
Cost-saving in Continuous Integration: Development, Improvement,
and Evaluation of Build Selection Approaches

Xianhao Jin

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Applications

Francisco Servant, Chair

Na Meng

Eli Tilevich

B. Aditya Prakash

Sebastian Elbaum

April 29, 2022

Blacksburg, Virginia

Keywords: Continuous Integration, Build Strategies, Maintenance Cost

Copyright 2022, Xianhao Jin

Cost-saving in Continuous Integration: Development, Improvement,
and Evaluation of Build Selection Approaches

Xianhao Jin

(ABSTRACT)

Continuous integration (CI) is a widely used practice in modern software engineering. Un-

fortunately, it is also an expensive practice — Google and Mozilla estimate their CI systems

in millions of dollars. In this dissertation, I propose a collection of novel build selection

approaches that are able to save the cost of CI. I also propose the first exhaustive compar-

ison of techniques to improve CI including build and test granularity approaches. I firstly

design a build selection approach (SMARTBUILDSKIP) for CI cost reduction in a balanceable

way. The evaluation of SMARTBUILDSKIP shows that it can save a median 30% of builds by

only incurring a median delay of 1 build in a median of 15% failing builds under its most

conservative configuration. To minimize the delayed failure observation, I then propose the

second build selection approach (PRECISEBUILDSKIP) that can save cost without delaying fail-

ure observation. We find that PRECISEBUILDSKIP can save a median of 5.5% of builds while

capturing the majority of failing builds (100% in median) from the evaluation. After that,

I evaluate the strengths and weaknesses of 10 techniques that can improve CI including

SMARTBUILDSKIP. The findings of the comparison motivate my next work to design a hybrid

technique (HYBRIDBUILDSKIP) that combines these techniques to produce more cost saving

while keeping a low proportion of failing builds that are delayed in observation. Finally, I

design an experiment to understand how different weights of test duration among the whole

build duration can influence the cost saving of build and test selection techniques.

Cost-saving in Continuous Integration: Development, Improvement,
and Evaluation of Build Selection Approaches

Xianhao Jin

(GENERAL AUDIENCE ABSTRACT)

Modern software developing teams commonly use the continuous integration as the practice

of automating and testing the integration of code changes from multiple contributors into

a single software project. The best practice of continuous integration requires this process

happens as frequently as possible because the bugs can be found earlier and easier before the

change sets grow too large. However, continuous integration process can be time-consuming

and in most cases the code change is bug-free. This means that developers may have to wait

for a long time only to get a result with no actionable feedback. Thus, in this dissertation,

I present multiple selection approaches to selectively execute the continuous integration

process based on the prediction of the outcome - if the outcome is predicted to be passing

with no actionable feedback, the approach will decide to skip the current execution. The

evaluation result shows that my approaches can save the cost of continuous integration while

keeping the value of it (finding bugs earlier).

Dedication

Dedicated to my families. Thank you for all your support along the way.

iv

Acknowledgments

To Shuning: Thank you for your love, for your support, and for every minute that we spend

together. Thank you for coming to the U.S. with me and changing your major of Japanese

language. Thank you for accompanying with me during the tough pandemic time. Thank

you for every sweet word and every smile from you in my daily life.

To my parents: Thank you for your unconditional love and support. Thank you for your

encouragement for every decision I made. Thank you for your understanding, even sometimes

it meant your son would live on the opposite side of the earth for many years.

To my SeaLab mates: Thank you for answering my questions and for all the group meetings

and discussions.

To my committee members: Thank you for your timely feedback and helpful suggestions. I

am particularly grateful to Drs. Na Meng, Eli Tilevich, B. Aditya Prakash, and Sebastian

Elbaum, for valuable insights that guide me to improve this dissertation and further study

relevant research topics.

To my advisor, Dr. Francisco Servant: Thank you for inviting me to your research lab.

Before coming here, I knew little about doing research and the academic life. Thank you

for showing me how a creative, meticulous and intelligent researcher who has a thirst for

knowledge should be like. Thank you for every advice and encouragement from you about my

academic and daily life. I appreciate your guiding me to find correct research directions and

your answers to my questions during our discussions. I can never accomplish this without

your help and support.

v

To all sources that provided me financial support: I am thankful for the financial support

from multiple sources for my research: National Science Foundation CAREER CCF-2046403

and International Distinguished Researcher award C01INVESDIST by Universidad Rey Juan

Carlos. I would also like to thank Virginia Tech Computer Science department that offered

me admission with funding when needed.

vi

Contents

List of Figures xiv

List of Tables xvii

1 Introduction 1

1.1 Problem statement . 1

1.2 Thesis . 3

1.3 Research Contributions and Applications . 3

1.4 Structure . 5

2 Background and Related Work 6

2.1 Definitions and Technical Background . 6

2.1.1 Continuous Integration . 6

2.1.2 Regression Test Selection (RTS) . 7

2.1.3 Test Case Prioritization (TCP) . 8

2.1.4 Build Prioritization and Selection . 8

2.2 Related Work . 9

2.2.1 Empirical Studies of CI and its Cost 9

2.2.2 Approaches to Reduce the Cost of CI 10

vii

2.2.3 Characterizing Failing Builds . 11

2.2.4 Predicting Failing Builds . 12

2.2.5 Evaluation frameworks for similar techniques 13

3 SMARTBUILDSKIP: balance cost saving and failure observation delay 15

3.1 Motivating Hypotheses . 19

3.2 Our approach: SMARTBUILDSKIP . 20

3.3 Evaluating our Motivating Hypotheses . 23

3.4 Characterizing First Failures . 24

3.4.1 Research Method . 24

3.4.2 Result . 27

3.5 Evaluating Build-Failure Prediction . 29

3.5.1 Research Method . 29

3.5.2 Result . 31

3.6 Evaluating CI Cost Reduction . 32

3.6.1 Research Method . 32

3.6.2 Result . 34

3.7 Discussion . 36

3.8 Conclusions . 38

4 Evaluating CI-improving techniques 40

viii

4.1 Approaches to Improve Continuous Integration 43

4.1.1 Computational-cost Reduction . 44

4.1.2 Time-to-feedback Reduction . 45

4.2 Research Method . 46

4.2.1 Data Set . 47

4.2.2 Evaluation Process . 48

4.2.3 Replicated Techniques . 49

4.3 Empirical Study 1: Cost Saving . 50

4.3.1 Studied Techniques . 50

4.3.2 D1: Computational-cost Reduction 51

4.3.3 D2: Missed Failure Observation . 55

4.4 Empirical Study 2. D3: Time-to-feedback Reduction 56

4.4.1 Studied Techniques . 57

4.4.2 Studied Metrics . 58

4.4.3 Analysis of Results . 59

4.5 Answers for Research Questions and Implications 61

4.5.1 D1: Computational-cost Reduction 61

4.5.2 D2: Missed Failure Observation . 63

4.5.3 D3: Time-to-feedback Reduction . 65

4.5.4 Standing on the Shoulders of Giants 66

ix

4.5.5 Enhancing Generalizability . 67

4.6 Conclusions . 70

5 PRECISEBUILDSKIP: reduce delay of failure observation 72

5.1 Research Questions . 76

5.1.1 Data Set . 78

5.2 Empirical Study 1: Evaluating CI-Skip rules 79

5.2.1 Studied Factors: CI-Skip rules . 80

5.2.2 RQ1: How much cost can each CI-Skip rule save? 83

5.2.3 RQ2: How safe is each CI-Skip rule? 85

5.3 Empirical Study 2: Supplementing CI-Skip rules 86

5.3.1 Studied Factors: CI-Run rules . 87

5.3.2 RQ3: What proportion of failing builds under CI-Skip rules are cov-

ered by our CI-Run rules? . 88

5.3.3 RQ4: How helpful are CI-Run rules at discriminating between failing

and passing builds under CI-Skip rules? 91

5.4 Our Approach: PRECISEBUILDSKIP . 93

5.5 Experiment 1: Evaluating PRECISEBUILDSKIP 94

5.5.1 Research Method . 94

5.5.2 Results for RQ5: How correct are PRECISEBUILDSKIP’s predictions? . . 99

x

5.5.3 Results for RQ6: How much cost-saving and safety do PRECISEBUILD-

SKIP’s predictions provide? . 101

5.5.4 Results for RQ7: How much overhead does PRECISEBUILDSKIP add to

build duration? . 103

5.6 Experiment 2: Evaluating the impact of CI-Run rules in PRECISEBUILDSKIP . 104

5.6.1 Research Method . 104

5.6.2 Results for RQ8: What is the impact of including CI-Run rules as

features in PRECISEBUILDSKIP? . 106

5.7 Experiment 3: Evaluating PRECISEBUILDSKIP when trained on Builds affected

by Build-selection . 108

5.7.1 Research Method . 108

5.7.2 Results for RQ9: How much cost-saving and safety does PRECISEBUILD-

SKIP provide when trained on projects that use build selection? . . . 110

5.8 Implications . 111

5.8.1 For practitioners. 111

5.8.2 For researchers. 112

5.9 Conclusions . 113

6 HYBRIDBUILDSKIP: enhances the ability of cost saving. 114

6.1 Our Approach: HYBRIDCISAVE . 117

6.1.1 HYBRIDBUILDSKIP . 117

6.1.2 HYBRIDTESTSKIP . 120

xi

6.1.3 Novelty . 121

6.2 Research Questions . 121

6.2.1 Data Set . 122

6.3 Experiment 1: Evaluating HYBRIDCISAVE . 123

6.3.1 RQ1: How effective is HYBRIDCISAVE saving cost and observing fail-

ures, compared to existing build selection approaches? 124

6.4 Experiment 2: Analyzing HYBRIDCISAVE’s components 127

6.4.1 RQ2: What is the benefit of having a test selection component in

addition to a build selection component? & RQ3: What is the benefit

of having test selection approaches to predict build outcomes? 129

6.4.2 RQ4: What is the relative importance of each feature in HYBRIDBUILD-

SKIP? . 132

6.4.3 RQ5: How much cost-saving and failure-observation can HYBRIDTEST-

SKIP achieve? . 133

6.4.4 RQ6: What is the relative importance of each feature in HYBRIDTEST-

SKIP? . 135

6.5 Experiment 3: Counting End-to-End time 136

6.5.1 RQ7: What is the total execution time of HYBRIDCISAVE and its in-

dividual components? . 136

6.5.2 RQ8: How much cost does HYBRIDCISAVE save in practice if we ac-

count for its execution time? . 138

6.6 Discussion . 140

xii

7 Future Work 143

8 Summary and Conclusions 145

Bibliography 146

xiii

List of Figures

1.1 Example CI timeline. Circles with character P represent passing builds, e.g.,

Build 2, and the character F represents a failing build outcome. Dashed circles

represent skipped builds. 2

3.1 Motivating example timeline. first failures are highlighted in gray. In an

ideal timeline, we would skip all passing builds and run all failing builds.

Existing approaches predict outcome for every build. Our approach predicts

build outcome if the last build passed. After observing a failure, it continues

building until a pass is observed and it goes back to predicting. 18

3.2 Hypotheses evaluation. 24

3.3 Correlation between (a) build (b) project features and ratio of first failures . 28

3.4 Performance comparison on predicting first failures 32

3.5 Performance comparison on predicting all failures 33

3.6 Cost saved and value kept by evaluated techniques 36

4.1 Example timeline. Failing tests in gray. Build-selection runs builds fully

when it predicts a failing build. Test-selection runs builds partially (for

tests that would fail). Build-prioritization changes the build sequence. Test-

prioritization changes the test sequence within a build. 43

4.2 Results for Cost Saving Metrics. Prioritization techniques not included, since

they do not skip tests/builds. 54

xiv

4.3 Results for Missed Failure Observation Metrics. Prioritization techniques not

included, since they do not skip tests/builds. 55

4.4 Results for Time-to-feedback Reduction Metrics. 57

4.5 Cost saving achieved by studied techniques under different test weight. . . . 69

5.1 Proportion of builds that CI-Skip rules could save. 84

5.2 Proportion of failing builds among builds under each CI-Skip rule. 85

5.3 Distribution of failing builds captured by CI-Run rules under each CI-Skip

rule. 90

5.4 Performance comparison on predicting build failures. 99

5.5 Cost saved and value kept by evaluated techniques. 102

5.6 Build time saved by PRECISEBUILDSKIP including and excluding its execution

time. 104

5.7 Cost saved and value kept by evaluated PRECISEBUILDSKIP variants including

and excluding CI-Run rules. 107

5.8 Cost saved and value kept by evaluated techniques when being trained under

pre-selected data. 109

6.1 Flow chart of the design of HYBRIDCISAVE. 118

6.2 Cost saved and value kept by HYBRIDBUILDSKIP and existing build selection

techniques . 128

6.3 Cost saved and value kept by HYBRIDCISAVE and HYBRIDBUILDSKIP 130

6.4 Cost saved and value kept by HYBRIDTESTSKIP 134

xv

6.5 Cost saved by HYBRIDCISAVE with or without considering its execution time. 139

xvi

List of Tables

3.1 Features studied for correlation with first failures. 26

4.1 Studied Techniques. 49

5.1 Studied CI-Skip rules that can be used to skip CI builds. 80

5.2 Studied CI-Run rules that may override CI-Skip rules. 87

5.3 Correlation between CI-Run rules and failing builds under CI-Skip rules. . . 93

6.1 Importance of HYBRIDBUILDSKIP’s features. 132

6.2 Importance of HYBRIDTESTSKIP’s features . 135

6.3 Time taken to execute HYBRIDCISAVE per build. 137

xvii

Chapter 1

Introduction

1.1 Problem statement

Continuous integration (CI) is a popular practice in modern software engineering that en-

courages developers to build and test their software in frequent intervals [24]. While CI is

widely recognized as a valuable practice, it also incurs a very high cost — mostly for the com-

putational resources required to frequently run builds [41, 43, 44, 77, 110]. Overall, adopting

CI can be very expensive. Google estimates the cost of running its CI system in millions

of dollars [44], and Mozilla estimates theirs as $201,000 per month [55]. For smaller-budget

companies that have not yet adopted CI, this high cost can pose a strong barrier.

There are many existing research approaches to save cost in CI, including techniques to make

CI builds faster by accelerating preparation phase [11, 28] or running fewer tests [67]. In

contrast, I propose a collection of novel build selection strategies that focus on skipping builds

that are predicted to pass to reduce the cost of CI. The goal of my proposed techniques is

to execute fewer builds, while running as many failing builds as early as possible.

The rationale behind my strategy is: skip builds that are predicted to pass and execute

builds that are likely to fail. I posit that the value of CI lies in the observation of failures

and its cost lies in the build executions.

Figure 1.1 depicts an example timeline of CI builds including passing builds (Build 1 and 5 -

1

2 CHAPTER 1. INTRODUCTION

Example Timeline P F

1 2

F

3

F

4

P P

5 6

Ideal Timeline F F F

P P

7 8

Non-Ideal Timeline P F F P

Figure 1.1: Example CI timeline. Circles with character P represent passing builds, e.g.,
Build 2, and the character F represents a failing build outcome. Dashed circles represent
skipped builds.

8) as the cost of CI and failing builds (Build 2 - 4) as the value of CI which are not desirable

to skip. Each build is composed of many phases including build preparation and test. In

the ideal timeline, all builds are perfectly predicted so all passing builds are skipped and all

failing builds are executed. However, in the non-ideal timeline, passing builds can be falsely

labeled as failing builds and thus get executed (Build 1 and 7). Worse still, failing builds

can be falsely predicted as passing builds and thus get skipped (Build 2). The former causes

a reduction of cost saving. The latter results in a more serious problem, dividing skipped

builds into two groups: passing ones (green dashed circles) and failing ones (red dashed

circles). These failing builds that are skipped by mispredictions can cause a delay of failure

observation, e.g., failing Build 2 can only be observed at the time when Build 3 executes.

If a technique achieves higher cost saving (skips more builds), it is more likely to skip more

failing builds at the same time, i.e., there exists a trade-off. To address this problem, my

work focuses on maximizing skipped passing builds while minimizing skipped failing builds.

In light of this trade-off, this dissertation investigates two questions:

(1) How can build selection approaches maximize their benefit and minimize their side ef-

fect?

(2) How effective are build selection approaches compared with other CI-improving tech-

niques?

1.2. THESIS 3

1.2 Thesis

aaa Cost in Continuous Integration can be saved via automated build selection

aaa techniques in ways that:

aaaaaa 1. balance cost saving and delay of failure observation, or

aaaaaa 2. reduce delay of failure observation, and

aaaaaa 3. enhances the ability of cost saving.

1.3 Research Contributions and Applications

This dissertation has following contributions:

Contribution 1: Balance cost saving and delay of failure observation. (published

at ICSE’20 [51])

I created the first approach (SMARTBUILDSKIP) as a technique to skip builds automatically

by predicting build outcomes, to help developing team save the computational cost of CI

and waiting time of the CI outcome. The design of SMARTBUILDSKIP is based on the novel

conceptual separation of build failures into first and subsequent failures, to improve the

effectiveness of build prediction models. To motivate my design, I performed two empirical

studies, of the prevalence of build passes over build failures, and of subsequent failures over

first failures. I also studied the factors that predict first failures. Furthermore, I performed

an evaluation of the extent to which SMARTBUILDSKIP can save cost in CI while keeping most

of its value, with the ability of customizing its cost-value balance.

Contribution 2: evaluate existing CI-improving techniques. (published at ICSE’21

[52, 53] and ESEC/FSE’21 [48])

4 CHAPTER 1. INTRODUCTION

I then performed the first comprehensive evaluation of CI-improving techniques including

SMARTBUILDSKIP from different settings to understand their benefits. The evaluation includes

a replication of 14 variants of 10 CI-improving techniques from 4 technique families. I used

a collection of metrics to measure the performance of CI-improving techniques over various

dimensions (computational-cost reduction, missed failure observation, and early feedback).

To compare the techniques in the same environment, I extended the popular Travis Torrent

dataset [7] with: detailed test and commit, and dependencies information. The contribu-

tion also includes the findings that can provide evidence for researchers to design future

CI-improving techniques.

Contribution 3: Reduce delay of failure observation. (accepted at JSS’22 [54]))

To minimize the side-effect of mispredictions of failing builds by build-selection approaches

(found in results of Contribution 1 and 2), I proposed PRECISEBUILDSKIP as a technique

that provides cost-savings in CI while capturing an overwhelming majority of failing builds.

PRECISEBUILDSKIP is designed by exploring CI-Skip rules [2] and corresponding CI-Run rules.

To motivate the design, I also performed the empirical studies about the evaluation of CI-Skip

rules and the relationship between CI-Skip and CI-Run rules. I also designed a novel metric

that is able to compare build-selection techniques in a more comprehensive way. Besides,

I performed an evaluation to compare PRECISEBUILDSKIP with existing techniques including

SMARTBUILDSKIP in the context of CI cost-saving.

Contribution 4: Enhance the ability of cost saving by combining build and test

selection approaches. (under review at TOSEM)

Since the existing no-delay build selection technique (PRECISEBUILDSKIP) is not able to pro-

vide high cost savings, I designed a hybrid technique — HYBRIDCISAVE that takes advantage

of all existing work’s strengths to enlarge the cost-saving significantly while keeping a low

side-effect based on the previous comparison result. The technique is a hybrid method based

1.4. STRUCTURE 5

on the prediction results of existing techniques, predicts build outcomes across granularity,

and combines both build and test selection strategies to allow skipping full and partial build.

I finally performed a study to examine the impact of the technique execution time on the

cost saving.

1.4 Structure

The rest of this dissertation is organized as follows. Chapter 2 provides the necessary back-

ground required to understand the proposed research work. Chapter 3 describes SMART-

BUILDSKIP as the first build selection approach to balance cost saving and failure observation.

Chapter 4 presents the first comprehensive evaluation of CI-improving techniques under the

same context. Chapter 5 describes PRECISEBUILDSKIP as the first build selection approach

to minimize the delayed failure observation. Chapter 6 describes HYBRIDCISAVE as the first

hybrid build selection approach and presents a synthetic study to understand how the pro-

portion of test time to total build time can influence the cost saving ability. Chapter 7

outlines the future work directions, and Chapter 8 presents concluding remarks.

Chapter 2

Background and Related Work

In this chapter, we firstly introduce definitions and technical background required to under-

stand this dissertation. We then discuss related work.

2.1 Definitions and Technical Background

2.1.1 Continuous Integration

Continuous integration (CI) is a DevOps [17] software development practice where developers

regularly merge their code changes into a central repository, after which automated builds

and tests are run. Continuous integration aims to solve the problem that developers might

work in isolation and checked in their changes only after its full completion, resulting in a

time-consuming merging and accumulated bugs without correction. Continuous integration

benefits the software developing team by improving developers’ productivity, finding and

addressing bugs earlier and accelerating the delivery process. The best practices of contin-

uous integration requires developers to commit early and often. Well-known examples of CI

services are Jenkins1, Travis2, CircleCI3 and AppVeyor4 [34]. CI services can also be built-in

in social coding platforms such as GitHub and GitLab [14]. Besides, big tech companies such
1https://www.jenkins.io/
2https://travis-ci.org/
3https://circleci.com/
4https://www.appveyor.com/

6

2.1. DEFINITIONS AND TECHNICAL BACKGROUND 7

as Google and Facebook have their own designed continuous integration system.

A full CI build comprises 1) a traditional build and compile phase, 2) a phase in which

automated static analysis tools (ASATs), and 3) a testing phase, in which unit, integration,

and system tests are run [6]. In the practice, the build can include multiple jobs and these

jobs can be executing in a parallel way. Any of failures happening in any of these three

phases can make the build broken, i.e., errored or failed. In this dissertation, we refer to

build as the whole process of a full CI build including all of these three phases. We refer to

test as the test suites executed in the test phase of the process, i.e., phase 3.

2.1.2 Regression Test Selection (RTS)

Regression test selection analyzes incremental changes to a codebase and chooses to run

only those tests whose behavior may be affected by the latest changes in the code [33].

By focusing on a small subset of all the tests, the testing process runs faster and can be

more tightly integrated into the development process. Regression test selection aims to

reduce the infrastructure costs of testing changes submitted by developers, as well as to

speed up delivery of correctness signal. A typical RTS technique requires two dimensions of

information: (1) the test dependency information on an old program version, (2) the changed

program elements. Then, a safe RTS technique selects any test whose dependencies overlap

with the changed program elements as the affected tests, since missing any of those tests

may fail to detect some regression bugs [118]. RTS techniques can be categorized as dynamic

[32, 35, 74, 82, 84] and static [57, 59] techniques based on how the test dependencies are

collected. RTS can also be categorized as basic-block-level [35, 74, 84], method-level [82],

file-level [32, 59], and module-level [97, 106] techniques based on the granularities of changed

elements. RTS techniques are used in continuous integration environment to find changes

8 CHAPTER 2. BACKGROUND AND RELATED WORK

that introduce regression faults [98]. In this dissertation, we consider regression test selection

techniques as test suite level, which means these techniques can selectively executing some

test suites in the test phase of the continuous integration context.

2.1.3 Test Case Prioritization (TCP)

Test case prioritization is a technique that prioritizes the execution order of the test cases

and it is developed in order to run test cases of higher priority so that as many distinct

faults as possible are detected early in the execution of the test suite. The prioritization

of TCP can depend on the probability of fault existence or the coverage of the functions

and statements [18]. The former may be reflected by the historical fail ratio of the test,

the relationship between the change set and the test or the authorship of the commit. The

latter can be reflected by the distinction among tests and the execution time of the test.

Compared with RTS techniques, TCP techniques don’t remove any tests and thus can be

safer. TCP was a rich research area even before continuous integration became a common

practice, e.g., [85]. TCP techniques are commonly used in continuous integration to re-order

tests to identify an “ideal” order of test cases that maximizes specific goals, such as early

fault detection [64]. In this dissertation, we consider regression test selection techniques to

be executed test suite level, which means these techniques can prioritize the test suites that

are going to be executed in the test phase of the continuous integration environment.

2.1.4 Build Prioritization and Selection

Build prioritization technique [63] takes advantage of the ideas from TCP techniques that

faults can be detected earlier by prioritizing element execution orders. Thus, build prior-

itization technique performs on the granularity of build/commit level. It aims to address

2.2. RELATED WORK 9

the problem of TCP techniques in CI environment that TCP techniques cannot produce

large reductions in feedback time and it is not practical to prioritize tests across builds.

Since the arriving time difference among builds or commits, build prioritization technique is

only triggered when multiple builds are waiting for available work units when all comput-

ing resources are occupied. The prioritization rationale is similar to TCP techniques, i.e.,

commonly depending on the historical failure ratio.

Build selection techniques [1, 2, 51] selectively executes builds or commits that should have

triggered the continuous integration system. These techniques aim to execute a subset

of builds to save the computational cost as well as developers’ waiting time for feedback.

Compared to RTS techniques, build selection approaches skip executions in the granularity

of builds instead of tests. This brings them more benefits of cost saving along with higher

possibility to delay failure observation. Build selection approaches skip builds or commits

based on different criterion: some decide to skip builds that are likely to be skipped by

developers while others prefer to skip builds that likely to be passing. This reflects different

understanding of what builds should be skipped. The decision of skipping one build is based

on the prediction of whether the build satisfies the requirement to be skipped. To achieve

this goal, these techniques explore factors to make predictions.

2.2 Related Work

2.2.1 Empirical Studies of CI and its Cost

Multiple researchers focused on understanding the practice of CI, studying both practitioners

e.g., [44] and software repositories [108]. Vasilescu et al. studied CI as a tool in social coding

[107], and later studied its impact on software quality and productivity [108]. Zhao et al.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

studied the impact of CI in other development practices, like bug-fixing and testing [119].

Stahl et al. [101] and Hilton et al. [44] studied the benefits and costs of using CI, and the

trade-offs between them [43]. Lepannen et al. similarly studied the costs and benefits of

continuous delivery [61]. Felidré et al. [22] studied the adherence of projects to the original

CI rules [24]. Other recent studies focused on the difficulties [77] and pain points [110] of

CI.

The high cost of running builds is highlighted by many empirical studies as an important

problem in CI [41, 43, 44, 77, 110] — which reaches millions of dollars in large companies,

e.g., at Google [44] and Microsoft [41].

2.2.2 Approaches to Reduce the Cost of CI

A popular effort to reduce the cost of CI focuses on understanding what causes long build

durations e.g., [30, 105]. Thus, most of the approaches that reduce the cost of CI aim

at making builds faster by running fewer test cases on each build. Some approaches use

historical test failures to decide which tests to run [19, 41] Others run tests with a small

distance with the code changes [69] or skip those testing unchanged modules [97]. Recently,

Machalica et al. predicted test case failures using a machine learning classifier [67]. These

techniques are based on the broader field of regression test selection (RTS) e.g., [20, 32, 76,

83, 84, 114, 115, 118, 122]. While these techniques focus on making every build cheaper,

our work addresses the cost of CI differently: by reducing the total number of builds that

get executed. A related recent technique saves cost in CI by not building when builds only

include non-code changes and predicting which builds may be decided to skip by developers

[1, 2, 86]. Our techniques predict build outcomes for any kind of changes (code and non-

code). Thus, our work complements existing techniques to reduce cost in CI, and could

2.2. RELATED WORK 11

potentially be applied in addition to them.

A related effort for improving CI aims at speeding up its feedback by prioritizing its tasks.

The most common approach in this direction is to apply test case prioritization (TCP)

techniques e.g., [18, 19, 66, 68, 71, 85] so that builds fail faster. Another similar approach

achieves faster feedback by prioritizing builds instead of tests [63]. In contrast, our work

focuses on saving cost in CI by skipping tasks instead of prioritizing them. Prioritization-

based techniques increase feedback speed but do not focus on saving cost, i.e., all builds still

get executed, and all passing tests get executed if no test failure is observed.

Finally, other complementary efforts to reduce build duration have targeted speeding up the

compilation process e.g., [11, 26] or the initiation of testing machines e.g., [28].

2.2.3 Characterizing Failing Builds

Multiple studies investigated the reasons why builds fail. Some studies [70, 109] found that

the most common build failures were compilation [117], unit test, static analysis [116], and

server errors. Paixão et al. [75] studied the interplay between non-functioal requirements

and failing builds. Other studies found factors that contribute to build failures: architectural

dependencies [10, 89] and other more specific factors, such as the stakeholder role, the type

of work item and build [56], or the programming language [6]. Other less obvious factors that

could cause build failures are build environment changes or flaky tests [80]. Rausch et al. [80]

also found that build failures tend to occur consecutively, which Gallaba et al. [27] describe

as “persistent build breaks”. These observations inform our findings about subsequent build

failures that they would be numerous, easy to anticipate and able to break CI-Skip rules.

Other studies found change characteristics that correlate with failing builds, such as: number

of commits, code churn [45, 80], number of changed files, build tool [45], and statistics on

12 CHAPTER 2. BACKGROUND AND RELATED WORK

the last build and the history of the committer [73]. In our study of SMARTBUILDSKIP, we

separate failing builds into first failures and subsequent failures. We found that first failures

are predicted by some of the factors that predict all builds (line, file, and test churn, and

number of commits), but also by factors that were not found to correlate with all builds

(project size, age, and test density). In our study of PRECISEBUILDSKIP, we found that some

of these features can be used as CI-Skip rules but can still break the build even the change

is considered safe.

Finally, other studies investigated the noise of build breakage data [31] and characteristics

of build failures outside the CI context [37, 79, 104]

2.2.4 Predicting Failing Builds

Some works aimed at predicting build outcomes in industrial settings where continuous

integration was not yet adopted. These techniques mostly approached this problem using

machine learning classifiers, e.g., measuring social and technical factors and using decision

trees [36]; applying social network analysis and measuring socio-technical factors [58, 112];

and using code metrics on incremental decision trees [23].

In the continuous integration context, Ni and Li [73] predict build outcomes using cascade

classifiers measuring statistics about the last build and the committer of the current build.

Xie and Li [113] use a semi-supervised method over change metrics and the last build’s

outcome. Hassan and Wang [38] use a predictor over the last build’s status and type. Since

all these predictors rely on the outcome of the last build to be known, their prediction power

may be limited in a cost-saving context, where the last build means the last build that was

executed. In contrast to these predictors, SMARTBUILDSKIP is not affected by how stale the

last build status is, since it does not rely on it for its prediction. Abdalkareem et al. designed

2.2. RELATED WORK 13

techniques to predict builds that are likely to be skipped using CI-Skip rules [1, 2]. However,

CI-Skip rules are not evaluated themselves and builds under those rules can also be failing

builds. PRECISEBUILDSKIP takes advantage of both CI-Skip rules and their exceptions to

minimize the mispredictions and thus can capture the majority of failing builds.

2.2.5 Evaluation frameworks for similar techniques

Multiple research works focus on comparing cross-tool performance with an evaluation frame-

work. Zhu et al. [122] propose a regression test selection framework to check the output

against rules inspired by existing test suites for three techniques. Leong et al. [60] pro-

pose a test selection algorithm evaluation method and evaluate five potential regression test

selection algorithms, finding that the test selection problem remains largely open. Najafi

et al. [72] studied the impact of test execution history on test selection and prioritization

techniques. Luo et al. [66] conduct the first empirical study comparing the performance of

eight test prioritization techniques applied to both real-world and mutation faults and find

that the relative performance of the studied test prioritization techniques on mutants may

not strongly correlate with performance on real faults. Lou et al. [65] systematically created

a taxonomy of existing works in test-case prioritization, classifying them in: algorithms,

criteria, measurements, constraints, scenarios, and empirical studies.

Differently to these works, our study in this dissertation specifically targets the context of

CI, and it has a broader focus than test prioritization or selection. Our study is the first

to compare all the techniques proposed to reduce time-to-feedback or cost in CI, includ-

ing prioritization and selection techniques, at test and build granularities. We performed

observations comparing across 2 goals, 3 dimensions, 10 metrics, 2 granularities, and 10

techniques. Most of our observations required comparisons at broad scope. For example: we

14 CHAPTER 2. BACKGROUND AND RELATED WORK

revealed the need for a new incentive in test selection to skip full test suites (to also save

build-preparation time), which would not be relevant in studies outside the scope of CI.

