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1.0 Abstract 
COVID is a virus that rampages through every country, from rural to urban areas. Since 

the beginning of the virus, facts and science have been politicized to align with party agendas 

which have unfortunately resulted in constituents being misinformed about the dangerous virus. 

From early April 2020 to early May 2020, Dr. Mohamed Farag collected a large set of tweets 

from users on Twitter. In these tweets, Twitter users expressed their thoughts, opinions, and facts 

on the virus. We aimed to filter these tweets, sort them into classes, and utilize machine learning 

to determine if these tweets, and future tweets that are to come, are a reliable source of accurate 

information or not. 

 

Our goal in this project was to find rumors and false information that is spread about 

COVID as well as the perpetrators that spread this information. As more people around the world 

gain access to the internet, more people will continue spreading information and this results in an 

information “overload” where facts and myth are intertwined, and the public is unaware of the 

real truth. The COVID19FakeNews team focused on contributing to providing clarity to the 

public about which tweets spread dangerous lies.  

 

We received a one terabyte file, filled with tweets, that Dr. Farag had collected. We 

converted these tweets into a unified format and stored them into a readable JSON format. We 

did this by making a Python script that utilizes different libraries associated with Python. We 

extracted the tweet IDs from the stored tweets collected, and, using the Twarc2 library, we were 

able to hydrate still existing – i.e., not deleted – tweets using the tweet ID that we extracted from 

the collection. This was crucial for finding currently visible tweets, so we can sort into future 

categories (buckets). 

 

 Once hydrated, a small sample of tweets was labeled into seven different categories by 

our team. These labels were then leveraged to train and test a machine learning model using 

SVM through the sklearn Python library. The model was trained with sufficient data so that the 

group would be satisfied with its accuracy. Then, the model was run on the remaining hydrated 

tweets, and we were able to classify those tweets. We created a front-end display to show the 

timeline of when different classes of tweets were published. The front-end also shows statistics 

on the raw and clean datasets, as well as users that have tweeted misinformation regularly. 

Overall, this project should be useful for researchers who are doing similar studies. It should also 

be useful to members of the public who are concerned about COVID. 
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2.0 Introduction 
The data for this project was collected from a one terabyte file from our client Dr. Farag.  

We converted these tweets into a consistent format and stored them into a readable JSON file. 

2.1 Objective  

COVID misinformation has spread through social media. The overall objective of the 

project was to take in a dataset of tweets posted during the timeframe of April-May 2020 and 

then to filter, clean, and analyze them. This was to help people understand the misinformation 

that is taking place through social media as well as the direct sources of misinformation. After 

the direct sources of the misinformation were identified, a web page was built for users to sift 

through different statistics and view a timeline of when these tweets were tweeted out.  

2.2 Deliverables  

The purpose of this project was to distinguish misinformation regarding COVID-19 on 

social media. The following deliverables were produced:  

 

1. A fully functioning Python script that can run the preprocessing and analysis steps  

2. A web application that can show the analysis results 

2.3 Client 

The client for the project was Dr. Mohamad Farag who is a postdoctoral researcher at the 

Virginia Tech Center of Sustainable Mobility. He also has a background in being a researcher at 

the Digital Library Research Laboratory at Virginia Tech. Apart from his background in research 

he also has an interest in information retrieval, digital libraries, semantic web, and parallel 

computing. 

2.4 Team  

Our team consisted of the members Eric Wiley, Tung Nguyen, Ferrin Kirby, Campbell 

Dalen, Kyle Toroc, and Fareeza Zameer. All members are studying computer science and are all 

seniors except for Kyle who is a junior.  
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3.0 Requirements 
In this section, we introduce and describe what was needed for this project to be 

considered complete. 

3.1 Clean Given Data 

 The first important requirement for this project that we set amongst ourselves was to 

clean the data and store it in a way that is readable. We chose to extract and store the data that we 

received in a JSON structure. The reason behind this is that JSON is easily able to store the 

tweets in a readable format. The JSON files that we produced, after running our script, contain 

the collection type (whether it’s a tweet, a retweet, or a quoted tweet), the tweet text, and the 

tweet ID [1]. These three fields were stored for every tweet. This was a crucial first step in this 

project because it allowed us to keep track of which tweet description belongs to the tweet ID, 

and whether that certain tweet was a retweet or not. Then from the given tweet ID, we created 

another similar JSON object file based on the hydrated tweets from the IDs that we initially 

collected. 

3.2 Teach the Machine Learning Model 

To be successful in having the public trust an information classifier like the one we were 

trying to build, the model needed to be very accurate. We believe that an accuracy score of 90% 

is more than enough for the public to have confidence in our model. Of course, to achieve an 

accuracy score this high, we needed to provide sufficient data to train on and test on. We 

provided the model with 6,000 tweets. The tweets that we provided to the model were tweets that 

we had gathered after hydrating. We then classified every single tweet into different 

buckets/categories that we had come up with before and confirmed with our client.  

3.3 User Interface 

 The user interface contains two main sections, the statistics, and the timeline. The 

statistics section includes general information about the raw data as well as the cleaned data, and 

the hydrated tweets. The second section includes several timelines that shed light on when fake 

news tweets were published and filters based on the classifier. We also include an area on the 

statistics where we showcase users that spread more misinformation than others. Additionally, 

the front-end is accessible for all users, ranging from researchers to students.  
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4.0 Design 

4.1 Twitter V1 JSON Format 

Our raw data was originally inside a .gz file. Once the file was uncompressed our team 

read through it with Python. Each line of our file contains one JSON tweet object with the 

attributes listed in Table 1. The raw data attributes that we were particularly interested in are the 

lang, id, is_quote_status, quote_status, and retweeted_status.  

