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3 Executive Summary / Abstract

Electronic theses and dissertations (ETDs) contain valuable knowledge that can be useful in a wide range of
research areas. To effectively utilize the knowledge contained in ETDs, the data first needs to be parsed and
stored in an XML document. However, since most of the ETDs available on the web are presented in PDF,
parsing them is a challenge to make their data useful for any downstream task, including question-answering,
figure search, table search, and summarizing.

For information search and extraction, contextual information is needed to perform these tasks. However,
such semantic information is hidden in PDF documents. In contrast, XML can explicitly share semantic
information. The structure within XML documents can enforce semantic continuity within the tag elements.
Accordingly, knowledge graphs can be more easily built from XML, rather than PDF, representations.

The goal of this project was to extract different elements of scholarly documents such as metadata (title,
authors, year), chapter headings and subheadings, equations, figures (and captions), tables (and captions),
and paragraphs, and then package them into an XML document. Subsequently, a pipeline responsible for
the conversion and a dataset to support the object detection step was developed.

Over the semester, 200 ETDs, both born-digital and scanned, were annotated using a online tool called
RoboFlow. A model based on Facebook’s open-sourced object detection model, Detectron2, was trained
with the created dataset. Besides that, a pipeline that utilizes the model has been built that converts an
ETD in PDF into an XML document, which can then be used for future downstream tasks and HTML for
visualization. A dataset consisting of 200 annotated ETDs and a working pipeline were delivered to the
client. From the project, the Object Detection Team learned numbers of libraries related to the task, built
a sense of the importance of version control, and understood how to split a large task into smaller and more
approachable pieces.
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4 Introduction

Electronic theses and dissertations (ETDs) are scientific research works with a suitable degree of originality,
and are a focus of collection and utilization. They represent different levels of learning and are among the
most important sources of scholarship and information. The general structure of a dissertation is relatively
fixed; it contains some main items, where each main item has a certain purpose, is written with certain
language characteristics, and satisfies specific requirements.

A born-digital ETD is an ETD with text embedded in its PDF file. Accordingly, the text elements can be
extracted from the original ETD. This means that if the data of digital ETDs can be properly parsed and
stored in an XML document, then this valuable knowledge can be put to use in a variety of fields.

Unfortunately, however, there is no standard format for most of the ETDs that are found nowadays, and
ETDs published by different universities and organizations often have their own formats. For example,
certain institutions may prefer to label their first section as “introduction”, while others prefer “background
information”. In addition, the quality of the documents varies, as ETDs can either be scanned or born-
digital. Consequently, in scanned ETDs, some of the pages may not be aligned and the text in the page may
be crooked, or text on the edges could be cut off.

Therefore, it is a challenge for researchers to correctly parse long PDF documents. In terms of providing
access to valuable knowledge for effective use of ETDs, work needs to done to add value to ETDs by enabling
question-answering, figure search, table search, and summarization. The main purpose of this project is to
develop an algorithm that can identify the different parts of ETDs and help with these activities.

For this object detection project, a model needs to be built that is trained on a large dataset of ETDs.
The selected model is a neural network that is designed for object detection tasks. There are two primary
methods when training a neural network model for a new task. The first approach is to train the model
from scratch and randomly assign weights to all parameters before training. The second approach is often
called transfer learning. In transfer learning, the neural network starts with weights trained on a similar
problem [13]. This can decrease the required size of the training dataset and the time it takes to train for
the new task. After the training is done, the model can also parse other files similar to the training ETDs,
in a reasonable way.

Therefore, the dataset is a very important part of the project. The accuracy of the whole project depends
largely on the accuracy of the dataset. A new dataset (ETD-OD) ETD-Object Detection is introduced, and it
is a dataset for object detection in long scholarly documents like ETDs. Images from 200 ETDs are manually
annotated by humans with bounding boxes around each of the elements. The entire annotation process is
handled by a three-person labeling group. To ensure the accuracy of the annotation, a cross-processing
approach is used. The approach involves separating the labeling and dataset import steps, with different
team members taking care of different parts of the process. After labeling a part of the data, someone else
reviews it and adds the labelled data into the dataset. While the dataset is being created, a model is also
developed to accept an ETD’s PDF as input and then convert it to an XML representation.

The aim of this project is to develop a pipeline that accepts an ETD’s PDF as input; converts its pages into
images; uses the trained object detection model to split it into labelled page elements; converts the page
elements into either text (through OCR) or images; and, lastly, uses the parsed text and images to save the
processed data using XML.
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5 Requirements

5.1 Object Detection Pipeline

To convert a PDF file to a format where document elements/objects can be identified, a pipeline is needed.
First, it is necessary to convert PDF pages to images as an intermediate format so that the visually based
Machine Learning (ML) model can classify different elements and extract them. Among these classified
objects, elements such as chapter title and paragraph go through an optical character recognition (OCR)
step and are written into an XML file. Elements such as figures and tables are stored as images in a file
system, and a reference to their location in the file system is saved in an output XML file.

5.2 Dataset Development

A set of ETDs, including both born-digital and scanned PDFs, is provided by the client. For the dataset to
be developed, the pages of all the PDFs need to first be converted to images. As such, four batches, each
including 50 ETDs, were randomly selected from the ETDs provided, and converted into a set of images.
Then this dataset, containing more than 20000 images, was labeled with the following tags1:

• Abstract: Abstract Heading, Abstract Text

• Metadata: Title, Author, Date, University, Committee, Degree

• Chapter: Chapter Title, Section, Paragraph, Figure, Table, Equation, Algorithm, Definition, Footnote

• Table of Contents: List of Contents, TOC Title

• Reference: Reference Text, Reference Heading

1All tags were provided by the client, along with definitions of what each entails. The specific definition of each tag is
provided in Table 2.
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6 Methodology

This section shows a breakdown of the requirements into smaller and more approachable problems. This
section is a modification from the methodology assignment.

