

Anti-Poaching Drone Control

CS 4624 Multimedia, Hypertext, and Information Access

Virginia Tech, Blacksburg, VA 24061

Professor: Dr. Edward A. Fox

Client: Dr. Francesco Ferretti

May 11, 2022

Authors:

Cory Bishop

Matthew Lyman

Matthew Hudson

1

Table of Contents

Table of Figures... 2

Abstract .. 3

Introduction ... 4

Deliverables/Requirements .. 5
Deliverables .. 5
Material Requirements ... 5

Implementation ... 6
Phase 1 - February .. 6
Phase 2 - March .. 6
Phase 3 – April (Current Phase) ... 6

User’s Manual ... 7
Frankenstein Drone .. 7
Hexacopter .. 8
Camera Calibration Procedure.. 9
Modifying Camera Launch Files .. 11

Developer’s Manual .. 13
Time Spent on Major Tasks ... 13
Inventory... 13
Running a Single Camera ... 15
Running Two Cameras ... 16
Recording Video from the Camera ... 16
Video Playback ... 17
Camera Calibration ... 17
Connecting Remotely to the Drone .. 18
4G Module Startup Script ... 19

Lessons Learned .. 20
Clarify Deadlines Ahead of Time ... 20
Ask for Help ... 20
Abandon Failed Implementations Quickly ... 21
Plan Work to Progress During Roadblocks .. 22
Learn How to Learn and Troubleshoot On Your Own ... 22
Clarify Intentions for Project Tasks ... 22

Future Work .. 24

Acknowledgements ... 25

References .. 26

2

Table of Figures

Figure 1: Frankenstein Drone ... 7

Figure 2: Hexacopter Drone Hardware ... 8

Figure 3: Camera calibration window... 9

Figure 4: Example of moving the checkerboard around the camera field of view. 10

Figure 5: Example usb_cam launch file.. 11

Figure 6: Example v4l-utils output ... 11

Figure 7: Example "v4l2-ctl --device=0 --list-formats-ext" command output 12

Figure 8: Running usb_cam and image_view to view camera output .. 15

Figure 9: Running two cameras launch file .. 16

Figure 10: Calibrating the camera using the checkerboard pattern. ... 18

Figure 11: Network architecture ... 19

Figure 12: VT Drone team members .. 25

3

Abstract

Our client, Dr. Francesco Ferretti, is head of the SeaQL Lab in Virginia Tech’s Department of

Fisheries and Wildlife Management. Dr. Ferretti coordinated with the Marine Management

Organization (MMO) of the UK to design and develop an autonomous drone system to monitor

the waters around the Chagos Archipelago in the British Indian Ocean Territory. The drones will

fly predetermined flight paths to detect boats potentially poaching sharks in those waters. Given

the large territory and limited resources, the autonomous drone detection system will decrease

the cost, time, and complexity of monitoring poaching around the archipelago compared to live

Coast Guard and boats. The ultimate goal is to preserve the sharks and larger ecosystem in these

waters. Joining with the SeaQL Lab team, we were assigned individual tasks to help us get closer

to building a final, working autonomous drone system.

Our team’s primary work included calibrating and recording with cameras connected to the

NVIDIA Jetson Nano computing module, finishing construction on a DJI Phantom 3 drone and

hexacopter, and writing a script to automatically start the 4G cellular module to provide wireless

Internet connectivity to the Jetson Nano. On recommendation from Dr. Chesi on the SeaQL Lab

team, we often divided up the tasks they assigned for us. Matthew Lyman researched camera

calibration and writing the scripts for the 4G module startup. Matthew Lyman and Cory Bishop

focused on repairing the DJI Phantom 3 drone with hopes of performing test flights before the

primary hexacopter kit was finished. We followed numerous forums and videos for

troubleshooting issues. The drone’s problems included two propellers not spinning and the

remote controller not connecting after other SeaQL Lab members had rerouted power from the

drone’s battery. Next, we followed video tutorials to assist Zach Wendel and Katie Gilbert on the

larger drone team in completing the hexacopter kit. This build-it-yourself Tarot FY680 drone kit

will be our primary drone for flight testing the poaching boat detection models with the Jetson

Nano. Lastly, the client had an issue where they must manually restart the Jetson Nano’s 4G

cellular module for connecting to the Internet. Matthew Lyman took charge on writing a script to

startup the wireless module automatically when the Jetson Nano powers on, saving our clients

time during flight testing. Without the 4G cellular connection, the Jetson Nano cannot remotely

relay flight commands or video from the drone to the server.

