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Abstract
Much of the world’s data are stored, managed, and distributed by data centers. Data centers require
a tremendous amount of energy to operate, accounting for around 1.8% of electricity use in the
United States. Large amounts of water are also required to operate data centers, both directly for
liquid cooling and indirectly to produce electricity. For the first time, we calculate spatially-detailed
carbon and water footprints of data centers operating within the United States, which is home to
around one-quarter of all data center servers globally. Our bottom-up approach reveals one-fifth of
data center servers direct water footprint comes from moderately to highly water stressed
watersheds, while nearly half of servers are fully or partially powered by power plants located
within water stressed regions. Approximately 0.5% of total US greenhouse gas emissions are
attributed to data centers. We investigate tradeoffs and synergies between data center’s water and
energy utilization by strategically locating data centers in areas of the country that will minimize
one or more environmental footprints. Our study quantifies the environmental implications
behind our data creation and storage and shows a path to decrease the environmental footprint of
our increasing digital footprint.

1. Introduction

Data centers underpin our digital lives. Though
relatively obscure just a couple of decades prior,
data centers are now critical to nearly every busi-
ness, university, and government, as well as those
that rely on these organizations. Data centers sup-
port servers, digital storage equipment, and net-
work infrastructure for the purpose of large-scale
data processing and data storage [1]. Increasing
demand for data creation, processing, and stor-
age from existing and emerging technologies, such
as online platforms/social media, video streaming,
smart and connected infrastructure, autonomous
vehicles, and artificial intelligence, has led to expo-
nential growth in data center workloads and compute
instances [2].

The global electricity demand of data centers
was 205 TWh in 2018, which represents about 1%
of total global electricity demand [3]. The United
States houses nearly 30% of data center servers,
more than any other country [3–5]. In 2014, 1.8%

of US electricity consumption was attributable to
data centers, roughly equivalent to the electricity
consumption of New Jersey [1]. Previous studies
found power densities per floor area of traditional
data centers almost 15–100 times as large as those
of typical commercial buildings [6], and data cen-
ter power density has increased with the prolifer-
ation of compute-intensive workloads [7]. Though
the amount of data center computing workloads has
increased nearly 550% between 2010 and 2018, data
center electricity consumption has only risen by 6%
due to dramatic improvements in energy efficiency
and storage-drive density across the industry [1, 3].
However, it is unclear whether energy efficiency
improvements can continue to offset the energy
demand of data centers as the industry is expec-
ted to continue its rapid expansion over the next
decade [8].

The growing energy demand of data centers
has attracted the attention of researchers and poli-
cymakers not only due to scale of the industry’s
energy use but because the implications the industry’s
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Figure 1. The system boundaries and interlinkages defining the operational water and carbon footprints of data centers. Specific
power plants, water utilities, and wastewater treatment (WWT) utilities are connected to each data center through their
provisioning of electricity and water. Power plants emit GHGs and consume water in the production of electricity. These
environmental impacts are attributed to data centers in proportion to how much electricity the data center uses (red and blue
dashed lines connecting facilities). The GHG emissions and water consumption associated with the provisioning of treated water
and disposal of wastewater, including the GHGs and water consumed in the generation of the electricity supplied to these
facilities, are also attributed to data centers in proportion to their use of these utilities. Data centers do not directly emit GHGs but
they do directly consume water to dissipate heat. All these facilities work together to keep data centers operational and contribute
to the water and carbon footprint of data centers.

energy consumption has on greenhouse gas (GHG)
emissions and water use. Data centers directly and
indirectly consume water and emit GHG in their
operation. Most data centers’ energy demands are
supplied by the electricity grid, which distributes elec-
tricity from connected power plants. Electricity gen-
eration is the second largest water consumer [9] and
the second largest emitter of GHGs in the US [10].
These environmental externalities can be attributed
to the place of energy demand using several existing
approaches [11, 12].

