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New Computational Methodologies for Microstructure Quantifica-
tion

Richard K. Catania

(ABSTRACT)

This work explores physics-based and data-driven methods for material property prediction

for metallic microstructures while indicating the context and benefit for microstructure-

sensitive design. From this, the use of shape moment invariants is offered as solution to

quantifying microstructure topology numerically using images. This offers a substantial

benefit for computational time since image data is converted to numeric values. The goal of

quantifying the image data is to help index grains based on their crystallographic orientation.

Additionally, individual grains are isolated in order to investigate the effect of their shapes.

After the microstructures are quantified, two methods for identifying the grain boundaries

are proposed to make a more comprehensive approach to material property prediction. The

grain boundaries as well as the grains of the quantified image are used to train artificial

neural networks capable of predicting the material properties of the material. This prediction

technique can be used as a tool for a microstructure-sensitive approach to design subtractively

manufactured and Laser Engineered Net Shaping (LENS)-produced metallic materials.



New Computational Methodologies for Microstructure Quantifica-
tion

Richard K. Catania

(GENERAL AUDIENCE ABSTRACT)

Material properties are dependent on the underlying microstructural features. This work pro-

poses numerical methods to quantify topology and grain boundaries of metallic microstruc-

tures by developing physics-based and data-driven techniques for subtractively manufactured

and Laser Engineered Net Shaping (LENS)-produced materials.
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Chapter 1

Introduction and Review of Literature

1.1 Material Manufacturing in the Aerospace Sector

Reliable analysis of material manufacturing is critical to pushing the boundary of the state-

of-the-art innovations in the aerospace sector. There are a variety of technical and economic

considerations when it comes to advancements in manufacturing of aerospace materials, in-

cluding functional performance, lead time reduction, lightweighting, complexity, cost man-

agement, and sustainment [1]. These objectives are not only similar, but they also have

interdependent relationships, especially between design and economic goals. Advancements

on technical aspects often have a significant impact on the economic aspects. Given the

high risk and technical requirements of aerospace applications, the materials used must be

complex, reliable, and high performing. The manufacturing of these materials is a high cost

process due to the cost of both the materials needed as well as the tools used for manufactur-

ing. Conventional subtractive manufacturing techniques are the standard currently used for

most aerospace fabrication. Subtractive manufacturing offers advantages for low complexity

and high volume production parts, but as the complexity of manufacturing increases, these

techniques become less optimal economically [1]. The repeatability with minimal variation

as a result of the manufacturing process is a primary advantage of subtractive manufacturing

techniques. The cost of manufacturing can be reduced by increasing the lightweighting of

parts, but this leads to an increase in design complexity. When it comes to manufactur-
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2 CHAPTER 1. INTRODUCTION AND REVIEW OF LITERATURE

ing of highly complex materials, additive manufacturing is becoming an increasingly viable

option because parts are made layer by layer. The additive manufacturing techniques can

also reduce the time needed for production of these more complex components [1]. It offers

design teams the ability to optimally distribute the material mass, thus reducing the overall

weight of the component. Additionally, additive manufacturing methods reduce the amount

of material needed to produce a certain part since it is not subtracted from a larger material.

Subtractive manufacturing estimates a ratio of 20:1 for mass of material needed to mass of

part produced [2]. This ratio indicates a lack of efficiency for subtractive manufacturing

in more complex designs, resulting in an economic disadvantage. For comparison the ra-

tio of material needed for part production using additive manufacturing is between 1:1 and

3:1 [3, 4]. This difference presents a notable economic advantage for additive manufactur-

ing techniques due to the efficient use of materials. Another contributor to the economic

advantage of additive manufacturing methods is the reduced need for highly specific tools

and fixtures [5]. These tools and fixtures add to the cost of time needed for part produc-

tion. While additive manufacturing has significant economic and temporal benefit, it has

traditionally been used primarily for prototyping rather than production of critical parts

[6]. This is likely due to the strict quality standards required for approval in the aerospace

sector [7, 8]. additive manufacturing is a relatively new manufacturing process compared

to subtractive manufacturing and, as a result, produces a wider range of potential material

properties requiring more research to improve reliability and repeatablility of production

[9, 10]. To gain a deeper understanding of the effect of processing parameters for additive

manufacturing techniques, there exists a need to develop a more reliable way to quantify

and interpret experimental material data in order to specify a range of expected material

properties and performance. Additively manufactured materials leads to more complex mi-

crostructure topologies as a result of the underlying thermo-mechanical processing of the

material. To gain a better understanding of the performance of aerospace components fabri-
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cated with newer techniques such as additive manufacturing, it is necessary to characterize

their microstructural feature such as crystallographic texture and grain topology.

1.1.1 Micro-Scale Material Analysis

When investigating the behavior of materials, it is advantageous to analyze its microstruc-

ture. Microstructural analysis can shed light on how a material will work on a macro-scale.

The design process of aerospace elements can be influenced by understanding the effects

of how the materials are formed in the micro-scale. The micro-level design process can be

visualized below in Fig. 1.1.

Figure 1.1: Overview of multi-scale modeling and material design processes.

The process of multi-scale modeling involves starting at the smallest scale, for example the

micro-scale in the case of this work. During the manufacturing process, newer techniques such

as additive manufacturing give the ability to have control over the design of microstructural
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features [11, 12, 13, 14, 15]. Having control on the microstructural features of a material

would allow greater control over macro-scale properties such as residual stress, porosity,

and texture [11, 12, 13, 14, 15]. However, it is necessary to identify and understand the

variables related to processing and material composition as well as their relationship to the

resulting microstructure [11, 12, 13, 14, 15]. The microstructural features that impact the

macro-scale material properties are classified as crystallographic texture and grain topology

[16, 17, 18, 19, 20]. Grain topology refers to the size and shape of the grains as well as

the boundaries that exist between grains. There have been previous studies that model the

crystallographic texture of metals. They aim to capture the percentages of different textures

as well as the shapes of different grains in a given microstructure [18, 19, 20, 21]. Although

there are numerous publications modeling the crystallographic texture of a microstructure,

there are few models that numerically characterize and model grain topology in order to

investigate the impact on homogenized material properties in great detail [22, 23, 23, 24, 25,

26]. The effect of how a material is made can be analyzed on the micro-scale and can then

be designed to satisfy its performance objectives. As a result, this work aims to develop

a physics-based and data-driven framework to explicitly characterize the effects of grain

topology on material properties of components, by studying a test-case for an aerospace-

grade Titanium-Aluminum alloy.

