Sudarshan Srinivasan, Eric C. Qin,

Naveen K. Mellempudi, Dipankar Das, Kunal Banerjee, Bharat Kaul, and Pradeep Dubey.

K-TanH: E�cient TanH For Deep Learning. arXiv:1909.07729 [cs, stat], June 2020.

[38] Jialing Li, Chenyuan Zhao, Kian Hamedani, and Yang Yi. Analog hardware implementation

of spike-based delayed feedback reservoir computing system. In 2017 International Joint

56 BIBLIOGRAPHY

Conference on Neural Networks (IJCNN), pages 3439–3446, May 2017. doi: 10.1109/IJCNN.

2017.7966288.

[39] Jialing Li, Kangjun Bai, Lingjia Liu, and Yang Yi. A deep learning based approach for analog

hardware implementation of delayed feedback reservoir computing system. In 2018 19th

International Symposium on Quality Electronic Design (ISQED), pages 308–313, March 2018.

doi: 10.1109/ISQED.2018.8357305.

[40] Lianjun Li, Lingjia Liu, Jianzhong Charlie Zhang, Jonathan D. Ashdown, and Yang Yi.

Reservoir Computing Meets Wi-Fi in Software Radios: Neural Network-based Symbol

Detection using Training Sequences and Pilots. In 2020 29th Wireless and Optical

Communications Conference (WOCC), pages 1–6, May 2020. doi: 10.1109/WOCC48579.2020.

9114937.

[41] Yong-bo Liao, Hong-mei Li, and Wen-chang Li. The Application of FPGA Based Real-Time

Processing ESN in Pattern Recognition and Waveform Generation. DEStech Transactions on

Engineering and Technology Research, 0(ameme), 2016. ISSN 2475-885X. doi: 10.12783/dtetr/

ameme2016/5753.

[42] Yongbo Liao, Hongmei Li, Yalan Shen, and Wenchang Li. An FPGA Based Real Time Reservoir

Computing System for Neuromorphic Processors. In 2018 3rd Asia-Paci�c Conference on

Intelligent Robot Systems (ACIRS), pages 82–86, July 2018. doi: 10.1109/ACIRS.2018.8467252.

[43] Yongbo Liao, Hongmei Li, and Zongbo Wang. FPGA Based Real-Time Processing

Architecture for Recurrent Neural Network. In Fatos Xhafa, Srikanta Patnaik, and Albert Y.

Zomaya, editors, Advances in Intelligent Systems and Interactive Applications, Advances in

Intelligent Systems and Computing, pages 705–709, Cham, 2018. Springer International

Publishing. ISBN 978-3-319-69096-4. doi: 10.1007/978-3-319-69096-4_99.

BIBLIOGRAPHY 57

[44] Mantas Lukoševičius. A Practical Guide to Applying Echo State Networks. In Grégoire

Montavon, Geneviève B. Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks of the

Trade: Second Edition, Lecture Notes in Computer Science, pages 659–686. Springer, Berlin,

Heidelberg, 2012. ISBN 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_36.

[45] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-Time Computing

Without Stable States: A New Framework for Neural Computation Based on Perturbations.

Neural Computation, 14(11):2531–2560, November 2002. ISSN 0899-7667. doi: 10.1162/

089976602760407955.

[46] Somayeh Susanna Mosleh, Lingjia Liu, Cenk Sahin, Yahong Rosa Zheng, and Yang Yi. Brain-

Inspired Wireless Communications: Where Reservoir Computing Meets MIMO-OFDM. IEEE

Transactions on Neural Networks and Learning Systems, 29(10):4694–4708, October 2018. ISSN

2162-2388. doi: 10.1109/TNNLS.2017.2766162.

[47] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar.

Optoelectronic Reservoir Computing. Scienti�c Reports, 2(1):287, February 2012. ISSN 2045-

2322. doi: 10.1038/srep00287.

[48] Vishal Passricha and Rajesh Kumar Aggarwal. Convolutional Neural Networks for Raw

Speech Recognition. From Natural to Arti�cial Intelligence - Algorithms and Applications,

December 2018. doi: 10.5772/intechopen.80026.