In addition to the electricity consumed directly by
data centers, electricity is used to supply treated water
to data centers and treat the wastewater discharged by
data centers. Like data centers, water and wastewater
facilities are major electricity consumers, responsible
for almost 1.8% of total electricity consumption in
the US in 2013 [13]. The electricity required in the
provisioning and treatment of water and treatment
of discharged wastewater also emits GHGs that can
be attributed to data centers. Likewise, water used to
generate the electricity used by water and wastewa-
ter utilities in their service of data centers contributes
to the water footprint of these data centers. Water is
also used directly within a data center to dissipate the
immense amount of heat that is produced during its
operation.

The geographic location [14, 15] and the local
electricity mix [16] are strong determinants of a

data center’s carbon footprint, though these spa-
tial details are often excluded in data center stud-
ies. A preliminary water footprint assessment of data
centers by Ristic et al [17] provided a range of
water footprints associated with data center opera-
tion. Although Ristic et al provided general estim-
ates based on global average water intensity factors,
their study highlights the importance of considering
both direct and indirect water consumption associ-
ated with data center operation. Moreover, Ristic et al
highlights the importance of considering the type of
power plants supplying electricity to a data center and
the type/size of a data center, as each of these factors
can significantly impact energy use and indirect water
footprint estimates.

In this study we utilize spatially-detailed records
of data center operations to provide the first sub-
national estimates of data center water and carbon
footprints. Here, water footprint is defined as the
consumptive blue water use (i.e. surface water and
groundwater). The carbon footprint of a data cen-
ter, expressed as equivalent CO2, is used to represent
its global warming potential. Our assessment focuses
on the operational environmental footprint of data
centers (figure 1), which includes the power plant(s),
water supplier, and wastewater treatment plant ser-
vicing the data center. The non-operational stages
of a data center’s life cycle (e.g. manufacturing of
servers) consume relativelymuch less energy [18] and
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are excluded in this study. The spatial detail afforded
by our approach enables more accurate estimates of
water consumption and GHG emissions associated
with data centers than previous studies. Moreover, we
evaluate the impact of data center operation on the
local water balance and identify data centers located
in, or indirectly reliant upon, already water stressed
watersheds. We investigate the following questions:
(i) What is the direct and indirect operational water
footprint of US data centers? (ii) Which watersheds
support each data center’s water demand and what
portion of these watersheds are water stressed? (iii)
How much GHG emissions are associated with the
operation of data centers? (iv) To what degree can
strategic placement of future data centers within the
US reduce the industry’s operational water and car-
bon footprints?

2. Methods

We utilize spatially detailed records on data cen-
ters, electricity generation,GHGemissions, andwater
consumption to determine the carbon footprint and
water footprint of data centers in the US. Our
approach connects specific power plants, water utilit-
ies, and wastewater treatment plants to each data cen-
ter within the US. All data used in this study are for
the year 2018, the most recent year where all data are
publicly available. A visual summary of our methods
is shown in supplementary figure S1 (available online
at stacks.iop.org/ERL/16/064017/mmedia).

2.1. Data center location and energy use
Information availability on data center location
and size varies depending on its type and owner.
Ganeshalingam et al [4] reports likely locations of in-
house small and midsize data centers, which house
approximately 40% of US servers. Detailed inform-
ation on colocation and hyperscale data centers is
derived from commercial compilations [19–21] that
get direct support and input from data center service
providers.

We classified data centers based on the Interna-
tional Data Corporation classification system (sum-
marized in table S1) and estimated the electricity use
based on data center floor space. We used IT load
intensity values (ITs in watt/ft2) for different data
center types (s) from Shehabi et al [22] to estimate
the total energy requirements (DC_Etotal; in MWh) of
colocation and hyperscale data centers as follows:

DC_Etotal = ITs × PUEs ×A (1)

where PUEs is the power usage effectiveness of space
type s, and A is the floor area of data center in ft2.
We account for potential overstatement of data cen-
ter capacity [4], a lack of distinction between gross
and raised floor area, and unfilled rack capacity by
scaling our server counts to match the 2018 estimate

of servers by data center type [3], as shown in table 1
and figure S2. Scaled server estimates are then spa-
tially distributed in proportion to the current spatial
distribution of installed server bases. The number of
servers by state is shown in figure S2.

