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Real-Time Computed Tomography-based Medical Diagnosis Using

Deep Learning

Garvit Goel

(ABSTRACT)

Computed tomography has been widely used in medical diagnosis to generate accurate images

of the body’s internal organs. However, cancer risk is associated with high X-ray dose CT

scans, limiting its applicability in medical diagnosis and telemedicine applications. CT scans

acquired at low X-ray dose generate low-quality images with noise and streaking artifacts.

Therefore we develop a deep learning-based CT image enhancement algorithm for improving

the quality of low-dose CT images. Our algorithm uses a convolution neural network called

DenseNet and Deconvolution network (DDnet) to remove noise and artifacts from the input

image. To evaluate its advantages in medical diagnosis, we use DDnet to enhance chest CT

scans of COVID-19 patients. We show that image enhancement can improve the accuracy of

COVID-19 diagnosis (≈ 5% improvement), using a framework consisting of AI-based tools.

For training and inference of the image enhancement AI model, we use heterogeneous com-

puting platform for accelerating the execution and decreasing the turnaround time. Specif-

ically, we use multiple GPUs in distributed setup to exploit batch-level parallelism during

training. We achieve approximately 7× speedup with 8 GPUs running in parallel compared

to training DDnet on a single GPU. For inference, we implement DDnet using OpenCL and

evaluate its performance on multi-core CPU, many-core GPU, and FPGA. Our OpenCL im-

plementation is at least 2× faster than analogous PyTorch implementation on each platform

and achieves comparable performance between CPU and FPGA, while FPGA operated at a

much lower frequency.



Real-Time Computed Tomography-based Medical Diagnosis Using

Deep Learning

Garvit Goel

(GENERAL AUDIENCE ABSTRACT)

Computed tomography has been widely used in the medical diagnosis of diseases, such as

cancer/tumor, viral pneumonia, and more recently, COVID-19. However, the risk of cancer

associated with X-ray dose in CT scans limits the use of computed tomography in biomedical

imaging. Therefore we develop a deep learning-based image enhancement algorithm that

can be used with low X-ray dose computed tomography scanners to generate high-quality

CT images. The algorithm uses a state-of-the-art convolution neural network for increased

performance and computational efficiency. Further, we use image enhancement algorithm

to develop a framework of AI-based tools to improve the accuracy of COVID-19 diagnosis.

We test and validate the framework with clinical COVID-19 data. Our framework applies

to the diagnosis of COVID-19 and its variants, and other diseases that can be diagnosed

via computed tomography. We utilize high-performance computing techniques to reduce

the execution time of training and testing AI models in our framework. We also evaluate

the efficacy of training and inference of the neural network on heterogeneous computing

platforms, including multi-core CPU, many-core GPU, and field-programmable gate arrays

(FPGA), in terms of speed and power consumption.
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Chapter 1

Introduction

1.1 Motivation

Computed tomography (CT) has been a widely used procedure to generate three-dimensional

(3-D) tomographic images of the body. However, the risk of cancer associated with the high

X-ray dosage per CT scan has been a concern in medical imaging. The research study con-

ducted by Brenner et al. [6] showed that abdominal CT scans can increase the attributable

risk of death from cancer by up to 0.1%. So, researchers have used low-dose X-ray CT scans,

coupled with image reconstruction algorithms like filtered back projection (FBP) [67], to

deliver the 3-D tomographic images. Unfortunately, this results in degraded image qual-

ity with missing-view artifacts and blurring. Consequently, advanced techniques, such as

iterative image reconstruction [49], sinogram completion [43], and deep learning-based im-

age enhancement [88] have been proposed to reconstruct higher-quality images from these

low-dose X-ray projections.

Mainly, deep learning-based image enhancement has gained a lot of traction in recent years.

With the advances in high-performance computing (HPC), and availability of a large amount

of open-source CT data, deep convolution neural networks can be trained with high efficiency

and can generate superior results as compared to other advanced image reconstruction algo-

rithms mentioned above [88].

1



2 Chapter 1. Introduction

Computed tomography can also be used for diagnosis of COVID-19. Patients with COVID-

19 possess chest CT scans that exhibit a wide spectrum of distinguishing hallmark fea-

tures (a.k.a. radiological abnormalities), including, but not limited to, ground-glass opaci-

ties (GGOs), linear opacities, vascular consolidation, reversed halo signs, and crazy-paving

patterns. Figure 1.1 provides visual examples of these hallmark features found in COVID-19

patients.

Figure 1.1: Abnormalities in chest CT scans of COVID-19 patients

The literature published in last one year suggests that CT-based medical diagnosis of COVID-

19 [20, 22, 41, 68, 73, 76, 90] can outperform ubiquitously deployed RT-PCR test in terms of

accuracy [38]. In addition to the improved accuracy, CT-based COVID-19 diagnosis has a

faster turnaround time because of better accessibility and less dependency on materials and

labor.

To that end, we develop and test deep learning-based algorithms for CT image enhancement.

We validate the applicability of image enhancement in medical diagnosis by developing a

compute-based deep learning (DL) framework for diagnosing COVID-19 using chest CT

scans. The framework delivers much higher sensitivity (91%) than the RT-PCR test (67%)

and much faster turnaround time (≈ 5 minutes) than RT-PCR (≈ 4 hours per test with
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multi-day turnaround time). The improved sensitivity is due to the enhanced imaging and

analysis of chest CT images and faster turnaround time is because of less dependency on

materials and labor.

Continued Importance of COVID-19 Testing Despite the rollout of COVID-19 vac-

cines resulting in 60% of the U.S. population being vaccinated (but only 50% globally), as

of January 10, 2022, there still exists the need for a rapid, accurate, and accessible test for

diagnosing COVID-19 plus its variants (e.g., B.1.1.7 – Alpha, B.1.351 – Beta, B.1.617.2 –

Delta, Omicron – B.1.1.529) and beyond. The Delta variant (B.1.617.2) and Omicron variant

(B.1.1.529), for example, have demonstrated increased transmissibility and increased sever-

ity of disease [11] resulting in the fourth and fifth wave in the UK, and the USA. Figure 1.2

shows that the number of confirmed cases per day around the world [33, 66].

Figure 1.2: Confirmed cases of COVID-19 per million people [33, 66]
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1.2 Contributions

This project aims to develop a fast, accurate, and cost-effective algorithm for deep learning-

based image enhancement and to verify its applicability in medical diagnosis using a case

study of COVID-19 diagnosis using chest CT scans. This work also explores the implemen-

tation of AI-based tools on heterogeneous platforms, such as multi-core CPU, many-core

GPU, and FPGA. Each contribution is briefly described below.

Fast and Accurate CT Medical Diagnosis using Image Enhancement We research

and develop a novel deep learning-based algorithm for high-fidelity CT image construction.

The algorithm is based on a convolution neural network (CNN) that uses densely connected

convolution operations, a.k.a. dense block [26], and deconvolution operations to enhance

the quality of CT images. We also modify our deep learning-based 2D image enhancement

algorithm to perform a 3D volumetric enhancement. We train both 2D and 3D networks

with the same CT data and compare the results of enhancement.

Deep Learning-based COVID-19 Diagnosis using Chest CT Scans To test the

applicability of deep learning-based image enhancement and evaluate its advantages, we

develop a framework of AI-based tools, called ComputeCOVID19+, that combines image

enhancement algorithm and image classification algorithm for high-precision interpretation

of COVID-19 CT scans. The framework achieves an overall classification accuracy of 91%.

In the process, we also create a dataset containing more than 500 chest CT scans ( 100,000

CT images) of patients showing COVID-19 symptoms.

Implementation of CNN on Heterogeneous Platforms Training and inference of

deep neural networks are computationally expensive processes. Therefore we use hetero-
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geneous computing platforms to accelerate training and inference. Specifically, we train

the image enhancement neural network on a multi-GPU distributed system. For inference,

which is comparatively less computationally expensive than training, we implement image

enhancement on multi-core CPU, many-core GPU, and FPGA and evaluate each platform

in terms of their power consumption and energy efficiency.

In summary, our work improves medical diagnosis using computed tomography, by making

the following contributions:

• Development and evaluation of novel image enhancement algorithms for high-precision

interpretation of CT scans.

• Evaluation of applicability of deep learning-based image enhancement in COVID-19

diagnosis.

• Performance evaluation of deep learning algorithms on heterogeneous platforms for

speed and accuracy.

1.3 Related Work

The section presents related work from four areas: (1) CT image enhancement, (2) AI with

computed tomography (CT), (3) RT-PCR genetic testing vs. CT-based COVID-19 testing,

and (4) deep learning on FPGA.

1.3.1 CT Image Enhancement

With the increased use of computed tomography (CT) in medical diagnosis, low-dose X-ray

CT has gained popularity recently due to its fast data acquisition and reduced radiation
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exposure. However, simple image reconstruction techniques like filtered back projection

(FBP) [67] generate low-quality CT images from low-dose X-ray projections. Thus, tech-

niques like iterative image reconstruction [4], sinogram completion [1, 43], and image en-

hancement based on deep learning (DL) are used to reconstruct high-quality CT images.

In particular, DL-based image enhancement has been shown to be the most effective in

producing high-quality CT images [8, 10, 19, 31, 42, 81].

Image Enhancement using 2D CNNs

2D CNNs analyze and process each slice in CT scan individually. Therefore, computational

and memory requirements of 2D CNNs are much lower as compared to 3D CNNs. The

enhancement of CT images to remove streaking artifacts and noise, using both deep learning

and deep learning combined with iterative reconstruction algorithms, has been extensively

studied in the past.

Würfl et al. emulate FBP using a convolution neural network (CNN) [81]. Cheng et al.

combine DL and iterative reconstruction to accelerate the algorithmic convergence using a

leapfrogging strategy [10]. Han et al. use a deep residual network to estimate streaking

artifacts in low-dose X-ray images [19]. Jin et al. [31] and Chen et al. [8] use FBP for

image reconstruction from projection data, followed by applying a U-Net-like CNN for image

enhancement.

Volumetric Enhancement using 3D CNNs

Modern computers’ computational efficiency and processing ability have enabled the process-

ing and analysis of three-dimensional (3D) images using 3D CNNs. 3D CNNs extract and

analyze correlating features between 2D image slices (3D image features), which 2D CNNs



1.3. Related Work 7

ignore. Some examples of 3D CNNs classifiers for COVID-19 diagnosis are given in §1.3.2.

3D image enhancement using 3D CNNs has not been studied extensively in the past. Le

et al. [42] use a simple 3D convolution neural network for volumetric enhancement of CT

scans. Their results show improved PSNR (Peak signal-to-noise ratio) and SSIM (structural

similarity index measure) for enhanced images compared to the existing state-of-the-art 2D

deep learning-based image enhancement algorithms. Similar 3D CNNs, that use convolution

and deconvolution operations, are commonly used for volumetric segmentation [9, 34, 35,

35, 56, 91] and 3D super-resolution applications [9].

1.3.2 AI with Computed Tomography

AI-based medical diagnosis is often used in computed tomography and radiology. For ex-

ample, the use of a convolution neural network (CNN) for the diagnosis of diseases, such as

lung cancer, viral pneumonia COVID-19 pneumonia, using CT scans has been extensively

studied in the recent past [20, 22, 41, 68, 73, 76, 90].

Two-Dimensional (2D) CNNs with 2D Images as Inputs

For COVID-19 diagnosis, 2D images must be manually selected from 3D CT scans be-

cause the associated abnormalities, such as GGO, consolidation, and crazy-paving patterns

are present in only some segments of the lungs. Despite this limitation, 2D CNNs still

achieve fairly high accuracy in COVID-19 diagnosis. He et al. [22] use VGG-16, ResNet, and

DenseNet deep-learning (DL) architectures to classify 2D CT images. They leverage transfer

learning, coupled with momentum contrastive learning [21], to make these models agnostic

to the size of the datasets. Ultimately, they achieve an accuracy of 86% with a training

dataset of 425 2D CT images. Similarly, Wang et al. [76] achieve 89.5% accuracy using an
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M-inception network with a dataset containing 1065 CT images. Ying et al. [73] pre-process

the 2D images to segment the lung region using OpenCV. The segmented CT images with

their Details Relation Extraction neural network (DRE-Net) achieve 86% accuracy. Li et

al. [41] use U-Net-based lung segmentation and classify the images using ResNet50. They

report 90% sensitivity and 96% specificity for COVID-19 diagnosis with their framework.

