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Theory and Patterns for Avoiding Regex Denial of Service

Sk Adnan Hassan

(ABSTRACT)

Regular expressions are ubiquitous. They are used for diverse purposes, including input

validation and firewalls. Unfortunately, they can also lead to a security vulnerability called

ReDoS(Regular Expression Denial of Service), caused by a super-linear worst-case execution

time during regex matching. ReDoS has a serious and wide impact: since applications

written in most programming languages can be vulnerable to it, ReDoS has caused outages

at prominent web services including Cloudflare and Stack Overflow. Due to the severity

and prevalence of ReDoS, past work proposed mechanisms to identify and repair regexes.

In this work, we set a different goal: helping developers avoid introducing regexes that

could trigger ReDoS in the first place. A necessary condition for a regex to trigger ReDoS

is to be infinitely ambiguous (IA). We propose a theory and a collection of anti-patterns

to characterize infinitely ambiguous (IA) regexes. We evaluate our proposed anti-patterns

in two complementary ways: quantitatively, over a dataset of 209,188 regexes from open-

source software; and qualitatively, by observing humans using them in practice. In our

large-scale evaluation, our anti-patterns characterized IA regexes with 100% precision and

99% recall, showing that they can capture the large majority of IA regexes, even when they

are a simplified version of our theory. In our human experiment, practitioners applying our

anti-patterns correctly assessed whether the regex that they were composing was IA or not

in all of our studied regex-composition tasks.
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Sk Adnan Hassan

(GENERAL AUDIENCE ABSTRACT)

Regular expressions used by developers for different purposes, including input validation and

firewalls. Unfortunately, they can also lead to a security vulnerability called ReDoS(Regular

Expression Denial of Service), caused by a super-linear worst-case execution time during

regex matching. ReDoS has caused outages at prominent web services including Cloudflare

and Stack Overflow. ReDoS has a serious and wide impact: since applications written in

most programming languages can be vulnerable to it. With this work, we wanted to help

developers avoid introducing regexes that could trigger ReDoS in the first place. A necessary

condition for a regex to trigger ReDoS is to be infinitely ambiguous (IA). We propose a theory

and a collection of anti-patterns to characterize infinitely ambiguous (IA) regexes.
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Chapter 1

Introduction

Regular expressions (regexes) are an important software engineering tool. They are used

in an estimated 30–40% of open-source projects [20, 29]. Regexes use spans the system

stack, including for security-specific tasks (e.g., input validation [15, 85], web application

firewalls [2], and anti-virus [63]); and for general-purpose tasks (e.g., text processing [42, 55]

and syntax highlighting [22, 36]). Regexes may introduce a security vulnerability: Regular

Expression Denial of Service (ReDoS) [27, 68]. ReDoS is an algorithmic complexity vulner-

ability [28], denying service by exhausting computational resources. In a ReDoS exploit, a

regex’s super-linear worst-case execution time is triggered during regex matching. ReDoS

can affect software that uses an unsafe (backtracking) regex engine to evaluate a problem-

atic (super-linear) regex on untrusted strings (such as user input). Unsafe regex engines

are common in practice, including the regex engines shipped in many popular programming

languages, e.g., Java, JavaScript, Ruby, and Python [25, 31]. This hazardous infrastructure

exposes many web services to ReDoS. For example, ReDoS caused service outages at Stack

Overflow in 2016 [37] and at Cloudflare in 2019 [46]. Beyond those cases, Davis et al. showed

that the software supply chain has many vulnerable regexes [29], and Staicu & Pradel found

that those regexes render hundreds of popular websites vulnerable to ReDoS [73].

Given the severity and prevalence of ReDoS, researchers have proposed mechanisms to defend

against it. The majority of them apply to the software maintenance stage —to automatically

identify [16, 52, 56, 65, 70, 77, 78, 88, 89, 90] and fix [23, 24, 54, 82] vulnerable regexes— or

1
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Addressing ReDoS
during composition

Coping with
ReDoS regexes

Changing the
infrastructure

Theory & 
Anti-patterns

Detecting, Repairing, and 
Recovering (from) ReDoS

Changing the regex
engines

ReDoS
hazards

Figure 1.1: The Swiss cheese model [66, 67] (defense in depth) for ReDoS. Most existing
techniques to address ReDoS-vulnerable regexes are applied during their maintenance or
after their deployment. Our work provides early prevention, avoiding the composition of
vulnerable regexes in the first place.

after software deployment [14, 26, 33].

