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a b s t r a c t

Interactive machine learning (ML) systems are difficult to design because of the ‘‘Two Black Boxes’’
problem that exists at the interface between human and machine. Many algorithms that are used
in interactive ML systems are black boxes that are presented to users, while the human cognition
represents a second black box that can be difficult for the algorithm to interpret. These black boxes
create cognitive gaps between the user and the interactive ML model. In this paper, we identify
several cognitive gaps that exist in a previously-developed interactive visual analytics (VA) system,
Andromeda, but are also representative of common problems in other VA systems. Our goal with this
work is to open both black boxes and bridge these cognitive gaps by making usability improvements
to the original Andromeda system. These include designing new visual features to help people
better understand how Andromeda processes and interacts with data, as well as improving the
underlying algorithm so that the system can better implement the intent of the user during the data
exploration process. We evaluate our designs through both qualitative and quantitative analysis, and
the results confirm that the improved Andromeda system outperforms the original version in a series
of high-dimensional data analysis tasks.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity

Press Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High-dimensional data is a widely-used and valuable data
orm, but as this type of data is complex, analyzing and cogni-
ively understanding it can pose a significant challenge for people
ho do not have mathematical knowledge. To analyze such data
ffectively, researchers require in-depth training on a variety of
athematical models and computational techniques. The com-
lexity of these algorithms presents an obstacle to users who
eek quick explorations to gain a fundamental understanding of
heir data. Additionally, educators require effective methods to
romote students’ interest in data analytics and to make it easier
or them to learn and understand high-dimensional data (Ashaari
t al., 2011). In response to these needs, the authors of this work
ave developed a variety of visual analytics (VA) systems to help
ntrained persons understand their data.
However, because of the ‘‘Two Black Boxes’’ problem (Wen-

kovitch and North, 2020) that underlies communication chal-
enges between humans and algorithms, it is difficult to design
usable ML-based interactive VA system. In this problem, the
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the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
first black box is the underlying algorithms within the system.
Although these algorithms can process data and provide useful
results, they often do not provide justification or rationale for
their outputs, making it difficult for users to decide whether or
not the results are acceptable. The Explainable AI (XAI) research
agenda works to address this challenge. The second black box is
human cognition. Users conduct a sequence of thought processes
before interacting with the VA system, with the hope that their
interactions will appropriately influence the results generated by
the underlying algorithm. Unfortunately, the human mind is a
black box that is closed to the algorithms, and thus the algorithms
often fail to capture those user intentions. The existence of these
two communication challenges leads to cognitive gaps between
the user and model and produces many usability challenges. To
solve these challenges, VA designers must open both black boxes
and bridge the gaps between the user and model.

Our work presented here extends the interface of an inter-
active VA system called Andromeda (Self et al., 2015a,b, 2018),
which reduces data from high-dimensional space into a 2D pro-
jection using weighted multidimensional scaling (WMDS). In the
two-dimensional space, distance represents the similarity be-
tween data points and follows the ‘‘proximity ≈ similarity’’ prin-
ciple: two points that are close to each other should be more simi-
lar in the high-dimensional space than two points that are distant
ersity and Zhejiang University Press Co. Ltd. This is an open access article under
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rom each other. Andromeda permits users to explore their data
sing a variety of interactions, with observation-level interactions
OLI) being most relevant to human/model interaction challenges.

OLI represents a powerful method for exploring complex rela-
ionships in the underlying data by performing direct manipula-
ion actions on the observations in the projection, demonstrating
elationships that users hope to uncover in the data. For exam-
le, OLI allows users to demonstrate a similarity relationship in
he projection by dragging a subset of observations into a new
onfiguration, after which they can learn which dimensions are
mportant to that relationship based on a computational update
o the global layout. Andromeda hides the complexity of these
nderlying calculations and algorithms from users, allowing them
o focus on exploring the data without having to first acquire
tatistical knowledge. Previous studies (Self et al., 2015a, 2018,
016a; Chen et al., 2017) have clearly indicated the effective-
ess of Andromeda in helping users to explore high-dimensional
ata, since users are able to gain complex insights and solve
nalytical tasks more efficiently. However, some cognitive gaps
etween user and model remain to be solved (Self et al., 2016b).
ver the course of previous studies with novice users of An-
romeda (Self et al., 2018; Zeitz et al., 2018), we identified three
rimary usability challenges in the interface that prevented fully
lear communication between user and algorithm.
First, users did not understand they need to select and high-

ight all of the data points relevant to their demonstrated inter-
ction. Interaction feedback in Andromeda is built around the
dea of highlighting, whereby users can drag or select points to
onvey their interaction intention. The algorithms that underlie
ndromeda only capture and consider moved or highlighted data
oints when calculating the updated projection. This demon-
trates both an ambiguity in the interaction (Wenskovitch et al.,
020) and a cognitive gap between user’s mental model and
he mathematical model of the system. This interaction further
iolates both the ‘‘Don’t Make Me Think’’ user experience prin-
iple (Krug, 2000), requiring a user to infer the way by which a
ystem interprets their interaction, as well as the principles of
emantic interaction (Endert et al., 2012a), permitting a user to
tay focused on the data rather than considering the details of
he model.

