
 

Abstract—Drivers’ cognitive and physiological states affect 

their ability to control their vehicles. Thus, these driver states 

are important to the safety of automobiles. The design of 

advanced driver assistance systems (ADAS) or autonomous 

vehicles will depend on their ability to interact effectively with 

the driver. A deeper understanding of the driver state is, 

therefore, paramount. EEG is proven to be one of the most 

effective methods for driver state monitoring and human error 

detection. This paper discusses EEG-based driver state 

detection systems and their corresponding analysis algorithms 

over the last three decades. First, the commonly used EEG 

system setup for driver state studies is introduced. Then, the 

EEG signal preprocessing, feature extraction, and classification 

algorithms for driver state detection are reviewed. Finally, 

EEG-based driver state monitoring research is reviewed in-

depth, and its future development is discussed. It is concluded 

that the current EEG-based driver state monitoring algorithms 

are promising for safety applications. However, many 

improvements are still required in EEG artifact reduction, real-

time processing, and between-subject classification accuracy.  

 
Index Terms─Intelligent Vehicles, Data Analysis, Machine 

Learning Algorithms, Neural Network, Advanced Driver 

Assistance Systems, Electroencephalography. 

 

I. INTRODUCTION 

he NHTSA reports that human errors were responsible 

for 94% of the fatal crashes in 2016 [1]. The driver state 

and physiological condition affect his/her ability to 

control the vehicle. Therefore, by monitoring the driver state, 

one can predict anomalies or the potential for error and hence 

devise methods to prevent the consequences of human error. 

There are two solutions for human error minimization: fully 

automated vehicles (SAE Level 5) and driver monitoring 

systems (DMS). The first option eliminates the problem by 
totally removing the driver from controlling the car. The 

second option aims to monitor the driver and the driving task 

and assist the driver (or both the driver and the vehicle) in 

overcoming potential errors or hazards. Even though level 5 

automated vehicle-related research shows promising results, 

fully automated vehicles will not be ready for the road in the 

foreseen future [2, 3]. Therefore, DMS is crucial to reducing 

human errors at present. DMS belongs to the family of 

advanced driving assistance systems (ADAS). Nevertheless, 
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unlike other ADAS functions measuring vehicle 

performance, such as lane detection/control and traction 

control, DMS directly measures the driver’s state and 

behavior during driving. Since the majority of human errors 

are driver distraction, inattention, fatigue, and drowsiness, 

most DMS are designed for driver cognitive state 

surveillance and driver attention improvement [4]. 

The DMS can be designed for application or for research 

purposes. The application systems are designed for on-

market vehicles. Hence, they are compact and economical 

but have limited driver state detection ability. Application-

based DMS were found first in Toyota and Lexus in 2007 

[5]. They use a camera to monitor the driver’s face and eyes, 

as shown in Fig 1a. Once the driver’s eyes are closed and the 

face is not facing forward, the DMS starts to warn the driver 

and decrease vehicle speed. A similar device was also 

designed by BMW (Fig 1b) named as “Driver Attention 

Camera” [6]. The BMW monitoring system can detect 

whether the driver’s eyes are focused on the road. In addition 

to eye and face tracking, a pressure sensor was developed 

and applied on Tesla to force the driver to put his/her hands 

on the wheel while driving [7]. Currently, most application-

based DMS apply simple algorithms that can only detect 

drivers’ physical behaviors instead of drivers’ cognitive 

states, such as “daydreaming” and distraction during driving. 

The DMS designed for research are more complex and 

expensive but can detect different types of driver states. 

Research-based DMS employ different sensors for 

surveilling and analyzing driver behavior. Popular sensors 

include electroencephalography (EEG), eye tracker, body 

motion tracker, handgrip sensor, electrocardiography (ECG), 

and electromyography (MEG). These sensors are complex to 

analyze and expensive but can provide more comprehensive 

information about the driver’s driving condition and driver 

state. 

Among all the research-based DMS sensors, EEG is one 

of the most effective driver state monitoring devices. The 

main reasons are that i) EEG collects human brain signals, 

which directly measure drivers’ cognitive states and 

thoughts, and ii) EEG signal temporal resolution is high, 

which can provide more neural-related activity from the 

driver [8]. Therefore, for research-based DMS, researchers 
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usually apply EEG signals not only for driver state but also 

as an evaluation baseline, such as finding correlations 

between the EEG results and eye gaze signals or correlations 

between the EEG results and ECG signals in driver’s state 

detection [9, 10]. 

 

  
Fig 1a.  Sample Driver 

Monitoring System (Lexus) 

Fig 1b.  Sample Eye Tracking 

Sensor (BMW) 

 

The history of EEG-based driver condition studies can be 

traced back to the early 1980s. M. Lemke proved that driver 

vigilance decreases during long-term driving through EEG 

measurement [11]. K. Idogawa et al. compared a 

professional driver’s EEG signal with a regular driver [12]. 

They found that brain waves move from the beta to alpha 

domains in monotonous tasks such as driving. However, due 

to computational limitations and a lack of pattern recognition 

algorithm support, EEG-based driver studies did not become 

popular until the start of the 21st century. S. Lal et al. 

developed a LabVIEW program to categorize driver fatigue 

levels based on different brain rhythm spectra [13]. In 2013, 

D. Gohring et al. collected and processed driver EEG signals 

that successfully controlled a vehicle through the brain at low 

speed [14]. Presently, EEG-based driver state studies have 

become systematic in both the study of interest areas and data 

analysis. The study areas can be categorized as driver 

distraction/inattention, fatigue/drowsiness, and intention 

study [15, 16]. The objective of the driver 

distraction/inattention study is to evaluate and classify driver 

distraction levels under different types of nondriving-related 

tasks (secondary tasks). Researchers instruct testing subjects 

to conduct one or multiple secondary tasks, such as texting, 

talking, or watching videos while driving [17]. Additionally, 

the EEG device collects the subject brain signal. Both EEG 

signals and vehicle performance are used as evaluation 

references. The distraction detection accuracy varies greatly 

among every literature because of different experimental 

environments, subjects, and processing algorithms. The 

driver fatigue/drowsiness experiments study and classify 

driver fatigue levels during driving. To achieve a drowsiness 

state, testing subjects are usually required to drive for an 

extended period (70-90 minutes) at a specific time (midnight 

or afternoon). “Vehicle lane departure”, reaction time when 

facing emergency conditions, and EEG signal results are 

usually applied for drowsiness level evaluation [18]. The 

detection accuracy also varies among different studies, but 

most research results indicate that the higher the drowsiness 

level is, the more steering movement exists [19-21]. Driver 

intention studies are mostly focused on driver brake intention 

studies. Driver brake intention experiments can be 

categorized into two types. The first type of braking study 

aims to find driver reaction time among different ages, sexes, 

or driving conditions [22-25]. The second type investigates 

the time difference between the brain brake intention and 

actual driver brake action [26-29]. In the second type of 

experiments, numerous braking warning systems can be 

designed based on either improving brake intention or 

minimizing the abovementioned time difference. Since 

driver state analysis contains fatigue and distraction studies, 

most experiments are conducted under a lab environment 

with a driving simulator, as shown in Fig 2. However, several 

experiments are conducted using a real vehicle under the 

real-world environment, such as the brake intention 

experiment [29]. Fig 3 presents a summary of several 

representative studies in EEG-based driver state studies in 

recent years. The EEG data analysis method is a data-driven 

study predicting driver behavior based on previously 

collected data through machine learning techniques. A 

flowchart of a typical EEG-based driver behavior data 

analysis is presented in Fig 4. The signal preprocessing step 

is designed for noise reduction and artifact removal. The 

feature extraction extracts spatial, temporal, and frequency 

features for model development. The classification step 

builds a mathematical model based on the training data. The 

details of these methods are discussed in the remaining 

sections of this article. 

 

  
Fig 2a.  Vehicle-based simulator Fig 2b.  Desktop-based simulator 

 

 
Fig 3.  EEG-based Driver State Study Representative Literature 

 

As illustrated above, EEG behavior on driver condition 

has been studied for over three decades, and numerous data 

processing and model development techniques exist. The 

studies for EEG features and classification have also evolved 

from simple time or frequency domain analysis to statistical 

analysis based on big data. The objective of this paper is to 

document and review the majority of popular experiments 

and data processing methods for EEG behavior in driver 



 

condition-related research. In section II, an overview of the 

EEG signal collection apparatus and methods are briefly 

illustrated. In sections III to V, the EEG data preprocessing, 

feature extraction, and data classification algorithms are 

explained in detail. In section VI, we demonstrate and 

summarize EEG data processing research on driver 

conditions and predict their future development. 

 
Fig 4.  EEG-based Driver State Study Workflow 

 

II. EEG SIGNAL COLLECTION METHODS 

A typical EEG signal collection system is composed of a 

signal acquisition cap, an amplifier, and a data storage 

device, as shown in Fig 5. After data collection, 

corresponding data analysis software is used for data 

postprocessing. For the amplifier, most EEG-based driver 

state studies employ a commercially designed amplifier such 

as gUSBamp [30]. For data storage devices, laptops, or 

microprocessors such as Raspberry Pi are popular options. 