[49] Ali Rodan and Peter Tino. Minimum Complexity Echo State Network. IEEE Transactions

on Neural Networks, 22(1):131–144, January 2011. ISSN 1941-0093. doi: 10.1109/TNN.2010.

2089641.

[50] Rubayet Sha�n, Lingjia Liu, Jonathan Ashdown, John Matyjas, Michael Medley, Bryant

Wysocki, and Yang Yi. Realizing Green Symbol Detection via Reservoir Computing: An

58 BIBLIOGRAPHY

Energy-E�ciency Perspective. In 2018 IEEE International Conference on Communications

(ICC), pages 1–6, May 2018. doi: 10.1109/ICC.2018.8422425.

[51] Rubayet Sha�n, Lingjia Liu, Vikram Chandrasekhar, Hao Chen, Je�rey Reed, and

Jianzhong Charlie Zhang. Arti�cial Intelligence-Enabled Cellular Networks: A Critical Path

to Beyond-5G and 6G. IEEE Wireless Communications, 27(2):212–217, April 2020. ISSN

1558-0687. doi: 10.1109/MWC.001.1900323.

[52] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale

Image Recognition. arXiv:1409.1556 [cs], April 2015.

[53] Hao Song, Jianan Bai, Yang Yi, Jinsong Wu, and Lingjia Liu. Arti�cial Intelligence Enabled

Internet of Things: Network Architecture and Spectrum Access. IEEE Computational

Intelligence Magazine, 15(1):44–51, February 2020. ISSN 1556-6048. doi: 10.1109/MCI.2019.

2954643.

[54] Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki Kanazawa,

Seiji Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent advances in physical

reservoir computing: A review. Neural Networks, 115:100–123, July 2019. ISSN 0893-6080.

doi: 10.1016/j.neunet.2019.03.005.

[55] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier,

and Anthony Maida. Deep learning in spiking neural networks. Neural Networks, 111:47–63,

March 2019. ISSN 0893-6080. doi: 10.1016/j.neunet.2018.12.002.

[56] S. Vassiliadis, Ming Zhang, and J.G. Delgado-Frias. Elementary function generators for neural-

network emulators. IEEE Transactions on Neural Networks, 11(6):1438–1449, November 2000.

ISSN 1941-0093. doi: 10.1109/72.883475.

[57] David Verstraeten, Benjamin Schrauwen, and Dirk Stroobandt. Reservoir computing with

BIBLIOGRAPHY 59

stochastic bitstream neurons. In Proceedings of the 16th Annual Prorisc Workshop, pages

454–459, 2005.

[58] Xilinx. 7 Series FPGAs Con�gurable Logic Block User Guide (UG474), September 2016.

[59] Xilinx. 7 Series DSP48E1 Slice User Guide (UG479), March 2018.

[60] Xilinx. UltraScale Architecture DSP Slice User Guide (UG579), 2019.

[61] Xilinx. Vivado Design Suite User Guide - Getting Started, October 2019.

[62] Yang Yi, Yongbo Liao, Bin Wang, Xin Fu, Fangyang Shen, Hongyan Hou, and Lingjia Liu.

FPGA based spike-time dependent encoder and reservoir design in neuromorphic computing

processors. Microprocessors and Microsystems, 46:175–183, October 2016. ISSN 0141-9331.

doi: 10.1016/j.micpro.2016.03.009.

[63] Kyongsik Yun, Alexander Huyen, and Thomas Lu. Deep Neural Networks for Pattern

Recognition. arXiv:1809.09645 [cs], September 2018.

[64] Chenyuan Zhao, Jialing Li, and Yang Yi. Making neural encoding robust and energy e�cient:

An advanced analog temporal encoder for brain-inspired computing systems. In 2016

IEEE/ACM International Conference on Computer-AidedDesign (ICCAD), pages 1–6, November

2016. doi: 10.1145/2966986.2967052.

[65] Chenyuan Zhao, Bryant T. Wysocki, Clare D. Thiem, Nathan R. McDonald, Jialing Li, Lingjia

Liu, and Yang Yi. Energy E�cient Spiking Temporal Encoder Design for Neuromorphic

Computing Systems. IEEE Transactions on Multi-Scale Computing Systems, 2(4):265–276,

October 2016. ISSN 2332-7766. doi: 10.1109/TMSCS.2016.2607164.