 

Since our project was centered around some form of Natural Language Processing (NLP) 

we needed to make sure that the tweets we labeled were in English. The identifier of the tweet 

needed to be examined so we could determine if the tweet was still up on Twitter or if it had 

been removed. The is_quote_status determines if the tweet quotes another tweet, and if it does 

this attribute is set to “True. If  is_quote_status  is set to “True’ then the quote_status will contain 

another JSON tweet object. The retweeted attribute is deprecated and cannot be used to 

determine if the tweet retweeted another tweet because it is always false [2]. However, we can 

check if retweeted_status exists within the tweet [1]. The reason behind examining the 

quote_status and retweeted_status objects is because we want to examine those tweets as well 

and extract the ID from the raw data. 
 

JSON Attribute Type Description 

created_at String UTC time when this tweet was written 

id int Unique identifier for this tweet, used in hydration 

process 

id_str String The string representation of the ID attribute 

text String The text (in UTF-8) of tweet 

in_reply_to_status_id String If the tweet object is a reply, then this field is filled 

with the ID of the tweet it's replying to. 

quoted_status_id int This field is filled with the tweet ID of the tweet 

the current tweet is quoting 

is_quote_status Boolean Indicates if the tweet is a quoted tweet 

quote_status Tweet This contains the tweet object of the original tweet. 

retweeted Boolean Indicates if the tweet is retweeted; always false 

because the attribute is deprecated. 

retweeted_status Tweet This contains the tweet object of the original tweet. 

user User This user object contains an id, name, 
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Object screen_name, location, descriptions, and more. 

entities Entities Any hashtags, URLs, or user mentions will be 

listed here. 

possibly_sensitive Boolean This is only true when the tweet contains a URL in 

the tweet. 

lang String Indicates the language the tweet was written in. 

Table 1: Individual tweet JSON structure for Twitter v1 

 

4.2 Hydration 

 Once the tweet IDs were stored, we hydrated them using an API called Twarc. Twarc 

uses Twitter API credentials to provide access to different functionalities like searching, filtering, 

hydrating, dehydrating, etc. Once our team received academic research access to the Twitter 

API, we were able to hydrate tweets using Twarc. Twarc is fed a list of tweet IDs and in return 

gives back a JSON object of tweets [3].  

 One issue with this whole process is that between the time the tweets were gathered 

(April 2020) and the time the tweets were hydrated (March 2022) Twitter changed the formatting 

of the API JSON object. So, we needed to educate ourselves on the differences between the 

Twitter v1 and Twitter v2 APIs. Table 2 shows the attributes of the Twitter v2 API, and a 

description of each attribute. 
 

 

Attribute Type Description  

id String Essentially identical to id_str in v1 

text String The UTF-8 encoded tweet 

attachments Object Specifies the types of attachments in the tweet 

author_id String Unique identifier of the user that posted this tweet 

created_at Date (ISO 

8601) 

Date and time the tweet was made 

entities object Entities that have been excluded from the text 

attribute that are included in the original tweet. 

lang String Language the tweet was written in 

possibly_sensitive Boolean This field is true when a link is contained 

data Object The main object of Twitter v2, it encapsulates all 
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above attributes. 

includes Object This object is inserted if any users, polls, media, 

or place fields need to be included in the 

response. 

users Object Array of user objects that contain attributes such 

as created_at, id, username, verified, name, etc. 

media Object Array of media objects that contain attributes 

such as height, duration_ms, media_key, type, 

public_metrics, etc. 

Tweets Object Array of tweets can be in both the includes object 

and the data object, and contains typical tweet 

attributes such as id, created_at, text, author_id, 

etc. 

Table 2: Individual tweet JSON structure for Twitter v2 API 

 

 From the Twitter v2 JSON object, we needed to only extract a few attributes to label the 

data. We extracted the text from the data JSON object of the first 6,000 tweets and stored them in 

files for each team member to label (1,000 tweets each). Additionally, we needed the user_name 

attribute when we were examining which tweets contained misinformation, so we could find 

common sources of bad facts [4]. We could use this information to share with the user to steer 

them clear of users that commonly don’t share truth.  
 

 

 

4.3 Label Structure  

 

Tweet Label 

It’s irresponsible to write “Coronavirus is killing black people” 

without explaining why. 

 

And we know why: 

 

Poverty, medical redlining, doctor bias, profiteering... 

 

It’s like reporting: “For some reason, Black people keep dying 

when the cops show up” 

 

YOU. 

HAVE. 

TO. 

General 

misinformation 
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SAY. 

WHY. 

Table 3: Individual tweet bucket labeling 

 

Table 3 demonstrates the format that we used to label the hydrated tweets. The First 

column indicates what the tweet is and the second and final column is which category we placed 

the tweet. The first column was filled using the Panda library in Python and stored into a CSV 

file, one for each member. Then each team member labeled each tweet using the second column 

in their respective CSV file. 1,000 tweets were stored per .csv file. 
 

Figure 1: Label Buckets 
 

As seen in Figure 1, these are the seven designated labels that we came up with before, to 

sort the tweets into. Each team member made a best effort labeling each tweet. However, 

uncertainty and inconsistency existed in some cases, which could lead to problems with our 

subsequent work on classification. 

4.4 JSON Layout 

 In this project, we devised several scripts to obtain the data required. The first script was 

used to extract the tweets’ IDs from the collected tweets for tweet hydration.  
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Figure 2: Raw Tweet JSON Layout (Twitter v1) 

 

Figure 2 is an illustration of a JSON file of raw tweets. From there, we extracted the tweet ID 

and stored it in a file, to be hydrated using Twarc. The hydrated tweets were returned in Twitter 

v2 format (see Figure 3) which differs from Twitter v1 format (recall Figure 2).  
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Figure 3: Twarc Tweet JSON Layout (Twitter v2) 

 

4.5 Script Design 

 The chosen language for this project was Python. We could have chosen any language to 

make these scripts, but Python was chosen because of its flexibility in script design and since all 

our group members were comfortable with using it. 

