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Abstract: In this study, a Green Light Optimal Speed Advisory (GLOSA) system for buses (B-GLOSA)
was developed. The proposed B-GLOSA system was implemented on diesel buses, and field tested
to validate and quantify the potential real-world benefits. The developed system includes a simple
and easy-to-calibrate fuel consumption model that computes instantaneous diesel bus fuel consump-
tion rates. The bus fuel consumption model, a vehicle dynamics model, the traffic signal timings,
and the relationship between vehicle speed and distance to the intersection are used to construct an
optimization problem. A moving-horizon dynamic programming problem solved using the A-star
algorithm is used to compute the energy-optimized vehicle trajectory through signalized intersections.
The Virginia Smart Road test facility was used to conduct the field test on 30 participants. Each
participant drove three scenarios, including a base case uninformed drive, an informed drive with
signal timing information communicated to the driver, and an informed drive with the recommended
speed computed by the B-GLOSA system. The field test investigated the performance of using
the developed B-GLOSA system considering different impact factors, including road grades and
red indication offsets, using a split-split-plot experimental design. The test results demonstrated
that the proposed B-GLOSA system can produce smoother bus trajectories through signalized in-
tersections, thus producing fuel consumption and travel time savings. Specifically, compared to the
uninformed drive, the B-GLOSA system produces fuel and travel time savings of 22.1% and 6.1%,
on average, respectively.

Keywords: eco-driving; GLOSA; signalized intersection; diesel bus; eco-cooperative adaptive cruise
control; fuel consumption model; field test

1. Introduction

Previous studies have shown that the fuel consumption rates are dramatically in-
creased when vehicles approach signalized intersections, which is caused by vehicle ac-
celeration and deceleration maneuvers [1,2]. Furthermore, knowledge of traffic signal
phase and timing (SPaT) has been proven to benefit the energy use of vehicles by re-
ducing stop-and-go maneuvers and idling time at signalized intersections [3]. With the
development of information and communication technology, the advanced communica-
tion power in a connected vehicle (CV) environment ensures that a very high update
rate of information can be provided to vehicles. For example, SPaT information, vehicle
speed, and surrounding vehicle locations can be shared using vehicle-to-infrastructure
(V2I) and vehicle-to-vehicle (V2V) communications. Such information can greatly help
transportation scientists to develop and implement connected traffic systems to enhance
traffic safety, efficiency, and energy usage. The fast-growing information and communi-
cation technologies are widely used in various ITS applications. During the past decade,
many cutting-edge ITS technologies have been developed to enhance traffic control using
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V2I and V2V technologies, including eco-driving, eco-routing, and large-scale signal con-
trol. An eco-driving algorithm has been developed and implemented in traffic simulation
software to generate fuel-optimum vehicle trajectories by using signal phasing and timing
information [4]. The study in [5] quantifies the system-wide impacts of implementing a
dynamic eco-routing system. The simulation results demonstrate that eco-routing systems
can reduce network-wide fuel consumption and emission levels up to 9.3% when com-
pared to traditional travel time optimal routing strategies. Moreover, an adaptive traffic
signal controller using a Nash bargaining game-theoretic framework was developed to
optimize the traffic signal timings for city traffic network [6]. The simulated city network
demonstrates the proposed signal control strategy can effectively reduce travel time by
23.6% and queue length by 37.6%, relative to traditional adaptive traffic signal controllers.

Recently, numerous researchers have attempted to develop various eco-driving al-
gorithms using the technologies of connected and/or automated vehicles and connected
infrastructures. These eco-driving strategies are aimed to provide speed guidance in real
time to vehicles so that vehicle acceleration/deceleration can be adjusted accordingly
to save fuel and greenhouse gas (GHG) emissions while traversing signalized intersec-
tions [7-9]. Various eco-driving strategies have been developed by researchers in the past
decade. For instance, a cooperative adaptive cruise control system was developed using
traffic signal data to minimize vehicle acceleration rates and fuel consumption [10]. An-
other study ([11]) developed a vehicle fuel-optimal algorithm using dynamic programming
and recursive shortest path finding techniques. The developed algorithm was tested in
a simulation environment using an agent-based model. In addition, a vehicle trajectory
optimization strategy was proposed in [12] to search the green window so that vehicles
can use this window to traverse multiple signalized intersections. Another extension study
in [13] developed a similar approach by allocating a brake-specific fuel rate map for op-
timizing vehicle gear ratios, and they also use dynamic programming to search for the
optimal solution.

