
– Tax Data Project –
Development of an IRS 990 Database

May 8, 2022
Blacksburg, VA, 24061

Submitted to: Dr. Edward A. Fox
CS 4624 – Multimedia, Hypertext, and Information Access Capstone

Client: Dr. Florian Zach

Prepared by:
Kaleb Barker, Nicky Huynh, Jack Lacey, Long Nguyen

Table of Contents

Table of Figures 4

Table of Tables 5

Abstract 6

Introduction 7
Objectives 7

Changes 7
Final Objectives 8

Client 8
Outline 9

Requirements 9
Deliverables 9
Data Extraction 10
Data Processing 10
Database Creation 11
Data Conversion 11
Analysis & Documentation 11

Design 12
Data Scraping 12
Database Creation 12
Schema Alignment 13

990-EZ 13
990 16

Populating the Database 19

Implementation 19
Scraping Code 19
Data Processing 21

Obtaining XML Tag Sets 21
Aligning Schema & Outputting to CSV 23

Aligning Schema 24
CSV Conversion 24

990 Filing Data 25
Processing Officers 26

Database Population Code 26
Adding the Exempt Organization Business Master Files 26
Database Creation & Data Population 28

Tourism Office Filtering & Conversion 31

Exempt Organization Business Master Files 31
Database Deployment 32

Testing, Evaluation, and Assessment 32
Preliminary Analysis 34
Visualizing Data 39

Users’ Manual 40
Using a .db File 40
Example Queries 41
Adding New Fields to Queries 43

Developer’s Manual 45
Adding New Records 45

AWS 45
IRS 45

Conclusions and Lessons Learned 46
Timeline 46
Problems 48
Solutions 48
Future Work 49

Acknowledgements 50

References 51

Appendix 53

Table of Figures
Figure 1: Schema tables within the EO (Exempt Organization) database. 13
Figure 2: XML structure of a 990 21
Figure 3: A few tags extracted from a 990-EZ XML 23
Figure 4: Different Master File Types from IRS Website 27
Figure 5.1: Downloading region files 27
Figure 5.2: Downloading region files 28
Figure 6: Unioning region and state EO BMFs 28
Figure 7: Connection Object creation and application using through Pandas 29
Figure 8: Fix “ZIP” capitalization for 2012 and 2013 990 filings 30
Figure 9: Append tax filing year 2014-2020 as DataFrame to list dfs 30
Figure 10: Test query for required fields for 990 filings in 2015 33
Figure 11: Test query for required fields for 990 filings in 2013 33
Figure 12: Change in total revenue amount for the top 39

three tourism bureaus of 2020 from 2014 to 2020.
Figure 13: Example of how to access data in .db database 40
Figure 14: Example of how to query a whole table in SQLite through Pandas 41
Figure 15: Snippet of the Schema Table from Form 990 Part X 42
Figure 16: Column names extracted and formed into query format 42
Figure 17: Example code of how to extract list of EINs and form query through Pandas 43
Figure 18: Example code of how to search for specific column name 44

https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.3hv69ve
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.2w5ecyt
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.1baon6m
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.3vac5uf
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.2afmg28
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.pkwqa1
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.48pi1tg
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.2nusc19
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.1302m92
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.haapch
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.319y80a
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.1gf8i83
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.40ew0vw
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.2fk6b3p

Table of Tables
Table 1: Section of XML schema for 2013 990-EZ 15
Table 2: Paths for XML Tags 16
Table 3: Aligning 2014 with 2013 17
Table 4: Aligning 2012 with 2013 18
Table 5: Breakdown of a JSON entry contained in index files 20
Table 6: Filtering criteria for Tourism Offices 31
Table 7: Top 20 for all organizations in 2019 35
Table 8: Top 20 for all organizations in 2020 36
Table 9: Top 20 Tourism Offices in 2019 38
Table 10: Top 20 Tourism Offices in 2020 39
Table 11: Timeline 48

https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.upglbi
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.3ep43zb
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.1tuee74
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.4du1wux
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.2szc72q
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.184mhaj
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.3s49zyc
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.279ka65
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.meukdy
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.36ei31r
https://docs.google.com/document/d/1hVdByrs_QxsAl_ZQKnzIo97RlrOqQpyG/edit#heading=h.1ljsd9k

Abstract
The Internal Revenue Service (IRS) provides a plethora of data related to tax-exempt
organizations through the publication of IRS Form 990 tax filings in Extensible Markup
Language (XML) format, hosted between their website and Amazon Web Services (AWS).
These data sources possess filing data beginning in tax year 2012, and ending in the most
recently filed and uploaded tax year of 2020. This defines the project’s study window as
2012-2020. The primary goal of this project is to create a database of Form 990 filings to support
research related to tourism offices and various other tax-exempt organizations. The primary
challenge of this project is to process filings from all years within the study window and upload
them to the database in a unified manner. The development of this database utilizes tools such as
Jupyter Notebooks, SQLite, and various Python libraries for scraping, preprocessing, and
analysis. Due to the number of different return types and the massive amount of data contained in
the forms, understanding the forms in their standard format is incredibly challenging.
Additionally, most documentation about 990 forms is oriented to accountants or tax experts who
are well versed in financial jargon. This issue extends to the XML data files themselves, as many
of the XML tags are heavily abbreviated, and cross referencing each of them with its
corresponding location on Form 990 is a tedious and near impossible task. The solution to these
problems lies in archiving the data but also having it accessible for use.

This project can be divided into four phases: scraping, preprocessing, uploading, and analysis.
The project begins with scraping 990 filings from the two sources highlighted above. The next
phase, preprocessing, involves creating a common schema and converting the XML files into
Comma Separated Values (CSV) and JavaScript Object Notation (JSON) formats. This is the
most difficult and lengthy phase of the project as it involves understanding the 990 filings to the
greatest possible extent through both automated and manual processes. Next is the uploading
phase, where the database is built and populated with the preprocessed data. Finally, queries can
be made to the database for the analysis phase to extract interesting financial trends. This final
phase allows the team to maximize its familiarity with the database and supports the
development of extensive documentation and the users’ guide that are included in the Users’
Manual section. The result of this project comes in two forms: the aforementioned database, and
a set of CSV data pertaining to the 990 filings of all tourism offices present in the XML data.
The database is structured in order to maximize the breadth and depth of analysis that is made
available to the project’s client and other stakeholders. These other stakeholders include fellow
researchers of tourism offices, and any other business researchers who may be concerned with
the financial data of non-profits and tax-exempt organizations. The database contains tables that
allow users to access specific data across an organization, or multiple organizations’ Form 990
filings. These tables are complemented by overview data tables, allowing for users to locate
specific organizations based on the type of business they carry out (such as tourism offices),
rather than limiting users to querying based on Form 990 filing data. Finally, per the client's
request, all tourism office data is separately outputted into a set of CSV files.

Introduction
The IRS stores a wealth of information regarding tax exempt organizations in various online
records of 990 filings. The data used in this project was from the IRS website and an AWS S3
bucket, with years ranging from TY 2012 to TY 2020. These two data sources contain three
different filing formats: standard Form 990, Form 990-EZ, and Form 990-PF [1, 2, 3, 6, 7]. Form
990 is the standard filing form for tax exempt organizations, while Form 990-PF is the 990 form
filed by private foundations. Finally, Form 990-EZ is filed by tax exempt organizations with
gross receipts of less than $200,000 and total assets of less than $500,000 in a given tax year.
Some filings were paired with one or more from an assortment of attachments, or Schedule
forms. These forms, labeled A through R, provide more specific information about the filing
organization. Some examples of these forms include Schedule H, which discloses information
regarding hospitals operated by the organization, and Schedule O, which allows for the providing
of further details on the data contained in 990 and 990-EZ [1, 2, 4, 5]. Additionally, Schedule J
includes relevant information regarding the compensation of an organization’s officers. Amongst
this wealth of data, the client is primarily interested in tourism offices, some of which are
contained within file Form 990 while others file Form 990-EZ.

Objectives
The team’s initial objectives were to parse all of the data contained in the union of AWS and IRS
data across the years of study [6, 7]. After the data was parsed, the team would then use the
parsed data to populate a SQL database, and would create a library of CSV and JSON files for all
of the tourism office data. The team would then conduct a preliminary analysis to identify trends
in the data for tourism offices and for various other exempt organizations. Throughout these
phases of the project, the team was tasked with storing all raw and intermediate data within a
shared Google Drive workspace.

Changes
After starting the project, the team ran into a few issues that resulted in changes to the
aforementioned objectives. Some of the more specific details on these challenges are discussed
in the Lessons Learned section. These issues led to changes to the scope and objectives of the
project.

Originally, the client tasked the team with processing filings dating back to the start of the 2000s.
However, due to the AWS data source clearing out earlier records, the team was not able to
access records for TY 2011 and earlier [6]. Some other changes to the project objectives came
about in order to narrow the scope of the project. Due to the preprocessing phase being much
more tedious and time consuming than originally expected, the team and the client were
concerned that the original set of objectives would not be feasible in the available time frame. As

a result, the parsing of the 990-PF forms and the processing of each of the schedule forms,
except for Schedules O and J, was omitted from the scope of this project [3, 5]. The team
excluded Form 990-PF filings due to the fact that tourism offices, the project’s primary focus,
would not be found in private foundation filings [3]. The team excluded the Schedule
attachments due to the sheer amount of data they would contribute, despite most of the forms
being irrelevant to tourism offices. That being said, the team still included Schedules O and J
because they hold information directly related to the 990 and 990-EZ forms. This information
typically came in the form of further details on the activities and expenses of an organization [1,
2, 5].