The rest of this report outlines our work through: Deliverables, Requirements, Timeline of Work,

Testing, User’s Manual, Developer’s Manual, Lessons Learned, and Future Work recommended

for after the project.

4

Introduction

For the overall project scope, some broad tasks include: develop a machine-learning algorithm to

detect potential poaching boats; build the drone and detection computer used for flight testing;

and stream video feeds and detection alerts over a cellular connection to a server monitoring

dashboard.

We were tasked with fleshing out functionality of the dashboard Coast Guard rangers would use

to view video feeds and detection alerts from the drone swarm, as well as direct the swarm’s

flight path. However, the initial dashboard design was reliant on a third-party. As we haven’t

received the initial dashboard prototype, we’ve assisted in other small tasks in testing the

cameras with the Jetson Nano[8] computing module to be attached to the drones, and assisted in

making two different prototype drones operational.

Our first major tasks centered around calibrating the cameras to be used with the Jetson Nano

computing module to actually receive video feed to be analyzed by the poaching boat detection

algorithm. Two cameras are intended to be used: one wide angle and one long range. While a

few issues arose regarding camera resolution, the calibration process[6] was easy to follow. The

Robotic Operating System (ROS)[7] provides the main controls and video recording capabilities

used on the Jetson Nano. The ROS Wiki[4][7] provided simple steps and tutorials for connecting

both cameras and calibrating them.

After camera calibration was finished, we were asked to repair the “Frankenstein” drone for

flying. This “Frankenstein” drone is a store-bought DJI Phantom 3[9] intended to perform flight

testing before the hexacopter kit assembly was finished. However, we abandoned this task after

running into several issues with some propellers no longer spinning and the drone not completing

startup. We believe this was due to some power-routing to power the Jetson Nano from the

drone’s battery. We switched to help complete the main prototype drone, the hexacopter.

Zach Wendel and Katie Gilbert took responsibility for constructing the hexacopter drone[10]

from a do-it-yourself kit, with occasional help from Jeremy Jenrette when issues arose. We

attempted to pick up work where they left off by following video tutorials[11]. However, they

still finished the bulk of the work since they had been building from the beginning, such as

soldering wire connections and connecting radio modules. Some difficulties also arose when

parts in the kit did not meet our needs, or the video tutorials strayed from the particular setup we

were building. As of May 4, 2022 the hexacopter is not fully finished.

The sections below outline the steps we took to complete our work.

5

Deliverables/Requirements

Deliverables

Our deliverables will be a fully calibrated camera that fully functions with ROS

wirelessly and is able to also communicate properly with a kit-built drone in-flight. We

looked into the “Frankenstein” Drone to see if it could be repaired for flight where we

deemed it as unable to fly. We will be assisting with building the Hexacopter drone for

use with test flights. We will also research alternative cameras for the drone to use as

well as allowing the drone to record with two cameras at the same time. We will deliver

a full tutorial on how the setup is organized and utilized under the User Manual. Finally,

we will also create a 4G module startup script that will be a bash script that will check if

the module was plugged in, install drivers/updates as needed, enable the 4G module, and

dial into the network and allocate an IP.

Material Requirements

The materials and software required for our project to meet these deliverables are

hardware capable of running the ROS environment in Ubuntu Linux, a Runcam

Camera[2] for calibration and output manipulation, and a drone for test flights.

6

Implementation

Phase 1 - February

1. Set up ROS (Robotic Operating System) environment on personal hardware and capture

video and images through a Runcam Camera with ROS.

2. Store the recorded video file into a .bag file type using ROS commands.

3. View Runcam Camera output live on a remote connection.

Phase 2 - March

1. Disassemble the “Frankenstein” Drone (DJI Phantom 3) to see why it is not functioning

properly.

2. Assemble the Hexacopter Drone as a replacement for the “Frankenstein” Drone.

3. Assemble tutorial for setting up and calibrating the Runcam Cameras with ROS.

Phase 3 – April (Current Phase)

1. Research camera alternatives to achieve a better resolution for the same price as the

Runcam Camera.