6.1 Goal

Object Detection - The ability to use an ML model to detect different elements in an Electronic Thesis
or Dissertation (ETD). Convert ETDs into XML - The ability to extract sections of each page based on
detected results, convert those sections to text or reference, and generate an XML document.

6.2 Sub-tasks

1. Object Detection

(a) Create data set to train the detection model

i. Convert PDFs into images

ii. Label converted images

iii. Analyze dataset distribution

(b) Construct and train the ML model

i. Model selection

ii. Train the selected model

A. Preliminary training

B. Train model on provided server

iii. Evaluate the model’s results

2. Transfer ETDs into XML

(a) Extract elements from ETDs with the ML model

(b) Convert extracted text elements to text

i. Convert extracted text elements from a born-digital ETD to text

ii. Convert extracted text elements from a scanned ETD to text

(c) Save extracted image elements to a file system and add their paths to the XML file

(d) Write text and image paths into the XML file

9



6.3 Implementation Based Services

Service
ID

Service
Name

Input file name(s) Output file name

Libraries;
Functions;
Environ-
ments

1
Convert
PDFs to
images

Any folder
<PDF
name> <page
number>.png

pdf2image

2
Label
converted
images

*.png *.zip/URL RoboFlow

3

Analysis
dataset
distribu-
tion

N/A N/A RoboFlow

4
Model
selection

N/A *.pth Detectron2

5
Preliminary
training

*.zip/URL, *.pth model final.pth
Google
Colab

6
Training
on larger
dataset

*.zip/URL, *.pth model final.pth
CUDA-
enabled
server

7
Evaluate
model
results

model final.pth result.csv
COCO
evaluator

8

Extract
elements
from page
images

<filename> <page
number>.png,
model final.pth

Temporary data
structure

Detectron2,
CV2

9

Extracted
text
elements
to text

Temporary data
structure

Temporary text
PyMuPDF,
Pytesser-
act

10
Save
extracted
images

Temporary data
structure

<img path>.png CV2

11
Create
XML file

Temporary text,
<img path>.png

*.xml
XML
Module

Table 1: Implementation Service Table

6.4 Pipeline Diagram and Workflow

The pipeline diagram in Figure 1 provides an outline of the main services from Section 6.3. The pipeline
takes in one PDF as input, and Service 1 converts the PDF’s pages into images. The results are sent to a
trained object detection model. In Service 8, the model outputs a bounding box for each element in each
page image. These are then used to crop the elements from their original image. If the cropped element is
labelled as a text element (like title or paragraph), the image needs to be converted to text by Service 9.
Otherwise, the cropped element is saved as an image by Service 10. Lastly, Service 11 creates an XML file
with the text elements from Service 9 and the paths to the cropped images from Service 10.

10



Figure 1: Pipeline Diagram

7 Implementation

7.1 PDF to Image

The first step was to convert PDFs in a folder to a set of image files. This was accomplished with the PDF
to image script pdf2img_converter.py which needs a directory path as input. The converted images were
stored in a set of folders with names corresponding to their original PDF names, and each image was named
as <pdf name> <page number>.png.

This script makes use of convert_from_path function in the pdf2img package and the os Python module
is used to convert a set of PDFs in a directory to a set of images in a folder. This script also makes sure
that the converted images are not resized or zoomed, as the client requested.

11



Figure 2: PDF to Image Input / Output

7.2 Dataset Creation

7.2.1 List of Labelled Elements in ETDs

In order to cover all kinds of ETDs, both Scanned PDFs (created through a typewriter, printer, or hand
written and then scanned electronically) and born-digital PDFs (digitally created PDFs with embedded
text), were collected and labeled. Collected ETDs were randomly separated into smaller batches, with each
batch containing 50 ETDs. The ETDs were then labeled with the following categories and stored in COCO
data format, as discussed in Section 7.2.3.

1. All types of Table of Contents (Table of Contents, Table of Figures, List of Figures, etc.) were regarded
as Table of Contents. They can be differentiated based on the TOC title.

2. Appendix was regarded as a chapter. It can be identified based on its corresponding chapter title.

3. For documents with only one chapter, regard different sections like introduction, experiments, conclu-
sion, etc. as a chapter.

4. For documents with multiple chapters, annotate headings of different sections / subsections clearly
with the “Section” label.

12



No. Tag name Description
1 algorithm algorithms in the field of computer science and math
2 chapter title title of each chapter
3 chapter subheading includes all subheadings that is not a chapter title
4 degree degree of the author
5 list of content heading list of content section title
6 list of content text list of content text
7 title title of the ETD
8 author author of the ETD
9 committee the committee approved the ETD
10 date month and year the paper is published
11 equation equations
12 equation number label for equations
13 figure includes figures and hand drawn chart
14 figure caption includes caption for figures and hand drawn chart
15 foot note footnote in ETDs
16 page number page number in ETDs
17 reference heading reference section title, e.g., bibliography
18 reference text reference in ETDs
19 paragraph paragraphs in ETDs
20 table includes table, list of figures, list of tables
21 table caption includes caption for table, list of figures, list of tables
22 university author’s university

Table 2: List of Tags Labelled

7.2.2 Train / Test / Validation Split

After an annotated image dataset was created (for example, a dataset containing annotated images for
scanned PDFs), the resulting images were split into training / validation / testing datasets with 70% / 10%
/ 20% of the whole dataset, respectively.

• Training Dataset: All of the training dataset images and their corresponding annotations were used
for training the Detectron2 model, as discussed in Section 7.3.

• Testing Dataset: All of the testing dataset images and their corresponding annotations were used for
calculating evaluation metrics of the Detectron2 model, as discussed in Section 8.1.

• Validation Dataset: The validation dataset was purely used for visually validating the model results.
For example, an image would be given to the model, the model labels the image, and then the visual-
ization of the model predictions would be compared to the true annotations of the original image.