The experimental method for characterizing materials on the micro-scale comes electron

backscatter diffraction (EBSD). EBSD techniques are implemented in conjunction with a

scanning electron microscope (SEM), allowing the user to determine and identify the indi-

vidual grain orientations, local texture, point-to-point orientation correlations, and phase

distributions [27]. Gaining insight on these properties can help predict how the material

can be used to accomplish a designer’s goals. The way in which the grains are shaped

and oriented have an effect on the overall properties [28, 29, 30, 31, 32]. The interactions
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between different indiviual grains is of interest to material scientists. There have been nu-

merous studies investigating the effect of grain shapes on material properties. Results have

shown that properties such as ultimate strength are clearly dependent on the orientation

and shape of the grains [34, 35]. Materials have shown to be stronger for both tension and

compression along the longest grain axis when compared to the shorter axis [34, 35]. This is

an important design consideration especially for additive manufacturing where factors such

as build direction and grain directionality can be controlled or at least observed. An area

of interest in microstructural analysis is the grain boundary that exists between adjacent

grains. It has been shown that the presence of grain boundaries in a material can have a

significant impact on the expected properties of structure [36, 37, 38]. Representation of the

grain boundary and its inclusion in the prediction of material properties is relatively new,

and has mostly been applied to single phase metallic materials [36]. As a result, there needs

to be a reliable and efficient way to identify the grain boundaries in a variety of materials,

both conventionally forged and additively manufactured, and include the grain boundary in

the prediction of material properties.

1.2 Objectives of Work and Research Advancements

Based on a review of literature on current microstructural analysis studies, this work will

aim to make the following advancements to the field:

• Quantify grain topology of polycrystalline materials

• Computationally characterize and separate crystallographic orientations using k-means

clustering.

• Index and isolate singular grains for quantification with Hu moments for both conven-

tionally forged and LENS-produced microstructures.



6 CHAPTER 1. INTRODUCTION AND REVIEW OF LITERATURE

• Develop two novel methods for identifying the grain boundary of a microstructure

• Prove feasibility of grain boundary identification techniques for both conventionally

forged and LENS-produced materials

• Predict properties by developing a data-driven model of microstructure with articifial

neural network (ANN)

• Explore the uncertainty associated with ANNs and compare to other, existing methods

• Determine the optimal grain boundary identification technique for those proposed in

this work



Chapter 2

Quantification of Microstructural

Texture and Topology

This chapter will explore the quantification of microstructure images by using a specific type

of shape moment invariants called Hu moments for topology and clustering for texture and

grain isolation. Some methods and techniques proposed in this chapter have been submitted

as a journal article to AIAA Journal: Catania, R., A. Senthilnathan, and P. Acar, ”New

Methodologies for Grain Boundary Detection in EBSD Data of Microstructures”, AIAA

Journal, under review.

2.1 Capturing Grain Topology in EBSD Images with

Hu Moments

Microstructural orientations are typically visualized using EBSD [28, 29, 30, 31, 32]. An

example of a typical color EBSD image of a Titanium-Aluminum alloy (Ti-7Al) can be

found in Fig. 2.1. The Euler angle used in the EBSD data for this microstructure and all

subsequent microstructures is 5 degrees.

7



8 CHAPTER 2. QUANTIFICATION OF MICROSTRUCTURAL TEXTURE AND TOPOLOGY

Figure 2.1: (a) EBSD image of a conventionally forged Titanium-Aluminum alloy as is
used in this work for quantification. (b) EBSD image that highlights the spectrum of pixel
intensity values.

Images can be quantified using image moments, the base of which are raw moments. These

moments are calculated using the pixel intensity values in each pixel location. For a grayscale

image, there is only one color channel which can have intensity values that range from 0

to 255, where 0 is black and 255 is white. This can be extended to three color channel

(RGB) images, where 0 is still black but 255 now refers to the maximum intensity of the

specific color in the color channel. When all three color channel values are 255, the pixel is

white. The use of raw image moments allow for the calculation of the centroid of the image

[39]. For color images, these calculations are done for each color channel separately. From

this, it is possible to calculate the central moment for each pixel by comparing it to the

centroid obtained from the raw moments. Central moments are beneficial because they are

invariant to translation [39]. When the central moments are normalized based on the order

of the moment, they become invariant to scale and translation. Ming-Kuei Hu proposed

a methodology of combining these normalized central moments to obtain image moments
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that are invariant to translation, rotation, and scale [39]. Central moments are second order

moment values and represent variance. When normalized, they become third order moment

values and represent skewness [39]. The first two Hu moments (ϕ1 and ϕ2) are derived from

the second order normalized central moments (η20, η02, and η11) [39]. The remaining five

Hu moments come from different combinations of third order normalized central moments

with the exception of ϕ6, which includes both second and third order normalized central

moments. The mathematical definitions of these seven Hu moments can be visualized below

[39]. (2.1)-(2.7):

ϕ1 = η20 + η02 (2.1)

ϕ2 = (η20 − η02)
2 + 4η211 (2.2)

ϕ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (2.3)

ϕ4 = (η30 + η12)
2 + (η21 + η03)

2 (2.4)

ϕ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

(2.5)

ϕ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]

+4η11[(η30 + η12)(η21 + η03)]

(2.6)

ϕ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21

+η03)
2]− (η30 − 3η12)(η21 + η03)[3(η30 + η12)

2

−(η21 + η03)
2]

(2.7)

where η refers to the normalized central moments of various orders, denoted by the numeric

subscripts [40].
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To begin, the entire set of seven Hu moments were used to quantify the texture and grain

topology for a given microstructure sample. This work aims to quantify not only the crystal-

lographic texture of the microstructure, but also the texture of the isolated grain boundary

network in Titanium-Aluminum alloys, as seen in Fig. 2.2.

Figure 2.2: Hu Moment calculation for selected grains of a forged Ti-7Al microstructure
sample [40].

The seven Hu moment values are determined for each individual pixel of the microstructure,

and the first four Hu moment plots can be seen in Fig. 2.2. The final seven moment values

of the entire microstructure are determined by the combination of those for each pixel..

The ϕ1 plot in Fig. 2.2 shows the shape of the individual grain because Eq. 2.1 does not

include a covariance prediction. Additionally, as the Hu moment number increases from one

to seven, the magnitude of the calculated value decreases significantly. It is important to

determine which Hu moments will drive the material property prediction. This question will

be addressed by a sensitivity analysis on each Hu moment as well as uncertainty propagation
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in the prediction of material properties. Through Hu moment quantification, it becomes

possible to specifically analyze the grain shape of grains with the same texture. Additionally,

it will be possible to look at the shape of the grain boundary network. The grain boundary

around an individual grain is shown in Fig. 2.2 by the discolored edges around the grain

. When quantifying the entire microstructure, it will also be possible to create cumulative

network of the grain boundary.