Chapter 3

SMARTBUILDSKIP: balance cost saving

and failure observation delay

In this chapter, we aim to reduce the high cost of CI while keeping as much of its

value as possible, i.e., balance the cost saving and delay of failure observation.

The cost of CI is commonly defined by the cost of builds [44, 73], and its value is defined

by its ability to reveal problems early [16, 24]. Thus, we aim to reduce the cost of CI by

running fewer builds, while running as many failing builds as early as possible.

Our goal also responds to the need to run fewer builds that developers frequently express in

Q&A websites[100], which they currently may approach by using CI plug-ins [13, 47, 103] to

manually skip builds that they deem “safe”, e.g., changes in README files.

Existing research approaches to save cost in CI include the automatic detection of such non-

code changes [2] and techniques to make CI builds faster [41, 67]. In contrast, our proposed

approach focuses on skipping builds that are predicted to pass in more complicated cases —

for any kinds of changes that happened between builds. Our approach complements existing

techniques and could potentially be applied in combination with them.

We propose SMARTBUILDSKIP, a novel approach to reduce the cost of CI based on automatic

build-outcome prediction — by skipping builds that it predicts will pass, and running builds

that it predicts will fail. Our strategy is motivated by two hypotheses: H1: Most builds in

CI return a passing result. We expect that software changes will generally be done carefully,

15

16 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

making passing builds more common than failing builds. By this hypothesis, skipping passing

builds would produce large cost savings. H2: Many failing builds in CI happen consecutively

after another build failure. One of the strongest predicting factors in existing build-outcome

predictors is the previous build result [38, 73, 113]. Also, Rausch et al. observed build failures

mostly occur consecutively in a small number of Java projects [80]. By this hypothesis, most

failing builds could be easily predicted — since most follow another build failure.

Thus, SMARTBUILDSKIP differentiates between first failures and subsequent failures,

following a two-phase process. First, SMARTBUILDSKIP uses a machine-learning classifier

to predict build outcomes to catch first failures. After it observes a first failure, it then

determines that all subsequent builds will fail — until it observes a build pass and then

changes its operation to predicting again. This strategy aims to address the limitations of

existing build-prediction approaches [38, 73, 113], which strongly rely on the outcome of the

last build, and predict outcome for all builds — likely incorrectly predicting some first and

subsequent failures.

Lastly, we propose SMARTBUILDSKIP as a customizable technique, in order to help software

developers with different cost-saving trade-off needs, e.g., preferring modest effort savings

and low delays in observing build failures, or preferring high effort savings with a longer

delay to observe build failures.

We performed two empirical studies and two experiments. First, we empirically studied

the hypotheses that motivate SMARTBUILDSKIP. Second, we empirically studied the features

that predict first failures, to inform SMARTBUILDSKIP’s predictor. Third, we performed an

experiment to evaluate SMARTBUILDSKIP’s ability to predict first and all failures in a dataset

of 359 software projects and another one of 37 projects. Fourth, we performed another

experiment to measure the cost savings that SMARTBUILDSKIP would produce in our studied

datasets. In our experiments, we compared SMARTBUILDSKIP’s performance with the state-

17

of-the-art build prediction technique, HW17 [38]. HW17 makes machine-learning predictions

for all builds, using both historical and contemporary build information. To the extent of

our knowledge, HW17 is the build-prediction technique that currently provides the highest

precision and recall.

In our experiments, we compared SMARTBUILDSKIP’s performance with the state-of-the-art

build prediction technique, HW17 [38]. HW17 makes machine-learning predictions for all

builds, using both historical and contemporary build information. To the extent of our

knowledge, HW17 is the build-prediction technique that currently provides the highest pre-

cision and recall.

SMARTBUILDSKIP provides two major strengths over HW17: (1) SMARTBUILDSKIP runs pre-

dictions only for first failures, and determines that all subsequent builds fail until a pass is

observed. (2) SMARTBUILDSKIP predicts based only on features describing the current build

and the project (using no features about the previous build). We found that this strategy

was more effective at predicting both first and subsequent failures (see §3.5). Additionally,

we found that, by not relying on the outcome of the previous build, SMARTBUILDSKIP was

much more effective in practice. Since the previous build was often skipped and its outcome

unknown, HW17 was negatively impacted, but not SMARTBUILDSKIP (observed in §3.6).

The results of our studies support our hypotheses — build passes are numerous (median

87% of all builds), and subsequent failures are also a high proportion of all build failures

(median 52%). In our experiments, SMARTBUILDSKIP significantly improved the accuracy of

the state-of-the-art build predictor — up to median 8% F-measure for first failures, and up

to median 52% F-measure for all failures. Finally, SMARTBUILDSKIP’s predictions resulted in

high savings of build effort that could be customized for developers with different preferred

trade-offs, i.e., faster observation of build failures vs. higher savings in build effort. In

its most conservative configuration, SMARTBUILDSKIP saved a median 30% of all builds by

18 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

P PF PP F P P P P P

1 2 3 4 5 6 7 8 9 10 11

Example Timeline

FP F P P

PP F P

Our approach
(SmartBuildSkip)

Existing build
predictors

F FIdeal Timeline

F

12

F F F P

13 14 15 16

F F F F

F

F F F P

Figure 3.1: Motivating example timeline. first failures are highlighted in gray. In an ideal
timeline, we would skip all passing builds and run all failing builds. Existing approaches
predict outcome for every build. Our approach predicts build outcome if the last build
passed. After observing a failure, it continues building until a pass is observed and it goes
back to predicting.

only incurring a median delay of 1 build in a median 15% build failures. In a more cost-

saving-focused configuration, SMARTBUILDSKIP saved a median 61% of all builds by incurring

a 2-build delay for 27% of build failures.

This work provides following contributions:

aaa - The conceptual separation of build failures into first and subsequent failures, to improve

the effectiveness of build prediction models.

aaa - Two studies, of the prevalence of build passes over build failures, and of subsequent

failures over first failures.

aaa - A study of factors that predict first failures.

aaa - SMARTBUILDSKIP, a customizable, automatic technique to save cost in CI by predicting

build outcomes, that can be applicable with or without training data, and that improves the

prediction effectiveness of the state-of-the-art.

aaa - A collection of simple predictors, based on factors that predict first failures, that can

be applied as a rule-of-thumb, with no adoption cost.

aaa - An evaluation of the extent to which SMARTBUILDSKIP can save cost in CI while keeping

most of its value, with the ability of customizing its cost-value trade-off.

3.1. MOTIVATING HYPOTHESES 19

3.1 Motivating Hypotheses

We motivate our hypotheses and our proposed approach with an example. Figure 3.1 depicts

an example timeline of builds, the ideal timeline in which we would save most effort, the

timeline produced after applying a state-of-the-art build prediction technique, and the time-

line produced after applying our approach SMARTBUILDSKIP. The example timeline shows a

numbered sequence of builds in CI. We depict passing builds as circles with a P and failing

builds as circles with an F. The ideal timeline shows the outcome that an ideal technique

would achieve — skipping every passing build and building all failing builds. We depict

skipped builds with a dashed empty circle. This ideal timeline depicts our goal of saving

cost in CI by running as few builds as possible while running as many failing builds as

possible.

We propose SMARTBUILDSKIP following two main hypotheses: H1: Most builds in CI

return a passing result. If this was true, our strategy of predicting build outcomes and

skipping those expected to pass would provide substantial cost savings — since passing builds

would be a majority and they would be skipped. H2: Many failing builds in CI happen

consecutively after another build failure. If true, if we built an automatic approach

that predicted that subsequent builds to a failing build will also fail, we would correctly

predict a substantial portion of failing builds.

First failures vs. subsequent failures. Assuming that our hypothesis H2 would be

supported, we also propose the distinction between first failures — the first build failure

inside a sequence of build failures — and subsequent failures — all the remaining consecutive

build failures in the sequence. Figure 3.1 highlights first failures with gray fill.

Limitations of existing work. Figure 3.1 also illustrates the limitations of applying

existing build predictors (e.g., [38, 73, 113]) to the problem of saving cost in CI by skipping

20 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

passing builds. The timeline for “existing build predictors” uses a diamond to depict the

prediction of the outcome of an upcoming build. If the upcoming build is predicted to pass,

the technique skips it and transitions to predict for the next build. We depict this with an

arrow leaving the diamond and going into the next diamond, e.g., in build 2. If the upcoming

build is predicted to fail, it is executed. We depict this with an arrow leaving the diamond

and going into the next build. We posit that existing predictors, by not distinguishing first

and subsequent failures, likely provide limited accuracy for both.

Limited prediction of first failures. We posit that existing predictors will rarely correctly

predict first failures, because they strongly rely on the status of the previous build for

prediction. first failures are preceded by a build pass, by definition. However, we expect

that it’s more often build passes that are preceded by a build pass. Thus, after observing a

build pass, we expect that existing predictors will more likely predict another build pass to

follow — likely not catching many first failures. SMARTBUILDSKIP, in turn, does not suffer

from this limitation, since it does not rely on the outcome of the last build for its prediction.

Limited prediction of subsequent failures. Since existing techniques predict outcome for all

builds — even after observing a first failure, they may incorrectly predict some subsequent

failures to pass. SMARTBUILDSKIP, in turn, will correctly anticipate subsequent failures, since

it does not make predictions for them. Instead, it determines that subsequent builds to a

failure will also fail.

3.2 Our approach: SMARTBUILDSKIP

We designed SMARTBUILDSKIP by following the two hypotheses that we described. We also

include the timeline produced by SMARTBUILDSKIP for our motivating example in Figure 3.1.

3.2. OUR APPROACH: SMARTBUILDSKIP 21

SMARTBUILDSKIP’s overall strategy. SMARTBUILDSKIP follows a two-phase strategy. In

its first phase, SMARTBUILDSKIP predicts the outcome of the next build based on a set of

predicting features. If the build is predicted to pass, it is not executed — its cost is saved

— and SMARTBUILDSKIP will predict again for the next build. An example is build 5 in

Figure 3.1. If the build is predicted to fail, SMARTBUILDSKIP executes it and checks its

outcome. If the actual outcome of the executed build is pass, SMARTBUILDSKIP will predict

again for the next build — as in build 8 in Figure 3.1. If the actual outcome of the executed

build is fail, SMARTBUILDSKIP will shift to its second phase — as in build 2 in Figure 3.1. In

its second phase, SMARTBUILDSKIP determines that all subsequent builds will fail and thus

executes them until the build passes, after which it returns to the first phase — as in builds

2–4 in Figure 3.1.

The benefit of this two-phase strategy is that we expect SMARTBUILDSKIP to be more suc-

cessful at identifying both first failures and subsequent failures, by treating them separately.

We expect it to predict first failures better than existing techniques, since we train SMART-

BUILDSKIP’s predictor using features that specifically predict first failures. We also expect it

to accurately predict most subsequent failures by determining that all builds after a failing

one will also fail.

The downside of this approach is that, by continuously building after observing a first fail-

ure, one false positive is guaranteed for every sequence of failures — as in builds 5 and

8 in Figure 3.1. However, we believe that this downside is smaller than the benefit that

SMARTBUILDSKIP gets from its overall strategy. Besides, existing predictors will also likely

incur in these false positives because they strongly rely on the last build status — which in

these cases is a bad predictor. Finally, we argue that these first-pass builds are valuable for

practitioners, because they inform them of when they have fixed the problem that caused

the build to fail.

22 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

SMARTBUILDSKIP’s Variants. We propose two variants of SMARTBUILDSKIP. Both variants

use a random forest classifier to predict builds. Since our focus is to correctly predict failing

builds, and since we expect CI build output to often be imbalanced, SMARTBUILDSKIP trains

with a class weight of 20:1 in favor of failing builds.

SMARTBUILDSKIP-WITHIN: This variant is trained in the past builds within the same

software project in which it is applied. It uses the build features that we reported in 3.1.4.

SMARTBUILDSKIP-CROSS: This variant is trained in the past builds of different software

projects than the one in which it will be applied. It uses the build features as well as the

project features that we report in 3.1.4. We propose this variant to help with the cold-start

problem [111] in software projects for which only a few builds have been executed and they

would not be enough to provide high-quality predictions.

Studied subjects. We perform our study over the TravisTorrent dataset [6], which includes

1,359 projects (402 Java projects and 898 Ruby projects) with data for 2,640,825 build

instances. We remove “toy projects” from the data set by studying those that are more

than one year old, and that have at least 200 builds and at least 1,000 lines of source code,

which is a criteria applied in multiple other works [45, 73]. After this filtering, we obtained

274,742 builds from 359 projects (53,731 failing builds). We focused our study on builds

with passing or failing result, rather than error or canceled — since they can be exceptions

or may happen during the initialization and get aborted immediately before the real build

starts. Besides, in Travis a single push or pull-request can trigger a build with multiple

jobs, and each job corresponds to a configuration of the building step [27, 123]. We did a

preliminary investigation of these builds and found that these jobs with the same build ID

normally share the same build result and build duration. Thus, as many existing papers

have done [27, 46, 81], we considered these jobs as a single build.

3.3. EVALUATING OUR MOTIVATING HYPOTHESES 23

3.3 Evaluating our Motivating Hypotheses

We first evaluate our motivating hypotheses to understand if our approach to save build

effort in CI is promising. Our first hypothesis posits that passing builds will be numerous —

and thus skipping them would provide high build-effort savings in CI. We measured the ratio

of passing builds to all builds in each studied project, and we show the distribution of such

ratios in Figure 3.2a. From the result, the passing builds represented a very large proportion

— with a median 88% (and a mean 84%) of all builds passing. This result supports our

hypothesis that skipping passing builds would strongly save build effort in CI, since they

generally represented a large portion of the executed builds. Furthermore, this result also

shows the upper bound for how many builds could be saved — given a “perfect” technique

that would correctly predict every single passing build.

Our next hypothesis posits that subsequent failures will be numerous — and thus predicting

that subsequent builds to a failing build will also fail would correctly predict a substantial

portion of failing builds. We measured the proportion of subsequent failures to all failures

for each project (e.g., in a build history P-F-F-F-P, the ratio of subsequent failures to all

failures is 2/3). Figure 3.2b supports the hypothesis that subsequent failures are numerous,

i.e., there are many of them. A high number of projects had a high (i.e., , not low) ratio

of subsequent failures: >52% for 50% of projects, and >38% for >75% of projects. Thus,

our approach would correctly predict a high proportion of all build failures, since we expect

it to correctly predict all subsequent failures. Once it observes a failure, it would correctly

predict all the subsequent ones.

24 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

Passing builds

Pr
op

or
tio

n
of

 a
ll

bu
ild

s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

(a) Proportion of passing builds

Subsequent failures

Pr
op

or
tio

n
of

 a
ll

fa
ilu

re
s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

(b) Proportion of subsequent failures

Figure 3.2: Hypotheses evaluation.

3.4 Characterizing First Failures

We found that subsequent failures are numerous and easy to predict. Next, we will focus on

predicting first failures. To inform our prediction technique, we perform a second empirical

study to identify features that characterize them.

3.4.1 Research Method

We study two different kinds of features to characterize first failures: build features and

project features. As build features, we selected all the features included in TravisTorrent

that previous studies found to be correlated with all build failures, e.g., [45, 80]. Our goal

was to study whether such features are also correlated with first failures. Then, to be able to

address the cold-start problem [111], we also created four project features that could be used

for cross-project predictions. Our intuition is that project features would aid the classifier

in “adapting” its trained model across projects of different characteristics — since projects

using continuous integration are diverse [29]. To the extent of our knowledge, no previous

work studied the correlation between all build failures (or first failures) and these project

features (as defined by us, with a single value per project). We list in Table 3.1 the features

3.4. CHARACTERIZING FIRST FAILURES 25

that we studied, along with a brief description.

Build features will be useful to train our approach with past builds from the same software

project. To identify build features that have a relationship with first failures, we first removed

subsequent failures from our studied dataset. Then, we measured the correlation between the

ratio of first failures to all builds (which now only included first failures and passing builds)

and each studied build feature in each studied project. For each value of a build feature

in a project, we measured the ratio of first failures to all builds that have that value for

that feature in the project. For continuous features, such as src_churn, we use the Pearson

correlation coefficient as effect size and its corresponding p-value for the significance test.

For categorical variables, such as week_day, we measure effect size using Cramér’s V and

we use Pearson’s X 2 for the statistical significance test.

Project features will be useful to train our approach with past builds from other software

projects. When no (or few) past builds are available for a software project, we could use

past builds from different software projects to train our predictor. This situation is known in

machine learning as the cold-start problem [111]. In such cases, our predictor will use project

features to learn how representative past builds from other projects are for the project for

which not enough past builds existed. As we did to study build features, we also removed

subsequent failures to study project features. Then, we measured the correlation across

projects between the value of each project feature and the project’s ratio of first failures to

all builds. Since all features were continuous, we applied Pearson’s correlation coefficient

and decided statistical significance for p < 0.05.

26 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

Table 3.1: Features studied for correlation with first failures.
Build features

Feature Short Description
src_churn (SC) The number of changed source lines since the last build.
file_churn (FC) The number of changed source files since the last build.
test_churn (TC) The number of changed test lines since the last build.
num_commit (NC) The number of commits since the last build.
Project_performance_short (PS) The proportion of passing builds in the recent five builds.
Project_performance_long (PL) The proportion of passing builds in the whole previous

builds.
Time_frequency (TF) The time gap (hour) since the last build.
Failure_Distance (FD) The number of builds since the last failing build.
Week_day (WD) The weekday [0, 6] (0 being Monday) of the build.
Day_time (DT) The time of day [0, 23] of the build.

Project features
Feature Short Description

Team_size (TS) The median number of developers over the project’s CI
usage history.

Project_size (PS) The median number of executable production source lines
of code in the repository over the project’s CI usage history.

Project_age (PA) The time duration between the first build and the last build
for that project.

Test_density (TD) The median number of lines in test cases per 1000 exe-
cutable production source lines over the project’s CI usage
history.

3.4. CHARACTERIZING FIRST FAILURES 27

3.4.2 Result

Build features. We show in Figure 3.3a the correlation between different build features and

the ratio of first failures. Each box in the box plot represents the distribution of correlation

coefficients between a feature (see Table 3.1) and the ratio of first failures, for all the projects

for which that feature’s correlation was statistically significant (p < 0.05). We report the

percentage of projects for which a feature’s correlation was statistically significant in its label

in the X axis.

We observe that different build features were differently related to first failures For example,

PS (project_performance_short) had a median correlation of -0.94, which means that the

build was more likely to pass when there are more passing builds in its last five builds and

it has a strong correlation. However, this correlation was only statistically significant in

13.65% of projects.

For the design of our technique, we will train on the features that had a strong correlation

with the ratio of first failures and their results were statistically significant in at least 50%

of projects. Four features had these characteristics, the numbers of: changed lines (SC),

changed files (FC), changed test lines (TC), and commits since the last build (NC).

A clear implication of these build features being related to first failures is that, as changes

accumulate in code — measured as any of these four build features — without a failing build

being observed, the likelihood of the next build to fail becomes increasingly high. For the

two categorical features (WD and DT), the results are statistically significant in only 10.36%

and 12.32% of all projects, and their corresponding mean values of Cramér’s V are 0.1308

and 0.2483.

Another interesting observation is that most of the build features that did not show strong

statistical correlation with first failures are those that intuitively would be strongly correlated

28 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

Build features

SC 73.54% FC 77.43% TC 50.60% NC 58.70% PS 13.65% PL 23.12% TF 19.22% FD 11.42%

Co
rr

el
at

io
n

co
ef

fic
ie

nt

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) SC, FC, TC, NC had a statistically significant correlation
for more than 50% of projects.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

PS 0.0036 TD 0.0096 PA 0.0134 TS 0.316

Co
rr

el
at

io
n

co
ef

fic
ie

nt

Project features

(b) The correlation was statistically significant for PS, TD,
PA.

Figure 3.3: Correlation between (a) build (b) project features and ratio of first failures

with subsequent failures instead. That is, subsequent failures happen after a particularly short

number (zero) of failing builds (FD), after a particularly low proportion of passing to failing

builds (PS, PL), and probably a particularly short time after another build (TF). Intuitively,

first failures would not particularly have any of these characteristics.

Project features. We use a bar chart to show each project feature and its corresponding

correlation coefficient. The value following the name of each project feature represents

its corresponding p-value. We found three project features for which first failures were

3.5. EVALUATING BUILD-FAILURE PREDICTION 29

more prevalent, i.e., for which the project feature increased and its difference is statistically

significant (Figure 3.3b): test density (TD), project size (PS), and project age in CI (PA).

These are the features that we will use to design our technique to train across projects.

In simpler words, we observed that our studied projects had a larger ratio of first failures

when they had larger test cases, more lines of code, or had been using CI for longer. This

could mean that, as software projects mature, more bugs affect their builds and/or they

get better at catching them. We posit that our observation is likely a combination of both

phenomena — intuitively, larger projects have more points of failure and larger test suites are

better at catching problems. Still, to understand the underlying causes of our observation

in depth, further research would be necessary.

3.5 Evaluating Build-Failure Prediction

In our second empirical study, we discovered features that predict first failures. Next, we use

them in SMARTBUILDSKIP to evaluate it. We evaluate SMARTBUILDSKIP in two experiments

that complement each other. First, we evaluate its effectiveness for predicting build failures,

and then we evaluate the cost reduction that its predictions provide in practice.

3.5.1 Research Method

We evaluate the prediction effectiveness of SMARTBUILDSKIP in comparison to the state-of-

the-art build-prediction technique: HW17 [38]. To better understand the benefit of SMART-

BUILDSKIP’s two-stage design, we separately evaluate predictions for first failures and all

failures. We evaluate both techniques over our dataset, and we measure their prediction

effectiveness using precision, recall, and F1 score. We tested our results for statistical sig-

30 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

nificance with a two-tailed Wilcoxon test, and decided statistical significance for p < 0.05.

To provide a point of reference for this evaluation, we replicated the state-of-the-art build

prediction technique: HW17 [38]. We use the acronym HW17 to refer to it — the first letter

of the authors’ last names and its publication date — since the authors did not assign it

a specific name. To the extent of our knowledge, HW17 is the existing build prediction

technique that provided the highest precision and recall.

We perform 8-fold cross validation, also to study the same conditions in which HW17 was

evaluated. Thus, we randomly divided our dataset into 8 subsets of builds, i.e., folds,

iteratively using one of them as our test set and the remaining ones as our training set, until

we have used every fold as test set.

SMARTBUILDSKIP-WITHIN: Our proposed approach described, trained in the same software

project, using the predicting build features that we discovered.

SMARTBUILDSKIP-CROSS: Our proposed approach described, trained in other software projects,

using the predicting build features and project features that we discovered.

HW17-WITHIN: The state-of-the-art build predictor, trained in the same software project.

HW17-CROSS: The state-of-the-art build predictor, trained in different software projects.

Dependent Variables. We used three metrics to evaluate our studied techniques: preci-

sion, recall, and F1 score. We calculated the value of these metrics for each studied software

project, first for the set of first failures, and then for the set of all failures. We measured

precision as the number of correctly predicted build failures divided by the number of builds

that the technique predicted as build failures. We measured recall as the number of cor-

rectly predicted build failures divided by the number of actual build failures. We measured

F1 score as the harmonic mean of precision and recall.

3.5. EVALUATING BUILD-FAILURE PREDICTION 31

3.5.2 Result

We plot the results of this experiment in Figure 3.4 for the prediction of first failures, and in

Figure 3.5 for the prediction of all failures. The boxes in these box plots for each dependent

variable represent its distribution of values for all the studied projects. We discuss our

observed differences in results in terms of absolute percentage point differences over the

median value of each metric across projects.

Predicting first failures. SMARTBUILDSKIP improved HW17’s median precision by 3% for

its WITHIN approach and by 9% for its CROSS approach. SMARTBUILDSKIP also improved

HW17’s median recall by 4% for its WITHIN approach and by 7% for its CROSS approach.

These differences were statistically significant (p < 0.05). We posit that SMARTBUILDSKIP-

CROSS provided an even higher improvement because its training set was much larger —

encompassing multiple projects — and because build features likely vary little from project

to project. These findings validate our hypothesis that separately predicting first failures is

more effective than training a predictor based on features from all failures.

Predicting all failures. SMARTBUILDSKIP improved HW17’s median precision by 16% for its

WITHIN approach and was 9% worse for its CROSS approach. It also improved HW17’s median

recall by 28% for its WITHIN approach and by 68% for its CROSS approach. These differences

were statistically significant (p < 0.05). We posit that SMARTBUILDSKIP’s precision and recall

are now much higher than HW17’s because it is much better at predicting subsequent failures.

We also observed that both techniques generally improved both their precision and recall.

We believe that this is due to the increase in the number of failing builds in the dataset

— after adding subsequent failures), allowing all techniques to learn them better. This is

particularly acute for SMARTBUILDSKIP’s CROSS variants, which became much more inclined

to predict build failures after being trained with much more data (across projects), which

32 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Pr
ec
isi
on

0%

10%

20%

30%

40%

50%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Re
ca
ll

0%

10%

20%

30%

40%

50%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

F1
sc
or
e

0%

10%

20%

30%

40%

50%

Figure 3.4: Performance comparison on predicting first failures

dramatically increased its recall, but reduced its precision. These findings also validate our

hypothesis that choosing to always build after a failure is a highly successful strategy to

predict subsequent failures.

3.6 Evaluating CI Cost Reduction

After finding that SMARTBUILDSKIP improves the precision and recall of the state-of-the-art

build predictor, we measure the cost reduction that it would provide in practice.

3.6.1 Research Method

We now simulate the more realistic scenario in which the builds that are skipped are not

available for training. When a predictor predicts the upcoming build as a pass, we skip the

build, and accumulate the value of the build-level features for the next coming build. We

only update the information connected to the last build when the predictor actually decides

3.6. EVALUATING CI COST REDUCTION 33

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Pr
ec
isi
on

0%

20%

40%

60%

80%

100%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Re
ca
ll

0%

20%

40%

60%

80%

100%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

F1
sc
or
e

0%

20%

40%

60%

80%

100%

Figure 3.5: Performance comparison on predicting all failures

to build. In this context, we measure four metrics for each evaluated technique: how many

builds it saves, how many failing builds are observed immediately (and how many with a

delay), the delay length of delayed failing builds, and a new metric to measure the balance

between failing build observation delay and build execution saving.

Independent Variable: Technique. We evaluate the same four predictors as in Experi-

ment 1, in addition to a new collection of techniques that we call rule-of-thumb techniques.

In the spirit of cost-saving, we propose this additional collection of techniques because of

their low adoption cost. These rule-of-thumb techniques are based on the individual build

features. They simply decide to skip builds when the given feature value is below a cer-

tain threshold. We propose these techniques as a potentially “good-enough” alternative for

software teams that do not have the resources to implement and adopt SMARTBUILDSKIP, or

for them to use in the time period while they are implementing it. Finally, we also include

a “Perfect” technique that would skip all passing builds and run all failing builds — as a

reference for how many builds could be desirably skipped.

34 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

Independent Variable: Prediction sensitivity. Our simple techniques need a threshold

to be applied, i.e., they are defined as “predict build failures when the feature value is over

X”. In a similar manner, SMARTBUILDSKIP can be also configured for different thresholds

of prediction sensitivity. Thus, we also evaluate these techniques for multiple thresholds of

sensitivity. Only when the possibility predicted by the classifier for the coming build to

become a failure is smaller than the threshold, we will predict the build as a pass, which

means the smaller the threshold is, the easier we are going to predict builds as failing.

Finally, these varied thresholds and prediction sensitivities will allow us to learn different

trade-offs that could be achieved in terms of saving cost in CI — skipping builds — without

losing too much value — without delaying too many build failures. We evaluated 50 different

thresholds (values 1–50), which meant: absolute value for the “rule-of-thumb” techniques,

and predicted likelihood (in percentage) of the build to fail for SMARTBUILDSKIP.

Dependent Variables. We measured four metrics in this evaluation: Recall, Failing-build

Delay, Saved Builds, and Saving Efficiency. Recall is the proportion of failing builds that are

correctly predicted and executed, among all failing builds. For each failing build that was

incorrectly predicted and skipped, we also measured its Failing-build Delay, as the number

of builds that were skipped until the predictor decided to run a build again — and then the

failure would be observed. We measured Saved Builds as the proportion of builds that are

skipped among all builds. Finally, we measured Saving Efficiency as the harmonic mean of

saved-builds and recall, to understand their balance.

3.6.2 Result

We plot the results for our Experiment. Figure 3.6 shows the median value for each metric

across studied projects. For Failing-build Delay, it’s the median across projects of their me-

3.6. EVALUATING CI COST REDUCTION 35

dian Failing-build Delay. The Y axis is the metric for evaluation and each box contains every

project’s result. The X axis has different meanings for different techniques: the threshold for

rule-of-thumb techniques (e.g., threshold 5 for #src_files means that <5 files were changed

in that build), or the prediction sensitivity (in percentage) for the predictors.

We make a few observations from our results. First, SMARTBUILDSKIP-WITHIN achieves the

peak saving efficiency among all techniques for its 2% sensitivity — saving 61% of all builds,

executing 73% of the failing builds immediately, and the remaining ones with a median

2-build delay. If a more conservative approach is sought, SMARTBUILDSKIP-WITHIN’s 0%

sensitivity would execute 80% of the failing builds (and the remaining ones with a 1-build

delay), while still saving 45% of all builds.

HW17 achieved the poorest saving efficiency. As we anticipated in the motivation, HW17

predicted most builds to pass because it relied too much on the status of the last build. It

saved a large amount of builds, but it also executed very few failing builds as a result.

Finally, our rule-of-thumb techniques provided acceptable results. Thus, a software team

looking for a simple mechanism to save effort by skipping builds in CI could simply skip those

builds that, for example, changed more than 30 lines — which is the highest saving efficiency

for #src-lines. In our experiments, this threshold saved around 57% builds, executing 60%

failing builds (and the remaining ones with an 8-build delay). While this trade-off may not

be the most ideal (certainly SMARTBUILDSKIP provides much better trade-offs), it has the

advantage that it can be adopted by simply informing developers to follow that rule.

Finally, if more conservative or more risky approaches are preferred, Figure 3.6 shows a wide

variety of trade-offs that could be achieved by different techniques and configurations.

36 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50

Re
ca

ll

Perfect HW17-Within HW17-Cross SBS-Within SBS-Cross
commits # src files # src lines # test lines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50

Sa
ve

d
bu

ild
s

Perfect HW17-Within HW17-Cross SBS-Within SBS-Cross
commits # src files # src lines # test lines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50

Sa
vi

ng
Ef

fic
ie

nc
y

Perfect HW17-Within HW17-Cross SBS-Within SBS-Cross
commits # src files # src lines # test lines

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Fa
ili

ng
-b

ui
ld

De
la

y

Perfect HW17-Within HW17-Cross SBS-Within SBS-Cross
commits # src files # src lines # test lines

Figure 3.6: Cost saved and value kept by evaluated techniques

3.7 Discussion

Diverse Cost-saving Needs. Different developers will have different preferences in the

trade-off between observing failing builds early and saving build effort. Thus, we propose

SMARTBUILDSKIP as a customizable solution, with an adjustable prediction sensitivity. Some

developers may value observing failing builds early much more than saving cost (but still

want to save some cost), e.g., developers at large companies that have been using CI for

some time and are exploring ways to reduce its cost (like Facebook [67], Microsoft [41], or

Google [19]). These developers could configure SMARTBUILDSKIP in its most conservative

sensitivity (0) and save the cost of 30% of their builds while only introducing a 1-build delay

in 15% of their build failures.

In contrast, other developers may be looking for a way to reduce CI’s high-cost barrier [110]

to adopt it, even if it means observing build failures less quickly. These developers could

3.7. DISCUSSION 37

configure SMARTBUILDSKIP with a more liberal sensitivity (2) and save the cost of 61% of

their builds and still observe 73% failing builds with no delay (and the remaining 27% with

a 2-build delay). In this scenario, SMARTBUILDSKIP dramatically lowers the cost of CI for

non-adopters, letting them still get a strong value from it — particularly considering that

non-adopters currently do not benefit from CI at all. Furthermore, as developers’ budgets

increase, they could also adapt the sensitivity of SMARTBUILDSKIP over time to build more

and observe failures more quickly.