For data analysis software, there exist either commercial 

software such as for BrainVision Analyzer-related products 

or open-source data reading and analysis toolboxes such as 

EEGLAB and OpenBCI [31-33]. The abovementioned 

devices are standard in EEG driver state-related research, 

and the results are not significantly affected by alternative 

selections. However, for signal acquisition caps, different 

types of devices can cause distinct experimental results. The 

remaining paragraphs in this section introduce the EEG 

signal acquisition system categorization and the 

corresponding properties. 

 

 
Fig 5.  EEG Signal Collection System 

 

Most EEG signal acquisition systems applied in driver 

state studies can be categorized as dry electrode vs. wet 

electrode and wire communication vs. wireless 

communication. In addition, several researchers use a remote 

headband for EEG signal collection. The next paragraphs 

explain the details of every categorization. 

A. Wet Electrode vs. Dry Electrode 

Wet and dry electrode EEG caps are shown in Fig 6. The 

wet electrode is made of silver or silver chloride material, 

which are commonly used in lab environments. The dry 

electrode uses stainless steel as a conductor to transmit the 

microvolt signals from the brain surface to the EEG 

amplifier. Compared with dry electrodes, electrolytic gel 

must be injected between the electrode and subject brain 

surface to increase the signal impedance and improve 

accuracy. Hence, the experimental procedure for the wet 

electrode EEG cap is more complicated than that for the dry 

electrode. Moreover, both the EEG cap and subject’s head 

need to be cleaned after every experiment, which is time-

consuming and inconvenient. However, according to K. 

Mathewson et al. [34], wet EEG electrodes exhibit less noise 

than dry electrodes, and the root mean square (RMS) results 

for brain event detection are lower. Therefore, from the 

perspective of driver study, the wet electrodes fit simulator-

based research better, but the dry electrodes are more 

convenient under real-world driving conditions. 

 

 
 

Fig 6a.  Wet Electrode Fig 6b.  Dry Electrode 

 



 

B. Wire Connection vs. Wireless Connection 

The wired and wireless connections mentioned in this 

paragraph are discussed in the scope of connectivity between 

the EEG cap and the amplifier. The wired connection-based 

EEG cap has redundant wires, which are easily broken by the 

subject during driving events. Besides, cable sway during 

driving can cause motion artifacts that affect the EEG 

collection accuracy [35]. For EEG wireless connections, the 

most popular connection method is through Wi-Fi. Wireless 

connections are more convenient and compact because they 

eliminate redundant wires. However, the main drawback of 

wireless EEG devices, based on the research results of A. 

Torok, et al., are the electrical noises during wireless 

transmission [36]. When external electrical effects exist, the 

EEG signals collected by the wireless method are 

contaminated. The other drawback of wireless connections 

in driver state studies is the loss of connections. Presently, 

communication stability and loss of information under real-

world driving conditions are still the most important 

challenges in connected vehicles [37]. Hence, using a 

wireless EEG cap could experience loss of information 

problems. Therefore, at present, a wired connected EEG 

signal cap for driver state study is still a better choice due to 

the accuracy and completeness of signal information. 

C. Traditional Electrode vs. Headband 

Currently, most traditional electrodes and headband 

positions are based on the 10-20 international system 

electrode positioning standard that was adopted around 1958 

[38]. However, the traditional EEG cap can collect signals 

among the whole brain region, while the headband can only 

collect signals from the forehead, as shown in Fig 7. Since 

the traditional EEG cap collects multiple channel signals, it 

can detect more brain activities. Typical selection about the 

number of channels for driver state study is 21, 32, and 64 

channels. Among these channels, the C3, Cz, and C4 

electrodes are most important because they measure the area 

that is in charge of the driver’s thought and motor movement 

[39-41]. Furthermore, after multidimensional data are 

obtained, several advanced data processing techniques can 

be applied for analysis, which is illustrated in the following 

sections. However, multidimensional data analysis is a 

double-edged sword. Multidimensional data processing 

requires advanced signal processing knowledge, and the 

computational load can be extremely high. In contrast to 

traditional electrodes, the headband only collects four 

channels from the human forehead, and the price is lower 

compared with most EEG signal acquisition systems. R. 

Foong employed a muse headband for driver vigilance 

detection [42, 43]. Although the headband can detect brain 

activities, the device accuracy and robustness still need to be 

verified. 

 

 
 

Fig 7a.  Traditional Electrode 

Cap 
Fig 7b.  Headband 

 

III. EEG SIGNAL PREPROCESSING 

The objective of signal preprocessing is artifact removal. 

According to M. Sazagar and M. Young, there are two types 

of EEG artifacts, non-physiological and physiological [44]. 

The non-physiological artifacts are mainly caused by the 

EEG amplifier, external noises, and electrodes. Usually, in 

the context of EEG-based driver state studies, non-

physiological artifacts are removed by a linear bandpass 

filter with bandwidth ranges from 1 to 50 Hz. Physiological 

artifacts are generated by testing subjects and can be 

categorized as ocular, muscle, and cardiac artifacts [45]. In 

the context of driver state studies, muscle and ocular artifacts 

commonly occur and must be removed. Unlike non-

physiological behavior, the abovementioned artifacts can be 

considered a measure of subject behavior, and the majority 

of them exist in a similar bandwidth with the desired EEG 

signals. Thus, the identification and removal of these 

artifacts require a more complicated data analysis algorithm. 

Table I tabulates a summary of several popular artifact 

removal algorithms that are employed for driver state 

analysis applications. In the remaining paragraphs, these 

algorithms and their corresponding alternative forms are 

illustrated in detail. 

A. Independent Component Analysis 

ICA is a blind source separation algorithm for multivariate 

signal processing. Two major assumptions for ICA are as 

follows: first, the mixture signals are composed of several 
statistically independent components; second, the 

relationship between the mixture signals and every 

independent component is linear. Thus, the ICA equation is 

 

𝑋[𝑛×𝑘] = 𝑊[𝑛×𝑚] ∗ 𝑆[𝑚×𝑘] (1) 

𝑆[𝑛×𝑘] = 𝐴[𝑚×𝑛] ∗ 𝑋[𝑛×𝑘] (2) 

 

where Equation (1) is the reconstruction formula and 

Equation (2) is the decomposition function. In these 

equations, 𝑋 is the collected multichannel EEG signal matrix 

with 𝑛  channels and 𝑘  samples, S is the independent 

component matrix with user-defined 𝑚  components, W is 

the transformation matrix, and 𝐴 is the pseudoinverse of the 

𝑊 matrix. ICA is an unsupervised learning process, and the 

transformation matrix 𝑊  is acquired through multiple 

iterations. R. Nuno et al. proved that the application of the 

ICA algorithm for ocular artifact removal in EEG signal 

processing is feasible [46]. In their algorithm, eye activity 



 

and brain activities are separated by amplitude kurtosis. Even 

though the ICA algorithm can separate ocular artifacts 

effectively, the algorithm’s computational load is high, and 

the detection process is manual. Therefore, there exist 

several modified ICA algorithms to achieve faster processing 

speed or enable automatic detection. 

 

1) Improved Processing Speed 

The key reason for the high computational load of the ICA 

algorithm is a lack of prior knowledge input. As mentioned 

above, ICA is an unsupervised learning algorithm that 

requires the computer to estimate every weight factor 

through multiple iterations. Thus, employing EEG artifact 

prior knowledge is an effective method for decreasing the 

computational load. B. Peters modified the ICA by adding 

reference signals [47]. With the help of reference signals, 

only desired components are analyzed, which improves the 

processing speed. M. Akhtar et al. proposed a spatially 

constrained ICA (SCICA) [48]. In this algorithm, only 

artifact-related components are extracted, which decreases 

the computational load and achieves a high extraction rate as 

well. 

 

2) Automatic Detection 

To solve the automated detection issue, C. Ahlstrom 

proposed an automated artifact handling algorithm (ARTE) 

to automatically detect and remove artifacts through ICA 

[49]. In their paper, wavelet decomposition and hierarchical 

clustering methods are combined with ICA. The use of 

wavelet decomposition extracts 2-second segments, and the 

application for hierarchical clustering automatically 

separates artifacts from EEG signals. According to the 

comparison results with other state-of-the-art algorithms, the 

ARTE outperforms other algorithms and is suitable for 

artifact removal for EEG signals collected in a naturalistic 

environment. I. Winkler et al. also proposed an automatic 

ICA artifact detection algorithm [50]. During the ICA, they 

take the temporal correlations, frequency and spatial features 

as detection factors. 

In summary, the present modified ICA algorithms can 

automatically detect and extract ocular artifacts, and the 

computational speed is improved by adding prior artifact 

knowledge as input. Nevertheless, since ICA is based on 

estimation, ocular artifacts cannot be completely removed. In 

the future, how to maximally remove all physiological 

artifacts still needs to be resolved. 