Three-Dimensional (3D) CNNs with 3D Volumes as Inputs

3D CNNs extract 3D features from the input volume, and thus, COVID-19 diagnosis using

3D CNNs does not require any manual data preparation. Harmon et al. [20] demonstrate

this by using a 3D version of AH-Net and DenseNet-121 to segment and classify the image,

respectively; they achieve 90% accuracy. However, the accuracy of their framework drops

to 86% when using our real-world datasets. Zheng et al. [90] combine image segmentation

using 2D U-Net and classification using 3D deep convolutional neural network (DeCoVNet)

to detect COVID-19 from CT volumes. Their framework achieves 90% accuracy with 540

CT scans.

1.3.3 RT-PCR vs. CT-based COVID-19 Testing

Testing, diagnosing, and monitoring COVID-19 (also known as the SARS-CoV-2 virus) as

early and as accurately as possible is essential in mitigating the spread of COVID-19. How-

ever, the RT-PCR test has high sensitivity and specificity [77], the accuracy of the test varies

with the time at which the test is taken. In particular, Johns Hopkins University study in

2020 showed that the false-negative rate of an infected person is 67% on the 4th day (i.e.,

33% sensitivity) and improves to 38% (i.e., 62% sensitivity) with the onset of symptoms [38].

Furthermore, given the error-prone (human) process of sample collection, packaging, and de-
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livery, the actual end-to-end sensitivity can be much worse. Moreover, the turnaround time

and cost of the RT-PCR test is quite high [39], limiting testing capacity on top of the already

mediocre sensitivity of the test.

COVID-19 testing based on computed tomography (CT) is a compelling alternative. Re-

search conducted in China with 877 patients [18] shows that 84% of COVID-19 patients

exhibited radiographic or CT abnormalities. A larger study in China with 1014 COVID-19

patients [2] shows that 88% of patients (from a biased pool of those who were already show-

ing symptoms of COVID-19) had evidence of CT abnormalities, such as ground-glass opacity

(GGO) and consolidation, in their chest CT scans, while only 59% of those same patients

tested positive with the initial RT-PCR test. Similar results are reported in [16, 17].

1.3.4 Deep Learning on FPGA

Most of the prior work on FPGA acceleration of DL focus on implementing classification

using CNN and optimizing the expensive convolution operations [44, 80, 84, 86]. However,

deconvolution (convolution transpose) operation is more computationally expensive than

convolution operation for applications such as image enhancement, super-resolution, image

segmentation, etc. This shifts the performance bottleneck to deconvolution operation in such

CNNs [7, 45, 87].

CNNs on FPGA

CNNs are widely used for image classification applications. Implementing a CNN on FPGA

poses many challenges due to limited resources and low memory bandwidth. Solovyey et

al. [72] mitigate the challenges as mentioned above by using fixed-point arithmetic instead of

floating-point arithmetic to implement a CNN for handwritten digit recognition. Majumdar
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et al. [50] use data caching to enhance the performance of convolution layers in a CNN. Cheng

et al. [48] use low-precision data types for computation and batch-level parallelization to im-

plement their CNN. They also use tiling by partitioning the input data into smaller tiles that

can fit into on-chip memory to improve memory bandwidth and resource utilization. Alawad

et al. [3] implement convolution in the stochastic domain and show that their architecture

outperforms conventional CNNs with respect to scalability. Qiu et al. [64] realize a complex

CNN, VGG16 with 138-million parameters, for large-scale image classification on a Xilinx

Zynq FPGA; they also use singular vector decomposition before the fully connected neural

network layers to reduce the memory footprint and achieve 86.66% classification accuracy.

Caffeine [85] efficiently implements CNN on FPGA with the underlying focus on bandwidth

optimization and memory access reorganization.

CNNs with Deconvolution on FPGA

CNNs with deconvolution are widely used in applications, such as image segmentation, super-

resolution imaging, and pattern generation. Zhang et al. [87] implement a deconvolution

neural network (DCNN), consisting of only the deconvolution operation, on FPGA using

12-bit fixed-point arithmetic and achieve 2.6 GOPs at 100 MHz. Liu et al. [45] propose a

significantly optimized solution for deconvolution using a partial result buffer. Their U-Net

implementation achieves 107 GOPs for the overall CNN and 29 GOPs for the deconvolu-

tion operation with 16-bit fixed precision data types. Chang et al. [7] implement a fast

super-resolution convolutional neural network (FSRCNN) with five convolutions and one

deconvolution operation and achieve 780 GOPs with 13-bit fixed-point numbers.
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1.4 Thesis Organization

The rest of the document is organized as follows. Chapter 2 talks about the image en-

hancement in computed tomography (CT) using a deep neural network. Specifically, the

chapter talks about the CT image enhancement using 2D and 3D version of DenseNet and

Deoncolution Network (DDnet) and its application in medical diagnosis of COVID-19 using

ComputeCOVID19+ framework. Chapter 3 evaluates the accuracy of 2D and 3D image en-

hancement quantitatively and qualitatively. Accuracy of ComputeCOVID19+ and the impact

of image enhancement in medical diagnosis are discussed in §3.2. Chapter 4 talks about the

implementation of DDnet on high performance computing platform, specifically on multi-

core CPU, many-core GPU and FPGA, and evaluates each platform in terms of performance,

and power efficiency. Chapter 5 analyzes some practical considerations of deploying deep

learning-based algorithms for medical diagnosis and also proposes implementation plans for

deploying DDnet in CT scanner machines, which can aid radiologists in real-time.



Chapter 2

CT Image Enhancement using a Deep

Neural Network

Computed tomography plays an essential role in medical diagnosis by generating three-

dimensional images of the body’s internal organs. These images are generated from X-ray

projections acquired at discrete angles around the body. As mentioned earlier, low X-ray dose

computed tomography reduces the risk of cancer associated with CT scans but degrades the

quality of reconstructed CT images. Therefore we develop and evaluate deep learning-based

image enhancement algorithms to improve the quality of CT images.

Specifically, we use a convolution neural network, called DenseNet and Deconvolution net-

work (DDnet) [88] to enhance CT images reconstructed via filtered back projection (FBP) [67].

The algorithm is also modified to input and enhance 3D CT scans, which considers the cor-

relation between individual 2D image slices. The applicability of CT image enhancement in

medical diagnosis is evaluated using a framework for diagnosing COVID-19 using computed

tomography.

2.1 2D Image Enhancement

In this work, we use DenseNet and Deconvolution network (DDnet) [88] for CT image en-

hancement. DDnet consists of a convolution network with 37 convolution layers and a de-

12
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convolution network with eight (8) deconvolution layers. Figure 2.1 shows the architecture

of DDnet. The convolution network, deconvolution network, and shortcut connections dis-

tinguish DDnet’s image enhancement from the existing state-of-the-art. Each distinguishing

feature is explained below.

Convolution Network It consists of four dense blocks [26] for feature extraction from the

input image. Each dense block, shown in Figure 2.2, consists of four densely connected layers,

i.e., the input to each layer is concatenated with the inputs of all the previous layers. These

dense connections in the network facilitate feature reuse and mitigate the exploding and

vanishing gradient problem. The dense connections are known as local shortcut connections.

Each dense block is followed by a pooling and convolution layer. The pooling layer reduces

the size of the feature maps by a factor of two (2) in both the x and y dimensions, resulting

in a network that is more memory efficient and less sensitive to input variations.

Deconvolution Network This is used to reconstruct images from the extracted features.

It consists of eight deconvolution layers and four un-pooling layers. (Deconvolution can

be viewed as the transpose of convolution.) The un-pooling operation in DDnet scales

the feature maps by a factor of two (2) in both the x and y dimensions using bi-linear

interpolation. Table 2.1 shows the size of the input and output feature maps as well as the

filters used for each convolution and deconvolution layer.

Shortcut Connections These refer to the concatenation of outputs from different layers

in the network. Shortcut connections facilitate feature reuse and better information flow

through the network [46], resulting in a better-trained network.

In addition to the local shortcut connections in the convolution network, DDnet uses short-
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cut connections from the output of each dense block in the convolution network to the

corresponding output of the un-pooling layer in the deconvolution network. These shortcut

connections are called global shortcut connections.

Figure 2.1: The architecture of DDnet

Figure 2.2: The architecture of dense block
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Table 2.1: Size of output feature maps and implementation details of each layer in DDnet

Layers Output Size Details
Convolution 1 512×512×16 filter size=7×7, stride=1

Pooling 1 256×256×16 filter size=3×3, stride=2

Dense Block 1 256×256×80 filter size=

[
1× 1
5× 5

]
× 4, stride=1

Convolution 2 256×256×16 filter size=1×1, stride=1
Pooling 2 128×128×16 filter size=3×3, stride=2

Dense Block 2 128×128×80 filter size=

[
1× 1
5× 5

]
× 4, stride=1

Convolution 3 128×128×16 filter size=1×1, stride=1
Pooling 3 64×64×16 filter size=3×3, stride=2

Dense Block 3 64×64×80 filter size=

[
1× 1
5× 5

]
× 4, stride=1

Convolution 4 64×64×16 filter size=1×1, stride=1
Pooling 5 32×32×16 filter size=3×3, stride=2

Dense Block 4 32×32×80 filter size=

[
1× 1
5× 5

]
× 4, stride=1

Convolution 5 32×32×16 filter size=1×1, stride=1
Un-pooling 1 64×64×16 scale factor=2

Deconvolution 1 64×64×32 filter size=5×5, stride=1
Deconvolution 2 64×64×16 filter size=1×1, stride=1

Un-pooling 2 128×128×16 scale factor=2
Deconvolution 3 128×128×32 filter size=5×5, stride=1
Deconvolution 4 128×128×16 filter size=1×1, stride=1

Un-pooling 3 256×256×16 scale factor=2
Deconvolution 3 256×256×32 filter size=5×5, stride=1
Deconvolution 5 256×256×16 filter size=1×1, stride=1

Un-pooling 4 512×512×16 scale factor=2
Deconvolution 6 512×512×32 filter size=5×5, stride=1
Deconvolution 7 512×512×1 filter size=1×1, stride=1

2.1.1 Network Parameters

To find the optimal mapping function that enhances the quality of CT images, DDnet is

trained with CT images of size 512×512 pixels. To avoid integer overflow, CT image data,

which is usually expressed in the Hounsfield unit (HU), is converted to floating-point data

within the data range [0, 1], inclusive, before feeding to the network.
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The network uses a composite loss function L for back propagation that combines the mean

square error (MSE) and multi-scale structural similarity index metric (MS-SSIM). The MS-

SSIM [78] compares the luminance, contrast, and structural similarity between two images.

The loss function, L, is given by Equation (2.1).

L = ||y − f(x)||22 + 0.1× (1− LMS−SSIM(Y, f(X))) (2.1)

where ||y - f(x)||22 is the MSE term and LMS−SSIM is the MS-SSIM term.

Network weights are updated using the Adam optimizer [37]. All filters are initialized with

a random Gaussian distribution with a mean of zero and a standard deviation of 0.01. The

hyper-parameters are tuned by perturbing one parameter while keeping others fixed and an-

alyzing the quantitative results. Training loss curves with varying learning rate, exponential

decay, and batch size are shown in Figure 2.3. Optimal values of hyper-parameters are listed

in Table 2.4

Table 2.2: Optimal values of hyper-parameters for training 2D-DDnet

Parameter Value
Epoch 50
Learning rate 0.001
Learning rate decay 0.95
Batch size 2

2.1.2 Data Collection

To train our DDnet, we obtained 5120 chest CT images from the following data sources.

Mayo Clinic Data This data includes chest CT scans, acquired at full and quarter X-ray

dosages, of eight patients. The number of projections acquired per CT image is 2304. We
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(a) Training loss with varying learning rate.
#Epoch=50, Gamma=0.8, Batch=1

(b) Training loss with varying batch
size. #Epoch=50, Learning rate=0.0001,
Gamma=0.8

(c) Training loss with varying learning rate
decay. #Epoch=50, Learning rate=0.0001,
Batch=2

Figure 2.3: Hyper-parameters tuning for training 2D-DDnet

used 2286, 300, and 300 images for training, validation, and testing, respectively.