The Impact of Delayed Failing Builds. Our approach reduces the cost of CI, but it also

reduces its value — it delays the observation of some build failures. Some existing techniques

target developers who cannot afford a single delayed failing build — by skipping only tests

[97] or commits [2] that are guaranteed to pass, i.e., tests for other modules and non-code

changes. In exchange for such guarantee, this strategy is limited in how much cost it can

save — the number of guaranteed-pass tests and commits.

Our proposed technique targets developers for whom some delay in failure observation is

acceptable — as do existing techniques based on test selection. Such techniques, which

introduce failure observation delays, are valued and adopted by many large software compa-

nies, e.g., Google [18], Microsoft [41], or Facebook [67]. We argue that, for many developers,

the cost savings provided by SMARTBUILDSKIP overcome the introduced delay in failure obser-

vation — particularly for SMARTBUILDSKIP’s most conservative sensitivities, which produce a

delay of one or two builds. For context, Herzig et al. ’s approach [41] (deployed at Microsoft)

introduced a delay of 1–3 builds. Ultimately, though, we believe that different developers

would prefer different cost-saving trade-offs, which is why we made SMARTBUILDSKIP cus-

tomizable.

Other Purposes of CI. The main reason for developers to use CI is to catch bugs earlier

[43], but they also use it to: have a common build environment, make integrations easier,

38 CHAPTER 3. SMARTBUILDSKIP: BALANCE COST SAVING AND FAILURE OBSERVATION DELAY

enforce a specific workflow, simplify testing across multiple platforms, be less worried about

breaking builds, deploy more often, and have faster iterations, [43, 44]. Most (the first four)

of these purposes are achieved as soon as CI is adopted, so we do not expect them to be

impacted by introducing a cost-saving technique like SMARTBUILDSKIP. However, the last

three purposes (and others like safety-checking pull requests) may be impacted, since they

benefit from observing build passes. This applies to both our and existing techniques that

skip tests or builds.

Still, after adopting a cost-saving technique, developers remain in control of their build

frequency. They can always build more frequently by making SMARTBUILDSKIP’s prediction

sensitivity more conservative, or by simply triggering additional builds on top of the ones

that SMARTBUILDSKIP triggers.

Furthermore, SMARTBUILDSKIP provides an additional benefit over existing test-selection-

based techniques for purposes that rely on build observations. Test-selection techniques may

give a false sense of confidence [77] when a build that should have failed instead passes

because some of its failing tests were skipped.

When SMARTBUILDSKIP predicts a build that should have failed as passing, it skips it (it does

not show it as passing), which provides more transparency about the unknown status of the

build — until it eventually fails in a later build.

3.8 Conclusions

In this chapter, we proposed and evaluated SMARTBUILDSKIP, a novel framework for saving

cost in CI by skipping builds that it predicts will pass. Our design of SMARTBUILDSKIP is

based on two main hypothesis: that build passes are numerous and that many failing builds

3.8. CONCLUSIONS 39

happen consecutively. We studied these hypotheses and found evidence to support them.

Thus, SMARTBUILDSKIP works in two phases: first it runs a machine learning predictor to

decide if a build will pass — and skips it — or will fail — and executes it. Whenever it

observes a failing build, it determines that all subsequent builds will fail and keeps building

until it observes a pass again — and starts predicting again.

With this strategy, SMARTBUILDSKIP improved the precision and recall of the state-of-the-art

build predictor (HW17) and cost savings with various trade-offs, since we made it customiz-

able to address the needs of diverse populations of developers. We highlight two specific

configurations that we posit will be popular: the most conservative one, which saves 30%

builds and only delays the observation of 15% failing builds by 1 build; and a more balanced

one that saves 61% of all builds and delays 27% failing builds by 2 builds. Nevertheless,

SMARTBUILDSKIP provides many other trade-offs that could be desirable in different environ-

ments. SMARTBUILDSKIP provides a novel strategy that complements existing techniques to

cost saving in CI that focus on skipping test cases or builds with non-code changes.

Chapter 4

Evaluating CI-improving techniques

We introduced our newly designed technique, SMARTBUILDSKIP in Chapter 3. Given that

there are plenty of other techniques that can improve CI, we aim to evaluate their per-

formance with SMARTBUILDSKIP under the same context to compare their strengths and

weaknesses.

As software companies adopt CI, they execute builds for many of projects, and they do so

very frequently. As workload increases, two main problems appear: (1) the time to receive

feedback from the build process increases, as software builds often outnumber the available

computational resources — having to wait in build queues, and (2) the computational cost of

running builds also becomes very high. Previous studies e.g., [69] have highlighted the long

time that developers have to wait to receive feedback about their builds. For example, at

Google, developers must wait 45 minutes to 9 hours to receive testing results [63]. Even just

the dependency-retrieval step of CI can take up to an hour per build [11]. Regarding the high

cost of running builds, that is also highlighted in other studies [41, 43, 44, 77, 110]. The cost

of CI reaches millions of dollars, e.g., at Google [44] and Microsoft [41]. While other problems

exist for CI, we focus on these two because they are the ones that most existing techniques

have focused on addressing. They are also interrelated, since cost-reduction techniques may

also reduce time-to-feedback — e.g., skipping some tests may cause other tests to fail earlier.

Multiple techniques have been proposed to improve CI. Most of them have the goal of

reducing either its time-to-feedback or its computational cost. All such techniques

40

41

consider the observation of build failures to be more valuable than build passes, because fail-

ures provide actionable feedback, i.e., they point to a problem that needs to be addressed.

Time-to-feedback-reduction techniques aim to observe failures earlier — by priori-

tizing failing executions over passing ones. These techniques may operate in two different

levels of granularity, by prioritizing: test executions e.g., [19], or build executions e.g., [63].

Computational-cost-reduction techniques aim to observe failures only — by selec-

tively executing failing builds only, saving the cost of executing passing ones. They also

may operate at two different levels of granularity, selecting: test executions e.g., [67], or

build executions e.g., [2].

To the extent of our knowledge, the existing techniques to improve CI have been evaluated

under different settings, making it hard to compare them. Previous studies used different

software projects, different metrics, and rarely compared one technique to another. However,

we expect that different choices of goal, granularity, and technique design will bring different

trade-offs. For example, cost-reduction techniques at build-granularity may be more risky

than a test-granularity one, i.e., it may save more cost when it skips all the tests in a build,

but it may also make more mistakes if it skips many failing tests in a build. However, the

opposite may be true, if test-granularity cost-reduction techniques also skip a large ratio of

full builds (i.e., all the tests in the build). On another example, test-selection techniques

may be a good alternative to test-prioritization techniques that also saves cost as an added

benefit, or they may instead delay the observation of test failures if they mispredict too

many of them. To the best of our knowledge, how these trade-offs manifest in practice is

still mostly unknown. Empirically understanding these trade-offs will have valuable practical

implications for the design of future techniques and for practitioners adopting them.

In this chapter, we perform the first evaluation of the existing strategies to improve CI.

We aim to understand the trade-offs between these techniques for three dimensions: (D1)

42 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

computational-cost reduction, (D2) missed failure observation, and (D3) early feedback.

For this goal, we performed a large-scale evaluation. We replicated and evaluated all the

existing 10 CI-improving techniques from the research literature, representing the two goals

(time-to-feedback and computational-cost reduction) and the two levels of granularity (build-

level and test-level) for which such techniques have been proposed. We evaluated these tech-

niques under the same settings, using the state-of-the-art dataset of continuous-integration

data: TravisTorrent [8]. To be able to study all techniques, we extended TravisTorrent in

multiple ways, mining additional Travis logs, Github commits, and building dependency

graphs for all our studied projects. Finally, we measured the effectiveness of all techniques

with 10 metrics in 3 dimensions. We included every metric that any previous evaluation of

our studied techniques used (7), refitted 2 others and designed an additional one.

We analyzed the results obtained by all techniques on all metrics across all 3 dimensions,

and we synthesized our observations, to understand which design decisions helped and which

ones did not for each dimension. We also extended our experiments as a synthetic study that

simulates these studied techniques on different hypothetical projects whose tests within one

build occupy different proportions of the whole build process to show the generalizability of

our study. Finally, we further reflect on our results to provide a wide set of recommendations

for the design of future techniques in this research area.

The main contributions of this work are: (1) the first comprehensive evaluation of CI-

improving techniques; (2) a collection of metrics to measure the performance of CI-improving

techniques over various dimensions; (3) an extended Travis Torrent dataset with: detailed

test and commit, and dependencies information; (4) the replication of 14 variants of 10 CI-

improving techniques; (5) evidence for researchers to design future CI-improving techniques.

4.1. APPROACHES TO IMPROVE CONTINUOUS INTEGRATION 43

No-Intervention	
Timeline t1 t2 t3 t4 t1

Build	1

t2 t1 t2 t3 t4 t1 t2 t4 t1 t2 t3 t4

Build-selection	
Timeline t1 t2 t3 t4 t1t2 t1 t2 t3 t4 t1 t2 t4 t1 t2 t3 t4

t1 t2 t3 t4t2 t1 t2 t3 t4 t1 t2 t4 t1 t2 t3 t4
Build-prioritization	

Timeline t1

t1 t2 t3 t1t2 t1 t2 t3 t4 t1 t2 t4 t1 t2 t3 t4t4
Test-selection	

Timeline

Test-prioritization	
Timeline t1 t2 t3 t1t1 t2 t4t4 t2 t2 t3 t4 t1 t1 t2t3 t4

Build	2 Build	3 Build	4 Build	5 Build	6

Build	1 Build	2 Build	3 Build	4 Build	5 Build	6

Build	1 Build	2 Build	3 Build	4 Build	5 Build	6

Build	1 Build	2 Build	3 Build	4 Build	5 Build	6

Build	1 Build	2 Build	3 Build	5 Build	4 Build	6

T
im
e-
to
-f
ee
d
b
ac
k	

R
ed
uc
ti
o
n

C
o
st
	R
ed
uc
ti
o
n

Figure 4.1: Example timeline. Failing tests in gray. Build-selection runs builds fully when
it predicts a failing build. Test-selection runs builds partially (for tests that would fail).
Build-prioritization changes the build sequence. Test-prioritization changes the test sequence
within a build.

4.1 Approaches to Improve Continuous Integration

We summarize technique families in Table 4.1 and discuss each technique in detail in §4.2.3.

Figure 4.1 depicts a non-interventional example timeline of builds, a timeline in which a

build-selection technique is applied, a timeline produced by build-prioritization technique,

a timeline where a test-selection technique is applied, and a timeline with applying a test-

prioritization approach. The example timeline shows a chronological numbered sequence of

builds in CI. Each build is made up of at least one test. We depict each test suite as a

rectangle with a test number (e.g., t1). Failing tests are then highlighted in gray. The length

of the rectangle refers to the time duration for the test to be executed. We depict skipped

tests with a dashed rectangle. In the most ideal cost-saving scenario, all of the passing tests

would be skipped and all of the failing tests would be observed as soon as possible.

44 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

4.1.1 Computational-cost Reduction

Test-level granularity

Test-selection techniques [32, 41, 67, 69, 97, 118, 122] aim at automatically detect and label

tests that are not going to fail. These test-level approaches collect information from test

history and project dependency along with the current commit and use some heuristic models

to detect failing tests and skip the others. Figure 4.1 also illustrates how this type of

techniques works in the simulation timeline. After a test-selection approach is activated,

it selects a subset of tests (e.g., t2 in build #2, t4 in build #4) that it predicts to have a

possibility to fail and decides to skip the others (e.g., t3 in build #1, t1 in build #5). For

those tests that are not selected in the timeline and get skipped, we depict them as dashed

rectangles. In this work, we consider it can skip some builds when it selects no test in those

builds.

Build-level granularity

Build-selection techniques [1, 2, 38, 51, 73] aim at automatically detect and label commits

and builds that can be CI skipped. Some approaches [38, 51, 73] try to detect failing builds

and skip those passing builds to achieve cost-saving. Others [1, 2] aim at identifying commits

that can be CI skipped. Figure 4.1 illustrates how they work in the simulation timeline. As

a build-level technique, when build-selection approach decides to skip a build (e.g., build

#2, #4, #6), normally it skips all of the tests in that build. The inner test sequence is not

changed and all of tests are run in an executed build.

4.1. APPROACHES TO IMPROVE CONTINUOUS INTEGRATION 45

4.1.2 Time-to-feedback Reduction

Test-level granularity

Test-prioritization techniques [19, 66, 68, 71, 102] try to give high priority to tests that

are predicted to be failed so that developers could be informed in a shorter time. This

family of approaches normally rearrange the execution order of tests within a build to make

predicted-to-fail tests run earlier by analyzing information such as test failing history and

test context. Figure 4.1 depicts an example of how this type of techniques works in the

simulation timeline. With a test-level approach being activated, the CI system gives different

tests different priorities and firstly executes those tests with a higher priority (e.g., t4 in build

#2, t2 in build #3) as well as delays low-priority tests (e.g., t1 in build #3, t2 in build #6).

The sequence of test executions in this timeline gets rearranged and the start-time for tests

that are more likely to fail move ahead in time. Also, all tests are executed at last.

Build-level granularity

Build-prioritization techniques [63] aim at automatically prioritizes commits that are waiting

for being executed. They favor builds with a larger percentage of test suites that have been

found to fail recently and builds including test suites that have not been executed recently

as an alternative path. Figure 4.1 also shows how this family of techniques works in the

simulation timeline. Build-prioritization techniques will only be activated when there is a

collision of builds (i.e., there are multiple builds waiting to occupy the limited resource).

The technique is build-level so it will not change the inner order of the test executions and it

will normally change the sequence of tests across builds when the approach is activated (e.g.,

build #4, #5). None of tests become dashed in this timeline because they all eventually

execute.

46 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

4.2 Research Method

In this work, we replicated and evaluated 14 variants of 10 CI-improving techniques, covering

their two goals (time-to-feedback and computational-cost reduction) and their two levels of

granularity (build-level and test-level) with 1 perfect technique for the ideal timeline. We

evaluate them over 100 software projects in TravisTorrent, which we extended to be able to

run all such kinds of techniques.

Our goal is to understand the trade-offs between existing CI-improving techniques, and

between the metrics that have been used to evaluate them. We perform 2 empirical studies

to analyze these trade-offs for the following 3 dimensions of CI-improving techniques, using

10 metrics. We only include selection techniques in Empirical Study 1 since prioritization

techniques have no power in cost saving by nature. We involve selection and prioritization

techniques in Empirical Study 2 because both of them can have an impact on fault detection,

e.g., wrongly-skipped failing builds by selection approaches can cause delay in fault detection.

Empirical Study 1: Cost Saving

D1: Computational-cost Reduction

D2: Missed Failure Observation

Empirical Study 2: Time-to-feedback Reduction

D3: Early Feedback

For each dimension, we study:

RQ1: What design decisions helped this dimension?

RQ2: What design decisions did not help this dimension?

4.2. RESEARCH METHOD 47

4.2.1 Data Set

We perform our study over the Travis Torrent dataset [6], which includes 1,359 projects (402

Java projects and 898 Ruby projects) with data for 2,640,825 build instances. We remove

“toy projects” from the data set by studying those that are more than one year old, and that

have at least 200 builds and at least 1000 lines of source code, which is a criteria applied

in multiple other works [45, 73]. To be able to evaluate test-granularity techniques, we also

filter out those projects whose build logs do not contain any test information. We focused

our study on builds with passing or failing result, rather than error or canceled — since

they can be exceptions or may happen during the initialization and get aborted immediately

before the real build starts. Besides, in Travis a single push or pull-request can trigger a

build with multiple jobs, and each job corresponds to a configuration of the building step.

We did a preliminary investigation of these builds and found that these jobs with the same

build identifier normally share the same build result and build duration. Thus, as many

existing papers have done [27, 46, 81], we considered these jobs as a single build. After this

filtering process, we obtained 82,427 builds from 100 projects (13,464 failing builds).

To be able to execute all our studied techniques, we extended the information in TravisTor-

rent of these 100 projects in multiple ways. First of all, we needed to know the duration of

each individual test for the comparison and replication. Also, to replicate some techniques,

e.g., [19, 41], we needed to capture the historical failure ratio for each individual test. To ob-

tain these information, we built scripts to download the raw build logs from Travis and parse

them to extract all of the information about test executions, such as test name, duration and

outcome. Some techniques, e.g., [2, 67], require additional information that TravisTorrent

does not provide for builds, such as the content of commit messages, changed source lines

and changed file names. For that, we also mined additional information about commits in

the projects’ code repositories through Github. Then, we matched each test with its corre-

48 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

sponding test file in the project. Finally, to be able to run other techniques, e.g., [32, 67],

we built a dependency graph for the source code of each project using a static code analysis

tool (Scitool Understand [88]) to determine the paths between the source files and test files.

4.2.2 Evaluation Process

We evaluate the techniques in a real-world scenario, to understand as best as possible the

behavior that the techniques would show in practice. We take two measures for that.

First, we respect the original chronological order of build and test operations when training

techniques. We achieve that by using an 11-fold, chronological variant of cross-validation. For

each project, we split its chronological timeline into 11 folds. We use the first chronological

fold only for testing, and we iteratively test the other 10 folds. For each testing fold, we

train on all the folds that precede it chronologically. This approach has been used in previous

works e.g., [9, 93] to avoid training with information that would not be available in practice,

i.e., it happens in the future.

We follow this approach for all the techniques based on machine learning, e.g., [67]. For

techniques that do not require training, e.g., [2], we simply execute them over the same

last 10 folds. For techniques that train on data from other projects, i.e., for cross-project

technique variants, we also executed them over the same last-10-fold timeline — and we

divided them into 10 project folds to do cross-project cross-validation, i.e., for each project,

the technique is trained on 90 other projects and tested on its last 10 fold data.

Second, we respect the real-world availability of information. That is, for selection-based

techniques, when a build or test is skipped, the technique will not know its outcome. For

techniques that rely on the last build or test outcome e.g., [37], we only inform them of

the outcome of the last executed build or test. Additionally, when builds are skipped, we

4.2. RESEARCH METHOD 49

Table 4.1: Studied Techniques.
Goal Approach Granularity Studied Technique

Time to Feedback Prioritization Test
PT_Marijan13 [68]
PT_Elbaum14 [19]

PT_Thomas14 [102]
Build PB_Liang18 [62]

Computational Cost Selection

Test
ST_Gligoric15 [32]
ST_Herzig15 [41]
ST_Mach19 [67]

Build
SB_Hassan17 [38]

SB_Abd19 [2]
SB_Jin20 [51]

accumulate their code changes into the subsequent build.

4.2.3 Replicated Techniques

We replicated and studied all the techniques that have been proposed to improve CI by

reducing the time to feedback or reducing its cost. In addition to these, there are other

techniques that were proposed before CI and that could also be applied for these two goals:

test prioritization techniques, and test selection techniques. Therefore, we also replicated and

studied a state-of-the-art technique in each of these two categories that were not originally

proposed for CI. We summarize all our studied techniques in Table 4.1.

In total, we studied 10 techniques, across two goals (reducing time to feedback and cost)

and two granularities (test and build levels). Since we also studied multiple variants of some

techniques, our evaluation included 14 total technique variants. To provide a reference point,

we also studied a perfect technique: Perfect Technique. It achieves the goal of each metric

perfectly — it predicts which tests or builds will fail with 100% accuracy, prioritizing or

selecting them perfectly.

We include the detailed description for each technique in §4.3.1 and §4.4.1.

50 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

4.3 Empirical Study 1: Cost Saving

4.3.1 Studied Techniques

Test-selection Techniques

We replicated all the test-selection techniques that were proposed for improving CI: ST_Mach19

[67] and ST_Herzig15 [41]. To provide even more context for our study, we also evaluate

a state-of-the-art test-selection technique: ST_Gligoric15 [32] — since test-selection tech-

niques have also been proposed outside the context of CI, e.g., [32, 83, 84, 114, 115, 118].

ST_Gligoric15 [32] skips tests that cannot reach the changed files, by tracking dynamic

dependencies of tests on files. A test can be skipped in the new revision if none of its

dependent files changed. The rationale is that tests that cannot reach changed files cannot

detect faults in them.

ST_Herzig15 [41] is based on a cost model, which dynamically skips tests when the

expected cost of running the test exceeds the expected cost of removing it, considering both

the machine cost and human inspection cost [5, 42]. This technique tends to skip tests that

mostly passed in the past or that have long runtime.

ST_Mach19 [67] proposes a Machine Learning algorithm with combined features of com-

mit changes and test historical information. We studied two variants of it: one is trained

in the past builds within the same project in which it is applied (ST_Mach19_W), and

the other is trained in the builds of different software projects than the one in which it will

be applied (ST_Mach19_C). It uses the following features: file extensions, change history,

failure rates, project name, number of tests and minimal distance.

4.3. EMPIRICAL STUDY 1: COST SAVING 51

Build-selection Techniques

We then replicated all build-selection techniques that have been proposed for improving CI:

SB_Abd19 [2], and SB_Jin20 [51]. To provide even more context for our study, we also

replicated a state-of-the-art build-prediction technique: SB_Hassan17 [38].

SB_Hassan17 [38] predicts every build’s outcome based on the information from last

build. Builds can be skipped when they are predicted to pass. In our study, information

from the previous build is blinded if the build does not get executed. We study two variants

of this technique (SB_Hassan17_W and SB_Hassan17_C) as we did for ST_Mach19.

SB_Abd19 [2] uses a rule-based approach to skip commits that only have safe changes,

e.g., changes on configuration or document files. This technique is expected to capture most

failing builds since it only skips builds considered safe to skip.

SB_Jin20 [51] aims at saving CI cost by skipping passing builds. Their strategy is to

capture the first failing build in a subsequence of failing builds and continuously build until

a passing build appears. We replicated this technique under the configuration that provided

the optimal effectiveness [51]. We studied three variants of this technique: SB_Jin20_W

& SB_Jin20_C as we did previously, and also a rule-of-thumb variant (SB_Jin20_S) that

skips builds with < 4 changed files.

4.3.2 D1: Computational-cost Reduction

We studied four metrics for D1. We plot the result of each metric in a box plot where each

box represents the distribution of values for all the studied projects.

52 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

Studied Metrics

Build time saved measures the proportion of total build time that is skipped among all

build time per project. It was covered in SB_Abd19 [2].

Test time saved measures the same as the previous metric but in terms of test time. The

previous work ST_Gligoric15 [32] used this metric in its evaluation. It shows how much

time applying a technique could save during the phase of test executions.

Builds number saved measures the proportion of builds that are saved among all builds.

It was studied by SB_Abd19 [2] and SB_Jin20 [51]. It represents how many resources could

be saved as the number of builds.

Tests number saved measures the same as the previous metric but in term of tests.

Previous papers [32, 41] studied this metric. It represents how many resources could be

saved during test executions.

Analysis of Results

We plot the results for all techniques for this metric in Figure 4.2.

Comparing Metrics. When we compare the techniques’ test number vs. test time saved,

most of them saved a very similar ratio of test time than ratio of tests (except ST_Herzig15).

When comparing build number vs. build time, build-granularity techniques saved a very

similar ratio of build time as of builds. Also, test-granularity techniques saved a larger ratio

of build time than of builds. This means that test-granularity techniques save build time

when they skip builds partially — when they skipped some of their tests. When comparing

test number vs. build number, build-granularity techniques saved a very similar ratio of

builds and tests. Also, test-granularity techniques saved a much lower ratio of builds than

4.3. EMPIRICAL STUDY 1: COST SAVING 53

of tests — some dramatically so (ST_Herzig15 and ST_Mach19_C). This means that test-

granularity techniques saved a low ratio of full builds. When comparing test time vs. build

time, build-granularity techniques saved very similar ratios of test time and build time. Also,

test-granularity techniques saved a much lower ratio of build time than of test time. This

observation extends our earlier one: every build that these techniques did not skip fully, and

thus did not skip its build-preparation time, reduced their ability to save build time to an

important extent.

Comparing Granularities. By comparing test vs. build-granularity techniques, build-

granularity techniques generally saved higher build-time cost — except for SB_Abd19.

Build-granularity techniques have the advantage of skipping both test-execution and build-

preparation time, while test-granularity techniques have the advantage of skipping tests

spread over many builds, not only on those that get fully skipped. Our observation implies

that skipping full builds was a better strategy for saving cost.

Comparing Techniques. We first observed that SB_Mach19_C and SB_Jin20_C skipped

fewer builds than their counterparts that were trained only with data within the same project

(SB_Mach19_W, SB_Jin20_W). After having been trained with a more diverse set of

build and tests (across many projects), these techniques became less confident to skip them.

ST_Herzig15 saved very low ratio of build time despite saving a large ratio of tests. This

is because it very rarely skips tests that failed many times in the past — regardless of the

code changes in the build. So, within each build, it very rarely skipped the tests with the

most past failures — thus very rarely skipping builds fully. SB_Abd19 saved a median 21%

build time, which is a relatively high amount, considering that it only skipped builds with

non-executable changes, e.g., that only changed formatting or comments. ST_Mach19_W

and ST_Gligoric15 skipped a relatively high ratio of build time (competitively with build

selection techniques) because they skipped many full builds. This is because they analyze

54 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

Pe
rfe
ct

ST
_G
lig
or
ic1
5

ST
_H
er
zig
15

ST
_M

ac
h1
9_
W

ST
_M

ac
h1
9_
C

SB
_H
as
sa
n1
7_
W

SB
_H
as
sa
n1
7_
C

SB
_A
bd
19

SB
_J
in
20
_S

SB
_J
in
20
_W

SB
_J
in
20
_C

Te
st
sn

um
be

rs
av
ed

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rfe
ct

ST
_G
lig
or
ic1
5

ST
_H
er
zig
15

ST
_M

ac
h1
9_
W

ST
_M

ac
h1
9_
C

SB
_H
as
sa
n1
7_
W

SB
_H
as
sa
n1
7_
C

SB
_A
bd
19

SB
_J
in
20
_S

SB
_J
in
20
_W

SB
_J
in
20
_C

Te
st
tim

e
sa
ve
d

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Pe
rfe
ct

ST
_G
lig
or
ic1
5

ST
_H
er
zig
15

ST
_M

ac
h1
9_
W

ST
_M

ac
h1
9_
C

SB
_H
as
sa
n1
7_
W

SB
_H
as
sa
n1
7_
C

SB
_A
bd
19

SB
_J
in
20
_S

SB
_J
in
20
_W

SB
_J
in
20
_C

Bu
ild

sn
um

be
rs
av
ed

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rfe
ct

ST
_G
lig
or
ic1
5

ST
_H
er
zig
15

ST
_M

ac
h1
9_
W

ST
_M

ac
h1
9_
C

SB
_H
as
sa
n1
7_
W

SB
_H
as
sa
n1
7_
C

SB
_A
bd
19

SB
_J
in
20
_S

SB
_J
in
20
_W

SB
_J
in
20
_C

Bu
ild

tim
e
sa
ve
d

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 4.2: Results for Cost Saving Metrics. Prioritization techniques not included, since
they do not skip tests/builds.

the relationship between code changes and tests inside a build. ST_Gligoric15 skips all

tests that cannot execute the code changes, and ST_Mach19_W considers the distance

between the changes and the tests in its predictor. This allows both techniques to fully

skip those builds in which no test can execute the code changes — i.e., when only non-

executable code was changed, or when no tests exist to execute the changes. SB_Jin20_W

and SB_Jin20_S saved high ratios of build time, since they both focused on skipping full

builds. While SB_Jin20_S provided higher savings, we expect it to also skip a higher ratio

of skipped failing builds (see §4.3.3) — SB_Jin20_S simply skips builds with <4 commits.

Finally, SB_Hassan17_W and SB_Hassan17_C skipped too much build time (higher than

the perfect baseline). This is because they mostly rely on the status of the previous build,

which is unknown if skipped. So, as soon as they observe a passing build, they recurrently

skip all subsequent builds.

4.3. EMPIRICAL STUDY 1: COST SAVING 55

Pe
rf
ec
t

ST
_G

lig
or
ic
15

ST
_H

er
zi
g1
5

ST
_M

ac
h1

9_
W

ST
_M

ac
h1

9_
C

SB
_H

as
sa
n1

7_
W

SB
_H

as
sa
n1

7_
C

SB
_A

bd
19

SB
_J
in
20
_S

SB
_J
in
20
_W

SB
_J
in
20
_C

Pr
op

or
tio

n
of

sk
ip
pe

d
fa
ili
ng

te
st
s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rf
ec
t

ST
_G

lig
or
ic
15

ST
_H

er
zi
g1
5

ST
_M

ac
h1

9_
W

ST
_M

ac
h1

9_
C

SB
_H

as
sa
n1

7_
W

SB
_H

as
sa
n1

7_
C

SB
_A

bd
19

SB
_J
in
20
_S

SB
_J
in
20
_W

SB
_J
in
20
_C

Pr
op

or
tio

n
of

sk
ip
pe

d
fa
ili
ng

bu
ild

s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 4.3: Results for Missed Failure Observation Metrics. Prioritization techniques not
included, since they do not skip tests/builds.

4.3.3 D2: Missed Failure Observation

Studied Metrics

Proportion of skipped failing tests. This metric measures the undesired side effect of

cost-saving techniques skipping some of the failing test cases. It was used by ST_Herzig15

[41].

Proportion of skipped failing builds. This metric measures the proportion of failing

builds that are skipped among all failing builds. It was covered in SB_Jin20 [51].

Analysis of Results

We plot the results for all techniques for this metric in Figure 4.3.

Comparing Metrics. All techniques generally skipped a very similar ratio of failing tests

than builds, with small differences.

ST_Mach19_C, ST_Herzig15, ST_Gligoric15, SB_Jin20_S skipped a slightly higher ratio

of failing tests than builds. This is explained by test-granularity techniques skipping partial

builds in addition to full builds, and thus they also skipped a higher ratio of failing tests.

56 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

The case of SB_Jin20_S is different: it skipped a higher ratio of tests because it skipped

fewer builds with no failing tests — few changed < 4 files.

SB_Abd19, SB_Jin20_C, ST_Mach19_W and SB_Jin20_W skipped a slightly higher

ratio of failing builds than tests. This means that these techniques skipped failing builds with

lower than average (or no) failing tests, e.g., failing due to configuration or compilation errors

(which amount to 35% of failing builds). Finally, SB_Hassan17_C and SB_Hassan17_W

skipped most failing (and passing) tests and builds.

Comparing Granularities. Build-granularity techniques generally skipped higher ratios

of failing builds and tests than test-granularity techniques — except for SB_Abd19. They

generally skipped a higher ratio of all tests and builds.

Comparing Techniques. If we rank techniques on these two metrics of side-effect, we

observe that they rank almost exactly in the opposite order as they would according to build

time saved (for D1). This shows a clear trade-off between cost-saving and its side effect of

skipping failures.

4.4 Empirical Study 2. D3: Time-to-feedback Reduc-

tion

In D3, we study how much prioritization techniques advance the observation of failures and

how much the side effect in D2 will influence it. So, we study all the time-to-feedback and

computational-cost reduction techniques.

4.4. EMPIRICAL STUDY 2. D3: TIME-TO-FEEDBACK REDUCTION 57

Pe
rf
ec
t

PB
_L
ia
ng
18

ST
_G

lig
or
ic
15

ST
_H

er
zi
g1
5

ST
_M

ac
h1

9_
W

ST
_M

ac
h1

9_
C

SB
_H

as
sa
n1

7_
W

SB
_H

as
sa
n1

7_
C

SB
_A

bd
19

SB
_J
in
20
_S

SB
_J
in
20
_W

SB
_J
in
20
_C

Po
si

tio
ns

 sh
ift

ed
 fo

r t
re

at
ed

fa

ili
ng

 b
ui

ld
s

-10

0

10

20

30

40

50

Pe
rf
ec
t

PB
_L
ia
ng
18

ST
_G

lig
or
ic
15

ST
_H

er
zi
g1
5

ST
_M

ac
h1

9_
W

ST
_M

ac
h1

9_
C

SB
_H

as
sa
n1

7_
W

SB
_H

as
sa
n1

7_
C

SB
_A

bd
19

SB
_J
in
20
_S

SB
_J
in
20
_W

SB
_J
in
20
_CPo

si
tio

ns
 sh

ift
ed

 fo
r a

ll
fa

ili
ng

bu

ild
s

-10

0

10

20

30

40

50

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Pe
rfe
ct

PB
_L
ian
g1
8

ST
_G
lig
or
ic1
5

ST
_H
erz
ig1
5

ST
_M
ac
h1
9_
W

ST
_M
ac
h1
9_
C

SB
_H
as
san
17
_W

SB
_H
as
san
17
_C

SB
_A
bd
19

SB
_Ji
n2
0_
S

SB
_Ji
n2
0_
W

SB
_Ji
n2
0_
C

Bu
ild

qu
eu

e
le
ng
th

sa
ve
d

Per
fect

PT_
Ma

rija
n13

PT_
Elb

aum
14

PT_
Tho

ma
s14

ST_
Glig

oric
15

ST_
Her

zig1
5

ST_
Ma

ch1
9_W

ST_
Ma

ch1
9_C

Po
si

tio
ns

 sh
ift

ed
 fo

r o
bs

er
ve

d
fa

ili
ng

 te
st

s w
ith

in
 a

 b
ui

ld
-300

-250

-200

-150

-100

-50

0

50

Figure 4.4: Results for Time-to-feedback Reduction Metrics.