B. Canonical Correlation Analysis (CCA) 

CCA is also a blind source separation algorithm. However, 

the goal of CCA is to seek the maximum correlation between 

two multivariate datasets. More specifically, assume 𝑋 and 

𝑌  are two collections of the dataset. The CCA algorithm 

attempts to find vectors 𝑎𝑥 and 𝑎𝑦 such that 

 

max
𝑎𝑥,𝑎𝑦

𝜌(𝑎𝑥𝑋, 𝑎𝑦𝑌) =
𝐸[𝑎𝑥𝑋𝑎𝑦𝑌]

√𝐸[(𝑎𝑥𝑋)2]𝐸[(𝑎𝑦𝑌)
2
]

 
(3) 

where 𝜌 is the correlation factor between 𝑎𝑥𝑋 and 𝑎𝑦𝑌. By 

taking the derivative of Equation (3) with respect to 𝑎𝑥 and 

𝑎𝑦, the maximum correlation factor yields 

 

{
𝐶𝑥𝑥

−1𝐶𝑥𝑦𝐶𝑦𝑦
−1𝐶𝑦𝑥𝑎𝑥 = 𝜌2𝑎𝑥

𝐶𝑦𝑦
−1𝐶𝑦𝑥𝐶𝑥𝑥

−1𝐶𝑥𝑦𝑎𝑦 = 𝜌2𝑎𝑦

 (4) 

 

where 𝐶𝑥𝑥 and 𝐶𝑦𝑦  are the autocovariance of 𝑋 and 𝑌, and 

𝐶𝑥𝑦 and 𝐶𝑦𝑥 are the cross-covariance between 𝑋 and 𝑌. The 

CCA algorithm was first applied for EEG muscle artifact 

removal by S.V. Huffel and her colleagues [51]. In that 

paper, two data matrices 𝑋(𝑡)  and 𝑌(𝑡)  were selected for 

CCA, where 𝑋(𝑡) is the time-series brain signal and 𝑌(𝑡) 

was a one-sample delayed version of 𝑋(𝑡) . According to 

their signal-to-noise ratio comparison test, the CCA 

algorithm outperforms ICA and the low-pass filter method 

for muscle artifact removal. However, the conventional CCA 

algorithm requires manual labeling for muscle artifacts. 

Thus, several improved CCA algorithms have been aimed at 

achieving automatic detection. In addition, since CCA 

requires less computation load, there are some algorithms to 

modify the CCA algorithm and implement it for real-time 

artifact detection and artifact removal. 

 

1) Automatic Detection 

To achieve automatic detection, prior knowledge about 

EEG artifacts is required. J. AS et al. improved the 

conventional CCA method by combining EEG spectral 

knowledge for automatic detection [52]. They employed 

spectral slope analysis for artifact detection and set a 

threshold for the correlation coefficient to remove several 

components. The experimental results proved that the 

modified CCA algorithm could remove high-frequency 

muscle contamination. M. Jatoi combined empirical mode 

decomposition (EMD) and CCA for automatic eye blink 

artifact detection [53]. The EMD was used as a signal 

decomposition algorithm to detect the eye blink template. 

After that, CCA was applied to remove those artifacts. 

Experimental results indicated that the EMD-CCA algorithm 

can be easily adjusted and applied to every EEG electrode. 

 

2) Real-Time Processing 

Compared with ICA, CCA requires a lower computational 

load. Hence, it is easy to implement for real-time artifact 

removal processing. P. Wang et al. applied CCA for real-

time muscle artifact removal [54]. Based on their results, the 

CCA for muscle artifact removal outperforms the ICA 

algorithm. C.T. Lin and Y.K. Wang proposed a real-time 

artifact removal algorithm based on CCA [55]. They applied 

the CCA algorithm to decompose the EEG signal and used a 

Gaussian mixture model to classify artifacts. This algorithm 

is helpful in driver state studies because it can detect artifacts 

commonly occurring during driving, such as eye blinks and 

head/body movement. 

In general, the CCA algorithm can accurately remove 

muscle artifacts and requires a lower computational load. In 



 

addition, there are built-in libraries such as “canoncorr” in 

MATLAB and open-source packages in Python (“scikit-

learn”) [56, 57]. The implementation of CCA for artifact 

removal in EEG-based driver state studies is convenient. 

C. Wavelet Transform (WT) 

WT can be considered as an alternate form of Fourier 

transform. Instead of transforming every piece of the signal 

into a sine wave, the WT applies a specific waveform to 

decompose signals. WT can be categorized as a continuous 

and discrete wavelet transform (CWT/DWT). CWT is a 

signal processing technique for nonstationary signal time-

frequency analysis, and DWT is commonly applied for 

signal denoising and artifact removal [58]. For DWT 

analysis, the input signal is decomposed into detail and 

approximate information with a high-pass and a low-pass 

filter, respectively, and the formula is 

{
𝑦𝑙𝑜𝑤[𝑛] = 𝑥[𝑛] ∗ 𝑔[𝑛]

𝑦ℎ𝑖𝑔ℎ[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛]
 (5) 

 

where 𝑔[𝑛] is the low-pass filter and ℎ[𝑛] is the high-pass 

filter. For multilevel decomposition, the approximate 

information is selected for next level decomposition, and the 

detailed information is expressed as the level coefficient, as 

shown in Fig 8. After wavelet decomposition, a threshold is 

applied to discard signals with artifacts. This algorithm 

brings up two concerns: first, how to select the mother 

wavelet and the number of decomposition levels; second, 

how to avoid overfiltering. 

 

 
Fig 8.  DWT 3 Level Decomposition Flowchart 

 

1) Decomposition Level and Waveform Selection 

For DWT, the choice of waveform and decomposition 

level is critical for artifact removal effectiveness. 

Unfortunately, there is no exact answer to the number of 

decomposition levels and waveform choices because human 

subjects and experimental conditions are varied, which 

strongly affects artifact behavior. Thus, these values need to 

be determined according to specific experiments. S. Khatun 

et al. compared different wavelet performances for ocular 

artifact removal [59]. The “Symlet”, “Haar”, “Coiflet”, and 

“biorthogonal wavelets”, as shown in Fig 9, are used for 

wavelet decomposition, and the decomposition level is set to 

eight. The results indicate that coif3 and bior4.4 are more 

effective. In a V. Krishmnaveni ocular artifact removal 

study, she found that a 6-level Haar wavelet transform 

outperforms the other state-of-the-art DWT algorithm [60]. 

Even though the number of levels and wavelets are hard to 

determine, it is clear that the decomposition level needs to 

achieve the desired frequency range and the mother wavelet 

needs to be similar to the signal. 

 

 
Fig 9.  Common Wavelet Functions for the EEG DWT 

Algorithm 

 

2) Overfiltering Avoidance 

The ocular artifact exhibits spectral properties similar to 

those of the EEG signals. When dealing with ocular artifact 

removal, the DWT algorithm has the potential to remove not 

only EOG artifacts but also useful EEG information. 

Therefore, to avoid over-filtering, the DWT algorithm is 

often combined with other source separation algorithms. ICA 

is a popular choice because it helps with removing the most 

useful EEG information from the artifact components. The 

details about the ICA and DWT combination algorithms are 

explained in the hybrid detection section. 

D. Regression Analysis 

Regression analysis is a statistical method for exploring 

the relationship between multiple variables of interest. In the 

context of EEG artifact removal, the variables of interest are 

EEG signals and artifacts. The assumption for regression 

analysis is that the measured EEG signal is composed of pure 

EEG and artifacts. as shown in Equation (6) 

 

𝐸𝐸𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝐸𝐸𝐺𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑝 ∗ 𝐸𝑂𝐺 (6) 

 

where 𝐸𝐸𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  is the collected EEG signal, 𝐸𝐸𝐺𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

is the ground-truth pure EEG signal, 𝐸𝑂𝐺  is the ocular 

signal, and 𝑝  is the weighted factor. The objective of 

regression analysis is to estimate the weighted factors so that 

the estimated “pure EEG signals” are close to the ground 

truth. Unlike blind source separation, regression analysis 

requires one or more reference channels. The regression 

technique for removing the EOG artifact can be achieved by 

either time or frequency domain analysis [61, 62]. Both 

domains could achieve good results, but time-domain 

analysis can achieve better EOG artifact removal 

performance with an appropriate choice of an adaptive filter 

[45]. 

The advantages of regression analysis are easy modeling, 

and the computational load is extremely low. Since there 

exist one or multiple reference channels, EEG artifacts can 

be easily extracted based on those references. However, in 



 

some EEG experiments, reference channels are not available. 

Even though the reference channels are obtained, the EEG 

signals are usually also contained in those channels. 

Therefore, for present studies, blind source separation 

algorithms such as ICA, CCA, and wavelet transform are 

more popular than regression analysis. 

E. Hybrid Detection Methods 

All the algorithms have advantages and drawbacks. 

Therefore, combining those algorithms to overcome those 

drawbacks and mutual beneficiation is the trend for the 

current artifact removal study. Z. Tian et al. conducted a 

comprehensive review of several hybrid detection methods 

[45]. In this section, we briefly introduce the ICA and DWT 

combination method, regression analysis and ICA 

combination method because they are commonly applied in 

EEG-based driver state studies. 

 

1) Combination between ICA and DWT 

Both ICA and DWT algorithms can cause over-filtering 

issues [63]. After typical ICA processing, the extracted 

artifact components usually still contain the remaining EEG 

signals. Thus, removing the entire component may cause a 

loss of EEG information. A similar issue also occurs in DWT 

processing because some artifacts, such as ocular artifacts, 

share similar spectral properties with the desired EEG 

signals. Therefore, some studies attempted to combine ICA 

and DWT to determine whether these two algorithms can 

mutually benefit each other. 