Power usage effectiveness (PUE) is a key met-
ric of data center energy efficiency [23]. A value of
1.0 is ideal as it indicates all energy consumed by
a data center is used to power computing devices.
Energy used for non-computing components, such
as lighting and cooling, increases the PUE above 1.0
(see equation (2)). Generally, a data center’s PUE is
inversely proportionate to its size since larger data
centers are better able to optimize their energy usage.
Average PUE values and energy use by data center
type were taken from Masanet et al [3] and shown in
table 1 and table S1.

PUE=
Total power supplied to the data center

Power consumed by the IT equipment
.

(2)

2.2. Electricity generation, water consumption, and
GHG emissions
Power plant-specific electricity generation and water
consumption data come from the US Energy Inform-
ation Administration (EIA) [24]. Of the approxim-
ately 9000 US power plants, the EIA requires nearly
all power plants report electricity generation. How-
ever, only power plants with generation capacity
greater than 100 MW (representing three-fourths of
total generation) must report water consumption.
We assigned national average values of water con-
sumption per unit of electricity generation by fuel
type (i.e. water intensity; m3 MW h−1) to all power
plants with unspecified water consumption. Opera-
tional water footprints of solar and wind power were
taken from Macknick et al [25]. Following Grubert
[26], we assign all reservoir evaporation to the dam’s
primary purpose (e.g. hydropower). We connected
hydroelectric dams with their respective power plants
using data fromGrubert [27]. Reservoir specific evap-
oration comes from Reitz et al [28].

The U.S. Environmental Protection Agency’s
eGRID database [29] provided GHG emissions asso-
ciated with each power plant. GHG emissions are
converted to an equivalent amount of carbon dioxide
(CO2)-eq with the same global warming potential so
to derive a single carbon footprint metric [30]. Dir-
ect GHG emission during the operation of data cen-
ters are negligible [18] and therefore not considered
in this study.

Data centers, water suppliers, and wastewater
treatment plants typically utilize electricity gener-
ated from a mix of power plants connected to the
electrical grid. Within the electrical grid, electricity
supply matches electricity demand by balancing elec-
tricity generation within and transferred into/out of
a power control area (PCA). Though it is infeasible
to trace an electron generated by a particular power
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Table 1. Combined direct and indirect water consumption and GHG emissions (carbon equivalence) by data center type. Water
intensity and carbon intensity are reported per MWh of electricity used and per computing workload. Better energy utilization, more
efficient cooling systems, and increased workloads per deployed server has increased the water efficiency of larger data centers.
Computing workloads in hyperscale data centers are almost six times more water efficient compared to internal data centers. Workload
estimates are based on traditional and cloud workloads from [2, 3].

Category

Energy use
(million
MWh)

Computing
workloads
(million)

Water intensity
(m3 MWh−1)

Carbon
intensity

(ton CO2-eq
MWh−1)

Water intensity
(m3/workload)

Carbon
intensity

(ton CO2-eq/
workload)

Internal 26.90 16 7.20 0.45 12.15 0.75
Colocation 22.40 41 7.00 0.42 3.85 0.25
Hyperscale 22.85 76 7.00 0.44 2.10 0.15

plant to the final electricity consumer, there are sev-
eral approaches to relate electricity generation to elec-
tricity consumption (Siddik et al [31] summarizes the
most common approaches).

Here, we primarily rely on the approach used by
Colett et al [32] and Chini et al [33] to identify the
generative source of electricity supplied to any given
data center. This approach assesses electricity gen-
eration and distribution at the PCA level where it
is primarily managed. PCA boundaries are derived
from the Homeland Infrastructure Foundation level
data [34] and crosschecked against Form EIA-861
[35], which identifies the PCAs operating in each
state. Annual inter-PCA electricity transfers repor-
ted by the Federal Energy Regulatory Commission
[36] are also represented within this approach. A
data center (as well as water and wastewater utilit-
ies) draws on electricity produced within its PCA,
unless the total demand of all energy consumers
within the PCA exceeds local generation, in which
case electricity imports from other PCAs are utilized.
If a PCA’s electricity production equals or exceeds
the PCA’s electricity demand, it is assumed all elec-
tricity imports pass through the PCA and are re-
exported for utilization in other PCAs. Siddik et al
[31] notes that water and carbon footprints are sens-
itive to the attributionmethod used to connect power
plants to energy consumers. Therefore, we conduct
a sensitivity analysis (see the supporting inform-
ation for additional details) to test the degree to
which our electricity attribution method affects our

results. Additionally, we also test different assump-
tions regarding the water footprint of hydropower
generation, as this too is a key source of uncertainty.