Low X-ray Dose CT Images (Simulated) Though there is an abundance of CT data

available for download, low X-ray dose CT images are not readily available. Thus, we

simulated low X-ray dose chest CT scans for the training and testing of DDnet based on CT

scans from the Medical Imaging Databank of the Valencia Region (BIMCV). The dataset

contains chest CT scans and X-ray scans of 34 patients that tested positive for COVID-19.
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To generate low X-ray dose CT images, we generated projection data from the original CT

images using Beer’s law and Siddon’s ray-driven forward-projection method [71]. The X-

ray source was monochromatic at 60 keV. We added Poisson noise according to projection

data using the formula Pi ∼ Poisson {bi × el
i}, i = 1, 2, . . . , N, where Pi is the detector

measurement along the ith ray path, bi is the blank scan factor, and li is the line integral

of attenuation coefficients along the ith ray path. No electronic readout noise was assumed.

The Poisson noise (and hence dose) level can be adjusted by setting the number of photons

per ray for the blank scan factor bi. In this study, we uniformly set bi to 106 photons for

each ray.

The other CT geometry parameters are summarized below:

• The distance between source and detector and source and center of the object was set

at 1500 mm and 1000 mm, respectively.

• A total of 1440 projections were evenly acquired across a 360-degree scan, i.e., a pro-

jection every 0.25◦.

• 1024 pixels were used for X-ray detection.

Low X-ray dose CT images were then reconstructed using filter back projection (FBP)

from the simulated projection data. Figure 2.4 shows a sample simulated sinogram and

associated CT image reconstructed using FBP. We used 2816, 484, and 484 CT images from

the simulated dataset for training, validation, and testing, respectively.
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(a) Original CT image (b) Simulated low-dose CT image

(c) Sinogram from projection data

Figure 2.4: Low X-Ray dose CT image simulation. CT Data source: BIMCV [54]

2.2 3D Volumetric Enhancement

The CT image enhancement using a 2D convolution neural network [10, 82] ignores the

correlation between individual 2D image slices. 3D convolution neural networks use 3D

cognition to extract and analyze features present in 3D volumes. To that end, we implement

3D volumetric enhancement for CT scans using a 3D adaptation of DDnet. The architecture

of the 3D-DDnet is similar to 2D-DDnet, explained in §2.1, except each layer is modified to
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process 3D/4D data. These modifications to each layer are explained Table 2.3.

Table 2.3: Summary of operations used in 2D and 3D CNN

Operation Version Defiition

Convolution
2D

output(x, y, z) = bias(z) +

Zi∑
zi=0

f size∑
i=0

f size∑
j=0

input(x+ i, y + j, zi)× filter(i, j, z, zi)

3D
output(w, x, y, z) = bias(z) +

Zi∑
zi=0

f size∑
i=0

f size∑
j=0

f size∑
k=0

input(w + i, x+ j, y + k, zi)× filter(i, j, k, z, zi)

Non-linear
activation
(Leaky-relu)

2D output(x, y, z) =

{
input(x, y, x) if input(x, y, z) ≥ 0

0.1× input(x, y, z) otherwise

3D output(w, x, y, z) =

{
input(w, x, y, x) if input(w, x, y, z) ≥ 0

0.1× input(w, x, y, z) otherwise

Batch-
normalization*

2D output(x, y, z) =
input(x, y, z)− E(z)√

V ar(z) + ε
× α + β

3D output(w, x, y, z) =
input(w, x, y, z)− E(z)√

V ar(z) + ε
× α + β

Pooling
(Max pool)

2D
output(x, y, z) =

max
{i=0..f size−1,j=0..f size−1}

input(x+ i, y + j, z)

3D
output(w, x, y, z) =

max
{i=0..f size−1,j=0..f size−1,k=0..f size−1}

input(w + i, x+ j, y + k, z)

Pooling
(Linear)

2D output(x, y) = f(x2, y2)×
(x2–x)

(x2–x1)
+ f(x1, y1)×

(x–x1))

(x2–x1)

3D output(x, y, z) = f(x2, y2, z2)×
(x2–x)

(x2–x1)
+ f(x1, y1, z1)×

(x–x1))

(x2–x1)

Deconvolution
2D Algorithm 1
3D Algorithm 2

* E[x] and Var[x] represent the mean and standard deviation of the inputs, respectively. α and β are the learnable
parameters. These parameters are constant in the trained network.

2.2.1 Network Parameters

For training, 3D-DDnet uses the same loss function as 2D-DDnet, defined in Equation (2.1).

For calculating MS-SSIM for 3D volumes, luminance, contrast, and structural similarity
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Algorithm 1: 2D-Deconvolution algorithm

Input : input[Xi][Yi][Zi], filter bias[Zo], filter[Z0][Zi][filter size][filter size]
Output: out[Xo][Yo][Zo]
Data: y′, x′

1 for z ← 0 to Zo do
2 for y ← 0 to Yo do
3 for x← 0 to Xo do
4 out[z][y][x]← filter bias[z]
5 end

6 end

7 end
8 for z ← 0 to Zo do
9 for y ← 0 to Yo do

10 for x← 0 to Xo do
11 for z1 ← 0 to Zi do
12 for j ← 0 to filter size do
13 for i← 0 to filter size do
14 (y′, x′)← map to output(y, x, j, i)
15 out[z][y′][x′]← out[z][y′][x′] + input[z1][y][x]× filter[z][z1][j][i]

16 end

17 end

18 end

19 end

20 end

21 end

are calculated using a moving 3D window [83], in contrast to 2D MS-SSIM, which uses 2D

moving window.

Network weights are updated using the Adam optimizer [37]. All filters are initialized with

a random Gaussian distribution with a mean of zero and a standard deviation of 0.01.

The hyper-parameters are tuned by perturbing one parameter while keeping others fixed

and analyzing the quantitative results. Training loss curves with varying learning rate,

exponential decay, and batch size is shown in Figure 2.5. Optimal values of hyper-parameters

are shown in Table 2.4.
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Algorithm 2: 3D-Deconvolution algorithm

Input : input[Wi][Xi][Yi][Zi], filter bias[Zo],
filter[Z0][Zi][filter size][filter size][filter size]

Output: out[Wo][Xo][Yo][Zo]
Data: y′, x′, w′

1 for z ← 0 to Zo do
2 for y ← 0 to Yo do
3 for x← 0 to Xo do
4 out[z][y][x]← filter bias[z]
5 end

6 end

7 end
8 for z ← 0 to Zo do
9 for y ← 0 to Yo do

10 for x← 0 to Xo do
11 for w ← 0 to Wo do
12 for z1 ← 0 to Zi do
13 for k ← 0 to filter size do
14 for j ← 0 to filter size do
15 for i← 0 to filter size do
16 (y′, x′, w′)← map to output(y, x, w, j, i)out[z][y′][x′][w′]←

out[z][y′][x′][w′] + input[z1][y][x][w]× filter[z][z1][k][j][i]
17 end

18 end

19 end

20 end

21 end

22 end

23 end

24 end

Table 2.4: Optimal values of hyper-parameters for training 3D-DDnet

Parameter Value
Epoch 60
Learning rate 0.0001
Learning rate decay 0.95
Batch size 2
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(a) Training loss with varying learning rate.
#Epoch=60, Gamma=0.8, Batch=2.

(b) Training loss with varying batch
size. #Epoch=60, Learning rate=0.0001,
Gamma=0.8.

(c) Training loss with varying learning rate
decay. #Epoch=60, Learning rate=0.0001,
Batch=2.

Figure 2.5: Hyper-parameter tuning for training 3D-DDnet

3D-DDnet has ≈ 5 million training parameters, i.e., 5× the number of training parameters

in 2D-DDnet. A large number of training parameters makes the network very sensitive

to varying inputs and noise. This leads to an unstable network resulting in exploding and

vanishing gradients. We solve this problem by using a batch size of two (2) or more CT scans

as input to the network. Batch normalization used in the network normalizes the inputs in

each batch so that the network is less sensitive to the noise in input scans [29].
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2.2.2 Data Collection

CT scans for training 3D-DDnet are collected from three data sources listed in Table 2.5.

These CT scans are used as high-quality target CT scans during the training process. Data

simulation is used for generating low-quality 3D CT data. The parameters used for data

simulation are same as described in §2.1.2.

Table 2.5: Data sources for training and testing 3D-DDnet

Data Source
# Scans used for
Training Dataset

# Scans used for
Test Dataset

Medical Imaging Databank of the Valencia Region (BIMCV) 371 20
Medical Imaging and Data Resource Center (MIDRC) 69 30
Lung Image Database Consortium Image Collection (LIDC) 500 131
Total 940 181

2.2.3 Training Strategies

The computational requirement of 3D-DDnet restricts the size of 3D CT scans that the net-

work can enhance. Enhancement of CT scan containing 222 pixels using 3D-DDnet requires

≈ 8GBs of memory. Keeping this in mind, we use various training strategies with different

sizes of CT scans for training 3D-DDnet, as mentioned below.

• CT scans of size 256 × 256 × 64 and 512 × 512 × 16 pixels are used for training the

network as is.

• CT scans of size 512 × 512 × 64 are divided into four volumes of size 256 × 256 × 64

each. These volumes are used as four (4) independent inputs for training the network.

In order to remove the artifacts generated due to zero padding in convolution and

deconvolution operation, as shown in Figure 2.6, we pad these tiles in both x and y

directions, with 16 additional pixels from original CT scan data.
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Figure 2.6: Artifacts present in enhanced images due to zero-padding in convolution and deconvo-
lution operations

To maintain a constant number of image slices per input CT scan, image slices in input CT

scans are homogeneously selected at equal distances from each other. For example, for a CT

scan containing 512 image slices, the input CT scan of 64 image slices consists of every 8th

image slice from the original CT scan.

2.3 AI-based COVID-19 Diagnosis using Image En-

hancement

Since the discovery of COVID-19 in December 2019, it has rapidly spread and resulted in 313

million confirmed cases and 5.5 million deaths in 192 countries [33], as of January 16, 2022.

While symptoms are severe for some, as much as 50% of the population is asymptomatic [62],

who unwittingly serve as contagious transmitters. Therefore, the total number of cases

reported is arguably less than the actual COVID cases. Specifically, medical experts from
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Johns Hopkins University reports that 59% of COVID-19 spread comes from asymptomatic

transmission, comprising 35% from pre-symptomatic individuals and 24% from individuals

who never develop symptoms [32]. Moreover, the accuracy of the traditional COVID-19

RT-PCR test1 (from collecting samples to packaging and/or handling to testing results) is

mediocre with one in three producing a false negative, i.e., 67% sensitivity [38]. In China,

the medical literature cites an even lower 59% sensitivity rate [2, 16].

To that end, we develop a deep learning-based framework, called ComputeCOVID19+ for di-

agnosing and monitoring COVID-19. ComputeCOVID19+ adapts and extends the DenseNet

and Deconvolution neural network [88] to realize high-quality CT imaging of COVID-19.

ComputeCOVID19+ can deliver better and more timely diagnostic monitoring for progress-

ing COVID-19 patients. Figure 2.7 provides a high-level overview of the ComputeCOVID19+

framework. Our results show that enhanced CT images can improve the accuracy of CT-

based diagnosis of COVID-19 from 86% to 91%.

Figure 2.7: ComputeCOVID19+ framework. The green arrows represent the ComputeCOVID19+
workflow, where our image enhancement measurably improves the accuracy of COVID-19 diagnosis.

1RT-PCR is a laboratory-based test that stands for reverse-transcriptase polymerase chain reaction.
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ComputeCOVID19+ can be downloaded from GitHub 2 and, in turn, deployed to existing CT

scanners via a software update. ComputeCOVID19+ will transcend the current COVID-19

outbreak and be applicable to its inevitable variants (as the COVID-19 is an easy-to-mutate

RNA virus), which can potentially be even deadlier. Furthermore, the software is not only

applicable as a testing and diagnosis tool but also as a monitoring tool for COVID-19.

2.3.1 Approach

The ComputeCOVID19+ framework, based on chest CT and image enhancement algorithm [88],

consists of three AI-based tools: (1) Enhancement AI, (2) Segmentation AI, and (3) Classifi-

cation AI.

