
Defending Real-Time Systems through Timing-Aware Designs

Tanmaya Mishra

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Thidapat Chantem, Chair

Ryan Gerdes

Ning Zhang

Eli Tilevich

Guoqiang Yu

April 22, 2022

Arlington, Virginia

Keywords: Real-time systems, Security, Trusted Execution, CAN, CFI, Mixed Criticality

Copyright 2022, Tanmaya Mishra

Defending Real-Time Systems through Timing-Aware Designs

Tanmaya Mishra

(ABSTRACT)

Real-time computing systems are those that are designed to achieve computing goals by cer-

tain deadlines. Real-time computing systems are present in everything from cars to airplanes,

pacemakers to industrial-control systems, and other pieces of critical infrastructure. With

the increasing interconnectivity of these systems, system security issues and the constant

threat of manipulation by malicious external attackers that have plagued general computing

systems, now threaten the integrity and safety of real-time systems. This dissertation dis-

cusses three different defense techniques that focuses on the role that real-time scheduling

theory can play to reduce runtime cost, and guarantee correctness when applying these de-

fense strategies to real-time systems. The first work introduces a novel timing aware defense

strategy for the CAN bus that utilizes TrustZone on state-of-the-art ARMv8-M microcon-

trollers. The second reduces the runtime cost of control-flow integrity (CFI), a popular

system security defense technique, by correctly modeling when a real-time system performs

I/O, and exploiting the model to schedule CFI procedures efficiently. Finally, the third

studies and provides a lightweight mitigation strategy for a recently discovered vulnerability

within mixed criticality real-time systems.

Defending Real-Time Systems through Timing-Aware Designs

Tanmaya Mishra

(GENERAL AUDIENCE ABSTRACT)

Real-time computing systems are those that are designed to achieve computing goals within

certain timing constraints. Real-time computing systems are present in everything from cars

to airplanes, pacemakers to industrial-control systems, and other pieces of critical infrastruc-

ture. With the increasing interconnectivity of these systems, system security issues and the

constant threat of manipulation by malicious external attackers that have plagued general

computing systems, now threaten the integrity and safety of real-time systems. This dis-

sertation discusses three different defense techniques that focuses on the role that real-time

scheduling theory can play to reduce runtime cost, and guarantee correctness when applying

these defense strategies to real-time systems.

The first work introduces a novel timing aware defense strategy for the Controller Area Net-

work (CAN). CAN is a popular communication system that is at the heart of every modern

passenger vehicle and is indispensable for the safe operation of various components such

as the engine and transmission systems, and due to its simplicity, may be vulnerable to a

variety of attacks. We leverage security advancements in modern processor design to pro-

vide a lightweight and predictable (in terms of time taken to perform the operation) defense

technique for some of these vulnerabilities.

The second work applies a technique called Control-Flow Integrity (CFI) to real-time sys-

tems. CFI is a general-purpose defense technique to prevent attackers from modifying soft-

ware execution, and applying such techniques to real-time systems, particularly those with

limited hardware capabilities, may be infeasible. By applying real-time scheduling theory,

we propose a strategy to apply CFI to such systems, while reducing its overhead, or cost,

without compromising the security guarantees CFI inherently provides.

Finally, safety-critical systems may consist of a mix of operations, each having a different

level of importance (criticality) with respect to the safe operation of the system. However,

due to the complexity of modeling such systems, the models themselves may be vulnerable

to attacks. Through simulations we study one such vulnerability and propose a modification

to mitigate it.

Dedication

To my grandfather who taught me how to work hard and have fun

v

Acknowledgments

This work was made possible through the concerted effort and guidance from many people,

over the course of many years. I would first and foremost like to thank my advisor, Dr.

Thidapat Chantem. Without her guidance, criticism, encouragement and invaluable advice,

over more than half a decade, all of this work would have been impossible. I will forever be

indebted to her for the countless lessons, technical and otherwise, that I have learned from

her.

I would also like to thank my co-advisor, Dr. Ryan Gerdes, for his (many) criticisms and

guidance during my Ph.D. journey, Dr. Ning Zhang for his technical comments and advice,

and Dr. Guoqiang Yu and Dr. Eli Tilevich for their advice as part of my advisory committee.

There have been many others who have helped me in this journey, maybe even too many to

list here. However, some of the most influential people, in both my growth as a person and

this work, have been my lab mates and colleagues. Foremost of them has been Pratham, a

person to bounce ideas off, and constant friend (and roommate) over the last five and a half

years. Many of the ideas presented in this work are from late night conversations in the lab

or over a session of chai, with others including Gaurang and Mahsa, at the Minerva Express

Indian grocery store. The daily cups of chai at this store will always remain some of my

brightest memories from my Ph.D. journey. Over the years, many have left and even more

have joined these sessions, including Spandan, Rajarshi and Pragya. I am thankful for their

support and glad that this tradition will pass on to them as they go through their respective

academic journeys.

While those at the lab have been constant sources of support, it would be a remiss on my part

if I do not thank my friends from my undergraduate days. These include Gaurang, Aniket,

vi

Prathamesh, Anurag, Niharika, Raj, Karan, Omkar, Amogh, Madhura, among others. The

numerous trips we have had together, over the years, have been the bright moments of

respite that were sorely needed to maintain the motivation and spirit required to complete

this journey. For over a decade, these people have always remained a constant in my life and

I will always be grateful for them. Special thanks to Gaurang and Raj for the time spent in

Seattle during the summer of 2021. That time was a great breath of fresh air. I am grateful

to Madhura for her constant support, encouragement and for being a source of happiness

through out the years.

Finally, I would like to thank my parents, brother, and my cousins, Ankita and Ambika,

for their constant support and motivation through the years, and Anushila (and, of course,

Priyanka) for being my home away from home that I could always escape to when needed.

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 2

1.2 Limitations of embedded system hardware 6

1.3 Predictability of real-time systems and its usefulness for system security . . . 7

1.4 Reviewing advancements in real-time system theory for security vulnerabilities 8

1.5 Organization and contributions . 9

2 Preliminaries: TEE and ARM TrustZone for Cortex-M 13

2.1 ARM TrustZone for Cortex-M . 14

3 Utilizing trusted execution to secure CAN bus communications 18

3.1 Introduction . 18

3.2 Related Work . 22

3.3 Preliminaries . 24

3.3.1 Controller Area Network (CAN) . 24

viii

3.4 System Model and Problem Statement . 26

3.4.1 Real-Time Task Model . 26

3.4.2 Threat Model . 27

3.4.3 Problem Statement . 28

3.5 System Design and Overview . 29

3.6 TEECheck : A TEE based CAN message checker 31

3.6.1 Transmission . 32

3.6.2 Reception . 38

3.7 Experimentation . 39

3.7.1 Experimental Setup . 40

3.7.2 Results . 41

3.8 Analyses . 45

3.8.1 Real-Time Analysis . 45

3.8.2 Security Analysis . 46

3.9 Conclusion . 48

4 Utilizing hard real-time system predictability to implement control-flow

integrity 49

4.1 Introduction . 49

4.2 Related Work . 53

4.3 Preliminaries . 55

ix

4.3.1 Hardware model . 55

4.3.2 Software Model . 56

4.3.3 Threat model . 57

4.4 Overview of Procrastinating CFI . 58

4.5 Procastinating CFI Task model . 59

4.5.1 Application task model . 61

4.5.2 Security task model . 63

4.6 Security Task Deadline Relaxation . 65

4.7 Ensuring Correctness and Schedulability . 68

4.7.1 Race condition between output and security tasks 68

4.7.2 Implicit data-dependency between output and security jobs 70

4.7.3 Implications on scheduling . 70

4.8 Procrastinating CFI mechanism . 72

4.8.1 SAU based function-block enforcement and shadow stack 73

4.8.2 RTOS modifications . 74

4.8.3 Design Alternatives . 75

4.8.4 Verification of Control Flow in Security Task 76

4.9 Security analysis . 76

4.10 Evaluation . 78

4.10.1 Control flows in Cyber Physical System (CPS) Software 78

x

4.10.2 Experimental setup . 79

4.10.3 Hardware Overhead . 79

4.10.4 Simulation study . 81

4.11 Conclusion . 83

5 Simulation-based characterization and a priority degradation-based de-

fense against the Mad Monk attack for mixed-criticality systems 84

5.1 Introduction . 84

5.2 Related Work . 87

5.3 Mixed Criticality Task Model . 90

5.4 The Mad Monk Attack . 92

5.4.1 Threat Model . 93

5.4.2 Mad Monk Attack mechanism . 94

5.5 Simulating Mad Monk . 96

5.5.1 Simulator setup . 96

5.5.2 Determining basic conditions with realistic penalty 99

5.5.3 Changing to harmonic periods . 100

5.5.4 Considering variations in penalty on a newly released intermediate

victim job . 101

5.5.5 Converting the attacker task into a sporadic task 103

xi

5.5.6 A note on dropping attacker jobs for single and multiple attacker tasks

- suicide condition . 107

5.5.7 Simulation summary . 109

5.6 Criticality level-aware priority degradation to mitigate Mad Monk 110

5.6.1 Response time analysis for degraded group for RM 115

5.6.2 Simulating effect on deadline misses for attacker tasks 117

5.7 Conclusion . 117

6 Conclusion and Future Work 118

6.1 Summary and Conclusion . 118

6.2 Future Work - Vulnerability in real-time systems due to self-suspension . . . 119

Bibliography 121

xii

List of Figures

2.1 ARMv8-M microcontroller power ON code flow 14

3.1 CAN 2.0b standard frame format . 26

3.2 (a) Regular ECU system and (b) ECU system utilized for TEECheck 30

3.3 (a) Source verification using HMAC (b) Rate limiting messages based on

per-task last transmission time . 33

3.4 TEECheck Reception scheme . 38

4.1 (i) Task system where sensor task has simple in-line CFI, (ii) Proposed pro-

crastinating model where in-line CFI is bundled into a security task (Sec-

tion 4.5.2) which can implement complex CFI operations (accomodate greater

WCET) but with pushed back deadlines to lower resource utilization. 58

4.2 Code redirection on a generic microcontroller. Attacker modifies contents of

R0 to change branch target. 60

4.3 Overview of Procrastinating CFI mechanism to capture forward-edge control-

flow logs (reading source and destination addresses of branch) and backward-

edge verification. Branching into upgraded memory launches fault handler

that performs both operations - Section 4.8. 62

4.4 Race condition: Attacker is able to execute and affect input of output task.

In such a case, the output task’s deadline (and output release time under

LET) is before the security task is able to complete execution. 67

xiii

4.5 (i) Sample data dependency between internal tasks A and C with output tasks

B and D. (ii) Dependencies when security tasks are considered. 69

4.6 SAU based function-call enforcement. 72

5.1 Victim here is the intermediary victim job. Periodic jobs are harmonic syn-

chronous. Sporadic attacker job ”skips” a previous job, leading to an advan-

tageous condition. 107

5.2 Criticality based degradation strategy implemented on a 3 criticality level

system. Each criticality change reduces the number of possible attackers that

can target a HI criticality intermediary victim task. 110

xiv

List of Tables

3.1 Single task running at highest frequency (RL - Rate Limiting, CAN - CAN

controller transmission time) . 40

3.2 Single task running at highest frequency with reception. TEECheck call over-

head . 42

3.3 Transmitting different message sizes . 44

3.4 Automotive benchmark with increasing number of tasks with TEECheck . . 46

4.1 Control-flow transfers in popular real-time applications. 79

4.2 Deadline relaxation of security tasks. 80

4.3 Percentage of tasksets (/10,000) that are only schedulable under EDF+SRP

when push backs are accounted. Original task set utilization does not include

security tasks. WCET Ratio is ratio of WCET of security tasks to application

task. 82

5.1 Simulation where average execution time is 60% of worst-case for given crit-

icality level. Success % is the number of task sets (out of 100) that show

successful attack. 98

5.2 Simulation where average execution time is 80% of worst-case for given crit-

icality level. Success % is the number of task sets (out of 100) that show

successful attack. 100

xv

5.3 Changing to harmonic periods immediately increases the attack success ratio

by 3 times. Success % is the number of task sets (out of 100) that show

successful attack. 101

5.4 Success percentages when attacker cannot induce penalty on newly released

intermediary victim jobs. Success % is the number of task sets (out of 100)

that show successful attack. 102

5.5 Attacker can induce up to 10% of the penalty on the newly released interme-

diary victim job, that it can otherwise induce on a preempted job. Success %

is the number of task sets (out of 100) that show successful attack. 103

5.6 Attacker can induce up to 70% of the penalty on the newly released interme-

diary victim job, that it can otherwise induce on a preempted job. Success %

is the number of task sets (out of 100) that show successful attack. 104

5.7 Comparing success rate of periodic and sporadic attacker for different number

of tasks in task set. Success % is the number of task sets (out of 100) that

show successful attack. Earliest Successful Attack % is where a task set shows

strictly earlier successful attack occurrence under the specific type of attacker. 105

5.8 Success % where only the sporadic task was able to achieve successful attack 106

5.9 Simulating criticality aware priority degradation on LO criticality attacker all

other tasks MID or HI criticality. Deadline Miss % is the number of task sets

(out of 100) where attacker task misses its deadline. 116

xvi

Chapter 1

Introduction

Real-time computing systems are those that must maintain logical correctness while pro-

viding temporal guarantees. Specifically, these systems define a relation between when the

system is provided an input and by when it must genenerate an output. The effect or con-

sequence of violating this definition varies. For soft real-time systems the consequence of

violating this pre-defined relation, also called deadlines, may simply degrade the quality of

service (QoS) for the system user. An example of such a system is when a user streams a

video from a remote server (such as YouTube or Netflix). If the user computer is unable

to handle decrypting and rendering the video stream on screen in a timely manner, or if

the network is overloaded, the user may have to wait time for the video to render and/or

download and see frequent stutters while viewing the video stream. On the other hand,

in the case of hard real-time systems, violating deadlines during system runtime could lead

to catastrophic system failure and the consequences could include loss of human life. For

example, the airbag in modern passenger vehicles must deploy within strict time bounds or

else it would be too late to prevent injury to the occupants in the vehicle, rendering the

airbag deployment system ineffective. Therefore, such systems have hard deadlines which

must not be violated. While traditionally such computing systems have been isolated and

work autonomously, due to the rise of system interconnectivity, such systems are becom-

ing increasingly vulnerable to malicious external influence. This dissertation specifically

looks at the increasingly relevant problem of security vulnerabilities in modern embedded

1

2 CHAPTER 1. INTRODUCTION

real-time system design and aims to motivate the larger real-time systems research commu-

nity to consider security objectives and vulnerabilities alongside traditional real-time system

guarantees. This dissertation shows that even in computationally limited systems, there is

a possibility to include defenses against external attacks by judiciously utilizing real-time

system concepts and techniques. Further, this disseration showcases that, due to the pre-

dictability that is inherent in real-time systems, modern real-time system models need to be

rethought and updated to mitigate vulnerabilities that they may inadvertently introduce,

due to their design.

1.1 Motivation

This work is based on two pillars: real-time system scheduling theory and mechanisms,

and system security. An interesting observation of all real-time systems is the inherent

predictability of these systems which cannot be said of an arbitrary computing system. Since

real-time systems have deadlines which are known apriori to deployment, it is but evident

that such systems will perform useful work, that can be accurately measured, within these

deadlines. Therefore, such a system’s state can be accurately judged at any given time

instant. This leads to an interesting relationship between temporal guarantees and security

when such systems are judged by existing research and literature in the system security

domain. However, before we discuss this relationship, the reader may question as to why is

it necessary to consider the security of real-time systems in the first place? Why is this a

relevant problem in the current state-of-the-art?

Consider, for instance, a vehicle from around 40 years ago. These were relatively simple

machines and would have an internal combustion engine, a simple manual transmission, hy-

draulic brakes, and maybe a microprocessor-based fuel injection system [78] for improving

1.1. MOTIVATION 3

engine fuel efficiency and engine output. Therefore, the computing systems within such ve-

hicles were simple and robust to ensure occupant safety, and, more importantly, completely

isolated from other computing systems. In fact, at that time, the internet was still being used

primarily by scientific and military organizations for specialized work. With the prolifera-

tion of communication technologies over the last 3 decades and its application to computing

environments ranging from massive data-centers to the personal smartphone, coupled with

an ever increasing data bandwidth and transfer speeds, it is but natural that some of these

technologies would trickle into critical systems such as vehicles. Modern vehicles are now

far more complex machines. While the mechanics of the internal combustion engine may

not have made major progress over the years, highly sophisticated add-on systems such as

hybrid/electric drivetrains and advanced driver assistance systems (ADAS) have become in-

creasingly popular in modern vehicles. ADAS mechanisms such as traction control, adaptive

cruise control, automatic pedestrian-detection etc., utilize data captured by a vast array of

sensors, computed in over a 100 distributed computing systems, also called electronic control

units (ECU) spread throughout the vehicle that constantly communicate over intra-vehicular

networks such as controller area network(CAN) [49]. Since the safety of the occupants as

well as that of pedestrians on the road is dependent on the correct and timely operations of

such systems, such ADAS systems have hard real-time requirements [25] to ensure occupant

safety.

More recently, vehicles have been slowly opened up to external connections too. For example,

in the last decade, it has become increasingly common to have wireless connectivity options

such as Bluetooth, WiFi and cellular connectivity integrated into the vehicle’s infotainment

system for passenger convenience as well as for remote over-the-air (OTA) updates to ve-

hicle software. In fact, manufacturers such as Tesla are capable of fine-tuning core vehicle

performance such as top speed and efficiency via such OTA updates. While this has obvious

4 CHAPTER 1. INTRODUCTION

advantages for those that are able to purchase such vehicles, the ability to perform such

modifications to core vehicular functionality have already been successfully exploited. For

example, researchers [85] were successfully able to send out malicious messages on a Tesla’s

CAN bus via a malicious OTA payload to perform potentially dangerous operations, such

as disabling the vehicle’s power steering and braking. While Tesla later sent out an OTA

software patch after being notified, it can be argued that such attacks are only going to get

more sophisticated with the passage of time.

Unfortunately, security vulnerabilities plague real-time systems in other domains too. For

example, Iran’s nuclear reactor program was severely undermined by the Stuxnet [48] com-

puter worm which was able to modify plant operations. In fact, Stuxnet showcases an

even more disturbing problem. Stuxnet was able to spread and maliciously take control

even though the plant control computers were air-gapped. That is, they were physically

isolated from external computing systems just like traditional real-time systems. However,

the human operators were able to load the worm into the controllers by plugging in infected

storage drives. Infected Stuxnet controllers could have caused catastrophic plant failure, and

resulted in possibly Chernobyl-like consequences to human and animal life. Further, since

these systems run legacy software which are rarely, if ever, updated since they control critical

equipment, the possibility of such software having unpatched vulnerabilities is higher. As

the sophistication of such attacks increase, legacy and connected modern real-time systems

alike will become more vulnerable.

Therefore, there is an outstanding need to build security mechanisms into real-time systems.

While taking reactionary measures, such as that performed by Tesla, to safeguard such

systems is a possibility, it entirely depends on the benevolence of the attacker to inform

real-time system vendors about such security vulnerabilities. However, Stuxnet shows that

attackers exist who would try to exploit such systems for a myriad of reasons, from to

1.1. MOTIVATION 5

economic to political, regardless of the consequences of such actions, and would only be

detected by either forensic analysis of such systems or when the attack is executed in its

entirety. The former, however inconvenient, is still more desirable to the latter which could

have disastrous consequences.

To summarize this discussion, and determine the various facets this dissertation must con-

sider in the domain of securing real-time systems, we can circle back to the example of a

modern connected vehicle. The salient points are:

1. ECUs within modern connected vehicles have limited computational resources to man-

age size, weight and power consumption (SWaP) while also balancing the bill of mate-

rials (BoM) of the final product. Designing a system security solution must explicitly

consider hardware constraints, especially in an embedded system scenario.

2. ECUs (and many other real-time systems that are deployed in critical environments)

are increasingly vulnerable to advancements in system security attacks. Introducing

general-purpose system security defenses in such hardware constrained systems may

lead to insurmountable overheads, which may lead to system designers completely

abandoning the use of any such security solution. Existing general-purpose designs

must be judiciously modified to fit the specific needs of real-time systems to convince

system designers to introduce these security solutions in real-time systems. In fact,

it could be advantageous to utilize some of the assumptions of real-time systems to

reduce the cost of existing security solutions.

3. Advancements in real-time systems research may inadvertently introduce more vulner-

abilities. It is imperative, due to the increasing interconnectivity of modern real-time

systems such as in the context of modern vehicles, to critically view recently introduced

real-time systems models and determine if they allow malicious external manipulation,

6 CHAPTER 1. INTRODUCTION

and fix these problems as they arise.

We shall now discuss each of these salient points, and then conclude the introductory material

with the specific contributions of this dissertation.

1.2 Limitations of embedded system hardware

While it is clear from current state of cyber-physical system security that there is a need to

harden real-time systems to reduce the possibility of malicious manipulations, the type of

hardware that is used in such systems must be explicitly considered.

Unlike desktop or server-grade computing environments that one usually encounters in do-

mains such as cloud computing, high-performance computing, etc., many real-time systems

utilize less complex hardware. For example, the ECUs used within vehicles typically use

CPUs that share more similarities with microcontrollers with integrated RAM, Flash and

typically run at much lower clock speeds of a few 100 MHz [72] as compared to state-of-the-

art CPUs which easily execute at least a magnitude higher clock speeds. This is done to

consider size-weight-and-power (SWaP) constraints, especially for systems that are deployed

in remote or inaccessible locations where dependability and power consumption are more

important requirements than raw performance. In fact,the recently launched Perseverance

rover for Mars exploration uses a radiation-hardened IBM RAD750 processor [21] which it-

self is 2 decades old and based on a processor design from the late 1990’s. The performance

of such systems that run critical real-time software is a far cry from what is available in

modern processors. Further, many microcontrollers have much simpler architecture and lack

modern features such as complex memory management units. Such systems also use simple

operating systems called real-time operating systems (RTOS) such as FreeRTOS [11] that

1.3. PREDICTABILITY OF REAL-TIME SYSTEMS AND ITS USEFULNESS FOR SYSTEM SECURITY 7

are built to be highly predictable and provide a small hardware-abstraction layer (HAL)

to simplify application development while introducing the least possible additional software

components.

Therefore, where appropriate, this dissertation strictly considers embedded systems which

utilize low-performance microcontrollers for processing environments. Any technique pre-

sented, that specifically requires certain hardware capabilities, assumes that the technique

will be deployed on modern variants of common low-performance microcontrollers that are

currently available off-the-shelf. Such hardware introduce their own set of limitations which

must be carefully considered while designing the real-time system software. It is assumed

that the software running on such systems is either written to be bare-metal or, more com-

monly, divided into individual tasks that are scheduled via the RTOS.

1.3 Predictability of real-time systems and its useful-

ness for system security

As stated before, real-time systems are highly predictable. While this is necessary for correct

and safe system operation, it makes it that much easier for attackers to exploit such systems.

For example, real-time systems allow for timing inference attacks [36] where task timing

characteristics are used to leak information regarding task behavior during runtime. In

fact, a novel attack method has been developed for a modern real-time task model that

depends on expected system behavior due to the model’s design, and, within this thesis, a

countermeasure is proposed to mitigate this vulnerability.

On the other hand, the very same predictability can be used to inform defense mechanisms

to make them more performant and/or reduce their cost on the entire system. Since system

8 CHAPTER 1. INTRODUCTION

behavior is predictable, for example, it is known apriori the number of messages sent out on

the CAN bus by an ECU task in a modern vehicle, it is possible to inform defense mechanisms

to consider typical system behavior to both a) harden the system against attacks, and b)

lighten the load on the underlying hardware. In fact, it is even possible to perform increased

security countermeasures on the same hardware while maintaining deadlines by exploiting

the predictability of the system. However, care must be taken when exploiting predictability

to reduce the cost of security countermeasures. Any assumption of predictability must be

built upon the careful consideration of how the system would operate if the predictability

assumption does not hold true due to malicious interference or if, within the scope of the

attack, if the assumptions cannot be violated by the attacker.

Note that, in the theme of this dissertation, any designs and ideas for improving the inte-

gration of general-purpose system security defenses in real-time systems must consider the

limitations of the underlying embedded hardware. Judiciously exploiting any architectural

advantages afforded by modern variants of such types of hardware, alongside integrating

traditional real-time system concepts, may help to make the final design tenable for typical

embedded real-time systems.

1.4 Reviewing advancements in real-time system the-

ory for security vulnerabilities

While the previous two sections deal with how modern embedded hardware constrains the

ability of system designers to integrate system security solutions, and how existing real-time

theory and techniques may counterbalance these constraints, it would be remiss to not discuss

whether the advancements in real-time system theory introduce new system vulnerabilities.

1.5. ORGANIZATION AND CONTRIBUTIONS 9

Traditionally, real-time systems research involves modelling such systems to improve resource

utilization and efficiency, while strictly maintaining safety and predictability. However, due

to the increasing interconnectivity of modern real-time systems, it is not feasible anymore to

build these systems without considering malicious interference. There is currently a nascent

trend in this domain of research that specifically looks at vulnerabilities within state-of-the-

art real-time task models. These vulnerabilities do not lie within system implementations

but instead lie within the modelling of expected system behavior. It could be argued that

such flaws are more dangerous than any single implementation flaw, since any correctly

implemented systems, that closely match such flawed models, are automatically vulnerable.

Therefore, it is imperative to look at prior work that aims to break the assumptions un-

derlying real-time system models, and/or utilizes the assumptions in these models to force

the system to behave in an unintended manner. Such vulnerabilities must then be care-

fully addressed by fixing the assumptions within the model. This dissertation looks at one

such vulnerability that has been discovered by prior work, and proposes a revised model to

address this issue.

1.5 Organization and contributions

An overview of the rest of this dissertation is now presented. As discussed above, it is clear

that there exists an avenue to apply the predictability of real-time systems to general system

security concepts and that real-time system modeling may be flawed and open to attacker

manipulation. Additionally, where applicable, the proposed defenses must recognize the

constraints of the hardware on which it must operate.

Therefore, this dissertation is organized in a progressive manner. It starts by introducing

a technique that is designed to co-depend on the underlying hardware architecture, and

10 CHAPTER 1. INTRODUCTION

timing constraints of the system, to aid the defense mechanism. The second work reduces

the cost (and improve the capabilities) of a well-known system security defense mechanism

by carefully utilizing real-time modeling techniques. Here, certain underlying hardware

capabilities are assumed only to provide an example implementation of a defense mechanism.