We focus on the annual temporal resolution and
assume an average electricity mix proportional to the
relative annual generation of each contributing power
plant. Though the electricity mix within a PCA can
fluctuate hourly depending on balancing measures,
these intra-annual variations will not significantly
impact our annual-level results. While it is infeasible
to determine the precise amount of electricity each
power plant provides to each data center, water utility,
and wastewater treatment plant, our approach will
enable us to estimate where each facility is most likely
to draw its electricity. The dependency of a data cen-
ter on local and imported electricity from other PCAs
was calculated using equations (3) and (4).

DC_Ep,l = DC_Ep ×
(
1−

∑
i

ri
)
. (3)

DC_Ep,im = DC_Ep ×
∑
i

ri (4)

where DC_Ep,l and DC_Ep,i are the local (l) and
imported (im) electricity (MWh) to a data center
from PCA p, respectively. DC_Ep is the total elec-
tricity consumption of the data center, whereas ri
represents the electricity contribution of each PCA i
to PCA p as follows:

ri =


Importcon

Generationp +
∑

Importp −
∑

Exportp
, if PCA p is net importer

0, if PCA p is net exporter

where Importcon is defined as the electricity from a
linked PCA i that was consumed within PCA p. Any
imported electricity not consumed with PCA p is
re-exported.

Adjusted electricity consumption from the PCAs
were assigned to the power plants using equation (5).

DC_Ep,k = DC_Ep,adj ×
PPk∑n
k=1PPk

(5)

where DC_Ep,k is the total energy directly consumed
[MWh/y] by data centers from power plant k that is
attributed to PCA p, DC_Ep,adj is the total electricity
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consumption of the data center from PCA p after
adjusting for the inter-PCA electricity transfers, PPk

is the net generation by a specific power plant in
MWh/y, and n is the number of power plants within
PCA p. A similar approach was taken to connect
power plants to water and wastewater utilities, with
their electricity usage (and associated environmental
footprints) then linked to the data center they service.
Boiler feed pumps require an insignificant amount of
electricity to provide water to power plants. There-
fore, we truncate our analysis at this point.

2.3. Water consumption and GHG emissions
associated with data centers
The indirect water and carbon footprint of each
data center consists of water consumption or GHG
emissions associated with the generation of (i) elec-
tricity utilized during data center operation, (ii)
electricity used by water treatment plants for treat-
ment and supply of cooling water to data cen-
ters, and (iii) electricity used by wastewater treat-
ment plants to treat the wastewater generated by
a data center. The GHG emissions or water con-
sumption of a power plant supplying electricity to
a data center is attributed to the data center as
follows:

DC_IFk = DC_Ek × Fk (6)

where DC_IFk is the indirect footprint (water or car-
bon) associated with electricity used during the oper-
ation of a data center frompower plant k andDC_Ek is
the total energy used [MWh/y] by a data center from
power plant k (from equation (5)). When calculating
the indirect water footprint, Fk is the water consump-
tion per unit of electricity generated by power plant k
in m3 MWh−1. When calculating the indirect carbon
footprint, Fk is theGHGemitted per unit of generated
electricity by power plant k (tons CO2-eq MWh−1).

Although the IPCC does not consider water treat-
ment a notable emitter of GHGs [37], wastewater
treatment plants are a major source of GHG emis-
sion [38, 39]. In 2017, total GHG gas emission from
wastewater treatment plants was estimated to be
20 million metric tons, with a direct emission rate of
0.3 kgCO2-eq/y perm3 ofwastewater treated [38, 39].
In absence of facility specific emission data, we have
used the average emission rate for treating wastewater
for all wastewater generated from data center oper-
ation [39]. No direct GHG emissions are assumed
to be associated with data center operation at the
facility [18].