 

 We chose to make several Python scripts. The first script was to run over the large initial 

file given to us by our client and remove duplicate tweets; a screenshot of the script is shown in 

Figure 7. The second script extracts the tweet IDs and stores them into a separate file [5]. The 

third script hydrates these tweets. The fourth script stores these hydrated tweets into different 

CSV files for labeling. The fifth script, which was given to us by our client, was the machine 

learning model that we needed to input our labeled tweets into. As shown in Figure 4, our plan 

was to clean, train and then evaluate our machine learning model and then continue to iterate 

through this pattern until we were satisfied with the accuracy of our algorithm. 
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Figure 4: Training Model 
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5.0 Implementation 
Our implementation for this project included the use of several software components. 

There is one converter for individual tweets. The converter takes the form of a Python script that 

accepts an input data file and outputs a set of converted JSON tweets.                       

Clean dataset to filter out non-

English tweets, and tweets that 

are not on the platform anymore. 

 

Get raw data on 

COVID related tweets 

Gather tweet IDs to 

hydrate still existing 

tweets using Twitter API. 

 

 

Classify tweets based on their text into 

one of the following categories: Fake 

cures, Quarantine Guidelines, General 

Misinformation, COVID 

Cases/Deaths/Testing, COVID Source, 

Other, and Truth. 

Train an AI model with a 

labeled subset of tweets. 

 

Filter tweets based on type of 

misinformation 

 

Figure 5: Methodology Pipeline 
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 As seen in Figure 5, the first crucial step in our project was that we convert the raw data 

into a JSON file. Additionally, we wrote the converter scripts to consistently output their JSON 

data with a single JSON object per line. There are several advantages to this approach: 

● Data can easily be obtained and cleaned from the desired object. 

● Data is formatted in a professional fashion to present to our client. 

5.1 Implementation Environment 

 This project was completed on a server provided by Dr. Fox and Dr. Mohamed Farag. 

The server operating system is Centos 7 (Linux) and the server has 2 TB of disk space with 8 

cores, and 32 gigabytes of memory. The server also contains a GPU which we leveraged when 

training and testing the AI model. Before running any of the scripts we installed Python 3.6.8 

and installed the following libraries: scikit-learn, pandas, JSON, warnings, Gensim, and io. 

These libraries were used one or more times to prepare the data or train the AI script.  

5.2 Script Implementation 

5.2.1 Cleaning Tweets 

 The cleaning tweets process consisted of processing the raw, collected data, and breaking 

it into JSON objects. Our first script took care of this by removing duplicated tweets and tweets 

that were not in English. Figure 6 gives the Python script that we used to achieve this desired 

goal of obtaining clean, readable tweets from the raw collected data. Since the raw data file was 

so large, we decided to read it by line using Python. We also wanted to collect all tweets – 

including retweets and quoted tweets – in English, this is shown in Figure 6. After running the 

script, the result was output into a JSON file [5]. 
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Figure 6: Cleaning Script  

5.2.2 Removing Duplicates 

 We did not want to teach the AI the same thing repeatedly, so removing duplicated tweets 

was a crucial step. For this script, we utilized a dictionary in Python and added the tweet IDs to 

it. Each tweet has their own unique tweet ID, so for every single ID that was extracted and 

cleaned from the original raw file, we would check to see if the tweet ID was already in the 

dictionary. If not, it was added to the dictionary, and if it was, then it was skipped. 
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Figure 7: Removing Duplicates Script  

5.2.3 Hydrating Tweets 

 Tweet hydrating is the process of filling an object with data – in this case, JSON objects 

with tweet data. Tweet hydrating generally involves four steps. The first step involved finding a 

data set to work on. That led to the tweet IDs extracted from what we cleaned and collected from 

the client’s raw COVID tweet data. The second step was to make a Twitter account and register 

it under their developer program. This was important because Twitter is very protective about 

who has access to their data. To get a developer account, one must visit Twitter’s developer 

website and apply. With the consumer (API) key, consumer (API) secret, access token, access 

token secret, and bearer token (optional), we were able to hydrate the tweet IDs, using the 

Twarc2 library [3]. The general layout for setting up Twarc is: 

 

from twarc2 import Twarc 

t_inst = Twarc(consumer_key, consumer_secret, access_token, access_token_secret) 

 

BEARER_TOKEN=BEARER_TOKEN 

CONSUMER_KEY=CONSUMER_KEY 

CONSUMER_SECRET=CONSUMER_SECRET 

ACCESS_TOKEN=ACCESS_TOKEN 

ACCESS_TOKEN_SECRET=ACCESS_TOKEN_SECRET 

 

 

 

 

5.2.4 Word Frequency Analysis 

 After all the hydrated tweets were gathered in a file, we decided it would be beneficial to 

get an idea of frequently used words used in the tweets so that we could produce a classification 

scheme that would reflect what’s inside the data. To do this, we needed to be able to store and 

look up words quickly since this database of hydrated tweets has tens of thousands of unique 



 

19 

words. We decided to use a dictionary in Python because it offers O(1) lookup and insertion 

time. The idea was simple: parse each tweet word by word and if the word was already in the 

dictionary, then use the word as the key and add one to the value. If the word didn’t exist in the 

dictionary, then add the key value pair (word, 1) to the dictionary. Once this was done for all 

tweets, we sorted the dictionary by value and printed out the most common words. We omitted 

common words such as “the” and “and” because these words hold no relevant value. This was 

possible by using a stop word list.   

 

 When we ran this script, we unfortunately couldn’t find value behind the words that were 

commonly used. Figure 8 shows the most frequently used words we found from running the 

word_frequency.py script. As you can see, there’s not a lot of value that we can extract from this 

list of words. So, we decided to produce a list of classes, which were agreed upon by our client, 

independent of this script. The seven tweet classes that, we thought, cover the quarantine COVID 

timeline are: COVID Source, Fake Cure, Quarantine Guidelines, General Misinformation, 

COVID Cases/Deaths/Testing, Truth, and Other. 