Finally, the dissertation discusses a modification to a set of recently introduced real-time task

models to harden them against a vulnerability discovered, by prior work, within these models.

This is done by completely eschewing the requirement for specific hardware requirements,

and by integrating the defense into the model’s design itself.

The techniques are summarized here for the reader:

• Chapter 3 - This chapter focuses on utilizing modern embedded architecture to de-

sign a defense mechanism against a set of general security vulnerabilities, while being

mindful of the system’s timing requirements. Specifically, the CAN bus in vehicles

is considered. Modern embedded hardware architectures, allow strong isolation be-

tween execution contexts through the introduction of architecture extensions such as

ARM’s TrustZone [12]. Such advancements are now available in the lowest powered

micocontrollers and are built to introduce very low overheads and very predictable into

system operation. The work presented in this chapter considers the temporal tight-

ness of a typical hard real-time workload which would be found in a vehicle ECU.

The work presented aims to showcase that it is possible to design defenses, even on

low-end hardware, that defends against masquerade and denial-of-service attacks as

well as prevents information leakage. The chapter presents experimental proof on real

hardware that shows that such a technique can benefit ECU software without requiring

large modifications to the original code base and does not introduce enough overhead

to violate the temporal guarantees of pre-existing code.

1.5. ORGANIZATION AND CONTRIBUTIONS 11

• Chapter 4 - While the previous chapter essentially presents a system design perspec-

tive to solve the hard real-time system security vulnerabilities utilizing predictability

in hardware operation. This chapter, on the other hand, delves into a specific at-

tack, collectively called control-flow attacks that are used to manipulate a computing

system to perform attacker-controlled arbitrary computations, with a minimal set of

requirements. While control-flow attacks and their defense mechanisms have been

studied for over a decade, prior literature either does not validate the applicability of

presented techniques to hard real-time systems, or does not consider the unique limi-

tations of resource-constrained hardware commonly found in hard real-time systems.

This chapter presents a novel approach to that utilizes real-time theory and, especially,

assumptions regarding when a system receives input and by when it generates output.

Such assumptions are made possible due to the predictability of the operation of the

system, making it possible to temporally spread load by delaying control-flow transfer

checks. This allows for not only improved utilization of system resources (that are

already scarce in systems utilizing resource-constrained embedded hardware), but also

opens an opportunity to integrate more complex defenses that are currently only avail-

able for systems with more capable hardware. Care is taken to ensure that the design

does not violate the correctness of the defense mechanism and does not inadvertently

introduce additional blindspots that could be exploited by an attacker.

• Chapter 5 - This chapter delves into studying and defending against the recently

proposed Mad Monk attack for mixed criticality systems. Mixed criticality task models

have been proposed over the last decade to improve resource utilization in safety critical

systems. Mixed criticality task models allow the system designer to explicitly configure

the hierarchy of tasks by their importance to the safe and correct execution of the

system. Importance, or criticality, of a task is a concept that may be orthogonal to

12 CHAPTER 1. INTRODUCTION

the traditional concept of priority in real-time systems since the priority of tasks may be

determined with respect to other temporal parameters (such as deadline or frequency)

depending on the scheduling algorithm, and may have no relation to how critical the

task is to system operation. In mixed criticality systems, system criticality changes if a

high criticality task requires greater execution time (suggesting non-average behavior),

allowing the scheduler to assign greater execution budgets to higher criticality tasks

while degrading lower criticality tasks. This re-shuffling of execution budgets allows

the system to not only efficiently utilize system resources when system operates in

the average condition, but also quickly re-prioritize system resources when the system

enters non-average operating conditions. Mad Monk exploits this expected system

behavior and can cause degradation of higher criticality tasks via a lower criticality

task. In this chapter, by studying the conditions under which this attack can take place

through extensive simulations, a new defense is proposed by modifying the degradation

strategy.

Chapter 2

Preliminaries: TEE and ARM

TrustZone for Cortex-M

Trusted Execution Environments (TEEs) are trusted execution context within an untrusted

execution environment. TEEs are widely used for Digitial Rights Management (DRM)

of copyrighted audio and video content in modern smartphones. For example, Google’s

Widevine DRM [107] is a popular framework that depends on the existence of a TEE to

provide highest Quality-of-Service (QoS). For instance, streaming services could refuse to

provide the highest quality of audio/video data if they do not detect a TEE or detect a com-

promised TEE. To ensure the integrity of TEEs and their constituent software, also called

Trusted Applications (TA), there needs to mechanism to separate and enforce untrusted and

trusted software components. TEEs are built to address a powerful threat model, i.e., an

attacker that can take control over not only the application software but more privileged

components such as the operating system itself. Therefore, TEEs must be supported by

hardware extensions which constrain the attacker to the untrusted memory and execution

space, and safely switch between untrusted and trusted spaces with manageable overheads.

One such hardware mechanism is ARM’s TrustZone.

13

14 CHAPTER 2. PRELIMINARIES: TEE AND ARM TRUSTZONE FOR CORTEX-M

Non–Secure (NS) Secure (S)

RTOS

 Task
1

System Initialization

 Task
2

 Task
3

User Application

Power ON

NS Peripheral Drivers

NS Peripherals

Secure Func A

Secure Func B

Secure Func C

S Peripheral Drivers

S Peripherals

Non–Secure
Callable

SG

Branch

BXNS

Figure 2.1: ARMv8-M microcontroller power ON code flow

2.1 ARM TrustZone for Cortex-M

ARM TrustZone for Cortex-M [109] (based on ARMv8-M architecture) is a variant of the

TrustZone technology first introduced in ARM’s Cortex-A processors. ARM TrustZone is a

set of processor architecture extensions which allow creating TEEs via software. It divides the

processor execution into two domains, secure and non-secure. Code running in the secure

domain has access to information from both domains while code running in the non-secure

domain has access to information only from the non-secure domain. While TrustZone for

Cortex-A is complex and has significant overheads [84], TrustZone for Cortex-M is designed

to be very lightweight. To reduce the overhead for a low-powered microcontroller to switch

between the two states, TrustZone for ARMv8-M utilizes a near static memory-mapped

mechanism for delineating the domains. The TrustZone divides the memory space such that

certain addresses are made available only to the secure domain. This is facilitated through

2.1. ARM TRUSTZONE FOR CORTEX-M 15

a hard-wired controller logic called the implementation defined attribution unit (IDAU).

The IDAU creates a striated memory partitioning scheme such that it is easy to identify

to which domain an address belongs. Specifically, if the 29th bit of the memory address

is 0, it is a secure domain address. Additionally, certain sections of the non-secure domain

can be upgraded to the secure domain through software using the security attribution unit

(SAU). Depending on the implementation, peripherals are memory-mapped into both secure

and/or non-secure memory locations. The non-secure peripheral locations are enabled via a

peripheral access controller (PAC) or security control unit (SCU). The SAU, PAC, and SCU

are themselves mapped to secure locations by the IDAU, making it impossible for non-secure

code to access or modify them, unless TrustZone is broken.

The secure code memory location is further divided into secure (S) and non-secure Callable

(NSC) locations. While the former cannot be accessed by any code running in the non-secure

domain (or it would cause the system to generate a hard fault likely requiring human inter-

vention), the NSC locations provide an intermediary jump point where the secure gateway

(SG) instruction is kept which switches the processor mode to secure when executed. All

calls into the secure side have the interface function defined in the NSC. From an execution

point of view, both domains have a Thread and Handler mode for regular and interrupt code

executions, respectively. If an interrupt is generated from the non-secure side and the secure

code is currently executing, all information is pushed to the secure stack and registers are

cleared before the switch to the non-secure interrupt handler. The same set of steps happen

when the situation is reversed. Based on our experiments (Section 3.7), the fact that both

domains have the same execution flow and capabilities in ARMv8-M allows for consistently

low interrupt latency regardless of the domain from which the interrupt originates (4 us

overhead for switching in our case).

Figure 2.1 shows the flow of code execution once an ARMv8-M controller is powered on.

16 CHAPTER 2. PRELIMINARIES: TEE AND ARM TRUSTZONE FOR CORTEX-M

Code execution for ARMv8-M processors begins in the secure domain, which then branches

into the non-secure domain. The bulk of the application code is written to run in the non-

secure domain, including a real-time operating system (RTOS), task code and peripheral

drivers in our case1. When required, the application task code makes calls to the secure code

via the intermediary functions present in the NSC.

It should be noted that the secure and non-secure domains are orthogonal to the regular pro-

cessor privilege levels. Within each domain, the processor still executes under the traditional

privilege model, where interrupts and the RTOS may run in privileged processor execution

mode while task code may run under unprivileged processor execution mode. Further, there

may be a shared or separate memory protection unit (MPU) for the secure and non-secure

domains. An MPU is accessible from the privileged execution mode and enforces fine-grained

access rights to certain memory locations for privileged and unprivileged code. Privileged

code can access memory locations not specified in the MPU table, while access from unpriv-

ileged code would generate a fault. It must be noted the SAU has a very similar operation

to that of the traditional microcontroller MPU but they are separate entities that can work

together. Specifically, the SAU is used to augment the partitioning of the memory space into

secure and non-secure domains over and above the fixed partitioning scheme provided by

the IDAU while the MPU works within this partitioned memory space to provide different

access right to different pieces of code. For example, an RTOS can load task-specific access

rights before context switching to a task. This is possible because the SAU supports multi-

ple regions depending on the implementation. Each region is a set of registers where secure

domain code can programmatically upgrade a non-secure domain address space to secure

domain. Switching between the domains has low overhead which is shown by the results in

1While it is possible to run all the code inside the secure domain (within space limitations), it is notoriously
difficult to produce bug-free code on a larger scale [96]. An attacker with knowledge of vulnerabilities in the
secure code could compromise the entire system since the secure code has access to the entire memory space.

2.1. ARM TRUSTZONE FOR CORTEX-M 17

Chapter 3. Non-secure domain code cannot read/write contents of secure domain memory

and can call only specially marked non-secure callable (NSC) secure domain code. Any other

cross-domain memory access from the non-secure domain causes a high priority hard-fault.

It should be noted that, traditionally, the hard-fault on ARM processors was utilized to

handle critical system exceptions. As part of the ARMv8-M mainline architecture (imple-

mented in the Cortex-M33 architecture), an illegal cross-domain memory access (TrustZone

violation) is handled by a dedicated SecureFault exception handler. However, we aim to

target even the ARMv8-M baseline architecture (implemented in the lower-powered Cortex-

M23 variant) that bundles a TrustZone violation into a hard-fault, and calls the HardFault

exception handler, to save on manufacturing costs. Throughout the rest of this thesis, we

refer to either of the fault exceptions as a hard-fault exception for simplicity.

Our solution in Chapter 3 uses a combination of the MPU and careful partitioning of re-

sources using the TrustZone. We utilize the SAU and the hard-fault for the procrastinating

CFI defense mechanism in Chapter 4.

Chapter 3

Utilizing trusted execution to secure

CAN bus communications

3.1 Introduction

Today’s vehicles are complex machines. While they still have the same basic design of

the internal combustion engine and transmission as vehicles from decades ago, they now

have sophisticated, highly automated features such as advanced fuel injection systems, hy-

brid drivetrains, traction control, adaptive cruise control, and automatic lane-keeping, all of

which are supported by sensor data and processing units. In addition, vehicles have become

even more like regular computing systems, with (1) remote software updates that improve

performance, or (2) having a certain degree of autonomy, allowing it to drive itself for short

distances. To support these functionalities, vehicles must now generate, process and act upon

a large amount of information to make driving safer, more comfortable, and more efficient.

Vehicular control systems are distributed throughout the vehicle, with some located phys-

ically close to the sensors and actuators with which they interact. While there have been

proposals to consolidate the various components into a centralized system [10, 104] that

controls every aspect of the vehicle, most vehicles still utilize separate electronic control

units (ECUs) that are dedicated to specific functions. Modern vehicles have upwards of 100

different ECUs and this number is constantly increasing as vehicle manufacturers add func-

18

3.1. INTRODUCTION 19

tionality. While one ECU may control the engine, others may control the vehicle entertain-

ment system, dashboard information, brakes, fuel system, etc. Advanced driver assistance

mechanisms act upon information, in real-time, from many of these ECUs simultaneously.

For example, certain luxury modern vehicles have crosswind stabilization which adjusts the

vehicle braking characteristics under strong crosswinds. To do so, information from sensors

measuring wind speed, steering position and characteristics (steering column ECU), and

vehicle speed (engine control unit), among others, is processed in real-time to provide safe

braking assistance.

To achieve timely sharing of vehicle runtime information between ECUs while reducing the

size, weight, and power constraints (SWaP) and manufacturing cost, modern cars utilize a

shared bus system for inter-ECU communications. In this chapter, we consider the CAN

bus, an industry standard protocol for intra-vehicular networks. There is a large body of

work in both academia and industry, along with the millions of cars that utilize it, which

show that CAN is an efficient and robust communication network. While the older CAN

protocol may not be sufficient for the autonomous vehicles of the near future, a newer variant

(CAN-FD [60]) has been designed to increase the longevity of the protocol. However, with

the increasing amount of data being shared over the bus, it becomes critical to develop

techniques to not only maintain bandwidth availability but also the real-time nature of

message transmission.

In addition to efficiency and timeliness, security has become an important consideration. As

vehicles increasingly make decisions autonomously to ensure passenger comfort and safety,

it becomes imperative that their operations are not disrupted. Due to the critical role of

the CAN bus in facilitating and maintaining safe and reliable vehicle operation, CAN may

draw heavy interest from malicious actors who wish to take control of a vehicle or change

operational characteristics to make it unsafe for its riders. In fact, prior work [35, 69] has

20 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

already shown various attacks that can take place on a vehicle, allowing malicious parties to

perform actions such as applying brakes and causing a crash. For instance, newer vehicles

have additional communication interfaces such as WiFi, Bluetooth and cellular connectivity

to connect to external servers for software updates or for passenger convenience. These are

usually provided by ECUs that are often directly connected to the vehicle’s CAN bus. Such

external interfaces may be vulnerable to exploitation and become a gateway to access the

vehicle. For example, it has been shown that the Bluetooth stack in the car infotainment

unit has vulnerabilities that when exploited, allow attackers to run arbitrary code on an

ECU [35]. The attacker could then use this compromised ECU to perform masquerade

attacks [19] where the attacker poses as a legitimate entity and sends out spoofed messages

that could affect and/or control critical parts of the vehicle, e.g., sending messages to cut

off fuel supply to the engine, or launch denial-of-service (DoS) attacks by flooding the bus

with garbage messages. This is possible since CAN is a broadcast bus without message

authentication. If such attacks are carried out in real-world scenarios, such as in high-speed

traffic, it could have catastrophic consequences.

To maintain predictable and timely operation on the CAN bus, we believe that the best

form of defense would be at the source itself. That is, an attacker that fails to utilize the

bus is less effective than one which is given access to the bus and may have the ability

to disrupt message transmissions. this chapter builds upon this core idea and proposes a

lightweight technique to secure the CAN bus from attacks such that the compromised ECU

cannot engage the bus more than the original (uncompromised) ECU.

To do so, we propose that ECUs utilize trusted execution environment (TEE)-capable pro-

cessors which allow code compartmentalization, making it possible to verify CAN message

source and destination within an ECU itself instead of at the receiver ECU. TEEs are isolated

execution environments designed to run trusted software and are supported by processor ar-

3.1. INTRODUCTION 21

chitecture extensions which include strict access control policies to processor components,

peripherals, data, and address buses. TEE implementations such as Intel SGX [40] and ARM

TrustZone [12] can currently be found in commercially available hardware and have been

used in a variety of security-critical applications, such as Samsung Pay [13]. In addition, TEE

is a known entity, as there exists a large body of work [92] which studies the security bene-

fits and pitfalls of TEEs. Although our approach requires changes to the critical hardware

components inside a vehicle, we believe it to be an especially effective one, both in terms of

performance and security. In fact, our approach incurs no increase in CAN bus bandwidth

consumption and we observe substantial performance improvements over currently available

approaches while running on much slower (12 MHz clock instead of 100+ MHz clock for

typical ECUs) hardware. The shift towards using CAN-FD over CAN in recent vehicles [1]

shows that the automotive industry is willing to utilize newer technologies when significant

advantages are demonstrated. This chapter has the following major contributions:

1. We propose a TEE-based ECU system architecture to separate message generation

and consumption from CAN transmission and reception.

2. Based on our new system architecture, we present TEECheck, an intermediary CAN

bus interface which achieves efficient and trustworthy vetting of message origin and

frequency before message transmission, and of request origin before received message

data is disbursed. In particular, TEECheck:

(a) Detects and prevents an attacker from masquerading as another legitimate mes-

sage source such as other tasks on the same or different ECU.

(b) Provides a proactive and on-ECU mechanism to mitigate DoS attacks on the

CAN bus. Our technique is the first to utilize TEE to contain the aforementioned

attacks to the compromised ECU and does not require a receiver ECU to validate

22 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

whether a message is from a legitimate party.

(c) Provides an on-device mechanism to prevent an attacker from any access to mes-

sages not intended for it, i.e., prevents snooping. To the best of our knowledge,

there are no other techniques designed for the CAN bus that prevents the attacker

from accessing the CAN message frames meant for other endpoints.

3. We experimentally show that the overhead associated with our approach, which is

incurred only when a task requires access to the CAN bus, is fairly negligible and quite

predictable, making our approach suitable for resource-constrained devices running

real-time applications. Specifically, the overhead typically takes 477 us from message

generation to message transmission, and 480 us for message data reception, on a 12

MHz processor which would translate to 50 µs on a 100+ MHz processor.

While we consider CAN 2.0 as our target application in this chapter, our mechanism can

be easily adapted to any broadcast communication mechanism, such as I2C or SPI, with

minimal changes. In terms of TEE implementation, we selected the ARM TrustZone for

Cortex-M (ARMv8-M architecture with Security Extensions) [109] which, although fairly

recently introduced, has a number of commercial-off-the-shelf microcontroller implementa-

tions available that can be used in modern ECUs today as drop-in replacements.

We shall now look at relevant prior work.

3.2 Related Work

CAN bus security has become an important research area in the past several years. Con-

sidering the safety-critical nature of the systems where CAN is utilized, e.g., automobiles,

this is not surprising. CAN bus hardening approaches are spread across the communication

3.2. RELATED WORK 23

stack layers. At the physical layer, intrusion detection systems (IDS), have been introduced.

These schemes are variants of clock-skew and voltage-based fingerprinting which help to

detect and, in some cases, identify attacker ECUs. While such techniques can detect an

attacker within a few frames [38, 39, 108] or single frame [50], they still, in general, require

a specialized monitoring node for detection and are reactive in nature. That is, they only

detect when the attacker has managed to engage the bus.

Network-level authentication techniques for CAN bus have also been widely studied. LeiA [91]

and vatiCAN [87] are AUTOSAR [51] compliant authentication schemes which utilize some

form of MAC based authentication at the receiver end. To compensate for the increased

overhead, others such as CANAuth [102] and LiBrA-CAN [54] are based on variants of

CAN+ [114], a backward-compatible variant of CAN capable of higher data rates, or CAN-

FD-Sec [34] based on the CAN-FD [60]. Unlike CAN+, CAN-FD is expected to be the next-

generation replacement for CAN 2.0. All these works require receiver-end authentication,

which incurs unnecessary bus overhead since illegitimate messages must still be transmitted

before they can be authenticated.

In addition, these work cannot prevent DoS attacks since receiver-end authentication cannot

stop a transmitter from sending out a message. In contrast, we limit the frequency of mes-

sage transmission of the compromised ECU. Further, we aim to be CAN variant agnostic.

Our other goal is to propose a lightweight hardware based approach which requires minimal

changes to the ECU software. In contrast, Berg et al. [20] considers separating the infotain-

ment system from the rest of the vehicle by implementing secure gateways, which requires

significant software addition and can incur large time overhead.

The concept of trust has been used to fortify CAN bus communication in prior work. Ve-

Cure [106] uses the concept of trust groups where ECUs handling critical operations are kept

in the higher trust group, authenticating each other using a MAC based scheme. The work

24 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

by Gui et al. work [58] is more similar to ours in that it utilizes hardware trusted platform

module (TPM) for establishing a root of trust. Perhaps the closest work, in spirit, to ours

is VulCAN [100] where the authors utilize trusted execution. Their technique builds upon

LeiA and vatiCAN by utilizing a trusted computing base (TCB, in their case, Sancus [86])

inside which they generate their MACs. VulCAN takes much longer, i.e, around 2ms for the

entire authentication sequence. In addition, addressing DoS attacks are outside the scope of

all of these techniques since they depend on the receiver for attack detection.

We shall now discuss some preliminary information regarding CAN bus before we begin

discussion regarding the System Model.

3.3 Preliminaries

We now provide an overview of the underlying technologies of our system. Specifically, we

consider the ARM TrustZone for ARMv8-M (Section 2.1) based microcontrollers and the

CAN protocol. Due to the page limit, we only provide the details that are relevant to our

work. For more details, readers are referred to existing publications [49, 109].

3.3.1 Controller Area Network (CAN)

CAN is a protocol originally designed for communication between different vehicle com-

ponents but has been applied to other areas such as industrial automation. It is a serial

communication protocol designed to broadcast small messages over a shared bus. CAN uses

a multi-master communication paradigm where nodes compete, on a per-message basis, to

send messages on the bus and it is upto each node to accept or ignore the messages.

Currently, vehicles utilize the CAN 2.0 version which supports bitrates up to 1 Mbits/sec,

3.3. PRELIMINARIES 25

although there has been ongoing effort to introduce the newer CAN-FD (CAN flexible data

rate) [60] variant which allows larger message data (64 bytes instead of 8 bytes) and higher

bitrates of up to 5 Mbits/sec. The CAN 2.0b standard frame format is shown in Figure 3.1.

CAN supports different types of frame formats, including a DATA frame which contains the

actual payload for communication between nodes, a REMOTE frame which is sent from a

node requesting data from another node, an ERROR frame which is sent from a node when

it detects an error on the bus, and an OVERLOAD frame to provide an additional delay

between successive DATA or REMOTE frames. While we concern ourselves, in this work,

with the DATA frame format since it contains the actual data being transmitted on the bus,

our solution can be extended to consider REMOTE frames with minimal modifications.

Bus contention is resolved using the arbitration field. DATA frames may have different

arbitration field lengths–11 bits for the Standard Frame (shown in Figure 3.1), and 29 bits

for the Extended Frame formats (extended frame format is only valid for DATA or REMOTE

frames). These arbitration bits constitute the message IDENTIFIER and is used by receiver

nodes to identify if the message pertains to them. All nodes which wish to transmit sense

the bus for any ongoing transmission and back off when they detect one. When the nodes

sense that the bus is free to use, they send a start of frame (SOF). All contentions are

resolved as the nodes send the arbitration bits. If a node senses a dominant bit (logic

0) being transmitted as it is transmitting a recessive bit (logic 1), it loses arbitration and

stops transmission. Receiver CAN controllers utilize message identifier masks for filtering

messages sent out on the bus. The bitmasks are applied to message identifiers as they are

made available on the bus. If there is no match, the CAN controller stops listening on the

bus until it detects a SOF on the bus. These bitmasks are programmed and kept in the

CAN controller memory for comparison when a message IDENTIFIER is received.

26 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

S
ta

rt
 o

f
F

ra
m

e

0

11

R
T

R

ID
E

R
B

0

0 0 0Identifier

4

DLC

8N (0≤N≤8)

Data Field

15

CRC

C
R

C
 D

e
l

A
C

K
 S

lo
t

A
C

K
 D

e
l

C
R

C
 D

e
l

C
R

C
 D

e
l

10 1 1 3

EOF IF
S

7

Figure 3.1: CAN 2.0b standard frame format

3.4 System Model and Problem Statement

We now discuss the real-time task model, threat model, and formally define the problem in

this section.

3.4.1 Real-Time Task Model

We model all ECU tasks as periodic real-time tasks, each of which is described by a worst-

case execution time (WCET) and a period. The period of these tasks can be lower-bounded

based upon the time it takes to generate a message for transmission. Without a loss of

generality, we assume that each task in the ECU is responsible for generating CAN messages

with non-overlapping identifiers. That is, each task has a set of identifiers associated with it

and only it. However, this is not a limitation of our approach and multiple tasks can share

the same identifiers if so required. Further, certain ECUs may contain emergency tasks.

For example, for airbag deployment, the airbag control module, arguably one of the most

time-sensitive ECUs in a vehicle, may generate an emergency hard sporadic task to send a

message to cut-off fuel to the engine to prevent a fire in the event of a crash. We consider such

a task as having a very high priority, and which would be able to preempt any currently

running periodic ECU task. We assume that tasks are scheduled using a priority-based

round-robin scheduling algorithm where a higher-priority task always preempts a lower-

3.4. SYSTEM MODEL AND PROBLEM STATEMENT 27

priority task and processor time is equally divided between tasks of equal priority. Such a

policy is selected for ease of implementation and predictability. In fact, ARM’s commercial

RTOS, Keil RTX5 [77], which we utilize in our experiments, uses this policy.

3.4.2 Threat Model

We consider a threat model where the attacker has remote access to a vehicle ECU. For

detecting physical intrusions, such as an attacker attaching a malicious ECU to the bus,

authentication must be done at the network level or at the receiver, which has already has

been addressed by prior work [34, 54, 87, 91, 106] and is beyond the scope of this work. We

consider that the attacker has taken advantage of external network interfaces made available

by certain ECUs on the vehicle (such as WiFi and Bluetooth network interfaces created

by a vehicle’s infotainment unit) and has managed to compromise task(s) on the ECU. We

also assume that the attacker operates only within the non-secure domain, and an attacker-

controlled task can still make calls to the API made available in the NSC region. We assume

two attacker privilege cases:

1. Base case - The attacker takes control of task(s) (for example, through return-oriented

programming [95]) on an ECU, is able to execute arbitrary code under this context, and

can generate messages with identifiers meant for other tasks on the same, or different,

ECU. The attacker, however, is unable to escalate its privilege level to match that

under which the RTOS is executing. We believe that an attacker can be restricted

to this privilege level since our system utilizes strict memory access guards using a

hardware MPU when running any unprivileged non-secure code which limits its ability

to force the RTOS to grant it a higher privilege.

2. Advanced case - This is where the attacker has taken control of the RTOS and is able

28 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

to run arbitrary privileged non-secure code. We believe our work is the first to provide

some security guarantees on the compromised ECU even when the attacker has control

of the RTOS and task code.