[66] Chenyuan Zhao, Jialing Li, Hongyu An, and Yang Yi. Energy e�cient analog spiking temporal

encoder with veri�cation and recovery scheme for neuromorphic computing systems. In 2017

60 BIBLIOGRAPHY

18th International Symposium on Quality Electronic Design (ISQED), pages 138–143, March

2017. doi: 10.1109/ISQED.2017.7918306.

[67] Chenyuan Zhao, Yang Yi, Jialing Li, Xin Fu, and Lingjia Liu. Interspike-Interval-Based Analog

Spike-Time-Dependent Encoder for Neuromorphic Processors. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 25(8):2193–2205, August 2017. ISSN 1557-9999. doi:

10.1109/TVLSI.2017.2683260.

[68] Chenyuan Zhao, Kian Hamedani, Jialing Li, and Yang Yi. Analog Spike-Timing-Dependent

Resistive Crossbar Design for Brain Inspired Computing. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 8(1):38–50, March 2018. ISSN 2156-3365. doi: 10.1109/

JETCAS.2017.2765892.

[69] Chenyuan Zhao, Qiyuan An, Kangjun Bai, Bryant Wysocki, Clare Thiem, Lingjia Liu, and

Yang Yi. Energy E�cient Temporal Spatial Information Processing Circuits Based on STDP

and Spike Iteration. IEEE Transactions on Circuits and Systems II: Express Briefs, pages 1–1,

2019. ISSN 1558-3791. doi: 10.1109/TCSII.2019.2945690.

[70] Chenyuan Zhao, Lingjia Liu, and Yang Yi. Design and Analysis of Real Time Spiking Neural

Network Decoder for Neuromorphic Chips. In Proceedings of the International Conference on

Neuromorphic Systems, ICONS ’19, pages 1–4, Knoxville, TN, USA, July 2019. Association for

Computing Machinery. ISBN 978-1-4503-7680-8. doi: 10.1145/3354265.3354280.

[71] Zhou Zhou, Lingjia Liu, Vikram Chandrasekhar, Jianzhong Zhang, and Yang Yi. Deep

Reservoir Computing Meets 5G MIMO-OFDM Systems in Symbol Detection. Proceedings of

the AAAI Conference on Arti�cial Intelligence, 34(01):1266–1273, April 2020. ISSN 2374-3468.

doi: 10.1609/aaai.v34i01.5481.

[72] Zhou Zhou, Lingjia Liu, and Hao-Hsuan Chang. Learning for Detection: MIMO-OFDM

BIBLIOGRAPHY 61

Symbol Detection Through Downlink Pilots. IEEE Transactions on Wireless Communications,

19(6):3712–3726, June 2020. ISSN 1558-2248. doi: 10.1109/TWC.2020.2976004.

[73] Zhou Zhou, Lingjia Liu, Shashank Jere, Jianzhong, Zhang, and Yang Yi. RCNet: Incorporating

Structural Information into Deep RNN for MIMO-OFDM Symbol Detection with Limited

Training. arXiv:2003.06923 [cs, eess], March 2020.

	Titlepage
	Abstract
	General Audience Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Thesis Organization

	Background and Literature Review
	Echo State Network
	Fundamental Structure of Echo State Network
	Training
	State-of-art ESN Implementations on FPGA

	Field Programmable Gate Array
	FPGA vs. ASIC
	Configurable Logic Blocks
	Xilinx DSP48 Units

	ESN FPGA Design
	Numerical System
	Reservoir Synapses - Linear Combination Without CLBs
	Non-Linear Function Units - Hyperbolic Tangent
	Piece-wise Linear Approximation
	Hardware Tanh Implementation

	Experimental Results and Analysis
	NARMA10 Datasets
	Experiment Results

	OFDM Symbol Detection
	OFDM System
	ESN-based Symbol Detection
	Experiment Results

	Conclusions and Future Works
	Conclusions
	Future Works
	Power, Performance, & Cost
	Expansion of Utility

	Bibliography