Second, when using Andromeda, users were confused about
ow to interpret the meanings and orientations of axes in the
MDS plot. They frequently wanted to map dimensions from

he high-dimensional data to axes in the 2D WMDS plot, as
een in similar studies (Wenskovitch and North, 2021). Because
f the separation of WMDS plot and dimensional sliders in the
ndromeda interface, it was difficult for users to understand the
ffect and distribution of attributes in the projection.
Third, the previous Andromeda system could not correctly ad-

ress and reflect user intent when constructing or de-constructing
single cluster, as there was no notion of a ‘‘cluster’’ encoded

n the underlying models. The generated results hence did not
atch the user expectations.
These three issues cover both communication channels seen in

he ‘‘Two Black Boxes’’ problem. The first two usability challenges,
nsuring that the user knows how their behavior will change the
odel and understanding the projection, are caused by the fact

hat the users do not understand the Andromeda algorithm. The
hird challenge, constructing/deconstructing a cluster in accor-
ance with the intent of the user, represents a cognitive black
ox challenge.
These communication challenges between the user and model

re also common problems in other interactive VA systems, which
lso must (1) ensure that the human knows what actions to
ake to affect the model, (2) can properly interpret the presented

ata, and (3) verifies that the model updates in accordance with
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the human’s intent. Our work presented here seeks to open the
cognitive and algorithmic black boxes for Andromeda, addressing
the usability challenges that we have identified. In summary, the
contributions of this paper are:

1. We identified three cognitive gaps between user and algo-
rithm in the interface of an interactive VA system.

2. We proposed, implemented, and evaluated solutions de-
signed to resolve these usability issues.

2. Related work

2.1. Interactive visual analytics

Dimension reduction algorithms represent methods for in-
terpreting high-dimensional data. These algorithms project data
from high dimensions to a two- or three-dimensional projection,
making it more accessible to users, but information is inevitably
lost in the process. To retain and explore this hidden informa-
tion, it is necessary to develop interactive tools that can adjust
parameters and visualize the data from multiple perspectives.

Wong et al. (2004) develop a VA system called IN-SPIRETM,
which can display the hidden relationships within corpus data
using their Galaxy visualization and the ThemeViewTM visual-
ization. iVisClassifier was created by Choo et al. (2010) and is
based on LDA. All of the reduced dimensions are represented
by parallel coordinates, and users can interact with and explore
individual dimensions of data. These tools incorporate surface-
level interactions (SLI) so that users can explore the information
they find most relevant, but understanding may be limited due
to users having no control over the model parameters with these
interactions.

More complex tools enable parametric interactions (PI), di-
rect interactions with the values of model parameters, so that
users can visualize data from multiple perspectives. Soo Yi et al.
(2005) propose the Dust &Magnet system. Users can change the
magnitude of the dimensional ‘‘magnet’’, with different magnet
layouts leading to different visualizations. Other systems, such as
STREAMIT (Alsakran et al., 2011) and DimStiller (Ingram et al.,
2010) also allow support PI. However, PI requires users to have
strong knowledge of the system model, which would be less
accessible for novice users.

Endert et al. (2011) and Leman et al. (2013) develop a more
natural method – OLI – for communicating with underlying mod-
els. Based on the principles of semantic interaction (Endert et al.,
2012b), users can manipulate the observation points in the vi-
sualization directly to create a new visualization, which is inter-
preted quantitatively by the system, leading to changes to the
model’s parameters. ForceSPIRE (Endert et al., 2012a) and Dis-
Function (Brown et al., 2012) are OLI-enabled tools that allow
users to directly manipulate observations. With OLI interaction,
tools hide these underlying models from users so that users can
focus on the data exploration without having to learn the details
of statistical models.

2.2. Computational overview of Andromeda

Andromeda is a tool designed by Self et al. (2015a,b). This
system relies on the WMDS algorithm (Cox and Cox, 2000)
and permits users to interact with both the input and out-
put of the WMDS model to convey their intentions and affect
the underlying parameters. In the low-dimensional projection
generated by WMDS, distance represents the relative similarity
between data points. To enable the exploration of the high-
dimensional space, WMDS introduces a weight vector parameter,
ω = [ω1, ω2, . . . , ωp]

′, to reflect the importance of each dimen-

sion in the underlying high-dimensional distance function. As
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hown in Eq. (1), di and dj are high-dimensional points, and ri and
j are their low-dimensional representations. Given the weights
, the points’ coordinates on a low-dimensional projection are
alculated by minimizing the stress function that represents the
rror between the low- and high-dimensional pairwise distances.
onsidering both distances and weights, users can deepen their
nterpretation of the projection; for example, in a projection with
igh weight in dimension A, two points that are close to each
ther are more similar in dimension A than those that are far
part, enabling users to explore hidden information by chang-
ng the weights for different dimensions and obtaining various
ow-dimensional visualizations.

= min
r1,...,rn

n∑
i=1

n∑
j>i

(distL(ri, rj) − distH (ω, di, dj))2, (1a)

distH (ω, di, dj) =

√ p∑
k=1

ωk(dik − djk)2 (1b)

he Andromeda system combines SLI, PI, and OLI, allowing users
o explore and obtain a more complete data analysis. Users can
erform SLI by hovering the cursor over a point (blue point) or
electing points (maroon points) to view their raw data on the
arameter sliders. PI permits the user to directly manipulate the
eights ω by dragging the parameter sliders, providing feedback

on dimensional importance and triggering the forward WMDS
model to recalculate the 2D visualization. The resulting new pro-
jection allows users to explore those highly-weighted dimensions
more fully.

Users can perform OLI to provide input to the weight-learning
‘inverse’’ WMDS algorithm by selecting and dragging points on
he screen, thereby creating new 2D coordinates. After users
elect the ‘‘Update Layout’’ button, the Andromeda system opti-
izes the dimension weights based on Eq. (2) to best represent

he coordinates of the set of moved points, r∗

i and r∗

j . The stan-
ard ‘‘forward’’ WMDS dimension reduction algorithm then runs
gain with the new weights to recalculate the projection. Users
et feedback about the new weights that express their desired
istance relationships, as well as the re-expression of the rest of
he points using these weights. Fig. 1(b) visually represents this
omputational pipeline.

= min
ω1,...,ωp

n∑
i=1

n∑
j>i

(distL(r∗

i , r∗

j ) − distH (ω, di, dj))2 (2)

.3. Existing solutions for usability issues

This paper focuses on discussing and solving the three us-
bility issues noted in the Introduction: displaying the observa-
ions relevant to an interaction, understanding WMDS dimen-
ions, and constructing and deconstructing clusters. Here, we
riefly summarize other works that have proposed solutions for
hese issues.