3.4.3 Problem Statement

We aim to design a lightweight, predictable defense mechanism for securing the CAN bus

that achieves the following:

1. P1: Prevent Masquerade Attacks. The attacker, who has infiltrated an ECU’s

task, tries to masquerade as another task running in the same ECU or in another

legitimate ECU on the network, e.g., a compromised dashboard entertainment unit

may send valid messages to control the engine RPM or apply the brakes. We aim

to ensure that a compromised task can, at the most, only send out messages it was

designed to generate and transmit, without controlling the actual message content.

2. P2: Prevent DoS attacks. The attacker tries to launch a DoS attack by continuously

sending messages. We aim to ensure that under no circumstance can a compromised

task exceed the max rate at which it was designed to send out messages.

3. P3: Prevent Snooping. The attacker tries to read messages intended for other

tasks or other ECUs. We aim to remove any control the attacker has over the actual

transmission or reception of a message. The attacker should only be able to read

messages that were pre-destined for the compromised task. The attacker should also

have no mechanism to know when another task or ECU sends a message on the bus.

4. P4: Ensure low latency to allow real-time operation. Specifically, we aim to

ensure that our approach has the smallest, yet predictable, effect on a task’s worst-case

3.5. SYSTEM DESIGN AND OVERVIEW 29

execution time and that the task structure does not change.

Our proposed technique aims to address each of these problems for the base case (Sec-

tion 3.4.2), and P2 and P4 for the advanced case. We also partially address P1 and P3 for

the advanced case.

3.5 System Design and Overview

Traditionally, all application code, including peripheral access, executes in unprivileged pro-

cessor execution mode. Figure 3.2a showcases how such a traditional ECU system might

look like. In addition, there is a supervisory code running in privileged execution mode,

such as an RTOS, and application code runs in RTOS managed tasks. The RTOS provides

scheduling capabilities and task stack management for context switching.

To support TEECheck, modifications must be made to the traditional system setup (Fig-

ure 3.2b). Specifically, we consider a TrustZone equipped microcontroller. The RTOS and

application code remain in the non-secure domain. We do not need to change the task code

structure, other than replacing the CAN driver and transmission code with calls to utilize

TEECheck. The task code calls TEECheck’s request_for_transmission (Section 3.6.1)

and

request_for_reception (Section 3.6.2) NSC functions, for transmission and accessing re-

ceived messages, respectively. It must be noted that moving the entire RTOS into the secure

region defeats the purpose of using TrustZone, since the secure domain code has unrestricted

access to the memory space, only the smallest amount of code should be kept in the secure

domain, to reduce the possibility of a vulnerability and, hence, attack surface. Further, by

keeping only TEECheck and the CAN controller driver in the secure domain, we force every

call to the CAN peripheral to utilize TEECheck.

30 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

CAN
Controller

RTOS

Task
A

Task
B

Task
C

Peripheral
Drivers

CAN
Controller

DriverSensors
&

Actuators

ECU utilizing Generic Microcontroller

(a)

CAN
Controller

RTOS

Task
A

Peripheral Drivers

CAN
Controller

Driver

Sensors
&

Actuators

ECU utilizing TrustZone equipped Microcontroller

Task
B

Task
C

MPU

request_for_
transmission

request_for_
reception

Key Store

Key Store

Request
Source

Verification

Received
Data

Intermediary
Buffer

Message
Rate

Limiting

Non-Secure Non-Secure
Callable

Secure

(b)

Figure 3.2: (a) Regular ECU system and (b) ECU system utilized for TEECheck

The RTOS is augmented with access to the non-secure domain’s MPU which is loaded with

task-specific access rights on every context switch. All peripherals (except CAN) necessary

for task functionality are partitioned to the non-secure domain. The CAN controller driver

3.6. TEECHECK : A TEE BASED CAN MESSAGE CHECKER 31

must be paritioned into the secure domain such that it is exclusively accessible to TEECheck.

All application code must utilize TEECheck’s NSC functions (request_for_transmission

and request_for_reception) to access the CAN bus, as discussed above. While a system

timer is required by the RTOS for scheduling tasks, the secure domain requires one more

timer. Considering our experimental testbed’s (Section 3.7.1) microcontroller has four other

timers, we believe this is a reasonable requirement.

It must be noted that the RTOS must be augmented with functionality to manage the per-

task secure stack. Since we consider that every task generates CAN messages which are then

transferred to and transmitted from the secure domain, stack management must be present

for secure domain function calls to allow for safe context switching during task scheduling.

Fortunately, most commercial RTOS that we surveyed for our experimental setup, which

advertise official support for TrustZone, already provide an extensible mechanism for the

RTOS to manage each task’s secure stack.

3.6 TEECheck : A TEE based CAN message checker

We now present our TEE based defense mechanism that leverages the new system design

(Section 3.5) to address the problems stated in Section 3.4.2. TEECheck is built on two

components:

1. Transmission: TEECheck uses a two-stage pipeline, one stage for message source

verification and another for message frequency enforcement.

2. Reception: TEECheck does not allow ECUs direct access to any messages which pass

the CAN controller message filtering stage and which are made available for reading.

TEECheck verifies the identity of the requesting task before it forwards the message

32 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

from the reception buffer.

Please note that we address P4 of our problem statement (Section 3.4.3), by designing

TEECheck to work as a set of sequential function calls with no waiting to (1) reduce the

impact on a task’s WCET and (2) keep the task’s structure unchanged.

3.6.1 Transmission

While problem P3 of our problem statement (Section 3.4.3) is addressed by the reception

scheme, the transmission scheme is designed to solve problems P1 and P2. The transmission

scheme leverages our proposed system (Section 3.5) to prevent an attacker from masquerad-

ing as another task or ECU, as well as from overwhelming the bus (launch a DoS attack).

Stage 1 details our message source verification scheme. Stage 2 provides details on limiting

the rate of messages that are sent out to the CAN controller.

Stage 1: Source Verification

Stage 1 implements a source verification scheme to eliminate the possibility of a masquerade

attack. It utilizes the strict partitioning of the TrustZone to verify the source of a message

transmission request. The original system shown in Figure 3.2a, while simple, is flawed from

a security perspective. Any misbehaving task can generate messages on behalf of other tasks

or even other ECUs in the network. Further, currently available RTOS such as Keil RTX5

(which we use in our experiments in Section 3.7) do not mediate access to device drivers

like general purpose OS such as Linux. Rather, the RTOS provides memory management

and scheduling capabilities while device access and manipulation (such as access to the CAN

controller) is accomplished within the task code. Since the tasks have direct access to the

CAN controller, they can simply queue spoofed messages for transmission. However, the

3.6. TEECHECK : A TEE BASED CAN MESSAGE CHECKER 33

CAN
Controller

RTOS

CAN
Controller

Driver

ECU utilizing TrustZone equipped Microcontroller

MPU

request_for_
transmission

HMAC
Key

(Data)

Stage 2
(Fig. 4b)

Non-Secure
Callable

Secure

Task
Key

HMAC
Key

(Data)

Task

Task ID

Key

HMAC
Match ?

Drop

No

Yes

Non-Secure

(a) Stage 1

CAN
Controller

RTOS

Task

CAN
Controller

Driver

ECU utilizing TrustZone equipped Microcontroller

MPU

request_for_
transmission

Key Store

Stage 1

Time
Comparator

Non-Secure
Callable

SecureNon-Secure

Task ID

Last
Transmission

Time

Time
≥

Thresh

Drop

No

Yes

(b) Stage 2

Figure 3.3: (a) Source verification using HMAC (b) Rate limiting messages based on per-task
last transmission time

TrustZone provides a strong access control mechanism for peripherals. Shifting peripheral

access into the TrustZone while keeping the tasks in the non-secure domain provides us

34 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

with the opportunity to control data entry into and out of the secure domain. Under the

assumptions of our threat model, the TrustZone interface is the last point at which the

attacker still has control over the data. We, thus, propose building a task verification stage at

the TrustZone interface before admitting data for transmission on the CAN bus. Every task

requesting for transmission must first pass this verification stage on a message-by-message

basis or else the message is immediately dropped.

We now discuss the implementation of the verification stage. As noted in the system overview

presented in Section 3.5, the RTOS, which controls the MPU, runs as the privileged code

while the tasks run in unprivileged mode. Any access to memory locations that are not

explicitly marked as accessible by a non-secure task leads to a hard fault generation (a high

priority interrupt originating in hardware that halts system execution and requires human

intervention to reset the entire system and/or perform cleanup before continuing).

There are two possible avenues of approach to verify a task. One mechanism is by querying

the RTOS which task is requesting for CAN access and the other is to build a non-intrusive

scheme on top of the RTOS. While utilizing the former approach can be very lightweight,

it increases our dependence on the RTOS, enforcing the requirement that the RTOS must

not be compromised. However, if an attacker operates under the advanced case assumption,

such a system is bound to fail immediately. Further, querying the RTOS requires a dialogue

between secure domain code and RTOS, which requires RTOS modifications. For automo-

tive systems, this would require expensive re-verification of RTOS functionality and safety.

Instead we propose a verification stage between task code and secure domain while keeping

the RTOS code untouched. A limitation of the proposed stage 1 is that it still requires

certain RTOS guarantees which causes it to partially fail (explained later) when consider-

ing an attacker operating under the advanced case. However, our proposed approach works

well for a base case attacker, and being largely RTOS independent, provides a platform for

3.6. TEECHECK : A TEE BASED CAN MESSAGE CHECKER 35

future work to address all problems for the advanced case while still providing performance

improvements over related work.

A detailed overview of the steps in the verification stage is presented in Figure 3.3a. We verify

the origin of each request by computing and then verifying an HMAC on the message data.

HMAC, or hash-based message authentication codes [71], are cryptographic algorithms that

take an arbitrary length input and produce a fixed-length output by utilizing a secret key.

Only entities possessing the key can generate the same output from a given input, assuming

that the HMAC is well designed. We utilize HMACs to verify that a message originates from

the correct task. Applying our mechanism to authenticating REMOTE frames, the resultant

mechanism would require a minor modification such that it follows the same authentication

steps as that in the reception scheme which we detail in Section 3.6.2, where a counter is

utilized instead of the message data.

Authentication is done by keeping copies of a table of keys, one key per task, in both secure

and non-secure domains. The key table consists of the task identifier and its associated key.

An MPU is utilized to restrict a task to access only its designated table entry. We load the

MPU during every task context switch with the task-specific address masks such that the

task can (i) read its task-specific key-table entry, (ii) read and execute its code section (iii)

read and write to its stack in RAM, (iv) call relevant RTOS API, and (v) call TEECheck.

Note that, loading the MPU only takes a few clock cycles. The address mask is applied to

every memory operation and takes a single cycle due to the MPU being wired-logic hardware.
1

The key table can be generated and stored in flash during ECU deployment. Alternatively,

a small procedure can be added during RTOS initialization to regenerate the keys and store

1Loading the MPU is the only guarantee required of the RTOS and we aim to remove this dependency
in future work.

36 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

a copy in both key tables. An example mechanism of key regeneration could be where the

RTOS requests the secure domain code for a fresh set of keys. The secure domain code

generates the new keys using a random number generator, saves it to the secure domain

table, and forwards it to the RTOS for storage on the non-secure side. Considering the

base case assumptions, regenerating the keys during RTOS initialization ensures that the

MPU is able to hide them before any non-secure task is allowed to run. The task utilizes

its key to generate an HMAC based on the data that it needs to transmit. It then calls

the request_for_transmission function and passes the message pointer, the generated

HMAC tag pointer, and the task identifier. Once code execution enters the secure domain,

the control is no longer in the hand of the attacker. We read the value of the generated

HMAC, look up the key copy from the secure domain key table based on the advertised

task identifier, and regenerate the HMAC based on the data to be transmitted in the secure

domain. Since we target the CAN bus, the data size is assumed to be 8 bytes. While we

do not have any specific requirements regarding the HMAC algorithm, utilizing lightweight

algorithms (such as Chaskey [82]) built for small data sizes is advised. Once the task identifier

is validated, a CAN message identifier is assigned based on it. In case of the advanced case

there is only a partial failure of verification stage as the key tables contain identifiers only

for tasks meant to run on the ECU. Even if an attacker controls the RTOS, they cannot

send out a message which should originate from a different ECU. While we cannot control

the actual data, short of recomputing the data in the secure domain, we limit the attacker

to only the compromised task and its related message.

Stage 2: Rate Limiting

We introduce stage 2 of the transmission scheme where we rate limit each task’s message

transmission to address P2. Since this stage is entirely within the secure domain, it works

3.6. TEECHECK : A TEE BASED CAN MESSAGE CHECKER 37

equally well for both threat model cases. The overview of this stage is presented in Fig-

ure 3.3b. While utilizing the HMAC scheme in stage 1 prevents a task from sending out

false messages on behalf of another task, the attacker could continuously send out valid

HMACs to the secure domain to pass stage 1 and force the secure domain to send messages

out onto the bus, keeping the bus as busy as possible. While there have been techniques

presented in prior work to detect the occurrence of a DoS attack and shut down the offending

ECU, these mechanisms are reactive in nature and can still disrupt the CAN bus, albeit for

short periods of time. We wish to prevent a DoS attack proactively before the bus is affected.

Fortunately, since messages are usually generated in a periodic manner inside a vehicle, a

system designer is aware of the maximum frequency at which a legitimate task generates

messages. We utilize this knowledge to create a per-task rate limiter. Our rate limiting

scheme is similar to the more sophisticated mechanism employed in the per-core queue

in Carousel [93], to reduce space and computation time. We utilize the hardware timer

partitioned to the secure domain to create periodic time ticks. The timer counts to the

desired period and generates an interrupt. The interrupt handler records the number of

ticks. Utilizing interrupts allows for asynchronous operation. While deciding the period

value is left to the designer, an example would be to set it to the greatest common divisor of

all message periods. For tasks that generate messages of varying frequencies, the worst-case

frequency can be used and finding an optimal rate limiter is left for future work. Along

with the key table copy, the tick value at the time when the last message was accepted for

transmission for the relevant task identifier is also recorded. Stage 2 checks the current tick

value, the previous transmission acceptance tick value and the maximum frequency of the

task. If the frequency is higher than the maximum allowed, the message is dropped. Else,

it is forwarded for transmission.

38 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

3.6.2 Reception

CAN
Controller

RTOS

CAN
Controller

Driver

ECU utilizing TrustZone equipped Microcontroller

MPU
request_for_

reception
HMAC

Key
(Key)

Forward Data

Non-Secure
Callable

Secure

Task
Key

HMAC
Key

(Count)

Task

Task ID

Key

HMAC
Match ?

Drop

No

Yes

Buffer

Non-Secure

Reception
Interrupt

Task
ID

Data

Count

Figure 3.4: TEECheck Reception scheme

The reception scheme (Figure 3.4) addresses P3 of our problem statement (Section 3.4.3).

The reception scheme aims to allow tasks to access only those messages with identifiers that

belong to them. This prevents a compromised task from snooping for messages to gather

sensitive information about the status of the vehicle.

Messages are accepted by the CAN controller when they pass the CAN filtering as described

in Section 3.3.1. The filter masks can only be changed by secure domain code since the CAN

peripheral is memory-mapped exclusively into secure domain, preventing any non-secure

domain code from modifying these masks. This ensures that only messages intended to be

received by the ECU, are accepted by the controller. By itself, this limits the attacker to

only messages that are to be received by the ECU with zero additional overhead, partially

fulfilling the requirements of even the advanced case. All messages are handled and stored in

a table along with the designated receiving task identifier asynchronously via a high priority

3.7. EXPERIMENTATION 39

interrupt handler. Older values are always overwritten, keeping the contents of the table

fresh.

The reception scheme is similar to stage 1 of the transmission scheme. While it would

be possible to simply share the task-specific key (made available by the MPU) with the

secure domain to ascertain task identity, if an attacker manages to brute-force the correct

victim task’s key value, the attacker could access every message intended for the victim

task. Instead, we utilize a per-task counter kept in the secure domain. Every task must first

request its counter by supplying its task identifier, then generate the HMAC tag based on

this counter and its specific key and then pass the generated tag back to the secure domain

for verification using the request_for_reception TEECheck NSC function. Regardless

of whether task verification passes or fails, the counter is always incremented to prevent

an attacker from brute-forcing the correct HMAC tag for a constant input (counter value).

Since differentiation between tasks on the ECU requires the MPU, this scheme will fail under

the advanced case and will be addressed in future work.

Based on the verified task identifier, the corresponding message from the message table is

copied to the designated non-secure location pointer passed to the request_for_reception

after the location is verified as belonging exclusively to the task. For example, an HMAC

could be generated from the task key and a nonce during the key refresh phase at system

bootup. The task must then write that value to the pointer location passed to the secure

domain, which verifies it before overwriting the location with message data.

3.7 Experimentation

We now provide details on our experimental testbed and results. We run different loads on

our testbed to gauge the overhead and predictability of utilizing TEECheck. We also apply

40 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

Test Avg (µs) Med (µs) Max (µs) Min (µs)
HMAC-NS (Chaskey) 223 227 229 185
HMAC-S (Chaskey) 247 247 259 242
HMAC-S + RL 254 253 265 248
HMAC-S + RL + CAN 368 357 400 355

Table 3.1: Single task running at highest frequency (RL - Rate Limiting, CAN - CAN
controller transmission time)

TEECheck to a well known automotive benchmark as a case study.

3.7.1 Experimental Setup

Our experimental testbed consists of a Nuvoton NuMaker PFM-M2351 development board [2].

It uses Nuvoton’s M2351KIAAE implementation of ARM Cortex-M23, based on the ARMv8-

M baseline architecture (the least powerful ARMV8-M variant) and has 512 KBytes and 96

KBytes of on-board flash memory and RAM, respectively. The microcontroller supports

separate MPUs for secure and non-secure domains, an on-board CAN 2.0b peripheral, and

four general purpose hardware timers. We use ARM’s Keil RTX5 [77], an automotive func-

tional safety compliant (ISO 26262) RTOS which provides a convenient API for real-time

data logging. Our testbed’s operating frequency is 12 MHz which allows easy collection of

real-time runtime data via the debugger. While the ARM Cortex-R series provides similar

operating frequencies as vehicle ECUs (> 100 MHz), we cannot use them as they do not yet

support ARM TrustZone.

Since we are not concerned with network-level authentication techniques in this work, we

configure the CAN controller to run in Loopback mode, where all transmitted messages are

routed back to the controller’s reception interface. We enable loading of the MPU in Keil

RTX5 for every task context switch. For our experiments, we utilize the ISO standardized

Chaskey [82] lightweight HMAC algorithm which is specifically designed for 32-bit micro-

3.7. EXPERIMENTATION 41

controllers and small data sizes. Please note that we use a software HMAC implementation

to show a worst-case overhead for our approach. In the case where a hardware-accelerated

HMAC is used, our overhead will further reduce since hardware-accelerated HMAC are

known to take less than 100 cycles per computation. Each data point shown in the tables

below is generated from 10 experiments due to space limitations for storing timestamps on

board in real-time.

3.7.2 Results

We now conduct experiments considering different workloads.

Single task transmitting at highest frequency

The first workload consists of a single task running at the highest possible frequency (con-

stantly looping). This is to simulate a situation where the processor never idles, e.g, an ECU

that continuously gathers sensor data and sends it out to a central ECU. We present the

results in Table 3.1. Our experimental data shows that when we utilize a secure domain call

to generate the HMAC in the secure domain, the entire operation takes the same time as

generating the HMAC in the non-secure domain plus the domain switch overhead. The rate

limiting stage is very lightweight, only taking an additional 7 us on average. It should be

noted that we do not consider reception for these set of results to remove the overhead that

could be caused by the CAN reception interrupt. Finally, we also show that the call to the

CAN controller for data transmission takes an additional 114 us for a total average of 368 us.

Our TEECheck Transmission scheme, thus takes a total of 477 us (223 us + 368 us - 114 us)

on average over the base case of providing access to the CAN controller directly to the task.

On realistic ECU hardware, our overhead would scale down to 50µs making it extremely

42 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

Test Avg (µs) Med (µs) Max (µs) Min (µs)
Counter request 10 10 11 7
Reception 269 270 271 263
Transmission 373 357 404 356

Table 3.2: Single task running at highest frequency with reception. TEECheck call overhead

lightweight since ECUs send out messages at intervals of milliseconds or higher [70].

Single task transmitting at the highest frequency with reception

We now enable the CAN controller loopback in the same setup as that used in Section 3.7.2

to test the reception overhead. While the interrupt handler runs asynchronously to store

the received data in the intermediary data reception table, the TEECheck Reception scheme

first checks the task identifier before copying the data to the task’s allocated reception space.

Results for the reception scheme are presented in Table 3.2. Requesting the counter value

takes about 10 us. Results show a 1% difference in transmission overhead from that shown in

Table 3.1. As expected, the results for the call to TEECheck’s reception scheme are similar

to the first stage of the transmission scheme with some additional overhead (15 us) that can

be attributed to the additional data copy from the secure domain data reception table to

the non-secure domain memory address.

While our transmission overhead is provided for 8 bytes, We also provide results for trans-

mitting different sizes of data, from 1 to 7 bytes in a CAN frame in Table 3.3. Although the

HMAC utilizes zero-padding to account for smaller message sizes, the data shows that the

overhead for passing the data to the CAN controller is negligible, leading to nearly the same

time taken for that when transmitting 8 bytes. Since the behavior of reception and trans-

mission schemes and overhead are so similar, we concentrate on the (heavier) transmission

scheme overhead for the rest of this section.

3.7. EXPERIMENTATION 43

3 tasks - 1 legitimate, 1 attacker and 1 idle

We now simulate ECU with two tasks, one of which has been compromised. A third idle task

runs when both of the other two tasks are not ready to run. A priority-based round-robin

scheduling mechanism is used which provides equal time to tasks of the same priority and

preempts a currently running task if a task with higher priority arrives. All 3 tasks have the

same priority. The legitimate task’s period is set to 1ms and is always allowed to send a CAN

frame. The attacker task does not follow any periodicity and sends out messages whenever it

is provided with CPU time. The rate limiting for the attacker task is kept in such a manner

that the messages from that task are dropped on every alternate call. Results show that the

average, median, maximum and minimum TEECheck call overhead of the legitimate task are

369µs, 364µs, 405µs and 362µs, respectively. This shows that the average time for calling

TEECheck for secure domain processing from the legitimate task remains the same, with

a slight increase in the minimum time to account for the overhead due to task switching.

In addition, the overhead is negligible even when the attacker has the same priority as a

legitimate task and utilizes as much CPU time as possible. Due to the limitations of the

Keil RTX5 scheduler, we do not show the results of a higher-priority attacker task since the

scheduler would always allow the higher-priority task to run if it is ready to run, impeding

the operation of the lower-priority, legitimate task. Modifying the scheduler to deal with

such situations is out of the scope of our work. However, regardless of task priority, no task

can launch a DoS attack on the CAN bus due to our rate limiting.

4 tasks - 1 emergency, 1 legitimate, 1 attacker and 1 idle

We extend the system setup for the experiment in Section 3.7.2 with an emergency task.

We consider a sporadic emergency task, with a minimum inter-arrival time of 3 ms, so as

44 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

No. of bytes Avg (µs) Med (µs) Max (µs) Min (µs)
1 368 256 298 351
2 368 356 398 351
3 369 357 399 352
4 370 357 400 353
5 366 358 398 352
6 367 358 398 354
7 367 358 398 354

Table 3.3: Transmitting different message sizes

to allow easy gathering of the event data while ensuring that the legitimate task meets its

deadlines. Results show that the average, median, maximum and minimum TEECheck call

overhead of the emergency task are 374µs, 370µs, 408µs and 367µs, respectively. There

is a slight increase in the overhead by 5 µs from the previous cases. This is to be expected

as the emergency task is activated frequently when the other 2 tasks have already entered

the secure domain, requiring tear-down of both secure and non-secure domain stacks before

switching to the emergency task.

Real world automotive benchmarks

We now augment a well know real-world automotive benchmark [70] with TEECheck. We

sort the 9 tasks in a non-increasing order of periods (ranging from 1s to 1ms) and augment

each task with a transmission request to TEECheck. Table 3.4 provides our results. Here

Augmented Tasks 1 is where only the task with 1 second period calls the TEECheck NSC

function and the values are the execution times for that task, Augmented Task 2 is where

both 1 s and 0.5 s tasks call TEECheck and the values are presented for the 0.5 s task.

Augmented Tasks 9 is when all tasks have a transmission request and we report the execution

times for the task with the shortest period. This experiment confirms that TEECheck incurs

a predictable overhead on the highest frequency augmented task’s execution time even when

3.8. ANALYSES 45

scheduled in a round-robin (with same priority) fashion in the presence of other tasks calling

TEECheck. When disregarding TEECheck’s and CAN controller overheads (477µs and

144µs), the values presented here exceed the actual task execution time by only 30-90 µs.

This is likely because TEECheck overhead brings task execution time at-par with the period

of the higher frequency tasks, which interfere with another task’s execution every time they

become ready to run, and due to interrupts from the CAN controller. On realistic ECU

hardware, TEECheck’s overhead for this benchmark is <60 µs. Please note that we present

pessimistic results where every task calls TEECheck as we do not know which tasks, in

reality, require CAN access.

3.8 Analyses

We now provide security and real-time analyses.

3.8.1 Real-Time Analysis

We first analyze the real-time properties of our approach in relation to P4 in our problem

statement. Considering our new system architecture presented in Section 3.5, TEECheck

simply acts as sequential function calls without additional buffers or other mechanisms that

could change the nature of the code flow to affect the task model. As such, TEECheck can

simply be modeled as a constant-time overhead that must be added to a task’s worst-case

execution time. Note that this overhead is only applicable to tasks which interact with

the CAN bus. The overhead is constant since HMAC generation time on a given length

of input data (8 bytes for CAN) is constant and the rate limiting stage is an arithmetic

filter that always compares two values: the previous message transmission time and the

46 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

Augmented Tasks Avg (µs) Median (µs) Max (µs) Min (µs)
1 677 692 858 618
2 660 623 776 587
3 1087 1093 1280 1017
4 756 742 895 701
5 978 1007 1092 895
6 1010 1024 1131 912
7 766 766 960 690
8 680 654 874 648
9 666 646 827 615

Table 3.4: Automotive benchmark with increasing number of tasks with TEECheck

current time. Our experimental results based on different system setup scenarios, presented

in Section 3.7, verify our analysis. They show almost constant time overhead with minimal

variation regardless of system load. The slight variance in data is due to the interrupts

being fired by the CAN controller when it receives the looped-back messages. Our approach

also shows negligible variation in the case of emergency (sporadic) tasks such as airbag

deployment.