In this paper, we set a different goal: preventing the introduction of ReDoS in the

first place —at regex composition time, as illustrated in Figure 1.1. We propose a novel

theory of regex infinite ambiguity (IA) —a necessary component of ReDoS— and derive

a collection of anti-patterns from it. We thus leverage our foundational contribution to

enable a practical one. Developers can apply our anti-patterns at composition time to avoid

introducing infinitely ambiguous (IA) regexes in their source code, and thus avoid ReDoS.

Our proposed theory and anti-patterns fill a gap in the existing multi-layer defense against

ReDoS, providing a coding standard to prevent it at composition time instead of at mainte-

nance or deployment time. Our approach aligns with the multi-layer approach to software

security known as defense in depth [75], or the Swiss cheese approach [51, 66, 67]. When

using many layers to defend against security problems, the strengths of each layer can coun-

terbalance the limitations of the others. Also, different defense layers may better fit the

workflow of different software development teams.
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To the extent of our knowledge, only two existing approaches may (partially) support devel-

opers to avoid composing IA regexes, both of which are limited. First, Brabrand & Thomsen’s

theory [18] characterizes ambiguous regexes, but does not distinguish between finite (safe)

and infinite (unsafe) ambiguity. Our proposed theory improves upon Brabrand & Thomsen’s

by soundly and completely characterizing infinitely ambiguous regexes. Second, existing

anti-patterns in reference texts characterize regexes vulnerable to ReDoS [39, 44, 45, 76].

However, a recent study found that they are insufficient —they have a large ratio of false

positives [29]. Our proposed anti-patterns improve upon existing anti-patterns by being de-

rived from a formal theory of infinite ambiguity, and achieving high precision and recall as

a result.

As a prevention measure, our proposed work also follows the growing trend in software

security of shifting left security concerns —addressing them early in the life-cycle to achieve

benefits in cost savings, quality control, and speed to market e.g., [4, 5, 6]. More generally,

in software engineering, it is common wisdom that problems detected earlier are easier and

cheaper to fix —driving common practices like continuous integration [47] and modern code

review [12]. Also, since we designed our anti-patterns for developer comprehension, we

contribute to the important mission of educating software developers in secure coding —as

a valuable complement to automated security tools [41].

We evaluated our proposed approaches. For our IA regex theory (chapter 5), we proved

(Appendix A) its soundness and completeness. To evaluate our anti-patterns (chapter 6),

we performed two complementary experiments (chapter 7 and chapter 8). First, we evaluated

the effectiveness of our anti-patterns for comprehensiveness (chapter 7) by applying them to

a large-scale dataset of real-world regexes [31] Our experiments showed that our anti-patterns

provide higher precision and recall than existing anti-patterns —100% vs. 50% precision,

and 99% vs. 87% recall. We also learned that two of our six anti-patterns (Concat 1 and
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Concat 2) are enough to cover a wide majority of IA regexes (99%) in practice. Second,

we also evaluated the usability of our anti-patterns at regex composition time (chapter 8).

Our human-subjects experiment (N = 20) showed that all our studied practitioners (100%)

successfully applied our anti-patterns during regex composition for all our 5 studied tasks,

greatly improving the success that they achieved when applying existing anti-patterns (50%).

This paper provides the following contributions:

1. A novel theory that soundly and completely characterizes regex infinite ambiguity (chap-

ter 5).

2. A collection of (IA) anti-patterns of regex infinite ambiguity, derived from our theory, to

apply at composition time to avoid inserting regexes vulnerable to ReDoS (chapter 6).

3. An evaluation of the comprehensiveness of our proposed IA anti-patterns over a large-scale

of real-world regexes, showing that they could capture the wide majority of IA regexes

(chapter 7).

4. A human-subjects evaluation, showing that our IA anti-patterns are also effective when

applied in practice by developers to compose regexes (chapter 8).



Chapter 2

Background

This section provides background on regexes (§2.1) and ReDoS (§2.2), describes the impact

of ReDoS in practice (§2.3), and discusses the threat model (§2.4).

2.1 Regular Expressions (Regexes)

2.1.1 Regexes

A regex is a compact descriptive format used to specify a language: i.e., a set of strings.