 

 
Figure 8: Most common words in hydrated data 
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5.2.5 Making Training Sets 

Our goal as a team for training the machine learning script was to label 6,000 tweets. To 

make that fair, everyone on our 6-person team was assigned 1,000 tweets to examine and label. 

To do this, we used a simple modulo operator to divide up the first 6,000 tweets in the dataset to 

train. Since the tweets were in no order, selecting the first 6,000 tweets was random. We created 

dataframes for each person in the group and added a frame with just the tweet and an empty 

‘label’ column that they were to later fill in. Once there were 1000 frames in each dataframe we 

exported the dataframe into a CSV file then downloaded and shared on Google Drive so 

everyone could label their tweets. Each CSV file is 1000x2 in dimension; see Figure 9.  

 

  
Figure 9: Screenshot of Google Sheets with labeled tweets 

5.2.6 Making Training/Testing Folders 

Once someone in the group finished the labels, the make_ai_data_folders.py script was 

used to convert the CSV file into something compatible with the machine learning program our 

client gave to us. To make the CSV file compatible, each tweet needed to be put into its own 

separate file and placed into a folder with tweets that share that same label. So, ‘general 

misinformation’ tweets are inserted into their own folder, while ‘truth’ tweets are inserted into 

their respective folder, and so on. However, these folders could not be given their conventional 

names, they needed to be numbers. So, we assigned a number to each classifier as follows: 

(Quarantine Guidelines: 0), (Fake Cures: 1), (COVID Source: 2), (COVID 

Cases/Deaths/Testing: 3), (General Misinformation: 4), (Other: 5), (Truth: 6). 

Each CSV file that was ready was converted into text files by using the 

make_ai_data_folders.py script and passing in the CSV file as an argument. The script can take 

an unlimited number of CSV files and convert each tweet in them into a text file. Each text file is 

given a simple name; the naming convention for each tweet file is: “integer”.txt. For example, 

the first tweet’s file name would be “0.txt” and the second would be “1.txt”, and so on. If the 

program doesn’t recognize a label because of a misspelling it will print out the label and the row 

number of the tweet occurrence in the CSV file. This helped find and correct spelling mistakes 

that team members made while labeling. 
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5.2.7 Training and Testing the AI Model 

 Our machine learning script is called ‘text_classification.py’ and uses the sklearn library 

from Python [6]. The first objective of our client’s script is to read in the folders of tweets, which 

can be done by passing the name of the folder that holds the classifier folders in as an argument. 

Once the argument is read, the files are loaded into the program and split into training and testing 

data. We allocated 80% of the files to training, and 20% of them to testing. Next, some 

pipelining is done using SVM and TFIDF (term frequency-inverse document frequency). What 

this pipelining does is create a matrix, including every word used in the whole training set, which 

is used in the training aspect of the script.  

SVM (Support Vector Machines) aimed to find a separating line between 2 or more 

classes of data, and since we had 7 classes, this type of machine learning model was perfect. 

SVMs work by finding points closest to a line (the entity that distinguishes 2 classes); these are 

called support vectors. The distance between the line and support vectors is called a margin and 

the hyperplane that maximizes the margin is said to be the optimal hyperplane. This is expected 

because if the points closest to the line are far away relative to other hyperplanes, then these 

points are easier to distinguish between classes and there is higher confidence in classification 

[7]. 

 We excluded some of the most common words by using a stop word list using Gensim.  

Such words have little value toward classification [8]. We also used stemming to remove 

prefixes and suffixes from words [9]. Once the matrix is made, a classifier model is built using 

the training data, and an F1 score is calculated. 

 Once the model was trained, it was saved as a .joblib file which can then be used to label 

the rest of the hydrated tweets. After, we tested the model and checked for accuracy and recall, 

which are two important criteria in evaluating the performance of a machine learning model. 

Evaluation results are shown in Figure 13. 

 Originally, we had used all labeled tweets to train the machine learning model. However, 

because of an uneven distribution of tweet labels this made our model less accurate for certain 

classifiers. The uneven distribution of tweets can be seen in Figure 10. The performance metrics 

for the uneven tweet labels is highlighted in Figure 11. To combat this problem, we revised the 

make_ai_data_folders.py script to find the fake news category with the smallest number of 

tweets. From there, we limited the number of tweets in the other categories as well so that it 

would be more evenly distributed. In our case, the ‘Covid Source’ classifier had the lowest 

number of labels at 250. Figure 12 shows how the tweet categories were distributed. Comparing 

the F1 scores from Figure 11 and 13, we see that distributing the tweets more evenly positively 

affected the performance of the classification model. 
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Figure 10: Uneven Distribution of Tweet Labels 

 
Figure 11: Performance Results for Unevenly Distributed Tweets 
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Figure 12: Even Distribution of Tweet Labels 

 

 
Figure 13: Performance Results for Evenly Distributed Tweets 
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 Our main criteria to validate the accuracy of our fake news detector was the F1 score and 

the accuracy score, as instructed by our client Dr. Farag. As our team didn’t have much 

background knowledge on machine learning or artificial intelligence, we followed Dr. Farag’s 

advice. An F1 score is calculated using the precision and recall of the model and can be found 

using: 𝑓1 =  2 ∗  (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + # 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  

and 𝑟𝑒𝑐𝑎𝑙𝑙 =
# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + # 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  [10]. 

 

As shown in Figure 13, our F1 score is lower than our target mentioned in Section 3.2. However, 

we still received some good tweet predictions. Of course, there were some poor predictions as 

well; examples of predictions can be seen in Table 4.  

 

 

 

Tweet Classifier 

African-Americans dying of coronavirus at 

higher rates, preliminary data shows 

COVID Source 

RT @FloydShivambu: The socioeconomic 

conditions, access to healthcare, and the inter 

generational poverty of black people in 

America places… 

Truth 

It’s irresponsible to write “Coronavirus is 

killing black people” without explaining why. 