P. Funk combined the ICA and DWT to automatically 

remove EEG artifacts [49]. In their paper, wavelet 

decomposition was applied to the recorded EEG signals for 

several 2-second segment signals. After wavelet 

decomposition, the ICA algorithm was applied to remove 

EEG artifacts. According to their results, the ICA and DWT 

combination algorithm exhibited better artifact removal 

effectiveness. M. Issa et al. also combined ICA with wavelet 

decomposition to prevent over-filtering issues [64]. They 

conducted ICA first and used DWT to decompose extracted 

artifact components. With this improved algorithm, the 

artifact cleaning results outperformed other state-of-art 

artifact removal algorithms. 

However, the computational load for the ICA and DWT 

hybrid detection algorithm is high. In EEG-based driver state 

studies, the ability for real-time processing is required. 

Therefore, improving this hybrid detection algorithm 

processing speed is an interesting but challenging study for 

the future. 

 

2) Combination between Regression Analysis and ICA 

Similar to the DWT and ICA combination algorithm, 

hybrid detection with regression analysis and the ICA 

method also tries to avoid over-filtering issues. As 

mentioned above, the artifact components after ICA 

decomposition may still contain neural-related activities. For 

regression analysis, the selected reference channels may also 

provide useful EEG information. Therefore, combining the 

ICA and regression analysis can avoid eliminating too much 

desired neural information. 

M. Mannan proposed an automatic artifact identification 

and removal algorithm based on ICA and regression analysis 

[65]. ICA was first applied for component decomposition, 

and then regression analysis was used for artifactual 

components. Since they assumed that artifactual components 

contain few neural activities, regression analysis-based 

artifact removal can minimize the error of over-filtering. 

 

 
TABLE I 

EEG ARTIFACT REMOVAL ALGORITHM METHODOLOGY SUMMARY 

 
 

IV. EEG FEATURE EXTRACTION METHODS 

Feature extraction is a term in machine learning that 

obtains desired information from redundant noisy signals 

[66]. Since EEG signals are nonstationary and usually 

collected in high dimensions, feature extraction is necessary 

for filtering and dimension reduction. In an EEG-based 

driver state study, feature extraction algorithms based on 

temporal, frequency, and spatial domains are employed to 

obtain driver condition features based on prior known EEG 

features. In this section, we introduce common EEG features 

applied in driver state studies and then illustrate 

corresponding feature extraction algorithms. 
 



 

 
Fig 10.  Literature Distributions for Common Feature Extraction 

Algorithms 

 

A. Common Driver-Related EEG Features 

In this section, the event-related potentials (ERPs) and the 

event-related desynchronization/synchronization features in 

the temporal domain (ERD/ERS), EEG rhythms in the 

frequency domain, and brain lobe locations in the spatial 

domain are illustrated. 

1) ERP and ERD/ERS 

ERP behavior is a small electric voltage change that can 

be measured by EEG in response to motor or cognitive event 

stimuli. Since EEG collected signals are contaminated by 

artifacts, averaging over multiple experimental trials is 

necessary to observe clear ERP results, as shown below. 

 

𝑥𝑐𝑙𝑒𝑎𝑟(𝑡) =
1

𝑁
∗ ∑ 𝑥𝑟𝑎𝑤(𝑡, 𝑚)

𝑁

𝑚=1

 (7) 

 

where 𝑁 is the total number of trials, 𝑥𝑟𝑎𝑤(𝑡,𝑚) is the 𝑚𝑡ℎ 

trial signal, and 𝑥𝑐𝑙𝑒𝑎𝑟(𝑡)  is the averaged ERP result. 

Different waveforms exhibited in ERP behavior represent 

different brain events. The P300 waveform is one of the most 

popular waveforms for studying driver inattention and driver 

fatigue. Detailed descriptions of P300 and other common 

waveforms are documented in V. K. Sinha’s study [67]. The 

major benefit of the ERP is the ease of calculation and 

observation. However, the ERP feature is both time-locked 

and phase-locked to brain stimulus events. 

According to G. Pfurtscheller’s research, ongoing EEG 

can also be processed for brain cognitive or motor events 

[68]. Then, he introduced the ERD/ERS features. The 

calculation of ERD/ERS contains bandpass filtering, 

squaring sample amplitude (power samples), and averaging 

the power samples across all trials. The ERD/ERS behavior 

could be observed through both the time domain and spatial 

domain. The major benefit of the ERD/ERS feature is the 

non-phase-locked to the event. 

 

2) EEG Rhythms 

EEG data are nonstationary signals composed of different 

waves. Table II is a summary of different brainwaves and 

their corresponding mental states [69]. For the driver 

cognitive states study, alpha (8-12 Hz) and beta (12.5-30 Hz) 

are the most interesting and perhaps the most relevant 

rhythms, and the waveforms are presented in Fig 11 and 12, 

respectively. 

 
TABLE II 

BRAIN RHYTHMS AND THEIR CORRESPONDING MENTAL STATES 

Brain 

Rhythm Type 

Frequency 

Range (Hz) 

Mental States and 

Conditions 

Delta 0.1-3 Deep Sleep, non-REM 

Sleep*, Unconscious 

Theta 4-7 Intuitive, Creative, Recall, 

Fantasy, Imaginary, Dream 

Alpha 8-12 Relaxed but Not Drowsy, 

Tranquil, Conscious 

Low Beta 12-15 Formerly SMR*, Relaxed 

yet Focused, Integrated 

Midrange 

Beta 

16-20 Thinking, Aware of Self & 

Surroundings 

High Beta 21-30 Alertness, Agitation 

Gamma 30-100 Motor Functions, Higher 

Mental Activity 

 

 
Fig 11.  Alpha Waveform (Extracted from Experimental Data) 

 

 
Fig 12.  Beta Wave (Extracted from Experimental Data) 

 

3) Brain Lobes 

The human brain (Fig 13) is composed of the forebrain, 

midbrain, and hindbrain [70]. The forebrain is one of the 

most important regions for EEG driver state study. The 

forebrain area can be categorized by four main lobes: the 

frontal lobe, parietal lobe, occipital lobe, and temporal lobe, 

as presented in Fig 14 [71]. The overall functions of each 

lobe are tabulated in Table III. In driver state studies, the 

frontal, parietal, and occipital lobes are the main areas of 

interest. 

 
TABLE III 

LOBES FUNCTIONS SUMMARY TABLE 

Brain Region Main Functions 

Frontal Lobe 
Execution, Thinking, 

Planning 

Motor Cortex Motor Movement 

Sensory Cortex Sensation 

Temporal Lobe Memory, Language 

Occipital Lobe Vision 

Parietal Lobe Perception, Arithmetic 

 



 

 
Fig 13.  Human Brain Composition 

 

 
Fig. 14.  Main Lobes for Human Forebrain Region 

 

B. EEG Feature Extraction Algorithm 

The objective of the EEG feature extraction algorithms is 

to obtain uncovered features from temporal, frequency, and 

spatial domains for classification. According to the literature, 

the EEG-based driver state study feature extraction 

algorithm can be categorized as signal processing-based 

methods and statistical-based methods, as shown in Table 

IV. This chapter explains and evaluates every popular feature 

extraction algorithm tabulated in Table IV. 

 

1) Signal Processing-based Methods 

Signal processing-based methods employ classical signal 

analysis techniques to extract features from temporal, 

frequency and spatial frequencies. Common spatial pattern 

(CSP) and spectral analysis algorithms are illustrated in this 

section. 

a) Common Spatial Pattern (CSP) 

Originally, the CSP algorithm was popular in human 

motor imagery analysis [72]. Currently, the CSP algorithm is 

widely employed in driver state studies because drivers’ 

thoughts and cognition are similar to motor imagery 

behavior. The objective of the CSP algorithm is to estimate 

a transformation matrix so that the transformed EEG signal 

dimensions are reduced and the remaining signal variances 

can be distinguished between different classes. For instance, 

two-class multidimensional EEG signals are processed by 

the CSP algorithm. After processing, the EEG signal 

dimensions are reduced to two. Moreover, class A 

transformed signal variance is maximized in dimension 1 and 

minimized in dimension 2, while the class B transformed 

signal variance is the opposite, as shown in Fig 15a and 15b. 

To obtain the CSP transformation matrix, the eigenvalues 

and eigenvectors of the covariance matrices from each class 

of EEG signals are required, which is explained in detail in 

[72]. The application of the CSP algorithm for driver state 

study is usually on driver intention and cognitive load 

analysis [73, 74]. The CSP algorithm requires less 

computation load and is easy to implement. However, the 

CSP algorithm has several challenges. The first challenge is 

how to convert it to multiclass feature extraction. The second 

challenge is how to improve feature extraction accuracy. 

(1) Multiclass CSP 

One of the easiest methods to extend a feature extraction 

algorithm from binary class to multiclass is the “one versus 

rest” (OVR) technique. The OVA technique can be 

considered as an alternative form of a binary class algorithm 

because it considered one class as positive and all the other 

classes as negative. The OVR-based CSP algorithm was 

mentioned by Dornhege et al., and the mathematical 

derivation was explained by W. Wu et al. [75, 76]. The other 

method for extending a conventional CSP algorithm to 

multiclass is joint approximate diagonalization (JAD) [77]. 