Given a finite alphabet of terminal symbols, Σ, and the metacharacters, ‘|’, ‘·’, and ‘∗’, the

regex syntax is [71]:

R → ϕ
∣∣∣ ϵ ∣∣∣ σ ∣∣∣ R1|R2

∣∣∣ R1·R2

∣∣∣ R1∗

where ϕ denotes the empty language; ϵ is the empty string; the characters σ ∈ Σ are

terminal symbols; R1|R2 is alternation (union); R1·R2 is concatenation; and R∗ is zero or

more repetition (Kleene closure [53]). The language function L : R → 2Σ
∗ gives semantics:

L(ϕ) = ϕ L(R1|R2) = L(R1) ∪ L(R2)
L(ϵ) = {ϵ} L(R1·R2) = L(R1)·L(R2)
L(σ) = {σ} L(R∗) = L(R)∗

We refer to the above “regular” regexes, including alternation, concatenation, repetition, and

5



6 CHAPTER 2. BACKGROUND

“syntactic sugar” extensions, as (Kleene’s) K-regexes. These “syntactic sugar” extensions

include character ranges [a-c] (equivalent to a|b|c); optional regex R? (as R|ϵ); and various

forms of repetition such as R+ (equivalent to RR*) and R{2,3} (equivalent to RR|RRR).

Outside the scope of K-regexes, there are also non-regular features. The most commonly

supported non-regular features are lookaround assertions, backreferences, atomic groups,

and possessive quantifiers [39]. These are semantically complex and their use is rare [20, 32].

Our theory and anti-patterns therefore support K-regexes but currently exclude non-regular

features.

2.1.2 Regex Ambiguity

The regex language semantics allow membership to be checked using a parser. A regex is

ambiguous if there is a string in its language that can be matched with more than one parse

tree [18, 78]. For example, the regex a|a can parse the input “a” in two ways, i.e., yielding

two parse trees, one using the left a and one the right.

For K-regexes, a regex match can be equivalently performed by simulating an input on a

non-deterministic finite automaton (NFA) constructed from the regex (e.g., using Thomp-

son’s algorithm [80]). To simplify discussion, we will reason about regex ambiguity over an

equivalent, ambiguity-preserving, ϵ-free NFA [86, 89] (with no ϵ-loops). From the NFA per-

spective, a regex’s NFA is ambiguous if there is a string that can be accepted along multiple

paths of the NFA.
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2.1.3 Infinitely Ambiguous (IA) Regex

Regexes can have various degrees of ambiguity: no ambiguity (deterministic); finitely am-

biguous (bounded ambiguity regardless of input length); or infinitely ambiguous (polynomial

or exponential) in the length of the input [10, 74]. A regex is infinitely ambiguous if it has a

sub-regex (equivalently, an NFA section) with the infinite-degree-of-ambiguity (IDA) prop-

erty [86]. Given an ϵ-free finite automaton A, the necessary and sufficient conditions for

A to be infinitely ambiguous are given by Weber & Seidl [86]. Next we summarize these

conditions.

Figure 2.1(a) illustrates how a polynomially IDA (PDA) section appears in the NFA of a

polynomially ambiguous regex. A substring label(πi) can be matched in the loop π1 at node

p, the path π2 from p to q, or another loop π3 at q. For example, consider the regex a*a*

for an input “aa...a” of length N . As any two partitions of the input can be matched with

the first a* and second a*, there are N matching paths. Each of those paths costs O(N), so

the total time complexity is quadratic in the size of input O(N2).

Figure 2.1(b) illustrates an exponentially IDA (EDA) section in the NFA of an exponentially

ambiguous regex. A substring label(πi) can be matched in either of two loops π1 or π2 at

node p. The regex (a|a)* is a representative example of exponentially ambiguous regexes.

Each ‘a’ of the input “a...a” can be matched by either the upper or lower loop, and thus

the total number of matching paths becomes 2N , leading to an exponential time complexity

O(2N).
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... p...
π1

q
π2

π3

......

label(π1) = label(π2) = label(π3)

(a) PDA (or IDAd)

... p...
π1

π2

......

label(π1) = label(π2)

(b) EDA

Figure 2.1: Illustration of Polynomial and Exponential Degree of Ambiguity (PDA, EDA)
in the NFA [86].