2. Test the Hexacopter Drone to ensure it works properly.

3. Allow for multiple cameras to be run at the same time.

4. Create a 4G startup script.

7

User’s Manual

Frankenstein Drone

The Frankenstein drone was the initial test drone for the project. It consisted of a DJI

Phantom 3 drone with a Jetson Nano module and a camera attached to it. We used this

drone to initially test the cameras. Something on the drone got messed up when work

was done to power the Jetson Nano module from the drone’s battery. This led to the

drone no longer working. Time was spent trying to troubleshoot the drone, but it was

ultimately abandoned, at request from the client, so that we could assist with the

assembly of the hexacopter.

Figure 1: Frankenstein Drone

8

Hexacopter

The hexacopter was built from a drone kit that was purchased on Amazon[10]. The kit

came with all the components needed for an autonomous drone. To complete the kit,

work was needed on the assembly and wiring of the drone components. We assisted Zach

Wendel and Katie Gilbert with the build by following along with a YouTube tutorial[11].

Once built, the drone looked like the figure below.

Figure 2: Hexacopter Drone Hardware

The drone consists of a 4G antenna, autopilot, GPS, camera, radio, RC receiver, and a

Jetson Nano. The Jetson Nano is the computing module that ties everything together.

9

Camera Calibration Procedure

1. Print out the 8x6 checkerboard with 108mm squares that can be found on the

calibration tutorial page in the ROS wiki[6].

2. Get the dependencies and compile the driver by running the following command:

rosdep install camera_calibration

3. Run the camera (you can follow the steps in the developer manual to do this) and

make sure it is publishing the topic. To do this run:

rostopic list

Check to see that the following topics are there:
/camera/camera_info

/camera/image_raw

4. Run the camera calibration module with the following command:
rosrun camera_calibration cameracalibrator.py --size 8x6 --square

0.108 image:=/camera/image_raw camera:=/camera

This should open up the calibration window as shown in Figure 1. If it does not, try

adding --no-service-check to the end of the previous command.

Figure 3: Camera calibration window

10

5. Move the checkerboard around in the frame so that it is in the left and right field of

view, top and bottom field of view, and move it closer and further from the camera.

An example of this is in Figure 2.

Figure 4: Example of moving the checkerboard around the camera field of view.

6. Keep moving the checkerboard around until the “Calibrate” button in the calibration

window fills in and becomes clickable. This means enough data points have been

collected for calibration. Click the calibrate button and wait for the calibration to

complete.

7. Once complete, hit the “Upload” button and the yml calibration file will be stored for

that camera. If you would also like to save the file, hit the “Save” button. You have

now successfully calibrated the camera for ROS.

11

Modifying Camera Launch Files

The usb_cam module in ROS comes with a test launch file but if you want to be able to

use multiple cameras or change the resolution of the image you are going to need to

modify the launch file. An example of a launch file is in Figure 5.

Figure 5: Example usb_cam launch file

The first important line of code is line 3. Line 3 sets the camera name for the camera.

This is important because the calibration file is saved for each camera by its name, so for

the calibration file to be successfully loaded, the camera name needs to be correct. To

change this just change what is set as value. The next important line is line 4. Line 4

changes the device usb_cam will use for video. By default, the first plugged in camera

will be /dev/video0 and the second will be /dev/video2 and so on. You can list your

cameras by running “v4l2-ctl --list-devices” if you have v4l-utils installed. If you don’t

have it installed run “sudo apt-get install v4l-utils” to install the package. An example

output is given in Figure 6.

Figure 6: Example v4l-utils output

This example shows two cameras plugged into this computer. To get video from the

PayCam device you would set /dev/video2 as the video device in the launch file. To get

video from the UVC HD Webcam you would set /dev/video0 as the video device in the

launch file. Lines 5 and 6 allow you to change the resolution of the camera. This must

12

be set as something that the camera supports. To see what pixel formats and resolution

your camera supports you can run “v4l2-ctl --device=0 --list-formats-ext” and change the

device number to whatever number is after video. An example of this is given in Figure

7.

Figure 7: Example "v4l2-ctl --device=0 --list-formats-ext" command output

If you look at the output you can see the video device supports both the MJPG and

YUYV pixel format. For each of these formats it supports different camera resolutions.

Those are the basics of modifying launch files.

13

Developer’s Manual

For the current phases of our project, we are still working to develop the full product. The main

user experience would come from interacting with the drones through a dashboard on a server.

As such, our current work serves more to guide continued development than users.

Time Spent on Major Tasks

Below is a table representing the estimated hours spent on the major tasks of the project.