2.2 Capturing Crystallographic Texture and Isolating

Individual Grains using Clustering

Assume that a single grain image is separated from a randomly oriented microstructure with a

pixel area, Ag. Traditionally, material properties can be determined based on the orientation

distribution function (ODF). The ODF values, which relate to the volume density of each

crystallographic orientation in a microstructure sample, can be calculated through the pixels

using the following expression:

ODF =
V F

q
where V F =

Ag

At

(2.8)

V F is the volume fraction comprised of the area of the grain (Ag), the total area of the

microstructure (At). The value q refers to the volume normalization vector of the orientation

space [40]. For a microstructure, the volume fraction and the ODF values will be the same for

all grains. Since pixel intensity values range from 0-255, noise is possible in microstructure

image data. Therefore, it is necessary to set a noise threshold for the grains. This threshold

is defined as 40 pixels in accordance with a previous iteration of this work. Identified grains

with less than 40 total pixels will be treated as noise [40].

For material property prediction of microstructures, the volume fraction of each crystallo-
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graphic texture is determined. This work uses a technique called k-means clustering. This

method groups pixels into a predetermined number of groups which are centered a mean

intensity value. Pixels are divided into these groups based on a user-defined number of

mean values, or clusters, within the allowed range of pixel intensity values. To visualize this

process, fifteen clusters were defined, and every pixel in the sample image was grouped into

the cluster that had its closest mean value, as is seen in Fig. 2.3 [40].

Figure 2.3: (a) Original experimental image of a conventionally forged crystallographic mi-
crostructure, (b) Separation of 15 clusters with each cluster indicating a unique microstruc-
tural grain orientation [40].

Once the unique grain orientations are partitioned, it is possible to calculate Ag for each

cluster in order to find the volume fraction. These values can then be used to predict material

properties via the ODF method [40]. However, the hexagonal close-packed crystallographic

structure of the Ti-7Al can be modeled in the Rodrigues-Frank orientation space using 50

ODF values [41].
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This clustering process can additionally be applied to an LENS-produced polycrystalline

sample. The LENS-produced sample also underwent heat treatment after production. Al-

though the conventionally forged grains have more distinct boundaries, the clustering method

is still effective in separating the different crystallographic textures for the LENS-produced

sample, as can be seen in Fig. 2.4.

Figure 2.4: (a) Original experimental image of an LENS-produced Ti-7Al alloy, (b) k-means
clustering method of separating crystallographic textures where k = 15 [40].

Though this is effective for determining the volume fractions of different crystallographic

textures, Hu moments cannot be applied to groupings of grains. Therefore an additional

step is required to isolate individual grains. For the purpose of investigating the shape of

individual grains, the number of clusters was returned to fifteen because this value produces

observably sized grains. The clusters shown in Fig. 2.3 and Fig. 2.4 were indexed based

on their respective Red-Green-Blue (RGB) intensity values, then each cluster image was

converted to a binary image. The locations where a grain is present is given a value of one,

and all other locations are given a value of zero. From this, each individual grain is separated
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from others by grouping neighboring pixels with values of one. In order to quantify grains of

significant size, a noise threshold of 40 pixels was defined, meaning grains consisting of less

than 40 total pixels were neglected. The result of this for both the conventionally forged and

LENS-produced samples can be seen in Fig. 2.5 and Fig. 2.6 which uses one of the clusters

from Fig. 2.3 and Fig. 2.4 each. For the two selected clusters, the noteworthy grains are

isolated.

Figure 2.5: Separation of individual grains from a clustered conventionally forged sample
based on grain orientation [40].

As can be seen in Fig. 2.5, there are ten large distinct grains that are separated from

the clustered image. Similarly, this process is repeated for the LENS-produced sample, as

seen in Fig. 2.6. Here, it is possible to see five distinct grains that are isolated from the

original clustered image. Each of these grains can then be quantified using Hu moments.

Microstructure quantification of both grain shape and crystallographic texture can help when

predicting and comparing the properties of the material.
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Figure 2.6: Separation of individual grains from a clustered LENS-produced sample based
on grain orientation.

The differences of the seven Hu moments for the numbered grains found in Fig. 2.5 can be

seen in Fig. 2.7. As can be seen, each individual grain from the conventionally forged sample

is quantified differently according to its unique shape. This quantification of individual grains

is applied to LENS-produced samples as well, as can be seen in Fig. 2.8. Here, the grain

numbers correspond to those shown in Fig. 2.6. Though each of these grains belong to

a certain grain orientation, the difference in shape could impact the material properties.

For example, equiaxed grains could have different effects on the material properties than

columnar grains.
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Figure 2.7: Hu moment quantification of ten individual grains from the conventionally forged
sample with the same orientation [40].

The recognition of different shapes using Hu moments can also be seen in LENS-produced
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grains, as seen in Fig. 2.8.

Figure 2.8: Hu moment quantification of five individual grains from the LENS-produced
sample with the same orientation.

Applying this method to different manufacturing methods shows the viability of using the
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physics-based approach of numerical charaterization and modelling of grain topology.

This can be extended to obtain the material properties of three-dimensionally reconstructed

microstructures. For example, Using Markov Random Field (MRF), three dimensional mi-

crostructures can be synthesized using cross-sections corresponding to the three axial planes

[42]. MRF can help create a volumetric microstructure from two-dimensional input data

[40]. To do this, the method used for two-dimensional data discussed above can be applied

to data of cross-sections that exist along the three axial directions.

Figure 2.9: Example of three-dimensional microstructure where the cross-sectional approach
could be applied [43, 44].

This process can be seen in Fig. 2.9 where the top image shows the three-dimensional

image of a polycrystalline microstructure. The process that can be used involves analyzing

cross-sections of one pixel depth that lie along the Z-plane. Then, the microstructure data



2.2. CAPTURING CRYSTALLOGRAPHIC TEXTURE AND ISOLATING INDIVIDUAL GRAINS USING
CLUSTERING 19

for the three-dimensional grain topology and crystallographic texture can be constructed

by examining the continuity of neighboring two-dimensional microstructure cross-sections.

It is important to investigate how the grains change through in three-dimensional space.

Quantifying three-dimensional grains can help provide a more complete understanding of how

the grain shape and crystallographic texture can affect material properties. Additionally,

three-dimensional synthetic microstructure representations (as the example shown in Fig.

2.9) lead to higher fidelity computations of material properties. Therefore, investigating

three-dimensional grain topology by extending the proposed methodology is foreseen as a

future growth area in computational materials engineering



Chapter 3

Detection of Grain Boundaries in

Polycrystalline Microstructures

This chapter will discuss the two novel methods devised to identify and quantify the grain

boundary in a given microstructure. Some methods and techniques proposed in this chapter

have been submitted as a journal article to AIAA Journal: Catania, R., A. Senthilnathan,

and P. Acar, ”New Methodologies for Grain Boundary Detection in EBSD Data of Mi-

crostructures”, AIAA Journal, under review.

3.1 Exploration of Two Novel Numerical Methods

In order to effectively quantify EBSD data, it is necessary to detect the grain boundaries that

separate one grain from their neighboring grains. This work proposes two different methods

that offer a comprehensive approach compared to the existing approaches [24, 34, 36? ].