The idea of the JAD-based CSP algorithm is to 

approximately diagonalize multiple covariance matrices for 

CSP transformation. The JAD-based CSP algorithm is 

widely used in driver studies because it improves the 

extraction accuracy compared with the OVR technique and 

has a relatively low computation load. 

 

 
Fig 15a.  2 Classes EEG Signals Before CSP 

 

 
Fig 15b.  Two Classes EEG Signals After CSP 

(2) Extraction Accuracy Improvement 

The CSP algorithm extraction accuracy can be improved 

by employing the filter bank technique, adaptive estimation, 

and nonparametric analysis. The filter bank-based CSP 

(FBCSP) was first proposed by K. K. Ang et al. in 2008 for 

motor imagery [78]. Then, this algorithm was applied for 

driver cognitive load analysis. The FBCSP algorithm 

analyzes and extracts features from the EEG signals through 

different frequency bandwidths. In addition, every extracted 

feature from the frequency band is classified through a 



 

classifier. Comprehensive scanning and classification ensure 

that the FBCSP algorithm picks the best features. However, 

this process also increases the algorithm processing time, 

especially when the classifier is a nonlinear classifier. The 

adaptive-based CSP algorithm (ACSP) was proposed by X. 

Song [79]. This algorithm combines the adaptive parameter 

estimation technique with the CSP algorithm to achieve 

better feature extraction performance. A. Costa et al. also 

designed an ACSP feature extraction algorithm [80]. They 

found that the ACSP algorithm is able to achieve similar 

classification results with fewer calibration sessions. The 

nonparametric analysis of CSP is based on the assumption of 

the non-Gaussian distribution of EEG data during driving 

[81]. According to the experimental results, the 

nonparametric analysis based CSP classification 

performance is 5% higher than that of conventional CSP. 

With the abovementioned modification algorithms, the 

CSP feature extraction technique can extract driver state 

features effectively. However, the only constraint of all CSP 

algorithms is that the collected data must be multichannel 

because the CSP is a spatial filter-based feature extraction 

algorithm. 

b) Spectral Analysis 

As shown in Table IV, the spectral analysis contains fast 

Fourier transform (FFT), power spectral density (PSD) 

analysis, and time-frequency analysis. 

(1) Fast Fourier Transform (FFT) Analysis 

Fourier transform is one of the most common techniques 

to inspect signals in the frequency domain [82], as shown in 

Equations (8) and (9). 

 

𝐹{𝑔(𝑡)} = 𝐺(𝑓) = ∫ 𝑔(𝑡) ∗ 𝑒𝑖∗−2π𝑓𝑡𝑑𝑡

∞

−∞

 (8) 

𝐹−1{𝐺(𝑓)} = ∫ 𝐺(𝑓) ∗ 𝑒𝑖∗−2π𝑓𝑡𝑑𝑓

∞

−∞

= 𝑔(𝑡) (9) 

 

where 𝐺(𝑓) is the signal in the frequency domain and 𝑔(𝑡) 

is the signal in the time domain. FFT is an efficient algorithm 

for processing the Fourier transform in discrete time and 

discrete frequency (sampled frequency). When dealing with 

EEG data, the FFT algorithm transforms the time-series 

signal into the frequency domain, and the mean powers from 

different rhythms are selected as features. B. Peters et al. 

conducted FFT analysis and used the dominant frequency, 

average power, and center of gravity of frequency as features 

to detect the driver fatigue level [47]. C. Lin studied the mean 

power from FFT analysis to detect driver distraction [83]. 

The benefit of the FFT algorithm is its fast processing 

speed and ease of use. For instance, MATLAB has the built-

in function “fft()” for fast Fourier transform, and in Python, 

the NumPy library also provides the “fft” function [56, 84]. 

The major disadvantage of the FFT algorithm is the loss 

of time-domain information. It is known that EEG signals are 

nonstationary [85]. Hence, the FFT transform cannot provide 

users with both temporal and frequency domain information 

for optimal spectral selection. 

(2) Power Spectral Density (PSD) 

The PSD algorithm measures the power density of the 

EEG signal over a certain frequency band selected by the 

user. For driver state studies, frequency bands ranging from 

8-30 Hz (alpha and beta rhythms) are popular choices. The 

maximum value, variance, and mean are usually selected as 

features [86]. Fig 16 presents PSD results from testing 

subject EEG data. According to Fig 16, the power density 

increases between 5-15 Hz (alpha and partial beta rhythm). 

PSD can be calculated through the FFT, Welch, and Burg 

methods. S. Yaacob compared different PSD methods for 

driver behavior studies [87]. According to their experimental 

results, the PSD analysis with the Welch method performs 

better in the detection of driver fatigue. 

 

 
Fig 16.  EEG PSD analysis result 

 

The PSD algorithm analysis procedures are simple and 

ready for real-time processing, which makes it one of the 

most common EEG-based driver state feature extraction 

techniques [88]. In addition, numerous studies illustrate how 

to tune parameters such as the time window and overlap 

percentage to improve extraction efficiency [89-91]. 

However, conventional PSD methods are not suitable for 

short data segments and sharp variations in the spectra [92, 

93]. For driver state analysis, data segments are short, and 

sharp changes in spectra exist. Therefore, the autoregressive 

model-based PSD analysis is introduced. 

The autoregressive model (AR) is another approach for 

PSD analysis. The AR model is a linear regression-based 

method for future signal estimation based on the present and 

previous signals, as shown in Equation (10): 
 

𝑋𝑡 = ∑𝜑𝑖𝑋𝑡−𝑖

𝑛

𝑖=1

+ 𝜀𝑡 (10) 

 

where 𝜑𝑖  is the corresponding AR parameter, 𝑋𝑡−𝑖  is the 

current and previous observations, and 𝜀𝑡  represents signal 

noise. The benefit of the AR model-based PSD analysis is its 

computational efficiency. H. Nguyen et al. applied the AR 

model for driver fatigue feature extraction [94]. According 

to their results, the classification accuracy was above 90%. 



 

(3) Time-Frequency Analysis (TF Analysis) 

TF analysis is a spectral analysis method that presents the 

signal spectral power in both the time and frequency 

domains. Since EEG signals during vehicle driving are 

nonstationary, the TF analysis could provide comprehensive 

temporal and frequency domain information simultaneously 

about the driver’s state. The two most popular TF analysis 

methods are the short-time Fourier transform (STFT) and 

wavelet transform (WT). The STFT conducts a Fourier 

transform by selecting small time windows and composing 

all time windows together. The equation of the continuous-

time STFT is 

 

{𝑥(𝑡)}(𝜏,𝜔) = ∫ 𝑥(𝑡)𝜔(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 (11) 

where 𝑥(𝑡) is the time-domain EEG signal and 𝜔(𝑡 − 𝜏) is 

the time window function. For discrete-time STFT, the 

equation is 

 

{𝑥[𝑛]}(𝑘, 𝜔) = ∑ 𝑥[𝑛]𝜔[𝑛 − 𝑘]𝑒−𝑗𝜔𝑛

∞

𝑛=−∞

 (12) 

 

where 𝑘 is the time resolution and the other parameters are 

the same as in Equation (11). The theory of the STFT 

algorithm is straightforward, and the implementation is 

simple. Thus, the STFT algorithm is widely applied in EEG-

based driver state studies [95-98]. However, in STFT 

analysis, there is a trade-off between the time and frequency 

resolution. Both time and frequency resolutions are 

controlled by the selected time window. A large time 

window width provides a smaller frequency resolution but a 

larger time resolution and vice versa. Hence, some EEG 

information can be ignored with an improper choice of time 

window width. In addition, the time window width remains 

constant during the entire processing period, which is a waste 

of time when the STFT processes a nonimportant frequency 

band or time band. The WT algorithm can overcome the 

abovementioned drawbacks. As mentioned in the 

preprocessing chapter, WT includes CWT and DWT 

processing. In the context of EEG-based driver state studies, 

DWT is commonly used for feature extraction. The DWT 

equation and processing procedures are shown in Equation 

(5) and Fig 8, respectively. The determination of the DWT 

decomposition level is trivial, and the corresponding 

literature is tabulated in Table IV [99-105]. 

 

2) Statistical-based Methods 

Unlike signal-processing-based methods, statistical-based 

methods do not study signal dynamics but detect and extract 

EEG driver state-related features from a large amount of 

experimental data. Usually, the use of statistical analysis 

methods does not require too much prior knowledge about 

EEG features and driver-related EEG behaviors. However, 

without applying any prior knowledge about the signal may 

encounter a high computational load issue. In this section, 

discriminant analysis and statistical entropy analysis 

methods are illustrated. 

a) Discriminant Analysis 

Discriminant analysis is a statistical technique to project 

samples with different classes to a hyperplane so that the 

distance between the data in each class and the hyperplane 

becomes maximum. Fig 17 illustrates the discriminant 

analysis principal in the 3D animation. 