Finally, due to exceeding the storage capacity in the team and client’s shared Google Drive
workspace, the team did not end up storing all raw and intermediate data. The workspace
reached capacity when only a few years worth of raw data were uploaded to the drive, and it
therefore was infeasible to store the full raw or intermediate data across the study window. The
workspace for sharing raw XML was moved to Advanced Research Computing (ARC) storage at
Virginia Tech. The client decided that the original task of converting all 990 filings into CSV and
JSON formats could be scrapped in favor of prioritizing tourism offices when converting 990
filings.

Final Objectives
The final objectives for the project are outlined below, as agreed upon by the team and client:

1) Parse all of the data contained in AWS and IRS for the study time frame (2012-2020),
excluding 990-PF and all schedule attachments, other than Schedule O.

2) Design a database and populate it with 990 filing data.
3) Convert tourism office filing data into CSV files.
4) Conduct preliminary analysis on the database in order to identify trends in the financial

data of tourism offices.

Client
The client for the project was Dr. Florian Zach, Ph.D. from the Howard Feiertag Department of
Hospitality and Tourism Management within the Virginia Tech Pamplin College of Business. He
and his colleagues are interested in gaining a better understanding of the financial dealings of
tourism offices across the country. This database will serve to aid him and his colleagues in their
research. Due to Dr. Zach’s lack of a computing background, it is crucial that this project’s
database is easy to use, both in its design and rich documentation, which is present in the User’s
Manual.

Outline
In the remainder of this report, the team will discuss the requirements involved in the various
phases of the project. Following this will be an outline of the high-level design considerations
that went into each of the crucial objectives for the project. This discussion will then be
complemented with a detail-oriented dive into the implementation of the programs that governed
each of the primary steps outlined in the design sections. After breaking down the requirements,
design, and implementation of the project, the team will address the criteria for the assessment
and evaluation of the key project deliverables: the converted tourism office filings and the
SQLite database.

These sections breaking down the essential details of the project are followed by manuals to
support continued work on the project and continued research leveraging the project. The user’s
manual will serve to inform the client and other stakeholders of some of the ways they can use
the data and tools associated with the project. Following this, the developer’s manual will serve
to inform future students or other developers of the techniques used by the team and how they
could be applied to expanding upon the project. This report concludes with some lessons learned
by the team along with the team’s acknowledgements of the various individuals and resources
that supported the project.

Requirements
This section of the report details the major requirements involved in each of the phases of the
project. These requirements include the goals of each phase along with some of the data sources
and programming libraries involved in each phase.

Deliverables
The client and team agreed on a set of key deliverables to complement the key objectives
associated with this project. These deliverables are:

1) SQLite database containing 990 filing data from 2012 to 2020 and containing
Exempt Organization Business Master File (EO BMF) data that was last updated
4/11/2022

2) Tourism offices’ tax information converted into CSV files
3) Python code for the scraping, processing, database ingestion, and preliminary

database analysis

Data Extraction
The 990 filing data used for this project was sourced from two different providers containing 990
tax filing data in XML format. The two data sources were from AWS and the IRS website, which
contained data from TYs 2012-2020 for the standard 990 form, 990-EZ forms, and 990-PF forms
[1, 2, 3, 6, 7]. As discussed above, the original requirement for this data involved scraping it all
from the two sources and uploading all of the raw data files to a shared Google Drive workspace.
However, this requirement was scrapped due to the Google Drive workspace reaching file
capacity. Instead, the data was downloaded in pieces and worked with locally. All of the data for
this project takes up dozens of gigabytes of hard drive space, and therefore it could not be stored
all at once on any of the developers’ machines.

Beyond the XML data, there were two other key resources that needed to be extracted for this
project. The first of these is a set of annual index files which serve to complement the AWS data.
As the AWS XML data is only available through scraping individual filings from web addresses,
the index files serve to provide the file IDs that point to the AWS endpoints where each
organization’s filing data can be found. The other resource is the Exempt Organization Business
Master File (EO BMF) [8]. The file contains information about the different groupings, overall
financial data such as total asset amount and revenue amount, and locality for each organization,
but does not contain actual 990 tax filing data for an organization. This file is updated each year
with information on all of the tax-exempt organizations that filed a 990 form for a given tax year.
In the context of this project, the file is used for the different grouping information under the
fields Activity Code and National Taxonomy of Exempt Organization (NTEE) Code. Activity
Code is a 9-digit code composed of three 3-digit numbers that correspond to different business
activities. NTEE Code is a letter prefix, which relates to overall type of organization, and 2-digit
number, which relates to a specific scope of organization within a type. With the activity and
NTEE codes the Employer Identification Number (EIN) could be identified for every tourism
office. Further information regarding how those fields were used is detailed in the Master File
Tourism Office Filtering & Conversion Section.

Data Processing
The key challenge of this project involved handling the variability between data tags across the
annually changing tax forms. Changes to the regulations set by the federal government and the
IRS are reflected in changes to each year’s tax forms. Not only this, but these changes can be
even more stark when comparing the XML versions of the tax forms across the years of study.
Specifically, a massive transition of data tag names occurred between TY 2012 and TY 2013,
while more minute changes occurred between TY 2013 and all of the following years of study up
to TY 2020. In order for the team to create a robust and evolving database for the client and his
colleagues, the variable data tags across the years of study needed to be aligned into a unified
schema to the greatest extent possible. This involved analyzing the tags that appear in given

years, and leveraging set theory to assess intersections and differences between those tags. The
design considerations and software implementation of this tag alignment process are discussed in
further detail in later sections of this report.

Database Creation
The creation of a 990 filings database was necessary in order to store the filing information of
tax-exempt organizations. The team and client agreed upon using SQLite as the database
framework. As discussed in the deliverables section above, the database needed to contain tax
data for all 990 filings from 2012 to 2020 as well as the annual EO BMF files [8]. The process to
create and populate the database was written in Python using Jupyter Notebooks.

Data Conversion
As discussed in the introduction, an original requirement of the project involved converting all
990 XML data into both CSV and JSON formats in order to improve the readability of all of the
990 data. However, there are hundreds of thousands of 990 filings for a given tax year. Due to
the file size of the individual XML files, this resulted in each year of raw data requiring at least
ten gigabytes of storage. This would similarly result in an even greater amount of storage
required to store all 990 filings in both CSV and JSON format. As a result, this project
requirement was changed through an agreement with the client. This agreement involved a
reduction of the scope of this requirement: from requiring all filings to be converted, to simply
requiring the conversion of tourism office filings. This requires the filtering of tourism offices
using the EO BMF for a given year, pulling their data from the database, and subsequently using
a program to convert the filing data into CSV and JSON formats and outputting to a workspace
of the client’s choosing [8].

Analysis & Documentation
Although the primary requirement of this project is the creation of a database of 990 filings, a
crucial complementary requirement to the database involved performing introductory analysis
and the development of documentation on the usage of the database. The primary stakeholders
for this project were the client and his colleagues in the Department of Hospitality and Tourism
Management, many of whom do not have a computing background. Due to this, it was essential
that the database for this project was paired with rich documentation to assist the project’s
stakeholders in utilizing the database. This came in two forms: the team performing analysis on
the database and the creation of a user guide. Preliminary analysis must be performed on the
database in order for the team to gain a comprehensive understanding of the various analyses at
the disposal of the client, and of any shortcomings of the database. Taking these steps helped
guide the team in the creation of a user guide, which is included in a later section. This guide

detailed various examples of queries that can be performed on the database and various Python
libraries that can be leveraged to perform these queries, including SQLite and Pandas.

Design
This section of the report details high level considerations regarding the design of the various
phases of the project. These considerations were primarily concerned with the various file
formats that the team had to handle, some libraries or modules that could be used to support the
data processing, and the structure of the database.

Data Scraping
All 990 data is officially sourced from the IRS; however, the IRS allocated some of their filings
to an Amazon S3 bucket called irs-form-990. This data was publicly available at the IRS990
endpoint through the AWS Open Data Registry [6]. The IRS discontinued updates to these filings
beginning in 2022. All of the 990 electronic filings in AWS S3 can be downloaded through the
standard process for downloading any S3 object: using either the AWS Command Line Interface
(CLI) or any of the AWS Software Development Kits (SDKs) [9, 10]. This project utilized a
Python SDK to scrape and download the files.

The other data source came directly from the IRS website [7]. The individual files were in the
form of XML and can be downloaded in a series of ZIP files. The ZIP files were labeled on the
website from the year 2015 to 2021; however, each year contained filings from the previous
three tax years, making the actual range of 990 filings from TY 2012 to 2020. Downloading the
data was a manual process, but upon downloading the data, this project made use of scripts to
unzip many files at once. Each year contained anywhere from two to eight zip files, each
containing hundreds of thousands of 990 filings. Due to the constraints associated with storing
this many files, no more than one year of filings was unzipped at a time.

Database Creation
As specified in the project requirements, the database needed to contain all tax information from
all EOs (exempt organizations) and the IRS master files (EO BMFs) [8]. The IRS website
contained two different types of master files: one grouped by regions and another grouped by
states [8]. Due to a discrepancy in the number of entries between the two file types, the team
decided to store both in the database. A database table for these master files was created by
performing a union operation on the two tables and removing the duplicate entries based on their
unique EINs.