These two methods combine the benefits of the different existing grain boundary detection

techniques by preserving the crystallographic texture found in the RGB image, indexing

individual grains, creating a quantified network of the grain boundary, and isolation of both

individual grains and grain boundary.

The first method is called tolerance-based neighbor analysis using the pixel intensity values

in each of the RGB color channels [40]. Every pixel in a microstructure image has an intensity

value which is calculated by combining the intensity values for each color channel. The pixel

20
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intensity values range from 0 to 255. These values are normalized with respect to 255 and

are stored for each pixel location. As a result, each grain intensity is between 0 and 1. The

tolerance-based neighbor analysis method compares the color intensity values of a given pixel

to each of its local neighbors using a user-defined tolerance value that determines whether

the pixel belongs the same grain as its neighbors. The selected tolerance value is a 25 %

difference for each color channel. When a pixel has an intensity value that is more than

25 % different than a neighbor in any of the three color channels, it is marked as a grain

boundary. With this method, it is possible to detect the clear boundaries between grains in

a polycrystalline microstructure as seen in Fig. 3.1.

Figure 3.1: Tolerance-based neighbor analysis determination of the grain boundary network
of a conventionally forged Ti-7Al sample where (a) is the original microstructure image, (b)
is the overlay of the grain boundary on the original image, and (c) is the isolated grain
boundary network [40].

To visualize the boundary, the pixels that are considered to be part of the grain boundaries

are converted to black. As can be seen in Fig. 3.1, there is a high density of pixels considered

to be part of a grain boundary. In order to evaluate the effect of the tolerance threshold, there

needs to be some analysis using different tolerance values to optimize the grain boundary

detection.
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The second method that differs from this tolerance-based technique involves treating each

color channel intensity as a coordinate in three-dimensional space [40]. This allows a

similarity-based comparison of neighboring pixels. The similarity between neighboring pixels

is gauged using Euclidean distance. The result of this method can be seen in Fig. 3.2, using

the same sample as seen in Fig. 3.1.

Figure 3.2: Grain boundary identification of a conventionally forged Ti-7Al sample using
Euclidean distance similarity where (a) is the original microstructure image, (b) is the overlay
of the grain boundary on the original image, and (c) is the isolated grain boundary network
[40].

Similarly to the first method, it is necessary to define a maximum acceptable difference

between the neighboring pixels. This maximum distance is defined as 1 %. This difference

value is substantially smaller than that used in the tolerance-based method because the

Euclidean distance values are much closer to each other than the intensity values of the three

normalized color channels. Additionally, this small tolerance is also due to the use of a 5x5

Gaussian filter applied before grain detection to smooth the edges between different grains.

This is added as an alternative approach to the tolerance-based neighbor analysis method to

gauge whether it is advantageous to use a strict identification criteria compared to a criteria

aimed to showcase the average orientations of major grains. Although this method presents

some difficulty when indexing different grains because of the use of Euclidean distance to
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obtain a magnitude across the three color channels, it has the potential to present less noise

in each image compared to the tolerance-based method. As can be seen by comparing the

grain boundary networks in Fig. 3.1 and Fig. 3.2, the Euclidean distance method contains

less grain boundary pixels.

This analysis can also be applied to LENS-produced samples, despite the added complexity.

The tolerance-based neighbor-analysis and Euclidean distance methods can be seen in Fig.

3.3.

Figure 3.3: Grain boundary identification method comparison of an LENS-produced Ti-7Al
sample where (a) is the original sample, (b) is after the tolerance-based neighbor-analysis
boundary method is applied, (c) is the network of the grain boundary for tolerance-based
neighbor analysis, (d) is after the Euclidean distance boundary method is applied, (e) is the
network of the grain boundary for Euclidean distance.

As can be seen, the added complexity of the grains in the LENS-produced sample makes



24 CHAPTER 3. DETECTION OF GRAIN BOUNDARIES IN POLYCRYSTALLINE MICROSTRUCTURES

the tolerance-based neighbor analysis method identify a significant number of pixels as grain

boundaries. It is necessary to evaluate whether this is advantageous when predicting material

properties.

The advantage of detecting and marking the grain boundary is that it can then be treated

as its own orientation, allowing for its inclusion in the calculation of the volume fractions.

With the grain boundaries having their own volume fraction, it is possible to include them

in the use of ODF, as shown in Eq. 2.8. The volume fraction of the grain boundaries can

be included in the overall calculation by using Figs. 3.1(b)-Fig.3.3(b).

In Figs. 3.1-3, it is found that the grain boundaries make up at a minimum 12 % of the

total area, depending on the sample and method [40]. This is a significant percentage for

each of the microstructure samples. For comparison, a single grain orientation only accounts

for a maximum of roughly 11 % of the total sample [40]. The significant presence of the

grain boundaries could suggest that it is important to consider when predicting the material

properties of the sample.

3.2 Comparison of Tolerance-based Neighbor Analysis

and Euclidean distance Grain Boundary Detection

Techniques to the Canny Edge Detection Method

A common technique used for shape separation in images to which these methods can be

compared is the Canny Edge Detector, a tool in Python used for image processing. This

tool involves multiple steps beginning with a Gaussian blur to reduce noise in the image [45].

This blur consists of a 5x5 Gaussian filter. Then, the continuity of pixel intensity is gauged

by measuring the intensity gradients both vertically and horizontally. Eq. 3.1 shows how

the intensity gradients are measured using magnitude (G) and the direction (θ) [45].
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G =
√
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Gx

) (3.1)

where G corresponds to the magnitude of the intensity gradient with Gx and Gy being

the horizontal and vertical components of the intensity gradients, respectively. The term θ

measures the direction of the intensity gradient [46]. The edges are then identified but the

thickness is not consistent. To obtain more consistent edge thicknesses, the Canny Edge

Detector uses non-maximum suppression. First, the local maximum gradient values are

identified. The local maxima of the intensity gradients indicate that they are edges. Any

detected edge pixels that are not local maxima in their respective intensity gradients are

suppressed, thus reducing the thickness of the detected edges [46]. The last step of the

process involves using hysteresis thresholding to preserve the continuity of the edge lines.

This process is done by defining a minimum and maximum threshold. The maximum value

is defined so that any pixel above this threshold is considered a certain edge. The minimum

value is defined so that any pixel that is below this threshold is certainly not an edge. The

maximum threshold value was chosen as the intensity value of 125 out of 255. Whereas,

the minimum threshold value was chosen as the intensity value 50 out of 255. These two

values were defined because they proved to best detect the grain boundaries visually. The

result of applying the Canny Edge Detector was aimed to be similar to that of the Euclidean

distance technique, meaning it was desired to have a less strict detection of the grains that

the tolerance-base method. These threshold values prevent the presence of non-continuous

edges [? ]. The result of applying Canny Edge Detection method on a conventionally forged

polycrystalline microstructure is shown in Fig. 3.4 below.
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Figure 3.4: Application of Canny Edge Detector on Ti-7Al sample with the Original
(grayscale) and the Edge images [40].