3.8.2 Security Analysis

We now evaluate each stage of the transmission and reception schemes for their effective-

ness in addressing our problem statement detailed in Section 3.4.3. Stages 1 and 2 of the

transmission scheme are designed to address the problems P1 and P2, respectively. The

efficacy of stage 1 is based on the assumption of HMAC unforgeability. An attacker could

either brute force every HMAC tag value until it matches a valid HMAC tag for the data

that it wishes to send, or generate key possibilities for creating the HMAC valid for the

data that it wishes to send. Brute-forcing an HMAC algorithm with an n-bit key takes, on

average, 2n−1 HMAC calculations. Considering an HMAC algorithm (such as Chaskey which

we utilized as a part of our experimental setup) which requires a 128 bit key and generates

3.8. ANALYSES 47

a 128 bit output tag, the number of tries, on average, for each of the two types of attack

would be 2127. While the second attack mechanism is much slower, since the attacker needs

to generate the HMAC for every possible key, with a total overhead of about 470 us (223 us

for HMAC tag generation in non-secure domain and 247 us for the HMAC tag generation

with call to the secure domain), the first attack mechanism would take roughly half the time

since the attacker could simply use a counter and pass its value to the secure domain as

an HMAC instead of running the HMAC algorithm in the non-secure domain. However, in

either case, the verification HMAC generation in the secure domain code cannot be bypassed

since accessing the CAN controller must go through TEECheck which always verifies the

HMAC first. As such, this makes the attack practically impossible.

Further, the attacker is limited to a short window for guessing the correct HMAC. This is

due to the rate limiting stage 2. Since the time-sharing between ECU tasks is enforced by

the RTOS, it is guaranteed that the victim task will get to execute. Considering a very

basic setup scheduled under the round-robin execution policy, where all tasks have equal

priority and context switch is enforced after the same amount of time τ for every task, and

considering the time difference δ between messages for the victim task running at highest

frequency (that is, a task which is constantly looping over the HMAC generation and call to

the request_for_transmission NSC function), the victim task (in a system with n tasks)

will send out messages every Msg_Send which is computed as:

Msg_Send = δ + (n− 1) · τ (3.1)

While an attacker may have prior knowledge of this value, the exact time of the previous

transmission during vehicle operation by the victim task cannot be guessed easily, especially

because our system prevents tasks from snooping the bus. The attacker must guess during

48 CHAPTER 3. UTILIZING TRUSTED EXECUTION TO SECURE CAN BUS COMMUNICATIONS

Msg_Send for successful transmission else even a correct guess will be blocked by stage 2.

An intelligent attacker could try to observe execution time differences to detect which stage

caused transmission failure. This would require a high resolution timer and can be mitigated

by partitioning unused timers to the secure domain. Due to the vastly different execution

times of the stages, it is recommended to keep stage 1 and stage 2 in their current positions

to prevent an attacker from using the system tick timer (if timer frequency is sufficiently

high) to differentiate between stages.

The analysis for the reception scheme is similar to stage 1 of the transmission scheme. The

reception scheme is aimed at solving problem P3 by making it difficult for an attacker to

snoop on messages intended for other recipients on the same ECU. Since the attacker has

no control over the counter value, the attacker cannot practically perform a replay attack or

brute-force the HMAC key, especially if a key refresh occurs on every system reboot.

3.9 Conclusion

We designed a new TEE based architecture for ECUs that effectively partitions the CAN

controller from the rest of the ECU code. We presented TEECheck, an on-device TEE

based defense mechanism to prevent masquerade attacks, DoS, and information leakage.

We implemented our proposed architecture on an actual device, a TrustZone enabled ARM

Cortex-M23 based Nuvoton M2351 and showed that our technique has very low overhead

(maximum of 494 us and 500 us for transmission and reception respectively), and is very

predictable showcasing negligible (around 1%) variance in overhead regardless variations in,

and types of, system loads.

Chapter 4

Utilizing hard real-time system

predictability to implement

control-flow integrity

4.1 Introduction

Real-time systems are now more connected than ever before. Data sharing and inter-

operation have allowed these systems to better understand their environment and make

advanced decisions, improving our quality of life. However, interconnecting such tradition-

ally isolated systems can provide entry-points for attackers to exploit, infiltrate, and modify

system operation. For example, the modern car is composed of hundreds of computers, also

called electronic control units (ECU), that constantly communicate to maintain smooth and

safe vehicle operation. Traditionally, these systems do not communicate with external sys-

tems. However, modern conveniences such as Bluetooth connectivity for vehicle occupants,

or vehicle-to-everything (V2X), have increasingly exposed these systems to external influ-

ence. Prior work [35] shows that such exposure increases the possibility of exploitation by

attackers.

At the same time, many such real-time systems are resource-constrained in processing power

49

50
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

and/or memory. For example, vehicle ECUs used for advanced driver assistance systems

(ADAS) utilize microcontrollers that operate at hundreds of MHz of clock frequency [72]

whereas a modern server or desktop computer’s CPU clock runs in the order of a few GHz.

Further, ADAS mechanisms such as automatic cruise control, traction control, pedestrian-

detection etc., have real-time requirements [25] to ensure occupant safety. Resource lim-

itations and real-time deadline requirements can also be found in other applications such

as industrial control systems, robotics, etc. Therefore, both of these attributes must be

considered when designing for secure systems.

Once an attacker infiltrates a system, they can perform a variety of system level runtime

attacks. We focus on a set of state-of-the-art attacks called control-flow hijacking attacks.

Here an attacker either injects code or leverages memory corruption vulnerabilities to over-

write control data, such as return addresses, to manipulate the execution of the program.

Return-oriented programming (ROP) [95] is a popular attack that systematically abuses

return addresses to reuse existing program code. ROP, and its variants are, therefore, also

called code-reuse attacks. To defend against such attacks, a set of defenses called control-

flow integrity (CFI) have been proposed. CFI detect, and prevent, any deviation from the

intended control-flow paths of the program. Note that in this work we refer to CFI as “CFI

technique” or “CFI mechanism”, interchangeably.

Due to the limited resources in embedded systems, modern CFI techniques work around

hardware limitations [113] utilize architecture extensions [88],require custom hardware [74],

or even reduce detection precision (coarse-grained CFI) and lazily perform checks at check-

points [23]. Even fewer CFI techniques exist that explicitly consider the timing guarantees of

real-time systems. Prior work, such as RECFISH [105] provides a large scale schedulability

study of traditional CFI concepts in embedded systems. Here CFI is introduced in-line of

code-execution, inflating the worst-case execution time (WCET) of tasks. On the other hand,

4.1. INTRODUCTION 51

the authors of [64], similar to previous work integrating general system security in real-time

systems [61], introduces CFI budget management techniques to ensure timing guarantees.

Here, hardware tracing mechanisms gather control-flow information during program execu-

tion, and then verify them at a later time (out-of-order to program execution) when the

trace buffers are full. Execution budgets are enforced, or CFI verification is temporarily

suspended, to ensure that verification does not cause deadline misses in the application.

While these mechanisms trade-off CFI overhead with system performance impact, they may

introduce “blind-spots” that could be exploited. By not performing CFI in-line, a smart at-

tacker could modify system output just-in-time before it is sent out. An out-of-order defense

mechanism without explicit timing bounds on the completion of verification/enforcement

may not be able to detect such an attack in time. In this work, our key observation is

that periodic real-time systems, due to their temporal predictability requirements, allow us

to a) perform some CFI checks out-of-order of system code execution, b) correctly deter-

mine deadlines for these checks so that such blind-spots are mitigated, and c) relax these

deadlines, if possible, to improve system efficiency. To determine and relax these deadlines,

we were motivated by the fact that many real-time industrial-control and robotics systems

gather sensor data (system input) at high frequencies, but send actuator control commands

(system output) at lower frequencies. For example, anti-lock braking systems (ABS) sample

wheel speed sensors every few milliseconds, but send brake commands at an order of mag-

nitude lower frequency [43]. Combined with the increasing adoption of timing models such

as Logical Execution Time [67] model to mitigate data staleness when sharing data between

tasks, it is possible to determine when system output is generated, and if there is enough

slack to relax CFI deadlines.

Contributions: In this work, we:

52
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

1. Propose a new task model for periodic real-time systems that models forward-edge

CFI (such as verifying function calls) as separate security tasks.

2. Provide a strategy to push back deadlines of security tasks to increase resource utiliza-

tion. We provide a schedulability analysis and a correctness study to ensure deadline

push backs do not undermine the fact that the control flow integrity policy is strictly

enforced before system output is generated.

3. Design and implement a novel CFI framework that utilizes TrustZone for ARMv8-M

that:

(a) Records forward-edge control-flow information, while simultaneously performing

backward-edge CFI, via a novel trapping mechanism that also ensures the in-

tegrity of CFI records.

(b) Unlike prior work [61, 64, 105], our framework is the first to explicitly guarantee

scheduler integrity.

Note that the focus of our paper is on the real-time task framework to ensure completion

of out-of-order CFI policy enforcement, rather than new CFI schemes. As a result, the

discussion centers around the newly proposed framework to allow implementation of existing

CFI techniques to be performed correctly out-of-order to program execution on commodity

ARM Cortex-M hardware. To the best of our knowledge, we are the first to address the

real-time perspectives of out-of-order CFI enforcement while assuming a strong adversary

capable of compromising the normal world OS.

We shall now look at relevant prior work.

4.2. RELATED WORK 53

4.2 Related Work

CFI is a widely studied topic in the past couple of decades [31], and a state-of-the-art topic

in system security [68], due to the increasing popularity and sophistication of control-flow

attacks such as return-oriented programming (ROP [95]) and its variants. CFI mechanisms

are built to protect either the backward-edge, such as return target of a function, or the

forward-edge such as the target of a function call using a function pointer, or a combination

of backward and forward-edges. While backward-edge CFI is simpler to implement since it

requires verifying past control-flow transfers, forward-edge CFI is more difficult to implement

since it requires more information to ascertain possible future control-flow paths. Forward-

edge CFI, therefore, requires a record of program control-flow information such as a control-

flow graph (CFG), which is obtained a-priori to deployment, and is heavily dependent on the

quality of the available CFG. Therefore, a wide variety of forward-edge CFI is available, such

as fine-grained CFI [31] that provides a correlation between a jump source and all possible

jump targets, and coarse-grained CFI [110] that utilizes a less defined CFG and, therefore,

allows some reduction in the number of checks performed during control-flow transfers.

Since many legacy or proprietary embedded system software may not have a well-defined

CFG available, many CFI mechanisms for such systems, such as Silhouette [113] are designed

around coarse-grained CFI. Coarse-grained CFI also allows for interesting relaxations in when

CFI checks are performed, such as Tyler et.al’s control-flow locking [23] where control-flow

checks are performed at before and after a function call, i.e., the defense lazily checks for

attacks. While it is evident that coarse-grained CFI will have blind spots, which have been

exploited by attackers [42], fine-grained CFI too has been successfully defeated [46]. Such

attacks can be thwarted by utilizing context-sensitive CFI such as PathArmor [101] that

records control-flow transfers and judges each transfer’s veracity in context of its neighbours.

Unfortunately, PathArmor requires a custom hardware architecture to record control-flow

54
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

transfers.

CFI defenses have been increasingly adopted in many higher-end commercial hardware and

software systems such as in Microsoft’s Windows operating system as part of its Control-

Flow Guard defenses [80], the Clang compiler as an optional component [3] as well as Intel’s

Control-Flow Enforcement [63] technology as part of its more recent line of processors. How-

ever, CFI mechanisms built specifically for resource-constrained embedded systems are far

fewer in number. This is because such systems are built around less powerful hardware, such

as microcontrollers, to manage both cost and SWaP (size, weight and power) requirements

and therefore require special software workarounds to support CFI [9, 113], leading to un-

manageable overheads depending on the capability of the underlying hardware. Some such

as Abad et al. [8] propose dedicated hardware modules to off-load CFI from the processor

core. Similarly, TrustZone [109], an architecture extension to support trusted execution in

modern ARM processors, has also been used to support CFI [65, 88]. These systems perform

all CFI operations in-line with code execution they are forced to simplify the CFI operations

to maintain overheads.

In the case of real-time embedded systems, even fewer CFI defenses exist in prior work

such as Walls et.al.’s RECFISH [105] which provides an extensive schedulability study of the

implementation of common CFI techniques, particularly shadow stacks [30], and labeling

to enforce forward-edge CFI [31] on realistic real-time embedded hardware. Shadow stacks

protect backward-edges such as function return locations, while labeling is used to correlate

a jump source location with possible jump target locations. Bellec et.al [18], on the other

hand, propose a detection mechanism that exploits the temporal predictability of real-time

systems to detect greater-than-normal execution time but requires specialized hardware.

Unfortunately, no currently available defense mechanism considers the temporal relation

between when an attack occurs (attacker modifies program flow) and thewhen the attack takes

4.3. PRELIMINARIES 55

effect (modified program flow affects system output). For example, Bellec et.al’s work only

detects an attack when the execution time overrun occurs for a segment of code. However,

the attacker could have already affected the system by then, such as modified an actuator

output and caused damage to the system, rendering the defense ineffective.

Two prior works, Kadar et al. [64] and Hasan et al. [61] are similar to the defense mechanism

presented in Chapter 4. Specifically, they abstract CFI, or security mechanisms in general,

as security tasks. However, no currently available defense mechanism for real-time systems,

including these two works, considers the temporal relation between when an attack occurs

(attacker modifies program flow) and when the attack takes effect (modified program flow

affects system output). For example, by not defining such a relation, an attacker could have

already affected system output before the verification mechanism detects an attack.

We shall now present the hardware, software and threat models that we consider for the rest

of this work.

4.3 Preliminaries

4.3.1 Hardware model

We require that the target system consists of a single ARM TrustZone equipped processor.

ARM TrustZone for Cortex-M [109] is a widely available component of the Platform Security

Architecture (PSA) extensions on the ARMv8-M state-of-the-art microcontroller architec-

ture. TrustZone creates two processor domains, non-secure and secure. The former is used

to run legacy software, such as an RTOS and task code, whereas trusted supervisory code

executes in the latter. ARMv8-M has a flat address space consisting of RAM, flash, and

system peripherals. The division of address space between the two domains is enforced via

56
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

a vendor hard-wired implementation-defined attribution unit (IDAU) and a system attri-

bution unit (SAU). The SAU supports multiple regions depending on the implementation.

Each region is a set of registers where secure domain code can programmatically upgrade

a non-secure domain address space to secure domain. Switching between the domains has

low runtime overhead [81]. Non-secure domain code cannot read/write contents of secure

domain memory and can only call specially marked non-secure callable (NSC) secure domain

code. Other cross-domain memory accesses from the non-secure domain cause a HardFault.

We utilize the SAU and the HardFault in our mechanism (Section 4.8). It should be noted

that the hard-fault on ARM processors is traditionally utilized to handle critical system

exceptions. As part of the ARMv8-M mainline architecture (implemented in the Cortex-

M33 architecture), an illegal cross-domain memory access (TrustZone violation) launches a

dedicated SecureFault exception handler. However, we aim to target even the ARMv8-M

baseline architecture (implemented in the lower-powered Cortex-M23 variant) that bundles a

TrustZone violation into a HardFault, and calls the HardFault exception handler, to reduce

manufacturing costs. We discuss differentiating between a legitimate system fault/exception

and an attack in Section 3.8.2. In this work, we refer to either of the fault exceptions as a

hard-fault exception for simplicity.

4.3.2 Software Model

The software consists of an RTOS executing periodic real-time tasks with known worst-case

execution time (WCET). While the RTOS and application task code normally would execute

within the same domain, we split them apart. Specificaly, we execute the RTOS scheduler

in the secure domain and task code in the non-secure domain to ensure the integrity of the

scheduler and its output (Section 4.8.2). Hardware drivers for peripherals are also kept in

the non-secure domain since they are traditionally integrated into task code in embedded

4.3. PRELIMINARIES 57

systems. The application program’s tasks are referred to as application tasks. Application

tasks are further divided into internal and output tasks (Section 4.5.1). The sensor task

and actuator task in Figure 4.1 are examples of internal and output tasks, respectively.

Separately, we introduce the concept of security tasks (Section 4.5.2). We utilize the rate

difference between different application tasks to opportunistically relax deadlines of the

security tasks (Section 4.6).

We consider that tasks release data at their deadlines, similar to the popular Logical Execu-

tion Time model [67] which is widely being considered for automotive and industrial systems

since it implicitly addresses the problem of data staleness. While our core idea does not

require this assumption, it simplifies our approach and reduces the complexity of our dead-

line push back model (Section 4.6). It is assumed that data synchronization between tasks

happens through shared buffers or similar mechanisms.

4.3.3 Threat model

We assume the use of a system that supports TrustZone. An attacker can compromise any

tasks and attain the highest privilege within the non-secure domain. This is representative

of real-world threats. For example, task and RTOS code execute at the same privilege level

in FreeRTOS [11] by default to eliminate the runtime overhead of privilege level switching.

Prior related work, such as RECFISH [105] requires privilege isolation between tasks and

the RTOS since they utilize memory protection units (MPU). We assume a stronger threat

model that considers a compromised non-secure domain.

Similar to other CFI research, we focus on defending against code-reuse attacks, wherein an

attacker will target indirect branches (branches on a general purpose register or link register)

to implement a forward-edge or backward-edge attack, respectively. Data-only attacks are

58
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

Time

Sensor
task

Security task for
internal task

Actuator
task

Time

Sensor task with
simple in-line CFI

Other
tasks

In-line CFI becomes security task
which can have complex CFI

operations

Security task deadline
pushed back Actuator task

deadline met

(i)

(ii)

Figure 4.1: (i) Task system where sensor task has simple in-line CFI, (ii) Proposed pro-
crastinating model where in-line CFI is bundled into a security task (Section 4.5.2) which
can implement complex CFI operations (accomodate greater WCET) but with pushed back
deadlines to lower resource utilization.

out of the scope of this work since they cannot be detected by CFI [62]. Figure 4.2 shows a

sample attack: An attacker forces code execution to redirect to an unintended target address

by exploiting a vulnerability in Func A. By chaining together multiple such branches to

different blocks of instructions, an attacker can perform arbitrary computations.

4.4 Overview of Procrastinating CFI

We utilize the periodic nature of real-time tasks to improve schedulability and/or support

more complex CFI. A motivating example can be seen in Figure 4.1.(i) which shows a typical

control-system where a sensor task gathers sensor data, and reports the data after processing

to an actuator task that sends out commands to control an actuator. The sensor task has

in-line CFI, like most prior work. On the other hand, we propose an approach shown in

4.5. PROCASTINATING CFI TASK MODEL 59

Figure 4.1.(ii) where the in-line CFI can be consolidated into a separate security task. We

utilize system slack to push back deadlines of these tasks, providing an opportunity to utilize

complex CFI such as context-sensitive CFI [101]. Our approach consists of the following

components:

Procrastinating CFI Task Model (Section 4.5) - Introduces security tasks, differenti-

ates them from application tasks, and provides some important properties of our task model.

Security Task Deadline Relaxation (Section 4.6) - Derives relations to relax security

task deadlines such as in applications like ABS [43] where actuation is done at a lower

frequency than sensing.

Ensuring Correctness and Schedulability (Section 4.7) - Addresses an implicit rela-

tionship between output and security tasks and shows that our model is readily compatible

with any resource sharing-aware scheduling algorithm.

Mechanism (Section 4.8) - Presents an overview of our on-device mechanism (Figure 4.3)

which logs forward-edge transfers and performs backward-edge CFI while ensuring scheduler

integrity.

While our task model itself advances the state-of-the-art by introducing the notion of explicit

deadlines to complete CFI to ensure attacker detection before system output is generated,

our mechanism further improves the state-of-the-art by extending our model to allow for

context-sensitive CFI on commodity hardware.

4.5 Procastinating CFI Task model

Prior work, especially lazy schemes [9, 23] which check for an attack at specific points of

time during program execution, cannot always detect an attacker before it affects system

60
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

Func A:
MOV R0, TARGET
...
…
BLX R0

…
TARGET:

…
BX LR

TARGET2:
…

Attacker changes R0
value to TARGET2 in
vulnerable Func A

Successful
redirection to target

Legitimate path

System
Memory

Figure 4.2: Code redirection on a generic microcontroller. Attacker modifies contents of R0
to change branch target.

output. For example, an attacker could send commands to an actuator controlled by the

system before it is detected by the CFI mechanism. We exploit the predictable pattern of

periodic real-time systems and design a novel task model that will play a key role in our CFI

mechanism. The design of this task model is based on the strict requirement that all pending

CFI checks must be completed before the system output is generated i.e., in the example

stated above, the CFI check must complete before any command is sent to the actuator.

The model also assumes that there exists a mechanism (Section 4.8) to capture information

of control-flow transfer events such as the source and target addresses that can be retrieved

at a later time for verification.

Notations: We consider that the system consists of n periodic real-time application tasks

(Section 4.5.1) with known WCET and implicit deadlines. For each application task, we

introduce a new periodic real-time security task (Section 4.5.2) that models forward-edge

CFI that will be performed on the task’s control-flow logs. In Section 4.6, we show that

these security tasks may not have implicit deadlines. An instance of any of these tasks is

called a job. τi is the ith application task and τs,i is the corresponding security task. Di, Pi, Ci

4.5. PROCASTINATING CFI TASK MODEL 61

are the relative deadline, period and WCET of τi, respectively. Similarly Cs,i, Ds,i, Ps,i are

the WCET, period and relative deadline of τs,i, respectively. The jobs ji,k and js,i,k are

the kth instances of τi and τs,i, respectively, and their absolute deadlines are di,k and ds,i,k,

respectively. The task utilizations are represented by Ui for τi and Us,i for τs,i. Please see

Section 4.5.2 for more details.

4.5.1 Application task model

Our application model is based on a real-time control system, such as an industrial control or

robotics system. We consider that the task set is synchronous and, without loss of generality,

the tasks are released at time 0. Every task releases its computed data, and consumes input

data, only at its deadline and arrival times, respectively, similar to the Logical Execution

Time (LET) model [67]. Each application task is either an a) internal task that collects data

from sensors and/or performs computations, or an b) output task that controls actuators or

sends messages to external systems. Therefore, the sensor and actuator tasks in Figure 4.1 are

examples of an internal and output task, respectively. Our model assumes that the output

tasks are given exclusive write access to peripherals (we provide a sample low-overhead

mechanism in Section 4.8.2). Since data is released only at deadlines (and in our case,

periods), data availability is predictable, regardless of the scheduling algorithm [67]. This

removes the need to explicitly consider task dependency. Internal tasks provide data to

output tasks either directly or through other internal tasks. As stated in Section 4.3.2, it is

assumed that tasks share data via shared buffers or similar mechanisms. We assume that

multiple internal jobs can queue data in the shared buffer to be consumed by the output job

when it arrives, such as being copied to memory that is accessible only to the output job.

62
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

RTOS Scheduler

Non-Secure Domain Secure Domain

Shell Tasks
Security
Task n

Security
Task 1

Hard-Fault Handler

Control-
Flow

Capture

Task n

Task 1

SAU
Stack

Shadow
Stack

Control-
Flow
Log

Upgraded to
Secure Domain

Per-Task Stacks

SAU

Branch

Figure 4.3: Overview of Procrastinating CFI mechanism to capture forward-edge control-flow
logs (reading source and destination addresses of branch) and backward-edge verification.
Branching into upgraded memory launches fault handler that performs both operations -
Section 4.8.

Once the data is consumed by the output job1, the buffer is purged for newer data.

Data dependency from an adversarial perspective

While logical relations between internal tasks and output tasks can be deduced by generating

a directed acyclic graph (DAG) of the flow of data from internal to output tasks, the same

relation cannot be assumed to hold true when seen from an adversarial context. For example,

consider a system that contains a set of 5 tasks τa, τb . . . τe with τa, . . . τc as internal and the

remaining as output, such that the data relation between the tasks can be two chains in the

DAG graph with τa → τb → τd and τc → τe. We cannot assume that an attacker controlling

internal task τa will only affect the input of τb which then filters to τd. That is, it could try to

1Here an attacker could abuse the temporal assumptions of the framework which we consider in Sec-
tion 4.7.1.

4.5. PROCASTINATING CFI TASK MODEL 63

directly access the shared buffers of both τd and τe unless the system explicitly prevents such

modifications. While TrustZone (which we use in our mechanism in Section 4.8.2) could be

used for isolating these buffers, due to the limited number of discrete memory regions (up

to 8 for our test hardware) that could be managed/upgraded by the SAU, we cannot overtly

depend on TrustZone to manage every memory region for complex applications. Scheduling

techniques must be utilized to reduce the pressure on a TrustZone-based memory upgrade

mechanism. In summary, we cannot assume any relation between the internal and output

tasks from a security perspective other than that system output is generated by output tasks

at their deadline, and output tasks consume all their input data when they arrive.

4.5.2 Security task model

Under the assumption of a strong attacker, all application tasks are considered equally

susceptible to an attack. Possible attack vectors include malicious external input supplied

to the task(s) either directly (e.g., sensor input) or through shared data from another task

that may trigger a bug and allow an attacker to take control of the task. Therefore, it is

necessary to check the control path of all tasks before a system output is generated.

A security task encapsulates all the forward-edge CFI that need to be carried out for a

corresponding application task (internal or output). Note that CFI only requires control-flow

logs (such as those generated by our mechanism in Section 4.8) and does not access the data

shared between application tasks. Therefore, security tasks require that the corresponding

application tasks execute and generate these logs before they can perform any verification.

We discuss the implementation of the security tasks in Section 4.8.4.

The WCET of a security task Cs,i, under a worst case number of control-flow transfer events

during regular execution N, is:

64
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

Cs,i = cfi(N), (4.1)

where cfi() provides the WCET of the CFI implementation given an input set of control

transfer events. Further, since a security task tracks the execution of the corresponding

application task, it will also inherit its period, i.e., Ps,i = Pi.

We will now state some important properties of security jobs based on the observations of

the behavior of the application jobs. Here we are considering that the system is originally

schedulable, i.e., for a set of n tasks, the total utilization of the tasks satisfies
∑n

i=1 Ui ≤

U sched
A , where U sched

A is the schedulable utilization of a scheduling algorithm A.

Lemma 4.1. The deadline of a security job τs,i,k, released at the same time as its corre-

sponding application job τi,k is:

ds,i,k ≥ di,k. (4.2)

For an output job, the corresponding security job’s deadline must equal the output job’s

deadline since LET generates system output at this time. On the other hand, the deadline

for an internal job’s security job may be greater depending on conditions we discuss later in

Section 4.6. Note that since security tasks require control-flow logs before they can perform

verification, it is expected that the scheduler tie-breaks to the advantage of the application

task if it shares the same deadline (priority) with the corresponding security task. This

behavior, however, is an implementation detail and does not change the scheduling algorithm.