However, the studies in this field are mainly focused on developing eco-driving algo-
rithms for light duty vehicles (LDVs). Compared to LDVs, heavy duty vehicles (HDVs)
(e.g., buses) have poor fuel consumption efficiency due to their heavy curb weights and
sizes, especially involving travel in stop-and-go traffic in the vicinity of signalized inter-
sections. Considering that energy consumption models are the key factor in computing
the optimum control solution in eco-driving, the main difficulty in designing eco-driving
systems for buses is that the energy consumption models for buses are hard to develop
and calibrate. In recent years, various onboard bus systems have been developed to
enhance bus service, safety, and energy efficiency due to the rapid advancement of ITS
technologies. A school bus onboard security system was developed using RFID and GSM
technologies [14]. The student’s identity is recognized by RFID and GSM is used to notify
parents about their child’s movement via SMS. Moreover, a transit routing on-demand
system was developed in [15] to save transit energy consumption. In this system, various
onboard systems are implemented to count passenger numbers and compute real-time
energy-optimal bus dispatching decisions. In addition, an onboard bus ride comfort system
was developed in [16] to estimate the real-time comfort level in the bus using artificial
neural network (ANN) models. The developed ANN model is used to assist bus drivers to
improve the comfort level of bus ride experience.

A few studies have attempted to develop eco-driving systems to reduce fuel and
emission levels along traffic signalized corridors. A bus eco-driving system was proposed
in [17] by adjusting the vehicle speed profile and the dwelling time at bus stops to ensure
that buses can smoothly pass downstream signalized intersections. A MATLAB simulated
environment was used to validate the benefit of the proposed system and show a saving
of 5.5% emissions. Another similar approach was developed in [18] to minimize the
frequency of complete stops by buses at signalized intersections to reduce transit vehicle
fuel consumption in cities. According to the predicted bus arrival time at the upcoming
intersection and the corresponding signal timings, the bus speed and the dwelling time
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were adjusted so that the bus can drive smoothly to approach the intersection. The fuel
savings were achieved by moving vehicle complete stops at signalized intersections to bus
stops, thus reducing the total number of stops and removing accelerations and decelerations
at intersections. The proposed method was implemented in the VISSIM microsimulation
software and the test results presented up to 15% savings in bus fuel consumption at
intersections. Both studies tried to reduce bus stopping at intersections by adjusting bus
dwelling times at upstream bus stations. However, these approaches may not work well
for signalized intersections without or far away from neighboring bus stations.

Moreover, the developed eco-driving algorithms have been primarily tested in traffic
simulations that make numerous simplified assumptions that may deem them unrealistic.
For instance, simulations typically assume that drivers can accurately and instantly follow
the speed advisories, eco-driving systems run perfectly without providing erroneous
information, latencies and loss of data in communication are neglected, traffic signal
timing information are known precisely, etc. Consequently, field tests are very important
to explore the benefits of eco-driving systems on real roads. Recently, the Virginia Tech
Transportation Institute developed an eco-driving system entitled GLOSA that includes two
modes of operation, namely: a manual mode for CVs and an automated mode for connected-
automated vehicles (CAVs) [19-21]. Drivers follow recommended speed advisories that
are provided via audio alerts in the manual GLOSA system. Alternatively, CAVs use
longitudinally automated control to follow the optimum speed profile that is computed
by the GLOSA system. The field tests demonstrated that the manual and automated
modes of GLOSA produce fuel savings of 28% and 38% on average, respectively. A similar
eco-driving system called GlidePath was developed and tested at the Turner Fairbank
Highway Research Center, which also can be used for CVs and CAVs [22]. A few more
similar eco-driving systems were developed in other countries, such as the Green Light
Optimal Speed Advisory System (GLOSA) in Europe [23]. However, these studies only
used LDVs to design and test the eco-driving systems, without the consideration of HDVs
such as diesel buses.

To address the abovementioned issues, this study proposed a bus eco-driving system
by expanding the LDV GLOSA system we previously developed to buses. In the proposed
system, a fuel consumption model for diesel buses is used to compute instantaneous
fuel consumption rates, since this model is easy to calibrate using easy-to-access bus data.
The bus consumption model, vehicle dynamics model, traffic signal timings, and the vehicle
speed and distance relationship are used to construct an optimization problem. A moving-
horizon dynamic program using an A-star minimum path algorithm is used to solve the
optimization problem and calculate the energy-optimized vehicle trajectory in real-time
given its computational efficiency. The proposed B-GLOSA system was implemented on
diesel buses, and a controlled field test was conducted to quantify the potential real-world
benefits of using the proposed system. This study extends the state-of-the-art approaches
by: (1) developing a B-GLOSA system given that buses are significantly impacted by stop-
and-go traffic; and (2) implementing our proposed B-GLOSA system in real buses and then
conducting a field test to evaluate its performance in a real-world setting.

The remainder of this paper is organized as follows. The proposed B-GLOSA system
is described. This is followed by a description of the field test environment and the
experimental design. Thereafter, the quantitative performance analysis is conducted to
present the quantitative benefits of using the B-GLOSA system. The last section provides
conclusions of this study and recommendations for future research.