 

       
Fig 17.  Discriminant Analysis Hyperplane and Data 

Presentation 

Discriminant analysis is commonly applied for driver 

fatigue feature extraction. C. Lin employed a nonparametric 

feature extraction method for motion sickness detection 

study [106]. He also compared the nonparametric 

discriminant analysis method with the linear discriminant 

method and found that the nonparametric discriminant 

analysis exhibits 20% better classification performance than 

the LDA method [107]. According to the literature results, 

discriminant analysis provides excellent feature extraction 

performance. 

b) Statistical Entropy 

Entropy, originally, was a measure of the disorder of a 

system in the thermodynamics field. In 1948, C. Shannon 

introduced the entropy theory into the information and signal 

processing field, which was named statistical entropy [108]. 

The equation is 

 

𝐻 = −∑𝑃𝑖 log(𝑃𝑖)

𝑛

𝑖=1

 (13) 

 

where 𝑃𝑖 is the probability of case 𝑖 in the event. For EEG 

application, the entropy method is used for quantification of 

the similarity among every selected EEG pattern in either the 

time or frequency domain. 

The most popular algorithms for statistical entropy 

analysis in the time domain are approximate entropy and 

sample entropy. The approximate entropy (AE) equation is 

 

𝐴𝐸(𝑚, 𝑟) =
1

𝑁 − 𝑚 + 1
Φm −

1

𝑁 − 𝑚 + 2
Φm+1 (14) 

 

where 𝑁 is the length of the EEG data, 𝑚 is the selected EEG 

segment data length, and Φm and Φm+1 are the average of 

similarity fractions as shown below: 

 



 

Φm = ∑ log(𝐶(𝑖, 𝑟, 𝑚))

𝑁−𝑚+1

𝑖=1

 (15) 

Φm+1 = ∑ log(𝐶(𝑖, 𝑟, 𝑚))

𝑁−𝑚

𝑖=1

 (16) 

 

where 𝐶(𝑖, 𝑟,𝑚) is the similarity between the selected EEG 

segments and the 𝑚𝑡ℎ segments. The similarity threshold is 

a user predefined value 𝑟. The smaller the AE value, the 

higher the repeatability in the signal. The advantages of 

approximate entropy analysis are the tolerance of noisy 

signals and nonprior knowledge requirements about the 

signals [109]. However, since approximate entropy requires 

a self-check analysis (the selected EEG segments have to be 

compared with their own so that special cases that cause 

log(0) do not exist), the result is biased, which is a critical 

issue when dealing with a small number of EEG segments. 

The sample entropy (SE) is introduced to solve the potential 

biased results issue, and the equation is 

 

𝑆𝐸(𝑚, 𝑟) = −log(Φm/Φm+1) (17) 

 

where Φm  and Φm+1  are the same as Equations (15) and 

(16). Similar to AE, the smaller the SE value, the higher the 

repeatability of the signal. 

In the frequency domain, spectral-based entropy (SPE) 

and wavelet-based entropy (WE) are commonly applied 

[110, 111]. SPE can be considered an extension of PSD 

analysis, and the equation is 

 

𝑆𝑃𝐸 = −∑𝑃(𝑖)log(𝑃(𝑖))

𝑛

𝑖=1

 (18) 

 

where 𝑃(𝑖)  is the normalized power spectral density, as 

shown in Equation (19): 

 

𝑃(𝑖) =
𝐴(𝜔𝑖)

∑ 𝐴(𝜔𝑖)𝑖

 (19) 

 

where 𝐴(𝜔𝑖)  is the PSD at the 𝑖𝑡ℎ  frequency range and 

∑ 𝐴(𝜔𝑖)𝑖  is the sum of PSD among all frequency ranges. The 

WE analysis requires wavelet transform. After conducting 

the wavelet transform, the EEG energy in the user-defined 

decomposed level can be calculated as 

 

𝑃(𝑗) =
𝐸(𝑗)

∑𝐸(𝑗)
 (20) 

 

where 𝐸(𝑗) is the energy at level 𝑗 and ∑𝐸(𝑗) is the sum of 

energy among all levels. Then, the WE is calculated as 

 

𝑊𝐸 = −∑𝑃𝑖 log(𝑃𝑖)

𝑛

𝑖=1

 (21) 

 

Both SPE and WE can extract EEG features effectively, but 

it requires frequency or time-frequency analysis and prior 

knowledge about the signals. 

Currently, the applications of statistical entropy on EEG 

analysis are combinations with AE, SE, SPE, and WE. P. 

Wang applied SPE, AE, SE, and fuzzy entropy to detect 

driver fatigue [112]. According to his findings, the 

combination of all entropy feature extraction methods could 

provide better detection accuracy. In addition to combination 

features, modification and improvement based on current 

entropy analysis are also popular. H. Wang combined WE, 

AE, and SE as features for driver fatigue studies [104]. In the 

research, they introduced the term “peak-to-peak entropy” to 

further improve the extraction effectiveness, as shown 

below: 

 

𝑃𝑃𝑒𝑛 = max(𝐸𝑛(𝑡)) − min(𝐸𝑛(𝑡)) (22) 

 

where 𝐸𝑛(𝑡)  is either AE or SE. A. Routray proposed 

chaotic entropy for driver drowsiness detection [113]. The 

chaotic entropy analysis is composed of AE, SE, and a 

modified SE algorithm (MSE), whose equation is 

 

𝑚𝑆𝐸(𝑚, 𝑟) =
1

(1 + 𝑒
𝑑[𝑥(𝑖),𝑥(𝑗)]−0.5

𝑟 )
 

(23) 

 

where 𝑑[𝑥(𝑖), 𝑥(𝑗)]  is the distance between the EEG 

segments and 𝑟 is the tolerance threshold. The objective of 

the chaotic entropy analysis is to select the most effective 

feature from AE, SE, and MSE for different EEG electrodes 

to improve the classification accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TABLE IV 

EEG COMMON FEATURE AND POPULAR FEATURE EXTRACTION ALGORITHM SUMMARY 

V. EEG CLASSIFICATION METHODS 

The classification algorithm of EEG analysis in driver 

condition studies can be categorized as a traditional machine 

learning classifier and deep learning-based classifier. The 

traditional methods are mostly state-of-art classifiers such as 

linear discriminant analysis (LDA), support vector machine 

(SVM), naïve Bayes (NVB), and kth nearest neighbor (kNN). 

The deep learning methods are different neural network 

models such as the feedforward neural network (FFN), 

convolutional neural network (CNN), recurrent neural 

network (RNN), fuzzy neural network (FNN), and 

autoencoder neural network (AE). Table V presents a 

summary and brief explanation of every method, and their 

detailed explanation and equations are illustrated below. 

 

 
Fig 18.  EEG-based Driver State Analysis Classification Algorithm 

Distribution 

A. Traditional Machine Learning Algorithms 

 

1) Linear Discriminant Analysis 

The LDA algorithm belongs to discriminant analysis, 

which is one of the simplest but most effective classifiers in 

real-world applications. It linearly transforms data to a 

hyperplane to maximize the distance among each class of 

data. The LDA algorithm finds the transformation matrix by 

solving and finding the maximum eigenvalue from the 

between-class and with-in class metrics. The equation for the 

maximum eigenvalue is 

 

𝐸 = max(𝑒𝑖𝑔(𝑆𝑤
−1𝑆𝐵)) (24) 

 

where 𝑆𝑤  and 𝑆𝐵  are the with-in and between-class metrics, 

respectively. Their equations are 

 

𝑆𝑤 = ∑(𝑥𝑖 − 𝜇𝑦𝑖)(𝑥𝑖 − 𝜇𝑦𝑖)
𝑇

𝑛

𝑖=1

 (25) 

𝑆𝑏 = ∑(𝜇𝑘 − 𝜇)(𝜇𝑘 − 𝜇)𝑇
𝑚

𝑘=1

 (26) 

 

where 𝑥𝑖 is the collection of the 𝑖𝑡ℎ sample, 𝜇𝑦𝑖 is the mean 

value of the 𝑖𝑡ℎ sample, and 𝜇 is the overall mean value of all 

samples. After finding the maximum eigenvalue, the 

corresponding eigenvectors compose the transformation 

matrix. 

The desired classifier for EEG-based driver state study 

requires i) ease of implementation and ii) robustness to 

different types of features. The LDA classifier meets both 

requirements. For ease of implementation, there are 

numerous built-in and open-source LDA classifier packages, 

such as the “scikit-learn” library for Python and the 

“fitcdiscr” function in MATLAB. For the robustness of 

different features, the LDA algorithm can maintain high 

classification accuracy for almost all different types of input 

EEG features. J. Milan, et al. employ the “Cz” electrode 

potentials as the features for LDA classification for driver 

behavior studies [114]; K. K. Ang, et al. used CSP as the 

feature for LDA classification in driver cognitive load 

research [115]; X. Fan, et al. applied theta wave power as 

input for LDA classification to recognize emergency 

situations [116]. The abovementioned literature selects 

different features for the LDA classifier but still obtains a 

classification accuracy over 70%. 

However, the LDA classifier can only predict discrete 

classes such as drowsiness and non-drowsiness or level 1 

distraction, level 2 distraction, and alert. Hence, the LDA 

algorithm is not fit for continuous regression analysis. 

Moreover, the LDA is sensitive to outlier data. If the 

extracted EEG features are noisy, the LDA prediction 

performance will decrease. Therefore, a careful artifact 

removal and signal preprocessing process is necessary for 

LDA classification. 