The 990 filings database needed to be organized into various subtables for an efficient and easy
to query database design. One such table concerns the salaries and information regarding officers
working for various EOs. As the organizations have varying numbers of officers, the team and
client agreed to organize this information into a separate table, labeled “Officers”. These separate
tables will be tied to the primary 990 filing data (in either the 990 or 990-EZ table) through the
unique EIN possessed by each organization. Figure 1 shows the organizational breakdown of the
database:

Figure 1: Schema tables within the EO (Exempt Organization) database.

Schema Alignment
Each type of 990 form ranged from 2012-2020. Each year had a difference in XML tags which
must be accounted for. Based on the organization and filing year, a tag may only appear a
handful of times for an organization and not at all for another organization. These differences in
XML tags were the cause behind the principal challenge of the project: schema alignment. This
task was made more difficult by the IRS not readily providing a schema for the various tax
forms. However, the client had previously found a GitHub repository that contained a mostly
complete schema for all file types and years until 2015 [11].

990-EZ
Although there were far fewer tags in Form 990-EZ compared to Form 990, there were still a
substantial number of tags [1, 2]. The team prepared an estimate of the schema for a given year
using a subset of files for each year. The innermost tags (which the team called the data tag)

containing the actual data were pooled together into a tag set for a given year. After extracting
the tags from 100 files versus 1000 files in a year, the number of tags did not increase by a linear
factor so the schema estimate was deemed to be sufficient. Using the estimate of the schema, the
team manually compared the tags across all years to the actual inputs presented in the 990-EZ
form for tax year 2013 for verification [2].

Main
Section Box/Line Subsection Checkbox/D

ata Entry 2013 XML Tag

Info

A - Dates

Start Month

Data Entry

TaxPeriodBeginDt
(2013)

End Month TaxPeriodEndDt (2013)

End Year TaxPeriodEndDt (2013)

B - Updates

Address Change

Checkbox

AddressChangeInd

Name Change NameChangeInd

Initial Return InitialReturnInd

Final Return/Terminated TerminatedReturnInd

Amended Return AmendedReturnInd

Application Pending ApplicationPendingInd

C - Info

Name of Organization

Data Entry

BusinessNameLine1
and
BusinessNameLine2

Street Address/PO Box AddressLine1

Room/Suite AddressLine2

City City

State State

Zip ZIPCode

D Employee ID Number (EIN) Data Entry EIN

E Telephone Number Data Entry PhoneNum

F Group Exemption Number Data Entry GroupExemptionNum

G - Accounting

Cash
Checkbox

MethodOfAccountingCa
shInd

Accrual MethodOfAccountingInd
AccrualInd

Other Data Entry MethodOfAccountiingOt
herDesc

H Check if the organization is not
required to attach Schedule B Checkbox ScheduleBNotRequiredI

nd

I Website Data Entry WebsiteAddressTxt

J - Exempt
Status

501(c)(3)
Checkbox

Organization501c3Ind

501(c) Organization501cInd
(2013)

Enter Number: 501(c)(#) Data Entry typeOf501cOrganization

4947(a)(1)
Checkbox

NA in 2013 (Only 2012)

527 NA in 2013 (Only 2012)

K - Form of
Org.

Corporation

Checkbox

TypeOfOrganizationCor
pInd

Trust
TypeOfOrganizationTr

ustInd

Association
TypeOfOrganizationC

orpInd

Other
TypeOfOrganizationO

therInd

Other Entry Data Entry
TypeOfOrganizationO

therDesc

L Gross Receipts Data Entry GrossReceiptsAmt

Table 1: Section of XML schema for 2013 990-EZ

This revealed a weakness in this approach: all tags within the actual 990-EZ form were present in
the schema estimate; however, some data tags alone were not enough to describe the data that it
refers to. In this case, the path to the data tag was a better way to determine the schema.

Part II -
Balance
Sheets

Check if used schedule O for this
part 2

InfoInScheduleOP
artIIInd

22 (A) BOY

Cash, savings, investments

Data Entry

CashSavingsAndI
nvestmentsGrp/B
OYAmt

22 (B) EOY
CashSavingsAndI
nvestmentsGrp/E
OYAmt

23 (A) BOY
Land and buildings

LandAndBuildings
Grp/BOYAmt

23 (B) EOY LandAndBuildings
Grp/EOYAmt

24 (A) BOY
Other assets (describe in
Schedule O)

OtherAssetsTotalG
rp/BOYAmt

24 (B) EOY OtherAssetsTotalG
rp/EOYAmt

25 (A) BOY
Total assets

TotalAssetsGrp/B
OYAmt

25 (B) EOY TotalAssetsGrp/E
OYAmt

26 (A) BOY
Total liabilities

SumOfTotalLiabiliti
esGrp/BOYAmt

26 (B) EOY SumOfTotalLiabiliti
esGrp/EOYAmt

27 (A) BOY

Net assets or fund balances

NetAssetsOrFund
BalancesGrp/BOY
Amt

27 (B) EOY
NetAssetsOrFund
BalancesGrp/EOY
Amt

Table 2: Paths for XML Tags

To account for the difference in tags each year, the team computed the union of the tags, while
preserving the path to each tag. This was not the best approach since it led to empty values for
tags that were less frequently used over the years; however, this ensured that there was no loss in
data. As expressed by the client, irrelevant columns will be dropped as needed when using the
database if they are not relevant to tourism office research. Meanwhile, highly prevalent tags that
referred to the same data were manually combined into one column.

990
Due to the massive number of tags in the standard 990 forms, a slightly different approach was
taken to ensure that all data tags were accounted for and to ensure that some level of schema
alignment would be possible. This approach involved the extraction of sets of tags for each of the
given tax years from 2012 to 2020. To ensure that all the data was accounted for, every single
990 file from the IRS website was processed to produce a set of tags, which required a large
amount of processing time [8]. Upon obtaining these tag sets, alignment was completed
primarily through manual processes. Attempting to automate this process would have taken a
massive amount of processing time and would likely not be much more accurate, if more
accurate at all. This manual alignment was completed through computing the intersections and
symmetric differences of the sets of tags. Since the team decided to align the tags to the 2013
data, these computations were completed in a pairwise manner, comparing every other year with
2013. Upon completing these computations, the symmetric differences were used as the primary

means for aligning the tags. If a tag appeared in 2014’s symmetric difference, there may exist a
tag in 2013’s symmetric difference with a different name, but that refers to the same type of data.
In Table 3, this process is shown by blank fields under m2013 representing that the tag exists
exactly the same in m2013 as 2014. Otherwise, the corresponding tags are equivalent in 2013.

m2013 2014
@documentCount @documentCnt

@interestAmt

@softwareVersion @softwareVersionNum

ActivitiesEngagedOrgInvlmntInd

ActivitiesFurtherExemptPrpsInd

ActivitiesTestInd

AddressLine1 AddressLine1Txt

AddressLine2 AddressLine2Txt

AffiliatedScheduleGrp

AffiliateListingGrp

AppointElectMajorityOfficerInd

AssetLevelInd AssetLevelCriteriaInd

BusinessNameLine1 BusinessNameLine1Txt

BusinessNameLine2 BusinessNameLine2Txt

CHNAConductedWithNonFcltsInd

CommuntityNotifiedFAPInd

CompensationExplanation

CompensationHighestPaidEmplGrp

CompensationOfHghstPdCntrctGrp

Table 3: Aligning 2014 with 2013

For 2014 onwards, the intersections between each year and 2013 were quite large, with the
symmetric differences containing only a few dozen to around 200 tags. As a result, this
alignment process worked in a relatively consistent manner for all years between 2014-2020
(inclusive), with mostly the same new tags aligning to some of the 2013 tags. Since the XML
data was massively transformed from 2012 to 2013, the alignment of the 2012 data was a much
more tedious process, as the intersection of the two years was very small, and each year’s
symmetric difference was quite large.

m2013 2012
@binaryAttachmentCnt @binaryAttachmentCount

@contributionsReportedOnLine1a

@note

@organization501cTypeTxt @typeOf501cOrganization

AccountantCompileOrReviewInd AccountantCompileOrReview

AccountActivitiesOutsideUSGrp AcctsActvsOutUSTable

FAPActionsOnNonpaymentInd ActionsOnNonpayment

ActivitiesConductedPrtshpInd ActivitiesConductedPartnership

ActivitiesNotPreviouslyRptInd ActivitiesNotPreviouslyRpt

ActivityCd Activity

ActivityOrMissionDesc ActivityOrMissionDescription

ActivityOther

AddressChangeInd AddressChange

ContractorAddress AddressOfContractor

AdequateBooksAndRecMaintInd AdequateBooksAndRecdsMaintaind

AdministrativeExpensesAmt AdministrativeExpenses

AdoptBudgetInd AdoptBudget

AdoptImplementationStrategyInd AdoptImplementStrategy

AdvanceRefundingInd AdvanceRefunding

AgentTrusteeEtcInd AgentTrusteeEtc

AggregateReportedDuesNtcAmt AggrAmtReportedInDuesNotices

AttorneyGeneralNotifiedInd AGNotified

AgreementRefFundraising

AgreeCarryoverPriorYearInd AgreeToCarryoverPriorYear

AllAffiliatesIncludedInd AllAffiliatesIncluded

AllNeedsAddressedInd AllNeedsAddressed

AllOtherContributionsAmt AllOtherContributions

Table 4: Aligning 2012 with 2013

Populating the Database
After the preprocessing step and schema alignment, the data was ready to be uploaded to the
database. The database component of this project leveraged the SQLite framework [12]. SQLite
was used rather than a typical relational database management system due to SQLite being
lightweight and flexible. The amount of data was also constant and did not require an excessive
amount of storage once in a database.