4.4.1 Studied Techniques

We only describe here the techniques that we did not describe in earlier sections: prioritiza-

tion techniques.

Test-prioritization Techniques

For this family of techniques, we replicated all the test-prioritization techniques that were

proposed for improving CI: PT_Elbaum14 [19] and PT_Marijan13 [68]. To further extend

this study, we also replicated the state-of-the-art test case prioritization (TCP) technique.

We chose the technique that provided the highest effectiveness in the most recent evaluation

of TCP techniques [66]: PT_Thomas14 [102]. TCP was a rich research area before CI

became a common practice, e.g., [18, 71, 85, 102]. We apply these techniques to prioritize

tests within each build.

58 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

PT_Marijan13 [68] prioritizes tests that failed recently or have a shorter duration. Tests

are ordered based on their historical failure data, test execution time and domain-specific

heuristics.

PT_Elbaum14 [19] favors tests that failed either recently or a long time ago.

PT_Thomas14 [102] uses topic modeling to diversity the tests that get executed earlier.

Every prioritized test is selected if it contains the most different topics from the previous

test in its identifiers and comments. The rationale behind this is that similar tests often find

similar problems.

Build-Prioritization Techniques

To the extent of our knowledge, only one technique has been proposed to prioritize software

builds, PB_Liang18 [63]. PB_Liang18 [63] executes builds containing a recently-failing

and recently-non-executed test in a collision queue. We apply PB_Liang18 to prioritize

builds within a build waiting queue, as its previous evaluation did [63]. Queues form when

build executions overlap in time.

4.4.2 Studied Metrics

Positions shifted for observed failing tests within a build measures the shifted posi-

tions for all observed failing tests (prioritized or not). A similar metric to this one was used

in the evaluations of PT_Marijan13 [68], PT_Elbaum14 [19], and PT_Thomas14 [102].

For test-selection techniques, we measure the average number of shifted positions for all

remaining tests — when a test is skipped, the next one can now run one position earlier.

Positions shifted for treated failing builds measures the number of builds between

4.4. EMPIRICAL STUDY 2. D3: TIME-TO-FEEDBACK REDUCTION 59

every treated (delayed/advanced) failing build’s original observation position and its new

position. This metric was studied by SB_Jin20 [51]. For test-granularity techniques, this

metric is not impacted, since the build is still executed in the same position. For build-

selection techniques, we consider that when a build is skipped, it will run as the next build

(its tests will run on it).

Positions shifted for all failing builds measures the same as the previous one, but now

across all failing builds. PB_Liang18 used a similar metric in its evaluation [63]. Through

this metric, we can understand the impact of the previous metric over all builds.

Build-queue-length saved. This is a metric designed by us to measure how applying a

technique could relieve the collision problem: when multiple builds are waiting to be executed

within a limited resource. We follow the same configuration in PB_Liang18’s paper. The

build-queue-length refers to the median number of builds waiting ahead for each build in

each project. With a pre-experiment on all projects, we find that for only one project -

”Rails/Rails”, the median value of every build’s waiting queue is bigger than 0. Thus, we

only report the result for this metric on that project.

4.4.3 Analysis of Results

Comparing Metrics. When comparing positions shifted for treated failing builds vs. all

failing builds, for all techniques, the advance (PB_Liang18) or delay (others) that they

introduce in the observation of failing builds is much lower when measured across the whole

population of failing builds. The upside of this is that the undesired effect of most techniques

(i.e., delay of failure observation) is very low across all failing builds (median 0–2 builds).

The downside is that the desired effect of PB_Liang18 (i.e., advance of failure observation)

is also very low across all failing builds (median 0 builds).

60 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

Next, we compare the performance of test selection techniques (i.e., the only overlapping

technique family) in the positions that observed failing tests shifted within a build vs. the

positions that failing builds shifted across all builds. We observe that test selection tech-

niques provided some advancement in the observation of test failures (lower than most test

prioritization techniques), while introducing a very low delay in observation of build failures

(median 0–2).

Comparing Granularities. We did not observe a substantial difference when comparing

granularities — we observed stronger differences when comparing techniques.

Comparing Technique Strategies. When comparing technique strategies (prioritization

vs. selection), test-selection techniques provided some advancement in the observation of

failing tests within a build, but test-prioritization techniques provided better results overall

(except PT_Elbaum14).

Comparing Techniques. PT_Marijan3 and PT_Thomas14 behave very similarly — de-

spite their different approaches to prioritization — and they are both close to perfect, pri-

oritizing most tests correctly. PT_Elbaum14 provides a lower advancement of test failures

(also lower than many test-selection techniques), since it uses a simpler criterion — priori-

tizing tests that were executed very recently or a long time ago. All test-selection techniques

provided a very similar advancement of test-failure observation, except ST_Herzig15 which

was slightly better. Interestingly, ST_Herzig15 was one of the techniques with the lowest

delay in build-failure observation (median 0 for all failing builds). At the build-granularity,

PB_Liang18 had a very low impact in prioritizing builds because builds very rarely occurred

concurrently in our dataset — only the Rails project had a meaningful number of concur-

rent builds. An important metric in PB_Liang18’s original evaluation was the savings in

the build-queue length. We plot the results for all techniques for this metric in Figure 4.4.

Interestingly, we also observed that test-selection and build-selection techniques also had a

4.5. ANSWERS FOR RESEARCH QUESTIONS AND IMPLICATIONS 61

strong impact in this metric — less so for test-selection techniques and SB_Abd19 because

they skip fewer full builds (see §4.3.2). Regarding build-selection techniques, those that

saved more builds (see §4.3.2) also saved more in the build-queue-length metric, but also

introduced higher delays in build-failure observation.

4.5 Answers for Research Questions and Implications

We synthesize our observations and we lay out their implications to advance this area of

research.

4.5.1 D1: Computational-cost Reduction

RQ1: What design decisions did not help?

First, we report on missed opportunities for saving more computational cost. Cost-saving

techniques focused on skipping passing builds and tests, but they did not specifically

target those that would provide the highest savings, i.e., slower tests, slower builds,

or all tests in a build (in the case of tests-selection). This is demonstrated by the fact that

build-granularity techniques saved similar ratios of test number, test time, build number,

and build time; and that test-granularity techniques saved similar ratios of test number and

test time, and lower ratios of build time than test time.

We also learned that training cost-saving techniques across projects harmed their

predictions. In other fields, training with data from multiple projects is considered to increase

the accuracy of predictors. For cost-saving techniques, though, this exposed the techniques

to more diverse sets of failures, making more builds/tests “look like a failure”, resulting on

the predictors saving less cost (being less inclined to skip builds and tests).

62 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

Test-selection techniques were also limited in the cost that they could save when they

did not target saving full builds — ST_Mach19_C and ST_Herzig15 saved very low

build time despite saving a high ratio of tests. An additional aspect that contributed to

ST_Herzig15 saving limited build time (despite saving high number of tests) is that it only

used features characterizing the tests, but not the code changes in the build — e.g.,

missing the opportunity to skip full builds for no-code changes.

RQ2: What design decisions helped?

Other design decisions allowed techniques to save high cost. A particularly useful design

decision was trying to predict seemingly-safe builds and tests — SB_Abd19 saved

21% builds simply by skipping builds with no-code changes, and ST_Gligoric15 saved 36%

builds skipping tests that did not cover the code changed in the build.

Another decision that provided high cost savings was to skip full builds instead of in-

dividual tests — thus also saving build-preparation time. Skipping all tests in a build

allows to skip the time to prepare the build (i.e., compilation and other overhead like virtual

machine preparation), and we observed that build-preparation takes a large portion of

build time. An illustrative example is how ST_Gligoric15 and ST_Herzig15 saved about

the same ratio of test time, but ST_Gligoric15 saved much higher build time because it

saved a much higher ratio of full builds.

Test-selection techniques, however, performed really well in terms of saving a high ratio of

tests (84% by ST_Herzig15 and 80% by ST_Machalica_W). This is because they could

save some cost spread out across many builds — i.e., skipping partial builds achieved

high cost savings. However, the test-selection techniques that skipped full builds

also achieved high savings. Intentionally or not, ST_Gligoric15 saved many full builds

by simply skipping all tests that did not cover the changed code. ST_Mach19_W also

4.5. ANSWERS FOR RESEARCH QUESTIONS AND IMPLICATIONS 63

saved many full builds by approximating the same idea: one of its predictor’s features is the

distance between the changed code and the test.

Implications for Future Techniques

Our results have multiple implications for the design of future techniques. First, we encourage

future techniques to consider hybrid approaches to save both full builds and also partial

builds, i.e., to save cost at both build and test granularity. Future techniques should also

leverage the beneficial factors that we already observed, such as skipping full builds

with no-code changes or no tests to cover them. To save more full builds, novel

prediction features could be designed, targeting slower builds if possible — which no

existing technique attempts. To save more tests, existing techniques already provide very

useful features (saving a high ratio of tests), but other new features could be designed

to target saving more and slower tests, and considering the relationships between

the tests and the code changes in the build. Finally, our observations also show that

build time saved is the metric that most comprehensively shows the cost saved by all

existing techniques — even though cross-referencing multiple metrics allows for additional

observations, as we did in this study.

4.5.2 D2: Missed Failure Observation

RQ1: What design decisions did not help?

In terms of the proportion of builds and tests that were skipped by cost-saving techniques,

we generally observe that the decisions that made techniques save higher cost also

made them make more mistakes, i.e., skip higher ratios of failing builds and tests.

It was also particularly interesting that seemingly-safe techniques — SB_Abd19 and

ST_Gligoric15 — still showed pretty high ratios of skipped failing builds and tests.

64 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

Our study thus shows that skipping builds with no-code changes or without tests to execute

them is not enough to guarantee that they will not fail. A quick look discovered that the

builds and tests skipped by these techniques failed for different reasons, such as configuration

or compilation errors (present in 35% of failing builds).

RQ2: What design decisions helped?

One design decision that reduced the skipped failing tests and builds was training tech-

niques across projects. All the _C variants skipped lower ratios than their _W counter-

parts (except SB_Hassan17_C). Also test-granularity techniques generally skipped

lower ratios of failing tests than build-granularity techniques did of builds.

Implications for Future Techniques

These results imply multiple recommendations for future techniques. First, future tech-

niques should design novel features to predict failures that are caused by no-code

changes, e.g., configuration changes, to avoid assuming that seemingly-safe builds will not

fail. Second, future techniques should attempt to break this trade-off between saving

cost and skipping failures. Existing techniques generally increase cost savings by also

increasing missed failure observations. Future techniques should attempt to improve one

of the two dimensions by keeping the other one fixed (or optimal). Finally, future studies

should propose new metrics to better assess the trade-off between cost-saving and

skipped-failures of various techniques — since most techniques succeed in one at the ex-

pense of the other. SB_Jin20 [51] proposed the harmonic mean of the two as a balanced

metric, but further study is granted to understand whether both should be valued equally or

in a weighted manner — particularly considering the much higher ratio of passes to failures

in CI datasets.

4.5. ANSWERS FOR RESEARCH QUESTIONS AND IMPLICATIONS 65

4.5.3 D3: Time-to-feedback Reduction

RQ1: What design decisions did not help?

Unsurprisingly, build-selection techniques did not advance the observation of build

failures at all, but at least they introduced very low delays in the observation of failing

builds (and also saved some computational cost). Similarly, test-selection techniques also

introduced a small delay in the observation of test failures. Build-prioritization

also showed very limited advancement in observing failing builds, but that was

mainly because only one of our studied projects (open-source) had some contention in the

build queue. We expect that industrial software project would obtain a much higher ben-

efit from this approach. Finally, we also observed that the build-selection techniques that

produced higher cost savings also introduced higher delays in build-failure obser-

vation, showing again the tension between both goals.

RQ2: What design decisions helped?

The best techniques to provide early feedback were test-prioritization techniques.

In fact, PT_Thomas14 provided near perfect results. We also found that test-selection

techniques provided lower, but competitive advancement of test failure obser-

vation, while also providing some cost savings. For example, ST_Herzig15 provided high

advancement of test-failure observation within a build, with very low delay of build-failure

observation, while also saving some computational cost. Similarly, we observed that build-

selection techniques could also provide reductions in build-queue-length that

were competitive with build prioritization.

Implications for Future Techniques

For future techniques, we recommend to combine test prioritization with test selection

66 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

techniques — since prioritization techniques could stop after the first failure is identified,

and save the cost of running the remaining tests. We found that test-prioritization techniques

already reached very high results (PT_Thomas14 is near perfect), so the features that they

use could be also very useful for test selection to save cost. Conversely, existing test-selection

techniques that already perform very well for cost-savings (e.g., ST_Herzig15) could be

improved in their ability to advance failure observation. Similarly, we recommend to further

study the application of build-selection techniques to provide early observation of

build failures by reducing the build queue via skipping builds in industrial projects in

which parallel build requests are a larger issue. Finally, there is also space to develop new

metrics that could capture the balance that techniques provide across all dimensions D1–D3.

4.5.4 Standing on the Shoulders of Giants

Our findings confirm and extend previous work:

D1

Beller et al. [6] observed that test time is a low proportion of build time. We extend this

observation by finding that our studied test-selection techniques infrequently skipped full (all

tests within) builds, which strongly limited their cost-saving ability. We thus recommend

test-selection to incentivize skipping full builds to save higher cost in CI.

D2

Jin and Servant [51] observed a trade-off of higher cost savings incurring more missed build

failures in their technique. We extend this observation by finding that all our studied tech-

niques were affected by that trade-off (techniques ranked equally by cost savings as by missed

failures). We additionally identified clear strategies that made techniques miss fewer fail-

ures: training across projects, and operating at test granularity. We also observed that a

4.5. ANSWERS FOR RESEARCH QUESTIONS AND IMPLICATIONS 67

seemingly-safe technique [2] still missed a high ratio of failures. Finally, we elicited the need

for better prediction of safe builds, and new metrics to compare trade-offs.

D3

Herzig et al. [41] found that their test-granularity technique incurs low delay in build-

failure observations. We extend this observation by finding that all our other studied test-

granularity techniques also incur low build-failure-observation delay, measured across all

failing builds.

4.5.5 Enhancing Generalizability

The findings above are based on Travistorrent dataset which includes only open source

projects. This can cause limitations on generalizability of our findings. Thus, we did an

extra experiment to simulate how these techniques perform on other projects or data sets,

like what if there is a project with tests that take a much higher proportion among the entire

build process, i.e., with a high test weight —- we believe that this is one important factor that

can differentiate open source and industrial projects and can influence our findings. Since

different test weights of projects are supposed to not influence techniques’ performances on

failure observations, we mainly focus on the cost-saving abilities of the studied techniques.

Therefore, we performed a synthetic study to simulated the studied techniques on projects

with different test weights.

In this study, we focused on understanding the techniques’ performances on cost-saving and

this intuitively excludes both build and test prioritization techniques because they cannot

provide cost savings. Besides, we also excluded SB_Hassan17 since it almost skips every

build according to our previous experiments. As a result, we included five techniques in this

study, two of them are build selection techniques: SB_Jin20 and SB_Abd19, and three of

68 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

them are test selection approaches: ST_Herzig15, ST_Gligoric15 and ST_Mach19.

We aim to understand how techniques perform in cost saving when the projects have different

test weights. In other words, we are studying the relationship between the proportion of test

time among build time (time weight) and the cost saving. We measure the cost saving by

using the build time saved among all build time as approximation. We didn’t include the

metrics of failure observation because we assume that this dimension cannot be influenced

by different test weights.

Since it is not practical to include project with all different test weights, we used the synthetic

study to answer our research question. In the synthetic study, we simulate the studied

techniques under projects with different hypothetical test weights. We also assume that the

build time is equally distributed across all builds and each technique’s behavior will not be

impacted by the change of the test weight, e.g., its precision and recall of prediction remains

unchanged. The independent variable in this study is the test weight from 0.1 - 0.9 with

ten-scale. We didn’t include 0 and 1 because the build should include at least some tests to

make it worth studying and the tests should not be 100% of the entire build. We also want

to note that the test wight in the previous empirical studies is 0.18.

The results are plotted in Figure 4.5. From Figure 4.5, we can observe that the cost saving

line for build selection approaches are horizontal because their cost saving abilities don’t

change with different test weights. SB_Jin20 is able to produce more cost saving than

SB_Abd19. We can also observe that test selection approaches can produce higher cost

savings when the test weight becomes higher. This is because test selection techniques can

skip some tests in a build and when the test weight is higher, this cost saving is enlarged.

Since this enlarged cost saving is correlated to how many tests can be skipped in a build,

i.e., how many builds are partially skipped, the test selection approach that produces more

cost saving as the test weight increases are able to skip more partial builds. Among the test

4.5. ANSWERS FOR RESEARCH QUESTIONS AND IMPLICATIONS 69

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Co
st
sa
vi
ng

Test weight

SB_Jin20
SB_Abd19
ST_Herzig15
ST_Glgoric15
ST_Mach19

Figure 4.5: Cost saving achieved by studied techniques under different test weight.

selection approaches, we can find that the cost saving ability of ST_Herzig15 is increasing

fastest because it can skip most partial builds. This finding confirms our observations in

the previous studies. Besides, we can also observe that when the test weight is low, the

test selection approaches can still produce some cost saving because they can skip some full

builds that include both test phases and other phases. Among them, ST_Gligoric15 skips

most full builds and thus it can save most cost when the test weight is relatively low.

When we compare build and test selection approaches in Figure 4.5, we can observe that at

the beginning build selection approaches such as SB_Jin20 can produce more cost saving

than test selection approaches but test selection approaches’ cost saving ability exceeds build

selection approaches when the test weight becomes higher, i.e., the lines have crossings. We

can observe that when the test weight is higher than 0.25, ST_Herzig15 save more cost than

SB_Abd19, when the test weight is higher than 0.5, ST_Herzig15 and ST_Mach19 produces

more cost saving than SB_Jin20, and when the test weight is higher than 0.65, the studied

70 CHAPTER 4. EVALUATING CI-IMPROVING TECHNIQUES

test selection approaches can save more cost than all stuided build selection approaches.

Based on these findings, we can conclude that test selection approaches have a higher po-

tential in cost saving when the tests occupy a higher proportion of the entire build. This

indicates that in those projects where test density is higher, current test selection approaches

may be better at cost-saving since they can skip tests from both passing and failing builds

fully and partially. Besides, it also acknowledges the possibility that combines both build

and test selection approaches to allow skip full and partial builds to maximize the cost-

saving. Furthermore, to better design a technique that can produce sufficient cost saving,

we recommend that the technique should focus more on skipping full builds, i.e., skipping

all tests in passing builds when the test weight is relatively low and should focus more on

skipping partial builds when the test weight becomes higher. Finally, we recommend that fu-

ture techniques should maximize the recall of passing executions because it benefits the cost

saving with no extra side effect. For test selection approaches, the distribution of skipped

passing executions across passing and failing builds also matters for cost saving ability.

4.6 Conclusions

In this work, we performed the most exhaustive evaluation of CI-improving techniques to

date. We evaluated 14 variants of 10 CI-improving approaches from 4 families on 100 real-

world projects. We compared their results across 10 metrics in 3 dimensions. We derived

many observations from this evaluation, which we then synthesized to understand the design

decisions that helped each dimension of metrics, as well as those that had a negative impact

on it. We compared techniques’ cost-saving abilities under different test weights. Finally,

we provide a set of recommendations for future techniques in this research area to take

advantage of the factors that we observe were beneficial, and we lay out also future directions

4.6. CONCLUSIONS 71

to improve on those factors that were not. We lay out plans to combine approaches at test

and build granularities to save further costs, and to combine selection and prioritization

approaches to improve on the early observation of failures while also saving some cost. Such

techniques could consider additional history-based prediction features, such as the project’s

code-change history, e.g., [90, 91, 92, 95, 96], since test-execution history was beneficial for

some techniques, e.g., [41]. We also discuss the need of future metrics to capture the various

characteristics of these techniques in a more holistic way.

Chapter 5

PRECISEBUILDSKIP: reduce delay of

failure observation

According to the findings of Chapter 4, one major flaw that existing build selection ap-

proaches is the delay of failure observation caused by the misprediction on failing builds.

Thus, in this chapter, we aim to explore ways to minimize the delay of failure observation

for build selection approaches.

Some existing research approaches aim to save cost in CI — i.e., to reduce its computational

workload requirements. Most past works follow the premise that observing failing executions

(builds or tests) is more valuable to developers than observing passing ones — since failures

present actionable feedback. So, they automatically predict and skip executions that would

likely pass — to save the cost of executing them. Most of these techniques use heuristics or

machine-learning algorithms for their predictions.

A popular approach to this goal in previous works is to automatically predict and skip

passing test cases. Past approaches were proposed to skip, e.g., tests that historically failed

less [19, 41], that have a long distance with the code changes [69], that test unchanged

modules [97], or that are predicted to pass by a machine learning classifier [67]. Techniques

to skip the execution of passing tests — to reduce the cost of testing — were proposed

even before CI was a popular practice. These are known as regression test selection (RTS)

techniques e.g., [32, 83, 84, 114, 115, 118, 122].

72

73

Another, more recent, approach is to predict and skip passing builds, e.g., [51]. This approach

has the potential for higher cost savings — when a build is skipped, it saves the cost of

running all its tests as well as its build-preparation steps. Finally, other past approaches

predict and skip builds that developers would have manually skipped [1, 2]. When asked

about the characteristics of the builds that they skip, developers for the most part describe

builds that will likely pass, i.e., they skip builds with: non-source code changes, with no test

coverage, with trivial source code changes, or with other likely-to-pass characteristics, e.g.,

refactoring changes [2].

Unfortunately, since these techniques make predictions, they may also make mistakes, result-

ing in either: missed opportunities to save cost (not-skipped passing executions), or missed

observations of failures (skipped failing executions). We aim to minimize the latter kind

of mistakes — i.e., to maximize failure observation, and we specifically target build

selection techniques. Build selection techniques carry a trade-off: as they skip more builds,

they save more cost, but they are also more likely to skip builds that would have failed. We

believe that many practitioners may prefer a build selection technique that maximizes its

safety (i.e., failure observation ratio) — even if it may save less cost than other approaches.

We aim to help those practitioners in this work.

We perform two empirical studies to better understand which builds are safe to skip. Recent

work studied the characteristics of builds that developers manually decided to skip, and

encoded them into rules [2]. We will refer to these as CI-Skip rules. While it would

be intuitive to assume that developers decide to skip builds that are guaranteed to pass,

the actual safety of these seemingly-safe CI-Skip rules is yet unknown. First, we study the

benefit (i.e., how much cost (number of builds) can be saved) and safety (i.e., how many

failures can be observed) of CI-Skip rules. Next, we study why CI-Skip rules sometimes

capture failing builds, and develop a set of CI-Run rules to complement them, increasing

74 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

their safety.

Additionally, we encode the findings of our empirical studies in an automated build-

selection technique, PRECISEBUILDSKIP (PBS), to predict the outcome of builds as safely

— i.e., to correctly predict as many build failures — as possible. PRECISEBUILDSKIP uses a

random-forest classifier for prediction, with CI-Skip rules and CI-Run rules as features. We

also evaluated PRECISEBUILDSKIP’s performance in different scenarios and compared it with

existing build selection approaches.

We performed multiple observations in our studies. First, we observed that no CI-Skip

rule is completely safe — all CI-Skip rules captured some builds that ended up failing.

Generally, as CI-Skip rules provided higher potential cost savings, they also skipped more

failing builds. Therefore, CI-Skip rules cannot be used as-is to safely skip builds. Developers

that manually used CI-Skip rules to skip builds would miss the observation of some build

failures (generally, more so for CI-Skip rules that save more cost).

Second, we identified four main CI-Run rules why builds under CI-Skip rules may fail: (1)

changes in build scripts, (2) in configuration files, (3) subsequent failures, and (4) increasing

platform numbers. We observed that at least one of these CI-Run rules tends to be present

when builds fail under CI-Skip rules. In particular, the subsequent-failure CI-Run rule was

correlated with build failures for all CI-Skip rules. That is, the most common reason why

builds under CI-Skip rules failed is that they were subsequent to another build failure, e.g.,

a build that does not change source-code files may still fail if the previous one failed (i.e.,

it was already broken and these changes did not fix it). Third, our proposed safe approach

to build selection, PRECISEBUILDSKIP, provided both higher cost saving and failure

observation rates than the state of the art build-selection techniques: Abd19 [2],

Abd20 [1], and Jin20 [51].

75

We designed PRECISEBUILDSKIP with customizable tendency to predict builds to pass. A

higher tendency to predict builds to pass will achieve a higher ratio of skipped builds — and

thus higher cost savings, but it may also result in higher rates of mistakenly skipped failing

builds. In our experiments, to compare with the results of existing build-selection tech-

niques, we highlighted four values of PRECISEBUILDSKIP’s prediction tendency: PBS_Safe,

PBS_Moderate, PBS_Relaxed, and PBS_More_Relaxed (from lower to higher tendency

to predict passing builds).

When customized (PBS_Relaxed) to save as much effort as the highest-effort-saving previ-

ous technique (Abd19 saved 22.3% build executions), PBS_Relaxed provided higher safety

(PBS_Relaxed observed 87.61% failures compared to 80.7% by Abd19). When customized

(PBS_Moderate) to provide as much safety as the safest existing technique (Abd20 observed

96% build failures), PBS_Moderate provided higher cost savings (PBS_Moderate saved

12.9% failures compared to 5.2% by Abd20). When customized (PBS_Safe) for highest

safety, PBS_Safe observed 100% build failures, while still saving 5.5% of build executions.

Finally, our new approach outperformed existing build selection approaches when compar-

ing all variants’ abilities of predicting build failures with the corresponding build selection

approach. We also found that the performance of PRECISEBUILDSKIP is not impacted by the

previously self-impacted train data set. Besides, the executing time of PRECISEBUILDSKIP is

negligible compared to its saved duration. We then performed an additional analysis to un-

derstand the extent to which our CI-Run rules benefitted PRECISEBUILDSKIP’s effectiveness.

We observed that the variants of PRECISEBUILDSKIP that applied CI-Run rules as features

provided higher effectiveness than the corresponding variants without them.

This paper provides the following contributions:

• The first empirical study to understand the cost-saving ability (the ratio of builds that

76 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

they can skip) and safety (the ratio of failing builds that they can observe) of CI-Skip

rules.

• A collection of CI-Run rules, that explain why CI-Skip rules sometimes characterize

builds that will fail, and that complement them to make them safer.

• A customizable, automated approach (PRECISEBUILDSKIP) that saves cost in CI by

automatically predicting and skipping builds that are likely to pass, and that is safer

and saves more cost than the state-of-the-art build-selection techniques.

• A novel evaluation metric for build-selection techniques (SFRD), that provides a bal-

anced measurement of the Cost Saving and Observed Failures metrics.

• An evaluation of the overhead of PRECISEBUILDSKIP by comparing its build time saved

with its required execution time.

• A study of the impact of CI-Run rules on the effectiveness of PRECISEBUILDSKIP.

• An evaluation of the practicality of PRECISEBUILDSKIP in terms of how its effectiveness

is impacted when it is trained on projects that already apply build selection.

5.1 Research Questions

Our goal is to help practitioners skip builds to save cost (i.e., skip passing builds) more safely

(i.e., skipping fewer failing builds) than with existing approaches. For that, we perform two

empirical studies and three experiments.

First, we empirically study the cost-saving potential and safety of CI-Skip rules, i.e., rules

that past work observed developers using to skip builds in practice [2]. Second, we propose

5.1. RESEARCH QUESTIONS 77

a collection of CI-Run rules to capture why CI-Skip rules sometimes include builds that fail,

and to make them safer — i.e., capture fewer failing builds.

While the findings of these two studies are useful by themselves to educate practitioners

about how to better identify builds that are safe to skip — i.e., that will likely pass, we also

create a novel technique to automatically make that decision for them: PRECISEBUILDSKIP.

We perform three experiments to evaluate PRECISEBUILDSKIP. First, we evaluate PRECISE-

BUILDSKIP compared to the state of the art build-selection techniques. This experiment

evaluates techniques both in terms of the correctness of their predictions and in terms of the

cost-saving ability and safety that they provide. It also measures the overhead introduced

by PRECISEBUILDSKIP to build duration — to understand how the cost of running PRECISE-

BUILDSKIP impacts its provided cost savings. Second, we perform an additional study to

understand the impact of considering CI-Run rules in PRECISEBUILDSKIP’s predictions. Fi-

nally, we study how the predictions of PRECISEBUILDSKIP would be impacted in the scenario

where it has been used for some time, and thus its training data has been affected by build

selection.

In our studies and experiments, we answer the following research questions:

Empirical Study 1: Evaluating CI-Skip rules

RQ1: How much cost can each CI-Skip rule save?

RQ2: How safe is each CI-Skip rule?

Empirical Study 2: Supplementing CI-Skip rules with CI-Run rules

RQ3: What proportion of failing builds under CI-Skip rules are covered by our CI-Run

rules?

RQ4: How helpful are CI-Run rules at discriminating between failing and passing builds

under CI-Skip rules?

78 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

Experiment 1: Evaluating PRECISEBUILDSKIP

RQ5: How correct are PRECISEBUILDSKIP’s predictions?

RQ6: How much cost-saving and safety do PRECISEBUILDSKIP’s predictions provide?

RQ7: How much overhead does PRECISEBUILDSKIP add to build duration?

Experiment 2: Understanding the Impact of CI-Run rules

RQ8: What is the impact of including CI-Run rules as features in PRECISEBUILDSKIP?

Experiment 3: Evaluating PRECISEBUILDSKIP when trained on Builds affected by

Build-selection

RQ9: How much cost-saving and safety does PRECISEBUILDSKIP provide when trained on

projects that used build selection?

5.1.1 Data Set

We performed our study over the Travis Torrent dataset [6], which includes 1,359 projects

(402 Java projects and 898 Ruby projects) with data for 2,640,825 build instances including

changes on all different files such as source files or configuration files. We remove “toy

projects” from the data set by studying those that are more than one year old, and that

have at least 200 builds and at least 1000 lines of source code, which is a criteria applied

in multiple other works [45, 73]. To be able to explore CI-Skip rules on test information,

we also filter out those projects whose build logs do not contain any test information. We

focused our study on builds with passing or failing outcome, rather than error or canceled.

Besides, in Travis a single push or pull-request can trigger a build with multiple jobs, and

each job corresponds to a configuration of the building step. As many existing papers have

done [27, 46, 81], we considered these jobs as a single build since they share the same build

result and duration. After this filtering process, we obtained 82,427 builds from 100 projects

5.2. EMPIRICAL STUDY 1: EVALUATING CI-SKIP RULES 79

(13,464 failing builds).