2. Methodology

We modified the GLOSA system previously developed for LDVs to work for buses.
More details of the LDV GLOSA system are demonstrated in [19,20]. It should be noted that
this study attempts to improve the energy efficiency of buses by reducing the stop-and-go
maneuvers in the vicinity of signalized intersections within the range of a dedicated short-
range communication (DSRC) or Direct Cellular Vehicle to Everything (C-V2X) system,
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and the B-GLOSA system will not be activated if buses are out of the communication range
or are far away from the signalized intersections. If there are near-side bus stops near
an intersection and passengers need to get on or off the bus, the buses must stop and
the B-GLOSA system should not be activated (or can be overridden) for this intersection.
Moreover, this study only demonstrated the performance of the B-GLOSA system for light
traffic conditions. The proposed B-GLOSA system may suggest vehicles to completely stop
under highly congested traffic conditions. The recommended speed calculated from the
B-GLOSA system needs to be combined with car-following and gap acceptance constraints
to ensure the vehicle’s safety. The impacts of traffic congestion levels on the proposed
system will be investigated using microscopic traffic simulation software in future research.

In order to solve the optimization problem in the proposed B-GLOSA system, the bus
fuel consumption model is a key component to calculate and compare the trip fuel consump-
tion level for the speed profile in each possible solution. The diesel bus fuel consumption
model developed in [24,25] was selected to use here for two reasons: (1) this fuel model only
needs instantaneous speed data as an input to compute fuel consumption; (2) the model
calibration is very easy and does not need vehicle power or engine data. The B-GLOSA
system and fuel model for buses are described as below.

2.1. B-GLOSA System

Given that DSRC devices have a limited range of sending and receiving communica-
tion data, the bus GLOSA is assumed to work within a range near the signalized intersection
from the intersection upstream location d,;, to the downstream location d ;. It should
be noted that both d,, and do,,, are computed based on the distance to the intersection
stop bar. Here, the intersection downstream location d ., is defined to ensure that buses
that passed through intersections with low speeds have enough distance to accelerate
to the roadway speed limit, if the downstream traffic condition is uncongested. A bus
generally has two options to approach a signalized intersection: (1) deceleration is needed;
(2) deceleration is not needed. Therefore, the GLOSA algorithms for these two options
are developed in this section. More detailed discussions of the options for vehicle to pass
signalized intersections are presented in [26,27].

In case 1, vehicles do not need to decelerate to approach the signalized intersection.
This happens when the traffic signal has enough green time (or the red time is very short)
for vehicles to pass the stop bar. In this case, the vehicle either keep the initial speed (the
speed passing the location of dy;) or accelerate to a speed u. and then keep driving with
that constant speed to pass the intersection. The cruise speed is calculated in Equation (1).
Here, t, denotes the remaining red indication time when vehicle arrives d,;, upstream of
the intersection. If the initial vehicle speed is equal to u., the vehicle can use the same
initial speed to pass the intersection. Otherwise, the vehicle needs to follow the bus engine
physical model-vehicle dynamics model denoted in Equations (2)—(4) and accelerate to the
speed 1 to pass the intersection. Here, a vehicle dynamics model developed in [28] is used
to capture the behavior of the acceleration maneuver.

(dup
Ue = mm(tr, uf) @
] P
F = min (3600fp,377du, mtué{ﬂ) &)
__r 2 4 mg- 0
R = 55,95 CaCnApu” +mg g (e + ) + mgG @)

where F represents the tractive effort in the vehicle dynamics model; R denotes the combi-
nation of aerodynamic, grade and rolling resistance forces; § denotes the reduction factor
of gear; f, represents the throttle level ranging between 0 and 1; 77; denotes the efficiency
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of the driveline; my, represents the mass along the tractive axle (kilogram); P denotes the
power of engine (kilowatt); u is the road adhesion coefficient parameter; g represents the
gravitational acceleration value (9.8067 m per second?); p denotes the air density under
a temperature of 15 °C and sea level (1.2256 kg per meter?); C, represents the correction
factor of altitude; C; denotes the coefficient of vehicle drag; m represents the vehicle mass
(kilogram); and G denotes the grade of roadway; Af represents the frontal area of vehicle
(meter?); ¢,0, ¢;1 and ¢,» denote the rolling resistance constant values.

In case 2, vehicles need to decelerate and maintain a lower constant speed to pass the
signalized intersection. Figure 1 demonstrates the fuel-optimized vehicle speed profile.
After the vehicle passes the location of dy;;,, with a speed of u (t), the vehicle needs to reduce
the speed to u. by following the decelerate level of 4, and then the vehicle maintains the
cruise speed of 1, to approach the intersection. When this vehicle drives on the downstream
road of the intersection, the vehicle needs to speed up from the cruise speed to 1y, and then
maintain this speed to pass the location dj,,. The fuel-optimized vehicle trajectory can
be computed by solving the optimization problem as below. It should be noted that this
optimization problem only has two unknown variables—the vehicle deceleration 2 and the
throttle input f,.

Speed
A
Us
u(to)
u|.2
i i }
t t; t, t, to+T Time

Red Indication Green Indication

Figure 1. The fuel-optimized vehicle trajectory.