The EPA Safe Drinking Water Information Sys-
tem contains information on the location, system
type, and source of water for each public water and
wastewater utility [40, 41]. We assumed the nearest
non-transient water treatment plant and wastewater
treatment plant services a data center’s water demand

and wastewater management, respectively. After cal-
culating the water supply requirement of a data center
(discussed later in this section), the electricity needed
for treatment and distribution of cooling water can
be calculated using the data from Pabi et al [13] (see
table S2).Water andwastewater treatment plantswere
linked to power plants (as described previously) to
estimate the indirect water footprint associated with
electricity required to distribute and treat water and
wastewater used by a data center. We then sum the
water consumed by each power plant to directly or
indirectly service a data center to determine the total
indirect water footprint of that data center. The indir-
ect water footprint associated with each power plant
was also aggregated within watershed boundaries to
determine which water sources each data center was
reliant upon.

Direct water consumption of a data center can be
estimated from the heat generation capacity of a data
center [42], which is related to the amount of electri-
city used [43]. Estimates of data center specific elec-
tricity demand were multiplied by the typical water
cooling requirement [1]—1.8m3MWh−1—to estim-
ate the direct water footprint of each data center. The
direct water consumption is assigned to thewatershed
where thewater utility supplying the data center with-
draws its water.

Data center wastewater is largely comprised of
blowdown; that is, the portion of cooling water
removed from circulation and replaced with freshwa-
ter to prevent excessive concentration of undesirable
components [44]. We assume all data centers utilize
potable water supplies and cycle this water until the
concentration of dissolved solids is roughly five times
the supplied water [44]. We calculate blowdown from
data center cooling towers using the following com-
monly employed approach [45]:

RBlowdown =
1

C− 1
×REvaporation (7)

where RBlowdown is the blowdown rate required for a
cooling tower (m3 MWh−1), C is the cycle of concen-
tration for dissolved solids (assumed here as 5), and
REvaporation is the rate of evaporation (m3 MWh−1).

2.4. Water scarcity footprint
The water scarcity footprint (WSF; as defined by ISO
14046 and Boulay et al [46]) indicates the pressure
exerted by consumptive water use on available fresh-
water within a river basin and determines the poten-
tial to deprive other societal and environmental water
users from meeting their water demands. We quan-
tified the WSF of data centers using the AWARE
method set forth by Boulay et al [46] (see the Sup-
portive Information for more details). Other societal
and environmental water use data, as well as data on
natural water availability within each US watershed,
come from [47–49].

5



Environ. Res. Lett. 16 (2021) 064017 M Abu Bakar Siddik et al

Figure 2. The blue water footprint (m3) of US data centers in 2018, resolved to each subbasin (8-digit Hydrologic Unit Code).
(A) Direct water footprint of data centers, (B) indirect water footprints associated with electricity utilization by data center
equipment, and (C) indirect water footprints associated with treatment of supplied cooling water and treatment of generated
wastewater.

3. Results

3.1. The water footprint of data centers
The total annual operational water footprint of US
data centers in 2018 is estimated at 5.13 × 108 m3.
Data center water consumption is comprised of three
components: (i) water consumed directly by the data
center for cooling and other purposes (figure 2(A)),
(ii) water consumed indirectly through electricity
generation (figure 2(B)), and (iii) water consumed
indirectly via the water embedded with the electricity
consumption of water and wastewater utilities servi-
cing the data center (figure 2(C)). The data center
industry directly or indirectly draws water from 90%
of US watersheds, as shown in figure 3(A).

