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Abstract 
Conversational Agents (CAs) or Intelligent Personal 
Assistants (IPAs) (e.g., Apple’s Siri, Microsoft’s 
Cortana; Amazon’s Alexa and Google’s Google 
Assistant) are voice-based interfaces designed for tasks 
in everyday life including: retrieval of information (e.g., 
weather, traffic, news), streaming of music, online 
shopping, controlling of home appliances, and voice-

calls within the home and automobiles. Continuous 
enhancements of their natural language processing 
abilities, seamless set up of miniaturized hardware, and 
large-scale cloud-based infrastructures render CAs as 
unobtrusive, artificially intelligent voice sensors. With 
CAs rapidly making their way into the home market, 
the social implications remain unclear. Some product 
companies have released open-source software 
platforms that allow third-party developers and the 
general public to contribute software towards the 
growth of CAs. However, research around user-
interaction with CAs in social settings is still at a 
nascent stage. In this workshop paper, we unpack the 
methods used in our ongoing work on people’s social 
interactions with CAs in order to generate discussion 
around how the research community can leverage 
various methodologies using both qualitative and 
quantitative techniques.  
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Introduction 
Recent studies in HCI (e.g., [7], [23], [39]) underscore 
the need to further examine mainstream CAs in 
everyday settings. CAs such as Alexa and Google 
Assistant are being incorporated into several “smart” 
products (e.g., cars, watches, portable speakers) which 
many people use on a daily or regular basis in private 
as well as public settings. These devices are capable of 
listening in to conversations even when not being 
addressed. Consequently, there are significant 
ramifications for social norms, privacy, and human-
machine trust [cite]. Current CA studies deploy 
interviews [25] and ethnomethodology [41] and offer 
considerations for designers of CAs to improve user 
experiences. However, user experiences are also being 
shaped by an emerging trend where users and third-
party developers contribute towards CA development 
(e.g., Amazon’s Alexa 1and Google’s DialogFlow2) - a 
phenomenon that is being largely overlooked at the 
moment. As [12] caution, “heteromated labor” occurs 
as product companies may benefit from users’ 
contribution towards “Alexa skills” and improved 
dialogues while users themselves incur the labor of 
time and (intellectual) effort. We would also argue that 
there is value in investigating the approaches that 
designers and developers of CAs currently use. The 
growth and evolution of CA technologies can be better 
understood by investigating the work of system 
builders (Hughes in [22])). A better understanding 
about CA designers’ ongoing practices may be key in 
enabling researchers to assertively offer advice and 
bridge any gaps in understanding.  

                                                   
1 https://developer.amazon.com/alexa-skills-kit 
2 https://dialogflow.com/ 

Additionally, there is a growing interest towards agent 
applications within a number of other fields such as 
Internet of Things (IOT) and Ambient Intelligence 
(AmI). IoT refers to the superset of everyday objects 
that are embedded with sensors and/or connectivity-
based technologies (e.g., wearables, credit cards, home 
automation) which can communicate with each other 
and with users (e.g., [5]). Similarly, AmI is an 
emerging interdisciplinary area which seeks to create 
intelligent and responsive user interfaces and embed 
sensors in various environments (e.g., [27] & [41]). 
For example, Lugano [21] informs that CAs like Cortana 
(Microsoft), Google Assistant (Google), and Siri (Apple) 
are already available in cars. He explains that CAs or 
voice-based virtual assistants (VAs) have begun to 
pique the interest of consumer product manufacturers 
and the automotive industry. Lugano suggests that 
researchers and practitioners along with stakeholders in 
the vehicle industry would need to prepare for 
scenarios in which CAs may soon become “virtual 
companions” (p. 4) for drivers and/or passengers in 
automobiles. 

Figure 1: Timeline of Emerging Conversational Agents. 



 

With CAs rapidly making their way into the home 
market (Fig. 1), the social implications due to CA use 
are unclear.  

Research Questions of Interest 
With CAs rapidly making their way into the home 
market (Fig. 1), the social implications due to CA use 
are unclear [36]. How should CAs function based on the 
setting (e.g., family, visitors, unrelated co-occupants) 
and social contexts (e.g., entertaining, private 
gatherings, home-office)? How do people perceive CAs 
in terms of agent intelligence and trust as CAs become 
more embedded into common objects in daily life? 

In order to answer these questions, we need to 
understand what kinds of methods are most 
appropriate to tackle these questions holistically and 
effectively, given the nature of CAs as well as other 
factors such as the ways in which people interact with 
CAs (home versus public settings) as well as the 
availability of the CAs (e.g., infrastructure at home). In 
this workshop paper, we describe a current study in 
progress and break down the various methods we use 
in a multi-faceted approach to unpack the 
methodological implications of studying how people 
interact with CAs in everyday life. In the following 
sections, we first describe our current work in progress 
and unpack the various methods we employ. By doing 
so, we discuss the unique challenges and opportunities 
these methods pose and offer to better understand and 
improve how people interact with CAs through our 
ongoing work.  