Here, we assume the vehicle arrives at the upstream location (dy;) at the time of £,
and then passes the downstream location (d;.,,,) at the time of ¢y + T. The intersection
upstream cruise speed is u.. The objective function entails minimizing the total fuel
consumption level as:

to+T
min /t FC(u(t))-dt 5)
0
where FC (*) denotes the fuel consumption at instant t. The constraints listed as below are
developed according to the relationships between vehicle acceleration/deceleration level,
velocity, and distance to the stop bar.

u(t) = u(ty) —at to<t<h
u(t):uc HH<t<t
u(t): _R(u (6)
®) u(t+At):u(t)+wAt h<t<h
u(t) =ug b <t<ty+T

u(to)-t — yat? + uc(te — t1) = dup
U = u(to) —a(t — i’o)
J2u(t)dt+up(to+ T — 1) = dgon
u(tz) = Uy ()
Amin < @ < Amax

fmin Sfp Sfmax
u. >0

In Equation (6), the functions F (*) and R (*) denote the vehicle tractive force and
resistances calculated in Equations (3) and (4), respectively. The variables a,,;,, and a;ux
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denote the minimum and maximum allowed acceleration levels to ensure driving comfort,
and f,,;, and fyuy represent the minimum and maximum throttle levels. According to
the relationships in Equations (5)—(7), the deceleration a and throttle level f, are the only
unknown variables. A moving-horizon dynamic programming approach is implemented
here to find the optimal solution of the optimization problem. In this way, all the combina-
tions of deceleration and throttle levels are enumerated and the corresponding trip fuel
consumption levels from upstream location d,,, to downstream location dy,, are computed.
Therefore, the optimum parameters can be located according to the minimum fuel con-
sumption level [13,27]. Considering that the optimization solution needs to be calculated at
a rapid frequency (e.g., 10 Hz) for real-time applications, an A-star algorithm is used here to
expedite the computation speed to achieve real-time computations [20]. The deceleration
speed and the throttle level are considered as constant values in the A-star algorithm. Con-
sidering that the proposed system will be used to compute optimal trajectory for buses in
real time, the computation speed and efficiency is critical in selecting the A-star algorithm.
Compared to other pathfinding algorithms, such as Dijkstra’s algorithm, which explores
all possible paths, the A-star algorithm adds a heuristic to the cost function to improve
the computational efficiency and speed [29]. In order to solve the proposed optimization
problem, we firstly assume the throttle level is a constant value (e.g., 0.6), and then the
optimal deceleration level can be computed, which corresponds to the minimal energy
consumption for the upstream and downstream roadway of the intersection. Therefore,
the starting speed (vehicle speed when traversing the stop-bar) and the ending speed
(roadway speed limit) during the downstream roadway are known, and eventually the
optimal throttle level can be located according to the minimal energy consumption for the
downstream trip. Given that the optimal solution is recalculated at a temporal interval of
0.1 s, the acceleration/deceleration and throttle levels are also updated every 0.1 s.

2.2. GLOSA for Buses

A simple bus fuel consumption model was developed and calibrated in [24,25].
The framework of the Virginia Tech Comprehensive Power-based Fuel Consumption Model
(VT-CPEM), which was originally developed for LDVs, was used to develop the fuel model
for buses as presented in Equation (8). The vehicle power used in the fuel model can be
computed as Equation (9).

ch;{%+¢fﬁ%+@P®% P(t) >0 o
o P(t) <0

R(t) + (14 A +0.0025¢u(t)? ) ma(t)
P(t) = ( ) u(t) o

36007/

where FC(t) denotes the instantaneous fuel consumption rate; &g, & and o are the model
coefficients for a specific vehicle type, which need to be calibrated for each vehicle; A is the
mass factor accounting for rotational masses, a value of 0.1 is used for HDVs [30]; ¢ is the
term related to gear ratio, which is assumed to be zero due to the lack of gear data; a(t) is
the instantaneous acceleration level; R(f) is the resistance forces on the vehicle as given by
Equation (4).

A regression-based approach was developed in [24] to calibrate the VT-CPFM model
for buses. Mass field data, including instantaneous vehicle speed, fuel consumption rate,
latitude, longitude, and altitude, were collected by test driving the buses around the
town of Blacksburg, VA. In order to cover a wide range of real-world driving conditions,
the test-driving routes consisted of two roadway sections: US 460 business (highway with
a speed limit of 65 mph) and local streets (with a speed limit ranging from 25 to 45 mph).
The collected data were divided into two datasets for the test bus. The first dataset was
used for calibration purposes, and included 60% to 70% percent of the entire data for the test
bus, and the remaining dataset was used for model validation. The regression-based model
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fitting can estimate the values of parameters ap, ; and «; in Equation (8). The calibrated
bus fuel model was compared with the measurement data and presented very good fitting
accuracy, as shown in Figure 2.