Roughly three-fourths of US data centers’ opera-
tional water footprint is from indirect water depend-
encies. The indirect water footprint of data cen-
ters in 2018 due to their electricity demands is
3.83× 108 m3, while the indirect water footprint
attributed to water and wastewater utilities serving
data centers is several orders of magnitude smaller
(4.50× 105 m3). Nationally, we estimate that 1 MWh
of energy consumption by a data center requires 7.1
m3 of water. However, this national averagemasks the
large spatial variation (range 1.8–105.9 m3) in water
demand associated with a data center’s energy con-
sumption. Data centers are indirectly dependent on
water from every state in the contiguous US, much
of which is sourced from power plants drawing water
from subbasins in the eastern and western coastal
states. Less than one-fifth of the industry’s total elec-
tricity demand is from data centers in the West and
Southwest US (regions as defined by NOAA [50]; see
outlined areas in figures 2–5, and figure S4 for region
identification), yet nearly one-third of the industry’s
indirect water footprint is attributed to data centers
in these regions. Indirect water consumption asso-
ciated with energy production in Southwest subbas-
ins is particularly high, despite relatively low elec-
tricity supplied from this region, due to the dispro-
portionate amount of electricity fromwater-intensive

hydroelectricity facilities and the high evaporative
potential in this arid region. Conversely, the South-
eastern region consumes one-quarter of the electri-
city used by the industry but only one-fifth of the
indirect water since data centers in this region source
their electricity from less water-intensive sources.

On-site, direct water consumption of US data
centers in 2018 is estimated at 1.30 × 108 m3. Col-
lectively, data centers are among the top-ten water
consuming industrial or commercial industries in the
US [47]. Approximately 1.70 × 107 m3 of water dir-
ectly consumed by data centers are sourced from a
different subbasin than the location of the installed
servers. Large direct water consumption in theNorth-
east, Southeast, and Southwest regions indicate clus-
tering of servers in these regions. Combined direct
and indirect water and carbon intensities are broken
down by data center type in table 1.

3.2. Reliance of data centers on scarce water
supplies
The WSF of data centers in 2018 is 1.29 × 109 m3

of US equivalent water consumption, which is more
than twice that of the volumetric water footprint
reported in the previous section. The WSF (includ-
ing both direct and indirect water requirements)
per unit of energy consumption is 17.9 m3 US-eq
waterMWh−1, more than double the nationally aver-
aged water intensity (7.1 m3 MWh−1) that does not
account for water scarcity. WSFs that are larger than
volumetric water footprints suggest that data cen-
ters disproportionately utilize water resources from
watersheds experiencing greater water scarcity than
average.

Only one-fourth of the volumetric water foot-
print of data centers resulted from onsite water use.
Yet, more than 40% of the WSF is attributed to
direct water consumption. This indicates that dir-
ect water consumption of data centers, which occurs
close to where the data center is located, is skewed
toward water stressed subbasins compared to its
indirect water consumption, which is distributed
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Figure 3. The subbasin or state of direct and indirect environmental impact associated with data center operation. (A) Water
footprint (m3). (B) WSF (m3 US-eq water). (C) Carbon footprint (tons CO2-eq/y).

Figure 4. A data center’s environmental footprint is highly contingent on where it is located. The (A) water intensity
(m3 MWh−1), (B) water scarcity intensity (m3 US-eq MWh−1), and (C) GHG emissions intensity (tons CO2-eq MWh−1) of a
hypothetical 1 MW data center placed in each of the 2110 subbasins of the continental United States.

more broadly geographically.We find thatmost of the
watersheds that data centers draw from, particularly
those in the Eastern US, face little to no water
stress on average. In contrast, many of the water-
sheds in the Western US exhibit high levels of water
stress, which is exacerbated by data centers direct and
indirect water demands. Combined, the West and
Southwestern watersheds supply only 20% of dir-
ect water and and 30% indirect water to data cen-
ters, while hosting approximately 20% of the nation’s
servers. Yet, 70% of the overall WSF occurs in these
two regions (figure 3(B)), which indicates a dis-
proportionate dependency on scarce waters in the
western US.