From the perspective of an internal job,

Lemma 4.2. An attacker controlled kth job of an internal task τi targeting an upcoming

output job τj,l, will be detected by the security job τs,i,k before the system generates its output

4.6. SECURITY TASK DEADLINE RELAXATION 65

if:

ds,i,k ≤ dj,l. (4.3)

Proof. The LET framework generates system output at the output job’s deadline. Therefore,

a compromised output job must be verified by this deadline. If the security job satisfies

Equation 4.3 the attacker will be detected, in the worst case, at the time the system output

is generated under any scheduling algorithm.

Therefore, the deadline of a security task corresponding to an output task must equal the

deadline of the output task while the deadline for those corresponding to internal tasks can

be deferred. We now derive the deadline relaxation conditions.

4.6 Security Task Deadline Relaxation

It is potentially worthwhile to relax deadlines of the newly introduced security jobs to im-

prove schedulability of task sets. This is possible for security tasks of internal tasks in the

case of task sets where output tasks execute at lower frequencies than internal tasks. This

condition is fairly common in control systems since output tasks must control actuators,

which have a physical limit on how often they can respond to commands and/or due to

system requirements. For example, ABS in vehicles have a much higher wheel speed sensor

input rate than brake application rate [73].

Consider a LET model of two tasks τ1 and τ2, where τ1 is an internal task, such as a sensor

task, and τ2 is an output task, such as an actuator controller. Let’s say that τ1,m and

τ2,l synchronize at time t which is when the lth job of τ2 arrives and t ≥ d1,m. While the

synchronization of data needs to follow the LET framework for correct system operation,

66
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

the same need not be true for security tasks. For example, if the following is true:

t < d2,l − (C2 + Cs,2), (4.4)

then there is a non-zero amount of time between the synchronization point and the last

time unit at which the internal job’s security job must complete to allow enough processor

bandwidth to the output job and its security job. Since d2,l − (C2 +Cs,2) is evidently before

d2,l, the deadline of the security job of the internal job can be set to d2,l − (C2 + Cs,2) while

ensuring our initial guarantee that CFI checks always complete in-time before the system

generates output. Figure 4.1.(ii) provides an overview of what we aim to achieve. Therefore,

based solely on Property 4.2:

Lemma 4.3. Consider output tasks τj ∈ O, where O is the set of all output tasks in

the system. For the kth job of a security task corresponding to an internal job τi,k that

synchronizes with the upcoming lth job of τj, ds,i,k, that satisfies Property 4.2, can be relaxed

such that

ds,i,k = min{dj,l − (Cj + Cs,j)}, τj ∈ O. (4.5)

Proof. To prove by contradiction, consider d
′

s,i,k > ds,i,k. Also, let τs,i,k executes up to its

deadline. Further, let a pair of output and corresponding security tasks τj,l and τs,j,l begin

execution at d′

s,i,k and let j be the argmin satisfying Eq. 4.5. Then d
′

s,i,k + Cj + Cs,j > dj,l

which results in a deadline miss and is a contradiction.

To generalize Eq. 4.5, we define a push back value for each security task. Recall from

Section 4.5.1 that an attacker controlled internal task may synchronize with any output

task. Therefore, let’s consider a pair of internal and output tasks, τi and τj, respectively.

4.6. SECURITY TASK DEADLINE RELAXATION 67

Time

Attacker controlled
internal task

Security task for
internal task

Output task Other tasks

Internal task
d = Tb

Output task
d = Ta

Higher priority
other tasks

Security task completes
after output task deadline

TbTa
Figure 4.4: Race condition: Attacker is able to execute and affect input of output task. In
such a case, the output task’s deadline (and output release time under LET) is before the
security task is able to complete execution.

For the latest job of τi that has a deadline earlier than/at the arrival of lth job of τj (and

therefore can synchronize with τj), the push back value Ψl
i,j for the job of the security task

τs,i corresponding to the internal job is:

Ψl
i,j = (l · Pj − (Cj + Cs,j)) mod(Pi). (4.6)

However this push back value may not be universally applied to any job of τs,i. That is,

for some instance of τs,i, applying this push back may violate Property 4.3. Instead, a a

minimum Ψi,j, that can be applied for any job of τs,i, can be derived as:

Ψi,j = min{Ψl
i,j}, l = 1 . . . lmax. (4.7)

Knowing that τi and τj are periodic, the push back values will repeat after every hyperperiod

68
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

of tasks τi and τj. Therefore, lmax can be stated as:

lmax =
lcm(Pi, Pj)

Dj

, (4.8)

where lcm(·, ·) returns the least common multiple of its inputs. We now generalize this for

τs,i with respect to all τj ∈ O.

Theorem 4.4. For task sets where output tasks have lower frequency than internal tasks,

the security task τs,i’s deadline can always be pushed back by Ψi where

Ψi = min{Ψi,j}, ∀ τj ∈ O. (4.9)

Finally, the relative deadline of the security task τs,i can now be calculated as:

Ds,i = Di +Ψi. (4.10)

4.7 Ensuring Correctness and Schedulability

The deadline relaxation approach described above is only correct if the attacker-controlled

task behaves correctly temporally. We now discuss a race condition that an attacker-

controlled internal task may exploit to break the correctness of the deadline relaxation.

4.7.1 Race condition between output and security tasks

Consider an EDF scheduled system where a security job is released earlier (alongside an

attacker-controlled internal job) but with a deadline greater than an upcoming output job

(Figure 4.4). Under the LET paradigm, this internal job does not synchronize with the

4.7. ENSURING CORRECTNESS AND SCHEDULABILITY 69

Task A

Task B

Task C

Task D

Task A

Task B

Task C

Task D

Sec A Sec C

(i) (ii)
Figure 4.5: (i) Sample data dependency between internal tasks A and C with output tasks
B and D. (ii) Dependencies when security tasks are considered.

output job (Section 4.5.1) and hence Property 4.2 needs not hold here. However, an attacker

could ignore this behavior and overwrite the data to be synchronized with the output job.

Since the security job has a later deadline than the output job, it may be prevented from

completing verification until after the deadline of the output job. This could break the

correctness of our approach in that we will then not be able to detect an attacker before the

system output is generated. This scenario is summarized in Property 4.5.

Theorem 4.5. If the attacker-controlled internal job τi,k and the target output job τj,l obey

the following relation:

ai,k < aj,l

di,k > dj,l,

(4.11)

then there is no guarantee that the attacker job will be detected before the output of the system

is made under EDF.

Proof. The security job τs,i,k may have a deadline ds,i,k ≥ di,k (Property 4.1). Consquentially,

under EDF, τs,i,k may be preempted by τj,l until the output job’s deadline dj,l, and may

be unable to complete verification of control-flow events generated by attacker-controlled

τi,k.

70
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

This race condition is not EDF specific and can occur when an output task has a higher

priority than a security task of an internal task. We shall now address this problem.

4.7.2 Implicit data-dependency between output and security jobs

The race condition (Section 4.7.1) exists because the independent task model does not ex-

plicitly consider data dependency between an output job and every released security job of

an internal job2. Consider the data-dependency DAG in Figure 4.5(i), which represents a

system with 4 tasks such that tasks A and C are internal and task B and D are output

tasks. Once security tasks are added to the system, the data-dependency DAG transforms

into that shown in Figure 4.5(ii). This is to account for the verification that the security

tasks must complete by the time the system output is generated.

Since an internal job and corresponding security job are released at the same time, the

scheduler must allow any security job that has been released to be allowed to execute to

completion. The task model therefore considers that each security task shares a logical

resource with the output task. Therefore, each tuple (τi, τs,j), τi ∈ O where O is the set

of output tasks, share a logical resource, Ri,j with a security task τs,j corresponding to an

internal task.

4.7.3 Implications on scheduling

By explicitly defining a shared resource between security and output tasks the race condition

can now be prevented by utilizing any shared resource-aware scheduling algorithm such as

EDF+SRP [16].

2As discussed in Section 4.5.1, from a schedulability perspective, the data dependency can be removed
by relying on the LET paradigm

4.7. ENSURING CORRECTNESS AND SCHEDULABILITY 71

The security job must ”capture” the shared resource when it arrives. If an output job arrives

such that it satisfies the race condition (Property 4.5) it is blocked until the pending security

jobs ”release” the shared resource. The security jobs ”releases” the shared resource after they

have verified all logged control-flow transfer events. The scheduler waits for these ”release

events” before scheduling the output job. This solves the race condition.

Other cases that can occur but are implicitly handled by any shared resource-aware schedul-

ing algorithm are:

1. The internal and security job have higher priority than the output job - In this case,

the security job will always get completed before the output job gets to execute.

2. The internal and security job arrive later and have a later deadline/lower priority -

Under the LET model, the output job consumes its input from any shared buffers at

arrival. It will also execute till completion (including preemption by higher priority

jobs) before the attacker-controlled internal job gets to execute.

The shared resource design also improves security by reducing the attack surface, since only

the security tasks and scheduler communicate via the shared resource and both of these

entities execute within the secure domain of TrustZone (Section 4.8.2), which is inaccessible

to the attacker under our threat model (Section 4.3.3).

Summarizing our discussion: for a set of application tasks, we have corresponding security

tasks. Each security task can be represented by a tuple (Cs,i, Ds,i and Ps,i), where period

Ps,i is the same as the corresponding application task’s period and Ds,i is derived using

Property 4.4. Therefore, the total system utilization increases from the original U =
∑

Ci

Pi
,

to Utotal given by:

Utotal =
∑ C

′
i + Cs,i

Pi

, (4.12)

72
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

Func A:
MOV R0, TARGET
...
BLX R0

…
TARGET:

…
BX LR

TARGET2:
…

SAU

Upgrade
non-secure
addresses

Hard-fault
handler

Preceding
NOP

Update
shadow

stack, SAU
stack, call
stack, set

SAU values
& return

Pop shadow
stack

Check
return

Set old SAU
values &

return

Attack!

YesNo

No Yes

Non-Secure Domain Secure Domain

Figure 4.6: SAU based function-call enforcement.

where C
′
i includes Ci and the in-line overhead of our mechanism. See Section 4.8.1 for

implementation details and Section 4.10 for experimental results.

4.8 Procrastinating CFI mechanism

The task model presented in the Section 4.5 shows that security tasks can utilize system slack

to delay execution and perform CFI checks. However, there are two implicit requirements:

a) logging of control-flow events, and b) the security tasks must be given an opportunity

to execute regardless of whether an attack occurs. For a) we present a novel function-block

level CFI enforcement that is able to log control-flow data and enforce backward-edge CFI

on existing off-the-shelf hardware. A function block includes a function and its prologue and

epilogue (compiler-generated additional code). For b) we move the scheduler into the secure

4.8. PROCRASTINATING CFI MECHANISM 73

domain.

We utilize TrustZone for ARMv8-M detailed in Section 4.3.1. Note that ”TrustZone” can

refer to two different architecture extensions that allows creating a trusted execution en-

vironment on ARMv8-A and ARMv8-M processors. TrustZone for ARMv8-M mimics the

simplicity of an MPU commonly found in microcontrollers. Unlike in ARMv8-A [83], prior

work [81] shows that switching between secure and non-secure domain takes just a few CPU

cycles, is highly predictable, and is triggered by a single secure gateway (SG) instruction.

Our mechanism takes advantage of this low overhead and requires minimal, if not zero,

modifications to application code.

4.8.1 SAU based function-block enforcement and shadow stack

We now present our approach for bare-metal systems. Since we target resource-constrained

systems, we limit our approach to function blocks, reducing the amount (and storage needs)

of call logs and in-line overhead. As stated in Section 4.3.3, we assume that the attacker

targets indirect branches for forward-edge attacks. Compilers tend to convert function calls

to direct branches (corroborated by our case study in Section 4.10.1) since they execute

faster, therefore, it would be prudent to check indirect function calls only after they take

place. Since we are only aware of attacks where multiple functions are required for an

attack [94], indirect calls to locations within the same function can be ignored.

Detecting function blocks in the application binary is difficult since a binary is usually

monolithic to optimize space requirements. Prior work uses customized compilers to label

functions in the binary. Alternatively, function blocks can be padded with special values

such as one of ARM’s many NOP equivalents, or a ”magic” (not an instruction) value, that

can be detected at runtime. We perform padding via a command to the linker program that

74
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

aligns and pads function blocks with NOPs.

Figure 4.6 provides an overview of our approach. The SAU upgrades all but the currently

executing function from the non-secure to secure domain. Since a function call involves

a branch to this upgraded memory, it is a cross-domain access that triggers a hard-fault

(Section 4.3.1). The handler checks if the target is the start of a function block. If so a)

the SAU is updated to shift the non-secure window over this function and b) the old SAU

values and return address are stored on separate stacks (shadow stack for return address).

The SAU values are calculated at runtime by scanning for block padding to find the start of

a function block. A function return is validated by comparing it with the expected return

address from the shadow stack. The SAU values are then popped from their stack into the

SAU. Any verification failure is detected as an attack.

4.8.2 RTOS modifications

We now apply the scheme in Section 4.8.1 to an RTOS to complete our CFI mechanism

(Figure 4.6):

RTOS in secure domain- The RTOS scheduler and timer are moved into the secure

domain. Many RTOS, such as FreeRTOS, already maintain an additional per-task stack in

the secure domain to save secure function call execution state across context switches. As

shown in Figure 4.3, we shift the scheduler into the secure domain, and flip the utility of the

task stacks by creating shell tasks that utilize the secure domain stack as the ”main” stack.

These shell tasks use the BLXNS instruction to the branch start of the task’s application

code in the non-secure domain. The scheduler, as before, maintains both the non-secure and

secure stacks with minimal modifications. Note that on ARMv8-M, there is no performance

difference between the two domains and switching between them takes only a few clock

4.8. PROCRASTINATING CFI MECHANISM 75

cycles [81]. Therefore, these modifications to the scheduler do not introduce any significant

performance penalty.

Implement stack support - SAU values, the control-flow log, and return address shadow

stacks are created per task. The hard-fault handler is notified of the currently executing

task by the RTOS and updates the correct stacks during runtime.

Implement security tasks in secure domain - These tasks directly accesses the call log

stacks.

Other modifications - As stated in Section 4.5.1, we assume that only output tasks can

write to system output (for example, the UART output buffer). This can be achieved by

moving all code that accesses output peripherals into a memory region such that an SAU

region can be dedicated to mask this memory (Section 4.3.1). When the scheduler context

switches to/from an output task, it can simply downgrade/upgrade the region’s security

domain, respectively, by flipping a single bit in the SAU. An internal task, therefore, would

always cause a HardFault when trying to access this region.

4.8.3 Design Alternatives

A drawback of utilizing a fault handler for CFI is that the hard-fault handler (or SecureFault

handler - see Section 4.3.1) has the highest priority in the system, and could cause priority

inversion. While the fault occurs only at function calls/returns, the number of function calls

often depends on the coding style of the developer. Excessive function calls can impose non-

trivial overhead in our current design to track the function-level control flow. Fortunately,

it is possible to leverage compiler optimizations to reduce the number of function calls.

Reducing the number of function calls will also mitigate the degree of path explosion in

control flows, at the expense of coarser-grained control. This provides an opportunity to

76
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

trade-off performance and security along the dimensions of code size, number of functions,

granularity of control flow tracking, as well as run-time overhead. Our experimentation data

(Section 4.10) shows that the total overhead of the fault handler is small (our implementation

requires a total of ≈ 50− 350 cycles on our test hardware. However, checking for an indirect

call takes just ≈ 60 cycles (≈ 5 us). It is possible to further reduce the overhead by only

analyzing the transitions that involve safety-critical functions.

While the fault handler overhead is a known limitation that we shall address in the fu-

ture, using the handler allows greater flexibility to implement complex runtime CFI not

possible via binary instrumentation. For systems where this overhead is not acceptable, an

instrumentation-based approach can be used. Note that either approach can be used with

our task model.

4.8.4 Verification of Control Flow in Security Task

As discussed in Section 4.2 different CFI mechanisms exist in literature that trade-off se-

curity and performance: one could, e.g., individually verify the past N control-flow events.

PathArmor’s [101] path verification performs a depth-first search to find a valid path within

the pre-recorded CFG of the application. Security tasks in our framework can straight-

forwardly implement any of these techniques and our scheduling strategy balances security

overhead and schedulability.

4.9 Security analysis

We analyze our mechanism in the context of our threat model (Section 4.3.3). By virtue of

TrustZone, we do not have to worry about attacks concerning privilege levels within the non-

4.9. SECURITY ANALYSIS 77

secure domain. The attacker can continue to operate at the highest privilege level within the

non-secure domain. However, such an attacker will not be able to modify scheduler operation

since it cannot cross the TrustZone boundary and directly jump to/modify scheduler code.

Also, by moving the scheduler (and timer) into the secure domain, we ensure that a) the

timer interrupt will fire and the scheduler will have the opportunity to context-switch to a

security task, and b) the scheduler will correctly report the currently running task to the

hard-fault handler. Similarly, the attacker cannot access the shadow or SAU stacks, or the

function call logs.

Since the hard-fault exception has a higher priority than other peripheral interrupts, its

operation is atomic, guaranteeing the integrity of updates to the SAU, shadow, and function

call log stacks. Similar guarantees can be afforded to the timer interrupt by allotting it the

next lower priority level.

The call logs can be stored in a circular stack to prevent an attacker from overflowing it and

the LIFO order allows security tasks to quickly detect an ongoing attack.

Since we do not consider non control-flow attacks, and code-injection attacks can be ad-

dressed via the use of mechanisms such as an MPU, we do not upgrade non-secure domain

RAM to allow tasks to share data without added complexity.

As discussed in Section 2.1, on the Cortex-M23 architecture, the fault due to a TrustZone

violation and the generic system hard-fault are bundled together into the same exception

with the same handler that could lead to some confusion to distinguish between an actual

system fault and an attacker-influenced TrustZone boundary violation. However, our threat

model considers that an attacker would abuse function calls (Branch-with-Link instruction

variants) to access secure code. Therefore, it can be possible to distinguish between a fault

and an attack by reading the Link register in the fault handler, and determining if it has

78
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

been updated due to a branch-with-link instruction. If not, it could be due to a legitimate

system fault. Very special cases, such as a jump to secure code due to a fault alongside a

simultaneous modification of the link register, are outside the scope of our work and would

require application-specific forensic analysis.

Finally, as stated in Section 4.5.2, we consider the worst-case situation where all system

tasks, internal or output, require corresponding system jobs. We recommend such a setup

to ensure that malicious inputs from the internal tasks do not trickle through intermediary

internal tasks and exploit a bug in the output task, regardless of the improbability of such an

occurrence. Specific applications may allow for reduced number of security tasks. However,

this decision is left solely for the system designer.

4.10 Evaluation

We now evaluate our approach. We present microbenchmarks of our implementation on

hardware to compare against prior work, and then evaluate our task model via simulations.

4.10.1 Control flows in Cyber Physical System (CPS) Software

Code used in CPS predominantly follows a predictable control flow sequence. To gain a

realistic understanding of the expected overhead of control flow integrity in software programs

for CPS, we developed a custom back-end pass in the LLVM compiler suite [73] to count the

percentage of indirect control flow transfers in the control loop of widely-deployed real-time

CPS, including ArduCopter[4], Rover in ArduPilot[6], PX4[5], and TurtleBot[7]. As shown

in Table 4.1, in real-time CPS, forward and backward control-flow transfers are equal or less

than just 1% and 6%, respectively, in all programs.

4.10. EVALUATION 79

Table 4.1: Control-flow transfers in popular real-time applications.

Software Forward (% total) Backwards (% total) Total
ArduCopter 2139 (0.72%) 7160 (2.41%) 296581

PX4 6211 (0.08%) 44003 (0.61%) 7178749
TurtleBot 647 (0.25%) 1130 (0.44%) 255680

Rover 4 (0.41%) 8 (0.83%) 964

4.10.2 Experimental setup

We utilize a Nuvoton NuMaker PFM-M2351 (ARMv8-M baseline architecture) development

board [2] for our experiments. The on-board flash memory and RAM are 512 KBytes and 96

KBytes, respectively. The processor operates at 12 MHz. We modify FreeRTOS according

to Section 4.8.2 to support our approach. Modifications include altering the base addresses

used by the scheduler to swap the non-secure and secure domain stacks (≈ 20 instructions

each for saving and loading the SAU stacks during context-switching), adding 15 lines of

C code to initialize and manage the SAU and shadow stacks, and ≈ 20 instructions added

during RTOS bootup. The majority of our modifications are in the hard-fault handler (≈ 180

lines of C and in-line assembly).

4.10.3 Hardware Overhead

As stated above, we aim to gauge the in-line overhead of our approach. The results are as

follows:

RTOS - We modify the FreeRTOS scheduler to store and load the SAU values on a task con-

text switch. We noted overheads of 42 and 45 CPU cycles for these operations, respectively.

To lock/unlock output functions as stated in Section 4.8.2 for an output task, ≈ 5−10 CPU

cycles more would be required to flip the relevant SAU region enable bits. The scheduler

operation takes a total of 357 cycles on our hardware, including the SAU value load/store

operations. Therefore, our modifications add a 28% overhead to scheduler operation. While

80
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

Table 4.2: Deadline relaxation of security tasks.

Task set
utilization without
security tasks

Avg.
total
util

% of security
task with
push backs

Avg. %
deadline relaxation
(95% CI)

0.1 0.14 25.52 3.09 ± 1.47
0.2 0.25 20.85 5.37 ± 2.74
0.3 0.36 22.22 4.84 ± 2.52
0.4 0.49 20.29 4.65 ± 2.44
0.5 0.60 21.54 4.08 ± 2.39
0.6 0.7 23.38 3.71 ± 2.0
0.7 0.82 22.54 2.97 ± 1.73
0.8 0.93 20.29 2.89 ± 1.74

this may seem high, our scheduler overhead is lower than that of the closest prior work (32%),

while having a broader threat model (Section 4.3.3) and ability to support more advanced

CFI techniques (such as context-sensitivity which requires knowledge of multiple control-flow

transfers instead of just one) in the security task while better utilizing system slack. We

believe that this overhead is mainly due to the slow on-board memory of our hardware (see

below).

Hard-fault handler - 257-326 cycles are required for validating a function call, storing the

SAU and shadow stack values, and setting up the new SAU values. 60 cycles are required

to determine whether a call occurred due to an indirect branch and log the start and end

points. We noted a 53 cycle overhead for function returns.

Comparison with RECFISH

Our approach resembles, temporally, the in-line overhead of RECFISH [105]. However, it

exceeds the capability of RECFISH, supporting the possibility of out-of-order CFI checks

in security tasks. We report a lower scheduler overhead (28% vs RECFISH’s 32%), but a

higher function call overhead (386 cycles vs RECFISH’s 317). These could be attributed

to differences in target architecture. However, both approaches have the similar points of

interest, i.e., they operate during a context switch and during an indirect jump. In fact, our

4.10. EVALUATION 81

approach incurs an overhead during normal operation only when an indirect branch calls a

function. Therefore, we believe the schedulability study for RECFISH also applies to our

approach and acts as an upper bound. We also believe that with comparable system memory

and flash, our approach will have a much lower total overhead.

A note on memory overhead

Our approach requires stacks in the secure and non-secure domain. This is not an overhead

we introduce. FreeRTOS’ default design includes these stacks for supporting TrustZone

operation, such as to save context of a secure function call during regular execution. We

simply re-purpose these stacks when we move the scheduler into the secure domain.

For each function call, 32 bits are required to store the target address – consumed by the

security task – and the return address in the shadow stack. If compiler support exists, a

shorter unique identifier can be used per function (similar to most forward-edge CFI [105]).

Our case study in Section 4.10.1 shows that indirect calls are very infrequent; the call log

stack can therefore be very shallow. Correctly determining the stack size to aid attack

detection in case of an overflow during runtime is outside the scope of this work.

Optionally, 32 bits each are required for the SAU start and end limit addresses, which are

stored and popped during function calls and returns, respectively. This can be eschewed in

severely resource-constrained environments but requires recalculating the boundaries of the

function during a return. We assume there is enough memory for such a stack.

4.10.4 Simulation study

We now provide a simulation study of our task model. We a) show that security task

deadlines can be relaxed significantly, and b) show that relaxed deadlines improve system

82
CHAPTER 4. UTILIZING HARD REAL-TIME SYSTEM PREDICTABILITY TO IMPLEMENT CONTROL-FLOW

INTEGRITY

Table 4.3: Percentage of tasksets (/10,000) that are only schedulable under EDF+SRP
when push backs are accounted. Original task set utilization does not include security tasks.
WCET Ratio is ratio of WCET of security tasks to application task.

WCET Ratio
Original System Util 0.85 0.9 0.95

0.1 14.35% 61.67% 54.09%
0.2 58.44% 45.69% 27.40%
0.3 37.41% 17.85% 6.77%
0.4 14.15% 4.54% 0.95%
0.5 3.38% 0.64% 0%

schedulability, even under overloaded conditions.

Deadline Relaxation

We evaluate the ability of our approach to relax security tasks deadlines. The results are

presented in Table 4.2. The task set utilizations, before the addition of security tasks, are

recorded in the first column. Each task set consists of 10 application tasks (2 are output

tasks), generated using the UUnifast [22] algorithm implemented under the SchedCAT sim-

ulation suite [24]. Output tasks have the longest periods of the task set to allow deadline

push backs. We then add security tasks to create task sets of a total of 20 tasks. The WCET

of security tasks is calculated as 10% of corresponding application task. We believe this is

realistic for forward-edge CFI checks since indirect branches calling functions are usually

sparse (RECFISH considers 1 indirect branch for 103-107 CPU cycles) as corroborated by

our case study presented in Section 4.10.1. An average of 20-25% of security tasks have push

backs by up to ≈ 8% (minimum of 0.1%) of their deadline showing a clear avenue to defer

CFI.

Security task overloading

Since deadlines are pushed back, there is an opportunity to increase security task load

(modeling complex CFI operations) and still maintain schedulability. To simulate this, we

4.11. CONCLUSION 83

generate task sets with utilizations of 0.85, 0.9 and 0.95. We then add security tasks, where

the WCET ratio of security task to application task ranges from 0.1 to 0.5, to test how the

system behaves under borderline overload conditions. We summarize the results in Table 4.3.

we generate 10,000 unique task sets, consisting of 10 application tasks of which two are output

tasks, per experiment. Accounting for rounding errors in the utilization of each task set, each

data point is the number of task sets that cannot be scheduled by EDF+SRP unless the

deadlines are pushed back.