There are multiple approaches to solve the issue of ‘‘highlight-
ng relevant data points’’. First, systems can introduce control
oints, which include moved points, highlighted points, or anchor
oints on projection boundaries. Moving control points will re-
ult in all other points moving in relation to the control points.
hese types of systems include StarSPIRE (Bradel et al., 2014),
VC (Desjardins et al., 2007), iLAMP (dos Santos Amorim et al.,
012), PLP (Paulovich et al., 2011) and VRV (Sharko et al., 2008).
imilarly, systems such as Dust &Magnet (Soo Yi et al., 2005) and
CI-MDS (Broekens et al., 2006) have considered all the points in
he visualization when updating the layout. However, considering
ll points in a projection might misinterpret the users intent

f expressing only a subset of relationships (using the Animals
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dataset from this study for example, a user may intend to only
reposition the Zebra data point with respect to the Rabbit data
point to demonstrate 1 one-to-one similarity relationship, with
their intent considering no other points in the projection), and
also would require more expensive computations when executed
on large datasets.

A second approach is to apply visual feedback, which indicates
how the system will interpret the user interactions in an explain-
able fashion (Gunning, 2017), such as ‘‘label feedback’’, which
combines both highlighting and clustering. EluciDebug (Kulesza
et al., 2015) and iVisClustering (Choo et al., 2010) use this type of
feedback. Users can apply a label to an item, and the underlying
model will use that label as part of its training set. Because items
should be labeled in a certain manner, users are able to realize
that they need to label all data relevant to an interaction.

Clustering is another solution to the issue of highlighting
and is also one of the usability issues we explore in our work.
Wenskovitch et al. (2020) discuss this problem, and propose a
cluster membership solution, Pollux, for this usability issue (Wen-
skovitch and North, 2019; Wenskovitch et al., 2019). In addition,
Choo et al. (2009) propose a two-stage framework for cluster
visualization. ASK-GraphView (Abello et al., 2006) supports the
interactive visualization of large graphs by filtering, coloring, and
labeling. Linesets (Alper et al., 2011) uses node colors to repre-
sent clustering. Clustering is a good solution to the highlighting
usability gap, but it is not suitable for tackling problems related
to relative similarity.

In addition, it is challenging for users to understand the di-
mensional information in dimension reduction plots, especially
dimensional orientation and correlation. Smart-Stripes (May et al.,
2011) allows users to select a subset of features to explore
the dependencies and independencies between various features.
Biplots (Udina, 2005; Frutos et al., 2014; La Grange et al., 2009)
allow for the display of both data points and dimensions. Stahnke
et al. (2015) develop a probing projection system that can display
how each dimension contributes to the projection. Dowling et al.
(2018a,b) implement the SIRIUS system to visualize similarities
both between points and between dimensions. These works help
users obtain dimensional information; however, most require
domain knowledge or even training to understand and apply
them. Therefore, we see the need for a more intuitive and easy-
to-understand method for showing dimensional information and
correlations.

3. Usability problems, solutions, results

As noted in the Introduction, gaps exist between users’ mental
model and the mathematical model of the Andromeda system.
Fig. 1 shows that in some circumstances the Andromeda interface
did not allow users to understand the model correctly (highlight-
ing relevant data points and understanding the projection dimen-
sions), and other circumstances resulted in the system generating
a response that did not match the user expectations (constructing
and deconstructing clusters). In this section, we describe modifi-
cations to both the WMDS Model and the visualization to bridge
these cognitive gaps.

3.1. Highlighting relevant data points

3.1.1. Problem
When users drag points in the visualization, they have their

intended system response to that interaction in mind. The user
can move an observation close to others to represent similarities
or drag a point away from other points to express dissimilarities.
Fig. 2 illustrates a user trying to express that the Zebra point

is more similar to the Rabbit than to the Giraffe. In this case,
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Fig. 1. (a) The identified usability problems and their solutions. (b) The semantic interaction pipeline of Andromeda, representing our changes to the inverse WMDS
Model and Visualization.
a

φ

Fig. 2. The ‘‘highlighting relevant data points’’ usability issue. Moving the Zebra
away from the Giraffe and toward the Rabbit.

the user moves the Zebra with respect to the Giraffe (near the
Zebra’s original position) and the Rabbit (near the Zebra’s final
location). However, the user does not wish to express any partic-
ular relationships to other points in the projection. So, how does
the model know with respect to which points the user is moving
the Zebra (Wenskovitch et al., 2020)? Andromeda requires the
user to choose all points necessary to convey their interaction via
interactive selection. This leads to a usability problem.

The user often assumes that the underlying model will au-
tomatically consider the Giraffe and the Rabbit, and not other
points; however, this is not true. The Andromeda algorithm only
captures and considers moved or highlighted points in the visu-
alization, which in this case is only the Zebra. They might also
not realize the importance of blacking-out other points that they
do not care about. The mismatch between the user intention and
the mathematical model occurs here because of both the closed
cognitive and algorithmic boxes. The model cannot read the users
mind, and users are not provided with a means to understand
how the algorithms interpret their interaction, process the data,
and generate the results. To solve this usability problem, we
open the black box of the underlying model using new interface
features to help users understand the importance of highlighting
those implicit but relevant points: in this case, the Giraffe and the
Rabbit.

Our goal with this study is to understand the immediate
usability of the system, determining whether or not a user would
know how to correctly operate the system (i.e., highlighting the
correct points to specify the desired interaction) without the need
for training. As such, measuring correctness and evaluating accu-
racy are our primary means of demonstrating the effectiveness of
this technique.

3.1.2. Solutions

Foreground and Background View: To clarify the boundary be-
tween observations that are and are not considered a part of
the interaction, we introduce a ‘‘third dimension’’ in the two-
dimensional observation view. As shown in Fig. 3(a), when no
point is clicked, all the data points are colored in blue and pro-
jected according to their WMDS locations. After an observation
is moved or highlighted (see Fig. 3(b)), the ‘‘third dimension’’
16
is added. The projection separates into a foreground and back-
ground. The interaction points pop out in the foreground and
are colored in orange; these points will be considered in the
calculation of the new layout. Any untouched points are dimmed
to the background and grayed out, signifying that they will not
count toward the interaction. These foreground points are also
highlighted in the parameter sliders (Fig. 4b), demonstrating the
precise attribute values for these touched points in each dimen-
sion and visually displaying their similarity. This design visually
divides the considered points and unconsidered points into two
layers, giving the user a cue that all the relevant points should be
brought into the foreground layer.