3.3. GHG emissions attributed to data centers
Total GHG emissions attributed to data centers in
2018 was 3.15 × 107 tons CO2-eq, which is almost
0.5% of total GHG emissions in the US [10]. A little
over half (52%) of the total emissions of data center
operations are attributed to the Northeast, Southeast,
and Central US, which have a high concentration of
thermoelectric power plants, alongwith large number
of data centers (figure 3(C)). Almost 30% of the data
center industry’s emissions occur within the Cent-
ral US, which relies heavily on coal and natural gas
to meet its electricity demand. Yet, only 10% the
industry’s energy demand comes from the Central
US, and just 9% of the water consumption associated

with data centers operation occurs in this region.
Moreover, the Central region is a net exporter of
electricity to other regions, providing electricity for
data centers located in the Northeast and Southeast
regions, which houses almost one-third of servers.
Yet, the generation of less carbon intensive electri-
city in the Northeast (hydroelectricity) and Southeast
(wind/solar) regionsmeans that while their electricity
consumption comprises 34%of data centers’ national
electricity demand, these regions only constitute 23%
of the industry’s GHG emissions. The GHG emis-
sions from treating the wastewater generated from
data centers is around 550 tons/y (0.002% of total
GHG emissions associated with data centers).

3.4. Where to locate data centers to minimize water
and carbon footprints
Our results indicate significant variability of environ-
mental impacts depending on where a data center
is located. Here we explore how the geographic
placement of a data center can lead to improved
environmental outcomes. We find that the total
water intensity of a data center can range from
1.8–106 m3 MWh−1, the water scarcity intensity
from 0.5 to 305 m3 US-eq MWh−1, and the carbon
intensity from 0.02 to 1 ton CO2-eqMWh−1 depend-
ing on where the data center is placed (figure 4).
Data center placement decisions are complicated by
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Figure 5. The (A) water footprint, (B) WSF, and (C) carbon footprint of data centers can be reduced by placing them in subbasins
with the smallest footprint (top quartile of all subbasins), as denoted by the shaded subbasins in each panel. The bar graphs
represent the percent reduction/increase of each environmental footprint within the shaded subbains compared to the national
average data center environmental footprint. Hatched areas indicate subbasin that are among the most (top quartile)
environmentally favorable locations for both water scarcity and GHG emissions.

Figure 6. Percent change in environmental footprints associated with new data center servers compared to the ‘business-as-usual’
scenario. While the business-as-usual scenario assumes new servers will be placed in proportion to historical server locations,
alternative scenarios explicitly consider the environmental implications of data center placement. Scenario A places data center
servers in subbasins within the top quartile of all subbasins in environmental performance for both carbon (CF) and water
scarcity (WSF) footprints. Scenario B represents server placement within subbasins in the top quartile for carbon footprints,
while scenario C and D represent the best (top 25%) subbasins to place data center servers with respect to minimizing WSFs and
water footprints (WF), respectively.

the electricity grid, which displaces environmental
impacts from the physical location of a data center.

Figure 5 depicts subbasins in the top quartile
of environmental performance as it relates to water
footprint (5(A)), WSF (5(B)), and carbon footprint
(5(C)) per MWh of electricity used by a hypothetical
data center located within each subbasin. Less than
5% of subbasins are in the top quartile of environ-
mental performance for both WSF and carbon foot-
print (hatched areas in figures 5(B) and (C), meaning
that 40% of subbasins will require making a trade-off
between reducing WSFs and carbon footprints. The
remaining 55% of subbasins (white areas shared by
figures 5(B) and (C) are not among the best locations
to place a data center for either water or GHG reduc-
tion. Though the water footprint andWSF are related
concepts, we show that nearly one-fifth of subbasins
that were in the top quartile with respect to the water
footprint are in the bottom quartile forWSF. In other
words, a data center placed in these basins would use

less water than 75% of potential sites, but it would
draw that water from subbasins facing higher levels
of water scarcity. In general, locating a data center
within the Northeast, Northwest, and Southwest will
reduce the facilities carbon footprint, while locating a
data center in theMidwest and portions of the South-
east, Northeast, and Northwest will reduce its WSF.