 

And we know why:  

 

Pover… 

COVID Cases/Deaths/Testing 

Clear and forensic account from Reuters of 

how #COVID19 policy in the UK evolved 

from January to March, and how the… 

Quarantine Guidelines 

RT @kieran_walshe: Clear and forensic 

account from Reuters of how #COVID19 

policy in the UK evolved from January to 

March, and how the scie… 

General Misinformation 

Mayor of Greater Manchester Andy Burnham 

says 4 in 10 cars on Gtr Mcr’s roads are now 

exceeding speed limits. Befor… 

Quarantine Guidelines 

Bernie Sanders' announcement comes after 

weeks of clinging to an all-but-impossible 

General Misinformation 
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path to victory over his modera…  

Hydroxychloroquine is a drug needed to treat 

hundreds of thousands of Americans with 

Lupus and Rheumatoid Arthritis… 

Fake Cures 

Thinking of seeing friends and family this 

Easter? Don’t. 

 

If you leave home, you could catch or 

spread… 

Quarantine Guidelines 

RT @GOVUK: Thinking of seeing friends 

and family this Easter? Don’t. 

 

If you leave home, you could catch or spread 

#coronavirus.  

 

#StayHom… 

 

Quarantine Guidelines 

Table 4: Tweet Classifier Examples 

 

 Also shown in Figure 13, we calculated a confusion matrix, which is another way to 

gauge the performance of our classification algorithm. To calculate a confusion matrix, we 

needed to know the total number of correct predictions, and the total number of incorrect 

predictions, organized by the class that was predicted [11]. For example, the number 0 refers to 

the class ‘Quarantine Guidelines’ so row zero corresponds to ‘Quarantine Guidelines’ in the 

confusion matrix. Each entry in row zero represents the number of times a tweet was classified in 

the corresponding column. So, entry [0,0] in the confusion matrix represents the total number of 

times a tweet classified as ‘Quarantine Guidelines’ was predicted to be a tweet regarding 

‘Quarantine Guidelines’. To continue, entry [0, 1] represents the number of times a tweet 

classified as ‘Quarantine Guidelines’ was predicted incorrectly as ‘Fake Cure’.  

 Upon closer inspection of the confusion matrix in Figure 13, it seems that entries at 

columns 4 through 6 and rows 4 through 6 are high compared to other entries in the matrix. This 

indicates that there are tweets that are mis-predicted between the ‘General Misinformation’, 

‘Other’, and ‘Truth’ classifiers. The causes for this could be any number of reasons. One such 

reason could be that these classes are too general, relative to the others. There also could be 

problems related to selection and weights of keywords. For instance, the ‘General 

Misinformation’ classifier could be looking for keywords such as ‘mask’ and ‘social distancing’ 

that also were weighted highly by the classifiers for ‘Other’ and ‘Truth’, so it’s more difficult to 

distinguish between them. 

 5.2.8 Front-end 

 The main goal of our front-end was to display both a timeline of tweets that the 

classification model had labeled, and statistics on tweets/users. To achieve this, we created an 

Angular project that can read from the JSON files that the backend produces. At first, when the 
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team was trying to access the information in the JSON files, we did not realize that we could not 

simply iterate through the file in a for loop. For example, if we wanted to acquire the most used 

word in a specific category, the JSON had the word stored as the key, and the number of times it 

showed up as the value. This meant that if we were to access the JSON file, we would need to 

know the word specifically to access these numbers. To work around this, we decided to order 

the JSON values with ranks, going from 1 to x, and the values being both that common word as 

well as the number of times it showed up separated by a comma. This allowed us to access the 

JSON with a simple for loop, grabbing the most important keys at the front, and using string 

manipulation to separate both the word and the number to be displayed. 

 

 This project used two components to display our different pages: the timeline component 

and the statistics component. The timeline component shows a vertical scrollable display of how 

many tweets were flagged each calendar day, with different buttons to switch between each of 

our different classifiers. Figure 14 in Section 7.4 shows the timeline, the buttons to navigate 

between each classifier, and the navigation buttons at the top to switch between the timeline and 

statistics pages. 

 

 The statistics tab shows general statistics about each tweet category. The statistics shown 

are separated by each category, and all have the most common word, average tweets flagged per 

day, most common Twitter account, and an example tweet from the respective bucket. All this 

information is pulled from separate JSON files and updates the HTML document as each button 

is pressed. Finally, the buttons for each classifer can change what information is displayed, like 

the timeline page. Figures 15 and 16 in Section 7.5 are two screenshots of the All Tweets 

classifier and the Quarantine Guidelines classifier, respectively. 
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6.0 Testing 
We implemented several scripts to ensure we generate the desired output for each 

specific test. The first test was to make sure that no tweet IDs were repeated. The second test 

ensured that the Twarc library hydrate function worked as expected. The third test that we 

deployed was to test user’s satisfaction on our interface. Finally, the fourth test was used to learn 

about the Twitter v2 API format, since there was very little information available online. 

6.1 Tweet ID Test Implementation  

The first script was quite simple. Since we had outputted all our tweet IDs to another file, 

after cleaning, all we had to do was make a Python program where we open the input file and 

check the number of times that tweet ID appears. If that number was greater than one, we ignore 

that specific tweet ID from the program. If it is one, then we output that tweet ID to a final JSON 

file – storing each tweet ID per line. 

6.2 Hydration Test 

Since no one on our team had experience with the Twarc library, we thought it would be 

beneficial to test it out. Specifically, we wanted to make sure that the hydration command 

worked correctly. To test this, we had a small text file of 10 tweet IDs we published ourselves. 

Five of the IDs were of tweets we knew were online and five were tweets that we deleted. We 

ran the hydration command and found that all the online tweets were returned while the deleted 

tweets failed to hydrate. From this test, we knew that there weren’t any issues with the Twarc 

library. 