Distance Lines: Along with the foreground and background view,
we introduce another interface feature – distance lines – to
help users recognize the relationships between points that they
are specifying. Thus, all pairwise distances between the points
in the foreground are represented by lines. However, to avoid
clutter, the distance lines only display for the point currently
hovered over. As shown in Fig. 3(b), lines between the actively
dragging point (Zebra) and the other selected points (Giraffe and
Rabbit) are shown. There are no distance lines to the unselected
points, because these pairwise distances are not considered in the
calculation of the new layout.

To reinforce the meaning of the user’s interactions, distance
lines also visually encode whether the user has increased or
decreased the relative distance between each pair of points. Only
relative distances are meaningful in the WMDS model. A distance
line consists of two parts, a colored line and arrow heads, both of
which encode the change in relative distance between the pair of
points (the color scale can be seen in Fig. 4).

To determine changes in the relative distance between point i
and point j, we calculate the pairwise distance ratio (φi,j) and the
verage distance ratio (φ). The pairwise distance ratio between

point i and point j (φi,j) is calculated with Eq. (3), computing the
ratio between the user-defined low-dimensional distance based
on the interaction distL(r∗

i , r∗

j ) and the original low-dimensional
distance distL(ri, rj).

i,j =
distL(r∗

i , r∗

j )

distL(ri, rj)
(3)

φ =

∑n
i=1

∑n
j>i φi,j(n

2

) (4)

wi,j = φi,j/φ (5)

The average distance ratio (φ) of all the pairs in the foreground is
calculated with Eq. (4), which acts as a normalization factor. The
relative distance change wi,j is then calculated in Eq. (5).

If wi,j ≈ 1, meaning that the relative distance between the
two points did not change much, then there are no arrow heads
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Fig. 3. The ‘‘highlighting relevant data points’’ solution: (a) Before OLI. (b) Dragging the Zebra away from the Giraffe and toward the Rabbit, showing the foreground
and background view and displaying the distance lines between the three selected points.
Fig. 4. Andromeda interface: (a) the observation view, (b) the parameter view, (c) the update layout button, (d) the foreground and background view, (e) distance
ines, (f) the color scale for the distance lines.
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n the distance line, and the color of the line is green. If wi,j ≪ 1,
eaning that the relative distance between the two points was

educed by the user, then the distance line is colored darker blue
r black and is capped by a pair of inward-pointing arrow heads
o indicate compression. If wi,j ≫ 1, meaning that the relative
istance between the two points was enlarged by the user, then
he distance line is colored lighter yellow and is capped by a pair
f outward-pointing arrow heads to indicate expansion.

.1.3. Results
In a controlled usability study, we asked users to analyze
dataset by using two versions of Andromeda: Version A and
ersion B. Version A is the original version, whereas Version B
ontains the novel solutions of foreground/background and dis-
ance lines. We compare user performance of the two Andromeda
ersions when highlighting relevant data points for an interac-
ion.

The participants in the usability study were sophomore and
unior students in an undergraduate-level data science course
ho have learned about dimension reduction. There were 69 par-
icipants in total, divided into two groups for the two versions
f Andromeda in a between-subjects study design. Prior to com-
leting the study, the participants were given a brief introduction
o WMDS and Andromeda Version A. The usability issues and
olutions in Version B were never mentioned. In all, 33 students
sed Andromeda Version A, and the other 36 students used
ndromeda Version B.
17
The participants were asked to explore a dataset about animals
nd their attributes (Lampert et al., 2009) using their assigned
ndromeda version to answer identical sets of questions. This
igh-dimensional quantitative dataset contains 49 animals and
5 attributes, with the attributes expressing information about
he color, habitat, diet, and behavior, among other properties. We
ave often used this dataset in previous studies because of its
eneral knowledge applicability.
As shown in Table 1, we created three questions to evalu-

te whether the new foreground/background views and distance
ines in Version B encouraged users to select and highlight all
he relevant data points to complete the tasks correctly. The
ccuracy of participant answers was evaluated by determining if
hey performed the correct interactions and selected the correct
bservations to get the answers.
In Question 1, we asked users to create three specific clusters

f two animals each. The correct answer involves highlighting all
he six animals mentioned in the question. However, because of
he usability issue previously mentioned, some users interacted
ith only one point in each cluster instead of two; for example,
hen a user sought to place the Deer and the Giant Panda close
o each other, they may only drop the Deer next to the Giant
anda without also highlighting the Giant Panda as relevant to the
nteraction. In an incorrect manipulation, fewer (or more) than
ix points would be highlighted. In a correct manipulation, users
ould highlight all six relevant points, suggesting they benefited

rom the new visual cues in the visualization.
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able 1
he percentage of students in each group who answered correctly for questions
–3.

Task Version A Version B

Q1 Create three clusters 54.5% 80.5%

Q2 Identify the feedback
points for the new layout

60.0% 85.3%

Q3 Create one cluster 56.3% 81.3%

Table 2
Results of the t-test difference between the users’ total correctness scores on
Version A and Version B.

Version A Version B

Mean 0.5827 0.7939
Standard deviation 0.3338 0.2805
Number of observations 33 36
df 63
t-statistic −2.8309
P(T ≤ t) one-tail 0.0031

Question 2 was an extension of Question 1, directly ask-
ng users which points would be considered by WMDS. If users
nderstood the model from the interface features, they would
rovide the correct answers for all six points; however, if the
ew features failed to convey the concepts to users, we would
btain incorrect answers such as indicating that all points would
e considered.
Question 3 asked users to create one cluster of three points.
correct interaction would involve dragging and highlighting

ll the three points mentioned in the question. If users failed to
nderstand the visual cues to highlight all the relevant points,
hey might move/highlight fewer than three points. We asked
his question after Question 1 because an action with two or
ewer highlighted points triggers an error pop-up in Andromeda
ersion A, prompting that the learning algorithm requires at least
hree highlighted points to determine new relative distances.