Measurements
Estimated

600 800 1000 1200 1400 1600
Time(s)

Figure 2. Model validation for bus fuel consumption model.

3. Case Study
3.1. Test Environment

The connected vehicle testbed located at the Virginia Tech Transportation Institute
(VTTI)’s Smart Road was used to validate the performance of the proposed B-GLOSA
system. The Smart Road at VITI is a 3.5 km (2.2-mile) roadway with turnaround loops at
both ends. Wireless roadside equipment units are installed at spacing of around 500-600 m,
which provides 5.9 GHz of short-range wireless communications between the infrastruc-
ture and vehicles. Two mobile roadside equipment sites are also available at the Smart
Road. The Signal Phasing and Timing (SPaT) information at intersections can be remotely
controlled by vehicle location or user input through wireless communication. The layout of
the test road is illustrated in Figure 3. The upstream and downstream roadway connected
by the signalized intersection is a surface roadway with two lanes, and each direction is
a one lane road. Figure 3 shows that a four-way signalized intersection is located in the
center. The roadway grades are approximately —3 percent for the downhill direction and
+3 percent for the uphill direction. The stop lines for both directions are located on the
signalized intersection. The B-GLOSA system is enabled when the bus is 200 m upstream
of the stop bar and is disabled when the bus is 200 m downstream of the stop bar. Thus,
both d,, and d,,,, are equal to 200 m. During the test drive in the uphill direction, the bus
can accelerate up to 32-34 mph before merging to turnaround 1 if the bus was fully stopped
at the intersection. Therefore, the speed limit was set as 30 mph. In order to have a fair
comparison across different runs, buses attempted to drive at 30 mph before entering and
after leaving the control range. Thus, two cones were placed at 200 m upstream (the first
cone) and 200 m downstream (the second cone) of the intersection in each direction; thus,
in total there were four cones, past which drivers were asked to drive at 30 mph.
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A =

Figure 3. Layout of the test road (source: Google Maps).

In order to test the impact of different signal timing plans on the B-GLOSA system
performance, four different signal timings were used during the test. Here, the variable
is called “red offset”, which represents the remaining red offset time when the vehicle
enters the test area by passing the first cone. We used four combinations of red offsets,
namely 10, 15, 20 and 25 s. During the test, the testing bus is initially far away and driving
to the downstream traffic signal, and the traffic signal shows a constant red indication.
When the testing bus is passing the upstream location d,, the countdown of the red
offset (the remaining red indication time) is triggered by a random value from 10, 15,
20 or 25 s. Moreover, the upcoming green indication time is set as 25 s to ensure the
bus can arrive at the downstream location, even if the bus is completely stopped at the
signalized intersection.

In total, 30 participants were recruited to conduct the field test. All the participants
were voluntarily recruited from BT bus drivers, since the test vehicle was a diesel bus
provided by Blacksburg Transit (BT) and BT’s policy requires that the bus can be only
operated by BT bus drivers. Each participant was asked to conduct three different driving
scenarios, namely: (1) scenario 1—uninformed drive; (2) scenario 2—informed drive with
signal timing; (3) scenario 3—informed drive with recommended speed. The aim of the
field test was to investigate the impacts of road grades and red offset timings on vehicle
performances, and the details of experimental design and statistical analysis are described
in the next section. Each participant drove the test bus eight times for each driving direction,
and the red offset value for each repeated trip was randomly selected from 10, 10, 15, 15, 20,
20, 25, 25 s, which means each predefined red offset value was repeated twice. In addition,
each participant drove under the three different scenarios described below, under dry
road surface and daylight conditions. In this way, each participant made 16 trips for each
scenario (48 trips for three scenarios). The total trip number for 30 participants was 1440.
Note that we only extracted the vehicle data for each trip by passing from the upstream
location dy), to the downstream location d ;. Eventually, 1440 sets of trip information
were collected as the raw dataset to analyze the system performance in the field test.

e Scenario 1 (S1)—Uninformed drive:

The driver needs to operate the bus normally by following traffic signal indications, without
any driving assistant systems.
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e  Scenario 2 (S2)—Informed drive with the provision of signal timing information:

Via audio, when approaching the signalized intersection, the driver is provided information
about when the traffic signal will turn green. The audio information provides a countdown
of the signal timing to the next signal phase, which is used to assist the driver to perform
the vehicle maneuver to traverse the intersection.

e  Scenario 3 (S3)—Informed drive with recommended speed (B-GLOSA):

The driver is provided with audio information with the recommended speed when ap-
proaching the signalized intersection. The driver is asked to try his/her best effort to follow
the recommended speed and adjust the vehicle speed accordingly.