As can be seen in Fig. 3.4, the variation in the maximum and minimum threshold values

affects the edges identified in this method. An example of these differences can be seen in

the area circled in red for each circle. A small range between the two thresholds does not

identify the edge in its entirety, whereas a large range does not identify the edge at all. The

chosen values 125 and 50 for the respective maximum and minimum values best identified
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the grain boundary for the sample microstructure, as seen in the middle image of Fig. 3.4.

It is necessary to note that this method removes the color information because it can only

work on a grayscale image. Therefore, it is difficult to preserve orientation information and

index different grains according to their texture. Moreover, the Canny Edge Detector needs

some trial and error when determining the hysterisis threshold values, making it difficult

to get favorable and consistent results for larger data sets. If the thresholds are not well

defined, the edges will either not be identified or be grouped inaccurately [46]. The two

proposed methods offer benefits over this existing method because they do not have the

same disadvantages in terms of consistency, color preservation, and grain indexing. The

proposed methods would therefore be better at separating grains to then apply shape moment

invariants to obtain shape information of the grains.

The effect of including the grain boundaries when predicting material properties using the

proposed two methods will be explored by using them as additional input in a neural network.

The tolerance-based neighbor analysis and Euclidean distance similarity methods differ in

the strictness by which grain boundaries are identified. To explore the difference between

these methods, a binary grain boundary network will be used in conjunction with the original

microstructure image. The binary grain boundary networks are shown below in Fig. 3.5,

where (a) is a conventionally forged polycrystalline microstructure, (b) and (c) are the binary

grain boundary networks obtained using tolerance-based neighbor analysis and Euclidean

distance similarity, respectively, (d) is an LENS-produced polycrystalline microstructure,

(e) and (f) are the isolated grain boundary networks obtained using the same methodology

as (b) and (c), respectively. The actual grains are represented as black pixels, whereas the

grain boundaries are shown as white pixels. The grain boundaries are shown in white in

order to be the primary focus of the shape moment invariants because they only consider

nonzero intensity values.
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Figure 3.5: Grain boundary network comparison where (a) is the original conventionally
forged Ti-7Al sample, (b) is neighbor analysis grain boundary of (a), (c) is the Euclidean
distance grain boundary of (a), (d) the original LENS-produced Ti-7Al sample, (e) is the
neighbor analysis grain boundary network of (d), (f) it the Euclidean distance grain boundary
network of (d).

The grain boundary networks in Fig. 3.5 demonstrate that neighbor analysis method is more

strict when differentiating different grains. This is most likely because it directly compares

each of the corresponding RGB color channels when separating grains [40]. Meanwhile, the

Euclidean distance combines the RGB color channels before conducting comparison, creating

an intensity magnitude value instead. Since the pixel intensity values range from 0 to 1, the

needed tolerance for Euclidean distance is comparatively small compared to the neighbor

analysis method when differentiating grains.



Chapter 4

Results and Discussion

This chapter will cover the training of artificial neural networks based on shape moment

invariants. Uncertainty analysis is additionally conducted to determine an expected range to

which material properties vary. Some methods and techniques proposed in this chapter have

been submitted as a journal article to AIAA Journal: Catania, R., A. Senthilnathan, and P.

Acar, ”New Methodologies for Grain Boundary Detection in EBSD Data of Microstructures”,

AIAA Journal, under review.

4.1 Application of Shape Moment Invariants to Pre-

dict Material Properties of conventionally forged

Microstructures using Artifical Neural Networks

Two different grain boundary identification techniques were developed to investigate the

effect of including grain boundary consideration for predicting the material properties of a

microstructure. The methods differ in the strictness to which they define grain boundaries.

Both methods create a binary image of the grain boundary network. These grain boundary

networks can be seen in Fig. 4.1, where (a) is the original microstructure, (b) and (c) are

the networks identified using neighbor analysis and Euclidean distance, respectively [40]. All

pixels that are not part of the grain boundary are converted to black pixels to emphasize the

location of the grain boundary themselves, shown by white pixels. By showing the network

29
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in white, the grain boundary is given a nonzero pixel intensity value so that the Hu moments

are calculated according to the grain boundaries themselves.

(a) (b) (c)

Figure 4.1: Grain boundary filtration where (a) is the original conventionally forged mi-
crostructure, (b) is the neighbor analysis grain boundary network (c) is the Euclidean dis-
tance grain boundary network [40].

As can be seen from the two networks, the neighbor analysis method considers a significant

amount of pixels to be part of the grain boundary, showing it is a strict grain differentia-

tion method. This is because this method compares adjacent grains in each color channel

separately. Alternatively, the Euclidean distance method calculates an intensity magnitude

using a combination of the three color channels. Since the pixel intensity values range from

0 to 1, the Euclidean distance threshold requires a significantly smaller value to distinguish

to which grain it belongs.

After creating the two grain boundary networks, a data-driven model was developed by

training neural networks with sample microstructure data to evaluate the effect of the grain

boundary identification methods on the prediction of homogenized material properties of the

microstructure. A set of 100 conventionally forged Ti-7Al EBSD images was used due to the

computational expense of generating additional images synthetically [40]. Due to the limited

sample size, the neural network was trained using Bayesian Regularization because it can
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generalize well with smaller data sets [47, 48]. Instead of using the sample image as input for

the neural networks, the Hu moments of the overall image were used.The definition of neural

networks in terms of Hu moments leads to a parametric data-driven model, which is expected

to require significant smaller amount of data compared to image-based models. As previously

mentioned, the seven Hu moments use the three color channel pixel intensity values to

quantify the crystallographic texture of the microstructure. For three color channels, the

Hu moments are obtained by averaging the values from each channel. For the binary grain

boundary networks, the Hu moments are calculated in only one channel to avoid redundancy.

These sets of Hu moments were included as input to give the material properties as output,

specifically the Young’s modulus values for the x-direction and y-direction as well as yield

strength, represented as E11, E22, and σy, respectively.

In order to assess the predictive quality of using neural networks with the inclusion of the

grain boundary network, an initial artificial neural network was trained with Bayesian Reg-

ularization, using the Hu moments of the microstructure images in the three color channels

[40]. Once this original artificial neural network was trained, two additional artificial neu-

ral networks were trained with the inclusion of the two grain boundary networks obtained

from the tolerance-based neighbor analysis and Euclidean distance methods, respectively.

The artificial neural networks were trained with a set of Hu moments as input as well as

corresponding experimental material properties as output. The data set of 100 experimental

images was divided into a training set, a validation set, and a test set, respectively account-

ing for 70 %, 15%, and 15% of the total [40]. The number of hidden layers used for the

artificial neural network was chosen to be 8 after testing various hidden layer options. It

was found that using less than 8 hidden layers under-fit the data, yielding inaccurate results.