The images were split with no acknowledgement as to what ETD the specific images came from. For example,
for a single ETD, the first page’s image can go to the training dataset and the second page’s image can go
to the testing dataset.
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7.2.3 COCO Data Format

After the train / test / validation split, all three datasets were formatted according to the COCO data
format. A single COCO formatted dataset [6] is stored in a flat file directory with all the .png image files
and a single _annotations.coco.json file containing the annotations for all the images.

The COCO data format is used to describe each object, like paragraphs and chapter titles, across multiple
images in a dataset. Each object contains a series of fields, as shown in Figure 3. Every object has a
unique ID, an ID for the image the object is located in, and an ID for the category the object represents.
Additionally, each object is defined by the coordinates of a bounding box. The segmentation field is also often
used to mask an object that has a well-defined parameter, like an object that represents a person. However,
in the ETD dataset, objects like paragraphs and chapter titles do not have a well-defined parameter that
could define the object better than a bounding box. As such, segmentation was not used in the ETD dataset.
The iscrowd parameter is also often used when an object represents multiple instances of the same object,
like an object representing multiple people. However, this does not happen with any of the objects in the
ETD dataset, so this parameter is always set to 0.

Figure 3: Parameters in COCO Data Format for Object Detection Tasks

7.3 Object Detection Model

The DocBank repository consists of multiple neural networks that were trained on document images [4]. One
such neural network, X101, was trained with the Detectron2 Base-RCNN-FPN model. Before training on the
custom dataset, the pretrained weights from DocBank’s X101 were loaded into Detectron2’s Base-RCNN-
FPN model. This method of loading in weights from a similar problem is often called transfer learning,
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and it can decrease the amount of data the model needs when learning the new task. After loading in the
pretrained weights, the model was trained with the training datasets described in Section 7.2. Next, the
resulting weights of the model were stored in a PyTorch model file with the .pth file extension, and the
trained model was used in the PDF to XML pipeline from Section 6.4. In the pipeline, the model’s input
was an image of a page from an ETD, and its output was a list of labelled elements from the image.

7.3.1 Repeat Factor Training Sampler

ETDs can have hundreds of paragraphs but only one title, which leads to a serious imbalance in the data
categories. For paragraphs, pictures, and tables, there were thousands of samples in the data. But for title,
author, and abstract, there were less than 300 samples. Because of this, a Repeat Factor Training Sampler
was also used to conduct the sampling during training. The Repeat Factor Training Sampler increases the
sampling rate for tail class instances by oversampling images containing these categories. After a cfg item
is created for the Detectron2 model, the Repeat Factor Training Sampler can be specified with

cfg.DATALOADER.SAMPLER_TRAIN = "RepeatFactorTrainingSampler"

cfg.DATALOADER.REPEAT_THRESHOLD = 0.001

The REPEAT_THRESHOLD controls the point at which oversampling kicks in. For example, when
REPEAT_THRESHOLD = 0.001, categories that appear in less than 0.1% of images are oversampled. It is
possible to test varying percentages for this parameter. Researchers at Facebook AI Research discovered
that, for their Large Vocabulary Instance Segmentation dataset, a threshold of 0.001 produced the best
evaluation results [3]. Before updating this parameter, the Detectron2 default is to sample each image with
equal likelihood. Section 8 discusses the evaluation results before and after updating this parameter.

7.3.2 Model Input and Output

After the model was trained, the model is then used in the pipeline, as discussed in Section 6.4. In the
pipeline, the input to the model is a single page from an ETD. The output of the model is a list of bounding
boxes and a list of predicted labels. The bounding boxes are formatted in (x, y, width, height) format,
corresponding to the input image’s dimensions. Each bounding box has a corresponding predicted label,
indicating what type of element the bounding box represents (paragraph, figure, caption, etc.), as discussed
in Section 7.2.1.

It is important to note that the bounding boxes are, by default, not sorted in any particular order by the
model. An ETD is typically written in one column, so its sections are ordered by their y-coordinate. As
such, after the model makes its predictions in the pipeline, the bounding boxes are sorted by their top left
y-coordinate.

7.4 Parsing the ETD

After a page of the ETD is run through the model, the parsing step used the model’s output to parse the
page into both text and image elements. The input to the parsing step is an image of a page and the model’s
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predictions of that page. The output of the parsing step is a list of raw text and image elements with their
corresponding section labels (paragraph, figure, etc.) for the entire ETD.

7.4.1 Parsing Images

Bounding boxes labeled as an algorithm, equation, figure, or table are stored as images. Because the bounding
box represents the coordinates of the element, the bounding box is used to crop the image from the image
of the original page. Next, the cropped image is saved using the cv2 package in Python.

7.4.2 Parsing Text from a Digital ETD

Born-digital ETDs are ETDs that have embedded text in their PDF. If the current ETD being parsed was
originally a digital ETD, the text elements can be extracted from the original ETD’s PDF. This can be
performed using the Python package PyMuPDF, which allows a user to extract embedded text from a PDF
file using a bounding box. It is important to note that the coordinates of the model’s bounding box are in
terms of the page’s converted image. So, before PyMuPDF can be used, the coordinates need to be converted
into PDF coordinates.

7.4.3 Parsing Text from a Scanned ETD

Scanned ETDs are ETDs that have minimal embedded text. If an ETD does have any embedded text, the
embedded text usually indicates metadata of the ETD, and cannot help with extracting text like paragraphs
and chapter titles. As such, the text elements from the ETD have to be converted to raw text through
Optical Character Recognition (OCR). First, the bounding box is used to crop the image of the text element
from the page. Next, that cropped image is run through OCR using the Python package Pytesseract to
obtain the raw text.

7.5 XML Creation

The parsing step creates a Python list, where each element is a tuple with format
(element_label, element_text_or_image, page_number). These tuples are sorted by the order they
appear in the ETD, from top to bottom. A number of rules are used for converting this data structure into
an XML file - for example, elements have to be embedded under their corresponding chapters, and captions
have to be embedded with their corresponding figures; see Code Listing 1.
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Code Listing 1: XML ETD Representation

<etd>
<f r on t>

< t i t l e> ETD Ti t l e </ t i t l e>
. . .