The results in Table 1 demonstrate a significant improvement
ith Version B. The results indicate that the visual cues helped
articipants learn to distinguish between the points that would
e considered by the algorithm and those that would not. This is
he primary factor influencing user decisions about which points
eed to be highlighted to update the layout.
We calculated the mean correctness score of all questions for

ach user to represent the aggregated correctness for each user.
s shown in Table 2, participants using Version B had a 21%
igher score than those who used Version A. The t-test (p-value <
.01) result indicates that the difference is statistically significant.
e conclude that the newly-implemented features helped users
ridge the cognitive gap and understand the need to highlight all
f the relevant data points.

.2. Understanding the WMDS dimensions

.2.1. Problem
In a WMDS projection, the coordinate axes have complex

eanings, representing the combination of multiple high-
imensional features. However, people with no WMDS knowl-
dge are confused about the meaning of the horizontal and
ertical coordinates of WMDS plots, often trying to match the 2D
oordinate axes to specific dimensions as if they were traditional
catter plots. Because of this understanding gap, it becomes a
roblem for some users to address common tasks (Amar et al.,
005) such as finding a dimensional extremum, dimensional
orrelations, and the data distribution of a dimension.
Andromeda previously required users to interact with the

arameter sliders to align the data points in the observation view
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if they wish to explore a single dimension or find the extremum
in a specific dimension. After performing these parameter-tuning
operations, the users could then hover the cursor over points to
view their raw data on each respective parameter slider. A similar
approach was necessary to explore dimensional correlations and
data distribution. However, this method of viewing the dimension
information is time-consuming, and users must also change the
projection in the observation view to find the result. We saw the
need for a more convenient and straightforward way to help users
quickly identify dimension-related information.

3.2.2. Solution

Dimension-Assist Feature: Taking inspiration from the size en-
coding found in the Dust &Magnet system (Soo Yi et al., 2005),
we designed a dimension-assist feature that enables a quick
overview of feature distributions. When a user hovers the cursor
over a parameter slider, such as the Spots slider in Fig. 5, the size
of each circle within the observation view is mapped according
to its Spots value such that the data points with larger Spots
values have bigger circle sizes. By hovering the cursor over the
parameter slider, users can quickly determine the data distribu-
tion of Spots, learning in the case of Fig. 5 that the Deer has the
largest Spots value. With this feature, users can glance at the one-
dimensional distribution without interacting with the parameter
sliders or affecting the underlying model parameters. Further-
more, we hoped that this feature can help users to understand
that the coordinate axes in the observation view have complex
meanings.

3.2.3. Results
We conducted a pilot study to evaluate the effectiveness of

the dimension-assist feature. Again, we used two versions of
Andromeda: Version A and Version B. Version B enabled the new
dimension-assist feature. In Version A, however, the dimension-
assist feature is disabled. We ask eight undergraduate and gradu-
ate participants to complete an online survey regarding dimen-
sional information. The participants span multiple disciplines,
including computer science, business, data analytics, and chem-
istry. Of the eight participants, none consider themselves WMDS
experts: three have learned and used MDS; three have heard of it
but never used it; and two have never heard of it. We separated
the participants randomly into two equal groups, one group for
each Andromeda version.

The purpose of this pilot study is to assess the impact of
the dimension-assist feature on four tasks: finding an extremum,
characterizing a distribution, describing attribute correlations,
and understanding the meanings of the WMDS plot axes. To
further explore our results, we perform follow-up interviews
with study participants. For this pilot study, we focus mainly
on qualitative results, observing how the dimension-assist fea-
ture could impact user interactions in dimension-related tasks.
From our observations and follow-up interviews, we find obvious
advantages for the dimension-assist feature.

First, the dimension-assist feature helped understanding the
results of PI (as defined in Section 2.1, interactions that enable
direct manipulation of individual parameters). When users tried
to find a dimension extremum, they increased the weight on
the dimension of interest with the parameter slider. However,
because the projection rotation has no meaning in WMDS, they
did not know how the dimensions are oriented. By monitoring
the participants’ actions, we found that Version A users obtained
the results using SLI (interactions that have no effect on model
parameters) by hovering the cursor on the projection boundary
points one by one and viewing the raw data in the parameter
view. This was not only time-consuming, but also sometimes

overlooked the extremum. Version B users, by contrast, quickly
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Fig. 5. When hovering on the Spots slider, the radius of each data point changes in proportion to its Spots values.
identified the dimensional orientation in the scatter plot gener-
ated by PI and identified the extremum with the dimension-assist
feature.

Second, the dimension-assist feature had a shallower learn-
ing curve than PI. Two participants using Version A preferred
to use SLI alone rather than PI to answer questions. One Ver-
sion A participant even mentioned ‘‘I didn’t realize how to use
the dimension sliders until I almost finished the survey’’. All
the participants using Version B obtained answers by using the
dimension-assist feature solely or jointly with PI, except one
participant who used PI instead of the dimension-assist feature
for only one question. However, this participant quickly switched
to using the dimension-assist feature for subsequent questions,
which indicated the fast learning time of the dimension-assist
feature.

Third, the dimension-assist feature was more efficient and
accurate than SLI. When not using PI, Version A participants used
SLI to obtain answers. They hovered on every point until they
found the extremum point. However, it was easy to overlook the
correct point using this strategy, which caused one Version A user
to get the wrong answer. Whereas, with the dimension-assist
feature, users quickly recognized the extremum as the point with
the largest or smallest size.