 



 

2) Support Vector Machine (SVM) 

SVM, similar to LDA, defines a hyperplane to separate 

different classes of data at a maximum distance. However, 

the main differences between SVM and LDA are as follows: 

first, the SVM only considers the data points near the 

classification boundaries; second, SVM can be tuned by a 

kernel function to dramatically improve its classification 

accuracy. A.K. Nagar proposed using kernel-based SVM to 

detect driver cognitive state [105]. They found that the SVM 

with a radial-based function (RBF) kernel classification 

accuracy is 2% higher than the SVM with a linear kernel 

function. J. Zhang proposed an RBF kernel-based support 

vector machine combined with a particle swarm optimization 

(PSO) algorithm to increase the driver vigilance prediction 

accuracy [95]. In addition to the kernel function, J. Lian 

proposed a transductive support vector machine with prior 

information (PI-TSVM) to improve the classification 

accuracy [117]. The TSVM is similar to a semi-supervised 

learning algorithm but learning is based on the test data. They 

collected the ratio of the positive samples to negative 

samples as prior information. With the help of this 

information and its application to the TSVM, the 

classification accuracy is improved. 

The major benefit of the SVM classifier is the 

classification accuracy, especially with the help of kernel 

functions. According to J. Lin and J. Zhang’s experimental 

results, the SVM with kernel function classification accuracy 

is similar to the deep learning algorithm, and the training 

period is shorter than the deep learning algorithm. Moreover, 

there are many existing open-source SVM algorithms 

available, such as “fitcsvm” for SVM and LIBSVM for C++ 

and Java [118]. Hence, implementing the SVM classifier is 

easy and effective. However, when tuning the SVM 

parameters, the selection of a kernel function is time 

consuming and trivial. Therefore, a proper SVM classifier 

for EEG-based driver state study requires experience and 

prior knowledge about the EEG signals. 

 

3) Naïve Bayes (NVB) 

NVB is a probabilistic-based classifier for 

multidimensional data classification. The equation is 

 

𝑃(𝑋|𝑌) =
𝑃(𝑌|𝑋)𝑃(𝑋)

𝑃(𝑌)
 (27) 

 

where 𝑋 is the target event and 𝑌 is the known event. The 

assumption of the NVB classifier is that every input feature 

is independent of each other and that the contributions 

among every feature are equal. Despite easy application and 

multivariate analysis, the NVB method did not present good 

classification results for most EEG-based driver state studies. 

C. Lin applied the NVB classifier to study driver cognitive 

state [106]. According to the experimental results, the NVB 

method-based classification results are lower than those of 

the other state-of-art methods. J. Hu proposed an algorithm 

for automatic detection of driver fatigue [119]. They 

compared the NVB classified results with the AdaBoost and 

SVM classifiers through the receiver operating characteristic 

(ROC) curve method. His results have demonstrated that 

both SVM and AdaBoost classification results are over 30% 

better than the NVB classifier. The main reasons for the poor 

NVB performance are the independent feature input and the 

equal feature weight requirements. In reality, the collected 

EEG signal in every channel is a combination of multiple 

independent components. Hence, using the EEG time-

domain signal as an input for NVB classification violates the 

independent rule. Even though ICA preprocessing can be 

conducted, the ground truth about the number of independent 

components is unknown. Therefore, NVB still cannot 

perform an ideal classification. Moreover, the features 

extracted weight from EEG cannot be guaranteed to be equal 

because the features exhibit different characteristics with 

different testing subjects or testing environments. Therefore, 

despite its ease of application and fewer training period 

advantages, the NVB classifier usually cannot provide the 

best classification results in EEG-based driver state studies. 

 

4) Kth Nearest Neighbor (KNN) 

The kNN is a nonparametric classification algorithm 

based on distance estimation and majority vote. The basic 

idea about the kNN is to calculate the distances between the 

unknown data and known data and then rank the distances 

from low to high. The results of the unknown data class are 

determined by the highest vote in the first kth close distance 

known data. There are three common distance functions: 

Euclidean, Manhattan, and Minkowski, which are presented 

below [120]. 

 

𝐷𝐸𝑢 = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑘

𝑖=1

 (28) 

𝐷𝑀𝑎 = ∑|𝑥𝑖 − 𝑦𝑖|

𝑘

𝑖=1

 (29) 

𝐷𝑀𝑖 = (∑(|𝑥𝑖 − 𝑦𝑖|)
𝑞

𝑘

𝑖=1

)

1
𝑞

 (30) 

 

where 𝑥 is the testing sample, and 𝑦𝑖 is the known sample. 

The main benefit of the kNN algorithm is no training 

period. There is no training phase in the kNN method but 

directly calculates the distances between the testing data and 

the existing known data. Moreover, the kNN algorithm could 

be considered a local optimization algorithm. In EEG 

signals, some features are locally clustered. Therefore, this 

method is suitable. However, the main disadvantage of kNN 

is that it is time consuming when dealing with a 

multidimensional large dataset. Since every point distance is 

required for calculation, the computation time is dramatically 

increased. The other disadvantage of the kNN algorithm is 

the biased distance when dealing with abnormal features. 

The solution to this is standardization. S. H. Adil compared 



 

the kNN, SVM, and NVB classifiers to detect driver 

distraction [121]. 

B. Deep Learning Algorithms 

Originally, deep learning-based classification algorithms 

were applied in image processing. Recently, it has become a 

popular classification technique in EEG driver state 

detection with the development of computation ability. The 

deep learning algorithms estimate parameters from training 

data through massive computation. Therefore, generally 

speaking, the deep learning-based algorithm classification 

results are accurate. In this section, the feedforward neural 

network (FNN), convolutional neural network (CNN), 

recurrent neural network (RNN), and autoencoder (AE) are 

illustrated. 

 

1) Feedforward Neural Network (FFNN) 

The FFNN is the most basic but effective neural network 

topology for EEG-based driver state analysis, as shown in 

Fig 19. The FFNN combines the input directly with weight 

and bias factors to calculate the output with the equation 

shown below: 

 

𝑦𝑗 = ∑𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑖

𝑛

𝑖=1

 (31) 

 

where 𝑤𝑗𝑖 is the weight factor in the 𝑗𝑡ℎ layer and 𝑖𝑡ℎ neuron 

and 𝑏𝑖  is the bias factor for the 𝑖𝑡ℎ  neuron. To obtain 

classification results, an activation function such as sigmoid 

or ReLU is used after calculating the output (𝑦𝑖) [122, 123]. 

For EEG-based driver state analysis, the FFNN inputs are 

either EEG signals or features extracted from the raw EEG 

signals, and the outputs are desired classification results such 

as fatigue or distraction level. The advantage of the FFNN is 

the robustness for different types of feature input. However, 

the FFNN model requires massive computation power to 

estimate the weight and bias factor. Moreover, the selection 

of neurons and layers can cause overfitting issues. Just like 

any other learning method, the FFNN requires large training 

sets to learn the content of the input signals in order to 

produce (fire) an output desirably. The next paragraphs 

demonstrate the advantages and improvements of the FFNN 

model. 

 

 
Fig 19.  Typical FNN Model Topology 

a) Robustness to Different Types of Features 

According to previous EEG driver state study literature, 

nearly all common EEG extracted features, such as time-

series signals, DSP features, DWT features, and statistical 

entropy can be used for the FFNN model with relatively high 

classification accuracy. S. Yaacob employed PSD as a 

feature to classify driver fatigue [87]. A 4-layer FFNN 

topology with the error backpropagation learning algorithm 

was developed, and the classification rate achieved 85%. S. 

Mozaffari applied the signal mean, standard deviation, and 

power from DWT decomposition as features for the FFNN 

model to detect driver fatigue [102]. Their experimental 

results indicate that the accuracy is approximately 89%. In 

addition to the single feature input, hybrid combined features 

have also been selected. H. Wang et al. selected both sample 

entropy and wavelet entropy to feed into FNN for detecting 

driver drowsiness levels [124]. With the combination of 

entropy features, the classification accuracy is over 96.5%. 

The robustness of the FFNN model ensures that it becomes 

the most popular classifier in the EEG driver state study (Fig 

18). 

b) Massive Computation Load and Overfitting 

(1) Computation Load Reduction 

The reason for the massive computational load is the 

backpropagation algorithm convergence rate. To solve this 

issue, E. Leber et al. applied Laverberg-Marquardt 

backpropagation (LMBP) [99]. The LMBP method, 

compared with the conventional error backpropagation 

(EBP) algorithm, has a faster convergence rate and is more 

robust. With this learning algorithm, the driver drowsiness 

detection rate is over 80%. Another learning optimization 

technique is the magnified gradient function (MGF). The 

objective of the MGF function is to speed up the convergence 

rate by magnifying the gradient function [125]. S. Lal et al. 

applied the MGF function for learning professional and 

unprofessional driver drowsiness states [126]. According to 

their results, both professional and unprofessional driver 

fatigue detection accuracy is higher than 80%. 

(2) Overfitting Issue Prevention 

Overfitting is a common issue for the FFNN model in 

EEG-based driver state studies because of the noisy input 

signals and sensitive classification. Bayesian FFNN 

(BFFNN) is a common neural network model to prevent 

overfitting. The BFFNN model predicts the weights and bias 

factor based on Bayesian probability, which regularizes the 

model. H. Nguyen applied the BFFNN model to classify 

driver fatigue. For their classification process, three layers’ 

weight and bias factors are regularized based on the Bayes 

theorem. Their classification accuracy achieves close to 

90%. 