We evaluate ComputeCOVID19+ using the workflow shown in Figure 2.8. The first step

prepares the data for the training and testing of each AI tool. Next comes Enhancement AI,

which enhances CT images using a DenseNet and Deconvolution-based deep neural network

(DDnet). The enhanced images are then fed to Segmentation AI for further pre-processing

and finally categorized by Classification AI as either a positive or negative COVID-19 scan.

The rest of this section elaborates on the ComputeCOVID19+ workflow: data preparation,

image enhancement, and image analysis.

2.3.2 Data Preparation

In order to train the Enhancement AI and Classification AI tools, we collected CT scans from

four data sources: (1) Mayo Clinic, (2) BIMCV: Medical Imaging Databank of the Valencia

Region, (3) MIDRC: Medical Imaging and Data Resource Center, hosted by RSNA, and (4)

LIDC: Lung Image Database Consortium Image Collection. These radiological data sources

2ComputeCOVID19+ is available at https://github.com/vtsynergy/DL-FACT
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Figure 2.8: Workflow for testing the ComputeCOVID19+ framework

contain 3D chest CT scans composed of 2D image slices, each size 512×512 pixels. Table 2.6

provides a brief description of each data source.

To maintain consistency in CT scans collected from multiple data sources, we performed the

following data preparation:

Table 2.6: Data source description

Data Source Contents

Mayo Clinic
Eight (8) healthy chest CT scans
and associated projection data at
full-dose & quarter-dose radiation

Medical Imaging
Databank of the
Valencia Region (BIMCV)

X-ray scans and CT scans of
34 COVID-19 patients

Medical Imaging and
Data Resource Center
(MIDRC)

229 CT scans of COVID-19 patients

Lung Image Database
Consortium Image
Collection (LIDC)

1301 healthy chest CT scans
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• Retaining only the chest CT scans from the BIMCV dataset, which contains a mixture

of CT scans and X-ray images.

• Removal of circular segmentation at the boundary of CT scans from the BIMCV and

MIDRC data sets, as shown in Figure 2.9.

• Filtering for CT scans that have more than 128 2D image slices to maintain isotropy

in CT scans for better segmentation and classification with 3D networks.

(a) Original CT image with
circular segmentation

(b) Simulated CT image

Figure 2.9: Removal of circular segmentation in CT images. CT Data source: BIMCV [54]

2.3.3 Image Enhancement

Enhancement AI in ComputeCOVID19+ uses 2D-DDnet for improving the quality of input

images. The architecture of the network, the training data and network parameters used for

training the network are explained in §2.1

2.3.4 Image Analysis

The ComputeCOVID19+ framework leverages the workflow presented in [20] for the classifi-

cation of CT images into positive and negative COVID-19 test cases. In particular, we use
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the Segmentation AI and Classification AI tools to improve COVID-19 diagnosis using chest

CT scans.

Segmentation AI The AI classifies each pixel in the image as foreground or background.

In contrast to direct classification methods, segmentation-based classification categorizes an

image based on the image and its segmentation mask to change the characteristics of the

image to be more meaningful, thus facilitating better interpretation and classification.

The trained Segmentation AI model inputs 3D CT scans and generates a binary map of pixel-

wise classification. The lung region in a CT scan is predicted as foreground while the rest of

the regions in the scan, including heart, bones, torso, and everything outside the body, are

classified as background. The binary map is multiplied with the input CT scan to generate

the segmented CT scan.

Classification AI To distinguish CT scans with COVID-19 symptoms, Classification AI from

the ComputeCOVID19+ framework uses the DenseNet-121 [26] network but adapted for 3D

volume classification.

The network uses four densely connected blocks for feature extraction. Each dense block is

followed by maximum pooling and a transition convolution layer. Finally, fully connected

layers classify the CT scan based on the extracted features.

Compared to state-of-the-art classification CNNs (e.g., VGG and ResNet), DenseNet uses

fewer parameters and needs less training time because the densely connected convolution

layers facilitate feature reuse and better information flow through the network.

ComputeCOVID19+ leverages the pre-trained Segmentation AI and Classification AI model

from Nvidia [60].
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Complete workflow of ComputeCOVID19+ framework, starting from the original CT image

to image classification, is shown in Figure 2.10.
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(a) Original CT image (b) Enhanced CT image

(c) Segmentation mask (d) Segmented CT image

(e) Classification on the basis of distinct features (high-
lighted by white circles) present in CT image

Figure 2.10: ComputeCOVID19+ workflow. CT Data source: BIMCV [54] and LIDC [47]



Chapter 3

Evaluating the Accuracy of CT Image

Enhancement

In this chapter, we evaluate the efficiency of CT image enhancement using Enhancement AI,

and COVID-19 diagnosis using ComputeCOVID19+ framework.

Accuracy of CT image enhancement is evaluated using the mean square error (MSE) and

multi-scale structural similarity index metric (MS-SSIM) between the images. Mean square

error is calculated using the absolute difference between individual pixels in the image, while

MS-SSIM is calculated using the luminance, contrast, and structural similarity within a

region of the image.

Accuracy of image classification is evaluated using absolute accuracy of correctly classified

images, and Area Under Curve (AUC) of Receiver Operating Characteristic (ROC). ROC

curve illustrates the diagnostic ability of classification AI at different threshold values.

3.1 Accuracy of Enhancement AI

In this section, we evaluate the accuracy of trained networks for 2D image enhancement and

3D volumetric enhancement separately, and compare both networks trained and tested on

the same dataset.

33
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3.1.1 2D Image Enhancement

For evaluating the efficiency of Enhancement AI in improving the quality of CT images,

we quantified the network accuracy using the mean square error (MSE) and multi-scale

structural similarity index metric (MS-SSIM) between the original CT image and enhanced

CT image.

Figure 3.1a(a) shows the result of enhancing chest CT images from the Mayo Clinic dataset.

CT images in Mayo Clinic dataset are very high quality even at low X-ray dose. Therefore,

there is a minimal difference between the low X-ray dose CT image and the enhanced CT

image. Even then, enhancement AI removes some noise present in low X-Ray dose CT images

while retaining finer details. Figure 3.1b(b) shows the results of enhancing CT images from

a simulated dataset. Enhancement AI removes the streaking artifacts and noise present in the

image, reconstructed using FBP from the simulated projection data. The enhanced images

for both datasets have well-defined boundaries and fine details.

Quantitatively, Enhancement AI achieved an average of 98.7% multi-scale structural similarity

between the high-quality target image and enhanced image for CT images in the testing

dataset. Table 3.1 summarizes the quantitative results of Enhancement AI.

To illustrate the efficacy of CT image enhancement, Figure 3.2 shows the absolute difference

maps between a low-quality input image and high-quality target image, and enhanced image

and high-quality target image for two datasets. The enhancement AI effectively removes the

missing projection artifact and noise present in low X-Ray dose CT images.

Table 3.1: Quantitative results of 2D-DDnet enhancement. Y and X refers to high dose and low
dose CT images. f(x) is the image enhanced by DDnet.

MSE MS-SSIM
Y-X 0.00715 96.2 %
Y-f(X) 0.00091 98.7 %
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(a) Mayo clinic dataset. CT Data source: Mayo clinic [52]

(b) Simulated dataset. CT Data source: BIMCV [54]

Figure 3.1: Image enhancement using 2D-DDnet

3.1.2 3D Volumetric Enhancement

Similar to 2D-DDnet, we quantify the accuracy of 3D enhancement using the mean square

error (MSE) and multi-scale structural similarity index metric (MS-SSIM) between the orig-

inal CT image and the enhanced CT image.

Results of 3D enhancement using one image slice from the CT scan of size 256 × 256 × 64

pixels (originally 512 × 512 × 64 pixels in size size and resized to 256 × 256 × 64 pixels),

512× 512× 16 pixels, and 512× 512× 64 pixels (input to the network as four (4) separate

tiles of size 256 × 256 × 64), are shown in Figure 3.3a, 3.3b and 3.3c, respectively. The
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Figure 3.2: Absolute difference maps for (a) Mayo Clinic dataset, and (b) Simulated dataset. Y
and X refers to full X-ray dose and quarter X-ray dose CT images. f(x) is the image enhanced by
DDnet.

Enhancement AI reconstructs high quality CT scan by removing noise present in the input

CT scan while retaining finer details with each dataset. The removal of noise and artifacts

from quarter X-ray dose CT scan is clearly visible in absolute difference maps, shown in

Figure 3.4.

Quantitatively, 3D image Enhancement AI reduces MSE and improves MS-SSIM between

high quality target CT scan and enhanced CT scan, as shown in Table 3.2. 3D-DDnet

achieves highest accuracy with dataset containing CT scans of size 256 × 256 × 64 pixels,

as compared to CT scans of size 512 × 512 × 16 pixels and 512 × 512 × 64 pixels. This is

because of the following reasons.



3.1. Accuracy of Enhancement AI 37

(a) Dataset containing CT scans of size 256× 256× 64 pixels

(b) Dataset containing CT scans of size 512× 512× 16 pixels

(c) Dataset containing CT scans of size 512× 512× 64 pixels

Figure 3.3: 3D volumetric enhancement using 3D-DDnet. CT Data source: MIDRC [53]
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Figure 3.4: Absolute difference maps for CT image slice in (a) 256× 256× 64 pixel-sized CT scans,
(b) 512 × 512 × 16 pixel-sized CT scans, and (c) 512 × 512 × 512 pixel-sized CT scans. Y and X
refers to high dose and low dose CT images. f(x) is the image enhanced by DDnet.

• MS-SSIM between high-quality target and low-quality input CT scans of size 256 ×

256 × 64 pixels is higher than that of 512 × 512 × 16 and 512 × 512 × 64 pixel-sized

CT scans. Convolution network extracts finer features with higher quality CT scan as

input for volumetric reconstruction via deconvolution network.

• Dataset containing CT scans of size 256× 256× 16 pixels are more isotropic in terms
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Table 3.2: Quantitative results of 3D-DDnet enhancement. Y and X refer to high-dose and low
dose CT images. f(x) is the image enhanced by DDnet.

Scan Size Comparison MSE MS-SSIM
Y-X 0.01069 94.0%

256× 256× 64
Y-f(X) 0.00134 98.6%
Y-X 0.01095 88.3%

512× 512× 16
Y-f(X) 0.00342 92.2%
Y-X 0.01142 89.5%512× 512× 64

(4 Tiles) Y-f(X) 0.00309 93.1%

of scan size, as compared to the dataset containing CT scans of size 512 × 512 × 16

pixels.

• Tiling of CT scans, of size 512 × 512 × 64 pixels, generates more variability in input

than inputs containing whole CT scans. The variability in input requires more complex

functional mapping from input to output. Since the architecture of the network is fixed,

simpler inputs achieve higher accuracy with the trained network.

Table 3.3: Comparison image and volumetric enhancement using DDnet. Y and X refer to high-dose
and low-dose CT scans. f(x) is the CT scan enhanced by DDnet.

Network Scan Size Comparison MSE MS-SSIM

2D-DDnet
512× 512× 64

Y-X 0.0114 89.7%
Y-f(x) 0.0074 91.4%

512× 512× 16
Y-X 0.0109 88.3%
Y-f(x) 0.0067 90.8%

3D-DDnet

256× 256× 64
Y-X 0.0107 94.0%
Y-f(x) 0.0013 98.6%

512× 512× 64
(4 Tiles)

Y-X 0.0114 89.7%
Y-f(x) 0.0031 93.1%

512× 512× 16
Y-X 0.0109 88.3%
Y-f(x) 0.0034 92.1%
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3.1.3 Comparison of 2D Image and 3D Volumetric Enhancement

The quantitative comparison of CT scan enhancement using 2D and 3D-DDnet, trained and

tested on the same dataset, is shown in Table 3.3. 3D-DDent outperforms 2D-DDnet, for all

sizes of CT scans, in terms of accuracy, i.e., in reducing the MSE and improving MS-SSIM

between high-quality target CT scans and enhanced CT scans. This is because, in addition

to enhancing 2D features in CT image slices, 3D-DDnet enhances 3rd dimensional correlating

features between the image slices present in the CT scans, which 2D-DDnet ignores. The

enhancement of features in y-z plane, by trained networks, is shown in Figure 3.5. 3D-DDnet

enhances the features along the z-direction, while there is minimal enhancement along the

z-direction by 2D-DDnet.