Finally, the dimension-assist feature helped partially under-
stand the dimensions within the projection. In the follow-up
interview, participants used both Andromeda Version A and Ver-
sion B, so that they could compare these two versions. All partic-
ipants agreed that the dimension-assist feature made it easier to
locate extrema and describe attribute correlations; however, one
participant pointed out the shortcoming of the size-encoding, that
‘‘it is difficult to see the distribution without using [PI], especially
with a large number of overlapping points in the visualization’’.
Using dimension-assist, participants did also recognize that the
data attributes were not straightforwardly mapped to the WMDS
projection axes; however, none of the participants believed that
the dimension-assist feature helped them understand the actual
meanings of the WMDS axes. They stated that such understanding
depended on background knowledge of the statistical methods.

3.3. Constructing/deconstructing clusters

3.3.1. Problem
The learning model in Andromeda required users to make op-

posing changes in the relative distances between selected points,
meaning that some points must be moved closer together, while
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others must be moved further apart. This is because WMDS is
scale invariant. However, in some circumstances, one of these re-
lationships may be implicit. For example, when using Andromeda,
users frequently try to create a cluster of a few points. They
drag several points closer together, without moving any other
point away from the cluster. As shown in Fig. 6(a), the user
creates a cluster by dragging the German Shepherd, Otter, and
Dolphin together. While the absolute distances have decreased,
the relative distances have not changed much. It suggests only a
global change in scale of the projection. So, the question is: with
respect to which other distances in the projection should these
three distances be reduced? But the user typically may not have
any specific other points in mind for comparison.

This leads to a mismatch between the user’s understanding
and the WMDS model. In the updated visualization that follows
the interaction (Fig. 6(b)), the model fails to capture the intention
of the user to create a cluster, only focusing on the minor changes
in the relative distance relationships between the three point.
Thus, while the user intends that the Otter, German Shepherd,
and Dolphin should be close, they are still spread out in the
updated projection.

The same problem occurs when users try to deconstruct a
cluster by separating a group of points. Unless users specify other
points that move closer as a result, Andromeda fails to capture
the intention of the user to deconstruct the cluster. Therefore,
we needed to find an approach to convey clustering intent to
the model so that it can react correctly to these common user
manipulations.

3.3.2. Solution

Random Sampling: One possible solution is to consider the
relative distance changes of all points, which means the clus-
tered/unclustered points are moved with respect to all the other
untouched points. It could solve the ‘‘constructing/deconstructing
clusters’’ issue to some extent, but other issues would arise. First,
considering the pairwise distances of all points requires signif-
icantly more expensive computation, sacrificing the efficiency
of the interaction. Additionally, changes would be very minimal
when dragging a few points in relation to a large number of
untouched points, and the effect of the relative distance changes
would be canceled out by a large amount of unchanged data.
To minimize these shortcomings, we randomly select only m
untouched points to represent all points in the background.
This strategy offers a compromise between the advantages and
disadvantages brought by considering all untouched points.
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Fig. 6. The ‘‘constructing a cluster’’ usability issue: (a) Create a cluster by dragging the German Shepherd, Otter, and Dolphin together. (b) The interaction result in
the original Andromeda system.
Fig. 7. (a) The execution times and (b) the absolute distance changes for the number of sampling points from 2 to 30.
The number of sampling points, m, significantly impacts the
system’s performance. To determine an optimal value of m, we
experiment with the execution time and the clustering perfor-
mance with different numbers of sampling points. As shown in
Fig. 7(a), the execution time increases with the increasing number
m due to the increasing demand for calculations of both the
pairwise distances and the best-fit projection. Fig. 7(b) reveals the
clustering performance for different numbers of sampling points
m. A small value of distance change means a good clustering
performance, whereas a large value of distance change means
a bad clustering performance. As shown in the results, the dis-
tance values sharply increase along with the increasing number
of sampling points, indicating that a larger m leads to worse
clustering performance, with some instability beyond m = 5.
Therefore, to achieve a better updated layout, we should select a
small number of sampling points. To retain the relative distance
between sampling points and achieve good time efficiency and
clustering performance, we use three sampling points in the
revised inverse WMDS computation.

As shown in Fig. 8, a user creates a cluster of the German
Shepherd, the Otter, and the Dolphin. Once the user updates the
layout, three points (the Sheep, the Elephant, and the Siamese
cat) are randomly sampled and displayed with an orange border.
Their relative distances will be considered along with those of the
moved/highlighted points to project the new visualization with
Eq. (6). In this equation, points i and j are the moved/highlighted
points, r∗

i and r∗

j are their user-defined low-dimensional coordi-
nates, and di and dj are their high-dimensional coordinates. Points
α and β are sampling points, rα and rβ are their low-dimensional
coordinates, and dα and dβ are their high-dimensional coordi-
nates. The distL and distH functions calculate the pairwise Eu-
clidean distances in the low-dimensional and high-dimensional
spaces. The pairwise distances between the moved/highlighted
points and the sampling points are ignored. The generated new
20
weight vectors, ω, will be used for the next forward WMDS
pipeline to replot a new visualization.

ω = min
ω1,...,ωp

[ n∑
i=1

n∑
j>i

(distL(r∗

i , r∗

j ) − distH (ω, di, dj))2+

m∑
α=1

m∑
β>α

(distL(rα, rβ ) − distH (ω, dα, dβ ))2
] (6)

How does the system know when to apply this strategy? When
the system detects the intent of a cluster construction, a cluster
deconstruction, or a two-point-only manipulation, random sam-
pling of other points is automatically applied. To detect these
cases, before running WMDS, the system calculates all of the
pairwise distance ratios, φi,j. Points i and j are moved/highlighted
points in the foreground. If all φi,j < 1, all pairwise distances have
decreased, then the system infers that the user is trying to create
a cluster, and applies random sampling before the inverse WMDS
computation. If all φi,j > 1, all the pairwise distances increased,
then the system infers that the user is trying to deconstruct a
cluster, and applies random sampling before the inverse WMDS
computation.

Likewise, in the original Andromeda, moving two points was
not possible for the same reasons. Users were required to move
at least three points, some closer and some further, to update the
projections. This requirement prevented users from exploring the
similarity or dissimilarity between only two observations. This
problem is equivalent to the construct/deconstruct cluster prob-
lem with n = 2. With random sampling, two-point manipulation
is enabled, making the Andromeda system more flexible for new
exploration tasks.