When the original task set utilization is 0.85, when the WCET ratio increases from 0.1 to

0.2, we see an increase in number of tasks sets that are only schedulable when push backs

are considered. This is probably because only a few of the tasksets are overloaded and

fail the schedulability test without push backs. We then see a declining trend showing the

limits of the system from 0.9 and 0.95 system utilization. This shows that it is possible

to include more complex CFI and/or other security mechanisms within the security tasks

without compromising the schedulability of the system.

4.11 Conclusion

We proposed a new task model that effectively utilizes system slack to defer CFI checks

in a bounded manner for periodic, real-time systems. A novel TrustZone-based mechanism

was used to record control-flow decisions that can be utilized by any forward-edge CFI

mechanism, maintain scheduler integrity, and implement a shadow stack to defend against

backward-edge attacks. Hardware microbenchmarks show that our mechanism has in-line

overhead similar to the closest related technique, and simulations show that it is possible to

not only push back a significant number of security task deadlines but also schedule task

sets in overloaded conditions.

Chapter 5

Simulation-based characterization and

a priority degradation-based defense

against the Mad Monk attack for

mixed-criticality systems

5.1 Introduction

Interconnectivity between computing systems is both ubiquitous and a necessity today. From

smart phones and tablets, to cars and trains, to even industrial control systems, computers

today are interconnected to not only share data, but also improve operation capabilities,

efficiency, reliability and safety. A modern cell phone requires connecting to the internet

to perform functions that are critical to businesses such as sharing documents or sending

emails. Modern cars require internet connection for operations ranging from downloading

navigation maps to receiving over-the-air electronic control unit (ECU) firmware updates

that improve vehicle performance. Industrial control systems are being increasingly inter-

connected to visualize plant operations and perform advanced analysis on data gathered in

real-time to determine plant operation safety. The exponentially increasing proliferation of

data available from such interconnectivity, and reduced cost of processing said data, has

84

5.1. INTRODUCTION 85

made it viable for the increased utilization of advanced statistical analysis methods such as

machine learning and deep learning, allowing system designers to further understand and

optimize such systems.

While increased interconnectivity has brought such large quality-of-life improvements for the

general public and scientific community, unfortunately, it has also brought along numerous

opportunities for misuse and malicious behavior designed to infringe upon user privacy and

system safety. As discussed in-depth in Chapter 1, interconnectivity has allowed attackers

the ability to gain access to domestic and industrial computing systems. Especially in the

latter case, attacks such as Stuxnet [48] and the more recent attack on Ukraine’s power

grid [33] both have shown that attackers are now able to remotely influence the operation of

critical national infrastructure and possibly cause devastating damage to property and life.

With the reduction in cost of computing, and increased interconnectivity, real-time systems

too are becoming more complex. While traditionally many of these systems have been

simple and isolated from other computing systems, higher safety standards and the need to

address software issues that may arise during runtime, many real-time systems now include

connectivity hardware and software stacks (ex., vehicle ECUs allowing over-the-air updates)

alongside traditional mission critical components. As discussed above, this opens up these

traditionally isolated systems to attacks from external malicious entities.

Further, to reduce size weight and power requirements (SWaP) as well as cost of components,

many real-time systems integrate hardware and software covering multiple mission goals into

the same processing environment. For example, the modern unmanned aerial vehicle, which

are used for operations ranging from military applications to reconnaisance, and search and

rescue, utilize the same processor for executing the flight stack (ex, PX4 [5]), and image

capturing and processing software, etc. Due to the heavy integration of different software

components on the same hardware to align with the goal of reducing hardware requirement to

86
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

manage SWaP and cost, it becomes necessary to carefully balance the resource usage between

each of these various software subsystems, and the safety requirements. To achieve this, a

new class of real-time system models have been proposed in the last decade. These types

of system models are collectively labelled mixed criticality systems [29]. Mixed criticality

systems are designed to delineate between assuring safety and resource efficiency. They

introduce the concept of safety-critical tasks, mission-critical tasks and other less critical

tasks. Safety-critical tasks must be assured against component failure and deemed to be

the most critical to maintain the safe operation of the system, while mission-critical and

other tasks may be deemed to be less critical. Therefore, the system could selectively re-

allocate budget if the system showcase abnormal behavior (also called increasing the system

criticality level) to safety-critical tasks at the expense of other less critical tasks. While

mixed criticality systems is still an ongoing research topic, prior work has already shown

its applicability to multiple real-world communication mechanisms such as CAN [28] and

Ethernet [41].

Therefore, as with any connected system, mixed criticality real-time systems are also vulner-

able to attacks such as control-flow attacks discussed in Chapter 4. While such system-level

runtime attacks have been widely studied by system security researchers, it is now essential

to also consider whether inherent flaws exist within the real-time system models used to

analyze such systems, that could be another vulnerable attack surface. To that effect, a

recently proposed work by Fisher et al.1, called the Mad Monk attack, proposes a technique

that exploits certain assumptions within the mixed criticality task model ((Section 5.3))

which allows an attacker to have arbitrary control over system criticality level regardless of

how critical the attacker controlled code is to the system’s safety. This breaks one of the

central tents of mixed criticality systems that only the most safety-critical tasks should have

1At the time of writing this dissertation, this is currently work-in-progress and portions of this chapter
will appear in the published work.

5.2. RELATED WORK 87

control over the system’s criticality level. By controlling the criticality level of the system,

the attacker could indirectly control the budget of other tasks in the system since with each

criticality level change, the mixed criticality model re-allocates budget from less critical tasks

to safety critical tasks to guarantee safe system operation. Mad Monk attack showcases that

while mixed criticality systems improves the ability to safely balance the safety assuring

with resource utilization efficiency, it can introduce another attack surface for a determined

attacker to exploit. We will discuss the specifics of the Mad Monk attack in Section 5.4.2.

With respect to the Mad Monk attack, this work’s contributions are as follows:

1. Provide a simulation study of the Mad Monk attack to determine which real-time

temporal parameters influence the success (and/or failure) of the attack.

2. A new degradation strategy is proposed that restricts an attacker’s capabilities to ini-

tiate and sustain the Mad Monk attack over multiple criticality level switches, severely

reducing the usefulness of the attack.

We shall now look at relevant prior work.

5.2 Related Work

Many real-time systems cannot be strictly considered as hard or soft since they consist of a

combination of tasks that have different degrees of impact on the system if they miss their

deadlines. Such a concept of mixed task sets consisting of hard and soft real-time tasks,

is not new and has been considered in varying degrees in prior literature over the last few

decades. Specifically techniques such as bandwidth servers [47, 75] or slack stealing [98, 99]

all consider the possibility of re-purposing slack in the system to service soft real-time tasks

without affecting the guarantee of scheduling hard real-time tasks.

88
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

Mixed criticality systems are a relatively new label attached to such types of systems and

could be considered to be a form of generalization of the idea of mixed task systems. Criti-

cality of a particular component is it’s importance to the safe operation of the system. While

mission critical components are required to complete the mission objectives of the system,

safety critical components are required to maintain the safe operation of the system at any

given point of time. A common example used is that of a unmanned aerial vehicle (UAV)

conducting reconnaisance. Here the subsystems controlling the flight surfaces of the UAV to

maintain steady flight (ailerons, motors, etc.) would be considered as safety critical, and the

imaging equipment would be considered mission critical. Similarly, the worst-case exeution

time (WCET) estimation techniques to model safety and mission critical subsystems (and

their tasks) would vary. Safety critical subsystems would, inherently, require more conser-

vative WCET since these subsystems must be more tolerant to component failure, while

mission critcial components may be allowed less conservative estimations. However, realistic

execution times for safety critical systems may be very different from the heavily conserva-

tive WCET estimates. This leads to an interesting problem where realistic estimates differ

so much from the conservative estimates, that performing resource allocation and estima-

tion to safely schedule all tasks in the system could involve over-provisioning of resources,

leading to increased size, weight, power consumption (SWaP) and system cost. The concept

of mixed criticality systems is to allow more relaxed resource requirement estimation for all

components of the system considering their operation in more realistic scenarios while allow-

ing re-allocation of resources during runtime from mission critical to safety critical tasks if

the system enters a state of operation that is closer to worst-case. That is, the system can

be considered to operate at multiple criticality levels and more conservative estimates are

required as and when the system achieves a higher state of criticality. The formal concept of

considering different execution times for different criticality levels was formally introduced

by Vestal [103].

5.2. RELATED WORK 89

Since Vestal’s seminal work, multiple other works in this field have been published. An

excellent summary of prior research in this domain is found in this survey by Burns and

Davis [29]. For our work, we are concerned with the problem of execution of mixed critical

task sets on a single core processor which has been looked at by prior work [15, 56, 89].

Multiple approaches for determing schedulability under fixed priority scheduling, utilizing

response time analysis [17, 26] or slack stealing [44]. For EDF based scheduling, new vari-

ants of the algorithm such as EDF-VD [76] have been proposed assigns virtual deadlines to

increase/decrease the urgency of safety critical/mission critical tasks respectively. have con-

sidered Note that mixed criticality task modeling is not just theoretical. Prior work has also

determined its applicability to real-world applications such as CAN [28] and Ethernet [41].

While mixed criticality systems are designed to allow for selective degradation (such as by

reducing execution or changing priorities) [27, 59, 76, 97] of certain components of the system

to ensure safety guarantees, these techniques are presented from the perspective of realism,

that is, to increase the applicability of the mixed criticality systems to real systems where

degraded components need to be allowed to progress without affecting safety guarantees.

However, none of these work consider malicious system manipulation where an attacker

forcefully ensures system criticality switches to degrade components artificially. A recently

proposed work, called Mad Monk (see Chapter 5 for more details regarding the attack)

explictly looks at how the system can be forced to degrade certain tasks by employing a low

criticality attacker controlled task to increase the execution time of a higher criticality task,

causing the system to switch modes. Note that this may appear similar to the problem of

resource sharing between criticality levels [111, 112] have been proposed. However, under

attacker control, similar behaviors may not be accurately modelled (ex., the attacker task

never communicates with high criticality task under regular execution). Further, the attacker

could perform actions other than directly communicating with the high criticality task, such

90
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

as by performing a cache flush, which may induce a side effect on the high criticality task

where it must now spend extra time loading data from memory before it can perform any

computation, effectively increasing its execution time and possibly causing the system to

switch criticality modes. For reference, there is a wealth of prior work that looks at cache

flush attacks, for various purposes such as leaking confidential information [45, 55], and the

specifics to perform such attacks on different processor architectures [53, 79]. Note that

prior work in mixed criticality systems does look at varying forms of resource separation,

that could mitigate such cache-specific side effects, such as a hypervisor [90], however it may

not prevent other side effects that have not been considered. Further, patching such issues

may be implementation specific and/or require specialized hardware and software.

We shall now formally describe the mixed criticality system task model and behavior.

5.3 Mixed Criticality Task Model

As previously discussed in Section 5.1 and Section 5.2, mixed criticality systems recognize

the need to consider different execution time estimates depending on the operational status

of the system, especially for safety-critical real-time systems. This is required to balance

the need for assurance against failures within the system, and the need to improve resource

utilization efficiency. Further, different tasks within the system may have different degrees

of importance towards maintaining safe system operation. For example, in a unmanned

aerial vehicle (UAV) utilized for search-and-rescue missions, the flight stack that controls

the ailerons, motors etc., is a safety-critical task, the imaging equipment is a mission-critical

task and the internal system logging task that logs system status for the operator, is a good to

have task. From the perspective of safety, the safety-critical tasks have the highest criticality

and the good to have tasks are the lowest criticality. Similary, the system’s criticality level

5.3. MIXED CRITICALITY TASK MODEL 91

represents the mode of operation which requires a degree of assurance (and hence execution

budget) for safety-critical tasks. Higher the system’s criticality level, more the degree of

assurance required from such tasks, and more conservative (greater) the worst-case execution

budget for safety-critical tasks.

For this work, consider that a system utilizing a single processor, can operate at k different

criticality levels or modes. At any given point of time, the system operates at a criticality

level γ where γ ∈ {1 . . . k}. The system always begins operation at γ = 1 and cannot exceed

criticality level γ = k.

The system executes a task set Γ consisting of n real-time tasks such that Γ = {τ1, τ2, . . . τn}.

These tasks are considered to be of periodic nature for simplicity (we shall consider sporadic

execution briefly in later sections). Each instance of a task is called a job. Each task

τi, i ∈ {1 . . . n} is represented by the tuple (−→Ci, Di, Ti, χi). Here,
−→
Ci is the set of criticality level

dependent execution budgets. At higher criticality levels, safety-critical tasks may perform

extra procedures to ensure system safety. It is therefore necessary, with increasing criticality

levels, to reclaim budget by degrading, aborting and/or dropping lower criticality tasks and

assign reclaimed budget to the higher criticality tasks to maintain safe and schedulable

(under an arbitrary scheduling algorithm S) operation since total system budget is a finite

resource. We will formally define how execution time for a task, at each criticality level,

is determined below. Di is the relative deadline of the task and Ti is the task period (or

minimum interval-arrival time if the task is sporadic). Note that in some prior work [14],

with increase in criticality levels, it is expected that the system may generate and handle

more events from the higher criticality tasks while other works such as [27] suggest reducing

the frequency of lower criticality tasks. Since our threat model requires a high priority low

criticality attacker task, assuming a system that increases the period of such a task on a

criticality switch, thereby reducing its priority under scheduling algorithms like RM, would

92
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

cripple the attacker. Further, as noted in [27] itself, it could be argued that introducing

the capability of arbitrarily changing task frequencies during runtime could lead to another

attack surface that could be exploited and used maliciously. Therefore, for this work, we

consider the simple case that only budgets change with criticality levels, not periods. Finally,

χi is the criticality of the task. We shall now discuss the specifics of how the execution time

is determined at any given point of time.

At any system criticality level γ, for all tasks with χi ≥ γ, a task will have an execution

budget of Ci(γ) | Ci(γ) ∈
−→
Ci where Ci() is a function that provides the budget of a task

when it is given the system criticality level, and where Ci(γ) ≤ C(γ + 1). For all tasks

with χi < γ, jobs of this task can either be dropped or execute with a degraded budget.

Burns and Baruah [27] make the case to not drop jobs since it may not be acceptable to

system designers that want low criticality jobs to progress even if the system criticality is

higher. Therefore, it is expected that the system provides with a degraded (reduced) budget

Ci(γ) such that Ci(γ − 1) ≥ Ci(γ). This is a similar model utilized in other works such

as the proposed variant of EDF to schedule multiple-level mixed-criticality systems, called

EDF-VD [76].

Mode changes: Mode changes in mixed criticality systems occur when task τi with χi > γ

has a job that executes past its execution budget at that criticality level, that is, executes

without signalling that it has completed for greater than Ci(γ). At this point, the budgets

of all tasks are adjusted according to their criticality levels.

5.4 The Mad Monk Attack

We shall now discuss the threat model and mechanism of the Mad Monk attack proposed

by Fisher et al.

5.4. THE MAD MONK ATTACK 93

5.4.1 Threat Model

The attacker is in control of a task, or set of tasks, of low criticality but high priority, such

that its job can preempt jobs of higher criticality tasks. An example is the communication

interface on a drone or unmanned aerial vehicle which may be low criticality due to it not

being critical for the safe operation of the drone. Control over such a task(s) could be made

possible via a number of mechanisms, such as the control-flow attacks discussed in Chapter 4.

The system is assumed to have the ability to detect violation of temporal parameters of the

attacker controlled low criticality task. That is, the attacker cannot violate the execution

budget afforded to the task (via some form of a budget enforcement mechanism), as well as

violate its own deadline or frequency. That is, the attacker has no control over the scheduling

policy and cannot modify any temporal parameters of itself or any other task. This is in

line with many prior work in mixed criticality systems that discuss the need for isolation

in mixed criticality systems [29]. If any job of the attacker controlled task violates these

temporal parameters, it is immediately dropped.

The attacker is also completely or partially aware of the code and data that is utilized during

execution of other tasks, particularly a task of the group of tasks which have the highest

criticality level within the system. Since our system model considers a single processor

system, it is assumed that the attacker has some limited control over the cache which is

shared with the high criticality task, allowing it to perform actions such as a cache flush, or

some other shared resource (ex: peripheral I/O). It is expected that the system allows some

degree of manipulation over one of these shared resources.

Finally, we assume a mixed criticality system where the attacker task τa jobs are not dropped,

but at the most degraded, when the system criticality level exceeds the criticality level of

the attacker task.

94
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

5.4.2 Mad Monk Attack mechanism

The Mad Monk Attack, proposed by Fisher et al., is a technique whereby an attacker, in

control of any task at any criticality level, is able to force the system to arbitrarily switch

criticality modes to a desired criticality level. This, consequentially, allows an attacker to

downgrade any victim task τv with criticality χv as long as χv < k in a k criticality level

system.

Consider, for simplicity a single attacker τa, and a single victim. The attack is perpetuated

in the following manner:

1. The attacker job preempts a high criticality task’s job. This task is also called the

intermediary victim and is denoted by τiv such that its criticality is greater than the

intended victim τv, i.e., χiv > χv. Since the attacker job must be able to preempt the

intermediary victim’s job, it must also have a higher priority than the intermediary

victim job. That is, the Mad Monk attack requires a higher priority lower criticality

attacker job for operation.

2. The attacker then performs some delaying mechanism to induce an execution penalty

on the intermediary victim. For example, a cache flush could be an effective technique

to induce a delay on the intermediary victim. Cache based attacks have been widely

studied for confidential data exfiltration [45, 55] and could also be used by an attacker

to flush any shared cache. Once the intermediary victim’s job is scheduled to execute,

it will have to reload its data into cache which could extend its execution time. Let the

maximum penalty an attacker job of τa can induce on a job of the intermediary victim

task τiv, at the current criticality level, is Cpen
iv (γ). Note that we assume the penalty

to be dependent on the current system criticality level since a task will follow certain

code paths, and therefore work with a certain set of data, depending on the criticality

5.4. THE MAD MONK ATTACK 95

level. Penalty inducing operations, such as a cache flush, will be able to induce delay

commensurate to this code and data.

3. Consider that the attacker has sufficiently high frequency such that up to p jobs can

induce a penalty. At any starting system criticality level γ, while the worst case

execution time at that level for the intermediary victim job is Civ(γ), it may actually

execute for an average case execution time - Cavg
iv (γ). Therefore, for forcing the system

to mode switch to the next criticality level (γ + 1), the following equation must hold:

Cavg
iv (γ) + p ∗ Cpen

iv ≥ Civ(γ) (5.1)

The system will switch to criticality level γ + 1.

4. The attack must now repeat the previous step to gradually increase the criticality of

the system to the desired level of χv + 1. At this point the criticality of the system

is higher than that of the the victim τv and the system will automatically degrade

(reduce execution budget/modify priority - see Section 5.2), or drop the victim jobs

henceforth. The attack is now completed.

Note that the attack requires carefully allowing the intermediary victim to execute so that

it can signal to the scheduler that it needs more time than its current criticality budget.

This is necessary to allow the attack to propagate. Therefore, the attacker must either

yield to the intermediary victim to execute, when appropriate, even if it is higher priority.

Similarly, if the attacker controls multiple tasks, it must carefully ensure that each attacker

task sequentially executes with the intermediary victim for each attacker induced penalty to

take effect.

The advantage of the Mad Monk attack is that it never violates any of the principles of

96
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

mixed criticality systems and that it doesn’t need to depend on any single penalty induction

technique for it to be successful.

Mad Monk is dangerous since it provides a low criticality task the ability to

arbitrarily switch system criticality modes with impunity. This, in turn, breaks

the central tenet of mixed criticality systems where only the high criticality task has sole

control over system criticality mode switches. We shall now perform a suite of simulations

to determine how the Mad Monk attack behaves under different system parameters.

5.5 Simulating Mad Monk

We shall now provide simulations of the Mad Monk attack to determine conditions which

are most conducive for the attack. The aim is to characterize the attack, allowing us to find

a defense strategy which we will detail in Section 5.6.

5.5.1 Simulator setup

We utilize a heavily modified variant of the SimSo [37] simulator to study the Mad Monk

attack. The SimSo simulation suite is a event driven simulator which allows us to modify all

jobs’ execution budgets the moment a criticality change is detected. For the purpose of all

simulations presented here, we consider that the system scheduler implements the Earliest

Deadline First [32] (EDF) scheduling policy.

For simplicity of analysis, a 3-level criticality system is considered which are termed as

(LO,MID,HI). LO mode corresponds to a criticality level (γ) where γ = 1. Similarly MID

and HI are γ = 2 and γ = 3, respectively. Attacker tasks will always operate at LO mode -

the worst case for the attacker.

5.5. SIMULATING MAD MONK 97

A range of tasks, from three to ten are generated, where appropriate. Task sets are gen-

erated using the well-known UUnifast-Discard algorithm [22]. All tasks are periodic. We

shall discuss sporadic test cases explicitly in later experiments. Tasks are first generated dis-

regarding criticality levels, to ensure schedulability, and then a randomized distribution is

generated that distributes the task’s execution over the three criticality levels. Care is taken

that the lowest criticality level has at least 20%-30% of the total execution budget. Every

data point that is presented henceforth is based on a simulation run over 100 generated task

sets. Further, to bias the system towards being susceptible to an attack, we ensure that the

attacker task is the same or higher frequency than the intermediary victim task since we are

utilizing the EDF scheduling policy. Higher frequency ensures that more attacker jobs will

have earlier deadlines than an intermediary victim job.

Recall that we simulate the penalty induced on the intermediary victim as a percentage of

its current criticality level (Section 5.4.2) since it is expected that at a criticality level, the

intermediary victim will follow certain code paths and work with a certain set of data which

may defer from that at other criticality levels. Therefore, any attack mechanism, such as

cache flush, would induce a penalty that is commensurate with the (average) execution time

at that level.

Finally, penalties are applied once per attacker job on an intermediary victim job in the

simulator. This models the cumulative effect of the attaker job on that intermediary victim

job. Of course, subsequent attacker jobs can apply the same penalty (unless a mode change

has already taken place). Further, to ensure realistic behavior, once an attacker job induces

a penalty on the intermediary victim, subsequent jobs may not apply the same penalty

unless the the intermediary victim has had an opportunity to execute. This ensures that the

penalty induced by the first attacker job ”takes effect” before subsequent penalties can be

applied.

98
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

Total Utilization = 0.9, Average execution time = 0.6* Worst-case execution time
Num Tasks Attack Penalty Success %

3

0.3 0
0.4 0
0.6 0
0.9 8

4

0.3 0
0.4 0
0.6 0
0.9 22

5

0.3 0
0.4 0
0.6 0
0.9 22

Table 5.1: Simulation where average execution time is 60% of worst-case for given criticality
level. Success % is the number of task sets (out of 100) that show successful attack.

Unless otherwise specified, we shall work with a single attacker and a single intermediary

victim. The attacker operates with a χa = LO and the intermediary victim operates at

χiv = HI. The aim is to force some intermediary victim job to cross its MID level budget,

effectively causing the system criticality level to switch to HI. At this point, the MID critical-

ity victim task would degrade, signalling a successful attack at which point the simulation

ends. If the simulator does not end before the hyperperiod (lowest common multiple of

all task periods), the attack is considered unsuccessful and the simulation is forced to end.

All our results show the number of task sets, out of 100 (per simulation run), that show

successful attack. We term this results as success percentage in the various tables below.

We shall now discuss each simulation run to determine the best (and worst) conditions for

the attack

5.5. SIMULATING MAD MONK 99

5.5.2 Determining basic conditions with realistic penalty

The aim of this set of experiments is to determine the task set temporal parameters where

a realistic penalty of ∼ 30% of the execution time of the intermediary victim, can allow a

successful attack to be achieved. To do so we perform experiments on task sets generaed

with totally random periods consisting of three, four and five tasks. The task set utilization

is kept high (∼90%) since anything lower would defeat the resource utilization efficiency goal

of mixed criticality systems. Intuitively it would seem that closer the worst-case execution

time estimate, at any given criticality level, with the average execution time of the task’s

job, would equate to greater probability of success with lower penalties. This is because

it reduces the amount of penalty required to force the intermediary victim’s job to execute

past its current criticality level execution budget (Equation 5.1), ensuring a system criticality

switch. Another intuition is that the relative periodicity of the attacker and intermediary

victim task would be the dominant trait affecting the possibility of the attack and that the

number of tasks has no consequence. This is because Mad Monk relies on the overlap between

attacker and intermediary victim jobs for the attack to take place, which is solely governed

by the periods of the attacker and intermediary victim tasks. We test these intuitions and

arrive at the results summarized in Table 5.1 and Table 5.2.

It is immediately clear that a) a tighter execution time estimate is required for

attack to take place and b) The number of tasks does not seem to have any

noticeable effect on the attack success. The former is advantageous for the attacker

since any advancements in the domain of worst-case execution time analysis, which in-

turn, improves the utility of mixed criticality systems, increases the probability of attack.

The latter provides evidence that strengthens the intuition regarding relative periodicity.

We shall see this confirmed in later experimentation too. Note that we tested less than

30% penalty too but saw no successful attack cases. We are led to believe that 30% is

100
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

Total Utilization = 0.9, Average execution time = 0.8* Worst-case execution time
Num Tasks Attack Penalty Success %

3

0.3 22
0.4 18
0.7 21

4

0.3 14
0.4 30
0.7 33

5

0.3 16
0.4 25
0.7 21

Table 5.2: Simulation where average execution time is 80% of worst-case for given criticality
level. Success % is the number of task sets (out of 100) that show successful attack.

the minimum required for 0.9 total task set utilization, at tight worst-case execution time

estimates. Therefore, the table only shows data for 30% penalty and higher.

5.5.3 Changing to harmonic periods

Based on our intuition that the relative periods of attacker and intermediary victim tasks

must be playing an important role on the attack, we switch the manner in which we generate

task sets. Now, we ensure that the attacker and the intermediary victim task have harmonic

periods (i.e., integer multiples of each other), with the attacker task having a higher frequency

to bias the system to have a higher attack probability. This also provides us an opportunity

to test higher number of tasks per task set cases since harmonic periods significantly reduce

the hyperperiod of a task set. Based on the discussion in Section 5.5.2, we keep the total task

set utilization as 0.9, and a tight worst-case execution time. A summary of results is provides

in Table 5.3. The results clearly show that harmonic periods are, in fact, advantageous, for

the attacker, increasing the successful attack cases by up to 3 times than that

shown in the prior section.