In order to populate the database, a Python script was necessary. The team used libraries like
Pandas and SQLite3 to create and populate the database [12, 13]. SQLite3 was needed because
the database will be constructed using SQLite, and SQLite3 is the latest version of the Python
library that supports SQLite [15]. The team used Pandas for parsing files and inserting the data
into the tables. Pandas has many functions to parse various file formats like Excel Workbook,
CSV, and JSON [3]. Pandas also supports many different database tools, making it flexible in
case the client wants to change to a different database structure in the future. Overall, Pandas and
SQLite3 were optimal choices for the initial iteration of this database because they were easy to
use and understand. Additionally, these libraries provided built-in tools for quickly visualizing
trends in the data, such as MatPlotLib’s integration in Pandas.

Implementation
This section describes the low-level technical implementations that the team used for the various
phases in the project. It is broken down into sections on the scraping, the preprocessing (which
primarily involves the extraction of XML tag sets), and the database population. The final
subsections discuss the deployment of and introductory analysis performed on the database.

Scraping Code
Although the IRS provided a wealth of data regarding the 990 tax forms, the data was not
organized or well documented. All of the data within AWS S3 needed to be downloaded
individually as document objects and cannot be bulk downloaded like a ZIP file [6]. The data in
AWS also provided an index file for each year that referenced a filing’s year, location in S3, and
return type.

Key Value

DLN 9349131500445

EIN 742661023

FormType 990PF

LastUpdated 2016-09-09T23:14:27

ObjectId 201543159349100344

OrganizationName HARRIET AND HARMON KELLEY
FOUNDATION FOR THE ARTS

SubmittedOn 2016-02-09

TaxPeriod 201412

URL https://s3.amazonaws.com/irs-form-990/2015
43159349100344_public.xml

Table 5: Breakdown of a JSON entry contained in index files

Using these index files, the team determined the filings of interest before downloading the actual
XML files. Manually sifting through the index files was not the most efficient use of time, so the
team developed a script, called aws_download, for downloading the XML files given the tax
period, filing type, and number of desired files to download. First, an index file for a certain year
was fetched as a JSON object. The value of the JSON object was an array of filing references,
which were also JSON objects themselves with their values shown in Table 5. The team then
looped through the references and conditionally checked for the form type. Filings were grouped
into 990 or 990-EZ. The reference link to these filings of interest were populated into their own
array. Finally, using an AWS SDK for Python (Boto3), a S3 client was initialized, and the team
downloaded each filing as XML to the local machine using the location link. Figure 2 shows an
example of a downloaded XML file [10].

https://s3.amazonaws.com/irs-form-990/201543159349100344_public.xml
https://s3.amazonaws.com/irs-form-990/201543159349100344_public.xml

Figure 2: XML structure of a 990

Data Processing
Obtaining XML Tag Sets
One of the crucial analytical steps that took place in order to align the XML tags for the 990 and
990-EZ filings involved the synthesizing of each tax year’s data into a Python set. This synthesis
allowed for an efficient extraction of all data tags that appear in at least one filing in a given year,
while also allowing for extremely quick comparisons between pairs of tax years. The code used

to perform this process was encapsulated in two functions: get_tag_set and key_adder. A
screenshot of these functions is included in Figure A7 in the Appendix.

The get_tag_set function governs the primary logic for the extraction of XML tag sets for a
given set of XML files. Its crucial inputs are a list of file names and a reference to a list of keys
that the function populated with XML tags before being converted into a set. It leveraged the
XmlToDict Python module for an initial conversion of the XML structure to a dictionary [14].
This step was followed by converting the standard dictionary to a JSON format using the JSON
library’s dumps and loads methods. This process was handled in a loop through each of the XML
files that were passed into the function. Each loop iteration in this function then handed off the
logic of extracting individual keys to the key_adder function.

The key_adder function took the tax return data section of the XML file as its data input, along
with the same reference to the list of keys that was passed into get_tag_set. This list was passed
as a reference such that it could be easily built up through the recursion that is run in key_adder.
The key adder used the logic of traversing a series of nested dictionaries, which was the structure
of the XML converted to JSON. It checks if the current reference to a tag in the input dictionary
is of type “list”, “dict”, or otherwise. If it was a list, the key adder looped through the list and
used recursive calls to populate the tags list with the tags and subtags in that input list. If it was a
dictionary, the key adder traverses down the hierarchy of dictionary keys with recursive calls in
order to populate the tags list. Finally, if the key adder encountered a non-iterable type, the logic
reached its base case and the located tag was added to the tags list shown in Figure 3.

Figure 3: A few tags extracted from a 990-EZ XML

Upon the completion of the key_adder logic for each file in the input list, the tags list was
converted into a set, cleaned up, and written to a CSV file. For the purposes of this project, an
entire year’s worth of data was run through the logic in order to obtain the XML tag set for each
tax year.

Aligning Schema & Outputting to CSV
The process of preparing the Form 990 data for database ingestion came in two phases: schema
alignment and CSV conversion. As discussed in the design section, schema alignment serves to

match up as many XML tags as possible across the different years’ tax codes. This allows for
data to be accessed and analyzed in a unified manner in the database. The aligned data was then
converted into CSV files for each tax year. This allowed for the processed data to be easily
ingested into the database using a manner consistent with how the project’s other data was added
to the database. XML contains two types of tags which the team referred to as path tags and data
tags. The path tag is an outer tag that does not contain the tax information to extract, but contains
more outer tag or a data tag. A data tag contains the tax information needed to be extracted. If the
XML is viewed as a tree structure, the path tags would be the value or name of the internal nodes
while the data tags are the name of the leaf nodes.

Aligning Schema
Table 3 and Table 4 display pairs of Form 990 XML tags that were used for aligning data to the
2013 schema. These pairs of columns (each other year paired with 2013) were stored in a CSV
file called alignment_table. This table was loaded into a Jupyter notebook as a dictionary, with
each non-2013 year as the outermost keys. Each outer key was subsequently mapped to an inner
dictionary. These inner dictionaries had simple key-value pairs, which mapped the non-2013 tag
to its matching 2013 tag. This structure allowed for tags in need of alignment to be located and
renamed as efficiently as possible.

Form 990-EZ data was aligned similarly. A dictionary mapped pre-2012 path and data tags to the
post-2013 path and data tags. These tags are stored in CSV files called ez_alignment_data_tag
and ez_alignment_path_tag. As the data extraction script transverses the 990-EZ XMLs, if a path
tag or data tag in the processing XML was a key in the dictionary, then the value to the key was
used as the header to the output CSV file.

CSV Conversion
This schema alignment logic was all encapsulated within the logic used to output the 990 and
990-EZ data to CSV files. This logic primarily relies on two functions: adder and save, which
are called in a nested loop structure that traverses the years of the study timeframe, and the
filings in each of those years. The adder function works similarly to the previously mentioned
key_adder function; however, it shifts its focus from simply adding data tags to adding the raw
filing data to an output data structure. The function traverses the XML in a tree-like manner. At
internal nodes, the tag names (referred to as “path tags”) are aggregated into a path string. This
string serves to describe the entire subtree path to an eventual piece of data at a data tag. This
path string then serves as the column header for the data at that data tag. The key_adder logic
still exists in order to create a set of these headers, which must be eventually written to the
output file before the data itself. Beyond the headers, the data stored within each key is accessed
and appended to a data list for each filing. Each filings data list is appended to an overall data

list for each Tax Year. At the completion of processing for an entire year’s worth of data, the
headers set and data list were ready to be saved to a CSV file.

In order to better assess potential bugs or issues with particular XML files, this adder logic was
processed in four different phases. First the ReturnHeader section of the XML was added to the
headers and data, followed by the main body of the return data. This main body is contained
within the ReturnData tag under the tag name of either IRS990 or IRS990EZ. The Schedule
forms that needed to be processed came next. Both Schedule O and Schedule J also existed
within the ReturnData tag under the names IRS990ScheduleO and IRS990ScheduleJ. These four
calls to the adder resulted in the final representations of the headers and data for a given filing.
These pieces of data for each filing were then aggregated into headers and data lists for the
entire tax year, which finalized and prepared this data for the next step.

This final step of the conversion process was managed by the save function. This function uses a
simple if statement and the OS library in order to see if a suitable output directory exists. These
output directories were called ProcessingOutput990 and ProcessingOutput990EZ for Form 990
and 990-EZ, respectively. If the proper output directory did not exist, it was created using the OS
library. Once the output directory was established, the CSV library was the next to be leveraged
in order to create proper CSV representations of the data headers and the data itself. The
DictWriter object was the optimal choice in order to govern the CSV writing logic. The headers
were placed in the CSV file first using writeheader before the data was subsequently added using
writerows.