6.3 Users’ Satisfaction Test 

For testing the UI, we asked several people to use it and give us feedback after a certain 

period. The purpose of this was so we could receive the general sentiment from users while using 

our interface. Furthermore, we were able to focus on observing bugs that we missed while 

coding. This could range from buttons that would not work when clicked, to a timeline that fails 

to display, and more.  

This testing was done by letting about 15 different people in different majors test out our 

front-end. These majors spanned ECE to BIT to Art majors, and all had varying knowledge of 

computers and technology. The questionnaire had different questions to be rated by a score of 1-

5, with the questions being things such as ease of accessibility, visual appeal, how easy it was to 

understand, and so on. At the end, the form asked for additional comments, both positive and 

negative, and then a final question about any bugs that may have occurred; fortunately, none 

were found.  

Many of these users liked how easy it was to understand what the program was about and 

how everything was laid out well for easy access. However, most said that our visual appeal 

department was our weakest, as our front-end looked very bare, with minimal colors. We learned 

that we needed to change things on both the statistics as well as the timeline pages. Many people 

suggested that the timeline was too long, and that people had to scroll too much for the number 

of tweets we were displaying. We fixed this by changing the timeline to display the number of 



 

28 

tweets per day rather than each individual tweet, and had the statistics page show individual 

example tweets for each classifier. Though the timeline was still relatively long, our client 

wanted the information we were displaying at the minimum, and we could not cut the timeline 

page to be any shorter. Table 5 highlights the questions and average responses from the survey. 

 

Questions Average 

Response 

How easy is the application to maneuver? 4.6 

How visually appealing is the application? 2.2 

How easy is it to understand the application? 4.8 

How easy is it to find the specific information you are looking for? 3.7 

Table 5: User Satisfaction Question Results 

6.4 Manual Inspection Test 

 There was another method we used to test our expected output data. Unfortunately, we 

were unable to find much information on the Twitter v2 API JSON format. To help with 

comprehension, we needed to read one tweet object at a time. By hydrating individual tweets, we 

could determine easily if we extracted the correct attributes from the tweet object. We completed 

this test with different types of tweets to observe how the structure of the JSON object changed. 

We tested 5 original tweets, 5 retweeted tweets, and 5 quoted tweets to compare the structure in 

each.  
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7.0 User’s Manual 

7.1 Use Environment Discussion 

The command lines that are specified in the requirements use the Linux/GitBash versions 

of commands. If the user is on a different operating system, alter the command line commands to 

that operating system’s equivalent of the commands. 

7.2 Use Cases/Tasks Supported 

Our codebase can support a variety of different tasks, but these can mostly be put into 

three categories: data conversion, data validation, and data utilization. 

7.3 Web Application 

When the web app is first opened, the user will be directed to the tweet timeline showing 

the number of tweets for each day. There is a toolbar at the top with the timeline and statistics 

buttons which will take the user to each respective section. 

7.4 Timeline 

 On the timeline page, the user is presented with a title, a list of buttons, and a vertical 

timeline below all the buttons. The buttons change what is displayed on the timeline; the timeline 

itself shows a count of the total tweets flagged each day for possible misinformation. Figure 14 

demonstrates the user interface for the timeline. 

 

 
Figure 14: Timeline UI 
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7.5 Statistics 

 The statistics page is like the timeline page in that there is a title and then the buttons of 

all the buckets are listed. However, there is an extra button at the front that shows the statistics of 

all the tweets, the number of tweets that were true, number of tweets that are in each bucket, 

most popular false information tweeters, and the number of offending users posting to each 

bucket. The other category buttons will show the specific statistics of that category alone. Figure 

15 shows off the statistics we found in the entire dataset. Users are also able to see the same 

statistics for a specific classifier, an example is shown in Figure 16. 

 

 
Figure 15: All Tweets Statistics UI 

 

 
Figure 16: Quarantine Guidelines Statistics UI 
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8.0 Developer’s Manual 

8.1 Program Files 

 

Program Name Command Description 

clean_tweets1_1.py python3 

clean_tweets1_1.py 

<JSONl file> 

<output.txt> 

Taking in two arguments, the 

JSONl file (in Twitter v1 

format) is the input file 

clean_tweets1_1.py reads 

from and outputs the IDs in 

the output.txt file.  

make_ai_data_folders.py python3 

make_ai_data_folders.py 

<file_1.csv> <file_2.csv> 

… <file_n.csv> 

This program takes in n CSV 

files and reads them line by 

line. Each tweet in a line is 

placed in its own text file, in 

a folder corresponding to its 

label. Each label corresponds 

to a number 0-7. 

make_csv_files_for_training.py python3 

make_csv_files_for_train

ing.py 

This program will look at the 

first 6,000 tweets and divide 

them up into 6 dataframes 

using the Pandas library. 

Then, we convert the 

dataframe into a CSV file 

with the PID1 of each group 

member to specify. 

text_classification.py python3 

text_classification.py 

<data_folder> 

This program is the machine 

learning script that mainly 

leverages the scikit-learn 

Python library to do the 

machine learning. The 

program takes in a parameter 

which is the path to the 

directory that stores all the 

directory classifiers for the 

labeled tweets. From there, 

the tweets are divided into 

test and train, 80% and 20%, 

respectively. Then we use 

 
1 Refers to the unique alphanumeric username Virginia Tech designates for each student.  
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SVM to machine learn and 

determine the accuracy of the 

model through the F1 and 

accuracy score seen in Figure 

13. 

word_frequency_analysis.py python3 

word_frequency_analysis

.py 

This program looked at the 

hydrated tweets and used a 

dictionary to count the total 

times a word had been used 

in all the hydrated tweets. 

Common English words were 

omitted using a stopword list 

from the Gensim Python 

library. From there, we sorted 

this dictionary by the number 

of occurrences a word made 

and printed out the top 100 

most used words into a file 

called 

word_frequency_analysis.txt. 