</ f r on t>
<body>

<chapter>
. . .
<chapter subheading>
. . .
</ chapter subheading>
<paragraphs>
. . .
<paragraphs>
. . .

</ chapter>
. . .

</body>
<back>

<r e f e r en c e h ead i ng></ r e f e r en c e h ead i ng>
<r e f e r e n c e t e x t></ r e f e r e n c e t e x t>

</back>
</ etd>

The <front> tag stores metadata for the ETD with the corresponding labels. If a certain metadata tag is
not found in the parsed data structure, the tag is still added, but with no text. For example, if a title is
not found, then <title /> is still added. The <body> tag stores chapters and chapter subheadings. Each
chapter and chapter subheading has six elements associated with it - paragraphs, figures, tables, algorithms,
equations, and unused captions. Each one of these six elements will have 0 or more subelements. For
example, a <paragraphs> tag may have zero or more <p> subelements. Lastly, the <back> tag stores the
references of the ETD.

7.5.1 Associating Elements

As shown in the XML output format in Listing 1, many elements are associated as children of other elements.
For the <front> and <back> tags, their associated children are searched for through the parsed output data
structure one-by-one. If multiple instances of a certain metadata tag are found, for example if multiple titles
are found, the first one that comes chronologically is used. However, the chapters and chapter subheadings,
along with their individual elements like paragraphs and figures, have to be associated with each other based
on how they appear in the parsed data structure. As such, the following rules are applied when linearly
iterating through the parsed data structure:

1. Some ETDs have the same chapter title as a header on multiple pages. A new chapter title is added
only if its text does not match the previous chapter title.

2. A chapter subheading is associated with the last found chapter title.

3. If a chapter subheading is found before a chapter title, then it is assumed that the model did not detect
the chapter title. An empty <chapter> tag is created for the chapter subheading.
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4. Every time a <chapter> or <chapter_subheading> is created, it is given the following six empty chil-
dren: <paragraphs>, <figures>, <tables>, <equations>, <algorithms>, and <unused_captions>.

5. Paragraphs, figures, tables, equations, and algorithms are added to the last created chapter or chapter
subheading. If a chapter has not been created yet, then an empty <chapter> tag is created for the
element.

6. Captions, such as figure captions, table captions, and equation numbers, are associated with a figure if
a figure came directly before or after it in the parsed data structure. However, the model may mislabel
a caption or not detect a figure. As such, if there is no figure directly before or after the caption, the
caption is added to <unused_captions>.

7.6 XML Visualization

XML is hard to read for any human related work, so the output XML is converted to HTML through a
Python script. Texts are resized based on tags. The < h1 > tags is for Titles; the < h2 > tag is for
Chapter titles, abstract heading, reference heading, Table of Contents heading; the < h3 > tag is for chapter
subheadings. For each chapter, all images, tables, algorithms, etc. (those stored in image format) were
re-organized at the end of each paragraph, with their designated captions below them. A sample converted
XML is shown in Figure 4.
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Figure 4: Generated HTML
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8 Testing / Evaluation / Assessment

8.1 Common Object in Context Evaluator

To evaluate prediction results of the model, the Common Object in Context (COCO) Evaluator is selected
to perform the task. The following 6 metrics are used to characterize the performance of object detectors
on COCO:

1. Average Precision (AP)2:

(a) AP (mAP) - Mean of Percentages of APs at IoUs from 0.50 to 0.95 (stepsize = 0.05)

i. IoU = {0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}
ii. (primary challenge metric)

iii. The evaluator makes no distinction between AP and mAP

(b) AP50 - Percentage AP at IoU = 0.50

i. (PASCAL VOC metric)

(c) AP75 - Percentage AP at IoU = 0.75

i. (strict metric)

2. AP for Different Sized Objects3:

(a) APs - Percentage AP for small objects: areabounding box < 32pixels2

(b) APm - Percentage AP for medium objects: 32pixels2 < areabounding box < 96pixels2

(c) APl - Percentage AP for large objects: areabounding box > 96pixels2

IoU threshold is a value used in object detection to measure the overlap of a predicted versus actual bounding
box for an object. The closer the predicted bounding box values are to the actual bounding box values the
greater the intersection, and the greater the IoU value, from 0.50 to 0.95.

The Average Precision (AP) lies within the range of [0, 1] (represented as a percentage) and is defined by the
average of the precision values, when plotted against recall, where precision measures the accuracy of the
model’s predictions and recall measures how well the model identifies labels correctly [2]. In mathematical
terms, these definitions are defined as:

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

In the evaluator, the precision (p) and recall (r) of each prediction is calculated. From here, the evaluator
takes the average of these precision values to give the resulting AP.

In other words, precision answers what proportion of positive identifications were correct; conversely, recall
answers what proportion of actual positives were identified correctly. As informed by the client, an AP
greater than or equal to 0.75 is considered strong enough for industry standard usage.

2For AP calculation, the evaluator calculates precision and recall, and then generates a precision-recall function which is
integrated across [0, 1] to return the final result [2].

3Here 32 and 96 refer to the number of pixels, the superscript means square pixels, and the comparison is with the area of
the bounding box.
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8.2 Results for Model Trained on 1 ETD

To prepare for testing and evaluation on larger datasets, an initial model was trained on 1 ETD to ensure no
bugs and/or errors existed within the routine. After training, the model was given to the COCOEvaluator
and the results in Table 3 were found.

Table 3: Results for Model Trained on 1 ETD
AP AP50 AP75 APs APm APl
6.878 13.257 5.009 0.000 3.003 12.043

id AP id AP id AP
elements nan abstract-text nan abstract-title nan
author nan chapter-title nan committee nan
contents 0.000 date nan degree nan
footnote 0.000 link nan paragraph 41.266
reference 0.000 section 0.000 title nan
toc-title 0.000 university nan

As expected, AP scores in part and on the whole were well short of the mark with every true positive for
labels other than paragraph being misidentified. A score of nan indicates there are no true positives for
the respective element; these scores merely state the label does not exist within the dataset. A score of 0,
however, indicates the element does exist within the dataset, but the element was never identified in the
model.