990 Filing Data
After schema alignment each tax filing was converted into a JSON object, but only the
combination of various tax filings were converted and saved into a CSV file. Similar to the
schema extraction, which was handled in a recursive manner, the extraction of the data also used
a recursive method. As the script traverses through the dictionary within the dictionary structure
of JSON like in the key_adder method, when the data tag was reached, it meant the value of the
current key was the actual data that needed to be stored in the database. Therefore, the team
created a mapping with the path as the key and the IRS data as the value in a dictionary structure.
This resulted in a dictionary for every filing with the path to the data as the key and the value as
the actual data. Finally, each filing dictionary is stored in an array to be converted to a CSV file.
The path or the key was also stored in a set to produce the CSV output. The dictionary structure
of each filing was not saved because each row in the output CSV contained the same
information. The result of the conversion and extraction resulted in a CSV file for a given year
with a unified schema header and data within the body cells.

Processing Officers
Due to the difficulty of storing array data within a singular CSV entry, the team and the client
agreed to process the officers from an organization separately from the main body of the filing
data. In Form 990, the officers existed within the tag Form990PartVIISectionA in 2012, and
Form990PartVIISectionAGrp in 2013-202. In Form 990-EZ this data was present within the tag
OfficerDirectorTrusteeEmplGrp. These officer lists were extracted from these tags and converted
into CSV files using the same save logic that was described in the section above. Due to the large
number of officers and the large number of 990 filings in each Tax Year, the Form 990 officers
were saved to a single CSV file for each XML file. Meanwhile, due to the 990-EZ forms having
fewer officers and fewer filings, these officers tables were outputted to a singular CSV for each
Tax Year, alongside each filing’s EIN and tax year in order to differentiate the adjacent tables.

Database Population Code
Adding the Exempt Organization Business Master Files
In order to have up-to-date master files from the IRS, it was best to download the master files
when the database was created and populated. First, the necessary packages for this program,
Requests, IO, SQLite3, and Pandas, were imported. Requests were used to request master files
from the IRS website [8, 13, 15, 16, 17]. The IO library was there for test printing and to
announce tasks being executed successfully. The SQLite3 library was necessary to create an
SQLite database, and Pandas was used to parse the data and for data visualization.

Next, master files were downloaded and imported to the database. There are two types of master
files available on IRS: the master files separated into 4 regions and the master files separated by
state. They would be called Region Files and State Files, respectively. Both types were
downloaded and imported to the database due to discrepancies between totals for the types.

Figure 4: Different Master File Types from IRS Website

The downloading process started with region files, as shown in Figure 5.1.

Figure 5.1: Downloading region files

Here, sql.connect was used to create a database called “eo.db” to hold the master file data. Then,
the directories to receive the region files were formed, labeled one through four, and “get” was
used to download the file to the current directory. After that, the downloaded files were parsed
using pandas.read_csv and dumped to “eo.db” as a table named “eo_regions” using the to_sql
function. This process was additionally used for State Files, which can be found in Figure 3.

Figure 5.2: Downloading region files

After downloading and importing the two types – regions and states – of master files, a count
was performed to see whether the two files matched up. This matching refers to determining
whether the regions and states files contain the same company data. This was determined based
upon comparing the EINs present in each of the two files. This analysis in Jupyter is described in
Figure A1 in the Appendix. From this analysis, it was determined that there are 4,049 more
organizations in the Region Files compared to the State Files. In order to have one list of
organizations, a union was necessary to form a table that contained all entries; see Figure 6.

Figure 6: Unioning region and state EO BMFs

After unioning the data sets, another count was performed again to double check the results. The
results of this can be found in Figure A2 in the Appendix. This analysis determined that the
union SQL query correctly combines the tables, and thus the team could proceed with using this
combined table in the database.

Database Creation & Data Population
The database was created using the SQLite3 connect function that forms a connection to a
database indicated by the database file name that is passed in as a parameter. This connection is

represented by a Connection object, which must be passed in to any database queries using
Pandas. If a connection is formed with a non-existing table, the Connection object will create a
new, empty database.

Figure 7: Connection Object creation and application using through Pandas

After the database connection was formed, the next step was to populate the database with tax
filings. Form 990 data was added to the database first. The process that the team planned to
populate the database began with creating a series of Pandas DataFrames for each year from
2012 to 2020. Although some of the headers were aligned, there were still many differences
between the different Tax Years’ data. In order for the database to function in a unified manner, a
union of all column headers needed to be added to the database before the data itself could be
uploaded. Consequently, the team used the Pandas concat function to union the columns
together.

After going through all the years, the CSV file in 2012 and 2013 had some mismatched column
names due to text case irregularities that were missed in the primary processing phase.
Specifically, there was a tag called “ZIPCode” in the 2012 and 2013 data, while that same
column was named “ZipCode” in the remaining years. The team used a small script to address
this issue in Figure 8.

Figure 8: Fix “ZIP” capitalization for 2012 and 2013 990 filings

The variable dfs was created as an empty list to store all of the DataFrames in order to union all
the column headers, as previously discussed. As the for-loop went through each year, the
DataFrame for that year was stored in the df_year variable, and each DataFrame was searched
for all column names that contained “ZIP”. A key-value pair was created using the original
column name and the result of running it through replace to obtain the properly augmented
name. This pair was passed through the rename function in order to update the column name.
After updating the column names, df_year was appended to dfs for later use. Next, the remaining
years were converted to DataFrames and stored in dfs, as shown in Figure 9.

Figure 9: Append tax filing year 2014-2020 as DataFrame to list dfs

The last step was to union all DataFrames in the list of DataFrames dfs. The newly unioned
DataFrame was stored in final_frame and then converted to a table tax_990 in the database. The
code for this step is found in Figure A8 in the Appendix.

The same process was applied to populate the database with 990-EZ filings and its table is
tax_990ez. The officers data for both form types were the next to populate the database,
following the same method, but omitting the zip code renaming step.

Tourism Office Filtering & Conversion
Exempt Organization Business Master Files
The criteria to filter tourism offices was given by the client. These criteria were used as strings
for easier management and for easier query writing.

Field Values that can indicate a tourism office

Activity Code (Three 3-digit subcodes)
(AAABBBCCC)

213 in any of the 3 positions

NTEE P61, S01, S20, S30, S41, T99

Starting Keywords (Only first word) VISIT, EXPLORE, TRAVEL, DISCOVER

Keywords CVB, VISITOR BUREAU, VISITORS
BUREAU, CONVENTION BUREAU,
CONVENTION & VISITOR, VISITOR &
CONVENTION, VISITOR AND
CONVENTION, VISITORS & CONVENTION,
VISITORS AND CONVENTION,
CONVENTION BUREAU, VISITOR CENTER,
TOURISM OFFICE, TOURISM BUREAU,
TOURISM ASSOCIATION, TOURIST
ASSOCIATION, TOURISM ASSN, VISITOR
AUTHORITY, VISITORS AUTHORITY,
CONVENTION AUTHORITY, DESTINATION
MARKETING, DESTINATION
MANAGEMENT, VISITOR, BUREAU

Table 6: Filtering criteria for Tourism Offices

The master table had a column called “Activity” that holds a nine-digit integer. That number was
broken down into three-digit activity codes. Division and modulus calculations were used to
filter out the first, middle, and last three digits of the number. Activity Code of 213 represents
“Tourism Bureaus” according to the guide for the EO BMF [8]. For the rest, there was the extra
condition required when filtering company names. Sometimes companies would have many
activities, but the “Activity” field only includes the top three most prevalent types. That is why
keywords and the criteria were used to identify tourism offices. The National Taxonomy of
Exempt Organization (NTEE) code is similar to the Activity code but is often broader in scope.
The NTEE codes P61, S01, S20, S30, S41, T99 mean Traveler’s Aid; Alliance/Advocacy

Organizations; Community, Neighborhood Development, Improvement (General); Economic
Development; Promotion of Business; and Philanthropy, Voluntarism, and Grantmaking
Foundations N.E.C., respectively. SQL query strings were formed using these criteria to filter out
tourism offices. Some helper functions were made to make this process easier to understand and
maintain. These functions and logic are grouped together in Figure A3 in the Appendix. After
query strings were created, they were combined into a long string. Together, they created the
SQL query to filter the tourism offices out of the master files. This query was executed through
Pandas in order to return a DataFrame, and with this DataFrame, a CSV file was created as a
deliverable for the client.

Database Deployment
The method of transferring the database involved exporting the database as a .db file. With a .db
file, the client was able to load the database on any machine and run the predetermined queries
and analysis. The team has a shared file space through Virginia Tech Advanced Research
Computing (ARC) in order to store the .db file for the client’s usage.

Testing, Evaluation, and Assessment

After the deployment of the database, queries and analysis were performed to obtain interesting
information about the tax data. Per the client’s request, the team researched various crucial
variables of interest like compensation of employees, number of voting members, and many
more. This preliminary analysis was performed on the database in order for the team to gain a
more comprehensive understanding of the various analyses at the disposal of the client, and of
any shortcomings of the database. The database allows obtaining various fields for a form
version in a set year as shown in Figure 10 and Figure 11.

Figure 10: Test query for required fields for 990 filings in 2015

Figure 11: Test query for required fields for 990 filings in 2013

The database also allows filtering of shown fields and filtering based on different fields that will
be elaborated on in the Users’ Manual. A Python function allowing for the simple filtering of
fields of interest is included in Figure A4 in the Appendix.