The estimation is including hours per person; for example, if two people worked on a task

for 4 hours together, the total would be 8 hours and not just 4.

Task Details Estimated Hours

Frankenstein Drone Familiarization, Initial testing, troubleshooting 40

Hexacopter Helping with build, flight test 30

Cameras Learning usb_cam, launch files, camera

calibration, recording, new camera research

50

Startup Script Shell script research, coding, testing 8

Inventory

We keep all our files in a shared Google drive which the client has access to. The Google

drive contains our presentations, report, and any other docs or presentations for the CS

4624 class. The file structure for our Google drive is as follows:

/Presentations This folder contains our presentations for the class.

/Final Report This folder contains the work for our final report.

/Miscellaneous Work This folder contains other work such as writeups for new

camera recommendations.

Our other files are kept in a GitLab repository which is hosted by our client. The entire

VT Drone team uses this repository, but we had our own branch where we have stored

14

our documentation for what we have done, photos, and calibration files for the cameras.

For protection of the team’s work, we will not be sharing the link to the repository. The

file structure for the repository is as follows:

/4g_startup_script This folder holds the 4G startup script

/camera_calibration_files This folder contains our yml camera calibration files

for the Runcam and the Scopecam[13].

/camera_calibration_photos This folder contains photos of us calibrating the

cameras that we used in our presentations.

/camera_launch_files This folder contains the launch files for the different

cameras and camera setups.

/docs This folder contains docs on how to calibrate the

cameras, operate the cameras, and connect to the

remote server.

Camera_Calibration_Progress_

Presentation.pptx

This is our PowerPoint presentation we sent to our

client as an update of our progress on camera

calibration.

README.md This is a “readme” for the repository that explains

what the repository is for and the directory structure.

15

Running a Single Camera

To operate either of the cameras when connected, you can run the following command:

roslaunch usb_cam usb_cam-test.launch

This command will launch the usb_cam module and stream the data of the camera of

your machine to usb_cam/image_raw. See Figure 8.

Figure 8: Running usb_cam and image_view to view camera output

16

Running Two Cameras

To run two cameras, we need a custom launch file. Your launch file will look something

like what is shown in Figure 9.

Figure 9: Running two cameras launch file

Looking at the launch file, we have a group for camera 1, and a group for camera 2. This

launch file will first launch camera 1, which is linked to video device /dev/video0, and

then will launch camera 2, which is linked to video device /dev/video2. See Page 12 for

information on modifying launch files.

Recording Video from the Camera

To record video from the camera we use the following command:

rosbag record usb_cam/image_raw

17

This command uses the rosbag module[5] and will start recording whatever data is

streamed to usb_cam/image_raw. Once you stop the recording the data is stored in a .bag

file in the folder where the command was initiated.

Video Playback

To play back video from a .bag file, first make sure the usb_cam module is no longer

running and streaming data to usb_cam/image_raw. Once that is done run the following

commands:

roscore

rosrun image_view image_view image:=/usb_cam/image_raw

rosbag play <bag file>

The first command starts the core of ROS. The second command opens up the

image_view module. It waits for data to stream to usb_cam/image_raw. The third

command starts playing the .bag file. Since we recorded the data from

usb_cam/image_raw, that data is streamed out and the image_view module will display

it.

Camera Calibration

The cameras on the drones need to be calibrated so that real-world straight lines appear

straight to the camera. This camera calibration procedure enabled the drone to improve

the confidence and quality of the detected objects. The calibration of the cameras was

done using a ROS module called camera_calibration[6]. To calibrate the cameras, we

followed along with the Monocular Camera Calibration Tutorial on the ROS Wiki[6].

The procedure uses a printed-out checkerboard for the calibration. Once you run the

module, you put the checkerboard in the frame of the camera and move it around until

enough data points have been gathered and the calibration algorithm can be run. After

the algorithm has run, you can save and commit the calibration files so that they can be

loaded up whenever the camera is run in the future.

18

Figure 10: Calibrating the camera using the checkerboard pattern.

Connecting Remotely to the Drone

An AWS server has been set up that allows us to remotely connect to the Jetson Nano

modules on the drones and run commands from anywhere in the world. This AWS server

was set up by other members of the SeaQL Lab team. The Jetson Nano automatically

connects to this server anytime it boots up and has an internet connection. We SSH into

the AWS server (ssh -X ubuntu@<serverIP>) and then can SSH into the drone’s Jetson

Nano (ssh <droneName>@<droneIP>). This functionality means we can see what the

drone’s cameras are looking at from anywhere we have an internet connection.