A diesel-powered bus from BT was used in the field test, and the vehicle’s onboard
units of our developed bus GLOSA system were installed in the cabinet control box behind
the driver’s seat, as presented in Figure 4. The test bus was a 2014 New Flyer XD40
model with a 280-horsepower diesel engine. A differential GPS device was installed on the
vehicle’s front top area to ensure the vehicle could receive accurate location information.
A data acquisition system (DAS) customized by VTTI was installed in the control box,
which collects GPS data, vehicle data, and SPaT, and communicates with a portable laptop
to compute the recommended speed. All the test data were encrypted and stored in a
hard drive disk, which were uploaded to the VTTI data service after completing the test.
An audio system was chosen for conveying the information in the cases of scenario 2 and
3 because previous research [31,32] proved that visual displays can be highly distracting
for the driver. In order to ensure that the proposed system can be used for real-time
applications, the B-GLOSA system computes the optimum speed profile at 10 Hz, which
means the optimum speed is recalculated every 0.1 s. The average driver’s perception
reaction time was considered to be approximately 1.5 s. The communication system was
tested, and we obtained around 0.5 s of latency. Hence, the audio system was preset to
convey the information to the driver at intervals of 2 s.

Figure 4. Hardware of the vehicle onboard units in the bus GLOSA system.

3.2. Experimental Design and Statistical Analysis

The aim of the case study was to investigate the impact of three factors—scenario, road
grade, and red indication offset—on trip fuel consumption level and travel time. Different
experimental design approaches were considered for planning this case study so that the
data obtained could be analyzed to yield valid and objective conclusions. The simplest op-
tion is that each factor could be randomly assigned for each testing trip when a participant
passes the signalized intersection from upstream to downstream. However, practically
there were several reasons why we could not conduct the field test in this way. Firstly, we
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(Road Grade)

did not want a participant to start with scenario 3 before the other two scenarios, since it is
highly probable that a participant’s driving behavior for scenarios 1 or 2 will be changed
after the experience of following the optimal speed profile in scenario 3. Secondly, testing
the same road grade in two consecutive trips is not effective from a cost and time perspec-
tive. Given that the test site is a loop road starting from turnaround 2 to 1 and eventually
returning to turnaround 2, participants needed to drive two loops to allow us to test two
3% (or —3%) runs. However, participants only needed to drive one loop to test a 3% uphill
run followed by a —3% downhill run. Therefore, two factors (scenario and road grade)
could not be randomized in this experiment. Specifically, each participant was required to
start with scenario 1, followed by scenario 2, and lastly scenario 3. The road grade iterates
through 3% uphill and —3% downhill by driving along the loop road. The only factor that
could be randomized was the red indication offset at the instant the bus is 200 m upstream
of the intersection.

Because the two factors are difficult to change, the split-split-plot design was used in
this study. The split-split-plot design is a type of restricted randomization experimental
design that was originally proposed in the field of agriculture to make the experiment
design easier and more cost and time effective [33]. The split-split-plot design in this study
was a blocked experiment with three levels of experimental units, as shown in Figure 5.
The first level of the experimental units is the whole plot (scenario); the second level is the
experimental units within the whole plot, called the split-plot (road grade); and the third
level is the experimental units within the split-plot, called the split-split-plot (red indication
offset). The red indication offset was the only factor that could be randomized without
any effects on the experiment. Given that we had a limited participant pool and all the
drivers were bus drivers from Blacksburg Transit, we did not recruit participants by gender
or age groups. The participant effect (variation of driver behavior among participants) was
considered to be a random effect, so it was not used as a fixed effect factor.

\

Whole Plots
(Scenario) -
/// i \\\\
/ \\
Scenario 1 Scenario 2 Scenario 3

3% Uphill 3% Uphill 3% Uphill
25110 (| 15|25 10| 1520 || 20 15(125]/ 1025 15( 201201 10 151{/251(/25( 1510201201 10
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- — — —— — R N S -

k a

\ //

/

\
Split-Split-Plots
(Red Light)

Figure 5. Structure of the split split plot design.

The JMP statistical software was used to analyze the split-split-plot experiment results.
The results of fixed effect tests from the output of the Fit Mixed report are presented in
Table 1, which includes the degrees of freedom, F ratio, and p value from the ANOVA test.
However, an ANOVA test can only determine if the results are significant overall. To further
investigate which pairs of compositions from all the source factors have a significant
difference, the Tukey test (also called Tukey’s Honest Significant Difference test) was used
to compare all possible pairs of means [34]. For the response variable of fuel consumption,
the test results indicated that S1 and S3 were significantly different for both uphill and
downhill directions for various red indication offset values. Moreover, the differences
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between S1 and 52 were statistically significant, except for the cases of driving towards
downbhill direction with 20 and 25 s offset. In addition, the results showed that S2 and S3
were significantly different, except for the cases with a 10 s offset for both the uphill and
downhill directions of travel.

Table 1. Results of fixed effect tests.