Preliminary Analysis
In order to test the database, a set of objectives to analyze was set. These objectives included the
use of the database to output CSV the top 20 organizations based on reported revenue for a given
year, along with the top 20 tourism organizations based on reported revenue. The results for the
first objective helped the team better understand the scope of the data within the database. While
tourism offices were the primary focus and motivation, the database contains information about
education institutions such as various universities and many healthcare organizations. The
organizations that were in the top 20 in 2019 can be seen in Table 7. One of the primary focuses
for this analysis was to see the changes over the years. While the organizations in the top 20 from
2013-2019 were relatively constant, that trend did not continue into 2020. The universities and
health organizations that were a part of the top 20 through 2019 were no longer within the list.
They were replaced by charity health organizations like The Global Fund to Fight Aids,
Tuberculosis, and Malaria and many electrical companies. Much of this change can likely be
attributed to the COVID-19 pandemic, although the client did suggest that this might be caused
due to companies asking for extensions and the data not being available yet.

Business Name Revenue City State

KAISER FOUNDATION
HEALTH PLAN INC 62,519,341,516 OAKLAND CA

KAISER FOUNDATION
HOSPITALS 30,444,780,937 OAKLAND CA

UPMC GROUP 16,575,357,648 PITTSBURGH PA

FIDELITY
INVESTMENTS
CHARITABLE GIFT
FUND 12,252,844,500 BOSTON MA

THE CLEVELAND
CLINIC FOUNDATION 11,558,538,378 INDEPENDENCE OH

MAYO CLINIC GROUP
RETURN 10,416,976,478 ROCHESTER MN

Thrivent Financial for
Lutherans 9,585,386,020 MINNEAPOLIS MN

BATTELLE MEMORIAL
INSTITUTE 9,245,496,160 COLUMBUS OH

DIGNITY HEALTH 8,760,338,732 SAN FRANCISCO CA

Healthfirst PHSP Inc 8,698,913,059 NEW YORK NY

CareSource 8,150,209,969 Dayton OH

NEW YORK
UNIVERSITY 8,011,264,159 NEW YORK NY

TRUSTEES OF THE
UNIVERSITY OF
PENNSYLVANIA 7,624,539,000 PHILADELPHIA PA

JOHNS HOPKINS
UNIVERSITY 7,505,891,000 BALTIMORE MD

President and Fellows
of Harvard College 7,350,273,474 CAMBRIDGE MA

Banner Health 7,138,466,898 PHOENIX AZ

Mercy Health 7,010,225,301 Cincinnati OH

IHC HEALTH
SERVICES INC 6,979,289,805 SALT LAKE CITY UT

THE BOARD OF
TRUSTEES OF THE
LELAND STANFORD 6,848,913,893 REDWOOD CITY CA

THE CLEVELAND
CLINIC FOUNDATION 6,830,413,008 INDEPENDENCE OH

Table 7: Top 20 for all organizations in 2019

Business Name Revenue City State

THE GLOBAL FUND TO
FIGHT AIDS
TUBERCULOSIS AND
MALARIA 6,951,923,532

University Health
Network 2,026,595,052

IBM MEDICAL
BENEFITS TRUST C/O
JPMORGAN CHASE
BANK NA 1,146,807,350 BROOKLYN NY

NORTH CAROLINA
ELECTRIC
MEMBERSHIP
CORPORATION 1,109,305,874 RALEIGH NC

SHRINERS HOSPITALS
FOR CHILDREN 8,961,69,390 TAMPA FL

SAMARITAN'S PURSE 894,308,893 BOONE NC

MCLAREN HEALTH
PLAN INC 845,052,646 FLINT MI

SAVE THE CHILDREN
FEDERATION INC 808,658,178 FAIRFIELD CT

National Trust for Places
of Historic Interest or
Natural Beauty 797,350,000

University of Manitoba 743,535,000

Network for Good 683,013,296 Washington DC

Upper Missouri G&T
Electric Cooperative Inc 637,652,492 Sidney MT

CHRISTIAN
HEALTHCARE
MINISTRIES INC 633,361,869 BARBERTON OH

HealthWell Foundation 558,747,759 Germantown MD

MANHATTAN AND
BRONX SURFACE
TRANSIT OPERATING
AUTHORITY 558,511,422 New York NY

MEDECINS SANS
FRONTIERES USA INC 558,340,480 NEW YORK NY

COMMUNITY CARE INC 553,758,821 BROOKFIELD WI

UNITED STATES GOLF
ASSOCIATION 517,714,574 LIBERTY CORNER NJ

SOUTH TEXAS
ELECTRIC
COOPERATIVE INC 509,268,124 NURSERY TX

WITHLACOOCHEE RIVER
ELECTRIC COOPERATIVE

INC 487,757,302 DADE CITY FL

Table 8: Top 20 for all organizations in 2020

The database was also used to run a similar suite of tests to find top 20 tourism offices for each
year. The top 20 are expected tourist destinations like Honolulu, Hawaii and Orlando, Florida
that stay relatively consistent until 2020 similar to the previous test. Top tourism offices had a
few entries from 2019 and the ones that remained had a heavy drop in revenue like the Denver
tourism office that went from 40 million to 12 million. This data can be seen in Table 9 and 10.
This drop is expected due to Covid-19 and demonstrates the database’s ability to show the effects
of Covid-19 on these organizations.

Filer-BusinessName-BusinessNameLine1
CYTotalReven
ueAmt

Filer-USAddre
ss-CityNm

Filer-USAddre
ss-StateAbbre
viationCd

OrlandoOrange County Convention & Visitors
Bureau Inc 80519755 Orlando FL

FLORIDA TOURISM INDUSTRY
MARKETING CORP INC 48182560 TALLAHASSEE FL

SAN DIEGO CONVENTION AND TOURIST
BUREAU 41202845 SAN DIEGO CA

Denver Metro Convention & Visitors Bureau 40992367 Denver CO

ATLANTA CONVENTION AND VISITORS
BUREAU INC 35729622 ATLANTA GA

HAWAII VISITORS & CONVENTION
BUREAU 34731961 HONOLULU HI

CHICAGO CONVENTION AND TOURISM
BUREAU 32617112 CHICAGO IL

DALLAS CONVENTION & VISITORS
BUREAU 28732606 DALLAS TX

GREATER MIAMI CONVENTION &
VISITORS BUREAU INC 26319264 MIAMI FL

NASHVILLE CONVENTION & VISITORS
BUREAU 25987835 Nashville TN

SEATTLE-KING COUNTY CONVENTION
AND VISITORS BUREAU 24903448 SEATTLE WA

GWINNETT CONVENTION AND VISITORS
BUREAU INC 22990818 DULUTH GA

THE CONVENTION AND VISITORS
BUREAU OF GREATER CLEVELAND INC 21456678 CLEVELAND OH

DETROIT METRO CONVENTION AND
VISITORS BUREAU 19753266 DETROIT MI

Osceola Convention and Visitors Bureau INC 19380577 Kissimmee FL

ANAHEIMORANGE COUNTY VISITOR &
CONVENTION BUREAU 19256262 ANAHEIM CA

CHARLESTON AREA CONVENTION &
VISITORS BUREAU 18884277 CHARLESTON SC

PHILADELPHIA CONVENTION & VISITORS
BUREAU 17346622

PHILADELPHI
A PA

SAINT PAUL RIVERCENTRE CONVENTION
AND VISITORS AUTHORITY 17184231 ST PAUL MN

MEMPHIS CONVENTION AND VISITORS
BUREAU 17172027 MEMPHIS TN

Table 9: Top 20 Tourism Offices in 2019

Filer-BusinessName-BusinessNameLine1
Filer-USAddress-
CityNm

Filer-USAddr
ess-StateAb
breviationCd

CYTotalReve
nueAmt

Denver Metro Convention & Visitors Bureau Denver CO 12927884

CONVENTION & VISITORS BUREAU OF
GREATER KANSAS CITY KANSAS CITY MO 9870365

SAINT PAUL RIVERCENTRE CONVENTION AND
VISITORS AUTHORITY ST PAUL MN 9717353

BUFFALO NIAGARA CONVENTION & VISITORS
BUREAU INC BUFFALO NY 6896089

GRAND RAPIDSKENT COUNTY CONVENTION &
VISITORS BUREAU DBA EXPERIENCE GRAND
RAP GRAND RAPIDS MI 6496669

VISITGREENVILLESC GREENVILLE SC 6156731

GREATER PITTSBURGH CONVENTION &
VISITORS BUREAU INC PITTSBURGH PA 5259727

Colorado Springs Conv & Visitors Bureau Colorado Springs CO 4844458

DOOR COUNTY VISITOR BUREAU INC STURGEON BAY WI 4472230

ASPEN CHAMBER RESORT ASSOCIATION INC ASPEN CO 4252308

BRECKENRIDGE TOURISM OFFICE BRECKENRIDGE CO 4066977

HAMILTON COUNTY TOURISM INC CARMEL IN 4030602

WASHTENAW COUNTY CONVENTION AND
VISITORS BUREAU INC ANN ARBOR MI 3078567

CHESTER COUNTY CONFERENCE AND
VISITORS BUREAU INC

KENNETT
SQUARE PA 2822839

WARREN COUNTY CONVENTION & VISITORS
BUREAU MASON OH 2770923

GUNNISON CRESTED BUTTE TOURISM
ASSOCIATION GUNNISON CO 2642041

TRI-CITIES VISITOR & CONVENTION BUREAU KENNEWICK WA 2477657

FORT WAYNEALLEN COUNTY CONVENTION
AND VISITORS BUREAU FORT WAYNE IN 2162090

ELKHART COUNTY CONVENTION & VISITOR
BUREAU INC ELKHART IN 2056340

DEKALB CONVENTION & VISITORS BUREAU INC TUCKER GA 1737476

Table 10: Top 20 Tourism Offices in 2020

Visualizing Data
An important use case for the EO database is extracting information from the tables using
queries. Figures 10 and 11 show data displayed in data frames which may be enough for certain
use cases for simple information extraction; however, the data can be further analyzed by
creating visualizations for specific columns of data.