Table 6: Program Files 

8.2 Data Files 

 

Program Name Command Description 

all_tweets.jsonl N/A File that stores all of the 

hydrated tweets. 

all_tweets_no_duplicates.txt N/A New file after running our 

script that removes all of the 

duplicated tweet IDs. 

all_tweets.txt N/A Original file that stores all of 

the tweet IDs of tweets that 

our client collected but stored 

as a text file. 

pure_JSON_covid.jsonl N/A Raw data file given to us by 

our client 

word_frequency_analysis.txt N/A Output after we run our 

frequency analysis script. 
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covid_zipped.gz N/A Original file that holds all the 

collected tweets data from our 

client. 

training_folder N/A Folder that stores our 6000 

labeled tweets in individual 

files.  

Table 7: Data Files 

8.3 Test Files 

 

Program Name Command Description 

remove_duplicate_ids.py python3 clean_tweets1_1.py 

<JSONl file> <output.txt> 

This program takes in a 

JSONL file, checks the IDs in 

the first line with all the other 

IDs. If there are any that 

match, ignore it, and output 

unique IDs to the output file. 

hydrated_test.txt twarc2 hydrate 

hydrated_test.txt > 

hydrated_test.jsonl 

Text file containing tweet IDs 

we know are on Twitter and 

that aren’t on Twitter. We 

expect hydrated_test.jsonl to 

have 5 tweets in the ‘data’ 

object and 5 in the ‘errors’ 

object showing that it 

couldn’t locate 5 tweets. 

manual_inspection_test.txt twarc2 hydrate 

manual_inspection_test.txt > 

inspection.jsonl 

Used to inspect the Twitter v2 

API format, 5 retweets, 

original tweets, and quoted 

tweet IDs in this file. 

Table 8: Test Files 

8.4 Miscellaneous Files 

 

Program Name Command Description 

raw_data_fooling_around.py N/A Used for testing codes. 

clean_tweets.py python3 

clean_tweets.py 

Used for cleaning our raw data file  
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find_retweet.py python3 

find_retweet.py 

Used this script to see if any tweet 

objects have the `retweeted” attribute 

set to ‘True’. Found out here that the 

attribute is deprecated. 

find_range_of_dates.py  Find_range_of_dates.py is used to find 

the range of dates of tweets that are 

collected. Originally our client, Dr. 

Farag said he collected tweets from 

April 2020 until March of 2021 

however this program shows that 

tweets are only collected from April 

2020 until the beginning of May 2020. 

Discussed in detail in Section 10.2. 

model.joblib N/A This is the machine learning model that 

is trained using labeled tweets. It is 

then used later to label the rest of the 

raw dataset. 

ericwiley10__training_data.csv N/A Eric Wiley’s tweets that he labeled. 

ferrinkirby__training_data.csv N/A Ferrin Kirby’s tweets that he labeled. 

tungngvyen__training_data.csv N/A Tung Nguyen’s tweets that he labeled. 

supplement_tweets.csv N/A Campbell Dalen’s tweets that he 

labeled. 

ktoroc__training_data.csv N/A Kyle Toroc’s tweets that he labeled. 

fareezaz__training_data.csv N/A Fareeza Zameer’s tweets that she 

labeled. 

word_frequency_analysis.txt N/A The 100 top most common words in 

the hydrated tweets. Used when 

considering different classifiers. 

Table 9: Miscellaneous Files 

 

The above tables are descriptions of all files relevant to this project. Table 6 describes all 

scripts used to clean, label, and train/test a machine learning model. Table 7 describes the files 

that contain the data we used. Table 8 is used to mention any testing we completed, and Table 9 

mentions miscellaneous files. 
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8.5 Tutorials 

8.5.1 Installing Python Libraries 

 The best and easiest way to install any of the Python libraries mentioned in Section 8.6 is 

to use the ‘pip’ command. ‘Pip’ stands for preferred installer program and is used widely today 

for adding Python libraries to a machine. To run it, simply type ‘pip install <library name>’ if 

you’re running on Python 1 or 2. If Python3 is running on your machine then use the command 

‘pip3 install <library name>’ instead.  

8.5.2 Working with Twarc 

 Like Pandas and JSON, Twarc is another Python library. However, it is also a command 

that can run on the command line. To do this, we first registered an API account on Twitter [12]. 

Once you’ve been approved for an account, you can run the command ‘twarc2 configure’. Once 

that is typed in, you will be asked to complete a bearer token; however, if you decline you can 

easily enter in your consumer_key, consumer_secret, API_key, and API_secret. Make sure you 

do not share these credentials with anyone [3]. 

 

8.5.3 Installing jq Command 

 Unlike other dependencies this is not mandatory. However, it is very helpful, and we 

wish we had discovered it earlier. The ‘jq’ command is useful for making JSON files much 

easier to read. In the raw data file, and the hydrated JSON files, each JSON tweet object could 

contain other JSON tweet objects, making readability very low. To add to the reading issue, the 

raw data file was very large, too big to open on any text editor. However, two commands, ‘head’ 

and ‘tail’ allowed us to see the beginning and end (respectively) of the raw file.  Once we had a 

smaller chunk of raw data, we used the ‘jq’ command to increase readability. To install this 

command requires several steps. First, we need to install the epel repository with the command 

‘yum install epel-release -y’. Since the jq command is part of the epel repository, installing it 

first is necessary. Next, we simply install the command calling: ‘yum install jq -y’ [13]. After 

that we have installed the jq command and we can call it by typing: ‘jq . <unformatted JSON 

file> > <formatted_output>. In Figure 17 and Figure 18, you can see the difference in readability 

between the unformatted JSON and the formatted JSON example. 
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Figure 17: Unformatted JSON Example  Figure 18: Formatted JSON Example 

8.6 Dependencies 

All scripts in this project were written in Python 3.6.8 because all members of this group 

were familiar with the language and there are libraries available that can work with big data. 