These results were expected on the grounds that the model was only trained on a single ETD. As with most
machine learning models, model adequacy is directly correlated with the amount of information used to train
the model. Thus, using a single ETD, an AP of 6.878 was achieved on average across all thresholds, due to
a very confused model, and with paragraph reaching a sub-par AP of 41.266, even though there are many
paragraphs present in an ETD.

8.3 Results for Models Trained on 50 ETDs

Once the training and evaluation routine was assured using a single ETD, additional annotation data was
generated in RoboFlow [9] for 50 scanned and 50 born-digital ETDs. This data was then imported and two
new models were trained (one for the scanned, and one for the digital). The results of these models were:

In contrast to the model trained using a single ETD, the two models trained on 50 ETDs yielded relatively
higher AP scores across all thresholds (24.650 for the scanned model, 28.156 for the digital model). This
serves as proof of concept that more information used in training generally increases the model’s adequacy.

When comparing the individual elements for each of the 50 ETD models, it is clear that elements with
greater density within the dataset achieve much higher scores than sparse elements4. Such a loss of precision
is generally mitigated through repeat factor sampling to offset the uneven distribution of elements.

4For example, footnote, reference text, table, figure, and paragraph, yielded AP scores greater than 50; on the other hand,
elements such as title, author, degree, date, and university – that generally only appear once or twice in the ETD – rarely
achieved an accurate prediction
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Table 4: Results for Model Trained on 50 Scanned ETDs
AP AP50 AP75 APs APm APl

24.650 42.153 23.972 8.727 17.206 24.668

id AP id AP id AP
chapter-title 21.479 equation 47.795 paragraph 64.080
chapter-subheading 19.727 equation-number 25.815 reference-heading 0.000
degree 0.000 figure 62.250 reference-text 76.897
title 0.000 figure-caption 39.812 supervisor nan
abstract-heading 0.000 foot-note 60.158 table 69.630
abstract-text 0.000 list-of-content-heading 0.000 table-caption 27.985
author 0.000 list-of-content-text 0.000 university 0.000
date 0.000 page-number 26.680

Table 5: Results for Model Trained on 50 Digital ETDs
AP AP50 AP75 APs APm APl

28.156 48.292 26.993 16.719 22.563 40.958

id AP id AP id AP
chapter-title 13.179 date 16.238 list-of-content-text 66.729
chapter-subheading 29.576 degree 0.000 page-number 21.300
title 0.000 equation 48.631 paragraph 74.533
abstract-heading 0.000 equation-number 21.645 reference-heading 16.365
abstract-text 0.000 figure 73.803 reference-text 80.223
algorithm 0.000 figure-caption 42.484 table 53.465
author 5.406 foot-note 60.387 table-caption 39.252
committee 0.000 list-of-content-heading 12.525 university 0.000

Finally, due to the higher clarity of born-digital ETDs when compared to scanned ETDs, text elements such
as paragraph or reference text resulted in higher AP scores in the digital model. When scanning older
ETDs, the level of detail can at times be adversely affected by the quality of the scanner as well as general
wear-and-tear of the preserved document. However, alterations to the original document (i.e., smudging,
tears, creases) are nonexistent when dealing with born-digital documents.

8.4 Results for Model Trained on 100 ETDs

To evaluate the performance of the model when trained upon both scanned and born-digital ETDs, the
datasets used in the previous section were merged to create a new 100-ETD dataset. The merged model
yielded the following results:

Table 6: Results for Model Trained on 100 Merged ETDs
AP AP50 AP75 APs APm APl

21.727 38.328 21.255 15.147 15.765 21.649

id AP id AP id AP
chapter-title 18.568 degree 0.000 paragraph 70.653
chapter-subheading 22.432 equation 39.679 reference-heading 0.000
title 0.000 equation-number 20.444 reference-text 63.894
abstract-heading 0.000 figure 65.616 supervisor nan
abstract-text 0.000 figure-caption 41.944 table 67.552
algorithm 0.000 foot-note 51.508 table-caption 34.425
author 0.000 list-of-content-heading 0.000 university 0.000
committee 0.000 list-of-content-text 0.000
date 1.188 page-number 23.538
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Contrary to expectations, the merged model achieved lower scores than the smaller, exclusive models. The
merged model dropped its AP across all thresholds to 21.727, indicating a greater loss of precision. This loss
of precision is mostly attributed to the subtle differences in quality and orientation between the two ETD
types.

Scanned ETDs are generally older and date back to before the advent of digitally stored media (i.e., 70’s and
80’s). These documents would have been transcribed via a typewriter or printer, which means the quality of
the document is dependent upon the levels of ink. Too much ink leads to smudging and bold/cramped text,
whereas too little ink leads to lower opacity and loss of detail. Digital ETDs, however, have constant levels
of detail throughout the document. As a result, merging scanned and digital ETDs into a single dataset
does not improve the model.

8.5 Results for Models Trained after Repeat Factor Sampling

In an effort to get better results on sparse elements for the previously trained models, each of the datasets
was trained using Repeat Factor (RF) Sampling. The results of the RF models were as follows:

Table 7: Results for Model Trained on 50 Scanned ETDs w/ RF Sampling
AP AP50 AP75 APs APm APl

24.271 42.516 24.342 8.591 17.924 24.318

id AP id AP id AP
chapter-title 21.318 equation 42.729 paragraph 67.561
chapter-subheading 14.374 equation-number 24.503 reference-heading 0.000
degree 0.000 figure 62.643 reference-text 64.978
title 0.000 figure-caption 42.014 supervisor nan
abstract-heading 0.000 foot-note 58.881 table 59.509
abstract-text 0.000 list-of-content-heading 0.000 table-caption 36.164
author 0.000 list-of-content-text 9.901 university 0.000
date 0.000 page-number 26.032