Visual charts and graphs were made using Pandas and MatPlotLib library in Python. Figure 12
shows the trend of total revenue for the top 3 bureaus in 2020 from tax year 2014 to 2020. From
the chart, inferences and observations can be quickly made, such as the sharp decline in revenue
from 2019 to 2020. An expert may ponder how COVID-19 affected the trend in the chart or draw
their own conclusions and observations, and this could additionally inspire further research.
Additional visual charts can be found in the Appendix, Figures A9 and A10. Figure A9 describes
the amount of organizations involved in college related activities while Figure 10 shows the
amount of organizations in various business and professional groups.

Figure 12: Change in total revenue amount for the top
three tourism bureaus of 2020 from 2014 to 2020

Users’ Manual
Using a .db File
In order to access the database, SQLite3 and Pandas are imported. To read the tables in the
database file, a Connection object must be created to represent the database. This process is
displayed in Figure 13.

Figure 13: Example of how to access data in .db database

In this example, the SQLite database being used was eo.db, and a Connection object was created
by calling the SQLite3 connect function and was stored in a variable called conn. This
Connection object was necessary to access the database. After conn was created, Pandas queries
could be used to access data in the database. In this example, the query’s purpose was to see the
list of tables in the database.

Example Queries
Upon obtaining access to the database, a user is ready to perform some queries to support their
analysis. For this project, most queries were done through Pandas, but it was possible to query
the database using SQLite3, along with other SQL processing software. As mentioned above, the
required packages for this were IO, SQLite3, Pandas, and Numpy. An example query is shown in
Figure 14.

Figure 14: Example of how to query an entire database table using Pandas

The query used in Figure 14 was “SELECT * FROM tax_990 LIMIT 10”. A SELECT statement
was a statement to select the column name listed after that, and in this example the column name
is an asterisk. An asterisk (*) denoted for any name, meaning this query would return all columns
existing in the table tax_990EZ. The LIMIT keyword indicated that the query would only want
the top number of rows in the table, and in this example, the limit was 10.
Performing a query for specific columns; however, is slightly more complicated. A schema table
containing table’s information was provided as the project's deliverable for users to know which
column name they were looking for. A part of the schema table is shown in Figure 15.

Figure 15: Snippet of the Schema Table from Form 990 Part X

Since all the column names were listed in the schema table, the table was downloaded as a CSV
file, which led to the creation of a list of required columns. Due to some column names in the
crucial schema table having some unnecessary white spaces, the strip string function was used to
remove them; see Figure 16.

Figure 16: Column names extracted and formed into query format

Another use-case for the database was to filter out companies matching EINs given by the client.
The list of required EINs was given as a text file, so a script was written to extract and convert to
a series of strings that would match SQLite condition format. Now that all the parts of the query
were created, the query was performed through Pandas to retrieve the DataFrame, as shown in
Figure 17. A more generic example of the structure and output of a Pandas SQL query is shown
in Figure A5 in the Appendix.

Figure 17: Example code of how to extract list of EINs and form query through Pandas

Adding New Fields to Queries
Sometimes, users may need to add subsequent columns to the query. This could be done by
appending the column name to the schema_990 list (Figure 15) in the example query.
In order to find the specific column name, a pragma table info was created to search for the exact
column name; see Figure 18.

Figure 18: Example code of how to search for specific column name

In Figure 18, a search for the tax year field was conducted. By using the keyword “Yr” a list of
all the fields containing the substring “yr” was extracted from the tax_990 table, and the tax year
field in the table is “TaxYr”. Now that the column name was identified, the next step was to add
this column name into the list of schemas created earlier in Figure 15. This can be done easily by
appending “TaxYr” into the list, and a query can be performed to extract the data from the
database. SQLite accepts most queries from other SQL frameworks, and more information for
specific SQLite keywords can be found in online documentation [18]. Further Python code
detailing the structure and syntax of adding new fields to SQL queries can be found in Figure A6
in the Appendix.

Developer’s Manual
Adding New Records

AWS
As explained before, the data within AWS is no longer updated by the IRS but remains to be
publicly available. However, this project utilized a subset of data from AWS (about 10,000
filings per year 2012-2020). In addition to these 10,000 files, all 990 and 990-EZ files for the
tourism offices of interest were accounted for. To download more filings from AWS, use the
aws_download.py script. The Python script takes in four parameters specified in the comments in
the file. The arguments are the year (or range of years), maximum number of files to download,
output directory name, and the return type(s) to look for (Form 990 or Form 990-EZ). Next, to
process the XML data and convert to CSV files, use the same code as described in the
Implementation section to process any new XML downloads. The resulting output will be a CSV
file containing all processed XML in the specified directory in the code.

IRS
Adding new data – from subsequent tax filing years, or newly released data from the study
window (2012-2020) – is the most crucial aspect of continuing the work on this project. This will
first require leveraging the scraping and unzipping programs that were used in this project for the
extraction of data from the IRS website. Upon acquiring this raw data, similar steps will need to
be taken in order to determine the filing year, EINs, and return types of the new data. This will
allow particular data of interest to be determined based on EIN, and will serve to initially label
the XML files such that they can be processed. Any new XML data that is part of a filing year
from 2012-2020 can be processed using the exact same code and alignment tables that were used
to process data in this project. New XML data from 2021 and beyond will require slight
adjustments to the processing techniques to ensure that the data is properly ingested, XML tag
sets are effectively captured, and the database is properly populated.

The first crucial step that will need to be taken is determining whether the crucial information in
the new XML data can be found under the same tag names. This project’s study window
accounts for the three crucial data attributes, filing year, return form type, and EIN, through
capturing the XML tags TaxYr/TaxYear, ReturnType/FormType, and EIN respectively. If any of
these change, the initial XML processing code will need to be tweaked in order to capture this
data before moving on to subsequent processing steps. These changes will need to be updated in
the get_EIN_and_ReturnType_and_Yr function in the ‘Processing.ipynb’ file for the IRS website
data.

Beyond this initial phase, the major processing steps for new years’ 990 and 990-EZ data will be
primarily the same. The final difference that future developers must account for is the alignment
of XML tags for 2021 and beyond to the base schema for 2013. This will involve using the
get_tag_set (discussed in the Implementation section) in order to acquire XML tag sets for
subsequent years and compare them to the tag set for 2013’s Form 990 and Form 990-EZ. The
schema alignment will then need to be performed between the years. This will require using
primarily manual methods to determine schema name changes, before using the validate_schema
function (contained in “Tag_Sets_990.ipynb”) to find files containing the potentially aligned
tags. Upon finding these files, future developers will need to manually validate that the tags
contain the same data, and will need to update “alignment_table.csv” accordingly with the
aligning tags from each new year. Once these adjustments are made to the schema alignment,
any new developer will be ready to add new years’ data to the 990 filings database.

Conclusions and Lessons Learned
Throughout the project, the team experienced many different challenges that had to be solved
and learned from along the way. This helped to bolster the team’s technical and communication
skills in order to complete the project objectives in a timely fashion; see Table 11. One of the
main lessons learned was that communication with the client during difficulties was very
important. This was especially true when it came to clearing up confusion or obtaining
clarification.

Timeline
Week Milestone(s)

1/24 – 1/30 Team discussed requirements in the initial
meeting with the client.

1/31 – 2/6 Team read and understood project
documentation.
Tuned up project agreement and submitted
OKRs

2/7 – 2/13 Downloaded/accessed data files, keeping
them organized.
Met with the client to discuss current progress

2/14 – 2/20 Presentation #1
Developed Jupyter Notebooks to align data
and convert it into CSV/JSON2/21 – 2/27

Met once with client to discuss issues with
data alignment
Worked on database design (breaking it down
into various tables)
Populated initial database with EOBMFs;
used queries to filter out tourism offices

2/28 – 3/6

3/7 – 3/13 SPRING BREAK

3/14 – 3/20 Prepared a filtered version of the EOBMFs
containing data solely on tourism offices
Continued work on data alignment

3/21 – 3/27 Continued work on database design and data
alignment
Met with the client to discuss issues with
Google Drive and schedule forms

3/28 – 4/3 Completed 990-EZ schema alignment
Developed XML to CSV conversion script
Developed XML to JSON conversion script

4/4 – 4/10 Presentation #2
Completed report outline and began filling out
sections for the interim report submission
Met with the client to discuss key schema,
database documentation, and schema
validation

4/11 – 4/17 Completed interim report submission
Began development of alignment scripts

4/18 – 4/24 Completed alignment table and alignment
scripts
Transitioned project work to ARC in order to
run all files through alignment, conversion,
and database population scripts
Met with client to discuss final alignment and
database questions

4/25 – 5/1 Deployed database
Performed preliminary database analyses
Developed user guide
Filtered tourism offices from the database and
convert them to CSV and JSON, populated
the client’s desired workspace with the
converted files

Final meeting with the client

5/2 – 5/4 (Project Deadline) Final presentation
Submitted final report

Table 11: Timeline

Problems
One of the major problems that the team encountered was creating a universal schema for the
various different years and forms. To support the ease of use of the 990 database, the team
wanted to ensure that if a variable name changed, all different variable names would be stored
under the same column (e.g., TaxYear in 2012 and TaxYr in 2013 should be stored under the
same column). It was extremely difficult determining how to treat the nested structure of the
XML, especially with outer tags that are identical but refer to different information (EOY in
CashSavingsAndInvestmentsGrp vs. EOY in TotalAssets).