5.5. SIMULATING MAD MONK 101

Total Utilization = 0.9, Average execution time = 0.8* Worst-case execution time
Num Tasks Attack Penalty Success %

5

0.3 84
0.4 83
0.5 81

6

0.3 89
0.4 81
0.5 81

7

0.3 87
0.4 86
0.5 82

8

0.3 84
0.4 83
0.5 81

9

0.3 89
0.4 88
0.5 88

10

0.3 90
0.4 93
0.5 94

Table 5.3: Changing to harmonic periods immediately increases the attack success ratio by
3 times. Success % is the number of task sets (out of 100) that show successful attack.

5.5.4 Considering variations in penalty on a newly released inter-

mediate victim job

We now introduce a little more complexity to determine the best case scenario for the

attacker. Here we specifically look at how the attack efficacy is affected if the attacker is

not able to penalize a newly released (released but not executed) intermediary victim job.

The reasoning here is that since the intermediary victim job has not executed, it may not

have performed initialization routines, including loading data. Therefore performing certain

actions, such as a cache flush, may be less effective on the job than after it has had some

time to execute.

We test three cases here. The first is if the newly released intermediary job cannot be

102
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

Total Utilization = 0.9, Average execution time = 0.8* Worst-case execution time.
Num Tasks Attack Penalty Success %

5

0.3 5
0.4 11
0.5 13

6

0.3 12
0.4 10
0.5 7

7

0.3 5
0.4 5
0.5 5

8

0.3 11
0.4 8
0.5 7

9

0.3 10
0.4 5
0.5 8

10

0.3 3
0.4 6
0.5 8

Table 5.4: Success percentages when attacker cannot induce penalty on newly released inter-
mediary victim jobs. Success % is the number of task sets (out of 100) that show successful
attack.

attacked, i.e., if the job has not yet executed, the attacker cannot induce any delay on it.

Simulation results are provided in Table 5.4. We clearly see that not being able to attack

such a job significantly reduces the number of successful attacks.

To further confirm our observation, we consider a case where the attacker is able to induce up

to 10% of the penalty on the newly released intermediary victim job, that it can otherwise

induce on a preempted job. Table 5.5. Here it is confirmed that the attacker can rarely

succeed if it is only allowed to induce 10% penalty.

Finally, in Table 5.6 we allow the attacker job to induce up to 70% of the penalty it could

have induced on a preempted job. We see that at 30% induced penalty on a preempted job,

for a newly released job the penalty is ∼ 70% ∗ 30% =∼ 21% which is lower than the 30%

5.5. SIMULATING MAD MONK 103

Total Utilization = 0.9, Average execution time = 0.8* Worst-case execution time
Num Tasks Attack Penalty - Newly released multiplier = 10% Success %

5

0.3 4
0.4 10
0.5 9

6

0.3 8
0.4 4
0.5 15

7

0.3 5
0.4 11
0.5 8

8

0.3 8
0.4 6
0.5 6

9

0.3 10
0.4 9
0.5 11

10

0.3 8
0.4 7
0.5 5

Table 5.5: Attacker can induce up to 10% of the penalty on the newly released intermediary
victim job, that it can otherwise induce on a preempted job. Success % is the number of
task sets (out of 100) that show successful attack.

threshold required for successful attacks that we surmised from our results in Section 5.5.2.

At 40% induced penalty on a preempted job, for a newly released job, the penalty is ∼

70% ∗ 40% =∼ 28% which is much closer to the threshold and shows a large increase in

successful attacks, validating our observations from before.

5.5.5 Converting the attacker task into a sporadic task

Until this point, we have been discussing purely periodic task sets. We shall now discuss

the effect on the attack if the attacker task is converted into a sporadic task. This is to

both simulate an attacker than cannot control its inter-arrival time, as well as to view any

104
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

Total Utilization = 0.9, Average execution time = 0.8* Worst-case execution time
Num Tasks Attack Penalty - Newly released multiplier = 70% Success %

5

0.3 8
0.4 77
0.5 81

6

0.3 15
0.4 85
0.5 83

7

0.3 5
0.4 79
0.5 92

8

0.3 15
0.4 89
0.5 85

9

0.3 8
0.4 88
0.5 84

10

0.3 5
0.4 85
0.5 87

Table 5.6: Attacker can induce up to 70% of the penalty on the newly released intermediary
victim job, that it can otherwise induce on a preempted job. Success % is the number of
task sets (out of 100) that show successful attack.

behavior that may not be apparent in the periodic case. Intuitively, an attacker controlled

sporadic task (without any control over the inter-arrival time), may be less effective than a

harmonic period attacker. However, this experiment shows that in some cases, a sporadic

attacker task may outperform a periodic attacker.

This set of simulations is set up as a comparison. We first generate a purely periodic task

set as before (Section 5.5.1) and run the simulation. We then run the same task set with

the attacker task a sporadic task with minimum inter-arrival time the same as the period of

the attacker task in the purely periodic task set, and the maximum inter-arrival time up to

3 times this value.

For this simulation we set the penalty to be 30%, the total task set utilization is set as 0.9

5.5. SIMULATING MAD MONK 105

Total Utilization = 0.9, Average execution time = 0.8* Worst-case execution time
Num Tasks Experiment Success % Earliest Successful Attack %

5 Periodic attacker 83 45
Sporadic attacker 81 0

6 Periodic attacker 87 38
Sporadic attacker 82 0

7 Periodic attacker 88 46
Sporadic attacker 81 0

8 Periodic attacker 89 49
Sporadic attacker 85 0

9 Periodic attacker 87 41
Sporadic attacker 87 0

10 Periodic attacker 89 58
Sporadic attacker 88 0

Table 5.7: Comparing success rate of periodic and sporadic attacker for different number of
tasks in task set. Success % is the number of task sets (out of 100) that show successful
attack. Earliest Successful Attack % is where a task set shows strictly earlier successful
attack occurrence under the specific type of attacker.

and a tight WCET (average case execution is ∼0.8* WCET). As before, the attacker and

victim have harmonic periods. Based on our discussion in prior sections, these conditions

should show a high rate of success for periodic attackers, and should show lower rate of

success with sporadic attackers since there is no control over their inter-arrival time.

While Table 5.7 provides some evidence to the contrary, it also confirms some obvious in-

tuitions. The earliest successful attack % details the number of task sets (out of 100) where

an attack takes place strictly earlier (faster) if the attacker is of the corresponding type

(periodic or sporadic). Task sets that do not show any attack under either type of attacker,

or task sets where both achieve successful attack at the same time. We see that the periodic

attacker task outperforms the sporadic attacker under this metric, with the sporadic attacker

never achieving a faster attack. This is to be expected since a periodic attacker can always

predictably perform the attack earlier, it is possible.

On the other hand, we see there is barely any difference in the success percentage between

106
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

Num Tasks Success % - Only sporadic task successful
Total Utilization = 0.9, Average execution time = 0.8* Worst-case execution time

5 6
6 7
7 9
8 3
9 6
10 4

Table 5.8: Success % where only the sporadic task was able to achieve successful attack

the periodic and sporadic attacker with the periodic attacker just outperforming the sporadic

one. This leads us to believe that the sporadic attacker is able to achieve some edge cases

where it is able to achieve an attack where the periodic (and harmonic) attacker cannot.

We execute the same task sets and note the cases where the sporadic attacker task is the

only one that achieves success. Results for this experiment are in Table 5.8 which showcases

that up to 9% of the task sets benefit from a sporadic attacker. This is possible due to

siutations such as that shown in Figure 5.1. Here the first sporadic attacker job, shown

on the timeline, is released much later than its minimum inter-arrival time (“skipping” the

previous job which would have been released if the attacker was periodic), such that it is

no longer synchronous with the intermediary victim job. Instead it is released earlier than

the intermediary victim job, such that it allows two different attacker jobs (the second one

is released at the minimum inter-arrival time) to attack the same intermediary victim job.

This induces just enough penalty to cause a mode switch and possibly completing the attack.

The sporadic attacker experiments reinforce our intuition that overlaps between attacker and

intermediary victim jobs, where the attacker job can preempt the other since its higher pri-

ority need to be curtailed. The Mad Monk attack succeeds primarily due to such occurences.

5.5. SIMULATING MAD MONK 107

Figure 5.1: Victim here is the intermediary victim job. Periodic jobs are harmonic syn-
chronous. Sporadic attacker job ”skips” a previous job, leading to an advantageous condi-
tion.

5.5.6 A note on dropping attacker jobs for single and multiple

attacker tasks - suicide condition

Up to this point of experimentation, we have considered an attacker job is not dropped

(but may be degraded) which allows the Mad Monk attack to propagate. We simulated the

situation where an attacker task (or tasks), all operating at LO criticality mode are dropped

once system criticality switches to MID.

We term this situation the “suicide” condition since the attacker commits suicide by forcing

a mode switch to a criticality level that is higher than the attacker task’s criticality. We

do not provide a table for this section since under no circumstance, with single or multiple

attackers, is the attack successful if suicide is enforced.

This is an expected occurrence due to two design decisions we have taken for the simulator,

108
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

which are:

1. Since each attacker job’s penalty only takes effect when the intermediary victim job

actually executes after the attacker job performs an action, all subsequent attacker

jobs (from one or multiple attacker tasks) must wait for this effect to take place. This

is especially required if the action that causes such penalty induction is the same for

all attacker tasks. Ex: multiple cache flushes before the intermediary victim has had

a chance to execute and load memory makes little sense. Therefore, if at any point

of time, an attacker job induces just enough penalty to cause the mode switch, other

attacker jobs will be dropped and will never have a chance to induce any penalty.

Therefore, at any given point of time, only a single attacker job is responsible for a

mode change.

2. Our distribution function that divides the execution budget over multiple execution

levels ensures that the budget for the LO criticality is the least of the budgets for

other criticality levels. This closely mimics real-world mixed critical systems since LO

criticality would have the least conservative WCET budgets. Therefore, applying even

90% penalty on this budget of an intermediary victim task’s (τiv) job operating at the

LO criticality level is insufficient to cross the Civ(MID). In fact, successive criticality

levels will have much larger execution budgets per task, than the previous level, due

to increasingly conservative execution time estimates. Therefore, we may generalize

this observation and say that a single attacker job may not induce enough penalty to

cause multiple mode switches.

Note that if the attacker controls tasks at multiple different criticality levels, it is able to

utilize Mad Monk to the upgrade system criticality to the next criticality level of the most

critical of the attacker controlled tasks. That is, n mode changes may be induced by n

5.5. SIMULATING MAD MONK 109

attacker controlled tasks via Mad Monk if each of the n tasks operate at successively higher

criticality levels. However, requiring control so many tasks, at different criticality levels, may

make Mad Monk difficult or even infeasible for the attacker. We shall use this observation

in the design of our mitigation strategy.

5.5.7 Simulation summary

We shall now summarize the major points discussed based on the results presented above

which helps us characterize the attack.

1. Mad Monk attack requires a high priority attacker that can preempt an intermediary

victim job. Additionally a high frequency attacker where multiple jobs overlap the

intermediary victim is preferable.

2. Tight worst-case execution time estimates is necessary for the attacker to be successful

at reasonable penalty levels.

3. Attacker and intermediary victim having harmonic periods improves the probability

of the attack.

4. Under harmonic period conditions, being synchronous may be less beneficial for the

attacker. The attacker may benefit, in some cases, from some offset between attacker

and intermediary victim job release times. However, it still requires that the attacker

is higher priority than the victim job.

5. An attacker job may not induce enough penalty to cause multple system criticality

mode switches for realistic induced penalties.

6. Attacker committing suicide (dropped) is most effective at halting the attack.

110
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

We shall now discuss a mitigation strategy for the Mad Monk attack.

5.6 Criticality level-aware priority degradation to mit-

igate Mad Monk

We will now design a mitigation strategy that can be implemented to reduce the effective-

ness of the Mad Monk attack on mixed criticality systems. Note that the Mad Monk attack

is a general exploit within the mixed criticality task model where the attacker may utilize

any technique (ex: cache flush), applicable to the particular system, to propagate the at-

tack. Similarly, to ensure adoption, the mitigation strategy must transparently overlay any

scheduling policy to mitigate the attack without the need for system-specific defenses.

Figure 5.2: Criticality based degradation strategy implemented on a 3 criticality level sys-
tem. Each criticality change reduces the number of possible attackers that can target a HI
criticality intermediary victim task.

5.6. CRITICALITY LEVEL-AWARE PRIORITY DEGRADATION TO MITIGATE MAD MONK 111

To mitigate Mad Monk, applying any form of budget degradation strategies[27, 59, 76, 97]

will be insufficient. As summarized in Section 5.5.7, it is clear that a higher priority attacker

job that overlaps an intermediary victim job, may launch the Mad Monk attack. Further,

depending on the technique utilized to induce penalty, an attacker may be able to perform

penalty induction even with limited budget. For example, on x86 architecture, an entire

cache line can be flushed with a single CLFLUSH instruction which has been used with good

effect in other memory modification techniques such as Rowhammer [66]. Therefore, to

counter Mad Monk, some form of priority degradation is required to ensure a high priority

attacker task is not able to preempt a lower priority higher criticality task. Two approaches

may come to mind:

1. Force the requirement to drop low criticality tasks once the system criticality exceeds

their level - Our discussion in Section 5.5.6 showcases that this may be the best implicit

defense mechanism that can be implemented in the scheduler with the least effort.

While dropping low criticality tasks has been discussed in prior work too [27], they

conclude that it may be considered impractical for many use cases. For example, a

system designer may want certain low criticality tasks to continue execution, albeit in

a degraded status, once the system criticality exceeds them. Low criticality tasks such

as system logging, especially for forensic analysis at a later time, may require such a

design. Completely shutting down logging at higher criticality may make it impossible

to ascertain the reasons behind a criticality switch, and/or debug system issues that

may arise at higher criticality levels.

2. Utilize a priority modification scheme such as that in Burns and Baruah [27] - Burns

and Baruah’s work considers a dual criticality system where a lower priority higher

criticality task “inherits” the priority of a higher priority lower criticality task once

criticality switches from the low to the high criticality level. This is done to prevent

112
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

a lower criticality task from ever interfering with the higher criticality task. Since the

scheduler cannot assume which task is performing the attack, the scheduler must raise

the priority levels of all high criticality tasks to the maximum of lower criticality tasks,

to ensure correctness from the perspective of the defense.

Assuming that such a scheme is utilized for a k criticality system, where k > 2, this

may have an unintended side-effect of priority inversion with tasks with criticality level

higher, and priority lower, than the criticality of tasks being degraded. This breaks the

spirit of mixed criticality systems since by allowing such priority inversion to occur, we

are effectively degrading these mid criticality tasks too when they technically should

not be degraded. Further, to maintain schedulability, over-provisioning of resources

would be required to ensure these mid criticality tasks meet their deadlines when they

have been degraded due to this side effect. This too departs from the central tenet of

mixed criticality systems, that is, to improve resource utilization efficiency.

We are therefore, left, with two important considerations to design a mitigation strategy -

a) The design must not, via some side effect, penalize tasks whose criticality level is the

same or higher than the current system criticality level, and b) must be able to enforce a

priority mechanism that effectively mimics the suicide condition discussed in Section 5.5.6,

without completely removing the ability for tasks, operating at the same criticality level as

the attacker, to progress. We, therefore, propose a two-level criticality aware degradation

scheme to mitigate Mad Monk, while not violating the principle of mixed criticality systems.

An overview of our approach is presented in Figure 5.2. We introduce the concept of two

priority groups, degraded and non-degraded. The grouping scheme acts as an overlay policy

on top of the default scheduling policy of the system. That is, in our approach, the job of any

task in the degraded priority group are not allowed to interfere with any job (regardless of

original priority) of a task in the non-degraded group. A degraded group’s job must wait for

5.6. CRITICALITY LEVEL-AWARE PRIORITY DEGRADATION TO MITIGATE MAD MONK 113

all non-degraded group jobs that are ready-to-run to first complete before it can be scheduled

and allowed to execute. However, within a group, the original scheduling policy determines

which job executes first.

Our mechanism operates in the following manner. Figure 5.2 shows a 3 level criticality

system. When the system begins execution, it is operating in the LO criticality mode. At

this point, all tasks are in the non-degraded priority group. Therefore, as shown by the red

arrows, an attacker controlling a LO or MID criticality task can perform Mad Monk on a HI

criticality task. Consider that the attacker only controls a LO criticality task for simplicity

of explanation. The attacker task will induce a penalty on a HI criticality intermediary

victim job to switch the system criticality to MID, at which point all LO tasks (including

the attacker task) are added to the degraded group. From a scheduling perspective, the

attacker has effectively committed “suicide” since it can never preempt any job of a MID

or HI criticality task. On the other hand, since both the HI and MID criticality tasks

are in the non-degraded group, they will scheduled based on their priority, eliminating the

problem of priority inversion between non-degraded tasks. Therefore, the attacker must now

gain control over a MID criticality task to continue the attack, or else the attack has been

successfully mitigated. Similarly, once the mode switch occurs to HI criticality, a MID level

attacker is also thwarted.

Our degradation technique has multiple advantages over dropping tasks, or modifying task

priorities in a manner similar to in [27]. They are:

1. Our approach effectively emulates dropping tasks from the perspective of the Mad

Monk attack since a degraded attacker controlled task can no longer preempt (interfere)

a non-degraded task. This nullifies the Mad Monk attack which requires a higher

priority attacker task to propagate 5.4.2. On the other hand, our approach merely

114
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

starves degraded tasks. It still presents an opportunity for these tasks to execute.

2. Our simulations (Section 5.5.6) suggest that for realistic attack conditions, an attacker

task at a certain criticality level, may only induce a switch to the next criticality

level under suicide conditions. Therefore, our approach, just like the dropping tasks

approach requires n attackers at n different criticality levels, for n mode switches. Note

that while we do not believe it to be realistic, in case an attacker is able to induce

more than one mode switch before committing suicide, our approach does not perform

any worse than what could be achieved by the dropping tasks approach.

3. Since we do not modify any arbitrary task’s priority on a case-by-case basis, we remove

the risk of priority inversion. Therefore, our approach aligns with the principle of mixed

criticality systems by not penalizing tasks until the system surpasses their criticality.

In fact, by moving lower criticality tasks to the degraded group with each criticality

switch, we are reducing the interference seen by tasks in the non-degraded group,

effectively improving their response time.

4. Our approach ensures that degraded tasks are blocked by non-degraded tasks regardless

of priority. However, this group induced blocking, in fact, reduces as criticality changes

keep occuring. This is because more tasks will be removed from the non-degraded

group and added to the degraded group. They will then be scheduled according to

their respective priorities within the group.

5. Since our approach is simply a new degradation strategy, it can be applied in a

lightweight manner to any fixed or dynamic priority scheduling algorithm.

While degraded tasks need not be guaranteed against deadline misses (since they are no

longer required by the system to maintain safe operation), it may still be useful to show-

case the effect of our approach on the worst-case response time of a degraded task. We

5.6. CRITICALITY LEVEL-AWARE PRIORITY DEGRADATION TO MITIGATE MAD MONK 115

shall present a modification to the worst-case response time analysis under a fixed priority

scheduling algorithm such as Rate Monotonic (RM) [32] scheduling. Note that in the interest

of brevity, we do not present a derivation for the worst-case response time for a degraded task

under EDF since multiple approaches have been presented to characterize task worst-case

response time under EDF [52, 57]. However, a similar approach as below can be utilized to

modify existing analyses.

5.6.1 Response time analysis for degraded group for RM

Consider a k level criticality system with Γ set of tasks, where the current criticality level is

γ ∈ {1 . . . k}, the task group Γγ
nd represents the set of tasks in the non-degraded group, and

Γγ
d represents the set of tasks in the degraded group for the current criticality level, such

that Γ = Γγ
d ∪ Γγ

nd. Therefore, all tasks τj ∈ Γγ
nd will block all all tasks τi ∈ Γγ

d .

Disregarding criticality levels and groups, the worst case response time Wi for a task τi is

given by iteratively solving the following equation until it converges:

Wi = Ci +
∑

τj∈hp(i)

⌈
Wi

Tj

⌉
Cj (5.2)

Where Ci is the worst-case execution time, and hp(i) is the set of all tasks with priority

higher than τi under RM. When considering criticality levels, at a current criticality level

γ and under our priority degradation strategy, a task τi ∈ Γγ
d will have a corresponding

worst-case response time Wi, given by:

Wi = Ci(γ) +
∑

τj∈hp(i)

⌈
Wi

Tj

⌉
Cj +

∑
τl∈Bγ

i

⌈
Wi

Tl

⌉
Cl (5.3)

116
CHAPTER 5. SIMULATION-BASED CHARACTERIZATION AND A PRIORITY DEGRADATION-BASED

DEFENSE AGAINST THE MAD MONK ATTACK FOR MIXED-CRITICALITY SYSTEMS

Where Bγl is the set of all tasks in Γγ
nd which are lower-priority (set lp(i)) than τi but will

still block it due to the priority grouping. That is, the blocking group Bγl is defined as

Bγl = lp(i) ∩ Γγ
nd.

Note that with increasing criticality levels, the number of tasks in Γγ
nd will keep decreasing

since more tasks will be added to the degraded group. That is, Γγ
nd ≥ Γγ+1

nd . Therefore, the

worst-case response times, and hence worst-case deadline misses, for any degraded task will

always be at the criticality level when it is first added to the degraded group. Subsequent

criticality changes will reduce the number of tasks in the non-degraded group and conse-

quentially reduce the number of lower priority tasks that could block this degraded task.

We shall now provide some simulations to showcase the impact of our approach on deadlines.

Total Utilization = 0.9, Average execution time = 0.8* Worst-case execution time
Num Tasks Attack Penalty Deadline Miss %

5

0.3 23
0.4 15
0.5 24

6

0.3 19
0.4 18
0.5 26

7

0.3 36
0.4 26
0.5 26

8

0.3 26
0.4 27
0.5 22

9

0.3 21
0.4 26
0.5 29

10

0.3 31
0.4 27
0.5 23

Table 5.9: Simulating criticality aware priority degradation on LO criticality attacker all
other tasks MID or HI criticality. Deadline Miss % is the number of task sets (out of 100)
where attacker task misses its deadline.

5.7. CONCLUSION 117

5.6.2 Simulating effect on deadline misses for attacker tasks

We re-run our simulation setup from Section 5.5. We simulate the worst-case for the attacker,

where it is a LO criticality tasks and all other tasks are higher criticality. Therefore, it will be

blocked or preempted by all other tasks after the first mode switch. We run the simulations

for realistic attacker penalties, with tight WCET estimation (average case execution time =

∼ 0.8*WCET), a high task set utilization of 0.9 (i.e., taskset schedulable under EDF). The

results are presented in Table 5.9. We see that even with the degradation strategy enabled,

only about 20% − 30% task sets show deadline misses showing that our approach does not

introduce too much pessimism. Note that just like in the suicide case where attacker jobs are

dropped, our priority degradation approach also does not show any successful attack (where

the system reaches the HI criticality mode) once enabled in the simulator.

5.7 Conclusion

In this work we have studied the Mad Monk attack by using a custom simulator. Our sen-

sitivity analyses of the attack showcases the system conditions which are required for the

attack to occur. Our observations show that there is a need to introduce a new degradation

strategy that prevents an attacker job from preempting a lower priority higher criticality job

and performing some action that induces a system criticality switch, among other factors.

We present a new 2-level priority degradation strategy that is as effective at thwarting the

attack as dropping the attacker task completely, while still allowing the system to schedule

low criticality tasks, when possible, allowing them to progress while preventing further pro-

pogation of Mad Monk. Our simulations show that the new priority degradation strategy

does not introduce a large amount of pessimism for the degraded tasks, while leaving the

schedulability of non-degraded higher criticality tasks untouched.

Chapter 6

Conclusion and Future Work

6.1 Summary and Conclusion

In this disseration we have discussed defense mechanisms, each for different system vulner-

abilities, for real-time systems. This dissertation highlights the ability to utilize real-time

scheduling theory to not only reduce the impact of introducing general-purpose system se-

curity defense mechanism in real-time systems, but also improve the ability and correctness

of defenses and real-time models, respectively, from a security perspective. In chapter 3,

we show that careful system design, that utilizes TrustZone on low-end ARMv8-M micro-

controllers, while modeling CAN bus communications as a real-time system, can address

system vulnerabilities in a lightweight, predictable manner. In chapter 4, we show that the

predictability of real-time system input and output can be exploited to reduce the cost of

introducing modern system security techniques such as CFI without violating the correctness

of the defense. Finally in chapter 5, we are able to experimentally determine conditions of

operation of the Mad Monk attack that exploits an inherent vulnerability in mixed criticality

systems, and propose a defense strategy that mitigates this vulnerability within the mixed

criticality model. The author of this dissertation hopes that through this work, the real-time

systems community receives sufficient additional motivation to apply real-time scheduling

theory to improve the integration of general-purpose system security techniques in real-time

systems, as well as study real-time scheduling theory from an adversarial perspective.

118

6.2. FUTURE WORK - VULNERABILITY IN REAL-TIME SYSTEMS DUE TO SELF-SUSPENSION 119

We shall now discuss how the ideas and techniques discussed in this work can be extended

to one other domain within real-time systems.

6.2 Future Work - Vulnerability in real-time systems

due to self-suspension

Self-suspension is a widely studied phenomenon in real-time systems over the past decade.

Researchers aim to explicitly consider the scenario where real-time computing tasks, espe-

cially in resource-constrained system, instead of waiting for the system to respond to certain

requests such as retrieving data from memory or servicing an I/O request, may self-suspend

and allow other lower priority tasks to continue progressing. While this is clearly beneficial

to the operation of the system, the additional scheduling decision point that is introduced

due to task self-suspension has proven to be difficult to characterize. A large body of work

has been proposed to correctly determine the impact of self-suspension on real-time system

guarantees.

The vast majority of hard real-time scheduling theory essentially consists of two parts, a

task model specific schedulability analysis and a usually much simpler scheduling algorithm.

While the schedulability analyses considers specific task structures and behavior, schedulers

themselves have to be implemented with the least number of steps to reduce scheduling over-

head during actual runtime. Therefore, schedulers disregard the specific nature of each task.