2.2 Regex-Based Denial of Service (ReDoS)

Regex-based Denial of Service (ReDoS) [27, 33] is a security vulnerability by which a web

service’s computational resources are diverted from legitimate client interactions into an

expensive regex match, degrading its quality of service. Following the presentation of Davis

et al. [33], ReDoS is caused by a combination of three Conditions:

(C1) a backtracking regex engine used in evaluation, and

(C2) a super-linear (SL) regex, applied to evaluate

(C3) a malign input.

2.2.1 Backtracking Regex Engine

Most regex engines (e.g., versions of PHP, Perl, JavaScript, Java, Python, Ruby, and C#)

use a backtracking search algorithm, e.g., Spencer’s [72], to determine whether an input is in

the language described by a regex [25, 31]. The typical implementation has good common-

case performance but can be problematically slow in the worst case — e.g., when it evaluates

a super-linear (SL) regex with malign input [27, 28, 29].
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2.2.2 Super-linear (SL) Regex

An SL regex is an IA regex whose NFA has a prefix section, followed by an IDA section

(either PDA or EDA), followed by a suffix section [90]. The IDA section is the root cause of

the regex’s super-linear behavior. The prefix must be considered to reach this IDA section,

and the suffix must typically lead to a mismatch in order to trigger backtracking.

2.2.3 Malign Input

A malign input triggers the super-linear behavior of an SL regex by driving the backtracking

engine into evaluating a polynomially or exponentially large number of possible NFA paths,

exhausting available resources. Following the structure of an SL regex, a malign input is

composed of three sections: a prefix, then a pump, then a suffix. The prefix brings the

engine to the IDA section of the regex, the pump produces polynomially or exponentially

many paths to explore, and the suffix causes the engine to mismatch. This drives the engine

to backtrack through the many paths [16].

2.2.4 SL vs. IA Regexes

Infinite ambiguity is a necessary but insufficient condition for super-linear behavior. For

example, the regex (a*)*.* is IA but not SL. Its final sub-regex .* accepts any string, so

no mismatch-triggering suffix exists.
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2.3 The Impact of ReDoS in Practice

The impact of a slow regex varies depending on how it is used in a web service. For example,

the company Cloudflare used a regex as part of deep packet inspection. When it deployed a

quartic regex in 2019, its network routing servers spent all of their time on a regex match,

effectively halting their CDN service [46]. As another example, the popular Q&A website

Stack Overflow used a quadratic regex for modest server-side rendering. When a long prob-

lematic post reached the homepage, access to the homepage took several seconds, causing

their monitoring system to mark each of their backend servers inoperable in succession. This

reduced their load-balancing capacity, eventually leading to an outage [37].

Beyond these well-publicized examples of ReDoS, we examined CVE data for another per-

spective on the impact of ReDoS in practice. Figure 2.2 shows the increasing trend of ReDoS

CVEs each year since 2010.

2.4 Threat Model

We suppose the following threat model for ReDoS, aligned with the common use of regexes for

input sanitization in web software [20, 60, 90]. The victim’s regex engine uses a backtracking

regex engine (ReDoS Condition 1), which is common for many server-side programming

languages. The victim uses a regex to sanitize the untrusted input (Condition 2). The

attacker controls the input string (Condition 3). The input string could be arbitrary long.

Bounding its length from the server side is not effective [29]. Both Stack Overflow and

Cloudflare cases processed user-controlled strings containing kilobytes of text.
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Figure 2.2: CVEs due to ReDoS since 2010. The data were obtained by a two-step process:
a preliminary labeling of the CVE database using key words and phrases (e.g., “ReDoS”
or “extremely long time” with a reference to regular expressions), followed by a manual
inspection for accuracy.



Chapter 3

Review of Literature

Regexes are a ubiquitous tool used in security-sensitive contexts. Given the importance of

regexes, researchers have examined the ReDoS problem from many perspectives.

3.1 Empirical measurements of ReDoS in practice

Although the ReDoS attack was proposed twenty years ago by Crosby and Wallach [27,

28], researchers have only recently attempted to estimate its impact. In 2018, Davis et

al. reported that SL regexes were present in many popular open-source software modules,

and that engineers struggled to repair them [29]; in 2019 they observed that these regexes

displayed super-linear (SL) behavior in the built-in regex engines used in most mainstream

programming languages [31, 32]. Concurrently, Staicu & Pradel showed that 10% of Node.js-

based web services were vulnerable to ReDoS due to their use of vulnerable npm modules [73].