Moreover, using more than 8 hidden layers appear to over-fit the data because the artificial

neural network did not perform well on the test set.
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After obtaining favorable results with the three artificial neural networks, a sensitivity anal-

ysis was performed to gauge which Hu moments drove the material property prediction. A

5% change was applied to each of the 7 Hu moments individually to see which ones affected

E11, E22, and σy the most [40]. As can be seen in Fig. 4.2, the impact of ϕ1 was substan-

tially more notable than the other Hu moments when predicting the material properties. A

previous study had similar findings relating to the significance of ϕ1 due to its much higher

magnitude than other Hu moments [49].

(a) (b) (c)

Figure 4.2: Sensitivity analysis showing the percent changes in (a) E11, (b) E22 , (c)σy as a
result of 5 % changes in individual Hu moments[40].

For E11, increasing ϕ1 by 5% increased the predicted value by nearly 0.1%. Additionally, a

5% increase in ϕ1 showed approximately a 0.1% and 0.3% increase in E22 and σy, respectively.

While these output increases are smaller than the increase applied to Hu moments, the effect

of ϕ1 is much more significant than the other Hu moments. ϕ1 has a comparatively higher

magnitude than the other 6 Hu moments. This can be visualised in Fig. 2.2, where the ϕ1

most effectively captures the shape of the grain. Additionally, it is worth noting that yield

stress has a larger increase than Young’s modulus. This is possibly because the Young’s

modulus is determined in linear elastic region, while the yield strength is determined in the
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elasto-plastic region [40]. This shows that elasto-plastic properties are likely more sensitive

to grain topology and grain boundary input.

After the sensitivity analysis, the artificial neural networks were trained again using only ϕ1

to focus on the most decisive input variables [40]. The three artificial neural networks were

trained using the same parameters as above but only including the first Hu moment of the

original image and of the corresponding grain boundary networks as inputs. The regression

plots of the three artificial neural networks can be seen in Fig. 4.3.

Figure 4.3: Regression results of the aritifical neural networks trained with (a) no grain
boundary, (b) neighbor analysis grain boundary, and (c) Euclidean distance grain boundary
[40].

As seen in Fig. 4.3, there is good fitting performance for each of the three neural networks for

both the training and test sets. From the regression plots, the two grain boundary inclusive

methods have a slightly better fit than that of the method that does not include grain

boundary consideration. Despite the good fit of the artificial neural networks, it is important
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to evaluate the similarity of the material property predictions of the neural networks to the

experimentally-obtained properties. From this, it is possible to determine the performance

of each artificial neural network. Fig. 4.4 shows the percent difference between the material

property prediction of each neural network compared to the experimental properties.

Figure 4.4: Material property predictions compared to experimental data for the two grain
boundary inclusive methods as well as the grain boundary exclusive method [40].

The material property outputs of the artificial neural network function that does not con-

sider the grain boundary have a higher percent difference than the grain boundary inclusive

networks for all three material properties. Although the no grain boundary method was out-

performed, all three neural networks gave favorable Young’s modulus predictions less than

0.01 % different than the experimental results [40]. The largest difference between the no
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grain boundary method and the grain boundary inclusive methods appeared for the yield

stress. The σy predictions showed the grain boundary inclusive methods outperformed the

no grain boundary by a magnitude of roughly 2 and 3 for neighbor analysis and Euclidean

distance, respectively. From the conventionally forged samples, it is unclear whether the

tolerance-based neighbor analysis method or the Euclidean distance method provides the

best results for the prediction of all three material properties because neighbor analysis gave

a better prediction for E11 while Euclidean distance gave better predictions for E22 and σy.

It is important to note that the maximum percentage difference for any material property

prediction using the artificial neural networks was less than 0.04 %. A previous study that

used crystal plasticity simulations yielded a percentage difference of roughly 5 % for the same

material properties [50]. This disparity between the artificial neural network predictions and

the crystal plasticity predictions is likely due to the model uncertainty of crystal plasticity

simulations. For the conventionally forged microstructures, it is possible to see that including

the grain boundary network as input leads to an artificial neural network that outperforms

one that does not consider the grain boundary network [40]. As previously stated, it is still

unclear whether the artificial neural network trained with the tolerance based neighbor anal-

ysis or Euclidean distance is the optimal choice for material property prediction. In order to

further evaluate the two methods, it will be necessary to investigate the performance of the

grain boundary inclusive artificial neural networks on LENS-produced samples.

4.2 Uncertainty Quantification of conventionally forged

Microstructures using Artificial Neural Networks

When manufacturing materials, processing may lead to inherent material uncertainty that

can be quantified using experimental microstructure data samples. In order to simulate

this uncertainty with the microstructure samples, a data set was generated from the av-
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erage Hu moments of the microstructures. This set consisted of 1000 samples that were

normally distributed with a maximum difference of ±5 %. This assumption on the level of

microstructure uncertainty is consistent with the preliminary work that investigated the mi-

crostructural texture uncertainty for the same data set [51]. The first data set was composed

of the Hu moments of the microstructure samples, representing the crystallographic texture.

The following two data sets corresponded to the Hu moments of grain boundary networks

for the tolerance-based neighbor analysis and Euclidean distance methods, respectively. Fig.

4.5 shows the histograms of these three sets of data. It is important to note that the Hu mo-

ments from the RGB microstructure have a non-zero intensity value for nearly every pixel,

whereas the grain boundary networks have a significant number of zero-value pixels.

(a) (b) (c)

Figure 4.5: Distribution of Hu moments used as ANN input where (a) is ϕ1 of the overall
RGB image, (b) shows ϕ1 of the neighbor analysis grain boundary grid, and (c) shows ϕ1 for
that of the Euclidean distance method [40].

After generating the normally distributed set of Hu moments, they were used to perform

Monte Carlo Simulation (MCS) with the three artificial neural network functions. The

predictions of each artificial neural network function for E11 can be seen in Fig. 4.6.
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(a) (b) (c)

Figure 4.6: Distribution of ANN ouput, E11, based on normally distributed ϕ1 sample inputs
obtained using (a) no grain boundary, (b) the neighbor analysis, and (c) Euclidean distance
methods [40].

The motivation of this uncertainty analysis is to represent the uncertainty from sample to

sample as a result of the manufacturing process. It is important to determine a reasonable

range in which the possible material properties can reside. The range of E11 outputs are 0.7

GPa, 1.0 GPa, and 0.8 GPa for the no grain boundary method, the neighbor analysis method,

and the Euclidean distance method, respectively [40]. The results of E22 are consistent with

those of E11, as can be seen in Fig. 4.7. The distributions for the Young’s modulus values

are similarly distributed with those of the Hu moments, showing that there is a quasi-linear

relationship between the Hu moments and Young’s modulus output for each artificial neural

network.
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(a) (b) (c)

Figure 4.7: Distribution of ANN ouput, E22, based on normally distributed ϕ1 sample inputs
obtained using (a) no grain boundary, (b) the neighbor analysis, and (c) Euclidean distance
methods [40].