For example, EDF schedulability analyses can consider a large variety of task structures,

such as self-suspension times, changing WCET, etc., to reduce the pessimism of the analysis

and allow a system designer to utilize task sets which would have otherwise been deemed

un-schedulable under a self-suspension unaware analysis. However, these tasks, regardless

120 CHAPTER 6. CONCLUSION AND FUTURE WORK

of the complexity of the tests and analyses, would still be scheduled by the simple EDF

scheduler. A sane EDF scheduler implementation, by itself, would simply handle incoming

tasks, re-order them according to their deadlines, select the next task when the currently

running task yields (or self-suspends) ad infinitum or until the system is shut down. No

scheduling algorithm/implementation is fed a meta-model of the task set to correlate task

execution behavior with the behavior expected during the analysis phase.

Therefore, just like the Mad Monk attack and our proposed mitgation strategy discussed

in Chapter 5, it is necessary to review self-suspension literature to determine if there is an

inherent flaw, from a security perspective, due to the difference in the capabilities of the

scheduler and the schedulability analyses/tests, when the system allows self-suspension. An

attacker that controls a self-suspending task, and is able to arbitrarily introduce scheduling

points that a scheduler simply responds to, could allow the attacker non-trivial control over

system operation. It would be interesting to not only determine whether self-suspension

increases the attack surface for real-time systems, but also provide a defense strategy with-

out violating the purpose of explicitly considering self-suspensions, i.e., improving system

resource utilization efficiency.

Bibliography

[1] Renesas provides chips for toyota. https://

can-newsletter.org/engineering/applications/171114_17-4_

renesas-provides-chip-for-toytas-self-driving-cars_renesas, December

2019.

[2] Numicro m2351 series – a trustzone empowered micro-controller series focusing on iot

security. https://m2351.nuvoton.com/secure-microcontroller-platform/, Oc-

tober 2019.

[3] Clang 12 documentation, 2020. URL https://clang.llvm.org/docs/

ControlFlowIntegrity.html.

[4] Arducopter, 2021. URL https://ardupilot.org/copter/.

[5] Px4, 2021. URL https://px4.io/.

[6] Rover, 2021. URL https://ardupilot.org/index.php/slider/ArdupilotRovers/

RubidiumRover.

[7] Turtlebot, 2021. URL https://www.turtlebot.com/.

[8] Fardin Abdi Taghi Abad, Joel Van Der Woude, Yi Lu, Stanley Bak, Marco Caccamo,

Lui Sha, Renato Mancuso, and Sibin Mohan. On-chip control flow integrity check for

real time embedded systems. In 2013 IEEE 1st International Conference on Cyber-

Physical Systems, Networks, and Applications (CPSNA), pages 26–31. IEEE, 2013.

[9] N. Almakhdhub, Abraham Clements, S. Bagchi, and M. Payer. µrai: Securing embed-

ded systems with return address integrity. In NDSS, 2020.

121

https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://m2351.nuvoton.com/secure-microcontroller-platform/
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://ardupilot.org/copter/
https://px4.io/
https://ardupilot.org/index.php/slider/ArdupilotRovers/RubidiumRover
https://ardupilot.org/index.php/slider/ArdupilotRovers/RubidiumRover
https://www.turtlebot.com/

122 BIBLIOGRAPHY

[10] Sherif Aly. Consolidating AUTOSAR with complex operating systems (AUTOSAR on

linux). Technical report, SAE Technical Paper, 2017.

[11] Amazon. Market leading rtos (real time operating system) for embedded systems with

internet of things extensions, Nov 2020. URL https://www.freertos.org/.

[12] ARM. Security technology building a secure system using trustzone technology (white

paper). ARM Limited, 2009.

[13] Ahmad Atamli-Reineh, Ravishankar Borgaonkar, Ranjbar A Balisane, Giuseppe Pe-

tracca, and Andrew Martin. Analysis of trusted execution environment usage in sam-

sung KNOX. In Proceedings of the 1st Workshop on System Software for Trusted

Execution. ACM, 2016.

[14] Sanjoy Baruah. Certification-cognizant scheduling of tasks with pessimistic frequency

specification. In 7th IEEE International Symposium on Industrial Embedded Systems

(SIES’12), pages 31–38. IEEE, 2012.

[15] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo d’Angelo, Haohan Li, Alberto

Marchetti-Spaccamela, Nicole Megow, and Leen Stougie. Scheduling real-time mixed-

criticality jobs. IEEE Transactions on Computers, 61(8):1140–1152, 2011.

[16] Sanjoy K Baruah. Resource sharing in edf-scheduled systems: A closer look. In 2006

27th IEEE International Real-Time Systems Symposium (RTSS’06), pages 379–387.

IEEE, 2006.

[17] Sanjoy K Baruah, Alan Burns, and Robert I Davis. Response-time analysis for mixed

criticality systems. In 2011 IEEE 32nd Real-Time Systems Symposium, pages 34–43.

IEEE Computer Society, 2011.

https://www.freertos.org/

BIBLIOGRAPHY 123

[18] Nicolas Bellec, Simon Rokicki, and Isabelle Puaut. Attack detection through mon-

itoring of timing deviations in embedded real-time systems. In ECRTS 2020-32nd

Euromicro Conference on Real-Time Systems, pages 1–22, 2020.

[19] Malek Ben Salem. Towards effective masquerade attack detection. PhD thesis,

Columbia University, 2012.

[20] Jonas Berg, Jens Pommer, Chuan Jin, Fredrik Malmin, and Johan Kristensson. Secure

gateway – a concept for an in-vehicle ip network bridging the infotainment and the

safety critical domains. 2015.

[21] Richard W Berger, Devin Bayles, Ronald Brown, Scott Doyle, Abbas Kazemzadeh,

Ken Knowles, David Moser, John Rodgers, Brian Saari, Dan Stanley, et al. The

rad750/sup tm/-a radiation hardened powerpc/sup tm/processor for high performance

spaceborne applications. In 2001 IEEE Aerospace Conference Proceedings (Cat. No.

01TH8542), volume 5, pages 2263–2272. IEEE, 2001.

[22] Enrico Bini and Giorgio C Buttazzo. Biasing effects in schedulability measures. In

Proceedings. 16th Euromicro Conference on Real-Time Systems, ECRTS 2004. IEEE.

[23] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-reuse attacks with

control-flow locking. In Proceedings of the 27th Annual Computer Security Applications

Conference, 2011.

[24] B Brandenburg. Schedcat: The schedulability test collection and toolkit, 2013.

[25] Robert Buecs, Pramod Lakshman, Jan Weinstock, Florian Walbroel, R. Leupers,

and G. Ascheid. Fully virtual rapid adas prototyping via a joined multi-domain co-

simulation ecosystem. In VEHITS, 2018.

124 BIBLIOGRAPHY

[26] Alan Burns and Sanjoy Baruah. Timing faults and mixed criticality systems. In

Dependable and Historic Computing, pages 147–166. Springer, 2011.

[27] Alan Burns and Sanjoy Baruah. Towards a more practical model for mixed criticality

systems. In Workshop on Mixed-Criticality Systems (colocated with RTSS), 2013.

[28] Alan Burns and Robert I Davis. Mixed criticality on controller area network. In 2013

25th Euromicro Conference on Real-Time Systems, pages 125–134. IEEE, 2013.

[29] Alan Burns and Robert I Davis. A survey of research into mixed criticality systems.

ACM Computing Surveys (CSUR), 50(6):1–37, 2017.

[30] Nathan Burow, Xinping Zhang, and Mathias Payer. Sok: Shining light on shadow

stacks. In 2019 IEEE Symposium on Security and Privacy (SP).

[31] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brun-

thaler, and Mathias Payer. Control-flow integrity: Precision, security, and perfor-

mance. ACM Computing Survey, 2017.

[32] Giorgio C Buttazzo. Rate monotonic vs. edf: Judgment day. Real-Time Systems, 29

(1):5–26, 2005.

[33] Defense Use Case. Analysis of the cyber attack on the ukrainian power grid. Electricity

Information Sharing and Analysis Center (E-ISAC), 388:1–29, 2016.

[34] Donghoon Chang. CAN-FD-Sec: Improving security of CAN-FD protocol. In Security

and Safety Interplay of Intelligent Software Systems: ESORICS 2018 International

Workshops, ISSA 2018 and CSITS 2018, Barcelona, Spain, September 6–7, 2018,

Revised Selected Papers, page 77. Springer, 2018.

[35] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,

Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno,

BIBLIOGRAPHY 125

et al. Comprehensive experimental analyses of automotive attack surfaces. In USENIX

Security Symposium, volume 4, pages 447–462. San Francisco, 2011.

[36] Chien-Ying Chen, Amiremad Ghassami, Stefan Nagy, Man-Ki Yoon, Sibin Mohan,

Negar Kiyavash, Rakesh B Bobba, and Rodolfo Pellizzoni. Schedule-based side-channel

attack in fixed-priority real-time systems. Technical report, 2015.

[37] Maxime Chéramy, Pierre-Emmanuel Hladik, and Anne-Marie Déplanche. Simso: A

simulation tool to evaluate real-time multiprocessor scheduling algorithms. In 5th

International Workshop on Analysis Tools and Methodologies for Embedded and Real-

time Systems (WATERS), pages 6–p, 2014.

[38] Kyong-Tak Cho and Kang G Shin. Fingerprinting electronic control units for vehicle

intrusion detection. In USENIX Security Symposium, pages 911–927, 2016.

[39] Kyong-Tak Cho and Kang G Shin. Viden: Attacker identification on in-vehicle net-

works. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 1109–1123. ACM, 2017.

[40] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology ePrint

Archive, 2016(086):1–118, 2016.

[41] Olivier Cros, Frédéric Fauberteau, L George, and X Li. Mixed-criticality over switched

ethernet networks. In Ada User Journal, Proc of Workshop on Mixed Criticality for

Industrial Systems (WMCIS’2014), volume 35, pages 138–143, 2014.

[42] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitch-

ing the gadgets: On the ineffectiveness of coarse-grained control-flow integrity

protection. In 23rd USENIX Security Symposium (USENIX Security 14),

126 BIBLIOGRAPHY

pages 401–416, San Diego, CA, August 2014. USENIX Association. ISBN 978-

1-931971-15-7. URL https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/davi.

[43] Terry D Day and Sydney G Roberts. A simulation model for vehicle braking systems

fitted with ABS. SAE Transactions, pages 821–839, 2002.

[44] Dionisio De Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. On the schedul-

ing of mixed-criticality real-time task sets. In 2009 30th IEEE Real-Time Systems

Symposium, pages 291–300. IEEE, 2009.

[45] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M. Tullsen. Prime+abort:

A timer-free high-precision l3 cache attack using intel tsx. In USENIX Security Sym-

posium, 2017.

[46] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,

Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On the weaknesses

of fine-grained control flow integrity. In Proceedings of the 22nd ACM SIGSAC Con-

ference on Computer and Communications Security, pages 901–913, 2015.

[47] Dario Faggioli, Marko Bertogna, and Fabio Checconi. Sporadic server revisited. In

Proceedings of the 2010 ACM Symposium on Applied Computing, pages 340–345, 2010.

[48] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. White paper,

Symantec Corp., Security Response, 5(6):29, 2011.

[49] Mohammad Farsi, Karl Ratcliff, and Manuel Barbosa. An overview of controller area

network. Computing & Control Engineering Journal, 10(3):113–120, 1999.

[50] Mahsa Foruhandeh, Yanmao Man, Ryan Gerdes, Ming Li, and Thidapat Chantem.

SIMPLE: Single-frame based physical layer identification for intrusion detection and

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi

BIBLIOGRAPHY 127

prevention on in-vehicle networks. In Annual Computer Security Applications Confer-

ence, 2019.

[51] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas Weber, Frank Kirschke-Biller,

Peter Heitkämper, Gerulf Kinkelin, Kenji Nishikawa, and Klaus Lange. AUTOSAR–a

worldwide standard is on the road. In 14th International VDI Congress Electronic

Systems for Vehicles, Baden-Baden, volume 62, page 5, 2009.

[52] Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and non-preemptive

real-time uniprocessor scheduling. PhD thesis, Inria, 1996.

[53] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Johann Heyszl,

and Thomas Eisenbarth. {AutoLock}: Why cache attacks on {ARM} are harder than

you think. In 26th USENIX Security Symposium (USENIX Security 17), pages 1075–

1091, 2017.

[54] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede.

Libra-can: a lightweight broadcast authentication protocol for controller area net-

works. In International Conference on Cryptology and Network Security, pages 185–

200. Springer, 2012.

[55] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+flush:

A fast and stealthy cache attack. In DIMVA, 2016.

[56] Chuancai Gu, Nan Guan, Qingxu Deng, and Wang Yi. Improving ocbp-based schedul-

ing for mixed-criticality sporadic task systems. In 2013 IEEE 19th International Con-

ference on Embedded and Real-Time Computing Systems and Applications, pages 247–

256. IEEE, 2013.

[57] Nan Guan andWang Yi. General and efficient response time analysis for edf scheduling.

128 BIBLIOGRAPHY

In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages

1–6. IEEE, 2014.

[58] Yutian Gui, Ali Shuja Siddiqui, and Fareena Saqib. Hardware based root of trust for

electronic control units. In SoutheastCon 2018, page 1–7. IEEE, 2018.

[59] Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K Das, and

Haoyi Xiong. Uniprocessor mixed-criticality scheduling with graceful degradation by

completion rate. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 373–383.

IEEE, 2018.

[60] Florian Hartwich et al. CAN with flexible data-rate. In Proc. iCC, pages 1–9. Citeseer,

2012.

[61] Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B Bobba. Contego: An

adaptive framework for integrating security tasks in real-time systems. In 29th Eu-

romicro Conference on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2017.

[62] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and

Zhenkai Liang. Data-oriented programming: On the expressiveness of non-control data

attacks. In 2016 IEEE Symposium on Security and Privacy (SP).

[63] Intel. Control-flow enforcement technology specification, 2020. URL

https://software.intel.com/sites/default/files/managed/4d/2a/

control-flow-enforcement-technology-preview.pdf.

[64] Marine Kadar, Gerhard Fohler, Don Kuzhiyelil, and Philipp Gorski. Safety-aware inte-

gration of hardware-assisted program tracing in mixed-criticality systems for security

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

BIBLIOGRAPHY 129

monitoring. In 2021 IEEE 27th Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 292–305. IEEE, 2021.

[65] Tomoaki Kawada, Shinya Honda, Yutaka Matsubara, and Hiroaki Takada. Tzmcfi:

Rtos-aware control-flow integrity using trustzone for armv8-m. International Journal

of Parallel Programming, pages 1–21, 2020.

[66] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris

Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing

them: An experimental study of dram disturbance errors. ACM SIGARCH Computer

Architecture News, 42(3):361–372, 2014.

[67] Christoph M Kirsch and Ana Sokolova. The logical execution time paradigm. In

Advances in Real-Time Systems, pages 103–120. Springer, 2012.

[68] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N Khasawneh,

Chengyu Song, and Nael Abu-Ghazaleh. Speccfi: Mitigating spectre attacks using cfi

informed speculation. In 2020 IEEE Symposium on Security and Privacy (SP), pages

39–53. IEEE, 2020.

[69] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,

et al. Experimental security analysis of a modern automobile. In 2010 IEEE Symposium

on Security and Privacy, pages 447–462. IEEE, 2010.

[70] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive bench-

marks for free. In 6th International Workshop on Analysis Tools and Methodologies

for Embedded and Real-time Systems (WATERS), 2015.

130 BIBLIOGRAPHY

[71] Hugo Krawczyk, Ran Canetti, and Mihir Bellare. HMAC: Keyed-hashing for message

authentication. RFC Editor, 1997.

[72] Sreenath Krishnadas. Concept and implementation of AUTOSAR compliant Auto-

motive Ethernet stack on Infineon Aurix Tricore board. Master’s thesis, Technische

Universität Chemnitz, 2016.

[73] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong pro-

gram analysis & transformation. In International Symposium on Code Generation and

Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[74] Jinfeng Li, Liwei Chen, Qizhen Xu, Linan Tian, Gang Shi, Kai Chen, and Dan Meng.

Zipper stack: Shadow stacks without shadow. In European Symposium on Research in

Computer Security, pages 338–358. Springer, 2020.

[75] Giuseppe Lipari and Sanjoy Baruah. Greedy reclamation of unused bandwidth in

constant-bandwidth servers. In Proceedings 12th Euromicro Conference on Real-Time

Systems. Euromicro RTS 2000, pages 193–200. IEEE, 2000.

[76] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and Wang

Yi. Edf-vd scheduling of mixed-criticality systems with degraded quality guarantees.

In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 35–46. IEEE, 2016.

[77] Arm Ltd. Keil rtx5. https://www.arm.com/products/development-tools/

embedded-and-software/rtx5-rtos, October 2019.

[78] GG Lucas, D McLean, and P Adcock. Microprocessor controlled fuel injection for

automotive diesel engines. Technical report, SAE Technical Paper, 1983.

[79] Vahid Meraji and Hadi Soleimany. Evict+time attack on intel cpus without explicit

knowledge of address offsets. ISC Int. J. Inf. Secur., 13:19–27, 2021.

https://www.arm.com/products/development-tools/embedded-and-software/rtx5-rtos
https://www.arm.com/products/development-tools/embedded-and-software/rtx5-rtos

BIBLIOGRAPHY 131

[80] Microsoft. Control flow guard - win32 apps. URL https://docs.microsoft.com/

en-us/windows/win32/secbp/control-flow-guard.

[81] Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes. TEECheck: Securing Intra-

Vehicular Communication Using Trusted Execution. In Proceedings of the 28th Inter-

national Conference on Real-Time Networks and Systems, 2020.

[82] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Preneel,

and Ingrid Verbauwhede. Chaskey: an efficient MAC algorithm for 32-bit microcon-

trollers. In International Conference on Selected Areas in Cryptography, pages 306–323.

Springer, 2014.

[83] Anway Mukherjee, Tanmaya Mishra, Thidapat Chantem, Nathan Fisher, and Ryan

Gerdes. Optimized trusted execution for hard real-time applications on cots proces-

sors. In Proceedings of the 27th International Conference on Real-Time Networks and

Systems, pages 50–60, 2019.

[84] Anway Mukherjee, Tanmaya Mishra, Thidapat Chantem, Nathan Fisher, and Ryan M.

Gerdes. Optimized trusted execution for hard real-time applications on cots processors.

In RTNS ’19, 2019.

[85] Sen Nie, Ling Liu, and Yuefeng Du. Free-fall: Hacking tesla from wireless to can bus.

Briefing, Black Hat USA, 25:1–16, 2017.

[86] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege,

Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank Piessens. Sancus:

Low-cost trustworthy extensible networked devices with a zero-software trusted com-

puting base. In USENIX Security Symposium, pages 479–498, 2013.

[87] Stefan Nürnberger and Christian Rossow. –vatican–vetted, authenticated can bus. In

https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

132 BIBLIOGRAPHY

International Conference on Cryptographic Hardware and Embedded Systems, pages

106–124. Springer, 2016.

[88] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N Asokan. CFI CaRE: Hardware-

supported call and return enforcement for commercial microcontrollers. In Interna-

tional Symposium on Research in Attacks, Intrusions, and Defenses, 2017.

[89] Taeju Park and Soontae Kim. Dynamic scheduling algorithm and its schedulability

analysis for certifiable dual-criticality systems. In 2011 Proceedings of the Ninth ACM

International Conference on Embedded Software (EMSOFT), pages 253–262. IEEE,

2011.

[90] Héctor Pérez, J. Javier Gutiérrez, Salva Peiró, and Alfons Crespo. Distributed ar-

chitecture for developing mixed-criticality systems in multi-core platforms. J. Syst.

Softw., 123:145–159, 2017.

[91] Andreea-Ina Radu and Flavio D Garcia. LeiA: A lightweight authentication protocol

for CAN. In European Symposium on Research in Computer Security, pages 283–300.

Springer, 2016.

[92] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted ex-

ecution environment: what it is, and what it is not. In 2015 IEEE Trustcom/Big-

DataSE/ISPA, volume 1, pages 57–64. IEEE, 2015.

[93] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Carlo Contavalli, Amin Vah-

dat, et al. Carousel: Scalable traffic shaping at end hosts. In Proceedings of the

Conference of the ACM Special Interest Group on Data Communication, pages 404–

417. ACM, 2017.

[94] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza

BIBLIOGRAPHY 133

Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming: On the diffi-

culty of preventing code reuse attacks in c++ applications. In 2015 IEEE Symposium

on Security and Privacy.

[95] Hovav Shacham et al. The geometry of innocent flesh on the bone: return-into-libc

without function calls (on the x86). In ACM conference on Computer and Communi-

cations Security, pages 552–561, 2007.

[96] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,

Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

et al. Sok:(state of) the art of war: Offensive techniques in binary analysis. In 2016

IEEE Symposium on Security and Privacy (SP), pages 138–157. IEEE, 2016.

[97] Vijaya Kumar Sundar and Arvind Easwaran. A practical degradation model for mixed-

criticality systems. In 2019 IEEE 22nd International Symposium on Real-Time Dis-

tributed Computing (ISORC), pages 171–180. IEEE, 2019.

[98] Sandra R Thuel and John P Lehoczky. Algorithms for scheduling hard aperiodic tasks

in fixed-priority systems using slack stealing. In RTSS, pages 22–33, 1994.

[99] José M Urriza, Francisco E Paez, Ricardo Cayssials, Javier D Orozco, and Lucas S

Schorb. Low cost slack stealing method for rm/dm. International Review on Computers

and Software, 5(6):660–667, 2010.

[100] Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens. VulCAN: Efficient component

authentication and software isolation for automotive control networks. In Proceedings

of the 33rd Annual Computer Security Applications Conference, pages 225–237. ACM,

2017.

[101] Victor Van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc, Asia

134 BIBLIOGRAPHY

Slowinska, Herbert Bos, and Cristiano Giuffrida. Practical context-sensitive cfi. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications

Security, 2015.

[102] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. CANAuth-a simple,

backward compatible broadcast authentication protocol for CAN bus. In ECRYPT

Workshop on Lightweight Cryptography, volume 2011, 2011.

[103] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees

of execution time assurance. In 28th IEEE international real-time systems symposium

(RTSS 2007), pages 239–243. IEEE, 2007.

[104] Kizheppatt Vipin. CANNoC: An open-source noc architecture for ecu consolidation.

In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWS-

CAS), pages 940–943. IEEE, 2018.

[105] Robert J Walls, Nicholas F Brown, Thomas Le Baron, Craig A Shue, Hamed Okhravi,

and Bryan C Ward. Control-flow integrity for real-time embedded systems. In 31st Eu-

romicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2019.

[106] Qiyan Wang and Sanjay Sawhney. VeCure: A practical security framework to protect

the can bus of vehicles. In 2014 International Conference on the Internet of Things

(IOT), pages 13–18. IEEE, 2014.

[107] DRM Widevine. Architecture overview, 2017.

[108] Xuhang Ying, Giuseppe Bernieri, Mauro Conti, and Radha Poovendran. TACAN:

Transmitter authentication through covert channels in controller area networks. In

BIBLIOGRAPHY 135

Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Sys-

tems, pages 23–34. ACM, 2019.

[109] Joseph Yiu. Armv8-m architecture technical overview. ARM WHITE PAPER, 2015.

[110] Mingwei Zhang and R Sekar. Control flow integrity for {COTS} binaries. In 22nd

{USENIX} Security Symposium ({USENIX} Security 13), pages 337–352, 2013.

[111] Qinglin Zhao, Zonghua Gu, and Haibo Zeng. Integration of resource synchronization

and preemption-thresholds into edf-based mixed-criticality scheduling algorithm. 2013

IEEE 19th International Conference on Embedded and Real-Time Computing Systems

and Applications, pages 227–236, 2013.

[112] Qinglin Zhao, Zonghua Gu, Min Yao, and Haibo Zeng. Hlc-pcp: A resource synchro-

nization protocol for certifiable mixed criticality scheduling. IEEE Embedded Systems

Letters, 6:8–11, 2014.

[113] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John Criswell, and Robert J. Walls.

Silhouette: Efficient protected shadow stacks for embedded systems. In 29th USENIX

Security Symposium (USENIX Security 20), 2020.

[114] Tobias Ziermann, Stefan Wildermann, and Jürgen Teich. CAN+: A new backward-

compatible controller area network (can) protocol with up to 16x higher data rates.

In Proceedings of the Conference on Design, Automation and Test in Europe, pages

1088–1093. European Design and Automation Association, 2009.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Limitations of embedded system hardware
	Predictability of real-time systems and its usefulness for system security
	Reviewing advancements in real-time system theory for security vulnerabilities
	Organization and contributions

	Preliminaries: TEE and ARM TrustZone for Cortex-M
	ARM TrustZone for Cortex-M

	Utilizing trusted execution to secure CAN bus communications
	Introduction
	Related Work
	Preliminaries
	Controller Area Network (CAN)

	System Model and Problem Statement
	Real-Time Task Model
	Threat Model
	Problem Statement

	System Design and Overview
	TEECheck : A TEE based CAN message checker
	Transmission
	Reception

	Experimentation
	Experimental Setup
	Results

	Analyses
	Real-Time Analysis
	Security Analysis

	Conclusion

	Utilizing hard real-time system predictability to implement control-flow integrity
	Introduction
	Related Work
	Preliminaries
	Hardware model
	Software Model
	Threat model

	Overview of Procrastinating CFI
	Procastinating CFI Task model
	Application task model
	Security task model

	Security Task Deadline Relaxation
	Ensuring Correctness and Schedulability
	Race condition between output and security tasks
	Implicit data-dependency between output and security jobs
	Implications on scheduling

	Procrastinating CFI mechanism
	SAU based function-block enforcement and shadow stack
	RTOS modifications
	Design Alternatives
	Verification of Control Flow in Security Task

	Security analysis
	Evaluation
	Control flows in Cyber Physical System (CPS) Software
	Experimental setup
	Hardware Overhead
	Simulation study

	Conclusion

	Simulation-based characterization and a priority degradation-based defense against the Mad Monk attack for mixed-criticality systems
	Introduction
	Related Work
	Mixed Criticality Task Model
	The Mad Monk Attack
	Threat Model
	Mad Monk Attack mechanism

	Simulating Mad Monk
	Simulator setup
	Determining basic conditions with realistic penalty
	Changing to harmonic periods
	Considering variations in penalty on a newly released intermediate victim job
	Converting the attacker task into a sporadic task
	A note on dropping attacker jobs for single and multiple attacker tasks - suicide condition
	Simulation summary

	Criticality level-aware priority degradation to mitigate Mad Monk
	Response time analysis for degraded group for RM
	Simulating effect on deadline misses for attacker tasks

	Conclusion

	Conclusion and Future Work
	Summary and Conclusion
	Future Work - Vulnerability in real-time systems due to self-suspension

	Bibliography