19

4G Module Startup Script

The drones will primarily connect to the cloud server via a 4G connection.

Figure 11: Network architecture

We needed to create a startup script to initialize the 4G module on startup to ensure the

drone could connect to the server. The script was created using the 4G module’s wiki

documentation[14]. To run the script, the script needs to be added to the cron task list.

To do this, run (crontab -e) and then add in the line (@reboot <path to script>). The 4G

module startup script is not fully complete and tested as of writing this. The script is in

the Gitlab repository.

20

Lessons Learned

Clarify Deadlines Ahead of Time

We joined an ongoing project with certain deadlines relevant to the larger project team’s

own client, the Marine Management Organization of the UK (MMO). Many of the

deadlines we were aware of initially were arbitrary deadlines for our small tasks.

However, we often had to rush to meet larger project deadlines for the MMO that we were

unaware of initially.

For example, we were tasked at one point with repairing the “Frankenstein” DJI Phantom

3 drone to perform flight testing. However, our client had some deadlines for a progress

report they wrote for the MMO. Without original knowledge of this deadline, our client

asked us to abandon this drone and switch focus to helping Zach Wendel and Katie Gilbert

on the SeaQL Lab team finish building the Tarot FY680 hexacopter kit. This was

important to show progress to the MMO toward reaching the goal of flying the main

drones the SeaQL Lab team plans to use for flight testing in the future. If our team was

aware of these other deadlines ahead of time, we could have discussed shifting the focus

of our team’s efforts earlier to reduce our client’s stress and make more progress by the

deadline.

We learned when joining an ongoing project to clarify what all of the deadlines for the

project are. This could have prevented rushing and re-arranging the schedule, that was

required for completing different tasks.

Ask for Help

When important deadlines approach, it’s better to ask for help quickly instead of always

trying to troubleshoot on your own. There is virtue in troubleshooting on your own to

solve problems instead of always deferring to other team members. However, when the

work must be completed quickly, it’s good to ask for help after searching for a solution on

your own for a little bit of time. This is especially true when other team members are

much more knowledgeable about the technology, limitations, and project goals than you

are.

When first joining the team, Dr. Chesi tasked us with setting up a model ROS

environment for eventually calibrating the cameras. Initially we started development on

our personal laptops without help. However, this process was slow going. After

mentioning some issues to Jeremy Jenrette on the SeaQL Lab team, he quickly

recommended we use the ROS environment he’d already setup on the Jetson Nano. Other

tasks originally assigned to us, such as remotely accessing the Jetson Nano and viewing

21

the cameras, he already knew how to do. More than that, he showed us how to perform

these tasks in a matter of minutes. Online resources can be valuable, but your team

members can often provide the best, quickest help.

Abandon Failed Implementations Quickly

Likewise, a project with quick deadlines and lots of problems requires moving past the

problems as fast as possible. While troubleshooting is necessary, too much time spent on

one task could set back the entire project. Thus, if one proposed implementation step

doesn’t work as intended, quickly proposing a new solution can be critical to staying on

track.

After completing the camera calibration process, we were tasked with repairing the DJI

Phantom 3 “Frankenstein” drone. This off-the-shelf drone was originally intended to

connect to the Jetson Nano to perform flight testing of the poaching boat detection

algorithms (not yet developed). This planning would allow flight tests to occur while the

future testing drones were being built, from the Tarot FY680 build-it-yourself kit. Some

work had been done previously on the Frankenstein before we took over, such as rerouting

power from the drone’s battery to a power adapter. This power adapter would power the

Jetson Nano attached to the drone. However, this method seems to have brought other

issues. Two of the drone’s propellers would not spin and the remote controller would not

connect with the drone. We were tasked with fixing these issues to perform flight tests.

Despite two weeks of troubleshooting, we were unable to progress toward repairing the

drone. Approaching deadlines for the SeaQL Lab team led us to switch focus to help other

members complete building of the Tarot FY680 kit instead of repairing the DJI Phantom

3. This was a hard but important decision for our client. The Frankenstein drone’s flight

tests were meant to save the team time in the long run. This would mean they could test

the boat detection algorithms before the final testing hexacopter drones were finished.