Response Variable Source DF DFDen F Ratio p Value
Scenario 2 146 83.004 <0.0001

Red offset 3 1255 1182.769 <0.0001

Fuel Consumption Grade 1 175 7355.448 <0.0001
Scenario*Grade 2 175 10.658 0.1872

Scenario*Red offset 6 1255 12.449 0.0685

Red offset*Grade 3 1255 30.084 <0.0001

Socf‘;;‘eat“grfsg 6 1255 8.796 0.1236

Scenario 2 146 660.503 <0.0001

Red offset 3 1255 8623.917 <0.0001

Travel Time Grade 1 175 131.278 0.0853
Scenario*Grade 2 175 13.477 0.0762

Scenario*Red offset 6 1255 53.352 0.1082

Red offset*Grade 3 1255 0.900 0.4849

S;;Z‘;ﬂg’:igg 6 1255 3.029 0.6215

In the table above, the “*” means multiple variables are included in the Source. Com-
pared to the Tukey test results for the response variable of fuel consumption, using the
response of travel during the test showed slightly different results. The differences between
S1 and S3 were statistically significant, except for the cases with a 10 s red indication offset
for both uphill and downhill directions, and driving with a 25 s red offset for the uphill
direction. Moreover, S1 and S2 were only significantly different under 15 and 20 s red offsets
for the uphill direction. For the uphill direction, the differences between S2 and S3 were
statistically significant, except for the 10 s red offset. For downbhill direction, the differences
between 52 and S3 were statistically significant only when driving under a 15 s red offset.
The test results demonstrated that the proposed B-GLOSA system produces a significantly
different fuel consumption performance compared with S1 and S2 in most cases, by taking
similar (or shorter) travel times. The quantitative performance analysis of the field test is
presented as below.

3.3. Quantitative Performance Analysis

The instantaneous fuel consumption, vehicle speed, and location were collected during
each trip to calculate the average fuel consumption and travel times. Table 2 presents the
average fuel consumption levels for one trip (from 200 m upstream to 200 m downstream)
for different scenarios (1, 2, and 3), road grade (3% and —3%) and red offset time (10, 15, 20,
25s). Under the same road grade and red offset time, the fuel consumption levels continued
to decrease from scenarios 1 to 3, as presented in the left bar charts in Figure 6. Compared to
scenario 1, scenario 2 consumed an average of 13.4% and 6.0% less fuel for the downhill and
uphill directions, respectively. Compared to scenario 1, scenario 3 consumed an average
of 34.2% and 10.1% less fuel for the downhill and uphill directions. Note that scenario 3 a
produced significant amount of fuel savings (2.55 times the savings of scenario 2) under the
downbhill direction. It should be noted that 15 s of red offset corresponds to the maximum
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fuel savings (49.1% and 15.1%) for scenario 3 under both uphill and downhill directions.
This result occurred because the bus equipped with the proposed B-GLOSA system showed
the maximum speed difference compared to the case of the bus without B-GLOSA. Under
the case of a 15 s red offset, drivers expect to stop when the vehicle is very close to the
intersection since the signal turns from red to green at the last moment. In scenario 1,
drivers usually start to reduce speed quickly when the vehicle is around 50 m away from
the intersection, which results in a vehicle speed of 10-15 mph at the start of the green light.
However, in scenario 3, the B-GLOSA system asks drivers to slow down to around 25 mph
at the beginning, which results in a vehicle speed of greater than 25 mph at the start of the
green light. Consequently, the average bus speed in scenario 3 was much higher than the
speed in scenario 1 for the 15 s red interval offset, which resulted in the maximum savings
of fuel. It is also very interesting to see that the test bus under the 3% uphill direction
consumed 2-3 times the fuel compared to driving with a similar speed under the —3%
downhill direction. In total, scenario 3 produced 22.1% of overall average fuel savings
compared with scenario 1, and scenario 2 produced 9.7% of overall fuel savings. These
high fuel saving rates achieved in scenario 3 proved that the proposed B-GLOSA system
can efficiently save bus fuel in the vicinity of signalized intersections.

Table 2. Average trip fuel consumption (FC) levels.

Difference Difference

Direction OI;;::L " Scenariol Scenario2 Scenario 3 between between

FC (Liter) FC (Liter) FC (Liter) S2 and S1 S3 and S1
(Sec)
(%) (%)

10 0.102 0.072 0.056 —29.7% —44.9%

Downhill 15 0.179 0.151 0.091 —15.3% —49.1%

20 0.217 0.202 0.161 —6.7% —25.8%

25 0.229 0.224 0.190 —2.1% —16.8%

10 0.369 0.356 0.354 —3.5% —4.2%

Uphill 15 0.424 0.390 0.360 —8.0% —-15.1%

20 0.451 0.419 0.399 —71% —11.6%

25 0.462 0.438 0.419 —5.3% —9.3%

Downhill Average 0.182 0.162 0.125 —13.4% —34.2%
Uphill Average 0.427 0.401 0.383 —6.0% -10.1%
Total Average 0.304 0.282 0.254 —9.7% —22.1%