3.3.3. Results
We performed a simulation analysis for our random sampling

solution and compared the performance between Andromeda
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Fig. 8. The random sampling solution: (a) Create a cluster by dragging the German Shepherd closer to the Otter and the Dolphin. After clicking the ‘‘Update Layout’’

button, three untouched points (the Sheep, Elephant, and Siamese Cat) are randomly sampled. (b) The model result showing the new cluster.
Versions A and B. Version B included the random-sampling fea-
tures. Version A did not have the random sampling and the re-
lated model modifications. We tested combinations for construct-
ing/deconstructing a cluster with varying numbers of moved
points ranging from two to five. Because of the randomness of
sampling points, the experiment is repeated 20 times for each
combination to ensure reliability. The ability to move two points
is not enabled in Andromeda Version A; therefore, we test this
situation only in Version B.

In Fig. 9, the blue line represents the regression line for the
new distances of cluster points in Version A, while the orange
line is the regression line for the new distances of cluster points
in Version B. All of the orange lines fall below the green original
distance line, indicating that for all combinations in Version B,
the mean values of their new distances are smaller than their
original distances. Therefore, data points create a cluster in the
updated layout in Version B. The orange regression lines for the
new distances in Version B are lower than blue regression lines
for the new distances in Version A, indicating that Version B
performs better than Version A in creating clusters.

Fig. 10 displays the results for deconstruction of a cluster
of two to five points. Again, most of the mean values for the
new distances of Version B (orange points and lines) are above
the green original distance line, indicating that most pairs in
Version B are separated after updating the layout. However, as the
original distances increase, the separation becomes less obvious,
likely because these points are already at their furthest possible
positions in the original visualization. By comparing the results
of the Andromeda Version A and B for deconstructing a cluster,
the orange regression lines for the new distances of Version B are
higher than the blue regression lines of Version A. This indicates
that Version B could move the cluster points further apart in the
updated layout than could Version A.

Overall, the random sampling improves the Andromeda per-
formance on constructing and deconstructing clusters. In addi-
tion, the change in the relative distance is missing for two-point
groups in Andromeda Version A. Andromeda Version B, with
its random sampling, addresses this limitation and enables two-
point manipulations. Figs. 9(a) and 10(a) present the results for
constructing and deconstructing a cluster of two points, dis-
playing all the two-point combinations. The results indicate that
Andromeda Version B, with random sampling, performs well in
creating a cluster of two points.

When running the usability study discussed in Section 3.1.3,
we asked participants to compare similarities between two points
so that we could explore how enabling two-point interactions
would impact participants’ data exploration. Two-point OLI is
only enabled in Version B. As Table 3 makes evident, 27 of
the 28 participants who use Version B choose OLI to compare
the similarity between two points. This result indicates that the
participants prefer to use OLI to interact with points directly
rather than use SLI to check attribute values in the parameter
view. For Version A users, we observed that six participants
21
Table 3
Comparing two-point interactions in Andromeda Version A and Version B.

SLI OLI

Two points Select additional
points

Version A 20 0 6
Version B 1 27 0

(23.1%) randomly selected additional points in order to bypass
the Version A limitation of selecting at least three points, which
resembles our random sampling strategy, as participants began
to select additional points in an attempt to better communicate
their intent to that version of the system. We randomly select
three points to represent all the untouched points. This result
confirms that our random sampling solution is consistent with
user cognition and is unlikely to create a subsequent disconnect
between users and the model.

4. Discussion

The previous section presents three usability challenges with
the Andromeda visual analytics system, as well as presenting
and evaluating our solutions to resolve these challenges. Our
overarching goal with these solutions is to bridge the gaps that
existed between the users’ mental model and the mathematical
model of the Andromeda system. While the solutions that we
proposed may not be the optimal visual encoding or interaction
to address the challenge, we were able to resolve the major
issues that we identified from previous studies. In this section, we
generalize our solutions to broader lessons learned for the visual
analytics community, revisit the ‘‘Two Black Boxes’’ problem, and
discuss the limitations of our approach with accompanying future
work.

4.1. Lessons learned for visual analytics

Our experience with addressing each of the three usability
problems in this work incorporates some lessons learned that can
apply to bridging cognitive gaps between human and model in
visual analytics tools.

Identifying target points that are relevant/irrelevant for an
interaction (the ‘‘With Respect to What’’ Problem (Wenskovitch
et al., 2020)) is a general problem in many interactive dimen-
sionality reduction and clustering applications, particularly in
those that include semantic interaction (Endert et al., 2012a),
V2PI (Leman et al., 2013), and/or OLI (Endert et al., 2011). A
key observation is that the data relationships within a projec-
tion should be expressed in both a clear and usable way. This
must be true for both directions of communication (Wenskovitch
and North, 2020); if the communication channel from the AI to
the human shows pairwise distances, then the communication

channel from the human to the AI should also make use of
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Fig. 9. Comparing the performances of Andromeda Version A and B in constructing a cluster of two to five points. The blue lines are the regression lines for mean
values of the new distances of Version A (blue points). The orange lines are the regression lines for mean values of the new distances of Version B (orange points).

The regression lines are calculated using a nonparametric lowess estimator.
pairwise distances. At times, the AI and the human may not be
communicating the same information, such as when the user is
expressing an interaction intent and the system responds with
the relationships that it has inferred, so the data relationships
must be made explicit. Our mapping of relevant/irrelevant points
to the foreground/background visually represents one method
that is immediately learnable to users without requiring training.