To be able to implement our approach and replicate the state of the art build-selection tech-

niques (Abd19 [2], Abd20 [1], and Jin20 [51]), we extended the information in TravisTorrent

of these 100 projects in multiple ways. First of all, we implemented scripts to download

the raw build logs from Travis and parse them to extract all of the information about test

executions, such as test name, duration and outcome. Replicating Abd19 [2] and Abd20

[1] required additional information that TravisTorrent does not provide for builds, such as

the content of commit messages, changed source lines and changed file names. For that, we

also mined additional information about commits in the projects’ code repositories through

Github such as changed file names and changed line content by running scripts to read the

content of commits using Github’s API. Finally, we built a dependency graph for the source

code of each project using a static code analysis tool (Scitool Understand [88]) to compute

the paths between files for implementing CI-Skip rules. For Java projects, we ran Scitool

Understand on the command line to scan them. Understand generates a .CSV file with the

static dependency graph of the project. For Ruby projects, we obtained their static depen-

dency graph using rubrowser [21]. We used a project’s static dependency graph to check if

there is a path between changed files and test files.

5.2 Empirical Study 1: Evaluating CI-Skip rules

The goal of this study is to understand the impact that developers would observe when

applying CI-Skip rules to decide which builds to skip manually. Existing work [2] recommends

to skip builds if any of the CI-Skip rules is met. When applying such CI-Skip rules, developers

can obtain cost savings, but they may also mistakenly skip failing builds. Ideally, CI-Skip

rules would also be highly safe — they would cause developers to mistakenly skip few failing

80 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

Table 5.1: Studied CI-Skip rules that can be used to skip CI builds.

CI-Skip rule Short Description
SourceCommentChange The commits of this build only change comments in source

code.
SourceFormatModification The commits of this build only change the format of source

code.
SourceFormatCommentChange The build’s commits only change both the source code com-

ments (optional) and format.
NonSrcFileChange The build’s commits change no source file.
MetaFileChangeOnly The build’s commits only change meta-file.
VersionRelease The build only includes release preparation commits.
AllPassingTests The build has no failing test.
NoReachableTest The build has no test for changed files.

builds.

We evaluated CI-Skip rules in two dimensions: cost-saving ability and safety, over a large

dataset of continuous integration builds (see §5.1.1). The former reflects how much cost-

saving can be achieved by applying each rule, while the latter shows how safe it is to skip

builds based on these rules. The results of this study will be useful for developers who are

already using CI-Skip rules to manually skip builds, to understand the risk of skipping failing

builds that they are incurring, depending on what CI-Skip rules they are applying. They

will also inform developers to plan to use CI-Skip rules to skip builds, and want to know

which rules save the most cost and incur the lowest risk of skipping passing builds. Next,

we describe CI-Skip rules and how we studied our research questions in this study.

5.2.1 Studied Factors: CI-Skip rules

To the extent of our knowledge, no previous work studied which builds are fully safe to skip,

i.e., are guaranteed to pass. The work with the closest goal was Abdalkareem et al. ’s [2],

who captured the characteristics of builds that developers decided to skip. We refer to these

5.2. EMPIRICAL STUDY 1: EVALUATING CI-SKIP RULES 81

rules as CI-Skip rules. Our goal in this empirical study is to understand to what extent

these CI-Skip rules are actually safe to skip or not, i.e., whether they capture only builds

that pass.

We study all the rules from Abdalkareem et al. ’s work, and we created two additional novel

CI-Skip rules as additional rules that would intuitively signal that a build is likely to pass:

AllPassingTest and NoReachableTest. We list our studied CI-Skip rules in Table 5.1, along

with a brief description.

SourceCommentChange (SCC): Developers sometimes skip builds whose commits only

modify comments in source code. We implement this rule using regular expressions to

determine whether each modified source line is a comment change. One could think of this

rule as a simple way to capture builds that cannot fail. However, one example of changes in

comments that could cause build failures is that of changes in JavaDoc comments, which this

rule skips [2]. For example, errors in the Javadoc syntax, the usage of deprecated features

in it, or an incorrect Java version may still cause a build failure.

SourceFormatModification (SFM): Developers sometimes choose to skip builds whose

commits only modify the format of source code. Abdalkareem et al. report this CI-Skip rule

as “Formatting source code without changing the semantic of the code” [2]. We created the

SourceFormatModification rule to capture changes that only change the format of the code.

SourceFormatCommentChange (SCC_SFM): Abdalkareem et al. ’s implementation

of the SourceFormatModification CI-Skip rule is slightly different from how it was described

[2]. So, we give their implemented version of SFM a new rule name (SCC_SFM), and we

study it separately. SCC_SFM first applies SourceCommentChange (SCC) removing com-

ment lines, it removes all white spaces and new line symbols that are ignored by programming

language grammars, and then it checks if the remaining lines modified by the change are the

82 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

same, i.e., if the change only modifies the code format. Changes fall under this rule whether

they change only comments (SourceCommentChange) or they change only comments and

format (SourceFormatCommentChange).

NonSrcFileChange (NSF): Sometimes developers decide to skip builds with changes that

only touch non-source code files, e.g., “.git” files. Abdalkareem et al. originally defined

non-source code files as those with a file extension in a pre-defined list1. A build falls under

this rule if it only changed files with extensions in that list.

MetaFileChangeOnly (MFC): Developers also sometimes skip builds with changes only

on meta files. We identified meta files1 (e.g., ”.ignore” or ”.git” file) by looking at the

extensions of the files modified in the build. We used the same process and extensions as

Abdalkareem et al. ’s study [2].

VersionRelease (VR): Developers sometimes skip a release preparation commit. Following

Abdalkareem et al. ’s study [2], we analyzed the changed files in a build’s commits and check

if it only modified the version in build scripts, e.g., Maven or Gradle.

AllPassingTest (APT): We created this additional CI-Skip rule. It reflects a criterion by

which a build that is safe to skip (i.e., that will not fail) is one in which all its tests pass.

We implement it by flagging builds in which none of their tests failed, as stated in its raw

build logs. We realize that this rule is not useful for prediction — since the outcome of

tests is unknown before a build is executed. However, we decided to add it to this study

to empirically understand the safety of this seemingly-strong criterion for anticipating safe

builds.

NoReachableTest (NRT): We also created this additional CI-Skip rule, since we believe it

could be another strong criterion for anticipating safe builds. Additionally, developers report

1A complete list: http://das.encs.concordia.ca/publications/which-commits-can-be-ci-skipped/

5.2. EMPIRICAL STUDY 1: EVALUATING CI-SKIP RULES 83

skipping builds “When tests are not written to work for that particular source branch/repo”

[2]. NoReachableTest flags builds whose tests have no path to the changed files — i.e., the

changes in this build are not covered by the tests. We use the static dependency graph to

check the existence of the path between the test and the changed files, i.e., if any of the tests

are reachable to the changed files in this build. We propose NoReachableTest as a proxy for

AllPassingTest that can be used for predicting safe builds — i.e., it can be calculated before

builds are executed.

5.2.2 RQ1: How much cost can each CI-Skip rule save?

To answer this research question, we measured the proportion of builds under each CI-

Skip rule, among all the builds in each studied project. We show the distribution of such

proportions in Figure 5.1. For example, if 30% of all builds have only non_source file changes

(NonSrcFileChange), it means that developers can save 30% of build effort by skipping builds

under this rule.

Result

Figure 5.1 shows the cost-saving ability of each CI-Skip rule. We can find that the per-

formance of CI-Skip rules on cost-saving differs from each other. Some CI-skip rules can

provide high cost-saving, but others are much less effective. Five of eight rules (SourceCom-

mentChange, SourceFormatModification, SourceFormatCommentChange, MetaFileChangeOnly

and VersionRelease) cover a very small proportion of builds (median less than 5%) which

shows that they have a low prevalence in all builds. Developers may achieve very low

cost-saving by applying these rules. In contrast, AllPassingTest provides really high cost

savings (median 95.7%). This means that AllPassingTest represents a majority of passing

84 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

CI-Skip rules

SCC SFM SCC_SFM NSF MFC VR APT NRT

Co
st
-s
av
in
g

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 5.1: Proportion of builds that CI-Skip rules could save.

builds, i.e., those that had no failing tests. While AllPassingTest is not usable in practice

to predict build outcomes, this shows us that AllPassingTest is a very promising feature

to try to approximate through other features that can be used for prediction, i.e., that

can be computed pre-build-execution, such as NoReachableTest. Finally, we also observed

that NonSrcFileChange and NoReachableTest provide medium cost-saving (20% and 43.8%

respectively).

These observations also show us that the majority of builds skipped by CI-Skip rules were

skipped by only two rules: NonSrcFileChange and NoReachableTest (with the exception of

AllPassingTest). Thus, for developers looking for a simple way to skip builds based on a rule-

of-thumb, we could advise them to focus only on NonSrcFileChange and NoReachableTest,

and they would save almost the same amount of builds as if they applied every single CI-Skip

rule — since all other rules save little cost in comparison.

5.2. EMPIRICAL STUDY 1: EVALUATING CI-SKIP RULES 85

CI-Skip rules

SCC SFM SCC_SFM NSF MFC VR APT NRT

Fa
ili
ng

ra
tio

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 5.2: Proportion of failing builds among builds under each CI-Skip rule.

5.2.3 RQ2: How safe is each CI-Skip rule?

Ideally, CI-Skip rules not only can save a reasonable amount of builds, but are also safe. To

study this second aspect in this research question, we measured the ratio of failing builds

among the builds under each CI-Skip rule in each studied project. We show the distribu-

tion of such ratios in Figure 5.2. For example, if 30% of builds with only non_source file

changes (NonSrcFileChange) fail, it means that the likelihood to miss a failing build by

NonSrcFileChange is 30%.

Result

Figure 5.2 shows that all CI-Skip rules had a relatively low fail ratio (i.e., all their median

values are below 11%), but none of them were completely safe to apply. Thus, it is

not 100% safe to simply use CI-Skip rules to achieve cost-saving in practice.

Among CI-Skip rules, MetaFileChangeOnly had the highest fail ratio (median 11%) which

means that relatively often changes in meta files can result in build failures. It also provides

86 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

low potential cost savings (§5.2.2). Thus, applying MetaFileChangeOnly manually would

not be an effective way to safely skip builds.

We also found that SourceCommentChange, SourceFormatModification and SourceFormat-

CommentChange were highly safe (with median 0% failing builds). Unfortunately, they

also provide very few opportunities to save cost, as seen in §5.2.2. NonSrcFileChange and

NoReachableTest have a relatively low fail ratio based on our observations and they can also

provide considerable cost-saving. Also, NonSrcFileChange is easy to implement in the real

world, making it one of the best CI-Skip rules to apply manually in practice.

In summary, we found that CI-Skip rules have limitations: some of them provide few op-

portunities to save cost, and none are fully safe. Some of them do provide a reasonable

trade-off of cost-saving and safety, but since none are fully safe, we propose to not apply

them manually. We instead propose an automated technique that predicts which builds to

skip using CI-Skip rules as features (§5.4).

5.3 Empirical Study 2: Supplementing CI-Skip rules

From Empirical Study 1, we found that CI-Skip rules are not 100% safe, especially those that

produce higher cost-savings (NonSrcFileChange, AllPassingTest and NoReachableTest). In

this next study, we aim to improve the trade-off of cost-saving and safety provided by CI-

Skip rules. For that goal, we provide a collection of CI-Run rules that could complement

CI-Skip rules to make them safer. CI-Run rules capture characteristics of builds that would

intuitively signal that the build may fail, even when a CI-Skip rule applies. We then studied

what ratio of the failing builds under each CI-Skip rule are covered by these CI-Run rules,

and how strongly they discriminate between failing and passing builds under each CI-Skip

rule.

5.3. EMPIRICAL STUDY 2: SUPPLEMENTING CI-SKIP RULES 87

Table 5.2: Studied CI-Run rules that may override CI-Skip rules.

CI-Run rules Short Description
BuildScripts The commits in this build modify build scripts.
ConfigurationFiles The commits in this build modify configuration files.
SubsequentFailures The build has already broken.
IncreasingPlatforms The build is tested in more platforms than its previous

build.

5.3.1 Studied Factors: CI-Run rules

We designed four CI-Run rules that we believed could flag builds that fail under a CI-Skip

rule, based on our experiences. We thought about possible causes for builds to fail that

developers may not expect, i.e., that may cause failures even under the conditions described

by CI-Skip rules. We also consulted the research literature that characterizes failing builds,

looking for those that could still apply under CI-Skip rules. We list our proposed CI-Run

rules in Table 5.2.

BuildScripts (BS): We realized that the NonSrcFileChange (NSF) CI-Skip rule included

build scripts. However, we believed that changes in build scripts may still cause failures, such

as when dependencies change. For example, when a build depends on new modules (e.g.,

because they migrated from Python 3.7 to 3.8), some functions may not work any more or

may raise warnings because they are not supported (e.g., the importlib load module() is

abandoned in python 3.10). Furthermore, we also found that previous work also reported

that changes in build scripts could cause build failures [39]. This rule is triggered when a

build changes a build-script file (e.g., “pom.xml” or “build.gradle”).

ConfigurationFiles (CF): In our experience, another source of unexpected failures could

be when changes happen in the configuration file for the CI engine. These changes would also

be captured by the NonSrcFileChange (NSF) CI-Skip rule. We thought that such changes

88 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

could cause failures, for example, when the script command is mistakenly input with a wrong

flag and fails. This rule is triggered when a build changes the configuration file for the CI

engine (i.e., “travis.yml”).

SubsequentFailures (SF): We also thought that, even if a build falls under a CI-Skip rule,

it could still fail if the source code is already broken — if a previous defect was not correctly

fixed. Builds under some CI-Skip rules, e.g., NonSrcFileChange (NSF), are less likely to

break the build, but for the same reason they are also less likely to fix it if it was broken in

the previous build. Previous work also reported that the subsequent build to a failing build

is also likely to fail [51]. This rule is triggered when a failing build preceded the current

build.

IncreasingPlatforms (IPN): Another situation which we could envision builds failing even

under CI-Skip rules is when the software will be tested in a new platform. A build can have

multiple jobs, and each job is deployed and tested in different platforms. Even when no other

changes happen in source code, bringing a new platform may cause new defects to emerge.

This rule is triggered when the number of platforms for a build increases.

5.3.2 RQ3: What proportion of failing builds under CI-Skip rules

are covered by our CI-Run rules?

Our proposed CI-Run rules will be most effective in making CI-Skip rules safer if they cover a

large proportion of the builds that failed under the rules. Thus, we measure the distribution

of failing builds that fall under each possible combination of CI-Run rules for each CI-Skip

rule. For example, a failing build that only contains SubsequentFailures falls into a different

category from the failing build that satisfies both SubsequentFailures and ConfigurationFiles.

Figure 5.3 shows the distribution of any combination of CI-Run rules present in failing builds

5.3. EMPIRICAL STUDY 2: SUPPLEMENTING CI-SKIP RULES 89

under CI-Skip rules for any studied project.

Result

In Figure 5.3, we can observe that most of failing builds under CI-Skip rules are

captured by these four CI-Run rules. In particular, 97% of VersionRelease failing

builds can be captured by CI-Run rules.

Among these four CI-Run rules, we can observe that SubsequentFailures is the dominant

factor for making builds fail under CI-Skip rules. At least 64% of failing builds under each CI-

Skip rule can be explained by one combination including SubsequentFailures. This is because

builds with seemingly-safe changes normally do fix an already-present defect, so the build

continues to fail. For CI-Skip rules SourceCommentChange, SourceFormatModification and

SourceFormatCommentChange, as they only exist for changes on source files, they cannot

be captured by BuildScripts and ConfigurationFiles by definition. The most present CI-Run

rule for these 3 rules was SubsequentFailures.

For NonSrcFileChange, the CI-Run rule of BuildScripts occupies the second largest popu-

lation (37%), while ConfigurationFiles and IncreasingPlatforms take 11% and 2% respec-

tively, which means build scripts and configuration files as non_source files can also make

the build fail. SubsequentFailures and ConfigurationFiles take the same highest propor-

tion (68%) of MetaFileChangeOnly failing builds, while the combination of SubsequentFail-

ures+ConfigurationFiles is the most popular (44%). This is because ConfigurationFiles is a

major component of meta files. IncreasingPlatforms also covers 11% of MetaFileChangeOnly

failing builds. This shows that changes on meta files sometimes also include increasing plat-

form numbers. BuildScripts captures 92% of VersionRelease failing builds, showing that

most of VersionRelease builds modify build scripts. AllPassingTest and NoReachableTest

90 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SCC SFM SCC_SFM NSF MFC VR APT NRT
CI-Skip rules

other

IPN

BS

CF

SF

BS+IPN

CF+IPN

CF+BS

SF+IPN

SF+BS

SF+CF

CF+BS+IPN
SF+BS+IPN

SF+CF+IPN

SF+CF+BS

SF+CF+BS+IPN

Figure 5.3: Distribution of failing builds captured by CI-Run rules under each CI-Skip rule.

have similar composition. NoReachableTest has a higher proportion of BuildScripts (19%)

and ConfigurationFiles (6%) than AllPassingTest does (BuildScripts 15%, ConfigurationFiles

4%) because changes on these non_source files have no reachable test intuitively.

Finally, we also investigated some of those cases where build failures were not covered by the

CI-Run rules — we labeled them as “Other” in Figure 5.3. In our investigation, we learned

that these builds failed for multiple varied reasons, in addition to those described in CI-Run

rules. However, we did not find any of these reasons appearing more than a handful of times

— i.e., they likely would not be generalizable. For example, a few failing builds under CI-

Skip rules (8 out of 5,684) failed because of broken links in JavaDoc comments, which can

cause a build to fail — e.g., a build under the SourceCommentChange rule only contained

changes in JavaDoc, but it changed a link to an incorrectly-named code entity, which broke

the build (abdeldahak/jackson-core: 8a6a899). Also, a few other failing builds under CI-Skip

rules (7 out of 5,684) failed because they used custom names for build scripts (e.g., with no

file extension). So, these builds were captured by the NonSrcFileChange CI-Skip rule, but

in truth the build process had been modified, and failed (rspec/rspec-mocks:7f0828a).

5.3. EMPIRICAL STUDY 2: SUPPLEMENTING CI-SKIP RULES 91

5.3.3 RQ4: How helpful are CI-Run rules at discriminating be-

tween failing and passing builds under CI-Skip rules?

Some CI-Run rules are dominant in failing builds under specific CI-Skip rules, but their

popularity may be simply because they are widespread in builds under this rule. That is,

they still may not discriminate between passing and failing builds among those captured by

a CI-Skip rule. To learn that, we did an experiment to calculate the correlation between the

presence of each CI-Run rule and the ratio of builds that failed under each CI-Skip rule.

We divided builds under each CI-Skip rule into four groups: with each CI-Run rule pass,

with each CI-Run rule fail, without each CI-Run rule pass and without each CI-Run rule fail.

For example, if we want to study the correlation between failing builds under SourceCom-

mentChange and BuildScripts, we firstly divide all SourceCommentChange builds from all

projects into four groups: with BuildScripts passing builds, without BuildScripts passing

builds, with BuildScripts failing builds and without BuildScripts failing builds. We calculate

correlation as the effect size using Cramer’s V, which is designed for measuring the association

between nominal variables. We then test for statistical significance using the Chi Square test.

The sample size in this experiment for each CI-Skip rule was SourceCommentChange: 1035,

SourceFormatModification: 1264, SourceFormatCommentChange: 229, NonSrcFileChange:

13103, MetaFileChangeOnly: 1329, VersionRelease: 2889, AllPassingTest: 73465, NoReach-

ableTest: 34578.

Result

We report in Table 5.3 the results of this experiment. We leave cells blank when the cor-

relation between a CI-Run rule under a CI-Skip rule and failing builds was not statistically

significant (p_value >= 0.05). We found that SubsequentFailures had a strong cor-

92 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

relation with failing builds under every CI-Skip rule. SubsequentFailures was also

the only correlated CI-Run rule with failing builds under SourceCommentChange, Source-

FormatModification, SourceFormatCommentChange and VersionRelease. With the results

in RQ3 and RQ4, we can conclude that SubsequentFailures is the major CI-Run rule that

makes CI-Skip rules unsafe. This reflects that those changes are mostly safe, but cannot fix

the broken build.

Under other CI-Skip rules, failing builds also have a correlation with BuildScripts, Config-

urationFiles and IncreasingPlatforms. Among them, failing builds under NoReachableTest

and NonSrcFileChange have correlations with all CI-Run rules, and failing builds under

MetaFileChangeOnly and AllPassingTest have correlations with three CI-Run rules: Con-

figurationFiles, SubsequentFailures, and IncreasingPlatforms. This shows that changes on

build scripts and configuration files can also make some rules unsafe. Among them, changes

on configuration files have a stronger correlation than changes on build scripts. This indi-

cates that changes on project configuration files can be more risky. Though the effect size

is small, we think they are still effective because most of the builds under each rule are

passing builds and these correlated CI-Run rules can help predict failing builds. We also

note that IncreasingPlatforms was a correlated CI-Run rule even if it was less popular in

RQ3. This shows that projects rarely increased the platform set where they build, but when

they did, it correlated with builds failing under NonSrcFileChange, MetaFileChangeOnly,

AllPassingTest, and NoReachableTest. This findings can be used to warn developers when

the program is going to be tested on more platforms.

5.4. OUR APPROACH: PRECISEBUILDSKIP 93

Table 5.3: Correlation between CI-Run rules and failing builds under CI-Skip rules.

CI_Skip Rules

SCC SFM SCC_
SFM NSF MFC VR APT NRT

E
xc

ep
ti

on
s BS 0.06 0.02

CF 0.07 0.11 0.03 0.04
SF 0.83 0.83 0.82 0.83 0.82 0.8 0.79 0.82
IPN 0.05 0.07 0.04 0.05

5.4 Our Approach: PRECISEBUILDSKIP

In our empirical studies, we observed that CI-Skip rules have a reasonable potential for

cost savings (RQ1) and are relatively safe (RQ2), although not 100% so. We also identified

CI-Run rules that capture the majority of failing builds under CI-Skip rules (RQ3), and

identified how strongly they can discriminate between builds that will pass and builds that

will fail (RQ4). These observations show that practitioners could manually use CI-Skip rules

to save cost, but not 100% safely, even when they also apply our CI-Run rules.

Thus, we also created PRECISEBUILDSKIP, a novel technique to allow practitioners to auto-

matically predict which builds to skip, while maximizing the number of build failures that

are observed (i.e., not skipped). PRECISEBUILDSKIP takes advantage of both CI-Skip rules

(except AllPassingTest) and CI-Run rules as features. Our intuition is that by training PRE-

CISEBUILDSKIP with CI-Skip rules and CI-Run rules, its predictions will be highly safe, i.e.,

it will prefer to err executing passing builds than to erring skipping failing ones. We train it

as a cross-project predictor (i.e., we train PRECISEBUILDSKIP in the past builds of different

software projects than the one in which we apply it). This helps with the cold-start problem

[111] in software projects for which only a few builds have been executed and thus they

need additional data for training [87]. PRECISEBUILDSKIP then predicts the outcome of each

94 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

build and only executes those that it predicts to fail. Finally, we make PRECISEBUILDSKIP

customizable, i.e., we can customize its prediction sensitivity to varying levels of tolerance

to skipping failing builds.

5.5 Experiment 1: Evaluating PRECISEBUILDSKIP

We evaluate PRECISEBUILDSKIP in three ways. First (RQ5), we evaluate the correctness of

its predictions, using the traditional metrics for prediction tasks: precision, recall, F1, and

AUC. Then (RQ6), we evaluate the impact that PRECISEBUILDSKIP’s predictions provide to

developers in more practical terms — how much cost they allow them to save, and how many

build failures they allow them to observe. Finally (RQ7), we evaluate how much build time

PRECISEBUILDSKIP allows developers to save, when we account for the overhead of executing

it.

RQ5 teaches us the quality of PRECISEBUILDSKIP’s predictions — irrespective of its context of

usage, and RQ6 teaches us the benefit and drawback that developers can obtain from them

in more practical terms — cost saving and failure observation. Then, RQ7 teaches us the

extent to which the cost (execution time) of running PRECISEBUILDSKIP threatens the cost

(execution time) it saves.

5.5.1 Research Method

We describe the details of our evaluation below.

5.5. EXPERIMENT 1: EVALUATING PRECISEBUILDSKIP 95

Studied Techniques

We evaluated PRECISEBUILDSKIP in two versions. First, our proposal, PRECISEBUILDSKIP,

using a random-forest classifier (§5.4). Second, PBS_RB, as a rule-based variant of PRE-

CISEBUILDSKIP, to represent the cost-saving and safety that a developer would observe when

manually using our set of CI-Skip rules (except AllPassingTest) and CI-Run rules. We also

replicated all existing build-selection techniques for our evaluation.

PRECISEBUILDSKIP (PBS): Our proposed approach (see §5.4). Since it is customizable, we

evaluate it for multiple prediction-sensitivity thresholds: 0–0.1 (101 data points in this

range). This is the range of thresholds for which we observed PBS provide a range of

different levels of cost savings. Higher prediction sensitivities make PBS more likely

to predict builds to pass. This will let us observe the multiple trade-offs that it could

achieve in terms of cost saving and safety.

PBS_RB: A rule-based approach including all CI-Skip rules (except AllPassingTest) and

their corresponding CI-Run rules. This variant goes through our list of CI-Skip rules

(except AllPassingTest), and skips builds under them when none of their correlated

CI-Run rules are present.

Jin20 [51]: A 2-phase build selection approach, using a random-forest classifier with size

features. Since Jin20 is a customizable approach that can be set to varying prediction

sensitivities, we replicated its most conservative (safest) configuration, as described in

its original paper. This means that we configured its predictor to have a prediction

sensitivity of 0, which causes it to have a strong preference to predict build failures —

the predictor will predict builds to fail, unless it is 100% confident that it will pass.

Abd19 [2]: The first rule-based build selection approach based on CI-Skip rules, which

uses a subset of our studied CI-Skip rules (SourceCommentChange, SourceFormat-

CommentChange, NonSrcFileChange, MetaFileChangeOnly and VersionRelease). We

96 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

replicated Abd19 by using the data in TravisTorrent for the number of source files

changed. For other rules, we downloaded each software project locally, used Python

(lib git.Repo) to request commit messages, changed files, and changed lines for each

commit. Then, after each rule, was ready, we ran the simulation to skip one build

whose all commits follow at least one rule.

Abd20 [1]: A machine-learning approach (also random-forest classifier) using Abd19’s CI-

Skip rules as features. We replicated Abd20 following the same process of replicating

Abd19: we git cloned the project and requested the commit information using Python.

Since Abd20 requires more rules, we implemented additional steps to replicate it. For

example: I mined the author names and commit time, for the rule that considers recent

expertise.

Training and Testing

We used the same data set as Empirical Study 1 and 2, which includes 82,427 builds from 100

projects (see §5.1.1) We use 10-fold cross validation (each fold has 10 projects) to evaluate

machine-learning-based techniques: PRECISEBUILDSKIP and Jin20. Thus, we randomly divide

the 100 projects in our dataset into 10 sets (i.e., folds), each one with 10 projects. We then

iteratively select each fold as our test set. For each test set, we perform predictions for each

build in it, having trained the classifier on the other 9 folds (the other 90 projects), i.e., the

testing data will not be known in advance by the predictor.

Abd20, however, can not be trained in our dataset. Abd20 trains its classifier with developer-

skipped commits, and our dataset has too few of these commits. So, we trained Abd20 in the

10-project dataset in which it was originally evaluated [1], and tested it in ours (see §5.1.1).

Rule-based techniques (PBS_RB and Abd19) do not require training. So, we applied them

directly to our dataset.

5.5. EXPERIMENT 1: EVALUATING PRECISEBUILDSKIP 97

As in past work [51], we simulated a realistic scenario in which the outcomes of builds that are

skipped are not available for coming predictions. That is, we only update the information

connected to the last build, e.g., SubsequentFailures, when it was actually executed (not

when it was skipped). When a predictor predicts the upcoming build as a pass, we skip the

build and accumulate the value of its size factors (such as number of changed source files)

for the next build, also as past work did [51].

Metrics

We measured three sets of metrics, one for each research question in this experiment.

RQ5: To measure the correctness of PRECISEBUILDSKIP’s predictions, we used four metrics.

Precision: the number of correctly predicted build failures, divided by the number of builds

that the technique predicted as build failures. We expect PRECISEBUILDSKIP to provide low

precision (by design), since it aims to maximize the observation of build failures.

Recall: the number of correctly predicted build failures, divided by the number of actual

build failures. For the same reason, we expect PRECISEBUILDSKIP to provide high recall.

F1 score: the harmonic mean between precision and recall. We expect PRECISEBUILDSKIP to

provide low F1 score, since we expect it to provide low precision.

AUC: the Area Under the ROC (Receiver Operating Characteristic) Curve. We expect

PRECISEBUILDSKIP to provide low AUC score, since we expect it to provide low precision.

RQ6: To understand how much PRECISEBUILDSKIP could benefit developers, we measured

three metrics: Cost Saving, Observed Failures and Skipped Failure Relative Density (SFRD).

The first metric was included in all prior works [1, 2, 51], and the second metric was covered

in an existing work [51]. The last metric is designed in this work to measure how strongly a

98 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

technique targeted skipping passing builds.

Cost Saving. To measure how much of the computational cost of CI a technique reduced,

we measure the proportion of builds that it skipped, among all builds. By this metric, a

technique that skipped (i.e., avoided the computational cost of executing) a high proportion

of builds highly reduced the computational cost of CI.

CostSaving = # skipped builds
all builds

Observed Failures is the proportion of failing builds that are correctly predicted and not

skipped, among all failing builds. It measures a technique’s ability of detecting failing builds.

A technique performs better in this metric if it catches more failing builds.

ObservedFailures = 1− # skipped failing builds
all failing builds

We also designed the Skipped Failure Relative Density (SFRD) metric. It measures the

fail ratio in skipped builds divided by the fail ratio in all builds. This metric allows us to

understand how strongly one technique can discriminate passing and failing builds. A lower

value in this metric indicates a better performance. A technique performs better in this

metric if it skips builds with a lower fail ratio than the original fail ratio of all builds. This

metric has two values with special meanings. The metric value of 1 means that a technique

achieved roughly the same trade-off as skipping builds randomly. The metric value of 0

means that a technique observes all failing builds.

SFRD = fail ratio of skipped builds
fail ratio of all builds

RQ7: To understand how much the overhead of running PRECISEBUILDSKIP impacts its

provided cost savings, we measured one metric.

5.5. EXPERIMENT 1: EVALUATING PRECISEBUILDSKIP 99

Safe

Moderate Relaxed

More relaxed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Pr
ec
is
io
n

Threshold

PBS
PBS_RB

Jin20
Abd20
Abd19

Safe

Moderate Relaxed

More relaxed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Re
ca
ll

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Safe

Moderate Relaxed

More relaxed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F1
sc
or
e

Threshold

PBS
PBS_RB

Jin20
Abd20
Abd19

Safe Moderate
Relaxed

More relaxed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
AU

C
sc
or
e

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Figure 5.4: Performance comparison on predicting build failures.

Saved Build Duration: This metric gives us different information than our earlier “Cost

Saving” metric in RQ6, since it accounts for the time that it takes to run builds in CI. This

metric measures the proportion of build-execution time that a technique skipped, among all

build-execution time — i.e., the cumulative execution time of all the builds that a technique

skipped, divided by the cumulative execution time of all builds (skipped or not).

We compare the Saved Build Duration including PRECISEBUILDSKIP’s execution time and

excluding it — to understand its overhead. We measured PRECISEBUILDSKIP’s execution

time by including the time for running its feature techniques and its own prediction time.

5.5.2 Results for RQ5: How correct are PRECISEBUILDSKIP’s predic-

tions?

Figure 5.4 shows the results for this research question. This figure shows the median value

for each metric across studied projects. The Y axis represents the metric for evaluation and

100 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

the X axis is the prediction sensitivity for PRECISEBUILDSKIP.

To be able to compare PBS with existing techniques, we highlight four prediction thresholds

of interest for it (see Figure 5.4-Recall). Safe: the highest threshold that provides 100% recall.

Moderate: the threshold that provides the closest recall to Abd20’s. Relaxed: the threshold

that provides the closest recall to Jin20’s. More relaxed: the threshold that provides the

closest recall to Abd19’s. We also highlight PBS’s scores for the same prediction thresholds

for the remaining metrics in Figure 5.4.

In Figure 5.4-Precision, we can observe that almost all techniques have low (and very similar)

precision scores (lower than 0.1). This is by design, since all these techniques are designed

to be highly safe, i.e., they are conservative and predict many builds to fail. The exception

is PRECISEBUILDSKIP, which obtains higher precision scores as we configure it with higher

prediction thresholds.