Figure 3.5: Enhancement of features in y-z plane by 2D and 3D-DDnet. CT Data source:
MIDRC [53]
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3.2 Accuracy of ComputeCOVID19+

For evaluating our ComputeCOVID19+ framework we measure accuracy of classification,

as defined by Equation (3.1), and AUC-ROC. The ROC curve graph is plotted using the

true-positive rate (TPR), i.e., Equation (3.2), and the false-positive rate (FPR), i.e., Equa-

tion (3.3), at different thresholds.

Accuracy = (TP + TN)/(TP + FP + FN + TN) (3.1)

TPR =
TP

N
=

TP

TP + FN
(3.2)

FPR =
FP

N
=

FP

FP + TN
(3.3)

where TP is the number of true positives, FN is the number of false negatives, FP is the

number of false positives, TN is the number of true negatives, and N is the total number of

negatives.

In order to understand the impact of image enhancement in COVID-19 diagnosis, we evaluate

the accuracy of classification both with original CT images (i.e., Segmentation AI + Classifi-

cation AI) and enhanced CT images (i.e., Enhancement AI + Segmentation AI + Classification

AI) and compare the results.

Classification with Original Images

The accuracy of segmentation AI and classification AI is evaluated using a dataset containing

95 CT scans, of which 36 are of COVID-19 patients, and 59 have no abnormalities, i.e.,

healthy. The grey curves in Figures 3.7a and 3.7b show the accuracy and ROC curve,

respectively, for the Classification AI tool. When applied to the original CT scans, our
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Classification AI tool achieves an accuracy of 86.32% and an AUC-ROC value of 0.890. The

accuracy and AUC-ROC jump to 90.53% and 0.942, respectively, when it is applied to the

enhanced images from Enhancement AI, as discussed further below.

Classification with Enhanced Images

The inclusion of Enhancement AI distinguishes our ComputeCOVID19+ framework from the

existing state of the art for deep learning-based medical diagnosis. The use of Enhancement

AI enables the framework to be suitable for low-dose X-ray CT applications.

Classification AI outputs the probability of manifestation of distinctive COVID-19 features

in the CT scan. Image enhancement facilitates image classification by enabling easier inter-

pretation of high-quality, distinctive features present in enhanced CT scans. This improves

the average output probability of COVID-19 scans to be correctly classified by 0.1136. Fig-

ure 3.6 shows a pair of original and enhanced chest CT images, in which small ground-glass

opacities (GGOs) are more clearly visible and easier to interpret in enhanced CT image than

in original CT image.

The efficacy of Enhancement AI is also demonstrated by the improved accuracy and ROC

curves for classification from the original CT scans to the enhanced CT scans in Figure 3.7.

The improved accuracy and ROC curves of ComputeCOVID19+’s classification are shown

in green. Using the enhanced CT scans from Enhancement AI, the absolute accuracy of

classification improved from 86% to 91%, and the AUC-ROC value increased from 0.890

to 0.942, as shown in Figures 3.7a and 3.7b respectively. Table 3.4 shows the result of the

classification of the test dataset using a confusion matrix at an optimal threshold value of

0.061.
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(a) Original CT image (b) Enhanced CT image

Figure 3.6: A CT image of a COVID-19 patient before enhancement (left) and its counterpart
after enhancement (right). Smaller ground-glass opacities (GGOs) become easier to interpret in
enhanced image. CT Data source: BIMCV [54]

(a) Classification accuracy (b) ROC curve for classification

Figure 3.7: ComputeCOVID19+ evaluation

Table 3.4: Confusion matrix for classification of test data set

Ground-Truth Class
Positive Negative

Positive
True Positive

31
False Positive

4
Predicted

Class Negative
False Negative

5
True Negative

55



Chapter 4

Evaluating the Performance of CT

Image Enhancement

Training and inference of deep neural networks are computationally expensive processes.

High-performance computing with heterogeneous platforms allows us to exploit paralleliza-

tion during training and inference to reduce the runtime. However, even with parallel ex-

ecution, network training can take days to execute. In addition, the memory requirement

of deep neural networks and the limited bandwidth available on the executing platform is a

challenging problem.

To that end, we exploit batch-level parallelism to train Enhancement AI on multiple GPUs

in a distributed setup. For inference, we implement Enhancement AI using OpenCL, and

apply a set of application-specific and architecture-specific optimizations to maximize the

utilization of available resources on the executing platform. We then evaluate the efficacy of

our Enhancement AI inference on multi-core CPU, many-core GPU, and FPGA.

4.1 Approach

Training and inference of convolution neural networks are computationally expensive and

require large computational and memory bandwidth. Accelerating these processes on par-

allel computing devices requires knowledge of the underlying hardware and processing de-

44
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mands for adequate utilization of the available computing and memory resources. In §4.1.1

and §4.1.2, we describe the optimization of AI training on a multi-GPU system using Py-

Torch and the implementation and optimization of AI inference on heterogeneous platforms

using OpenCL, respectively.

4.1.1 Training of Enhancement AI

We implemented Enhancement AI using PyTorch and parallelized it for a multi-GPU system

using the DistributedDataParallel package [63], which exploits batch-level parallelism and par-

allelizes AI training by spawning one process per GPU. During training, forward propagation

is executed independently, while the gradients are synchronized during back propagation to

maintain consistency in the model present on each GPU. We used the gloo communication

backend [15] to synchronize processes.

4.1.2 Inference of Enhancement AI

Inference with our Enhancement AI tool is not as computationally expensive as the train-

ing and can thus be performed on a single node containing multi-core CPU(s), many-core

GPU(s), or FPGAs. Inference involves all the steps used in training except for the back

propagation and weight updates. Thus, we performed inference by removing the back prop-

agation and weight update steps from our PyTorch implementation. Along with our PyTorch

implementation, we created and evaluated the performance of an equivalent inference imple-

mentation in OpenCL [57].

Inference requires seven operations for image enhancement: convolution, non-linear acti-

vation, batch normalization, pooling, deconvolution, un-pooling, and concatenation. Each

operation is defined below.
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Convolution Convolution extracts features from a given input image. It requires a mul-

tiply and accumulation operation over a moving window of a given size. Mathematically,

convolution operation is defined in Equation (4.1). The corresponding algorithm for convo-

lution is shown in Algorithm 3.

output(x, y, z) =bias(z) +

Zi∑
zi=0

f size∑
i=0

f size∑
j=0

input(x+ i, y + j, zi)× filter(i, j, z, zi) (4.1)

Algorithm 3: Convolution algorithm

Input : input[Xi][Yi][Zi], filter bias[Zo], filter[Z0][Zi][filter size][filter size]
Output: out[Xo][Yo][Zo]
Data: y′, x′, res

1 for z ← 0 to Zo do
2 for y ← 0 to Yo do
3 for x← 0 to Xo do
4 for z1 ← 0 to Zi do
5 for j ← 0 to filter size do
6 for i← 0 to filter size do
7 (y′, x′)← map to input(y, x, j, i)

res← res+ input[zi][y
′][x′]× filter[z][z1][j][i]

8 end

9 end

10 end
11 out[z][y][x]← res+ filter bias[z]

12 end

13 end

14 end

Non-linear Activation Activation functions incorporate non-linearity into the neural

network. Equation (4.2) defines the leaky rectified linear unit (ReLU), which is used as an

activation function in DDnet.
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output(x, y, z) =


input(x, y, x) if input(x, y, z) ≥ 0

0.1× input(x, y, z) otherwise

(4.2)

Batch Normalization Batch normalization, given by Equation (4.3), normalizes the in-

put to the network. The operation speeds up the training process by regularizing the inputs.

output(x, y, z) =
input(x, y, z)− E(z)√

V ar(z) + ε
× α + β (4.3)

E[x] and Var[x] represent the mean and standard deviation of the inputs, respectively. α

and β are the learnable parameters. These parameters are constant in the trained network.

Pooling Pooling downsamples the input feature maps, making the network more memory-

efficient and less sensitive to input variations. Pooling works over a moving window of a

given size. In our implementation, we use max pooling, as defined by Equation (4.4), for

implementing DDnet.

output(x, y, z) = max
{i=0..f size−1,j=0..f size−1}

input(x+ i, y + j, z) (4.4)

Un-pooling Un-pooling, the reverse of pooling, restores the size of feature maps. We

used linear interpolation to implement un-pooling in DDnet. Linear interpolation in the

x-direction is given by Equation (4.5).

output(x, y) = f(x2, y2)(x2–x)/(x2–x1) + f(x1, y1)(x–x1)/(x2–x1) (4.5)
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where f(x1, y1) and f(x2, y2) are the pixel values at (x1, y1) and (x2, y2) in the given feature

map respectively.

Deconvolution Deconvolution, also known as transpose convolution, reconstructs high-

quality images from the features extracted by convolution network. Pseudo-code for the

deconvolution operation is given in Algorithm 1.

Concatenation Shortcut connections used in DDnet are implemented using concatenation

operation. This operation concatenates feature maps output from different layers along the

z-axis.

Implementation Each operation is implemented as an independent OpenCL kernel. The

data exchange between the host (CPU) and device (GPU or FPGA) is minimized using

the available global memory. The C++ wrapper classes provide PyTorch-like APIs for

implementing deep neural networks using OpenCL.

Due to the size of DDnet in terms of the number of layers in the network and the size of

feature maps in intermediate layers, convolution and deconvolution operations require a large

number of global memory accesses resulting in under-utilization of available resources due to

memory bandwidth bottleneck. DDnet uses 37 convolution layers and eight deconvolution

layers. Table 4.1 summarizes the sizes of the input and output feature maps and filter sizes

used in the convolution and deconvolution layers of DDnet.

Table 4.2 shows the absolute global load and store operations and floating-point operations

executed in each kernel for 512×512×32 inputs. For evaluation, we use a 5×5 filter for

the convolution and deconvolution operations. Pooling and un-pooling operations reduce

and scale the size of feature maps by a factor of two, respectively. A large number of
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Table 4.1: Input and output size, and size of filters used in convolution and deconvolution layers
in DDnet

Layer 1 2 3 4 5 6 7 8 9
Kernels conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 conv9
Input size 512×512×1 256×256×16 256×256×64 256×256×32 256×256×64 256×256×48 256×256×64 256×256×64 256×256×64
Output size 512×512×16 256×256×64 256×256×16 256×256×64 256×256×16 256×256×64 256×256×16 256×256×64 256×256×16
Filter size 7×7 1×1 5×5 1×1 5×5 1×1 5×5 1×1 5×5

Layer 10 11 12 13 14 15 16 17 18
Kernels conv10 conv11 conv12 conv13 conv14 conv15 conv16 conv17 conv18
Input size 256×256×80 128×128×16 128×128×64 128×128×32 128×128×64 128×128×48 128×128×64 128×128×64 128×128×64
Output size 256×256×16 128×128×64 128×128×16 128×128×64 128×128×16 128×128×64 128×128×16 128×128×64 128×128×16
Filter size 1×1 1×1 5×5 1×1 5×5 1×1 5×5 1×1 5×5

Layer 19 20 21 22 23 24 25 26 27
Kernels conv19 conv20 conv21 conv22 conv23 conv24 conv25 conv26 conv27
Input size 128×128×80 64×64×16 64×64×64 64×64×32 64×64×64 64×64×48 64×64×64 64×64×64 64×64×64
Output size 128×128×16 64×64×64 64×64×16 64×64×64 64×64×16 64×64×64 64×64×16 64×64×64 64×64×16
Filter size 1×1 1×1 5×5 1×1 5×5 1×1 5×5 1×1 5×5

Layer 28 29 30 31 32 33 34 35 36
Kernels conv28 conv29 conv30 conv31 conv32 conv33 conv34 conv35 conv36
Input size 64×64×80 32×32×16 32×32×64 32×32×32 32×32×64 32×32×48 32×32×64 32×32×64 32×32×64
Output size 64×64×16 32×32×64 32×32×16 32×32×64 32×32×16 32×32×64 32×32×16 32×32×64 32×32×16
Filter size 1×1 1×1 5×5 1×1 5×5 1×1 5×5 1×1 5×5

Layer 37 38 39 40 41 42 43 44 45
Kernels conv37 deconv1 deconv2 deconv3 deconv4 deconv5 deconv6 deconv7 deconv8
Input size 32×32×80 64×64×32 64×64×32 128×64×32 128×128×32 256×256×32 256×256×32 512×512×32 512×512×32
Output size 32×32×16 64×64×32 64×64×16 128×64×32 128×128×16 256×256×32 256×256×16 512×512×32 512×512×1
Filter size 1×1 5×5 1×1 5×5 1×1 5×5 1×1 5×5 1×1

floating-point operations, coupled with a significant number of load-store operations make

DDnet computationally expensive. In §4.1.3, we discuss a number of optimizations aimed at

improving the overall performance.