Presenting a means for users to understand the meaning of
imensionally-reduced spaces is also an active area of research
n visual analytics (Wenskovitch and North, 2021). The sensitivity
f nonlinear dimensionality reduction algorithms to parameters
nd hyperparameters is a known challenge for tuning and vi-
ually interpreting the resulting projection (Wattenberg et al.,
016). Tools such as DimReader (Faust et al., 2019) and Check-
iz (Lespinats and Aupetit, 2011), among others (Aupetit, 2007),
ugment the visualization to add a level of explainability to the
rojection. In our case, simply showing one-dimensional sizes
ppeared to assist users in overcoming some common misunder-
tandings in the Andromeda data projections, but other methods
uch as biplots (Fry and Slifko, 2018) may still be needed in
ther applications to enhance the user’s understanding of the
isualization.
Underspecification is also a common problem in visual analyt-

cs, a fact that is especially true when the number of interactions
s substantially more sparse than typical labeled data (Wen-
kovitch and North, 2017). Interaction machine learning appli-
ations can require complex labeling requirements that are not
bvious, such as the need in the original Andromeda system
o move three or more points while simultaneously expressing
oth similarly and dissimilarity relationships. However, these

hallenges often result from assumptions made in the machine

22
learning algorithmic design, which may be different than the
means by which a user thinks about the problem (Wenskovitch
and North, 2021). Researchers should identify and study such
common misunderstandings, developing new algorithms (such as
the clustering case that we present in this work) to supplement
and cover the non-obvious cases. Occasionally this may require
systems to not rely on a single solution, but instead to integrate
various edge case solutions.

4.2. ‘‘Two black boxes’’ revisited

The usability issues that we discuss in this work represent
challenges both with communication from human to AI (the
algorithm must understand the intent of the user’s interaction)
and from AI to human (the user must understand how their
behavior will change the model). These two closed black boxes
must be opened in order to maximize the performance of both
actors when working together to explore a dataset. These usabil-
ity issues are also representative of challenges that are common
in visual analytics systems, including issues of transparency, ex-
plainability, interpretability, and verification of both interactions
and models.

As visual analytics systems become more advanced in infer-
ring user intent and responding appropriately to interactions,
the role of human–machine teaming research will become more
applicable to visualization researchers in this space. One of the
main principles of successful human–machine teams is having
both shared knowledge and shared awareness (Lyons and Havig,
2014). Improving communication between human and machine
by opening their respective black boxes will further enable these
shared features when exploring a dataset in an interactive ma-
chine learning tool such as Andromeda.
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Fig. 10. Comparing the performances of Andromeda Version A and B in deconstructing a cluster of two to five points. The blue lines are the regression lines for
mean values of the new distances of Version A (blue points). The orange lines are the regression lines for mean values of the new distances of Version B (orange
points). The regression lines are calculated using a nonparametric lowess estimator.
4.3. Limitations and future work

In the pilot study for understanding the WMDS dimensions,
e observe that the dimension-assist feature is somewhat helpful

or characterizing the data distribution for one dimension, and
nly minimally improves the participants’ understanding of the
eanings of the WMDS plot axes. From these results, we con-
lude that the dimension-assist feature improves Andromeda’s
erformance in some respects but does not meet all of our ex-
ectations. The main advantage of this dimension-assist feature
as to aid users in understanding how the complex plot was
ransformed into simpler plots via PI, such as for finding extrema
nd identifying 2D correlations. We do not wish to overstate the
alue of this feature; it is simply one step toward making this
ool more usable. In the future, we could introduce additional
imension related features to better minimize the understanding
ap regarding WMDS dimensions.
Despite the positive results for the random sampling, it has

imitations: its performance is unstable. For the same set of
oved points, different sampling-point combinations heavily af-

ect clustering performance. To investigate deeper, we evalu-
ted the impacts of different sampling-point combinations, but
ere unable to discover any significant effects. Selecting sam-
le points based on the original distances, new distances, or
istance changes of sampling points did not significantly affect
lustering performance in a consistent way. This suggests that
t might be difficult to create heuristic methods for attempting
o (non-randomly) select ‘‘good’’ sample points. Therefore, in
his instance, the outcome still depends on the inverse WMDS
odel and whether it can find a best-fit projection that satisfies
oth the relative distances between highlighted/moved points
23
and the relative distances between sampling points. An obvious
partial solution would be to execute multiple runs of the sampling
and inverse WMDS model, and then select the best clustering
outcome. Future work could evaluate more impact factors to
improve its performance. Additionally, the sudden introduction
of the selected randomly-sampled points could be confusing for
some users who are unfamiliar with the system. We consider it to
be an acceptable tradeoff between introducing additional visual
clutter and adding some explainability to the actions undertaken
by the system, but other solutions are certainly possible.

5. Conclusion

This research focuses on designing and evaluating solutions
for bridging gaps between user intent and model parameters.
We study and discuss three major usability issues in the An-
dromeda system: highlighting relevant data points, understand-
ing the WMDS dimensions, and constructing and deconstructing
clusters. These three issues occur as the result of communication
difficulties in both the algorithm misunderstanding the intent
of the user and the user misunderstanding the actions of the
algorithm.

To resolve these usability challenges, we implement and eval-
uate a number of modifications to the visualization and machine
learning model in Andromeda. To resolve the uncertainty regard-
ing which data points in the projection are used by the algorithm
to learn and plot a new projection, we introduce two interface
features – foreground and background view and distance lines –
and evaluate these with a usability study in a classroom setting.
To help users understand the dimensions of the WMDS plot, we
introduce a dimension-assist feature that changes the size of data
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oints according to their dimensional values. Finally, to improve
ndromeda’s performance when a user attempts to create or
econstruct a cluster, we introduce a random sampling strategy
nd modified learning objective function.
Our results indicate that the newly implemented features can

elp users realize that they need to select all the data points
elevant to their intent. These features also help users in effi-
iently performing analysis tasks such as determining attribute
xtrema, identifying relationships between multiple attributes,
nd characterizing the distribution of attributes within the pro-
ection. Finally, our modifications to the model allow Andromeda
o recognize and support the common user intent of cluster-
ng based on users’ natural clustering interactions. In summary,
ach of our solutions performs well in addressing usability issues
hen compared to the original Andromeda interface, by aiding in
ridging the cognitive gaps between user and model.
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