When considering the distribution of σy, the results of the artificial neural networks are

skewed to the left, as can be seen in Fig. 4.8. Additionally the ranges of the σy predictions

are significantly larger than for the Young’s modulus. The σy ranges are 9 MPa for the no

grain boundary ANN, 16 MPa for the neighbor analysis ANN, and 8 MPa for the Euclidean

distance ANN. Since the σy predictions are skewed, it suggests that the relationship between

the Hu moments and yield stress is more complicated than that for the Young’s modulus

[40].
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(a) (b) (c)

Figure 4.8: Distribution of ANN ouput, σy, based on normally distributed ϕ1 sample inputs
obtained using (a) no grain boundary, (b) the neighbor analysis, and (c) Euclidean distance
methods [40].

This method of predicting material properties of microstructures by quantifying the image us-

ing Hu moments in two-dimensions could be expanded to three-dimensional microstructures

by using the cross-sectional images in different planar directions. The three-dimensional

grain boundary network could also be determined in the same way. However, it would

be necessary to consider the continuity of the grains and grain boundaries by examining

the progression of the cross sections in all three axial directions. Once the continuity of

the three-dimensional microstructure is resolved, it would be possible to use these artificial

neural networks to predict the material properties of a three-dimensional microstructure.

4.3 Material Property Prediction of LENS-produced

Microstructures using Artificial Neural Networks

After training artificial neural networks for the conventionally forged microstructures above,

it was important to investigate the predictive performance these networks had on LENS-

produced samples. Since there was a lack of experimentally-determined material property

data for LENS-produced samples, the grain boundary inclusive artificial neural networks

trained from the conventionally forged microstructures were used to gauge their effectiveness
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for LENS-produced samples. In doing so, it would also be possible to potentially determine

which of the two grain boundary inclusive methods had better performance for a wider range

of microstructure data. The data set used to evaluate the artificial neural networks consisted

of 1000 synthesized LENS-produced Ti-7Al microstructures. The known material properties

of this data set was the Young’s Modulus and yield stress, obtained using PRISMS Plasticity

[52]. For an explanation of PRISMS, see Appendix A.

Similarly to the methodology discussed above for the conventionally forged samples, ϕ1 was

obtained for each of the overall microstructures as well as ϕ1 of each of the tolerance-based

neighbor analysis and Euclidean distance grain boundary networks, respectively. Fig. 4.9

shows a sample microstructure as well as the corresponding grain boundary networks.

Figure 4.9: Example of LENS-produced image data used to obtain Hu moments for in-
put into the grain boundary inclusive artificial neural networks where (a) is the original
microstructure, (b) is the neighbor analysis grain boundary network (c) is the Euclidean
distance grain boundary network.

The Hu moments obtained from the microstructure data in Fig. 4.9 were then used as input

into the grain boundary inclusive artificial neural networks to evaluate the material property

predictions. While there were no experimental Young’s modulus values for comparison, the

predicted values of approximately 142.6 GPa and 143.4 GPa for E11 and E22 appear to be

similar to those of the conventionally forged samples above. Given that both are Ti-7Al, the
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predictions for the LENS-produced samples are reasonable.

Figure 4.10: LENS-produced material property outputs from the grain boundary inclusive
artificial neural networks where (a) is the percent difference of Young’s modulus and (b) is
the percent difference of σy compared to crystal plasticity simulations.

As can be seen from Fig. 4.10, the artificial neural networks were able to predict the E11,

E22, and σy values of the LENS-produced microstructure with less than a 5 % difference to

the value obtained from the crystal plasticity simulation. It can be seen that the Euclidean

distance grain boundary network gives a value of σy that has an approximately 2.5 % different

value to that of the crystal plasticity simulation. In this comparison of material property

prediction, it is found that the Euclidean distance method outperforms the tolerance-based

neighbor analysis method, similarly to the case of the conventionally forged microstructure.

It is necessary to note that the percent differences of both grain boundary inclusive methods

are higher than those of the conventionally forged samples. Since the prediction for all

material properties are within 5 %, the higher percent difference of the LENS-produced

microstructure could possibly be attributed to the model uncertainty arising from crystal

plasticity simulations [50]. The difference between comparison metrics for the conventionally

forged and LENS-produced samples are that the material properties of the former were
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obtained experimentally, and those of the latter were obtained through crystal plasticity

simulations. Despite the higher percent difference seen in the material property predictions

for the LENS-produced samples, the results appear to be within expected ranges due to the

uncertainty of the crystal plasticity simulations. Additionally, the better performance of the

Euclidean distance method is consistent with the conventionally forged case.

4.4 Uncertainty Quantification of LENS-produced Mi-

crostructures using Artificial Neural Networks

As with the conventionally forged case, there is uncertainty from sample to sample arising

from the manufacturing process of LENS-produced samples. To investigate the effect of

this uncertainty, MCS was applied to the LENS-produced case. First the average first Hu

moments were calculated for the microstructure and both grain boundary networks. From

this, 1000 normally distributed samples were created with a maximum perturbation of 5 %.

The resulting distribution can be seen in Fig. 4.11.

Figure 4.11: Histogram of the first Hu moment for 1000 normally distributed samples where
(a) is ϕ1 of the original microstructure, (b) is ϕ1 of the neighbor analysis grain boundary
network, and (c) is ϕ1 of the Euclidean distance grain boundary network.

Once the Hu moment distribution was made, these values were used as input for the arti-

ficial neural networks to examine the uncertainty propagation. Since it was determined in

the conventionally forged case that the grain boundary inclusive artificial neural networks
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consistently outperformed the no grain boundary method, only the grain boundary inclusive

methods were analyzed. When looking at the distributions of E11 in Fig. 4.12, the range of

predicted values for both methods is very small.

Figure 4.12: Histogram of E11 obtained from the normally distributed Hu moments of LENS-
produced samples where (a) is for neighbor analysis method and (b) is for Euclidean distance
method.

As seen in Fig. 4.13, the results of E22 are similarly very small. This could likely be because

the Young’s modulus value is not very sensitive for the microstructures examined.

Figure 4.13: Histogram of E22 obtained from the normally distributed Hu moments of LENS-
produced samples where (a) is for neighbor analysis method and (b) is for Euclidean distance
method.
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Interestingly, this trend extends to the range of the predicted σy values, as seen in Fig. 4.14.

The small range of predicted values is unlike the range seen in the uncertainty propagation

of the conventionally forged sample.

Figure 4.14: Histogram of σy obtained from the normally distributed Hu moments of LENS-
produced samples where (a) is for neighbor analysis method and (b) is for Euclidean distance
method.

Though the range is unusual, the presence of a skewed distribution for the σy predictions is

consistent with the conventionally forged case. Overall, the trends of the prediction distri-

butions for the LENS-produced case are consistent with those of the conventionally forged

case, despite the smaller range of predicted values in the distributions. The conventionally

forged samples show a higher uncertainty likely because they involved a higher number of

grains, thus making impact of the grain boundaries more important than the LENS-produced

samples.