Table 8: Results for Model Trained on 50 Digital ETDs w/ RF Sampling
AP AP50 AP75 APs APm APl

27.910 49.091 27.576 14.563 22.905 39.634

id AP id AP id AP
chapter-title 13.440 date 10.495 list-of-content-text 59.982
chapter-subheading 30.032 degree 0.000 page-number 21.206
title 0.000 equation 48.243 paragraph 72.445
abstract-heading 0.000 equation-number 21.515 reference-heading 10.461
abstract-text 0.000 figure 69.651 reference-text 83.272
algorithm 0.000 figure-caption 42.948 table 61.366
author 8.581 foot-note 58.569 table-caption 42.702
committee 0.000 list-of-content-heading 14.930 university 0.000

After analyzing these results, minor fluctuations in precision were present for sparse elements. Elements
originally yielding an AP of 0 generally continued to yield the same result after RF sampling and were not
improved upon. At times elements with weak AP scores less than 50 showed minor improvement in some
models; but, these improvements were not consistent between all three models5.

Changes for AP across thresholds and scales were also minor and inconsistent. It follows that RF sam-
pling, while a valuable tool in object detection modeling, did not necessarily improve the model’s adequacy.

5For example, chapter title improved for the scanned and digital datasets but was reduced in the merged dataset; chapter
subheading improved for the digital and merged dataset but was reduced in the scanned dataset.
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Table 9: Results for Model Trained on 100 Merged ETDs w/ RF Sampling
AP AP50 AP75 APs APm APl

22.383 38.876 21.867 10.026 15.186 22.316

id AP id AP id AP
chapter-title 16.366 degree 0.000 paragraph 69.413
chapter-subheading 24.229 equation 43.083 reference-heading 2.376
title 0.000 equation-number 17.197 reference-text 81.635
abstract-heading 0.000 figure 65.005 supervisor nan
abstract-text 0.000 figure-caption 39.481 table 61.285
algorithm 0.000 foot-note 58.096 table-caption 33.356
author 2.030 list-of-content-heading 0.000 university 0.000
committee 0.000 list-of-content-text 0.000
date 0.000 page-number 23.648

However, given larger datasets and samples in future development, the RF sampling technique may prove
beneficial.
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9 Users’ Manual

9.1 Setting Up the Environment on Windows

In order to successfully run and use the pipeline, the user can choose to run the provided script directly in
Google Colab or on a Linux server. If the user wants to run it locally on a Windows machine, they need to
set up their environment with the following steps.

Step 1: Prerequisites

First, Anaconda [1] and CUDA 10.2 [7] need to be installed. Next, PyTorch should be installed. Due to
compatibility issues with PyTorch and CUDA, make sure to select the right version. To check the version
compatibility, use the PyTorch Version Web Page [8].

After Anaconda, CUDA, and PyTorch are installed, install Cython and Pycocotools. Use the following code
in the Anaconda prompt to install Cython.

pip install cython

Additionally, use the following code in anaconda prompt to install Pycocotools.

pip install "git+https :// github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=

PythonAPI"

Step 2: Install Detectron2

The Detectron2 files need to be cloned from the Facebook AI Research open sourced repository [11]. Then,
in the Anaconda prompt, go to the cloned repository and install Detectron2.

python -m pip install -e detectron2

Step 3: All Other Required Packages

Run each line of code below in the Anaconda prompt to install the necessary packages:

#for pdf to image convertion

pip install pdf2image

pip install pyyaml==5.1

#For loading data from RoboFlow

pip install roboflow

#the following 2 are for OCR

pip install pytesseract

pipe install pymupdf
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9.2 Setting Up the Environment on Linux

Step 1: Prerequisites

On Linux, Python, along with its corresponding pip command, can be used to install all the necessary
packages. It is advised to use a new Python virtual environment to make sure there are no package conflicts.
A Python version of 3.7 or greater is needed for all the required packages.

Step 2: PyTorch and Detectron2

Once the virtual environment is activated, the approprate packages can be installed. Detectron2 can only
work with certain PyTorch and CUDA versions, so, before installing PyTorch, it is important to determine
the CUDA version of the GPU and download an appropriate version of PyTorch. The bash command
nvidia-smi can be used to see the current version of CUDA on the GPU. Next, check the Install Detectron2
web page for the most recent compatible versions of PyTorch and the CUDA version of the GPU, and,
before installing Detectron2, install the appropriate version of PyTorch [12, 8]. After PyTorch is installed,
the command for installing Detectron2 can once again be found from the Install Detectron2 web page.

Step 3: All Other Required Packages

Now that Detectron2 and PyTorch are set up, other packages for PDF to image conversion, OCR, and PDF
manipulation can be installed with the following commands:

pip install pdf2image

pip install pytesseract

pip install pymupdf

9.3 Running the PDF to XML Pipeline

Now that the environment is set up, the ETD’s PDF is ready to be converted to XML. The PDF should be on
the same machine as the pipeline. All of the required functions for conversion are located in pdf_to_text.py,
and should be used in the following order:

1. Before starting the pipeline, the list of categories that the object detection model was trained on needs
to be loaded in as a Python list. The list of categories can be found from the model’s corresponding
dataset folder, as described in Listing 2.

2. Next, the trained model should be loaded in with the get_predictor function. This function takes in
the path to the model weights, which is stored with the PyTorch .pth file extension, and the number
of categories the model predicts (this should be the length of the list obtained in Step 1).

3. The output of get_predictor is the configured object detection model, which is now ready to make
predictions. This configured model should be passed into the predict_annotations function, along
with the list of categories and the path to the PDF file.

4. Now that the predictions have been made from the PDF, either parse_scanned or parse_digital

should be used to parse the text and images. Which function to use depends on whether the PDF is
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born-digital or scanned. If it is born-digital, parse_scanned can still be used, but, because it uses
OCR to extract the text rather than extracting from the original PDF file, the results will not be as
accurate.