Table 4.2: Global memory load/store and floating-point operations count for individual kernels
with an input of size 512×512×32 floats

Kernels
Global Memory

Loads Operations
(106)

Global Memory
Store Operations

(106)

Floating-point
Operations

(106)
Convolution 13421.7 8.4 13421.7
Deconvolution 13421.7 6710.8 13421.7
Pooling 18.9 2.1 0
Un-pooling 134.3 33.5 469.7
Leaky-ReLU 8.4 8.4 8.4
Batch
Normalization

41.9 8.4 41.9



50 Chapter 4. Evaluating the Performance of CT Image Enhancement

4.1.3 Optimizing Inference

To reduce the runtime by maximizing the hardware utilization on each platform, we ap-

plied a set of application-specific and architecture-aware optimizations and FPGA-specific

optimizations for each OpenCL kernel. These are explained below.

Application-specific Optimizations

Refactoring with Inverse Coefficient Mapping Recurring load and store operations

in deconvolution, as shown in line 15 of Algorithm 1, degrade the performance of the kernel.

To overcome this, we use inverse coefficient mapping as explained in [7, 87].

In a refactored kernel for deconvolution, we determine the input blocks needed to calculate

each output element instead of directly deconvolving the input. Then, each element in the

input block and corresponding weight coefficient are multiplied and added at once before the

result is written to the global memory. Figure 4.1 illustrates the optimized operation while

Algorithm 4 realizes the corresponding pseudo-code.

Data Reorganization The data in global memory stored in row-major format limits

memory coalescing. For example, with 5x5 convolution and deconvolution, a maximum of 5

memory accesses can be coalesced when the feature maps are stored in column-major format.

To address this, the feature maps and network parameters are stored in the memory as

shown in Figure 4.2. VEC SIZE in the figure represents the maximum size of vectorization

that can be applied in the modified kernel. We use 16-way vectorization in our implementa-

tion because it is the maximum vectorization implicitly defined in OpenCL for floating-point

operations and memory accesses. For memory alignment and consistency, few feature maps

are padded with zero as needed. This introduces a little memory overhead, but data reor-
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Figure 4.1: Deconvolution optimization (a) Deconvolution operation: Partial sums are calculated
by multiplying an element in input and each element in filter. These partial sums are then added
to get the final output. (b) Refactored deconvolution operation: Each output is calculated by
determining which input elements affects that output and applying multiply and add operations
before being written.

ganization considerably reduces the memory bandwidth requirement. The pseudo-code for

reorganizing the data and modified convolution operation with reorganized data are given

in Algorithm 5 and 6.

The advantages of using reorganized data are three folds: (1) Memory coalescing: Multiple

memory accesses can be combined into a single transaction, (2) Vectorization: The reor-

ganization of data allows vectorized memory access and floating-point operations, (3) Data

reuse: With reorganized data, feature map data is prefetched and reused for calculating the

entire output feature map at once.

Architecture-aware Optimizations

Kernel-launch Configuration OpenCL allows programmers to invoke the kernels in two

configurations: NDRange, and single task. On GPU and CPU, NDRange kernel execution

launches a group of work items on available compute units. These work items run indepen-
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Algorithm 4: Refactored deconvolution algorithm

Input : input[Xi][Yi][Zi], filter bias[Zo],
filter[Z0][Zi][filter size][filter size]

Output: out[Xo][Yo][Zo]
Data: sum

1 for z ← 0 to Zo do
2 for y ← 0 to Yo do
3 for x← 0 to Xo do
4 sum← 0
5 input block ← block of input elements that determines out[z][y][x]
6 for z1 ← 0 to Zi do
7 for j ← 0 to filter size do
8 for i← 0 to filter size do
9 sum← sum+ input block[z1][j][i]× filter[z][z1][j][i]

10 end

11 end

12 end
13 out[z][y][x]← sum+ filter bias[z]

14 end

15 end

16 end

Figure 4.2: Reorganization of data in feature maps to maximize memory coalescing
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Algorithm 5: Data reorganization algorithm

Input : input[Xi][Yi][Zi], filter[Z0][Zi][filter size][filter size], V EC SIZE
Output: input reorder[Xi×Yi×Zi], filter reorder[Z0×Zi× filter size× filter size]
Data: sum

1 for z ← 0 to Zi/V EC SIZE do
2 for y ← 0 to Yi do
3 for x← 0 to Xi do
4 for w ← 0 to V EC SIZE do
5 input reorder[(z × Yi ×Xi × V ECSIZE) + (y ×Xi × V ECSIZE) + (x×

V ECSIZE) + w]← input[x][y][z ∗ V EC SIZE) + w]
6 end

7 end

8 end

9 end
10 for z ← 0 to Zo/V EC SIZE do
11 for z1 ← 0 to Zi/V EC SIZE do
12 for y ← 0 to filter size do
13 for x← 0 to filter size do
14 for w ← 0 to V EC SIZE do
15 for v ← 0 to V EC SIZE do
16 filter reorder[(z × Zi × filter size× filter size×

V EC SIZE) + (z1 × filter size× filter size× V EC SIZE ×
V EC SIZE) + (y × filter size× V EC SIZE × V EC SIZE) +
(x× V EC SIZE × V EC SIZE) + (w × V EC SIZE) + v]←
filter[x][y][z1 ∗ V EC SIZE) + v][z × V EC SIZE) + w]

17 end

18 end

19 end

20 end

21 end

22 end

dently unless synchronized. On the other hand, a single work items kernel launches one work

item that runs on one compute unit.

The NDRange kernel launches a group of work items that execute the kernel as a pipeline of

work items on FPGA. While, in a single-task kernel configuration, only a single work-item

executes the kernel. Single-task configuration involves pipelined execution of loop iterations.
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Algorithm 6: Convolution algorithm with data reorganization

Input : input[Xi ∗ Yi ∗ Zi], filter bias[Zo],
filter[Z0 ∗ Zi ∗ filter size ∗ filter size], V EC SIZE

Output: out[Xo ∗ Yo ∗ Zo]
Data: y′, x′, res

1 for z ← 0 to Zo/V EC SIZE do
2 for y ← 0 to Yo do
3 for x← 0 to Xo do
4 for z1 ← 0 to Zi/V EC SIZE do
5 for j ← 0 to filter size do
6 for i← 0 to filter size do
7 for w ← 0 to V EC SIZE do
8 for v ← 0 to V EC SIZE do
9 (y′, x′)← map to input(y, x, j, i)

res← res+ input[(z1× Yi×Xi× V ECSIZE) + (y′×Xi×
V ECSIZE) + (x′ × V ECSIZE) + v)]× filter[z × Zi ×
filter size× filter size× V EC SIZE) + (z1filter size×
filter size× V EC SIZE × V EC SIZE) + (j ×
filter size× V EC SIZE × V EC SIZE) + (i×
V EC SIZE × V EC SIZE) + (w × V EC SIZE) + v]

10 end

11 end

12 end

13 end

14 end
15 for u← 0 to V EC SIZE do
16 out[z × Yi ×Xi × V ECSIZE) + (y ×Xi × V ECSIZE) + (x×

V ECSIZE) + u]← res+ filter bias[z × V EC SIZE + u]
17 end

18 end

19 end

20 end

In this work, we evaluate the impact of using both single-task and NDRange kernels.

Prefetching Memory prefetching is a technique of caching a load in local memory or

registers prior to their usage. We prefetch the loop bounds (size of input, size of output, size

of filters) by storing these values in a local integer variable.
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Loop Unrolling On CPU and GPU, loop unrolling improves performance by reducing

expensive branch instructions in execution. While, On FPGA, unrolled loops generate deeper

pipelines to support multiple iterations of a loop [27]. In our implementation, we unroll the

innermost loops of the convolution and deconvolution kernels by a factor of two (2) and

innermost loops of the concatenation kernel by a factor of four (4).

Vectorization Vectorization executes SIMD instructions on arrays of data. Vector data

types can improve the efficiency of the kernels by mitigating the bandwidth bottlenecks in

the hardware [27]. As mentioned earlier, we use 16-way vectorization in our implementation

for memory accesses and floating-point operations.

Low-precision Data Type Training and inference of deep neural networks with lower

precision data types improve the performance by decreasing the memory and computational

requirements [59], with a marginal decrease in the accuracy of trained network [12]. In

our implementation, half-precision floats are used for storing feature maps and network

parameters.

FPGA-specific Optimizations

Compute-unit Replication Replication of compute units improves the performance of

kernels by increasing the computational bandwidth of the hardware [27, 28]. In our imple-

mentation, we use two compute units for convolution kernel.
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4.2 Evaluation

We used Virginia Tech’s Advanced Research Computing (ARC) Infer cluster, consisting

of 18 compute nodes, for the compute-intensive training of Enhancement AI . Each node

contains two Intel Xeon Gold 6130 CPUs and one Nvidia Tesla T4 GPU, coupled with 192

GB of system memory. Inference of Enhancement AI is evaluated on each of the following

heterogeneous platforms:

• Many-core GPU, i.e., AMD Radeon Vega Frontier

• Multi-core CPU, i.e., Intel Xeon Gold 6128

• FPGA, i.e., Intel Arria 10 GX 1150

4.2.1 Training of Enhancement AI on a Multi-GPU System

Table 4.3 shows how our PyTorch implementation of Enhancement AI scales as the number

of nodes increases. On a single node with a single Nvidia T4 GPU, the training for the

Enhancement AI tool of ComputeCOVID19+ took approximately 15 hours.

The DistributedDataParallel container in Python parallelizes forward and backward propaga-

tion during AI training (since these processes are independent and load-balanced). Updating

weights after forward and backward propagation requires synchronization at the end of every

iteration. The speedup improves as the number of nodes increases but remains sub-linear

due to the synchronization.

Increasing the batch size enables better utilization of the compute nodes, but it reduces the

accuracy of the trained network. To date, the sensitivity of neural networks to batch size

is not fully understood. Some explanations include (1) large batch-size training does not
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converge to global minima; (2) large batch-size training tends to minimize the optimizer

closer to the initial point; and (3) training samples in each batch interfere with each other’s

gradient [36].

4.2.2 Inference of Enhancement AI on Heterogeneous Platforms

The portability of OpenCL enables us to measure the inference runtime across a diverse set

of platforms, as shown in Table 4.4. The best performance comes from the AMD Radeon

Vega Frontier GPU, followed by the Intel Xeon Gold 6128 CPU and the Intel Arria 10 GX

1150 FPGA.

The breakdown of execution time for optimized kernels in DDnet is shown in Table 4.5. As

shown in the table, the convolution operation is the most expensive operation in DDnet

inference on each platform. This is because the number of floating-point operations required

in convolution layers far exceeds the number of floating-point operations in deconvolution

layers (there are 37 convolution layers and eight deconvolution layers).

Table 4.6 shows the runtime for inference using DDnet on HPC platforms with different

Table 4.3: Runtime for the enhancement AI training for 50 epochs

#Nodes* Batch size #Epochs
Training
Runtime

(hh:mm:ss)

MS-SSIM
(Avg.)

1 1 50 15:14:46 98.71%
4 8 50 2:27:49 96.35%
4 8 100 4:58:52 96.30%
4 16 50 2:07:58 95.18%
8 8 50 2:21:49 95.46%
8 8 100 4:43:26 95.78%
8 32 50 1:17:25 92.04%
8 64 50 1:12:24 88.02%

* Each node has one NVIDIAr T4 GPU
(hh:mm::ss)=(hours:minutes:seconds)
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optimizations, as described in §4.1.3. The impact of each optimization on performance and

resource utilization on FPGA is discussed below.