Chapter 5

Conclusions

This work has covered a new strategy for material property prediction. Hu moments were

applied to EBSD image data of microstructures in order to quantify them based on their

pixel intensity values. This offers a benefit of reducing the memory needed for each sam-

ple because a quantified image data requires approximately 1000-times less memory than

conventional image data, grains were separated based on their crystallographic orientation

using k-means segmentation. This helped obtain volume fractions which could then be used

for ODF, a method used for predicting homogenized properties of microstructures. For the

grains of the same orientation, an additional step was implemented to separate individual

grains. This technique can help when investigating the impact of grain shape on material

properties. Grain boundaries have been shown to have a significant impact on the behav-

ior of a microstructure. In order to evaluate this effect, two grain boundary identification

methods were devised to show the network of the grain boundary. Once identified, the

grain boundary was quantified with Hu moments and included as additional input to train

an artificial neural network capable of predicting the Young’s modulus and yield stress of

the microstructure. It was shown that the grain boundary inclusive methods outperformed

the method that did not include the grain boundary for all predicted properties in both

conventionally forged and LENS-produced samples. After testing both the conventionally

forged and LENS-produced cases, the Euclidean distance grain boundary method was found

to outperform the tolerance-based neighbor analysis method. This could be due to the noise
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reduction implemented by a less-strict approach to separating the grain boundary. Sensitiv-

ity analysis was conducted to determine the driving variable for material property prediction.

Consistent with previous research, the first Hu moment was found to have the most signifi-

cant impact on the result of the material property prediction. Uncertainty analysis was also

conducted for both the conventionally forged and LENS-produced samples to determine the

expected range of material properties that would come from uncertainty associated with the

fabrication process. The conventionally forged case had a higher range of uncertainty likely

due to the higher number of grains obtained.

Future work based on this work would involve:

• Expansion to three-dimensional samples - To do this, a cross-sectional approach could

be employed using the same methodology. The three-dimensional analysis would need

to be conducted in multiple axis directions in order to gauge the continuity of grains

and grain boundaries as they exist in the sample.

• Investigation of more complex features that result from the fabrication process - Mi-

crostructural features that arise mainly from additive manufacturing include micro-

textures and melt pools. These are difficult to model and vary from sample to sample,

even when using the same processing parameters.

• Evaluation of microstructure topology for other material classes (e.g. polymers, com-

posites) for various applications - the major benefit of this work’s approach being the

reduction of computational expense.



Chapter 6

Summary

This work has developed numerical techniques to quantify microstructures using their im-

age data. It is a useful strategy for reducing the computational expense of interpreting

microstructure data. Furthermore it has been shown that the grain boundaries impact

the homogenized material properties through a data-driven model based on artificial neural

networks. Of the two methods of grain boundary identification, the Euclidean distance tech-

nique was shown to outperform the tolerance-based neighbor analysis, especially for the more

complex additively manufactured samples. This grain boundary inclusive approach to pre-

dicting material properties can be used to examine more complex effects such as microtexture

and melt pool cases. Furthermore, this work can be extended to evaluate three-dimensional

cases using a cross-section approach, provided it is done in several axial directions in order

to ensure continuity of grains and grain boundaries throughout the sample.
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Appendix A

Crystal Plasticity Modeling using

PRISMS

A.1 Crystal Plasticity Modeling

For crystal plasticity modeling, the rate-independent single crystal plasticity constitutive

model developed by Anand and Kothari [53] is used to compute the macroscopic stress of

the polycrystalline material. The parameters of interest in this work are the slip system

parameters, and the used slip system hardening model is given below:

hαβ = [q + (1− q)δαβ]hβ (no sum on β) (A.1)

where hβ is a single slip hardening rate, q is the latent-hardening ratio and δαβ is the

Kronecker delta function. The parameter q is taken to be 1.0 for coplanar slip systems and

1.4 for non-coplanar slip systems. For the single-slip hardening rate, the following specific

form is adopted:

hβ = ho(1−
sβ

ss
)a (A.2)

where ho, a, and ss are slip hardening parameters. The basal < a >, prismatic < a >,
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pyramidal < a > and pyramidal < c + a > slip systems, and 101̄2 < 1̄011 > twinning

mechanism are computationally modeled. The elastic parameters of Ti-7Al are taken as

[54]: C11 = C12 = 175 GPa, C33 = 220 GPa, C12 = 88.7 GPa, C13 = C23 = 62.3 GPa,

C44 = C55 = 62.2 GPa, and C66 = (C11 − C12)/2.

The Ti-7Al alloy has an hexagonal close-packed (HCP) crystallographic structure. The

crystal plasticity simulation modeled the microstructure using 750 grain and 32 × 32 × 32

elements. The grain orientations in the crystal plasticity simulation is assigned to match

with the texture of the experimental data.

The HCP metals are known to exhibit an easy < a > slip, either on the prismatic or basal

plane [55]. The slip systems of the Ti-7Al are determined as the three equivalent basal

0001 < 112̄0 >, three equivalent prismatic 101̄0 < 112̄0 > and six equivalent pyramidal

101̄1 < 112̄0 > slip systems [56]. All these three slip systems share a common slip direction,

< 112̄0 >, or < a >. The slip on the basal, prismatic and pyramidal slip systems is denoted

as < a >-slip. Additional slip or twin mechanisms are required to accommodate a strain

parallel to the c-axis of the hexagonal system. One mode slips on pyramidal planes with

< 112̄3 >, or < c + a > slip directions [56]. Moreover, the recent studies in the literature

[55, 56, 57, 58, 59, 60, 61, 62] revealed the existence of the 101̄2 < 1̄011 > tensile twin,

which provides an approximately 90 degrees rotation of the c-axis from a tensile stress to

the compressive stress condition and increases the basal texture intensity during compressive

loading. The slip and twin system parameters calibrated recently for the crystal plasticity

modeling of Ti-7Al alloy are used in the present work [63].

A.2 Experimental Data for Forged Ti-7Al Alloy

The description for the used experimental data is given as follows [64]. The sample Ti-7Al

alloy has a beta transus temperature of 1050oC. The alloy was forged from a 7.5 inch round



A.2. EXPERIMENTAL DATA FOR FORGED TI-7AL ALLOY 59

ingot to a 4 inch square ingot at 1142oC and air cooled. Three different cylindrical samples

6 mm in diameter and 9 mm in height were machined from the forged ingot. The samples

were then subject to the same process: compression to a 20% height reduction at a strain

rate of 0.03 mm/min at room temperature followed by annealing in a tube furnace at 800oC

for 72 hours followed by a water quench. The samples were sectioned perpendicular to the

compression axis, mounted in epoxy and polished to a final step of colloidal silica. The

measured texture was found to be close to the randomly oriented texture.
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