When the Frankenstein drone proved too difficult to repair, the issues caused the opposite

effect, taking up more of the team’s time than what it was worth. This prospect increased

as the hexacopter drone moved nearer to completion.

In situations like these, we learned despite the value of persevering in the face of

problems, knowing when to abandon one aspect of your plan and pivot to find another

solution is also just as valuable. The end goal is the most important aspect of any project;

the particular details in between are often interchangeable. As such, you shouldn’t be tied

to any particular implementation choice if it costs the team too much, in terms of work,

time, money, etc.

22

Plan Work to Progress During Roadblocks

At many points during project work, we ran into roadblocks preventing us from

progressing on certain tasks.

Several issues caused this, such as:

• Discovering we didn’t have the right parts.

• Parts breaking.

• Waiting for parts to arrive.

• Tasks dependent on work of other team members.

• Troubleshooting issues.

As such, it’s good to have a plan of what other tasks can be worked on next when the most

urgent ones come to a stand-still. Even if other tasks cannot progress, there’s potential to

research how future steps should be implemented once the team is able to.

This also could have been vital to the overall schedule of the project. Before we joined the

larger team, their work was delayed by five months, dramatically increasing the speed

needed to finish some milestones.

Learn How to Learn and Troubleshoot on Your Own

Many problems have come up while developing and building the drones and Jetson Nano

computing system. Initially, our group members were unfamiliar with much of the

technology needed for development. But nonetheless, our project clients had confidence in

our abilities to complete the work, even as our initial work scope changed.

As with any project, learning from all the available resources[7][11] to understand how

the entire scope of the system works, and how to troubleshoot issues, is important. Few

projects are undertaken where the designer knows all of the required information ahead of

time. And problems are always expected. Skills with problem solving and project

management are especially crucial when different team members take responsibility for

their own individual tasks. Yet each team member’s tasks often define the schedule for the

tasks of others on the team member’s tasks.

Clarify Intentions for Project Tasks

Since we joined the larger project team after work had already begun, many design

decisions had been made without our knowledge. In general, this didn’t directly affect our

work, as we learned how to implement the tasks we were given regardless of the reasoning

for them.

23

However, we realized after becoming stuck on and abandoning one aspect of the project, it

might’ve been helpful to provide our own input into the design decisions. This could have

saved us some time, trouble, and money.

Initially, we were developing two drones at once: a “Frankenstein” drone that was store-

bought and a hexacopter being built from scratch by other team members. The hexacopter

is the full development drone that will be used for further testing and production, but

building from scratch has taken much longer than planned and as such, testing is delayed

till Summer 2022. The Frankenstein drone was intended to be a proof-of-concept for

testing the camera and detection algorithms before the full hexacopter was finished. After

the hexacopter was finished, the Frankenstein drone would not be used.

In hindsight, instead of tasking us to work on a separate drone in tandem not meant for

long-term use, it may have saved time to task our group with helping the other members to

finish the hexacopter more quickly. This is what happened anyway, after the Frankenstein

drone posed problems we weren’t able to resolve quickly.

One other prior design choice was to route power from the drone’s power system to run

the Jetson Nano computing module. While a good idea in theory, these modifications are

suspected to have caused many of the problems preventing us from flying the

Frankenstein drone. This was a hard task for a team not experienced with electronics. We

also realized a simple solution of using a portable power bank would have worked well,

decreasing both complexity and risk of failure for powering the computer.

24

Future Work

While our team ends our work on this project, the larger SeaQL Lab continues

development on this project. After some final troubleshooting with the hexacopter drone,

the team will be able to perform test flights. These initial flights will test the functionality

of controlling the drone remotely using a computer connected to a server. This server will

send commands through the Internet to the Jetson Nano onboard the drone. These

commands in turn determine the drone’s flight path.

Once this testing is done, a poaching boat detection algorithm can be installed on the

Jetson Nano. This algorithm will use camera footage to detect boats on the water with

potential for poaching hazard. The Jetson Nano will use cameras such as those our team

calibrated for capturing this video footage. In the interim, flight testing of the algorithm

can be tested using small boats in lakes or cars on the road. Testing the streaming of this

video footage and detection alerts also remain for future work. Finally, the team can

secure the Jetson Nano to longer-range drones for testing the algorithm over open water

similar to the final intended environment.