5. Now that the text and images have been parsed from the PDF, the create_xml function can be used
to format the results into XML.
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10 Developer’s Manual

10.1 Dataset Access

The created dataset is on RoboFlow, and, as such, a RoboFlow account is needed to access the dataset. The
dataset is separated into several small batches. Each batch contains 10 or 20 ETDs. ETDs with identifier
from 0 to 100 are scanned ETDs, while ETDs with identifier from 900 to 1000 are born-digital ETDs. If a
combination of multiple batches is needed, use the merge function on RoboFlow as shown in Figure 5.

Figure 5: RoboFlow Merge Data Sets

In order to access the data in each project, go to the version page in a project. Choose any existing version
or click on generate new version to modify image resize, data set augmentation, and class remapping as
shown in Figure 6.

After generated a data set, click on export to use the generated data set. Directly download the whole data
set into a zip file and use the download code provided by RoboFlow. For download code, use the following
code segment to load the data set.

rf = Roboflow(api_key="<User API KEY GENERATED BY ROBOFLOW >")

project = rf.workspace("<Name of work space >").project("<Name of project in workspace >")

dataset = project.version(<Version ID>).download("<Data set format >")

After the dataset is downloaded, the dataset should be structured in the file heirarchy described by Listing
2.

Code Listing 2: Dataset Folder Hierarchy

<dataset name>
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Figure 6: Generate Data Set in RoboFlow

|− t r a i n
|− <img1>. jpg
|− . . .
|− annota t i on s . coco . j son

|− t e s t
|− <img1>. jpg
|− . . .
|− annota t i on s . coco . j son

|− va l i d
|− <img1>. jpg
|− . . .
|− annota t i on s . coco . j son

10.2 Training / Evaluating / Validating the Model

A number of Python functions were created for manipulating the dataset, training and evaluating the
Detectron2 model, and validating its results by comparing the actual PDF with the generated HTML.

It is important to verify the dataset before training and to check that the label categories are correct.
For example, even after mapping the categories through the RoboFlow UI, many unnecessary and unused
categories were still in the _annotations.coco.json files, such as pag-, eq-, and Chapter subheading-

(when it should be Chapter subheading). The categories, images, and annotations in a dataset can all
be manipulated and visualized through the _annotations.coco.json files found in each train, test, and
valid folder. A number of functions have been defined in clean_coco.py that can be used for handling the
dataset.

29



• The visualize_image function can be used to visualize an image by its image ID from a dataset.
This function uses the annotations associated with the image ID to draw bounding boxes around each
human annotated element, along with the corresponding label for the type of element.

• The map_categories function can be used to label one category as another existing category. For
example, if called with the categories (Chapter subheading-, Chapter subheading), all objects
that were labeled as Chapter subheading- will now be labeled as Chapter subheading, and the
Chapter subheading- category will be deleted.

• The delete_pages_with_category function can be used to delete a specific category, like eq-, and
delete all the images that had an annotation with that category. It is important to check the num-
ber of pages with that category before deleting them from the dataset - this can be done with the
find_images_with_category_id function.

After the dataset has been cleaned and visually verified, the Detectron2 model is ready to be trained. This
can be done using the train.py script. This script is meant to be run from the command line with the
command python train.py <DATASET_FOLDER> <MODEL_OUTPUT_DIRECTORY>. The dataset folder should
be a path to a dataset with the hierarchy described in Listing 2, and the resulting .pth model weights will
be stored in the model output directory. Additionally, the --repeat_factor flag can be passed to indicate
training with repeat factor sampling, as discussed in Section 7.3.1. This script trains on on the data found
in the dataset folder’s train directory.

After the model is trained, it should be evaluated using the eval_to_csv.py script. This script evaluates
the model’s performance based on the dataset folder’s test directory, and stores the evaluation metrics in
a CSV file. Lastly, after the evaluation metrics are obtained, the model should be visually validated against
real images. This can be done using the visualize_results function found in model_utils.py. The results
should be visualized from the images in the valid directory in the dataset folder.

10.3 PDF to XML Pipeline

After the model is trained, it can now be used in the PDF to XML pipeline. Much of the pipeline is described
in Section 9.3. For testing purposes, the function obtain_annotations can be used to retrieve the human-
labeled annotations for a specific PDF. This function takes in a dataset folder, as described in Listing 2,
and a path to the PDF. This function can also simultaneously visualize the human-labeled annotations for
the entire PDF. After using the function, the human-labeled annotations can then be used in the rest of
the XML pipeline, rather than using a model’s predicted annotations. This can be beneficial for testing the
OCR in the parse_scanned function, the PDF parsing methods in the parse_digital function, and the
XML rules in the create_xml function. The XML rules are described in Section 7.5.

10.4 XML to HTML Script

In order to visualize the XML file in a human readable format, the function XML2HTML could be used. This
function has a parameter in_dir. This parameter allows the user to specify the directory where the output
XML and images are located. If this parameter is not specified, the current directory is used as the default.
This script assumes that the XML file is UTF-8 encoded and the XML tree follows the format stated in
Section 7.5. That is for the first layer. The XML indicates different parts of the ETDs, including front, body,
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and back. The second layer includes Title, Author, university, degree, committee, date, abstract heading,
abstract text, table of content heading, table of content text, chapter, reference heading, and reference text.
Chapter contains the third layer, and includes paragraphs, figures, tables, equations, algorithms, footnotes,
and subheadings.
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11 Lessons Learned

11.1 Timeline

The timeline of the project is shown in Table 10.

Date Event

2.4 Finish reviewing requirements and meet with client

2.11 Convert ETDs into pictures/Working on presentation

2.18 Pres 1

2.25 Get started with labeling/Model selection

3.4 15% Labelling work

3.18 30% Labelling work/Train with Labeled dataset

3.25 50% Labelling work

4.1 65% Labelling work/Start OCR part

4.8 75%/ Labelling work/Retrain model/Finish OCR part

4.14 85% Labelling work/Save results to XML part/Interim report

4.15 Pres 2

4.22 100% Labelling work/Convert XML to HTML/Train with 200 ETDs

5.1 Final report/Final pres

Table 10: Timeline

11.2 Problems / Solutions

11.2.1 Annotations in RoboFlow

For first-time users of RoboFlow, annotating documents can feel a bit cumbersome. Labeling thousands of
images for an extended block of time gets tedious; thus, it is easy to get distracted if multitasking while
labeling. It is important for the human annotators to be aware of some rules which will help prevent human
error and reduce later revision.