Further, the language is highly readable, writable, and is one of the most popular languages today 

so it made it very easy to search for any problems we had with a library or our own code. The 

following libraries were used in the making of this project: 

 

1. twarc 

2. JSON 

3. pandas 

4. scikit-learn 

5. joblib 

6. os 

7. sys 

 Further, we used a command called jq that helps make JSONl files more readable. This 

command can be downloaded following the instructions in Section 8.5.3. 
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9.0 Lessons Learned 
During this project, our group faced challenges and difficulties. Because of this we fell a 

little behind on our project timeline, outlined in Section 9.1. However, we were still able to 

complete our goals for the project and provide a front-end interface that achieves all that we 

wanted. Section 9.2 outlines any problems we encountered, and Section 9.3 describes how we 

overcame the problems we discussed in Section 9.2. Finally, Section 9.4 describes future work 

that could be done on this project. 

9.1 Project Timeline/Schedule 

● February 15: Have the data server updated and Git repository set up. Researched and 

examined other COVID misinformation datasets from Kaggle. 

● February 28:  Be able to grab unique tweet IDs and store them in file/data structure.  

● March 15: Gather news articles for mis/dis-information and label 1000 tweets as to 

whether they’re misinformation. 

● March 22: Completed back-end Python script that uses labeled dataset training data 

to determine if tweet provides mis/dis-information. Back-end scripts use Python 

libraries like Pandas, json, twarc, and scikit-learn. 

● March 31: Complete back-end testing. Be able to filter tweets based on sentiment 

analysis.  Researched different visualization tools for data. 

● April 8:  Have data organized and preliminary front-end UI using Angular to create 

front-end, detailed in Section 5.2.8 [14]. 

● April 15: Completed front-end of the COVIDFakeNews detector. 

● April 26: Completed front-end testing. Ready for presentation. 

9.2 Problems 

 Some problems that we ran into while doing this project was learning how to convert 

different types of data into JSON objects. Due to our limited prior knowledge of tweet 

extraction, tweet manipulation, and tweet hydration, we found it difficult to get started in terms 

of finding and extracting what we needed. Additionally, tweet objects can store other tweet 

objects if the tweet was quoted or retweeted, so there were many duplicate tweets. This made it 

difficult to differentiate between a tweet, a retweet, and quoted tweet. 

 

Another issue that we ran into was developing a user interface. Although we are all 

computer science students, none of us had much experience doing front-end coding – most VT 

courses and internships were focused on the back-end.  Additionally, connecting the front-end of 

our code and the back-end was difficult. Further, we didn’t know how to make the user interface 

available online, once we had it completed.  
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9.3 Solutions 

 In terms of extracting data, we were able to solve our problems by learning how to utilize 

JSON objects under the Twitter V2 data model. This was made possible by hydrating tweets with 

the Twarc2 library, which returns a JSON object. Inside that object, we were able to parse 

through every tweet since each new tweet has a different header. This was done by reading line 

by line of the JSON file.  
 

As for building the UI issue that we had, a few of our group members ended up learning 

Angular – utilizing Jquery, HTML, and CSS. This allowed us to implement a front-end that 

satisfied our client. As for the issue regarding connecting the front-end to the back-end, we 

solved this by implementing a reader for our UI, then passing in JSON files for the program to 

display. 
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10.0 Future Work 

10.1 Front-end Future Work  

When planning out the front-end, we made a list of what the client wants shown on it. 

Our client wants the timeline to show # of tweets per day, as well as certain statistics for each 

classifier we have created. However, since it is already set up to read from a JSON file, the 

timeline could be changed to work with a collection of tweets where a few tweets are shown for 

each day. On the statistics page, there could be a count of the users tagged by each classifier. On 

top of this, each classifier could have a word bubble that shows the most used words in each 

respective classifier. Additions could be made to the home screen, such as to have an explanation 

of our project, or information about the website and how it works. 

10.2 Back-end Future Work 

 While lots of progress has been made on the back-end side, there are some improvements 

that could be made. To start, the machine learning model should be exposed to more Twitter 

content and content from a wider range of dates. As said before, initially Dr. Farag had stated 

that he had collected Twitter data for about a year, however looking closer at the data it seems 

that tweets were only collected for about a month. This severely limited the events and keywords 

that the machine learning algorithm was exposed to, and there might be a decrease in accuracy if 

it were exposed to tweets published today.  

 

 Next, the connection from the front-end to the back-end could be more fluid. Right now, 

the back-end creates a JSON file that the front-end just reads from for the statistics and the 

timeline of tweets, and it’s not so dynamic. On top of the statistics that we collected, some 

analysis should be completed on the common URLs that had been included in fake news tweets. 

This could shed some light on the websites that are spreading false information about the 

pandemic, and which ones are reliable.  

 

 There is also another issue that is currently unaddressed, which is how the tweets were 

collected. When Dr. Farag, our client, was introducing us to this project, he mentioned the tweets 

were collected from April 2020 until May 2021. For some reason, tweets were only collected 

from early April 2020 to May 4, 2020. The client said to not worry about it since we discovered 

this late in the project. However, in the future other datasets could be used that span a longer 

period. Increasing the time span of tweet collection will also introduce more variety of events 

related to COVID into the dataset. If a subset of these new tweets can be classified and used to 

train the classification algorithm, then it might become more accurate. 

 

 Lastly, the hydration process could be sped up. Something we didn’t anticipate was the 

slowness of hydrating around 120 million tweets. This came as a surprise because every other 

script we had written also looked at each individual tweet and only took a few hours. However, 

hydrating this many tweets took about a week. Upon closer inspection we noticed that the API 

account we had only allowed fifty requests every 15 minutes. Each request contained around 100 

tweet IDs, but that is still slow compared to everything we had done so far. In the future, if teams 
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want to iterate on this project rapidly then it would be wise to upgrade to a more premium 

account where the Twitter API does not down slow the developers.  
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