Impact of Optimizations on Performance

Application-specific Optimizations Multiple threads executing in parallel in NDRange

kernels repeatedly invalidate the cache lines due to recurring load and store to the same mem-

ory location, resulting in poor performance with naive deconvolution kernels. Refactoring

the deconvolution kernel reduces the number of recurring loads and stores to the same global

memory location. This improves the execution multi-folds (≈ 10× for CPU, ≈ 1000× for

GPU, ≈ 100× for FPGA) on each platform with NDRange kernels. On the other hand, there

is an abundance of on-chip memory, i.e., cache, available for executing thread in single-task

kernel execution. Additionally, the write-back mechanism used for cache coherence in mod-

ern processors does not require the data to be written to global memory unless required

by other processors. The abundance of on-chip memory and write-back cache coherence

mechanism minimizes the execution time due to recurring loads and stores in the origi-

nal single-task deconvolution kernel. However, the complex memory access in single-task

refactored deconvolution kernels degrades the execution time for all three platforms.

Table 4.4: Runtime of the enhancement AI inference

Platform No. of Cores Frequency
Runtime
(Seconds)

AMD Radeon™
Vega GFX 900

4096 stream processors 1600 MHz 0.05

Intelr Xeonr

Gold 6128 CPU
24 CPU cores 3400 MHz 0.30

Intelr Arria 10
GX 1150 FPGA

2 compute units* 184 MHz 0.41

* Two compute units generated using attribute ((num compute units(2)) which
is a vendor-specific attribute
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Table 4.5: Event-based time of the optimized OpenCL kernels for Enhancement AI inference.
Execution time is reported in seconds

Platform Convolution Deconvolution Other Kernels
CPU 0.14 0.09 0.07
GPU 0.027 0.009 0.004
FPGA 0.17 0.10 0.13

Table 4.6: Execution time profile of entire DDnet with different optimizations. Execution time is
reported in seconds. REF: Refactoring, DR: Data Reorganization, PF: Prefetching, VEC: Vector-
ization, LU: Loop Unrolling, CUR: Compute Unit Replication, and HP: Half Precision Data

Kernels CPU GPU FPGA
Single-task kernels 84.76 6550.26 10974.50
Single-task kernels + REF 390.99 7629.83 16875.57
Single-task kernels + REF + DR 14.52 825.90 384.58
NDRange kernels 6.51 219.60 636.30
NDRange + REF 1.95 0.25 69.89
NDRange + REF + DR 0.39 0.13 106.82
NDRange + REF + DR + PF 0.30 0.1 98.65
NDRange + REF + DR + PF +
VEC

1.01 0.08 0.76

NDRange + REF + DR + PF +
VEC + UNR

1.02 0.12 0.55

NDRange + REF + DR + PF +
VEC + CUR

- - 0.61

NDRange + REF + DR + PF +
VEC + HP

1.11 0.048 0.66

NDRange + REF + DR + PF +
VEC + UNR + HP

1.12 0.05 0.41

NDRange + REF + DR + PF +
VEC + CUR + HP

- - 0.48

OpenCL kernels with data reorganization reduce the independent memory accesses by maxi-

mizing memory coalescing. This reduces the bandwidth requirement for convolution, decon-

volution, pooling, and un-pooling kernels (kernels where memory accesses were not linear,

i.e., irregular). We see multi-folds speed up in CPU and GPU execution with data reorga-

nization in both single task and NDRange kernels. However, data reorganization requires

additional nested loops for consistent execution. Because of complex hardware generated
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for nested loops (nested pipelines) in FPGA, the data reorganization degrades the perfor-

mance of NDRange kernels on FPGA. The generation of FPGA’s reconfigurable hardware

for single task kernels with multiple nested loops is comparatively simpler because of relaxed

constraints on the amount of memory required. Hence, data reorganization improves the

performance of single task kernels by a factor of ≈ 40.

Architecture-aware Optimizations NDRange kernels exploit the massive paralleliza-

tion available in the execution of each kernel in DDnet to improve the performance on each

heterogeneous platform. The speedups with NDRange kernels follow the trend of parallel

processing units/logic available on each platform. GPU with 4096 streaming processors gains

the highest speedup, followed by FPGA and CPU (≈ 30×, ≈ 17× and ≈ 13× speedups on

GPU, FPGA and GPU respectively with the naive single task and NDRange kernels).

Memory prefetching relatively few variables (size of the input, output, and parameters arrays

in each kernel) marginally improves the performance on each computing platform.

Vectorizing each kernel marginally improves the performance on GPU. This is because the

SIMD compute units exploit inter-thread vectorization in the executing kernel. This leaves

a little margin for improvement with manual vectorization, i.e., intra-thread vectorization,

since the compute units and memory bandwidth are maximally utilized by inter-thread

vectorization. We get ≈ 130× via manual vectorization on FPGA. This is due to the

generation of extra hardware for handling vectored floating-point operations and coalesced

memory accesses due to vectored global memory accesses. On CPU, which does not have

SIMD compute units or reconfigurable logic, vectorized kernels increase execution complexity

and register pressure (i.e., the count of registers required to store local variables), which

degrade the performance by a factor of ≈ 3.3.

Manual vectorization of kernels increases the resource utilization on FPGA and register
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pressure on CPU and GPU. The hardware constraints on FPGA leave little scope for loop

unrolling. Therefore we unroll the innermost loop of convolution, deconvolution, and con-

catenation kernel (most expensive kernels in DDnet) by a factor of two. This generates

deeper pipelines on FPGA, which speeds up the execution by a factor of ≈ 1.4. However,

due to the increased register pressure on CPU and GPU, vectorization and loop unrolling

implemented simultaneously marginally degrade the performance of kernels.

The implicit APIs defined in OpenCL for reading half-precision floating-point data from

global memory converts half-precision floating-point data to single-precision floating-point

data after the global memory is read. We use this implementation in our OpenCL kernels

with no additional type casting to reduce the complexity. Therefore, the implementation with

half-precision floating-point data reduces only the memory bandwidth requirement, but the

computational requirement of OpenCL kernels remains the same. This improves GPU and

FPGA implementation performance by a factor of ≈ 1.7× and ≈ 1.3× respectively. On

CPU, the execution time remains almost the same with half-precision floating data because

the performance on this platform is not limited by memory bandwidth bottleneck.

FPGA-specific Optimizations The compiler generates wider and deeper pipelines with

loop unrolled and vectorized kernels. These optimizations are expensive in terms of resource

utilization. Therefore, simultaneous application of these optimizations leaves no room for

compute unit replication. To apply compute unit replication to the most expensive ker-

nel, i.e., convolution, we reduced the loop unrolling factor in the concatenation kernel and

replicated the convolution kernel by a factor of two (2). This improves the execution time

of convolution operation by 38% (0.17 seconds to 0.10 seconds with half-precision floating-

point data) but degrades the performance of concatenation kernel by more than 100%(0.98

seconds to 0.20 seconds with half-precision floating-point data). This degrades the overall
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Table 4.7: Resource utilization with multiple combinations of optimization on FPGA REF: Refac-
toring, DR: Data Reorganization, PF: Prefetching, VEC: Vectorization, LU: Loop Unrolling, CUR:
Compute Unit Replication, and HP: Half Precision Data

Kernels
ALM

Utilization
(%)

RAM
Utilization

(%)

DSP
Utilization

(%)

Frequency
(MHz)

Single-task kernels 35 15 3 222
Single-task kernels + REF 34 12 3 218
Single-task kernels + REF + DR 46 18 2 235
NDRange kernels 33 21 3 218
NDRange + REF 32 17 3 275
NDRange + REF + DR 37 27 3 223
NDRange + REF + DR + PF 36 27 2 231
NDRange + REF + DR + PF +
VEC

40 32 16 236

NDRange + REF + DR + PF +
VEC + UNR

46 56 2 191

NDRange + REF + DR + PF +
VEC + CUR

51 73 36 153

NDRange + REF + DR + PF +
VEC + HP

40 28 16 265

NDRange + REF + DR + PF +
VEC + UNR + HP

50 48 26 216

NDRange + REF + DR + PF +
VEC + CUR + HP

54 66 36 190

performance of DDnet inference on FPGA.

Impact of Optimizations on FPGA Resource Utilization

Table 4.7 summarizes the resources consumed by all kernels combined with corresponding op-

timizations. The impact of each optimization applied to FPGA implementation on resource

utilization is discussed below.

Application-specific Optimizations Refactorizing deconvolution kernel marginally re-

duces the logic and RAM utilization in both single-task and NDRange kernels because of
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simpler logic and fewer local variables used to store intermediate results.

Data reorganization requires additional nested loops and arrays to store intermediate results

for consistent execution of kernels. This increases the logic utilization for implementing

nested loops and RAM utilization for storing results in arrays in FPGA.

Architecture-aware Optimizations Logic utilization is slightly lower with NDRange

kernels than single-task kernels because of the fewer iterative loops and input-dependent

branches in the former. However, memory utilization increases with NDRange kernels since

each work item requires independent memory for storing local variables.

There is no significant impact on resource utilization with the implementation of prefetching

since only a few variables were prefetched from the global memory.

The increased ALM (Adaptive Logic Module), DSP, and RAM utilization with the vectorized

kernel is attributed to the generation of SIMD compute units required for carrying out

vectored floating-point operations and vectored global memory accesses. SIMD compute

units significantly increases the DSP utilization (by 14%) and marginally increases the logic

and RAM utilization (by 4% and 5% respectively)

Loop unrolling generates deeper pipelines by replicating the hardware for unrolled loops.

This increases the ALM, DSP, and RAM utilization by 5%, 14%, and 10%, respectively, on

FPGA.

As discussed in §4.2.2, the implementation OpenCL kernels with half-precision floating data

does not impact computational requirement. Therefore, there is no significant change in

ALM and DSP utilization. The RAM utilization decreases by a small margin because of

smaller buffers used for storing half-precision floating-point data read from global memory.
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FPGA-specific Optimizations There is a significant increase in resource utilization with

replicated convolution kernel. ALM, DSP, and RAM utilization on FPGA increase by a factor

of 7%, 15%, and 10%, respectively.

The absolute count of resources utilized on FPGA with most optimal implementation are

presented in Table 4.8

Table 4.8: Absolute resource utilization of most optimal of implementation on FPGA REF: Refac-
toring, DR: Data Reorganization, PF: Prefetching, VEC: Vectorization, LU: Loop Unrolling, CUR:
Compute Unit Replication, and HP: Half Precision Data

Kernels
#ALM Utilized/
#ALM Available

#RAM Utilized/
#RAM Available

#DSP Utilized/
#DSP Available

NDRange + REF + DR +
PF + VEC + HP

469,283 / 933,120 5,655 / 11,721 1,503 / 5,760

4.2.3 Power Consumption on Heterogeneous Platforms

Along with performance efficiency, power consumed by computing platforms is an essential

specification for selecting a platform to deploy in the real world, especially in embedded and

real-time applications. Therefore, we measure the power consumed by DDnet inference on

each heterogeneous platform and evaluate their efficiency in terms of the following metrics.

• Dynamic power consumed in Watts

• Total energy consumed per DDnet inference

• Performance per Watt i.e., FLOPS per Watt

• Energy efficiency in terms of energy-delay (ED) product

Since each computing platform is embedded in compact and functional servers, it was dif-

ficult to measure the static power consumption of individual computing platforms alone.
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Table 4.9: Power consumption and power efficiency evaluation of DDnet inference on heterogeneous
platforms

Platform
Idle

Power
(W)

Running
Power
(W)

Dynamic
Power
(W)

Execution
Time

(seconds)

Energy
Consumed

(KJ)

FLOPS per
Watt
(108)

ED
Product

(W.second2)
CPU 255.1 304.5 49.4 30.8 1.52 0.25 46862.816
GPU 215.4 256.6 41.2 5.4 0.22 1.7 1001.16
FPGA 254.8 262.3 7.5 41.9 0.31 1.2 13167.08

Therefore, we measure the total power consumed by the server and estimate the dynamic

power consumed by individual platforms by measuring the power consumption in idle and

running states. For measuring the power consumed on computing platforms, we use Watts

Up PRO Digital Electric Meter. The power meter logs one reading per second and has an

accuracy of ±3%. Since the runtime of one inference using DDNet is less than one second

on each platform, we measure the power consumption with 100 sequential input images.