The counterpart to precision is recall. Figure 5.4-Recall shows that most techniques obtain

high recall — by design, i.e., for the same reason that they obtain low precision. However,

the range of their recall scores is more varied than their precision scores, allowing us to

differentiate among them more clearly. In terms of recall, the best-performing technique was

PBS, achieving 100% recall for its Safe threshold — and keeping a precision score that is

similar to all other techniques’. As we increased its prediction threshold, PBS’s precision

increases and its recall decreases.

In terms of F1 score (see Figure 5.4-F1 score), most techniques achieve low values, as a result

of their low precision. We observe a similar effect for AUC scores in Figure 5.4-AUC.

In summary, all studied techniques achieved very close precision scores, but they differenti-

ated themselves in terms of recall — for which PBS obtained the highest score.

5.5. EXPERIMENT 1: EVALUATING PRECISEBUILDSKIP 101

5.5.3 Results for RQ6: How much cost-saving and safety do PRE-

CISEBUILDSKIP’s predictions provide?

We plot the results for this research question in Figure 5.5. This figure shows the median

value for each metric across studied projects. The Y axis represents the metric for evaluation

and the X axis is the prediction sensitivity for PRECISEBUILDSKIP.

We first make observations from comparisons among existing techniques. We can observe

that Abd19 is the existing technique that achieves highest Cost Saving. Abd19 is able to

save 22.3% builds while Jin20 and Abd20 save 18.6% and 5.2% respectively. Abd20 is the

safest technique that observes most failing builds among existing approaches. It can observe

96% of build failures while Jin20 observes 87% and Abd19 observes 81% failing builds. We

can also observe that Jin20 performs best SFRD. SFRD of Jin20 is 0.71 in while Abd20 and

Abd19 achieves 0.94 and 0.96 respectively. From these observations, we can find that each

exiting approach has its own strengths and none of them can be really safe.

We also make a few observations about how PBS performs across prediction thresholds. First,

PRECISEBUILDSKIP shows little impact when the threshold is smaller than 0.014, which means

it observes all failing builds by seldom skipping builds. Then along with the increasing of the

threshold, i.e., making the predictor less sensitive to the build failures, Cost Saving increases

and Observed Failures drops. However, Observed Failures starts dropping later than Cost

Saving’s increasing, i.e., SFRD remains at 0, which means in this range PRECISEBUILDSKIP

is able to observe all build failures and save some cost. In the most optimized scenario, our

approach can save 5.5% of builds and observe all build failures. After that, Cost Saving gets

continuously increasing and Observed Failures gets decreasing correspondingly until they

come to the ending scenario where all builds are skipped and no failing builds is observed,

making SFRD reach 1.

102 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

Safe Moderate

Relaxed

More relaxed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Co
st
Sa
vi
ng

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Safe

Moderate Relaxed

More relaxed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

O
bs
er
ve
d
Fa
ilu

re
s

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Safe

Moderate

Relaxed
More relaxed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

SF
RD

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Figure 5.5: Cost saved and value kept by evaluated techniques.

Next, we compare PRECISEBUILDSKIP with existing techniques by highlighting the same pre-

diction thresholds discussed for RQ5 (see §5.5.2). First, we observe that PBS is able to

achieve 5.5% Cost Saving while keeping 100% Observed Failures in a safe mode (thresh-

old 0.047). This shows that PBS can observe more build failures than safest existing work

(Abd20) did and provides slightly more cost-saving meanwhile. PBS also achieves the best

SFRD as a value of 0 at this point. Second, in a moderate scenario (threshold 0.052),

PRECISEBUILDSKIP can save 12.9% Cost Saving and keep 96% Observed Failures compared

with Abd20. This shows that PBS can observe same amount of failing builds as Abd20

(96%) but increases Cost Saving from 5.2% to 12.9%. Also, PRECISEBUILDSKIP performs bet-

ter at SFRD at this point (0.45 vs. 0.94). Third, in a relaxed scenario (threshold 0.055),

PRECISEBUILDSKIP can save 25.8% cost and observe 87.6% failing builds at the same time.

Compared with the existing technique that is best at cost-saving (Abd19), PBS can observe

more failing builds (Abd19 81%) and more Cost Saving as well (Abd19 22.3%). Besides, PBS

at this point also achieves a smaller value of SFRD (0.52) than Abd19 does (0.96). Fourth,

5.5. EXPERIMENT 1: EVALUATING PRECISEBUILDSKIP 103

in a more relaxed scenario (threshold 0.059), PRECISEBUILDSKIP can save 34.8% cost and

observe 81% failing builds at the same time. Compared with Abd19, PBS can observe same

amount of failing builds (81%) but increases Cost Saving from 22.3% to 34.8%. Besides,

PBS also achieves a lower SFRD (0.55). We lastly find that all variants we point out above

have a better performance on SFRD than all existing techniques.

Finally, we observed that PBS_RB works well as a rule-based technique that is easy to use

and requires no training data. It achieves the SFRD of 0.5 which is better than all existing

techniques. The performance of PBS_RB is very similar to the performance of PBS at

threshold 0.059 and it can save 32% of cost saving while observing 83% of build failures.

5.5.4 Results for RQ7: How much overhead does PRECISEBUILDSKIP

add to build duration?

We answered this question by comparing the build time saved by PRECISEBUILDSKIP, with

and without accounting for its execution time. We plot the results for this research question

in Figure 5.6. This figure shows the median value for each metric across studied projects.

The Y axis represents the metric for evaluation and the X axis is the prediction sensitivity

for PRECISEBUILDSKIP.

We see in Figure 5.6 that accounting for PRECISEBUILDSKIP’s execution time has negligible

impact on the cost that it saves in terms of build duration. PRECISEBUILDSKIP’s execution

duration generally takes only 0.5% of the saved build duration, e.g., PRECISEBUILDSKIP saved

5.5% of build duration at threshold 0.047, 5.1% after we deduct its execution time. Further-

more, as PRECISEBUILDSKIP’s prediction threshold increases, its overhead decreases, i.e., its

execution time becomes a smaller and smaller proportion of its build time saved as it saves

more and more build time.

104 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sa
ve
d
D
ur
at
io
n

Threshold

PBS without execution time PBS with execution time

Figure 5.6: Build time saved by PRECISEBUILDSKIP including and excluding its execution
time.

5.6 Experiment 2: Evaluating the impact of CI-Run

rules in PRECISEBUILDSKIP

In this experiment, we evaluate the impact of CI-Run rules on our approach (among specific

variants pointed in §5.5.3). We aim to understand how our approach performs with and

without CI-Run rules in term of saved cost and kept value.

5.6.1 Research Method

We use the same data set and simulation process as Experiment 1. We also use the same

three measurement metrics (Cost Saving, Observed Failures and SFRD) that the variants

would provide in practice for evaluation.

5.6. EXPERIMENT 2: EVALUATING THE IMPACT OF CI-RUN RULES IN PRECISEBUILDSKIP 105

Studied PRECISEBUILDSKIP (PBS) variants

We evaluate PRECISEBUILDSKIP with other variants of it, including rule-based variants and

variants without CI-Run rules.

PBS_Safe: The safe variant of our original approach (threshold 0.047), keeping all build

failures observed and saving as much cost as possible, same as the first point in §5.5.3.

PBS_IC_Safe: The safe variant (threshold 0.135) of incomplete version of our approach

using only CI-Skip rules (except AllPassingTest) as features, saving similar amount of

cost as PBS_Safe.

PBS_Moderate: The moderate variant of our original PBS (threshold 0.052), observing

as many failing builds as Abd20 did, same as the second point in §5.5.3.

PBS_IC_Moderate: The moderate variant (threshold 0.16) of incomplete version of our

approach using only CI-Skip rules (except AllPassingTest) as features, saving similar

amount of cost as PBS_Moderate.

PBS_Relaxed: The relaxed variant of our original approach (threshold 0.055), observing

as many failing builds as Abd19 did, same as the third point in §5.5.3.

PBS_IC_Relaxed: The more relaxed variant (threshold 0.163) of incomplete version of

our approach using only CI-Skip rules (except AllPassingTest) as features, skipping

similar amount of builds as PBS_Relaxed.

PBS_More_Relaxed: The more relaxed variant of our original PBS (threshold 0.059),

saving similar amount of cost as Abd19 did, same as the third point in the result of

RQ5.

PBS_IC_More_Relaxed: The more relaxed variant (threshold 0.164) of incomplete ver-

sion of our approach using only CI-Skip rules (except AllPassingTest) as features,

skipping similar amount of builds as PBS_More_Relaxed.

PBS_RB: Our rule-based approach included in Experiment 1.

106 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

PBS_RB_IC: The incomplete version (no CI-Run rules) of PBS_RB, skipping rules when

any of the CI-Skip rules is fulfilled.

5.6.2 Results for RQ8: What is the impact of including CI-Run

rules as features in PRECISEBUILDSKIP?

We plot the results of this experiment in Figure 5.7 for the evaluation of all variants. The

boxes in these box plots for each metric represent its distribution of values for all the studied

projects. We discuss our observed differences in results in terms of absolute percentage point

differences over the median value of each metric across projects. All differences in this result

are statistically significant (p_value < 0.01).

We can observe that the variants of PBS_IC in general observe less build failures and

save similar or less amount of cost as their corresponding PBS variants. Among them,

PBS_IC_Safe can observe 97.2% failing builds and it can save 5.1% of cost saving, which

means it performs worse in both metrics than its corresponding PBS variant (5.5%, 100%).

PBS_IC_Moderate performs worse in both metrics (11.6% and 92.4%), compared with

PBS_Moderate (12.9% Cost Saving and 96% Observed Failures). We compare PBS_Relaxed

and PBS_IC_Relaxed as well and find that the former’s Cost Saving (20.3%) is lower than

the latter’s (25.8%) and Observed Failures is lower as well (85.4% vs. 87.6%). Besides,

PBS_IC_More_Relaxed achieves 23.8% in Cost Saving and 82% in Observed Failures while

PBS_More_Relaxed achieves 34.8% and 81% respectively.

We then make observations on SFRD. We can find that all variants of PBS_IC has higher

SFRD than their corresponding PBS variants. Since one approach has a better ability to

distinguish failing and passing builds if it has a lower value of SFRD, we can conclude that

PBS variants can discriminate failing builds more accurately than PBS_IC variants. Among

5.6. EXPERIMENT 2: EVALUATING THE IMPACT OF CI-RUN RULES IN PRECISEBUILDSKIP 107

Techniques

PB
S_
Sa
fe

PB
S_
IC
_S
af
e

PB
S_
M
od
er
at
e

PB
S_
IC
_M

od
er
at
e

PB
S_
Re
la
xe
d

PB
S_
IC
_R
el
ax
ed

PB
S_
M
or
e_
Re
la
xe
d

PB
S_
IC
_M

or
e_
Re
la
xe
d

PB
S_
RB

PB
S_
RB
_I
C

Co
st
Sa
vi
ng

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Techniques

PB
S_
Sa
fe

PB
S_
IC
_S
af
e

PB
S_
M
od
er
at
e

PB
S_
IC
_M

od
er
at
e

PB
S_
Re
la
xe
d

PB
S_
IC
_R
el
ax
ed

PB
S_
M
or
e_
Re
la
xe
d

PB
S_
IC
_M

or
e_
Re
la
xe
d

PB
S_
RB

PB
S_
RB
_I
C

O
bs
er
ve
d
Fa
ilu

re
s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Techniques

PB
S_
Sa
fe

PB
S_
IC
_S
af
e

PB
S_
M
od
er
at
e

PB
S_
IC
_M

od
er
at
e

PB
S_
Re
la
xe
d

PB
S_
IC
_R
el
ax
ed

PB
S_
M
or
e_
Re
la
xe
d

PB
S_
IC
_M

or
e_
Re
la
xe
d

PB
S_
RB

PB
S_
RB
_I
C

SF
RD

0

0.5

1

1.5

2

2.5

3

Figure 5.7: Cost saved and value kept by evaluated PRECISEBUILDSKIP variants including and
excluding CI-Run rules.

them, PBS_IC_Safe also has a value of 0.74 SFRD which is worse than PBS_Safe. Besides,

PBS_IC_Moderate and PBS_IC_Relaxed also have a higher SFRD (0.93 and 0.96) com-

pared to their corresponding variants (0.45 and 0.55). Finally, PBS_IC_More_Relaxed’s

SFRD’s value reaches 1 which means it performs same as randomly pick.

Therefore, given that the variants of PBS_IC have lower values of Observed Failures with

similar values of Cost Saving and higher values of SFRD than the corresponding variants of

PBS, we can reach a conclusion that CI-Run rules are able to complement CI-Skip rules and

supplement our approach to better discriminate failing and passing builds.

Finally, we make observations to compare PBS_RB and PBS_RB_IC, its corresponding

technique. We can find that PBS_RB_IC has a higher value in Cost Saving and a lower value

in Observed Failures (47% and 46%), giving it a high value of 1 in SFRD. This shows that

CI-Run rules are also essential when be applied our rule_based techniques by complementing

CI-Skip rules to better discriminate failing and passing builds.

108 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

5.7 Experiment 3: Evaluating PRECISEBUILDSKIP when

trained on Builds affected by Build-selection

After build selection techniques have been used for some time, the available training data

(build executions and their outcomes) would only contain selected builds, i.e., only the

builds that the build-selection technique decided to run. To understand the impact on

PRECISEBUILDSKIP’s effectiveness of being trained on such selected builds, we performed this

experiment.

5.7.1 Research Method

We use the same research method as Experiment 2, except for the details below.

Studied Techniques

We study the following techniques: PBS_Safe, PBS_Moderate, PBS_Relaxed, PBS_More-

relaxed, Abd20, and Jin20 in this experiment, as described in Experiment 2 (see §5.6.1). We

omit two of the techniques that we studied in earlier experiments — PBS_RB and Abd19

— because they are not affected by training on selected builds — they are rule-based and

thus do not use a training step.

Training and Testing

We followed a different training and testing process in this experiment.

First, for each studied technique, we simulated having applied it to the whole dataset. We

did that by executing the technique for build selection over every build of every project,

5.7. EXPERIMENT 3: EVALUATING PRECISEBUILDSKIP WHEN TRAINED ON BUILDS AFFECTED BY
BUILD-SELECTION 109

Techniques

PB
S_
Sa
fe

PB
S_
Sa
fe
_S
el
ec
te
d

PB
S_
M
od

er
at
e

PB
S_
M
od

er
at
e_
Se
le
c…

PB
S_
Re

la
xe
d

PB
S_
Re

la
xe
d_

Se
le
ct
ed

PB
S_
M
or
e_
Re

la
xe
d

PB
S_
M
or
e_
Re

la
xe
d_
…

Ab
d2

0

Ab
d2

0_
Se
le
ct
ed

Jin
20

Jin
20
_S
el
ec
te
d

Co
st
Sa
vi
ng

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Techniques

PB
S_
Sa
fe

PB
S_
Sa
fe
_S
el
ec
te
d

PB
S_
M
od

er
at
e

PB
S_
M
od

er
at
e_
Se
le
c…

PB
S_
Re

la
xe
d

PB
S_
Re

la
xe
d_

Se
le
ct
ed

PB
S_
M
or
e_
Re

la
xe
d

PB
S_
M
or
e_
Re

la
xe
d_
…

Ab
d2

0

Ab
d2

0_
Se
le
ct
ed

Jin
20

Jin
20
_S
el
ec
te
d

O
bs
er
ve
d
Fa
ilu

re
s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Techniques

PB
S_
Sa
fe

PB
S_
Sa
fe
_S
el
ec
te
d

PB
S_
M
od
er
at
e

PB
S_
M
od
er
at
e_
Se
le
c…

PB
S_
Re
la
xe
d

PB
S_
Re
la
xe
d_
Se
le
ct
ed

PB
S_
M
or
e_
Re
la
xe
d

PB
S_
M
or
e_
Re
la
xe
d_
…

Ab
d2
0

Ab
d2
0_
Se
le
ct
ed

Jin
20

Jin
20
_S
el
ec
te
d

SF
RD

0

0.5

1

1.5

2

2.5

3

Figure 5.8: Cost saved and value kept by evaluated techniques when being trained under
pre-selected data.

as described for Experiment 1 (see §5.5.1). We refer to the outcome of this step as the

selected-builds dataset for that technique.

Then, for each technique, we simulated training it in projects that had already applied build

selection. We achieved that by again applying the training-testing steps for Experiment 1

(see §5.5.1), but this time taking its training folds from its selected-builds dataset and the

testing folds from the original dataset. However, we still keep the testing data unknown by

the predictor.

110 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

5.7.2 Results for RQ9: How much cost-saving and safety does

PRECISEBUILDSKIP provide when trained on projects that use

build selection?

We plot the results for this research question in Figure 5.8. The boxes in these box plots

for each metric represent its distribution of values for all the studied projects. The Y axis

represents the metric for evaluation and the X axis is the studied technique variant. For

ease of comparison, we represent side by side the results of each technique when trained

on the original dataset — using the technique’s original name — and when trained on its

selected-builds dataset — adding to its name the _Selected suffix.

We see in Figure 5.8 that all techniques provided very similar results when trained on projects

that used build selection than when they were trained on projects that did not. Thus, training

them on data that had already been modified by their build selection had a negligible impact

on their effectiveness.

We believe that this is because most techniques are generally conservative in skipping builds

— they are more likely to decide to run a build than to skip it. As a result, the impact that

they had when applied to produce the selected-builds dataset was limited enough to only

negligibly impact their effectiveness when they used it for training.

In more detail, PBS_Safe_Selected obtained the same median Observed Failures (100%)

and SFRD (0), but decreased its Cost Saving from 5.5% to 5.3%. PBS_Moderate_Selected

had the same median Observed Failures (96%), but decreased its Cost Saving from 12.9%

to 12.4%. PBS_Relaxed_Selected obtained the same median Observed Failures (87.6%),

but increased its Cost Saving from 25.8% to 27.1%. PBS_More_Relaxed_Selected had

less median Observed Failures from 81% to 80%, but its Cost Saving increased from 34.8%

to 37.9%. Abd20_Selected had less median Observed Failures from 96% to 95%, but its

5.8. IMPLICATIONS 111

Cost Saving increased from 5.2% to 6%. Jin20_Selected obtained more median build failure

observations from 87% to 90.5%, but its Cost Saving dropped from 18.6% to 16.3%.

5.8 Implications

5.8.1 For practitioners.

From the findings of Empirical Study 1, we find that developers’ intuitions may not always

be correct, i.e., skipping builds based on their favors may result in missing build failure

observations. Therefore, developers should be more cautious when skipping builds by CI-

Skip rules. Instead, developers may be able to refer to CI-Run rules and make their decisions

based on both CI-Skip rules and CI-Run rules.

We believe that the largest barrier for adopting a CI build selection approach is that devel-

opers may be afraid of skipping failing builds. In other words, the concern of delaying failing

build observation can be the main reason that build selection approach is not adopted. This

implies the motivation for a build selection technique with no mispredictions. Thus, we

propose PRECISEBUILDSKIP as a precise technique that minimizes the observed build failures

of build selection while providing some cost-savings at the same time.

In contrast, other developers may be looking for a way to reduce CI’s high-cost barrier [110]

to adopt it, even if it means observing build failures less quickly. PRECISEBUILDSKIP provides

configurations with a more liberal sensitivity for these developers: save the cost of 35% of

their builds and still observe 81% failing builds with no delay (and the remaining 19% with

a 1-build delay). Besides, when there is no training data available, developers can still get

benefit from PRECISEBUILDSKIP by using its rule-based version (PBS_RB). Furthermore, our

novel metric, SFRD, is able to provide developers a chance to pick preferable build selection

112 CHAPTER 5. PRECISEBUILDSKIP: REDUCE DELAY OF FAILURE OBSERVATION

techniques in a more comprehensive way.

5.8.2 For researchers.

From the result of RQ5 and RQ6, we can find that SubsequentFailures (subsequent failures)

is the main CI-Run rule that makes CI-Skip rules invalid. This is because when the build

has already been broken, the only way to turn it to pass is to fix the defect, rather than

make any safe changes. Existing work [51][38] also found that the build is hard to transit

status, i.e., failing builds are likely to be followed by another build failure. This implies

SubsequentFailures could be an important feature when detecting defects.

In this study, we tried different ways to take advantage of SubsequentFailures. We firstly used

it as a feature for our predictor. However, the last build status is only available when the last

build is executed. Therefore, when the predictor becomes less sensitive to the failing builds,

i.e., the threshold increases which means less failing builds are observed, SubsequentFailures

is more often not updated in time and this makes the predictor harder to predict a failing

build. That’s why the predictor almost predicts every build to pass when the threshold is

0.1. If we take an alternative approach — execute the subsequent build of a failing build

normally until we find a pass instead of triggering the predictor every time, the curve can be

flattened. However, we will have less cost-saving, since we execute one passing build after a

failing build anyway. As a result, we decided to use SubsequentFailures as a feature and let

developers tune the technique in a tinier range.

Finally, we observe that if we keep most failure observations, the cost-saving remains low.

This implies there is an opportunity for more CI-Skip rules coming out to contribute to

cost-saving. For example, builds with changes on some specific subsystem of the source

code is likely to be builds that can be safely skipped. Also, different projects may have

5.9. CONCLUSIONS 113

different preferences on choosing CI-Skip rules and CI-Run rules, e.g., faults caused by

IncreasingPlatforms may be acceptable to some projects. Besides, since AllPassingTest works

well in §5.2, there are other ways to approximate it, e.g., test selection techniques [67] can

predict the result of tests. If all tests are predicted to pass, then AllPassingTest is valid.

5.9 Conclusions

In this work, we aimed to maximize build failure observation and save cost in CI. To achieve

this goal, we firstly studied the safety of CI-Skip rules and found that these rules are not

perfectly safe. We then developed a set of CI-Run rules that make those rules invalid. We

studied these CI-Run rules and found that they are correlated with failing builds under CI-

Skip rules. Then we encoded our findings into PRECISEBUILDSKIP, a novel build selection

technique that can capture the majority of failing builds and provide cost-saving at the same

time. Finally we evaluated our approach and compared it with existing techniques.

PRECISEBUILDSKIP’s variants improved existing approaches in term of Observed Failures and

Cost Saving, i.e., PRECISEBUILDSKIP is able to save cost in a safer way. We highlight two

specific variants that we posit will be popular: the safe one, which saves 5.5% builds and

generally captures all of failing builds, and a version that is better at Cost Saving: saves 35%

of builds while keeping 81% of failing build observations. Nevertheless, PRECISEBUILDSKIP

provides many other trade-offs that could be desirable in different environments.

Chapter 6

HYBRIDBUILDSKIP: enhances the ability

of cost saving.

The findings of Chapter 5 reflect that the delay of failure observation for build selection ap-

proaches can minimized, but the corresponding cost saving ability is also weakened. There-

fore, in this chapter, we aim to explore ways to enhance the ability of cost saving while

keeping minimizing the delay of failure observation for build selection approaches.

Existing cost-saving techniques for CI selectively skip executions at either the build [1, 2, 51]

or test [32, 41, 67, 98] granularities. The former selectively skip full builds — skipping both

the build preparation steps and all the test cases for the software. The latter selectively skip

partial builds — executing the build preparation steps, but skipping some of the test cases.

Existing techniques use a wide variety of heuristics and machine-learning algorithms to

predict whether a given build (or test case within a build) is going to pass or fail. According

to a recent study [53], some techniques do well in cost-saving while others are better at

failure-observation, i.e., there is a trade-off that a technique that saves more cost always

observes less failures. In this paper, we define and study two strategies to try to break

this trade-off, i.e., to improve both the cost-saving and failure-observation ratios. Our first

strategy is to combine multiple existing techniques to take advantage of their own strengths.

Our second strategy is to skip passing tests in builds with failing tests (partially skipping

them).

114

115

We propose the first hybrid CI cost-saving approach, HYBRIDCISAVE that allows skipping

both full and partial builds and allows test-level approaches to decide whether the build-

level executions can be skipped or not. HYBRIDCISAVE is comprised of two phases: it firstly

predicts if this build can be skipped fully through a hybrid build selector, HYBRIDBUILDSKIP,

and then for those builds that are decided to not skip, HYBRIDCISAVE uses a test selector

called HYBRIDTESTSKIP to decide which tests can be skipped (skip partial builds). The ratio-

nale of this design is that we assume skipping builds partially can enlarge the cost-saving of

build selection approaches while not sacrificing failure observation. HYBRIDBUILDSKIP com-

bines two sets of techniques: normal build selection techniques and test selection techniques

to predict build result. The way how test selection can be used to predict build outcomes

is that if all tests in one build are predicted to pass, then the build is considered to pass,

otherwise the build is predicted as a failing build. The rationale of this design is that cur-

rent build selection approaches are mainly focused on features of change size or historical

performance, rather than directly predict the test failing possibility which is the main cause

of the build failure [6]. With the design of HYBRIDCISAVE, we evaluated it with all existing

build selection approaches and found that HYBRIDCISAVE outperformed these techniques by

saving 14% duration, executing 100% of failing builds and observing 99.4% of test failures.

Our evaluation studied each of our novel ideas separately, and we define individual research

questions for them. We performed an extensive study on the impacts of skipping partial

builds and predicting build outcomes by test selection approaches. Skipping builds partially

can provide large or small cost savings and can also influence failure observations. Thus,

we did one experiment to compare HYBRIDCISAVE and HYBRIDBUILDSKIP to understand how

much extra cost can be saved by the strategy of skipping partial builds and the corresponding

impact on failure observation. We found that by skipping some tests from builds, HYBRID-

CISAVE can save 5% more durations and reduce its observed failing tests from 100% to 99.4%.

116 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

We then evaluated HYBRIDTESTSKIP with other existing test selection techniques and found

that HYBRIDTESTSKIP can save 11% of tests while observing 100% of failing tests in median.

To understand the impact of applying test selection techniques to predict build outcomes, we

did two experiments. We first compared HYBRIDBUILDSKIP with and without combining test

selection techniques to directly understand the impact of test selection techniques and found

that the variant without test selection techniques misses more failures when saving same

cost. We then explored further to compare the effectiveness of each feature and studied the

information gain of all combined techniques and found that some test selection techniques

rank the top in term of the feature importance. Finally, it’s possible that the multiple

predicting process of HYBRIDCISAVE would threaten its cost-saving ability. Therefore, we

compared the execution time of HYBRIDCISAVE and its saved duration. We found that the

execution time spent to execute HYBRIDCISAVE was negligible compared to the execution

time that it saved. Executing HYBRIDCISAVE took a median of 0.0116 seconds, while the

median build duration in our studied dataset was 441.5 seconds. Besides, we observed that,

when accounting for the execution time of HYBRIDCISAVE, its saved duration decreased only

by up to 0.016%. This paper provides the following contributions:

• HYBRIDCISAVE, the first hybrid selection approach in Continuous Integration that out-

performs existing techniques in term of cost saving and failure observation.

• The strategy of skipping both full and partial builds.

• The strategy of applying test selection approaches to predict build outcomes.

• Two sets of studies, of impact of the two previous strategies.

• A study of the impact of the execution time of build selection approaches on its cost

saving.

6.1. OUR APPROACH: HYBRIDCISAVE 117

• HYBRIDBUILDSKIP, the first build selection approach and HYBRIDTESTSKIP, a hybrid

test selection approach that is optimized for maximizing failure observation.

6.1 Our Approach: HYBRIDCISAVE

We designed HYBRIDCISAVE which consists of a hybrid build selection approach, HYBRID-

BUILDSKIP (introduced in §6.1.1) and a hybrid test selection approach, HYBRIDTESTSKIP (in-

troduced in §6.1.2) as shown in Figure 6.1. HYBRIDCISAVE follows a two-phase strategy.

First, HYBRIDCISAVE uses HYBRIDBUILDSKIP to predict the outcome of a build based on a set

of predicting features (see §6.1.1). If HYBRIDBUILDSKIP predicts the build to pass, it skips

it fully, i.e., all its steps and tests, and its cost is saved. Otherwise, i.e., if HYBRIDBUILD-

SKIP predicts the build to fail, the second phase will start to work. In its second phase,

HYBRIDCISAVE uses HYBRIDTESTSKIP to predict individual test outcomes in this build and

will only execute those tests that it predicts to fail — saving the cost of executing those

that it predicts to pass. With this two-phase strategy, we expect HYBRIDCISAVE to achieve

higher cost reduction than normal build selection approaches, e.g., HYBRIDBUILDSKIP (since

it now also skips builds partially) for similar ratios of observed failures (since we designed

HYBRIDTESTSKIP to be highly conservative in the way it decides to skip tests).

6.1.1 HYBRIDBUILDSKIP

We designed HYBRIDBUILDSKIP aiming to leverage and combine the predictions of the state

of the art build selection techniques, but also aiming to adapt test selection techniques to aid

in the problem of build selection. Thus, HYBRIDBUILDSKIP informs its predictions with six

different features in three categories: the prediction of three state of the art build selection

118 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

New build

Features: SF, Jin20_Safe,

Abd20, Abd19, Gligoric15,
Machalica19

Skip the
build partially

Predict to fail

Skip the
build fully

Predict to pass

Features: Machalica19,

Gligoric15, Herzig15

Update SF
Next build

HybridCISave

HybridBuildSkip

HybridTestSkip

Figure 6.1: Flow chart of the design of HYBRIDCISAVE.

techniques, the adapted prediction of two test selection techniques, and one build feature

that was found in previous work [51] to be highly predictive of build outcome: subsequent

failure.

HYBRIDBUILDSKIP’s first 3 features contain the prediction (pass / fail) of all the approaches

that were previously proposed to selectively execute builds in CI for cost-reduction (to the

extent of our knowledge): Abdalkareem19[2], Abdalkareem20 [1], and Jin20 [51]. Then,

in its next 2 features, HYBRIDBUILDSKIP adapts the predictions of two state of the art test

selection approaches: Gligoric15 [32] and Machalica19 [67]. For each of these approaches,

HYBRIDBUILDSKIP adapts their prediction outcome (originally at test granularity) to the build

granularity, i.e., combines selection techniques across granularities, considering that

they predict a build to pass if they predict all its tests to pass. If at least one test is predicted

to fail, HYBRIDBUILDSKIP considers that the approach predicted the build to fail. Finally,

HYBRIDBUILDSKIP’s sixth feature contains a simple prediction: fail if the current build is

subsequent to another build failure, and pass otherwise. Previous studies found this feature

to be useful to predict build failures [38, 51, 73]. Thus, all six features are categorical, with

a value of 0 if their corresponding technique predicted the build to pass, and 1 if it predicted

6.1. OUR APPROACH: HYBRIDCISAVE 119

it to fail.

HYBRIDBUILDSKIP uses these features to predict whether a given build will pass or fail using

a random-forest machine learning classifier. We train HYBRIDBUILDSKIP as a cross-project

predictor, i.e., we train it in the past builds of different software projects than the one in

which we apply it. This aids in the cold-start problem [111] in software projects where

only a few builds have been executed. HYBRIDBUILDSKIP then predicts the outcome of each

build and only executes those that it predicts to fail. Finally, we make HYBRIDBUILDSKIP

customizable, i.e., we can customize its prediction sensitivity to varying levels of tolerance

to skipping failing builds.

Next, we summarize the techniques that inform HYBRIDBUILDSKIP’s features.

F1: Abdalkareem19 [2] is a build selection approach that uses heuristics to skip commits

that only have safe changes, e.g., changes on configuration or document files.

F2: Abdalkareem20 [1]: is a build selection approach that uses machine learning to

predict builds that are likely to be skipped by developers with features including Abdalka-

reem19’s rules.

F3: Jin20_Safe [51] is a build selection approach that uses a two-phase prediction al-

gorithm. It uses machine learning to predict whether builds will pass based on statistical

features, but when a build fails, it predicts all consecutive builds to fail, until one passes and

the machine learning algorithm is used for prediction again. We pick the most conservative

configuration for this technique to serve as the feature of HYBRIDBUILDSKIP.

F4: Gligoric15 [32] is a test selection technique that skips tests that cannot reach the

changed files, by tracking dynamic dependencies of tests on files. A test can be skipped in

the new revision if none of its dependent files changed in the coming build. The rationale is

that tests that cannot reach changed files cannot detect faults in them.