Current Work  
In this section, we report on a three-phase research 
project in which we deploy multiple approaches to 

gather and analyze CA data - in-home deployment, 
ethnomethodology, and machine learning.  

In-home Deployment  
We first began our research through exploratory 
studies in which we analyzed a large corpora of tweets 
using a broad set of hashtags related to CAs (e.g., 
#Alexa, #Siri, #Cortana, #GoogleAssistant) between 
December 2016 and March 2017. We then interviewed 
several users (current and past) of CAs in their homes 
and also conducted several observational studies in our 
lab to learn how people interact with Alexa devices and 
the Alexa app. While initial findings from these 
exploratory studies provided useful preliminary 
insights, we decided to expand the scope of our user-
observation through in-home deployment settings. HCI 
studies using in-home deployments can yield rich data 
over time by allowing researchers to observe how 
participants interact with technologies in the context of 
everyday life [15]. We recognize such importance of in-
home deployment of CAs in our study given our goal of 
examining every-day interactions as opposed to 
conversations probed through lab settings with specific 
directions or tasks. The benefits of an in-situ approach 
at the participant’s home allow for both use and non-
use of the technology around certain contexts, which 
can elicit greater understanding behind the motivations 
of using CAs in everyday settings. 

Conversation Analysis 
Posited as an analytic method in HCI, conversation 
analysis involves analyzing audio transcripts or 
conversational logs without compromising on the 
“integrity” of the actual conversations ([37], p. 239). 
This method is useful for analyzing social talk in 
human-agent and/or human-human interactions (e.g., 



 

[3], [4], and [41]). According to [37], conversation 
analysis can aid the design of more sophisticated 
interactive agents as it enables researchers to discover 
the intricacies of talk, recognize user’s patterns and 
detect shifts and problems during conversations. For 
instance, using conversational analysis, Aoki et al. [4] 
develop a vocabulary (e.g., primary and secondary 
participation, conversation floors, and participation 
sequence) to explain various mechanisms in 
simultaneous social talk. In our research, we use 
conversation analysis and qualitative techniques to 
analyze chat logs from users of CAs such as Alexa and 
Google Assistant as well, text corpora from 
communities on Reddit, as well as blog posts on 
Medium and CA developer websites3.  

Machine Learning 
Researchers have used computational modeling and 
machine learning techniques to build agents that can 
personalize solutions better-tailored to individuals’ 
preferences (e.g. [30]). Maes and Kozierok [26] argue 
that machine learning models built from such data can 
improve the capabilities of agents in a cost-effective 
and user-approved manner. In fact, conversation 
analysis and natural language processing techniques 
have been applied on large corpora of audio data to 
train models that can intelligently process technical 
aspects of speech. Researchers have leveraged such 
methods used by [1], [3], and [4] where conversation 
analysis can be applied to inform machine learning 

                                                   
3 While chat logs reveal insights about challenges that users 

experience and their typical current CA interactions, online 
content on Reddit forums and blog posts enable us to follow 
various communities of users and developers over time and 
raise pertinent questions around shifts that impact the 
adoption of CA technologies. 

models to detect of overlaps [46], turn-taking, and 
floor assignment in conversations [3].  

It is no surprise that CAs will produce a vast amount of 
text-based conversational data in the future. As 
researchers, we can certainly benefit from applying 
machine learning approaches to better understand and 
improve user-interaction with CAs. However, these 
approaches are not without challenges. For machine 
learning methods to work on agents, a number of 
expectations are being thrust on users. First, users 
must not only use the agent continuously, but also do 
so in newer ways for the models to learn new rules. 
Second, these methods also assume that users will be 
tolerant of errors as the agent learns new skills and 
willing to provide feedback to train the agent. 
Furthermore, another drawback is the effort and time 
required to train and calibrate models to achieve high 
levels of accuracy. As Nwana [38] cautions, the process 
of evaluating the most suitable learning technique(s) 
for a given set of desired outcomes involves arduous 
and time-consuming work.  For example, Mitchell et al. 
[30] empirically determined a threshold (180 samples) 
for their model, and then gathered data from six 
participants’ use over a time-frame of 16 months.  

In our future work, we intend to use the corpora of 
data based on conversation analysis to extract temporal 
features using machine learning techniques. Our 
question of interest here remains: can CAs predict 
users’ affective state or any signs of stress based on 
their tone, pitch, and words used? Going forth, we posit 
that findings from multiple approaches would enable us 
to answer such questions, revealing deeper insights 
into user experiences and design strategies for future 
work with CAs. 
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