Table 3 presents the average trip travel times under different scenarios, grades, and red
offset times. Under the same road grade and red offset time, a similar trend in which travel
times continued to reduce from scenarios 1 to 3 can be observed in the right bar charts
in Figure 6, which means scenario 3 always produced the least fuel consumption levels
and travel times. Compared to scenario 1, scenario 2 required an average of 2.5% and
3.0% shorter travel times for downhill and uphill directions, respectively. Compared
to scenario 1, scenario 3 required an average of 6.9% and 5.3% shorter travel times for
downhill and uphill directions, respectively. Note that travel times under the uphill
direction were not significantly different from those of the downhill direction. In total,
scenario 3 produced 6.1% of overall average travel time savings compared with scenario 1,
and scenario 2 produced 2.8% of overall travel time savings. The test results in Tables 1
and 2 prove that the proposed bus GLOSA system can efficiently reduce fuel savings while
also achieving a reasonable amount of travel time savings.
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Figure 6. Comparison of test results for fuel levels and travel times: (a) fuel in downbhill; (b) travel
time in downbhill; (c) fuel in uphill; (d) travel time in uphill.
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Table 3. Average trip travel times.
Red Difference Difference
Direction o fgse ¢ Scenariol Scenario2 Scenario 3 between between
TT (Sec) TT (Sec) TT (Sec) S2 and S1 S3 and S1
(Sec)
(%) (%)
10 30.4 29.6 29.4 —2.9% —3.3%
Downhill 15 34.1 33.1 30.6 —2.8% —10.1%
20 40.1 39.0 36.7 —2.9% —8.5%
25 45.7 45.1 43.1 —1.4% —5.6%
10 31.1 30.2 30.0 —2.9% —3.5%
15 35.5 34.3 32.0 —3.3% —9.7%
Uphill ° °
20 42.0 40.3 39.9 —3.9% —5.0%
25 47.3 46.4 46.0 —2.0% —2.7%
Downhill Average 37.6 36.7 35.0 —2.5% —6.9%
Uphill Average 39.0 37.8 37.0 —3.0% —5.3%
Total Average 38.3 37.2 36.0 —2.8% —6.1%

Speed (mph)
- - %] [\~] [ ] (5]
[4)] [=] [4,] (=] (4] (=] (4]

[=]

Sample vehicle speed profiles of a selected participant for downbhill direction under
various red offset timings are presented in Figure 7. All speed profiles have the similar
starting and ending speeds of around 30 mph; thus, the comparisons between different
scenarios are fair because the vehicle speed values between the start and end were affected
by the settings of uninformed or informed driving in each scenario. For scenario 1, it can be
observed that the vehicle came to a complete stop for the 20 and 25 s red offsets. Scenario 2
also had a complete stop under the 25 s red offset. Apparently, scenario 3 produced much
smoother speed profiles compared with the other scenarios. The sample speed profiles
demonstrated the benefits of the bus GLOSA system by helping the bus to drive smoothly
to pass signalized intersections, and simultaneously reduce fuel consumption rates and

travel times.
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Figure 7. Vehicle speed profiles of a selected participant for the downbhill direction under various red
offset timings: (a) 10 s; (b) 15s; (c) 20 s; (d) 25 s.

4. Conclusions

This study proposed a bus eco-driving system, entitled B-GLOSA. The developed
system computes the fuel-efficient trajectory of buses using traffic signal data received
from downstream signalized intersections. The key features of the proposed system are
summarized below.

e A fuel consumption model for diesel buses was used in the proposed system to
compute instantaneous fuel consumption rates, because this model is easy to calibrate
using easy-to-access bus data.

e  The vehicle dynamics model, fuel consumption model, signal timings, and vehicle
speed and distance relationship are used to construct an optimization problem.

e A moving-horizon dynamic program and an A-star algorithm is used to solve the
optimization problem and calculate the energy-optimized vehicle trajectory to assist
buses to proceed through signalized intersections efficiently. The proposed B-GLOSA
system was implemented and field tested to validate the real-world benefits. The test
results and the recommendations for future research are summarized below.

e The Virginia Smart Road test facility was used to conduct the field test using
30 participants. A split-split-plot experimental design was used to test the devel-
oped B-GLOSA system for different impact factors of road grades and red indication
offsets, and statistical analysis was conducted to demonstrate that the fuel consump-
tion performances were significantly different among three test scenarios.

e The quantitative analysis of the test results demonstrated that the proposed B-GLOSA
system can greatly smooth the bus trajectory while traversing a signalized intersection,
and simultaneously save fuel consumption and travel times.

e  Compared to the uninformed drive, the test results demonstrated that the B-GLOSA
can efficiently reduce fuel consumption by 22.1% and simultaneously reduce vehicle
travel times by 6.1%.

e In future research, the B-GLOSA system will be tested within a microscopic simulation
environment to quantify he network-level impact for various traffic conditions and
heterogeneous traffic including LDVs and buses.
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