1. Projects in RoboFlow cannot be exported unless the project is in a public workspace. To prevent the
possibility of annotating without the ability to export the dataset later, the originator of the workspace
must create a public workspace. If a private workspace is created, the workspace cannot later be
changed to public.

2. Annotations in RoboFlow are case-sensitive. For example, if one person in the group labels each
paragraph as paragraph but another person in the group labels them as Paragraph, these labels will
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be recorded differently. To prevent duplicated class names for the same label, each annotator in the
group should determine an appropriate format (i.e., UpperCamelCase, lowerCamelCase, underscores)
to maintain throughout the labeling process.

3. After merging two datasets into one, revising a label in the merged dataset will not affect the label
in the dataset it originated from. For example, if two people in the group label their own chunks of
ETDs and then merge these projects but an annotation is found to be missing or incorrect afterwards,
fixing the issue in the merged project will not fix the issue in the pre-merged project. Should an issue
be found later in the process, it would be easier to fix the annotation(s) in the original project(s) and
then re-merge those projects. This way, should someone in the group want to use any of the RoboFlow
projects in the shared work space they will always be accurate.

4. When annotating a blank page, RoboFlow has an option to mark the page as NULL. Until the page is
labeled or marked NULL, the dataset cannot be generated in COCO format. When dealing with this
situation, the annotator should always mark the page as NULL rather than introduce new prediction
classes (i.e., blank page). It should be noted that blank pages that have page numbers should still
receive an annotation for page number.

11.2.2 RGB vs. BGR

For the traditional RGB three-color map, it is actually a three-channel (R, G, B), and each channel is
represented by an 8-bit unsigned number (0-255 colors). Additionally, a three-channel image usually represent
a single image in the RGB order. Our dataset and model are all based on the RGB order. In cv2, the three
channels are arranged according to BGR, that is, arranged in the order of blue, green, red.

For Detectron2’s Visualizer tool, the function takes the image array in RGB format; thus, the array
provided by cv2’s imread() function, which reads a image from a specified file, must be converted prior to
the Visualizer function call. This can be accomplished by appending [:, :, ::-1] to the BGR array.
This matrix operation should also be performed prior to any calls in pyplot from matplotlib, which also
uses RGB format.

11.2.3 Version Control

The code used to generate training, evaluation, and visualization scripts requires the various libraries, pack-
ages, and environments being used to remain interoperable. Changes or updates to code happen frequently
and old functions often become deprecated when new methods are adopted. Accordingly, there were some
issues at first with getting the libraries and packages to work with the environment. This was solved by
installing a new virtual environment using Python 3.7. Currently, the scripts require this version of Python
to run seamlessly. Future developers should continue to monitor any changes to these libraries and packages
which could disrupt this seamless interaction.

11.2.4 Remote Access

Training a model over thousands of iterations can require extensive amounts of compute time. Since these
models are being trained remotely on a private server, a loss of connection can potentially interrupt any
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processes being run remotely.

To prevent training interruptions due to connection loss, the developer should always invoke the screen

command. A screen is a terminal multiplexer, meaning the developer can start a screen session and run
processes that persist until completion, error, or the screen receives a termination signal from the developer.

It is recommended that each developer start their own screen session which can then be detached and
reattached as necessary while training models or running other scripts. To exit or terminate a screen
completely, simply invoke exit or send a SIGTERM signal.

11.3 Future Work

There are several areas for improvement. One of the most important areas of improvement is dataset
enrichment. For now, the size of the dataset is still quite small compared to similar work done by others.
Moreover, the dataset is highly imbalanced. This imbalance is unavoidable when labeling one ETD at a
time, since only one or two occurrences of the title will appear in an ETD, while there will be hundreds
of paragraphs. One way to address this imbalance is to simply label more ETDs, which will eventually
increase the occurrence of infrequent labels to where the model can successfully learn the task (this usually
requires at least 1500 occurrences of each element in the dataset based on the dataset health check provided
by RoboFlow). This would improve the accuracy of the model, and the subsequent OCR and XML pipeline
would be more meaningful. But labeling is a labor-intensive task, so relying on existing trained models for
labeling may be a reliable and more cost-effective approach. To do this, the trained model would be the
first to create the annotations, and then the model’s annotations would be imported into the annotation
tool, where they can be manually verified and updated. With this method, human annotators can focus
less on labels that the model can already recognize well, such as paragraphs, pictures, and tables, and more
on labels that are less frequent. Manual annotation not only annotates the elements that have not been
recognized, but also corrects the annotation of the machine to ensure the correctness of the data set.

Another important area of improvement is tuning the hyper-parameters of the model during training. Tuning
a model’s hyper-parameters, like learning rate, batch size, and weight decay, can improve a model’s training
time and performance [10]. Currently, the model trained with a constant learning rate of 0.00025, with a
max iteration of 10000, and with 2 images per batch. Additionally, repeat factor sampling for addressing
class imbalance showed promise, as discussed in Section 8.5 – however, only one level of the hyper-parameter
REPEAT_THRESHOLD was tested. After training, the model results could be improved by adding post-processing
rules for the model’s predictions, such as limiting the number of page number predictions to one per page.

Lastly, the rules for creating the XML document could be improved, namely the rules for associating elements
with each other. For example, it is difficult to define when a figure corresponds with a figure caption. In the
current pipeline, a figure is associated with a figure caption if the figure caption is the last or next detected
element in terms of the y-coordinate. However, this is not 100% accurate, as another element like a page
number could be in-between the two.
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