Even though the FFNN could be tolerated for multiple 

feature inputs, the detection results could be tuned by using 

different learning algorithms. The learning speed is slow and 



 

requires large testing data. Therefore, it cannot be used for 

real-time processing and classification. 

 

2) Convolutional Neural Network (CNN) 

The CNN model topology contains one or multiple 

convolutional layers and a fully connected neural network, 

as shown in Fig 20. In the convolutional layer, the kernel 

filter is convolved with the input data with the equation 
 

𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] = ∑ ∑ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]

𝑘𝑗

 (32) 

 

where ℎ is the kernel filter, and 𝑓 is the input signal. After 

the kernel filter, some CNN models down sample the 

extracted features for faster computational speed. In the fully 

connected neural network, the extracted features are applied 

for classification. Thus, in the context of EEG-based driver 

state study, the convolutional layers can replace feature 

extraction, and the fully connected network is considered as 

classification. The most common application of the CNN 

model for driver state study is the end-to-end learning 

technique, which means considering the raw EEG signal 

directly as input and the driver condition as output. W. 

Kameyam et al. employed CNN for end-to-end learning in 

driver workload studies [127]. In the CNN topology, eight 

convolutional layers were developed, and the outputs were 

“low”, “medium”, and “high” workload conditions. Their 

detection accuracy reached 93.4%. However, the traditional 

end-to-end CNN cannot extract implicit EEG features such 

as spatial features. Therefore, some studies have modified 

the CNN model to extract more implicit features to improve 

classification accuracy. 

C. Lin et al. proposed a novel channel-wise CNN (CCNN) 

method for driver workload estimation [128]. They found 

that when predicting the driver cognitive load with raw EEG 

data, the CCNN detection accuracy outperforms the 

traditional machine learning algorithm and FFNN model. A 

similar modification of the CNN model was also applied by 

S. Zuo [129]. In their modified CNN topology, there were 

layers to extract EEG spatial and temporal features. The 

detection accuracy was compared with the SVM classifier, 

and the results were 2% higher. Y. Huang has applied 

covariance-based CNN, which achieved better results than 

other common CNNs [130]. 

Despite the high classification accuracy, the CNN 

topology requires a large quantity of data for training and a 

lengthy training period. Moreover, CNNs easily cause 

overfitting issues with a small amount of data [131]. 

Therefore, the CNN algorithm is not suitable for real-time 

unsupervised studies for EEG-based driver condition 

analysis. 

 
Fig 20.  CNN Model Topology 

3) Recurrent Neural Network (RNN) 

The RNN model is developed based on the idea of 

parameter sharing [132]. The distinct part of the RNN 

topology is that neurons in the same layer are dependent on 

each other, as shown in Fig 21. Equations for RNN are shown 

below: 

 

𝑥(𝑡) = 𝜎(𝑤𝑖𝑛𝑢(𝑡) + 𝑤𝑟𝑒𝑐𝑥(𝑡 − 1) + 𝑏) (33) 

 

where 𝜎 is the activation function, 𝑤𝑖𝑛  is the input weight 

factor for the previous layer, 𝑤𝑟𝑒𝑐  is the recurrent weight 

factor for the previous perceptron, 𝑢(𝑡) is the input, 𝑥(𝑡 −
1) is the previous perceptron, and 𝑏 is the bias factor. 

 

 
Fig 21.  RNN Model Topology 

 

Since the EEG electrode collected signals are a 

combination of multiple independent components, the EEG 

signals are dependent on each other. Therefore, the RNN 

topology can provide accurate detection accuracy. T. Falk et 

al. employed RNN for driver intention detection [133]. In 

this study, EEG signal features are extracted through a spike 

algorithm. The RNN model is composed of a reservoir and a 

readout layer where the reservoir contains temporal and 

spatial information. According to the experimental results, 

the detection accuracy reached over 88%, which is higher 

than that of other traditional machine learning techniques, 

such as SVM. The RNN model can also be combined with 

the CNN. In S. Lee’s research on driver brake intention, they 

compared RCNN with the LDA classifier [134]. The area 

under the curve (AUC) for CNN was 0.86, which was 0.25 

higher than that of the LDA classifier. The RNN model was 

also combined with a fuzzy neural network (FNN) model 

[135]. C. Lin proposed a recurrent self-evolving fuzzy neural 

network (RSEFNN) to increase the memory capability for 

noise cancellation. A special RNN, the Hopfield neural 

network, was employed by A. Nagar [136], and the equation 

[137] is 

 

𝐶
𝑑�⃗� 

𝑑𝑡
= −𝛼�⃗� + 𝑊𝑥 + 𝜃  (34) 

 

where 𝛼  is a diagonal factor matrix, 𝑢  is the system state 

vector, and 𝑊 is a symmetric weighted matrix. According to 

their experimental results, the Hopfield-based RNN model 

outperformed other learning models, such as KNN and SVM. 

The disadvantages of the RNN model are the high 

computational load or unstable training due to the 

vanishing/exploding gradient issue. The nature of the RNN 



 

model is to contain previous time point neuron information 

for the next time point calculation. Thus, during the learning 

period, a close-to-zero random value multiplication causes a 

smaller gradient (vanishing gradient problem) and longer 

training time, while a large random value multiplication 

causes a larger gradient (exploding gradient problem) and the 

model is not stable. Therefore, the RNN model training 

period is time consuming compared with other neural 

network models. 

 

4) Fuzzy Neural Network (FNN) 

The FNN model combines the artificial neural network 

(ANN) and fuzzy systems, as shown in Fig 22. Both ANN 

and fuzzy systems are pattern recognition algorithms. The 

benefit of ANN is that it does not require prior knowledge. 

However, ANN requires a large number of observations, and 

the training process is not straightforward. Fuzzy systems do 

not require a large training dataset, and the learning process 

is clear. Nevertheless, fuzzy systems require prior 

knowledge about the learning data, and the training can be 

time consuming. Hence, a combination of ANN and FNN 

could unite both advantages but exclude the disadvantages. 

 

 
Fig 22.  FNN Model Topology 

 

Lin et al. proposed a novel channel-wise CNN (CCNN) 

method for driver workload estimation [128]. They found 

that when predicting the driver cognitive load with raw EEG 

data, the CCNN detection accuracy outperforms the 

traditional machine learning algorithm and FFNN model. A 

similar modification of the CNN model was also applied by 

S. Zuo [129]. In their modified CNN topology, there were 

layers to extract EEG spatial and temporal features. The 

detection accuracy was compared with the SVM classifier, 

and the results were 2% higher. Y. Huang has applied 

covariance-based CNN, which achieved better results than 

other common CNNs [130]. 

 

5) Autoencoder (AE) 

AE is an unsupervised deep learning algorithm that 

estimates the output so that it is similar to the input. The 

topology of the AE algorithm is shown in Fig 23. 

 

 
Fig 23.  Autoencoder Network Model Topology 

J. Lian et al. applied variational AE to provide a robust 

feature representation of EEG signals [117]. In their study, 

the AE was combined with transductive SVM (TSVM). The 

semi-supervised learning algorithm only requires small 

initial training data and can continue training with unlabeled 

EEG signals. Presently, the autoencoder classifier is not 

widely applied for EEG-based driver state studies. However, 

because of the unsupervised learning characteristics, the 

autoencoder classifier exhibits a promising future in EEG 

analysis. 
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VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, the EEG systems for driver state analysis and 

the corresponding EEG state-of-art algorithms are reviewed. 

According to previous literature, EEG driver state analysis 

systems tend toward convenient wearing, compact carrying, 

and economic pricing. However, the reliability, external 

noise resistance, and wireless connection of EEG driver state 

analysis systems still need to be improved. The EEG-based 

brain wave signal monitoring approaches are reviewed with 

sufficient depth to familiarize a reader with the available 

tools and their advantages and limitations. The methods for 

signal collections, signal pre-filtering, signal processing, 

signal feature extractions and classifications are reviewed. 

The previous studies with some successes in each subarea for 

driver state monitoring are presented, along with listing of 

any limitations where applicable. The development of EEG 

driver state analysis algorithms for comprehensive driver 

state detection, accurate classification accuracy, and efficient 

computational load are discussed. Although substantial 

progress in EEG driver state analysis has been made, EEG 

signal analysis algorithms still need to be enhanced in three 

fields: EEG artifact reduction, real-time processing, and 

between-subject classification accuracy. For EEG artifact 

reduction, although numerous artifact removal algorithms 

exist, these algorithms either cannot remove all EEG artifacts 

thoroughly or overfitting useful EEG information. For real-

time processing, most published algorithms achieve real-

time processing speed by sacrificing the algorithm 

effectiveness. For the between-subject classification 

accuracy issue, almost all existing EEG-based driver state 

algorithms cannot be implemented for subject-independent 

analysis. 

In brief, by solving the challenges of EEG systems and 

corresponding driver state analysis algorithms, a deeper 

understanding of driver state and control functions and 

readiness can be developed. This can assist in developing 

ADAS or semi-autonomous systems to minimize human 

error during driving and enhance safety. 
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