25

Acknowledgements

The Drone Team

Figure 12: VT Drone team members

Marine Management Organization of the UK[1]

SeaQL Lab[2]

26

References

 [1]Marine Management Organisation, “Marine Management Organisation,” GOV.UK, 2022.

[Online]. Available: https://www.gov.uk/government/organisations/marine-management-

organisation. [Accessed: Apr. 28, 2022]

 [2]SeaQL Lab, “SeaQL Lab Homepage,” 2022. [Online]. Available:

http://35.245.242.176/seaql/. [Accessed: Apr. 28, 2022]

 [3]ROS Wiki, “usb_cam Package Summary,” ROS Wiki, Nov. 19, 2019. [Online]. Available:

https://wiki.ros.org/usb_cam. [Accessed: Apr. 28, 2022]

 [4]ROS Wiki, “ROS/Tutorials,” ROS Wiki, Jun. 03, 2021. [Online]. Available:

https://wiki.ros.org/ROS/Tutorials. [Accessed: Apr. 28, 2022]

 [5]ROS Wiki, “Recording and playing back data,” ROS Wiki, Jun. 23, 2020. [Online].

Available: https://wiki.ros.org/rosbag/Tutorials/Recording%20and%20playing%20back%20data.

[Accessed: Apr. 28, 2022]

 [6]ROS Wiki, “How to Calibrate a Monocular Camera,” ROS Wiki, Sep. 19, 2019. [Online].

Available: https://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration. [Accessed:

Apr. 28, 2022]

 [7]Open Robotics, “ROS: Home,” 2021. [Online]. Available: https://www.ros.org/.

[Accessed: Apr. 28, 2022]

 [8]NVIDIA, “NVIDIA Jetson Nano For Edge AI Applications and Education,” NVIDIA,

2022. [Online]. Available: https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-nano/. [Accessed: May 04, 2022]

 [9] DJI, “Phantom 3 Standard - DJI,” DJI Official, 2022. [Online]. Available:

https://www.dji.com/phantom-3-standard. [Accessed: May 04, 2022]

 [10] TAROT, “Amazon.com: TAROT FY680 3k Carbon Fiber Full Folding Hexacopter

680mm FPV Aircraft UFO Frame 6-Axis DIY Drone Airframe Kit TL68B01 : Toys & Games,”

Amazon, 2022. [Online]. Available: https://www.amazon.com/Carbon-Folding-Hexacopter-

Aircraft-Copter/dp/B00O1WIYCY. [Accessed: May 04, 2022]

 [11]R. Roux, Hexacopter Build Part 1 - Tarot FY690S Frame and its Parts, vol. 1, 12 vols.

(Nov. 12, 2015) [Online]. Available: https://www.youtube.com/watch?v=hQ7XcUWutoE.

[Accessed: May 04, 2022]

 [12]RunCam, “RunCam 2,” RunCam Store, 2022. [Online]. Available:

https://shop.runcam.com/runcam2/. [Accessed: May 04, 2022]

 [13]RunCam, “RunCam Scope Cam Lite,” RunCam Store, 2022. [Online]. Available:

https://shop.runcam.com/runcam-scope-cam-lite/. [Accessed: May 04, 2022]

https://www.gov.uk/government/organisations/marine-management-organisation
https://www.gov.uk/government/organisations/marine-management-organisation
http://35.245.242.176/seaql/
https://wiki.ros.org/usb_cam
https://wiki.ros.org/ROS/Tutorials
https://wiki.ros.org/rosbag/Tutorials/Recording%20and%20playing%20back%20data
https://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
https://www.ros.org/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.dji.com/phantom-3-standard
https://www.amazon.com/Carbon-Folding-Hexacopter-Aircraft-Copter/dp/B00O1WIYCY
https://www.amazon.com/Carbon-Folding-Hexacopter-Aircraft-Copter/dp/B00O1WIYCY
https://www.youtube.com/watch?v=hQ7XcUWutoE
https://shop.runcam.com/runcam2/
https://shop.runcam.com/runcam-scope-cam-lite/

27

 [14]Waveshare, “SIM7600CE-T/E-H/A-H/G-H 4G Modules - Waveshare Wiki,” 2022.

[Online]. Available: https://www.waveshare.com/wiki/SIM7600G-H_4G_for_Jetson_Nano.

[Accessed: May 04, 2022]

https://www.waveshare.com/wiki/SIM7600G-H_4G_for_Jetson_Nano