120 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

F5: Machalica19 [67] selects tests to run based on a machine learning algorithm with

combined features of commit changes and test historical information. It uses the following

features: file extensions, change history, failure rates, project name, number of tests and

minimal distance. We ignored the step of determining the flaky tests when replicating.

F6: Subsequent Failures (SF) predicts a build to fail if the previous one failed. This

feature is already used as feature in Jin20_Safe, but we emphasize it in HYBRIDBUILDSKIP

by treating it as a single feature. We also want to note that this feature does not require

future information, i.e., it only updates its value when builds get actually executed.

6.1.2 HYBRIDTESTSKIP

We designed HYBRIDTESTSKIP to allow partially skipping those builds that HYBRIDBUILDSKIP

decides not to skip while still maximizing the failure observation. HYBRIDTESTSKIP is a rule-

based technique, so it does not require training data. HYBRIDTESTSKIP works as a heuristic

test selection that combines multiple test selection techniques that were proposed for the

continuous integration context (Machalica19 [67], and Herzig15 [41]) with an additional

state of the art test selection technique: Gligoric15 [32]. HYBRIDTESTSKIP is designed to

be conservative by predicting a test to pass (and skips it) if all its combined test selection

techniques predict it to pass. Otherwise, it predicts it to fail (and executes it). With this

design, we aim to minimize its ratio of missed test failures (i.e., test failures that it would

predict to pass).

We already described Gligoric15 [32] and Machalica19 [67] in §6.1.1. Herzig15 [41] is

based on a cost model, which dynamically skips tests when the expected cost of running the

test exceeds the expected cost of skipping it, considering both the machine cost and human

inspection cost [42]. We re-used the statistics from the paper such as the false alarm rate and

6.2. RESEARCH QUESTIONS 121

the cost of running machines. This technique tends to skip tests that have long run-time.

6.1.3 Novelty

There are some novelties in the design of HYBRIDCISAVE. First of all, HYBRIDCISAVE allows

skipping both full and partial builds to enlarge cost-saving. In this way, HYBRIDCISAVE is

able to take advantage of the cost from those passing tests in the executed builds. However,

it can also bring some side-effects: the newly skipped tests may be failing tests that can

delay the failure observation. Thus, we address this problem by designing HYBRIDTESTSKIP

in a specific way which is the second main novelty. We design HYBRIDTESTSKIP to be ex-

tremely conservative: one test can only be skipped when all existing test selection approaches

agree. This reduces its cost-saving ability, but ensures that it can observes the majority of

failing tests. Then using it to skip tests in executed builds can enlarge cost saving without

sacrificing failure observation. Finally, to better predict build outcomes, HYBRIDBUILDSKIP

combines both existing build selection and test selection approaches as its features. We

design HYBRIDBUILDSKIP to include test selection approaches because test failures are the

major failing causes of build failures [6] and test selection approaches can strengthen the new

technique’s ability to detect test failures.

6.2 Research Questions

We perform three experiments to evaluate HYBRIDCISAVE, analyze the effectiveness of its

components and the impact of the execution time on its saved time. In our experiments, we

answer the following research questions:

Experiment 1: Evaluating HYBRIDCISAVE

122 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

RQ1: How effective is HYBRIDCISAVE saving cost and observing failures, compared to exist-

ing build selection approaches?

Experiment 2: Analyzing HYBRIDCISAVE’s components

RQ2: What is the benefit of having a test selection component in addition to a build

selection component?

RQ3: What is the benefit of having test selection approaches to predict build outcomes?

RQ4: What is the relative importance of each feature in HYBRIDBUILDSKIP?

RQ5: How much cost-saving and failure-observation can HYBRIDTESTSKIP achieve?

RQ6: What is the relative importance of each feature in HYBRIDTESTSKIP?

Experiment 3: Counting End-to-End time

RQ7: What is the total execution time of HYBRIDCISAVE and its individual components?

RQ8: How much cost does HYBRIDCISAVE save in practice if we account for its execution

time?

6.2.1 Data Set

We performed our study over the Travis Torrent dataset [6], which includes 1,359 projects

(402 Java projects and 898 Ruby projects) with data for 2,640,825 build instances. We

remove “toy projects” from the data set by studying those that are more than one year old,

and that have at least 200 builds and at least 1000 lines of source code, which is a criteria

applied in multiple other works [45, 73]. To be able to explore test information, we also

filter out those projects whose build logs do not contain any test information. We focused

our study on builds with passing or failing outcome, rather than error or canceled. Besides,

in Travis a single push or pull-request can trigger a build with multiple jobs, and each job

corresponds to a configuration of the building step. As many existing papers have done

6.3. EXPERIMENT 1: EVALUATING HYBRIDCISAVE 123

[27, 46, 81], we considered these jobs as a single build since they share the same build result

and duration. After this filtering process, we obtained 82,427 builds (13,464 failing builds

and 40% of them happen after another failing build) from 100 projects. The median value

of build number per project is 437.

To be able to implement our approach and replicate existing work, we extended the infor-

mation in TravisTorrent of these 100 projects in multiple ways. First, we built scripts to

download the raw build logs from Travis and parse them to extract all the information about

test executions, such as test name, duration and outcome. Replicating existing approaches

required additional information that TravisTorrent does not provide for builds, such as the

content of commit messages, changed source lines and changed file names. For that, we

also mined additional information about commits in the projects’ code repositories through

Github. Finally, we built a dependency graph for the source code of each project using a

static analysis tool (Scitool Understand [88]) to compute the paths between files for imple-

menting existing techniques. For Java projects, we ran Scitool Understand on the command

line to scan them. Understand generates a .CSV file with the static dependency graph of

the project. For Ruby projects, we obtained their static dependency graph using rubrowser

(https://github.com/emad-elsaid/rubrowser). We used a project’s static dependency graph

to check if there is a path between changed files and test files.

6.3 Experiment 1: Evaluating HYBRIDCISAVE

In the first experiment, we measure the cost reduction and failure observation that HYBRID-

CISAVE would provide in practice and evaluate it with all existing build selection techniques.

124 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

6.3.1 RQ1: How effective is HYBRIDCISAVE saving cost and ob-

serving failures, compared to existing build selection ap-

proaches?

Research Method

We applied HYBRIDCISAVE to predict the build and test outcomes and execute full and partial

builds in a large dataset, and we compared its performance with that of all previous build

selection techniques.

Metrics. We measured 3 metrics in this evaluation which including: Saved_Duration,

Observed_Build_Failures, and Observed_Test_Failures, as in previous work [1, 2, 51, 53].

We measure Saved_Duration as the proportion of skipped build duration among all build

time. It measures how much a technique reduced computational cost. A technique performs

better in this metric if it saves a higher ratio of build duration.

Saved_Duration = skipped duration
all build duration

Observed_Build_Failures is measured as the proportion of failing builds that are correctly

predicted (i.e., not skipped), among all failing builds. It measures the ability of a technique

to not make mistakes (i.e., not skip failing builds). A technique performs better in this

metric if it correctly predicts a higher ratio of failing builds.

Observed_Build_Failures = 1− # skipped failing builds
all failing builds

Observed_Test_Failures is measured as the proportion of failing tests that are observed

among all failing tests. It measures the ability of not making mistakes in test granularity. A

technique performs better in this metric if it detects a higher ratio of failing tests.

6.3. EXPERIMENT 1: EVALUATING HYBRIDCISAVE 125

Observed_Test_Failures = 1− # skipped failing tests
all failing tests

Studied Techniques. We replicated all existing build-selection techniques for comparison

with HYBRIDCISAVE.

HYBRIDCISAVE: Our proposed approach (see §6.1). Since HYBRIDBUILDSKIP is customizable,

we evaluate it for multiple prediction-sensitivity thresholds: 0–100. Higher prediction

sensitivities make HYBRIDBUILDSKIP more likely to predict builds to pass. This will

let us observe the multiple trade-offs that it could achieve in terms of cost saving and

failure observation.

Jin20 [51]: A 2-phase build selection approach, using a random-forest classifier with size

features.

Abdalkareem19 [2]: The first rule-based build selection approach based on CI-Skip rules

(rules that characterize builds that are likely to be skipped by developers).

Abdalkareem20 [1]: A machine-learning approach (also random-forest classifier) using

Abdalkareem19’s CI-Skip rules as features. We picked its random-forest variant since

it is reported as the best performance classifier for Abdalkareem20 [1].

To compare HYBRIDCISAVE to all variants of Jin20 (Jin20 is also customizable with thresh-

olds), we fit their curves in the Observed_Build_Failures metric, to be able to observe their

differences in terms of Saved_Duration for their variants that provide the same ratio of Ob-

served_Build_Failures. We perform this fit by plotting Jin20’s variant that has the closest

(but smaller) Observed_Build_Failures for each studied threshold value of HYBRIDCISAVE.

Training and Testing. We used the data set described in §6.2.1, which includes 82,427

builds from 100 projects. We use 10-fold cross validation to evaluate machine-learning-

based techniques: HYBRIDCISAVE and Jin20. Each fold has 10 distinct projects which are

randomly assigned. Each build in the testing fold is tested by a classifier trained on the

126 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

other 90 projects. Abdalkareem20, however, can not be trained in our dataset. Abdalka-

reem20 trains its classifier with developer-skipped commits, and our dataset has too few

of these commits. Thus, we trained Abdalkareem20 in the 10-project dataset in which it

was originally evaluated [1], and tested it in ours (see §6.2.1). Rule-based techniques (e.g.,

Abdalkareem19, Gligoric15) do not require training. So, we applied them directly to our

dataset.

As in past work [51], we simulated a realistic scenario in which the outcomes of builds that

are skipped are not available for coming predictions. That is, we only update the information

connected to the last build, e.g., SF, when it was actually executed (not when it was skipped).

When a predictor predicts the upcoming build as a pass, we skip the build and accumulate

the value of its size factors (such as number of changed source files) for the next build, as

past work did [51].

Results

Figure 6.2 shows the results of all our studied techniques in terms of Saved_Duration, Ob-

served_Build_Failures and Observed_Test_Failures. Each data point in Figure 6.2 repre-

sents the median value of one technique’s performance on one metric across all 100 projects.

In Figure 6.2, we can observe that observed failures generally drop and Saved_Duration in-

creases as the prediction threshold increases. This means that higher cost reduction results in

fewer observed failures, i.e., there is a trade-off between cost-saving and failure-observation

as also observed in previous work [51, 53]. However, HYBRIDCISAVE improves this trade-off

in two ways: (1) HYBRIDCISAVE is able to save some cost while keeping 100% of build failure

observations: up to 14% of build duration. (2) HYBRIDCISAVE is also able to still observe

a moderate amount of build failures while saving almost all passing builds: HYBRIDCISAVE

can skip 93% build duration while still observing 40% build failures.

6.4. EXPERIMENT 2: ANALYZING HYBRIDCISAVE’S COMPONENTS 127

When comparing HYBRIDCISAVE with the existing technique that observes most build failures

— Abd20, we can observe that HYBRIDCISAVE achieves higher cost-saving (16%) than Abd20

does (5.1%) while observing same amount of failing builds (96%). We then compare HYBRID-

CISAVE with Abd19. We can find that HYBRIDCISAVE is able to save higher cost (34.3%) than

Abd19 (22%) when they observe same amount of build failures (81%). If we compare HY-

BRIDCISAVE with the variant of Jin20 that was proposed as conservative (safer) (Jin20_Safe)

[51], we can observe that HYBRIDCISAVE still performs better in Saved_Duration (28% vs.

19%) with the same Observed_Build_Failures (87%).

We can also observe that HYBRIDCISAVE outperformed the variants of Jin20, in 3 ways: (1)

HYBRIDCISAVE was able to observe 100% failures and save some cost, while Jin20 observed at

most 87% of failing builds, in its most conservative configuration. (2) HYBRIDCISAVE saved

consistently higher cost than Jin20 for similar levels of observed build failures, i.e., the saved

duration curve of HYBRIDCISAVE is predominantly higher than Jin20’s. (3) HYBRIDCISAVE

observed up to 40% of build failures when saving most cost (up to 93%). The difference in

cost-saving ability between HBS and Jin20 grew even larger after threshold 0.8.

6.4 Experiment 2: Analyzing HYBRIDCISAVE’s compo-

nents

In the second experiment, we aimed to understand how the strategies of applying test se-

lection approaches to predict build outcomes and skipping full and partial builds influence

the performance of HYBRIDCISAVE. We also studied the effectiveness of each feature in

HYBRIDBUILDSKIP.

128 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

Jin20_Safe

Abdalkareem20

Abdalkareem19

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sa
ve
d_

D
ur
at
io
n

HybridBuildSkip prediction threshold

HybridCISave Jin20 Abdalkareem20 Abdalkareem19

Jin20_SafeAbdalkareem20

Abdalkareem19

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

O
bs
er
ve
d_

Bu
ild

_F
ai
lu
re
s

HybridBuildSkip prediction threshold

Jin20_SafeAbdalkareem20

Abdalkareem19

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

O
bs
er
ve
d_

Te
st
_F
ai
lu
re
s

HybridBuildSkip prediction threshold

Figure 6.2: Cost saved and value kept by HYBRIDBUILDSKIP and existing build selection
techniques

6.4. EXPERIMENT 2: ANALYZING HYBRIDCISAVE’S COMPONENTS 129

6.4.1 RQ2: What is the benefit of having a test selection compo-

nent in addition to a build selection component? & RQ3:

What is the benefit of having test selection approaches to

predict build outcomes?

Research method

To evaluate the effectiveness of skipping full and partial builds, we compared HYBRIDBUILD-

SKIP (see §6.1.1) and HYBRIDCISAVE, using the same dataset (§6.2.1) and process described

in §6.3.1. This means that we also trained it across-projects with 10-fold cross validation.

For this research question, we only compare HYBRIDCISAVE with HYBRIDBUILDSKIP, to ease

the interpretation of its added benefit. To further understand the relative importance of

combining selection approaches across granularities, we compare HYBRIDBUILDSKIP with its

base version - HYBRIDBUILDSKIP-Base that doesn’t include test selection techniques as fea-

tures. To better compare these two techniques, we adjust HYBRIDBUILDSKIP-Base to have

closest but smaller failure observations so that we can compare their saved duration as we

did for Jin20. The study follows the same set-ups (§6.2.1) and §6.3.1).

We made evaluations in two dimensions: cost-saving and failure-observation. We measured

the cost-saving ability with Saved_Duration: the proportion of skipped duration among

total duration, similarly to how we evaluated HYBRIDBUILDSKIP. Measuring cost saving

in terms of saved duration (i.e., time) allows us to account in a single metric for saving

both full and partial builds. Then, we measured the ability to observe failures using Ob-

served_Test_Failures: the proportion of executed failing tests among all failing tests. We

only used Observed_Test_Failures to be able to account in a single metric for observations

of failures, whether they were part of a full build or partially-skipped build. We plot our

130 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sa
ve
d_

D
ur
at
io
n

HybridBuildSkip prediction threshold

HybridCISave HybridBuildSkip HybridBuildSkip-Base

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

O
bs
er
ve
d_

Te
st
_F
ai
lu
re
s

HybridBuildSkip prediction threshold

Figure 6.3: Cost saved and value kept by HYBRIDCISAVE and HYBRIDBUILDSKIP

evaluation results in Figure 6.3. This figure shows the median value for each metric across

our studied projects, for multiple prediction thresholds.

Results

In Figure 6.3, we observe that HYBRIDCISAVE saved consistently higher cost than HYBRID-

BUILDSKIP, with its highest benefit occurring at threshold 0.044, in which it saved 9% higher

cost. This shows that the strategy of skipping both full and partial builds is able to increase

cost-saving for our build selection approach. We also observed that when the threshold is

bigger than 0.8, the benefit becomes negligible because HYBRIDBUILDSKIP is skipping the

majority of builds in those range of thresholds and there is little space for HYBRIDTESTSKIP

6.4. EXPERIMENT 2: ANALYZING HYBRIDCISAVE’S COMPONENTS 131

to save. We can also make an observation that when HYBRIDBUILDSKIP skips no builds

(threshold < 0.025), HYBRIDCISAVE is still able to provide some cost-saving (1.4%) by skip-

ping partial builds. This cost-saving is simply produced by its HYBRIDTESTSKIP component.

Figure 6.3 also shows that HYBRIDCISAVE and HYBRIDBUILDSKIP observed similar ratios of

test failures, i.e., by adding HYBRIDTESTSKIP in HYBRIDCISAVE, we incurred only a minimal

decrease in Observed_Test_Failures. The largest difference happened at threshold 0.057, in

which HYBRIDCISAVE observed 92.7% of failing tests while HYBRIDBUILDSKIP observed 94.5%.

The smallest difference occured at thresholds 0–0.027, where HYBRIDBUILDSKIP and HYBRID-

CISAVE detected the same ratio of failing tests: 100%. Therefore, we can conclude that our

strategy of skipping full and partial builds was able to save more cost, while observing almost

the same ratio of test failures than HYBRIDBUILDSKIP.

From the comparison of HYBRIDBUILDSKIP and HYBRIDBUILDSKIP-Base, we can observe that

by adding test selection approaches to predict build outcomes, HYBRIDBUILDSKIP is able

to save more cost when observing the same amount of failing tests. This shows that test

selection approaches can be effective for predicting build outcomes. Finally, we want to

highlight that, while no previous technique observed 100% failures in our evaluation, both

our proposed techniques achieved high ratios of failure observation, while also saving some

cost: 9% saved build duration by HYBRIDBUILDSKIP (with 100% observed failing builds),

which HYBRIDCISAVE improved to 14% saved build duration (with 99.8% observed failing

tests).

132 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

Table 6.1: Importance of HYBRIDBUILDSKIP’s features.

Feature Name Information Gain (median value)
F6: Subsequent Failures 0.1590

F4: Gligoric15 [32] 0.0060
F3: Jin20_Safe [51] 0.0040

F2: Abdalkareem20 [1] 0.0038
F1: Abdalkareem19 [2] 0.0034
F5: Machalica19 [67] 0.0028

6.4.2 RQ4: What is the relative importance of each feature in

HYBRIDBUILDSKIP?

Research Method

We applied the Information Gain Attribute Evaluation [4] on all features of HYBRIDBUILDSKIP

for all projects in our dataset. Table 6.1 shows the median value for each feature and its

corresponding Information Gain across studied projects from high to low. We applied same

methods to measure information gain of features of HYBRIDBUILDSKIP-Base and we found

that the ranking is same so we didn’t include it here.

Results

In Table 6.1, we observe that SF was the feature with highest Information Gain value (0.159).

This is because failing builds often continued to fail for a few more builds, until developers

fixed the problem. This observation confirms the findings from previous work that failing

builds are likely to appear as a sequence [51] and the status of the last build is the most

effective feature to predict build outcomes [12, 38, 73]. It also shows the benefit of HY-

BRIDBUILDSKIP to have included SF as an individual feature. However, we still want to note

that even though SF is the most effective feature, only using it is not practical because this

information may not be available when the previous builds are skipped. We also find that

6.4. EXPERIMENT 2: ANALYZING HYBRIDCISAVE’S COMPONENTS 133

all other studied features had a small impact on the build outcome prediction. Among them,

Gligoric15 had the highest Information Gain value while Machalica19 had the lowest impact.

This shows that our design of HYBRIDBUILDSKIP benefited from adapting the outcome of test

selection techniques to the build selection problem, and adding them to the combination of

its features.

6.4.3 RQ5: How much cost-saving and failure-observation can HY-

BRIDTESTSKIP achieve?

Research Method

We used the same dataset and process described in §6.3.1, with two metrics to evaluate

HYBRIDTESTSKIP (in the same two dimensions as for evaluating HYBRIDCISAVE, but adapted

to the test granularity). We measured HYBRIDTESTSKIP’s cost-saving ability using metric

Skipped_Tests: the proportion of skipped tests among all tests. We measure HYBRIDTEST-

SKIP’s ability to observe failures using Observed_Test_Failures: the proportion of executed

failing tests among all failing tests. We show the distribution of these two metrics across

our studied projects in Figure 6.4. Since HYBRIDTESTSKIP is a rule-based technique, we don’t

apply different thresholds for it.

Results

In Figure 6.4, we can observe that HYBRIDTESTSKIP is able to provide moderate cost savings:

a median Skipped_Tests ratio of 11.3%. This shows that our strategy of combining test

selection techniques in a hybrid way can also provide some cost-savings. We can also see

that HYBRIDTESTSKIP could observe a median value of 100% failing tests across our studied

134 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

HybridTestSkip Herzig15 Gligoric15 Machalica19

Sk
ip
pe

d_
Te
st
s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

HybridTestSkip Herzig15 Gligoric15 Machalica19

O
bs
er
ve
d_

Te
st
_F
ai
lu
re
s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 6.4: Cost saved and value kept by HYBRIDTESTSKIP

projects. This shows that HYBRIDTESTSKIP saved cost in a relatively safe way, i.e., skipping

some tests while capturing the majority of failing ones. Thus, our design in HYBRIDTESTSKIP

allows it to save some cost in test execution while still maximizing the ratio of test failures

that get observed. This design makes it more conservative than its feature techniques —it

saves less cost but observes more failures. Alternative designs for HYBRIDTESTSKIP (e.g., using

machine-learning predictors over the same features, or relaxing the number of techniques that

need to agree to skip a test) may achieve higher cost savings, but may also cause fewer test

failures to be observed (i.e., may skip more failing tests). We chose our current design of

HYBRIDTESTSKIP to prioritize failure observation over cost saving.

6.4. EXPERIMENT 2: ANALYZING HYBRIDCISAVE’S COMPONENTS 135

Table 6.2: Importance of HYBRIDTESTSKIP’s features

Feature Name Information Gain (median value)
Herzig15 [41] 0.02

Gligoric15 [32] 2.08
Machalica19 [51] 1.63

6.4.4 RQ6: What is the relative importance of each feature in

HYBRIDTESTSKIP?

Research Method

We applied FOIL Information Gain Attribute Evaluation on each rule of HYBRIDTESTSKIP

for all projects in our dataset. FOIL Information Gain [25] is used to evaluate rule-base

classification and it computes the difference in information content of the current rule and

its predecessor, weighted by the number of covered positive examples. Table 6.2 shows the

median value for each feature and its corresponding FOIL Information Gain across studied

projects.

Results

In Table 6.2, we observe that Gligoric15 was the feature with highest FOIL Information

Gain: 2.08. In fact, Gligoric15 was also the feature with second highest information gain

for HYBRIDBUILDSKIP (after SF). This shows that the strategy chose by Gligoric15 (skipping

tests that cannot reach the changed files) is a strong predictor of whether tests will pass

or fail. The next most important feature of HYBRIDTESTSKIP was Machalica19, with FOIL

Information Gain of 1.63. This shows that Machalica’s strategy of applying machine learning

and considering historical test information is also a valuable predictor for test outcome.

Finally, Herzig15 had a much lower information gain than than the other two features: 0.02.

136 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

This may be because it selects test to execute based on a slightly different criterion — using

a value-cost formula to decide if the expected cost of running the test exceeds the expected

cost of skipping it.

6.5 Experiment 3: Counting End-to-End time

Since executing multiple techniques and combining them could potentially incur high execu-

tion times, we study in this last experiment, whether HYBRIDCISAVE’s execution time reduces

its achieved cost savings. We measured HYBRIDCISAVE’s execution time in our Experiments

1 and 2, on a machine with a 2.5 GHz CPU, 32 GB RAM, Ubuntu 16.04.3 LTS and Python

3.5.2.

6.5.1 RQ7: What is the total execution time of HYBRIDCISAVE and

its individual components?

Research method

In this experiment, we measured the execution time of HYBRIDCISAVE and all the techniques

it uses, including Gligoric15, Jin20_Safe, Abdalkareem20, Abdalkareem19, Machalica19 and

Herzig15. We computed their run-time in seconds across studied projects. For those tech-

niques with a machine learning classifier, we only included its prediction time, i.e., we didn’t

include the training time since the training process can be performed and updated offline

(separately from the CI cycle). We also measured the build duration in our studied projects

to compare the execution time of these techniques with the time spent in builds.

6.5. EXPERIMENT 3: COUNTING END-TO-END TIME 137

Table 6.3: Time taken to execute HYBRIDCISAVE per build.

Median (s) Max (s)
HYBRIDCISAVE (total) 0.011600 0.183400

HYBRIDBUILDSKIP (total) 0.011600 0.183200
HYBRIDTESTSKIP (total) 0.007000 0.174500

HYBRIDCISAVE (self) 0.000011 0.000044
HYBRIDBUILDSKIP (self) 0.001500 0.002000
HYBRIDTESTSKIP (self) 0.000044 0.000100

Gligoric15 0.003700 0.153900
Herzig15 0.000001 0.000001

Machalica19 0.002900 0.021700
Abd19 0.000001 0.000001
Abd20 0.001600 0.031600

Jin20_Safe 0.001500 0.002200

Build duration 441.500000 2,151.000000

Result

We report in Table 6.3 the results of this experiment as the median value of min, first quartile,

median, mean, third quartile, max values of actual execution time of HYBRIDCISAVE and its

components across our studied projects. We observe that in general the total execution

time of HYBRIDCISAVE is negligible compared to the build duration — the median value of

HYBRIDCISAVE’s execution time is 0.0116 seconds and the median value of build duration

is 441.5 seconds. This shows that the execution time of HYBRIDCISAVE has a negligible

impact on its achieved cost-reduction. We can also observe that HYBRIDBUILDSKIP takes

much longer time than HYBRIDTESTSKIP (median 0.0116 seconds vs. 0.007 seconds), since it

requires more information and its prediction process is also more time-consuming. This also

makes HYBRIDBUILDSKIP take similar time to HYBRIDCISAVE.

By comparing the actual execution time of each component in HYBRIDCISAVE, we observe

that test selection approaches generally take longer time. This is because normally there are

many tests in one build, so the prediction of test outcomes has to be repeated many times for

138 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

each build. Among test selection approaches, Gligoric15 takes highest time (median 0.0037

seconds per build). Another test selection approach (Machalica19) takes higher time (median

0.0029) than any other build selection technique. However, Herzig15 and HYBRIDTESTSKIP

(self) take less time because they use heuristics, which are less time-consuming. Finally,

we found that among build selection techniques, those approaches that require machine

learning prediction (Jin20_Safe, Abdalkareem20 and HYBRIDBUILDSKIP (self)) require longer

execution time. Amond them, Abdalkareem20 takes highest time (median 0.0016 seconds

per build) because its predictor is triggered for every commit in one build which means it

needs to predict more times than other build selection approaches. Jin20_Safe takes less

time since it is designed to not have to make predictions for every build — once it observes

a failing build, it continuously executes the build until it observes a passing build. These

results show that the run times of our studied techniques is negligible compared to the build

times.

6.5.2 RQ8: How much cost does HYBRIDCISAVE save in practice if

we account for its execution time?

Research method

To understand how HYBRIDCISAVE’s cost savings change when accounting for its execution

time, we plot its results obtained in Experiment 2 for the Saved_Duration metric, before

(HYBRIDCISAVE) and after (HYBRIDCISAVE_REAL) we deduct HYBRIDCISAVE’s execution time

from it.

6.5. EXPERIMENT 3: COUNTING END-TO-END TIME 139

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sa
ve
d_

D
ur
at
io
n

HBS prediction threshold

HybridCISave HybridCISave_Final

Figure 6.5: Cost saved by HYBRIDCISAVE with or without considering its execution time.

Result

Figure 6.5 shows the median value of Saved_Duration across studied projects. We observe

that in general the achieved Saved_Duration by HYBRIDCISAVE_REAL is very close to the cost

reduction achieved by HYBRIDCISAVE, which means the execution time of HYBRIDCISAVE has

a negligible impact on its achieved cost-reduction. All of the differences are smaller than

0.02%. The biggest difference is 0.016%: at the point of threshold 0.018, the execution

time makes the saved duration of HYBRIDCISAVE drop from 1.458% to 1.442%. The smallest

difference is 0.001%: at the point of threshold 0.033, the execution time pulls the saved

duration down from 5.732% to 5.731%. Finally, for HYBRIDCISAVE’s highest cost-saving

while also achieving high ratio of observed failures (threshold 0.047), the difference between

HYBRIDCISAVE_REAL and HYBRIDCISAVE is only 0.01%. As a result, we conclude that the

execution time of HYBRIDCISAVE has a negligible impact on its ability to save cost.

140 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

6.6 Discussion

We discuss some interesting points observed in this paper to advance this area of research.

Build failures that are hard to be detected by existing techniques. We further

explored the failure reason of 11 failing builds that can only be detected by 1 feature of

HYBRIDBUILDSKIP (all of failing builds can be detected by at least one feature). We found

that 6 of 11 failing builds only include changes on project configuration files, e.g., pom.xml.

This shows that this kind of configuration files can also result in build failures and future

techniques can take advantage of that. Besides, we observed that 4 of 11 failing builds only

include Travis configuration file (travis.yaml). This indicates that the configuration file of

Travis CI can cause failing builds and developers may struggle to write the configurations

correctly [110].

Combining approaches in different ways. Prior work combined multiple approaches in

many different ways for better performance. For example, Zhang [118] combined regression

test selection strategies in both file and method levels. In this work, we take advantage of

existing techniques by treating each of them as a feature of our predictor. Instead of manually

picking the strength of each technique, we asked the machine learning algorithm to decide

how to account for each technique’s prediction in the given build. In our experiments, we

found that the predictions of all existing build selection approaches have an impact on the

eventual prediction of HYBRIDBUILDSKIP. We also found that Subsequent Failure is the most

effective feature that also confirms the findings from previous studies [38, 51, 73]. In the

future, we will explore other possible ways to combine build selection techniques.

Combining approaches using various machine learning algorithms. Other prior

work studied what machine learning classifiers provide the best accuracy for build outcome

predictions, e.g., [1]. In this work, we also studied various machine learning algorithms

6.6. DISCUSSION 141

for HYBRIDBUILDSKIP including Random Forest, AdaBoost and Multilayer Perceptron. We

evaluated HYBRIDBUILDSKIP under these three machine learning algorithms and found that

they all have similar performance in terms of cost-saving and failure-observation. We se-

lected Random Forest classifier for our approach because it was the fastest when making its

predictions. We will also explore additional algorithms in the future.

Predicting build outcomes through test selection approaches. Prior work [118]

combined approaches at file and test levels to achieve better accuracy in test selection. In

this work, we also combine approaches from different granularities, i.e., build level and test

level. We take advantage of test selection approaches to predict build outcome — if all tests

in one build are predicted to be passing and thus can be skipped, we will predict the whole

build as a passing build and not execute it. We applied two test selection approaches for

HYBRIDBUILDSKIP and both had some impact on the predictions, especially Gligoric15. In the

future, we will also explore using additional test selection techniques for HYBRIDBUILDSKIP’s

and HYBRIDCISAVE’s algorithms.

Build selection approach End-to-end execution time. Since HYBRIDBUILDSKIP and

HYBRIDCISAVE rely on predictions from many other existing approaches, an important ques-

tion is whether the total execution time of all these techniques could have a relatively big

impact on the saved duration achieved by our approaches. However, our experiment 3

showed that the execution time of HYBRIDBUILDSKIP and HYBRIDCISAVE (including all their

components) is negligible compared with their saved build duration. This motivates the

future design for more complex and time-consuming build selection approaches. It also high-

lights the importance of measuring the execution time of the technique itself in a technique

evaluation, to account for its impact on the cost savings achieved.

Aggressive cost-saving for build selection. Different developers will have different

preferences in the trade-off between observing failing builds early and saving build effort.

142 CHAPTER 6. HYBRIDBUILDSKIP: ENHANCES THE ABILITY OF COST SAVING.

For this reason, prior work [51] and the techniques proposed in this paper are designed as

customizable, to cater to different preferences. For aggresive configurations of our approach,

HYBRIDCISAVE is able to save 93% of build duration and still observe 40% of failing builds.

Some practitioners may prefer to achieve high cost savings, even if the achieved ratio of

observed failures is limited. Future approaches could aim to save cost aggressively first, and

then try to increase the ratio of observed build failures at the same time.