Table 4.9 shows power metrics described above measured on CPU, GPU, and FPGA.

FPGA operating at the lowest frequency consumes minimum dynamic power as compared

to CPU and GPU. In terms of performance per Watt, FPGA achieves comparable energy

efficiency with respect to GPU, and outperforms CPU by a factor of 4.8. In terms of energy

consumption, GPU consumes the lowest energy, even though the power consumed by GPU is

≈ 5.5× higher than the power consumed by FPGA. This is because the execution of DDnet

inference is approximately an order of magnitude faster on GPU than CPU and FPGA. GPU

also achieves the highest energy efficiency in terms of energy delay (ED) product.

Low power consumption is a desirable characteristic and sometimes a requirement in em-

bedded applications. Specifically, in medical diagnosis, low-power computing devices, such

as FPGAs, can benefit computed tomography applications in telemedicine, where the CT

scanner machines are fitted in constrained spaces. On the other hand, GPUs are the appro-

priate choice of computing platforms in hospitals and clinics, where more focus is on speed
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than power consumption. The implications of power and energy efficiency on deploying deep

learning algorithms for computed tomography are discussed in §5.2.



Chapter 5

Practical Considerations of using AI

for Biomedical Diagnosis

In the past decade, machine learning has gained tremendous popularity in every engineer-

ing domain, including but not limited to computer vision, robotics, healthcare, internet-of-

things, and social media. In particular, machine learning in healthcare has the potential to

enhance biomedical practices.

Machine learning algorithms in biomedical science has been extensively researched and devel-

oped for making predictions from the input data for medical diagnosis using neural networks.

These algorithms use data from magnetic resonance imaging [30], retinal scan [51, 65], endo-

scopic images [5], computed tomography [20, 22, 41, 68, 73, 76, 90], electrocardiography [79]

etc. Another category of machine learning-based algorithms aid clinicians by highlighting

or extracting more meaningful features in the input data. These include image segmenta-

tion [69], image enhancement [88], super resolution [74] lesion segmentation [92] etc.

These algorithms, however efficient in theory, pose applicability questions on real-world

data. Validation of these algorithms is a massive challenge for practical applications. The

acceptance of results from these algorithms without human intervention is questionable, given

high stakes in biomedical applications. Another obstacle is the availability of appropriate

hardware in clinics for deploying these compute-intensive deep learning algorithms. This

chapter addresses these challenges and comments on the applicability of image enhancement

67
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in computed tomography.

5.1 Verification of Machine Learning Algorithms

An optimally trained machine learning algorithm works as a black box during inference. The

mathematical functional mapping from input to output of a deep neural network is unknown

to the user as well as to the developer. Furthermore, the size of the input and network

complexity makes it impossible to formally verify machine learning algorithms. Therefore,

the successful deployment of machine learning algorithms requires verification on a large

dataset that is representative of real-world data. However, the limited amount of data for

testing DL algorithms is often a challenge in their thorough verification [61, 70].

For biomedical applications, where accuracy correctness and accuracy are most consequen-

tial, generating erroneous results can have adverse implications. For example, a misdiagnosis

of a COVID-19 patient can exacerbate illness from delays in the correct treatment [55]. Mis-

diagnosed patients also unwittingly serve as SARS-CoV-2 carriers and transmitters.

Keeping this in mind, we test and validate Enhancement AI and ComputeCOVID19+ across

multiple data sources, described in Table 2.5. These data sources contain chest CT scans,

each comprising of more than 100 image slices, of healthy and COVID-19 patients, generating

enough variability inputs for training and testing Enhancement AI and ComputeCOVID19+

framework. High performance in terms of accuracy metrics for each neural network shows

that the networks can generalize well to the variations in CT images across different datasets.

These metrics also imply that the network and framework will likely perform well with the

unseen real-world data.

In addition, we also propose an alternative workflow for ComputeCOVID19+ in which a ra-
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diologist or a clinician replaces the Analysis AI, as shown in Figure 2.7. The software is

packaged in individual modules, that is Enhancement AI and Analysis AI, which can be sepa-

rately downloaded and installed from GitHub. This alternative workflow aids radiologists by

enhancing the quality of CT images for better interpretation and ensures that the radiologists

or clinicians are responsible for the decision-making of medical diagnosis.

Shadow Deployment Shadow deployment is an effective way of testing machine learning

algorithms with real-world data before actual deployment. A shadow deployment is a process

of running production data through the model under test. The results from the model under

test do not serve customers but are used for its verification [40].

Shadow deployment of ComputeCOVID19+ can have two-folds advantages: (1) The model

will be verified with real-world data with the help of radiologists and clinicians, (2) The

results from the framework will aid radiologists and clinicians in decision-making,

5.2 Deploying AI for Computed Tomography in Clinics

Artificial intelligence and machine learning have reformed healthcare and biomedical tech-

niques by aiding clinicians and radiologists, and providing expedited diagnosis to patients in

the last decade. However, in practice, the use of computer-aided diagnosis (CAD) has not

been routinely adopted by radiologists and clinicians [75]. This is because the development

of healthcare IT infrastructure is substantially slower than the advances in research and

development of CAD [24, 58]. Sparsity in the availability of high-performance computers in

clinics is a huge bottleneck for radiologists and clinicians to adopt CAD methods.

To that end, we propose two strategies for deploying our deep learning algorithms for com-

puted tomography, as explained below.
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• Post-CT Processing: Training machine learning algorithms are comparatively more

computationally expensive than inference. Therefore, we train our networks on super-

computers with multiple GPUs. These trained models can run even on a single-core

CPU or GPU for real-time inference. These tools, i.e., our trained networks, can be

installed via a simple software update and provide inference results with just one click.

This provides seamless integration with the preexisting CT software tools and our

trained neural networks.

• During-CT Processing: Image enhancement can be accomplished during the acquisi-

tion of X-ray projections by installing a processor inside the CT scanner machines.

Having an embedded processor can reform telemedicine where CT machines are fitted

in constrained spaces.

Considering the power consumption of CT scanner machines in the order of 10 to 100 kW (10

kW idle power and 100 kW peak power) [14, 23], it is favorable to embed low power computing

device in the CT scanner machine. From Table 4.9, it is evident that FPGAs, with low power

requirement, are appropriate processors for such applications. The reconfigurability of logic

in FPGA also makes it easier to update software with time.
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Conclusions and Future Work

In this chapter, we present our work’s conclusion and provide some perspectives of the future

work that can be built upon this thesis.

6.1 Conclusion

In this work, we researched and developed deep learning based high-fidelity image enhance-

ment algorithms and software for computed tomography applications. Specifically, we used

DenseNet and Deconvolution network (DDnet) to enhance 2D images and 3D volumes. To

validate the applicability of image enhancement in medical diagnosis and evaluate its ad-

vantages, we developed a CT-based framework, called ComputeCOVID19+, for COVID-19

diagnosis and monitoring. ComputeCOVID19+ contains novel algorithms and software for

high-quality CT image construction and high-precision classification of COVID-19 CT scans.

Our ComputeCOVID19+ can speed up the COVID-19 inference time from hours to minutes,

while at the same time improving the diagnostic accuracy from 86% to 91%.

Furthermore, to reduce the turnaround time for training and testing AI models, we im-

plement and accelerate the complex deep-learning algorithms across a multitude of het-

erogeneous platforms, including multi-core CPU, many-core GPU, and even FPGA, using

OpenCL. Our OpenCL implementation is at least 2× faster than the analogous PyTorch

implementation and can execute on multi-core CPU, many-core GPU and FPGA within a
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fraction of a second. We also evaluate each platform in terms of power efficiency.

Finally, we present some practical considerations for deploying AI-based framework for med-

ical diagnosis. These considerations include validation of AI models on clinical data, which

is representative of real world data, and the availability of computing platform for imple-

menting trained AI models in clinics.

6.2 Future Work

In this section, we discuss some future work and limitations of this work.

Improving the Accuracy of Image Enhancement Our Enhancement AI tool only lever-

ages data from the image domain, which limits the extent to which the quality of image and

accuracy of CT-based COVID-19 diagnosis can be improved (≈ 5% accuracy improvement

in this work). Therefore, as part of future work, we seek to address this limitation by using

data available from the projection domain and combining it with knowledge from medi-

cal imaging physics to reconstruct even higher-quality CT images. We intend to use super

resolution and deblur-based iterative reconstruction (SADIR) algorithm [89] for this work.

SADIR outperforms both iterative CT image construction and deep learning based CT image

enhancement, and we expect to improve the classification accuracy of ComputeCOVID19+

framework by 2-3% using SADIR for CT image enhancement.

Optimizing DDnet’s Architecture Our work on image enhancement extends the work

by Zhang et al. in [88] on sparse view reconstruction of CT images. Therefore we use the

architecture of DDnet as described in the research paper. Our work explores the optimiza-

tion space of hyper-parameters, such as learning rate, batch size, etc. In addition to this,
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some architectural parameters, such as the number of dense blocks, the growth rate in the

dense block, number of convolution layers in each dense block, the size of convolution, and

deconvolution filters, can be optimized to further improve the functional mapping from input

to output. The exploration of these architectural parameters remains a part of future study.

Automating Hyper-parameter Tuning for Optimizing Network Training In this

work, we tuned hyper-parameters of DDnet using perturb and observe method. This method

is laborious and sometimes generate sub-optimal trained network. In future, we intend

to use iterative machine learning (IterML) [13] for tuning the hyper-parameters of DDnet.

IterML statistically prunes and optimizes the hyper-parameter search space to achieve better

performance. Using IterML, we expect to reduce the time required for hyper-parameter

tuning, as well as improve the efficiency of trained network.

Exploring Sparsity in Deep Neural Network Hoefler et al., in [25], show that the

sparsity in a deep neural network leads to efficient inference and training with an acceptable

compromise in the accuracy of the network. By carefully pruning convolution and decon-

volution layers in DDnet, we seek to reduce the computational and memory bandwidth

requirement of training and inference of the network. This will improve execution efficiency

and reduce turnaround time.

Evaluating the Performance of Enhancement AI on Embedded CPU and Em-

bedded GPU In this project, we used a high performance CPU and GPU for evaluating

the performance of Enhancement AI inference in terms of speed and power efficiency. These

computing devices deliver high performance in terms of speed at the expense of high power

consumption. For applications, such as mobile Computed Tomography, where power con-

sumption and the price of hardware are major concerns, embedded CPU or GPU are preferred
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choice of computing hardware over a high performance CPU or GPU. Therefore, we plan

to evaluate the performance of Enhancement AI inference on embedded CPU and GPU, and

compare them against FPGA’s performance.

Evaluating Framework with Real-world Low-dose CT Data As a subject of future

study, we plan to evaluate the framework with low-dose CT image data. Low-dose CT

technology benefits from reduced risk of cancer, but there is an associated loss in the quality

of CT images. Analyzing the accuracy of diagnosis with such low-quality images would be

an ideal stress test for our framework.

Evaluating the Applicability of CT Image Enhancement for Medical Diagnosis

With the help of radiologists and clinicians, we intend to analyze the feasibility of deploying

Enhancement AI and ComputeCOVID19+ in CT scanner machines for diagnosis of COVID-19

and other maladies, such as viral pneumonia and cancer. We also want to evaluate Compute-

COVID19+ framework by replacing Analysis AI with a radiologist/clinician for COVID-19

diagnosis. This will validate the efficacy of Enhancement AI for biomedical imaging and

medical diagnosis.
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Appendix A

CT Images from Different Datasets

In order to train, validate and test different AIs used in the project, CT images were collected

from different sources. The complete dataset consists of 1000 CT scans of COVID-19 and

healthy patients, as mention in Table 2.5 and 2.6. Some CT images from each data sources

are shown in this Appendix.

Figure A.1: CT images from LIDC dataset. CT Data source: LIDC [47]

Figure A.2: CT images of healthy patients
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(a) CT images from BIMCV dataset. CT Data source: BIMCV [54]

(b) CT images from MIDRC dataset. CT Data source: MIDRC [53]

Figure A.3: CT images of COVID-19 patients
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(a) CT images from mayo clinic dataset. CT Data source: Mayo clinic [52]

(b) Simulated CT images from BIMCV dataset. CT Data source: BIMCV [54]

Figure A.4: High and low-dose CT images
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