In the coming years, cloud and hyperscale data
centers will replace many smaller data centers [3].
This shift will lower the environmental footprint in
some instances but introduce new environmental
stress in other areas. Assuming added servers employ
similar technology as existing servers and are placed
in cloud and hyperscale data centers in proportion to
the current spatial distribution of data centers (i.e.
business-as-usual scenario), these new data center
servers will have a collective water footprint of 77.77
× 106 m3 (15% of the current industry total), WSF
of 170.56 × 106 m3 US-eq (9%), and 4.36 × 106

tons CO2-eq (14%). However, if these new servers are
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strategically placed in areas identified to have a lower
environmental footprint, their water and carbon bur-
den could be significantly reduced.

The WSF and carbon footprint of new data cen-
ters can be reduced by 153.00 × 106 m3 US-eq (90%
less than business-as-usual expansion) and 2.34 ×
106 tons CO2-eq (55%), respectively (figure 6(A)) if
they are placed in areas with the lowest carbon and
WSFs (hatched areas in figure 5). However, placing
all new data centers within a small area may strain
local energy and water infrastructure due to their col-
lective water and energy demands. Data centers can
be dispersed more broadly in areas that are favorable
with respect to water footprint (figure 5(A)), WSF
(figure 5(B)), or carbon footprint (figure 5(C)).How-
ever, only considering one environmental character-
istic can lead to environmental trade-offs (figure 6).

4. Discussion and conclusion

The amount of data created and stored glob-
ally is expected to reach 175 Zettabytes by 2025,
representing nearly a six-fold increase from 2018
[51]. The role of data centers in storing, managing,
and distributing data has remained largely out of
view of those dependent on their services. Similarly,
the environmental implications of data centers have
been obscured from public view. Here, for the first
time, we estimate the water and carbon footprints
of the US data center industry using infrastructure
and facility-level data. Data centers heavy reliance on
water scarce basins to supply their direct and indirect
water requirements not only highlight the industry’s
role in local water scarcity, but also exposes poten-
tial risk since water stress is expected to increase in
many watersheds due to increases in water demands
and more intense, prolonged droughts due to climate
change [52–54]. For these reasons, environmental
considerations may warrant attention alongside typ-
ical infrastructure, regulatory, workforce, customer-
/client proximity, economic, and tax considerations
when locating new data centers.

The data center industry can take several meas-
ures to reduce its environmental footprint, as well as
minimize its water scarcity risks. First, the industry
can continue its energy efficiency improvements. The
ongoing shift to more efficient hyperscale and co-
location data centers will lower the energy require-
ments per compute instance. Software and hardware
advances, as well as further PUE improvements, can
continue to reduce energy requirements, and thus
environmental externalities. For instance, quarterly
PUE of as low as 1.07 has been reported by Google
for some of their data centers [55]. Liquid immersion
cooling technologies show promise of further reduc-
tions in PUE, with one study reporting a PUE below
1.04 [56]. The prospect of recovering low-grade heat
(i.e. low temperature or unstable source of heat) from
data centers for space or water heating is limited;

however, approaches such as absorption cooling and
organic Rankine cycle are promising technologies for
generating electricity from waste heat [57].

Second, the data center industry can make invest-
ments in solar and wind energy. Directly connecting
data center facilities to wind and solar energy sources
ensures that water and carbon footprints are minim-
ized. Purchasing renewable energy certificates from
electricity providers does not necessarily reduce the
water or carbon footprints of a data center. However,
these investments gradually shift the electrical grid
toward renewable energy sources, thus lowering the
overall environmental impact of all energy users. Data
center workloads can be migrated between data cen-
ters to align with the portion of the grid where renew-
able electricity supplies exceed instantaneous demand
[58].

Third, as we show in this study, strategically
locating new data centers can significantly reduce
their environmental footprint. Climatic factors can
make some areas more favorable due to lower ambi-
ent temperatures, thereby reducing cooling require-
ments. Lower cooling requirements reduces both
direct and indirect water consumption, as well as
GHG emissions, associated with data center opera-
tion. Since most data centers meet their electricity
demands from the grid, the composition of power
plants supplying electricity to a data center plays a
significant role in a data center’s environmental foot-
print. For an industry that is centered on technolo-
gical innovation, we show that real estate decisions
may play a similar role as technological advances
in reducing the environmental footprint of data
centers.
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