Different dimensions to evaluate build selection approaches. Previous (and this)

work [1, 51, 53] evaluate build selection approaches in two dimensions: cost-saving and

failure-observation. However, since there is a trade-off between these two dimensions, tech-

niques may work well in one dimension, but not the other one. Therefore, there should be an

easier way to compare build selection approaches. One way to solve this in future work is to

design new metrics. Previous work [51] proposes a balanced metric as the harmonic mean of

cost-saving and failure-observation, but there may be better ways to measure this balance.

We took a different approach to simplify the comparison between customizable techniques

in Experiment 1, in which we first chose the variants that achieved similar ratios of observed

failures to then compare their cost-saving ability. This allowed us to use a single metric

for comparison. However, not all techniques are customizable, which motivates future work

to propose better metrics to compare the trade-off of cost savings and observed failures of

different approaches.

Chapter 7

Future Work

As discussed in the chapters above, the research of this dissertation managed to save the cost

produced in the continuous integration process with the minimal side effect of delaying failure

observations. Through applying our approaches, developers could save the waiting time of

the outcome of the continuous integration and the company can save the computational

resources for more important and likely-to-fail executions. Nevertheless, there are still many

problems remaining unaddressed in the process of continuous integration. For example, some

developers may want to keep some passing builds to be executed such as the first passing

builds happening right after a sequence of failing builds, while others may want to skip

some failing builds because these builds don’t contain meaningful changes to fix the defect.

Besides, the usage of build selection approaches can raise new problems happening in the

developers’ programming, e.g., developers may find it harder to locate a bug when some prior

builds are skipped, which enlarge the code change sets. Future build selection approaches

may also try other algorithms [40, 78] in predicting build outcomes. The followings are some

directions that we plan to work on in the future:

Flexible build skip. The research work in this dissertation assumes that failing execu-

tions are able to provide actionable feedback and thus can be more valuable than passing

executions which are supposed to be skipped for the aim of cost saving. This assumption is

confirmed by many other existing work [32]. However, sometimes developers may want to

skip some failing builds as well as execute some passing builds as we discussed above. Thus,

143

144 CHAPTER 7. FUTURE WORK

in the future we plan to propose a flexible build selection approaches that can decide to skip

builds based on some of developers’ preferences. This technique should also aim to provide

options of being triggered autonomously to skip builds or informing developers its prediction

results to let developers make their own decisions.

Build selection with trust. One problem can be raised when build selection approaches

are applied is that developers may find it hard to trust the prediction outcome of the build

selection approach. This is because developers may find the approaches lacking the detailed

information and they are fear that failing executions are skipped and can influence the future

coding work. To address this problem, we plan to propose a build selection technique that

can provide the information of prediction details. It should include information such as the

prediction confidence, historical failure ratio and the suspect code churn.

Fault localization under CI context. Another problem that can occur during the ap-

plication of build selection approaches is that developers may find it hard to locate the

bug because the prior builds are skipped, making the change set much bigger. Existing

work of fault localization and debugging techniques [3, 15, 92, 94, 120, 121] can detect bugs

effectively but they are not proved to work under the continuous integration environment.

Therefore, as a future work, we plan to develop a fault localization approach that can be used

in continuous integration context to complement the build selection approaches. We also

plan to compare the performance of this technique with other traditional fault localization

techniques and debugging tools [99] that are not designed under the CI context.

Chapter 8

Summary and Conclusions

Continuous Integration is a popular software engineering process with many benefits such as

detecting bugs earlier. The main cost lying in Continuous Integration is the abundant com-

putation cost. To address this problem, we proposed to skip passing executions while keeping

failure executions in Continuous Integration because only failing executions can provide ac-

tionable feedback which is more valuable. To achieve this goal, we designed multiple build

selection approaches as the technique that can automatically decide which builds should be

executed. First of all, we designed the first build selection technique — SMARTBUILDSKIP

that can save the cost of CI in a balancable way by skipping predicted-to-pass builds. We

then compare our technique with existing techniques that could be applied to improve CI

and evaluated the strength and the weakness of different strategies as well as giving recom-

mendations. Next, we proposed a build selection — PRECISEBUILDSKIP that minimizes the

side-effect of build selection techniques (delayed failure observation) into a median value of

0% while saving some cost. Finally, we developed explore a hybrid selection technique —

HYBRIDBUILDSKIP based on existing build selection techniques. HYBRIDBUILDSKIP is designed

to skip both full and partial builds while minimizing the delayed observations of failing exe-

cutions at the same time. Some other work [49, 50] are also completed during this journey,

but are out of scope of this dissertation.

145

Bibliography

[1] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. 2020. A Machine Learn-

ing Approach to Improve the Detection of CI Skip Commits. IEEE Transactions on

Software Engineering (2020).

[2] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling. 2019. Which Commits Can

Be CI Skipped? IEEE Transactions on Software Engineering (2019), 1–1. https:

//doi.org/10.1109/TSE.2019.2897300

[3] Kijin An and Eli Tilevich. 2019. Catch & release: An approach to debugging dis-

tributed full-stack JavaScript applications. In International Conference on Web Engi-

neering. Springer, 459–473.

[4] B Azhagusundari, Antony Selvadoss Thanamani, et al. 2013. Feature selection based

on information gain. International Journal of Innovative Technology and Exploring

Engineering (IJITEE) 2, 2 (2013), 18–21.

[5] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,

and Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In 2018

IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,

433–444.

[6] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke

the build: An explorative analysis of Travis CI with GitHub. In Mining Software

Repositories (MSR), 2017 IEEE/ACM 14th International Conference on. IEEE, 356–

367.

146

https://doi.org/10.1109/TSE.2019.2897300
https://doi.org/10.1109/TSE.2019.2897300

BIBLIOGRAPHY 147

[7] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Travistorrent: Synthesiz-

ing travis ci and github for full-stack research on continuous integration. In Mining

Software Repositories (MSR), 2017 IEEE/ACM 14th International Conference on.

IEEE, 447–450.

[8] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-

sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration. In

Proceedings of the 14th working conference on mining software repositories.

[9] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. 2008.

Duplicate bug reports considered harmful… really?. In 2008 IEEE International Con-

ference on Software Maintenance. IEEE, 337–345.

[10] Marcelo Cataldo and James D Herbsleb. 2011. Factors leading to integration failures

in global feature-oriented development: an empirical analysis. In Proceedings of the

33rd International Conference on Software Engineering. ACM, 161–170.

[11] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build

system with lazy retrieval for Java projects. In Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering. ACM,

643–654.

[12] Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng. 2020. BUILDFAST: History-

Aware Build Outcome Prediction for Fast Feedback and Reduced Cost in Continuous

Integration. In 2020 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 42–53.

[13] Cloudbee. 2019. Jenkins Enterprise by CloudBees 14.5 User Guide - Skip Next Build

Plugin. https://docs.huihoo.com/jenkins/enterprise/14/user-guide-14.5/

skip.html. [Online; accessed 27-April-2019].

https://docs.huihoo.com/jenkins/enterprise/14/user-guide-14.5/skip.html
https://docs.huihoo.com/jenkins/enterprise/14/user-guide-14.5/skip.html

148 BIBLIOGRAPHY

[14] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding in

GitHub: transparency and collaboration in an open software repository. In Proceedings

of the ACM 2012 conference on computer supported cooperative work. 1277–1286.

[15] Tung Dao, Lingming Zhang, and Na Meng. 2017. How does execution information

help with information-retrieval based bug localization?. In 2017 IEEE/ACM 25th In-

ternational Conference on Program Comprehension (ICPC). IEEE, 241–250.

[16] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:

improving software quality and reducing risk. Pearson Education.

[17] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. 2016. De-

vOps. Ieee Software 33, 3 (2016), 94–100.

[18] Sebastian Elbaum, Alexey G Malishevsky, and Gregg Rothermel. 2002. Test case

prioritization: A family of empirical studies. IEEE transactions on software engineering

28, 2 (2002), 159–182.

[19] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for improving

regression testing in continuous integration development environments. In Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering. ACM, 235–245.

[20] Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021. Em-

pirically evaluating readily available information for regression test optimization in

continuous integration. In Proceedings of the 30th ACM SIGSOFT International Sym-

posium on Software Testing and Analysis. 491–504.

[21] Emad Elsaid. 2019. Rubrowser (Ruby Browser). https://github.com/emad-elsaid/

rubrowser. [Online; accessed 21-January-2022].

https://github.com/emad-elsaid/rubrowser
https://github.com/emad-elsaid/rubrowser

BIBLIOGRAPHY 149

[22] Wagner Felidré, Leonardo Furtado, Daniel Alencar Da Costa, Bruno Cartaxo, and

Gustavo Pinto. 2019. Continuous Integration Theater. In Proceedings of the 13th

ACM/IEEE International Symposium on Empirical Software Engineering and Mea-

surement. 10.

[23] Jacqui Finlay, Russel Pears, and Andy M Connor. 2014. Data stream mining for pre-

dicting software build outcomes using source code metrics. Information and Software

Technology 56, 2 (2014), 183–198.

[24] Martin Fowler and Matthew Foemmel. 2006. Continuous integration. Thought-Works)

http://www. thoughtworks. com/Continuous Integration. pdf 122 (2006), 14.

[25] Johannes Fürnkranz and Peter A Flach. 2003. An analysis of rule evaluation metrics.

In Proceedings of the 20th international conference on machine learning (ICML-03).

202–209.

[26] Keheliya Gallaba, Yves Junqueira, John Ewart, and Shane Mcintosh. 2020. Acceler-

ating Continuous Integration by Caching Environments and Inferring Dependencies.

IEEE Transactions on Software Engineering (2020).

[27] Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. 2018. Noise

and heterogeneity in historical build data: an empirical study of Travis CI. In Pro-

ceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering. ACM, 87–97.

[28] Alessio Gambi, Zabolotnyi Rostyslav, and Schahram Dustdar. 2015. Improving cloud-

based continuous integration environments. In Proceedings of the 37th International

Conference on Software Engineering-Volume 2. IEEE Press, 797–798.

[29] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. 2017. An empirical study

150 BIBLIOGRAPHY

of activity, popularity, size, testing, and stability in continuous integration. In 2017

IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).

IEEE, 495–498.

[30] Taher Ahmed Ghaleb, Daniel Alencar da Costa, and Ying Zou. 2019. An empiri-

cal study of the long duration of continuous integration builds. Empirical Software

Engineering (2019), 1–38.

[31] Taher Ahmed Ghaleb, Daniel Alencar da Costa, Ying Zou, and Ahmed E Hassan.

2019. Studying the impact of noises in build breakage data. IEEE Transactions on

Software Engineering (2019).

[32] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression test

selection with dynamic file dependencies. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis. ACM, 211–222.

[33] Milos Gligoric, Rupak Majumdar, Rohan Sharma, Lamyaa Eloussi, and Darko Mari-

nov. 2014. Regression test selection for distributed software histories. In International

Conference on Computer Aided Verification. Springer, 293–309.

[34] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. 2021. On the rise and fall of CI

services in GitHub. https://doi.org/10.5281/zenodo.5815352

[35] Mary Jean Harrold, James A Jones, Tongyu Li, Donglin Liang, Alessandro Orso,

Maikel Pennings, Saurabh Sinha, S Alexander Spoon, and Ashish Gujarathi. 2001.

Regression test selection for Java software. ACM Sigplan Notices 36, 11 (2001), 312–

326.

[36] Ahmed E Hassan and Ken Zhang. 2006. Using decision trees to predict the certification

https://doi.org/10.5281/zenodo.5815352

BIBLIOGRAPHY 151

result of a build. In Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM

International Conference on. IEEE, 189–198.

[37] Foyzul Hassan, Shaikh Mostafa, Edmund SL Lam, and Xiaoyin Wang. 2017. Automatic

building of java projects in software repositories: A study on feasibility and challenges.

In 2017 ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM). IEEE, 38–47.

[38] Foyzul Hassan and Xiaoyin Wang. 2017. Change-aware build prediction model for stall

avoidance in continuous integration. In Proceedings of the 11th ACM/IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement. IEEE Press,

157–162.

[39] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: An automatic approach to history-

driven repair of build scripts. In 2018 IEEE/ACM 40th International Conference on

Software Engineering (ICSE). IEEE, 1078–1089.

[40] Keith Henderson, Tina Eliassi-Rad, Christos Faloutsos, Leman Akoglu, Lei Li, Koji

Maruhashi, B Aditya Prakash, and Hanghang Tong. 2010. Metric forensics: a multi-

level approach for mining volatile graphs. In Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data mining. 163–172.

[41] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The

art of testing less without sacrificing quality. In Proceedings of the 37th International

Conference on Software Engineering-Volume 1. IEEE Press, 483–493.

[42] Kim Herzig and Nachiappan Nagappan. 2015. Empirically detecting false test alarms

using association rules. In 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, Vol. 2. IEEE, 39–48.

152 BIBLIOGRAPHY

[43] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig.

2017. Trade-offs in continuous integration: assurance, security, and flexibility. In Pro-

ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM,

197–207.

[44] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. 2016.

Usage, costs, and benefits of continuous integration in open-source projects. In Pro-

ceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering. ACM, 426–437.

[45] Md Rakibul Islam and Minhaz F Zibran. 2017. Insights into continuous integration

build failures. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th Inter-

national Conference on. IEEE, 467–470.

[46] Romit Jain, Saket Kumar Singh, and Bharavi Mishra. 2019. A Brief Study on Build

Failures in Continuous Integration: Causation and Effect. In Progress in Advanced

Computing and Intelligent Engineering. Springer, 17–27.

[47] Jenkins. 2019. CI Skip Plugin. https://plugins.jenkins.io/ci-skip. [Online;

accessed 27-April-2019].

[48] Xianhao Jin. 2021. Reducing cost in continuous integration with a collection of build

selection approaches. In Proceedings of the 29th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software En-

gineering. 1650–1654.

[49] Xianhao Jin and Francisco Servant. 2018. The hidden cost of code completion: Under-

standing the impact of the recommendation-list length on its efficiency. In Proceedings

of the 15th International Conference on Mining Software Repositories. 70–73.

https://plugins.jenkins.io/ci-skip

BIBLIOGRAPHY 153

[50] Xianhao Jin and Francisco Servant. 2019. What edits are done on the highly answered

questions in stack overflow? an empirical study. In 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR). IEEE, 225–229.

[51] Xianhao Jin and Francisco Servant. 2020. A Cost-efficient Approach to Building in

Continuous Integration. In Proceedings of the 42th International Conference on Soft-

ware Engineering. To appear.

[52] Xianhao Jin and Francisco Servant. 2021. CIBench: A Dataset and Collection of Tech-

niques for Build and Test Selection and Prioritization in Continuous Integration. In

2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion). IEEE, 166–167.

[53] Xianhao Jin and Francisco Servant. 2021. What helped, and what did not? An

Evaluation of the Strategies to Improve Continuous Integration. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE). IEEE, 213–225.

[54] Xianhao Jin and Francisco Servant. 2022. Which builds are really safe to skip? Max-

imizing failure observation for build selection in continuous integration. Journal of

Systems and Software (2022), 111292.

[55] John O’Duinn . 2013. The financial cost of a checkin. https://oduinn.com/2013/

12/13/the-financial-cost-of-a-checkin-part-2/ [Online; accessed 25-January-

2019].

[56] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why do automated

builds break? an empirical study. In Software Maintenance and Evolution (ICSME),

2014 IEEE International Conference on. IEEE, 41–50.

[57] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima. 1995.

https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/

154 BIBLIOGRAPHY

Class firewall, test order, and regression testing of object-oriented programs. JOOP 8,

2 (1995), 51–65.

[58] Irwin Kwan, Adrian Schroter, and Daniela Damian. 2011. Does socio-technical con-

gruence have an effect on software build success? a study of coordination in a software

project. IEEE Transactions on Software Engineering 37, 3 (2011), 307–324.

[59] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and Darko

Marinov. 2016. An extensive study of static regression test selection in modern software

evolution. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, 583–594.

[60] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John Micco.

2019. Assessing transition-based test selection algorithms at Google. In 2019

IEEE/ACM 41st International Conference on Software Engineering: Software En-

gineering in Practice (ICSE-SEIP). IEEE, 101–110.

[61] Marko Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen,

Mika V Mäntylä, and Tomi Männistö. 2015. The highways and country roads to

continuous deployment. Ieee software 32, 2 (2015), 64–72.

[62] Jingjing Liang. 2018. COST-EFFECTIVE TECHNIQUES FOR CONTINUOUS IN-

TEGRATION TESTING. (2018).

[63] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining prioriti-

zation: continuous prioritization for continuous integration. In 2018 IEEE/ACM 40th

International Conference on Software Engineering (ICSE). IEEE, 688–698.

[64] Jackson A Prado Lima and Silvia R Vergilio. 2020. Test Case Prioritization in Continu-

BIBLIOGRAPHY 155

ous Integration environments: A systematic mapping study. Information and Software

Technology 121 (2020), 106268.

[65] Yiling Lou, Junjie Chen, Lingming Zhang, and Dan Hao. 2019. A survey on regression

test-case prioritization. In Advances in Computers. Vol. 113. Elsevier, 1–46.

[66] Qi Luo, Kevin Moran, Denys Poshyvanyk, and Massimiliano Di Penta. 2018. Assess-

ing test case prioritization on real faults and mutants. In 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE, 240–251.

[67] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019. Pre-

dictive test selection. In Proceedings of the 41st International Conference on Software

Engineering: Software Engineering in Practice. IEEE Press, 91–100.

[68] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test case prioritization for

continuous regression testing: An industrial case study. In 2013 IEEE International

Conference on Software Maintenance. IEEE, 540–543.

[69] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski,

and John Micco. 2017. Taming google-scale continuous testing. In Proceedings of

the 39th International Conference on Software Engineering: Software Engineering in

Practice Track. IEEE Press, 233–242.

[70] Ade Miller. 2008. A hundred days of continuous integration. In Agile 2008 Conference.

IEEE, 289–293.

[71] Shaikh Mostafa, Xiaoyin Wang, and Tao Xie. 2017. Perfranker: Prioritization of

performance regression tests for collection-intensive software. In Proceedings of the

26th ACM SIGSOFT International Symposium on Software Testing and Analysis.

ACM, 23–34.

156 BIBLIOGRAPHY

[72] Armin Najafi, Weiyi Shang, and Peter C Rigby. 2019. Improving test effectiveness

using test executions history: An industrial experience report. In 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP). IEEE, 213–222.

[73] Ansong Ni and Ming Li. 2017. Cost-effective build outcome prediction using cascaded

classifiers. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th Interna-

tional Conference on. IEEE, 455–458.

[74] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression testing

to large software systems. ACM SIGSOFT Software Engineering Notes 29, 6 (2004),

241–251.

[75] Klérisson VR Paixão, Crícia Z Felício, Fernanda M Delfim, and Marcelo de A Maia.

2017. On the interplay between non-functional requirements and builds on continuous

integration. In Proceedings of the 14th International Conference on Mining Software

Repositories. IEEE Press, 479–482.

[76] Cong Pan and Michael Pradel. 2021. Continuous test suite failure prediction. In Pro-

ceedings of the 30th ACM SIGSOFT International Symposium on Software Testing

and Analysis. 553–565.

[77] Gustavo Pinto, Marcel Rebouças, and Fernando Castor. 2017. Inadequate testing, time

pressure, and (over) confidence: a tale of continuous integration users. In Proceedings

of the 10th International Workshop on Cooperative and Human Aspects of Software

Engineering. IEEE Press, 74–77.

[78] B Aditya Prakash, Jilles Vreeken, and Christos Faloutsos. 2014. Efficiently spotting

the starting points of an epidemic in a large graph. Knowledge and information systems

38, 1 (2014), 35–59.

BIBLIOGRAPHY 157

[79] Noam Rabbani, Michael S Harvey, Sadnan Saquif, Keheliya Gallaba, and Shane McIn-

tosh. 2018. Revisiting” Programmers’ Build Errors” in the Visual Studio Context.

In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories

(MSR). IEEE, 98–101.

[80] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017. An

empirical analysis of build failures in the continuous integration workflows of Java-

based open-source software. In Proceedings of the 14th International Conference on

Mining Software Repositories. IEEE Press, 345–355.

[81] Marcel Rebouças, Renato O Santos, Gustavo Pinto, and Fernando Castor. 2017. How

does contributors’ involvement influence the build status of an open-source software

project?. In Proceedings of the 14th International Conference on Mining Software

Repositories. IEEE Press, 475–478.

[82] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, and Ophelia Chesley. 2004.

Chianti: a tool for change impact analysis of java programs. In Proceedings of the

19th annual ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications. 432–448.

[83] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selection

techniques. IEEE Transactions on software engineering 22, 8 (1996), 529–551.

[84] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test

selection technique. ACM Transactions on Software Engineering and Methodology

(TOSEM) 6, 2 (1997), 173–210.

[85] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 2001.

Prioritizing test cases for regression testing. IEEE Transactions on software engineering

27, 10 (2001), 929–948.

158 BIBLIOGRAPHY

[86] Islem Saidani, Ali Ouni, and Wiem Mkaouer. 2021. Detecting skipped commits in

continuous integration using multi-objective evolutionary search. IEEE Transactions

on Software Engineering (2021).

[87] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock. 2002.

Methods and metrics for cold-start recommendations. In Proceedings of the 25th annual

international ACM SIGIR conference on Research and development in information

retrieval. 253–260.

[88] SciTools Understand. 2020. Understand Static Code Analysis Tool. https://

scitools.com/. [Online; accessed 02-March-2020].

[89] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert

Bowdidge. 2014. Programmers’ build errors: a case study (at google). In Proceedings

of the 36th International Conference on Software Engineering. ACM, 724–734.

[90] Francisco Servant. 2013. Supporting bug investigation using history analysis. In 2013

28th IEEE/ACM International Conference on Automated Software Engineering (ASE).

IEEE, 754–757.

[91] Francisco Servant and James A Jones. 2011. History slicing. In 2011 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2011). IEEE, 452–

455.

[92] Francisco Servant and James A Jones. 2012. History slicing: assisting code-evolution

tasks. In Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering. 1–11.

[93] Francisco Servant and James A Jones. 2012. WhoseFault: Automatic Developer-to-

https://scitools.com/
https://scitools.com/

BIBLIOGRAPHY 159

Fault Assignment through Fault Localization. In International Conference on Software

Engineering. 36–46.

[94] Francisco Servant and James A Jones. 2012. WhoseFault: automatic developer-to-

fault assignment through fault localization. In 2012 34th International conference on

software engineering (ICSE). IEEE, 36–46.

[95] Francisco Servant and James A Jones. 2013. Chronos: Visualizing slices of source-code

history. In 2013 First IEEE Working Conference on Software Visualization (VIS-

SOFT). IEEE, 1–4.

[96] Francisco Servant and James A Jones. 2017. Fuzzy fine-grained code-history analysis.

In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).

IEEE, 746–757.

[97] August Shi, Suresh Thummalapenta, Shuvendu K Lahiri, Nikolaj Bjorner, and Jacek

Czerwonka. 2017. Optimizing test placement for module-level regression testing. In

Proceedings of the 39th International Conference on Software Engineering. IEEE Press,

689–699.

[98] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and improving

regression test selection in continuous integration. In 2019 IEEE 30th International

Symposium on Software Reliability Engineering (ISSRE). IEEE, 228–238.

[99] Myoungkyu Song and Eli Tilevich. 2009. The anti-goldilocks debugger: helping the av-

erage bear debug transparently transformed programs. In Proceedings of the 24th ACM

SIGPLAN conference companion on Object oriented programming systems languages

and applications. 811–812.

160 BIBLIOGRAPHY

[100] Stack Overflow contributors. 2019. Skip travis build if an unimpor-

tant file changed. https://stackoverflow.com/questions/48455623/

skip-travis-build-if-an-unimportant-file-changed [Online; accessed 21-

February-2019].

[101] Daniel Ståhl and Jan Bosch. 2013. Experienced benefits of continuous integration in

industry software product development: A case study. In The 12th iasted international

conference on software engineering,(innsbruck, austria, 2013). 736–743.

[102] Stephen W Thomas, Hadi Hemmati, Ahmed E Hassan, and Dorothea Blostein. 2014.

Static test case prioritization using topic models. Empirical Software Engineering 19,

1 (2014), 182–212.

[103] Travis. 2019. Skipping a build. https://docs.travis-ci.com/user/

customizing-the-build/#skipping-a-build. [Online; accessed 27-April-2019].

[104] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco

Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again: Can

you compile that snapshot? Journal of Software: Evolution and Process 29, 4 (2017),

e1838.

[105] Michele Tufano, Hitesh Sajnani, and Kim Herzig. 2019. Towards Predicting the Impact

of Software Changes on Building Activities. In 2019 IEEE/ACM 41st International

Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)

(Montral, Canada) (ICSE ’19). 4 pages.

[106] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017. File-level

vs. module-level regression test selection for. net. In Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering. 848–853.

https://stackoverflow.com/questions/48455623/skip-travis-build-if-an-unimportant-file-changed
https://stackoverflow.com/questions/48455623/skip-travis-build-if-an-unimportant-file-changed
https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build
https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build

BIBLIOGRAPHY 161

[107] Bogdan Vasilescu, Stef Van Schuylenburg, Jules Wulms, Alexander Serebrenik, and

Mark GJ van den Brand. 2014. Continuous integration in a social-coding world: Em-

pirical evidence from GitHub. In 2014 IEEE International Conference on Software

Maintenance and Evolution. IEEE, 401–405.

[108] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov.

2015. Quality and productivity outcomes relating to continuous integration in GitHub.

In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.

ACM, 805–816.

[109] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp

Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017. A

tale of CI build failures: An open source and a financial organization perspective. In

2017 IEEE international conference on software maintenance and evolution (ICSME).

IEEE, 183–193.

[110] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. 2019. A

conceptual replication of continuous integration pain points in the context of Travis CI.

In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. ACM, 647–

658.

[111] Wikipedia contributors. 2019. Cold start (computing) — Wikipedia, The Free Encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)

&oldid=883021431 [Online; accessed 21-February-2019].

[112] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. 2009. Predicting

build failures using social network analysis on developer communication. In Proceedings

https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)&oldid=883021431
https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)&oldid=883021431

162 BIBLIOGRAPHY

of the 31st International Conference on Software Engineering. IEEE Computer Society,

1–11.

[113] Zheng Xie and Ming Li. 2018. Cutting the Software Building Efforts in Continuous

Integration by Semi-Supervised Online AUC Optimization.. In IJCAI. 2875–2881.

[114] Shin Yoo and Mark Harman. 2007. Pareto efficient multi-objective test case selection.

In Proceedings of the 2007 international symposium on Software testing and analysis.

ACM, 140–150.

[115] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection and

prioritization: a survey. Software Testing, Verification and Reliability 22, 2 (2012),

67–120.

[116] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Massi-

miliano Di Penta. 2017. How open source projects use static code analysis tools in

continuous integration pipelines. In 2017 IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR). IEEE, 334–344.

[117] Chen Zhang, Bihuan Chen, Linlin Chen, Xin Peng, and Wenyun Zhao. 2019. A Large-

Scale Empirical Study of Compiler Errors in Continuous Integration. (2019).

[118] Lingming Zhang. 2018. Hybrid regression test selection. In 2018 IEEE/ACM 40th

International Conference on Software Engineering (ICSE). IEEE, 199–209.

[119] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan

Vasilescu. 2017. The impact of continuous integration on other software development

practices: a large-scale empirical study. In Proceedings of the 32nd IEEE/ACM Inter-

national Conference on Automated Software Engineering. IEEE Press, 60–71.

BIBLIOGRAPHY 163

[120] Hao Zhong and Na Meng. 2017. An empirical study on using hints from past fixes. In

2017 IEEE/ACM 39th International Conference on Software Engineering Companion

(ICSE-C). IEEE, 144–145.

[121] Hao Zhong and Na Meng. 2018. Towards reusing hints from past fixes. Empirical

Software Engineering 23, 5 (2018), 2521–2549.

[122] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A frame-

work for checking regression test selection tools. In Proceedings of the 41st International

Conference on Software Engineering. IEEE Press, 430–441.

[123] Mahdis Zolfagharinia, Bram Adams, and Yann-Gaël Guéhénuc. 2017. Do Not Trust

Build Results at Face Value-An Empirical Study of 30 Million CPAN Builds. In 2017

IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).

IEEE, 312–322.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Thesis
	Research Contributions and Applications
	Structure

	Background and Related Work
	Definitions and Technical Background
	Continuous Integration
	Regression Test Selection (RTS)
	Test Case Prioritization (TCP)
	Build Prioritization and Selection

	Related Work
	Empirical Studies of CI and its Cost
	Approaches to Reduce the Cost of CI
	Characterizing Failing Builds
	Predicting Failing Builds
	Evaluation frameworks for similar techniques

	SmartBuildSkip: balance cost saving and failure observation delay
	Motivating Hypotheses
	Our approach: SmartBuildSkip
	Evaluating our Motivating Hypotheses
	Characterizing First Failures
	Research Method
	Result

	Evaluating Build-Failure Prediction
	Research Method
	Result

	Evaluating CI Cost Reduction
	Research Method
	Result

	Discussion
	Conclusions

	Evaluating CI-improving techniques
	Approaches to Improve Continuous Integration
	Computational-cost Reduction
	Time-to-feedback Reduction

	Research Method
	Data Set
	Evaluation Process
	Replicated Techniques

	Empirical Study 1: Cost Saving
	Studied Techniques
	D1: Computational-cost Reduction
	D2: Missed Failure Observation

	Empirical Study 2. D3: Time-to-feedback Reduction
	Studied Techniques
	Studied Metrics
	Analysis of Results

	Answers for Research Questions and Implications
	D1: Computational-cost Reduction
	D2: Missed Failure Observation
	D3: Time-to-feedback Reduction
	Standing on the Shoulders of Giants
	Enhancing Generalizability

	Conclusions

	PreciseBuildSkip: reduce delay of failure observation
	Research Questions
	Data Set

	Empirical Study 1: Evaluating CI-Skip rules
	Studied Factors: CI-Skip rules
	RQ1: How much cost can each CI-Skip rule save?
	RQ2: How safe is each CI-Skip rule?

	Empirical Study 2: Supplementing CI-Skip rules
	Studied Factors: CI-Run rules
	RQ3: What proportion of failing builds under CI-Skip rules are covered by our CI-Run rules?
	RQ4: How helpful are CI-Run rules at discriminating between failing and passing builds under CI-Skip rules?

	Our Approach: PreciseBuildSkip
	Experiment 1: Evaluating PreciseBuildSkip
	Research Method
	Results for RQ5: How correct are PreciseBuildSkip's predictions?
	Results for RQ6: How much cost-saving and safety do PreciseBuildSkip's predictions provide?
	Results for RQ7: How much overhead does PreciseBuildSkip add to build duration?

	Experiment 2: Evaluating the impact of CI-Run rules in PreciseBuildSkip
	Research Method
	Results for RQ8: What is the impact of including CI-Run rules as features in PreciseBuildSkip?

	Experiment 3: Evaluating PreciseBuildSkip when trained on Builds affected by Build-selection
	Research Method
	Results for RQ9: How much cost-saving and safety does PreciseBuildSkip provide when trained on projects that use build selection?

	Implications
	For practitioners.
	For researchers.

	Conclusions

	HybridBuildSkip: enhances the ability of cost saving.
	Our Approach: HybridCISave
	HybridBuildSkip
	HybridTestSkip
	Novelty

	Research Questions
	Data Set

	Experiment 1: Evaluating HybridCISave
	RQ1: How effective is HybridCISave saving cost and observing failures, compared to existing build selection approaches?

	Experiment 2: Analyzing HybridCISave's components
	RQ2: What is the benefit of having a test selection component in addition to a build selection component? & RQ3: What is the benefit of having test selection approaches to predict build outcomes?
	RQ4: What is the relative importance of each feature in HybridBuildSkip?
	RQ5: How much cost-saving and failure-observation can HybridTestSkip achieve?
	RQ6: What is the relative importance of each feature in HybridTestSkip?

	Experiment 3: Counting End-to-End time
	RQ7: What is the total execution time of HybridCISave and its individual components?
	RQ8: How much cost does HybridCISave save in practice if we account for its execution time?

	Discussion

	Future Work
	Summary and Conclusions
	Bibliography