The other key issue that the team experienced concerned the massive amount of 990 filing data
contained in the project’s years of study. As discussed in the objectives, changes in the
introduction, the original shared Google Drive workspace used by the team and the client
exceeded its file capacity when a few years worth of raw XML files were added to the Drive.
This resulted in the abandonment of working on shared notebooks in Google Colab, and the
transition to primarily local development. However, the individual machines of the team
members were still constrained and could not store the entire dataset at any given time. This
brought about difficulties when it came to processing data files from every year, and massively
slowed down development.

Solutions
To solve the problem of creating the schema, the team went about creating a way to automate the
acquisition of the different tags and corresponding information using 1000 records for each year
to get a schema estimate. This raised another problem regarding whether the automated process
outputs a complete and correct schema. This problem eventually required the team to manually
create a sample schema for the 2013 990-EZ form, providing an exact reference to the form to
compare to the automated schema creation process. The sample schema was created from using a
GitHub repository that contained a mostly complete schema and manually filling in the gaps of
tags that were not available in the repository [11]. This approach proved successful and useful in
showing how certain non-intuitive data fields were represented. This also showed another issue
of the sheer amount of data and fields stored in the different schedules, which accounting for
would have prevented the project from being completed in the given time frame. The client was
fine with this since many schedules seemed irrelevant to the primary focus of his research.

To solve the problem of identical tags, the team used an approach of treating the nested structure
of the XML as a path in a similar way that directories use
(CashSavingsAndInvestmentsGrp-EOY, TotalAssets-EOY). This approach also has the added
benefit of more directly showing how the information is contained.

Future Work
Due to the various limitations and scope changes associated with this project, there are a variety
of future tasks that could be carried out to improve or expand upon this project’s database. Some
of the data that was omitted from this database, including the various Schedule forms, along with
the Form 990-PF data, can be added to the database. Populating the database with further data
from the Form 990 Schedules will require new developers to assess the best techniques for
capturing and storing the various types of data held in the schedule forms. Meanwhile,
processing the 990-PF forms will require an entire new process of schema alignment to take
place, and will require a new table in the database. Although these 990-PF forms are not
applicable to the tourism office research that inspired this project, they could provide valuable
insights into the financial dealings of many other non-profits or tax-exempt organizations.

Some other possibilities for future work concern the nature of this project’s database. Due to the
intense amount of work required by the team to understand the Form 990 data used for this
project, it was difficult to address the possibility of using different database formats. Through
peer, mentor, and client feedback, some other database structures were considered, but not
implemented for this project. Some of these ideas include MongoDB and PostgreSQL [19, 20].
MongoDB has the capability to handle data in a schema-independent manner, which would be
incredibly useful for adding new years’ data to this project’s database [19]. However, future
developers will need to be wary with this database framework, as the lack of schema alignment
does pose potential disadvantages when it comes to querying data for filings from many different
years. PostgreSQL databases have a few different features that would add value to a 990 filings
database. One such advantage is the capability of georeferencing database entries (based on
address data present in Form 990) such that analyses can be performed in a geospatial manner.
This will allow 990 filings to be compared between organizations in the same city, state, or
region. Alternatively, this can be used to assess the differences between various locations using
non-profit or exempt organization financial data as a metric.

Acknowledgements

Client: Professor Florian Zach, Ph.D., Howard Feiertag Department of Hospitality and Tourism
Management, Pamplin College of Business

Mentor: Dr. Edward A. Fox
Virginia Tech Advanced Research Computing (ARC)

References
[1] Internal Revenue Service, “About form 990, return of organization exempt from Income
Tax,” Internal Revenue Service, 09-Jul-2021. [Online]. Available:
https://www.irs.gov/forms-pubs/about-form-990. [Accessed: 26-Apr-2022].
[2] Internal Revenue Service, “About Form 990-ez, short form return of organization exempt
from Income Tax,” Internal Revenue Service, 09-Jul-2021. [Online]. Available:
https://www.irs.gov/forms-pubs/about-form-990-ez. [Accessed: 26-Apr-2022].
[3] Internal Revenue Service, “About Form 990-PF, Return of Private Foundation or Section
4947(a)(1) nonexempt charitable trust treated as a private foundation,” Internal Revenue Service,
2022. [Online]. Available: https://www.irs.gov/forms-pubs/about-form-990-pf. [Accessed:
26-Apr-2022].
[4] Internal Revenue Service, “About schedule H (Form 990), Hospitals,” Internal Revenue
Service, 10-Jun-2021. [Online]. Available:
https://www.irs.gov/forms-pubs/about-schedule-h-form-990. [Accessed: 26-Apr-2022].
[5] Internal Revenue Service, “About schedule O (Form 990), supplemental information to Form
990 or 990-EZ,” Internal Revenue Service, 2022. [Online]. Available:
https://www.irs.gov/forms-pubs/about-schedule-o-form-990-or-990-ez. [Accessed:
26-Apr-2022].
[6] Amazon Web Services, “IRS 990 filings,” IRS 990 Filings - Registry of Open Data on AWS,
2021. [Online]. Available: https://registry.opendata.aws/irs990/. [Accessed: 26-Apr-2022].
[7] Internal Revenue Service, “Form 990 series downloads,” Internal Revenue Service, 2022.
[Online]. Available: https://www.irs.gov/charities-non-profits/form-990-series-downloads.
[Accessed: 26-Apr-2022].
[8] Internal Revenue Service, “Exempt Organizations Business Master File Extract (EO BMF),”
Internal Revenue Service, 11-Apr-2022. [Online]. Available:
https://www.irs.gov/charities-non-profits/exempt-organizations-business-master-file-extract-eo-b
mf. [Accessed: 26-Apr-2022].
[9] Amazon Web Services, “A - CLI,” Amazon, 2022. [Online]. Available:
https://aws.amazon.com/cli/. [Accessed: 26-Apr-2022].
[10] Amazon Web Services, “Tools to Build on AWS,” Amazon Web Services, 2022. [Online].
Available: https://aws.amazon.com/tools/. [Accessed: 26-Apr-2022].
[11] CharityNavigator, “Charitynavigator/990_metadata: Code for adding metadata to IRS 990
change logs.,” GitHub, 26-Jul-2018. [Online]. Available:
https://github.com/CharityNavigator/990_metadata. [Accessed: 26-Apr-2022].
[12] SQLite, “What is SQLite,” Sqlite, 2022. [Online]. Available:
https://www.sqlite.org/index.html. [Accessed: 26-Apr-2022].
[13] Pandas, “Pandas,” pandas, 02-Apr-2022. [Online]. Available: https://pandas.pydata.org/.
[Accessed: 26-Apr-2022].
[14] M. Blech, “Xmltodict,” PyPI, 2022. [Online]. Available: https://pypi.org/project/xmltodict/.
[Accessed: 26-Apr-2022].

[15] Python Software Foundation, “SQLITE3 - DB-API 2.0 interface for SQLite databases,”
sqlite3 - DB-API 2.0 interface for SQLite databases - Python 3.10.4 documentation,
26-Apr-2022. [Online]. Available: https://docs.python.org/3/library/sqlite3.html. [Accessed:
26-Apr-2022].
[16] Requests, “HTTP for humans,” Requests, 2022. [Online]. Available:
https://docs.python-requests.org/en/latest/. [Accessed: 26-Apr-2022].
[17] Python Software Foundation, “IO - core tools for working with streams,” io - Core tools for
working with streams - Python 3.10.4 documentation, 26-Apr-2022. [Online]. Available:
https://docs.python.org/3/library/io.html. [Accessed: 26-Apr-2022].
[18] SQLite, “SQLite Keywords,” SQLite, 2022. [Online]. Available:
https://www.sqlite.org/lang_keywords.html. [Accessed: 26-Apr-2022].
[19] MongoDB, “MongoDB Atlas: Cloud Document Database,” MongoDB, 2022. [Online].
Available: https://www.mongodb.com/cloud/atlas/lp/try-cloud. [Accessed: 26-Apr-2022].
[20] PostgreSQL, “PostgreSQL: The World's Most Advanced Open Source Relational
Database”, PostgreSQL, 2022. [Online]. Available: https://www.postgresql.org/. [Accessed:
26-Apr-2022].

Appendix

Figure A1: Analyzing the number of entries in the States and Regions files

Figure A2: Analyzing the number of entries in the States, Regions, and Union (combined) files

Figure A3: Functions/Logic for the structuring of queries used to filter tourism offices from the
EOBMFs

Figure A4: filter_list function being used to filter out list of column names

Figure A5: Code and result of custom query line for example queries

Figure A6: Code and result pertaining to the addition of new fields to SQL queries

Figure A7: Functions used to obtain XML tag sets

Figure A8: Union all DataFrames and convert the unioned DataFrame to table

Figure A9: Count of organizations involved in college related activities

Figure A10: Count of organizations different organization types based on their activity