These findings motivated substantial further research into the ReDoS problem. Web services

must process user input (ReDoS condition 3), so researchers have examined infrastructure-

level solutions (ReDoS condition 1) and application-level solutions (ReDoS condition 2).

12
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3.2 Changing the Infrastructure

3.2.1 Changing the regex engine

There are both classic and more recent alternatives to the exponential-time backtrack-

ing regex algorithm. The earliest published regex matching algorithms, by Brzozowski in

1964 [19] and Thompson in 1968 [80], offer linear-time guarantees. There are production-

grade implementations of Thompson’s approach, notably Google’s RE2 regex engine [26] and

the engines in Rust [35] and Go [43]. Microsoft has considered Brzozowski’s approach for

.NET [69], as well as deterministic matching strategies [48, 81]. However, these algorithms

are difficult to adopt in legacy programming languages, since it does not provide support for

non-regular regex features. Davis et al. presented an alternative approach that preserves the

backtracking framework [72], but reduces the time complexity to linear via memoization [33].

While this approach is sound, it trades space for time and may thus simply exhaust another

resource instead.

3.2.2 Abandoning regexes

To avoid ReDoS, some advocate alternative approaches to string matching. Davis et al. re-

ported that reverting to built-in string functions was a popular ReDoS repair technique [29].

However, regexes exist for a reason — they concisely express long sequences of string opera-

tions. To safely benefit from expressiveness, the most prominent regex alternative is parsing

expression grammars (PEGs) [38]. The Rosie Pattern Language simplifies converting regexes

into PEGs [49]. Although this approach is attractive, technical inertia suggests that regexes

are here to stay.
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3.3 Coping With SL Regexes

The majority of ReDoS research assumes that SL regexes are already present in a web service,

and considers various coping mechanisms.

3.3.1 Detecting SL Regexes

Many approaches have been proposed to automatically identify super-linear regexes. Many

researchers statically analyze the NFA of the regex. Berglund et al. [16] defined a prioritized

type of NFA to simulate a backtracking engine in Java and decide if a regex will show SL

behavior. Weideman et al. [88, 89] also use a prioritized NFA and look for IDA in it. Wustholz

et al. [90], also look for the IDA pattern in the NFA and compute an attack automaton that

produces attack input strings. Liu et al. [56] adds support for modeling and analyzing less

common regex features, e.g., set operations.

Others statically analyze different representations of the regex. Kirrage et al. [52] analyze an

abstract evaluation tree of the regex. Rathnayake et al. [65] look for exponential branching

in the regex evaluation tree. Sugiyama et al. [77] analyzes the size of a tree transducer for

the regex. Finally, Sulzmann et al. [78] use Brzozowski derivatives to create a finite state

transducer to generate parse trees and minimal counter-examples.

Finally, other approaches apply dynamic analysis to detect SL regexes. Shen et al. [70] and

McLaughlin et al. [58] proposed search algorithms for inputs with super-linear matching

time. The broader category of algorithmic complexity detectors, e.g., [17, 59, 62, 64, 87],

can also be extended to detect ReDoS.



3.4. ADDRESSING REDOS DURING REGEX COMPOSITION 15

3.3.2 Repairing SL Regexes

Other approaches focus on repairing SL regexes to make then non-SL. These approaches

offer trade-offs for the repaired regex, in: semantic similarity, (perceived) readability, and

support for uncommon features. Van der Merwe et al. presented a modified flow algorithm

to convert an ambiguous K-regex into an equivalent unambiguous one [82], with perfect

semantic equivalence, but lower readability. Cody-Kenny et al. proposed evolving a regex

towards a higher-performing alternative — though evaluated on average-case performance,

this scheme may also work for worst-case performance [24], supporting uncommon features

but with only approximate semantics. More recently, Li et al. [54] proposed an approach

to repair SL regexes with deterministic regex constraints to avoid regex ambiguity. This

approach uses a human-in-the-loop to provide good examples. Finally, Claver et al. [23]

proposed a synthesis-based approach for repairing SL regexes.

3.3.3 Recovering From ReDoS

After a system containing a ReDoS vulnerability is deployed, it is possible to detect and

isolate ReDoS attacks to minimize the damage incurred. Bai et al. proposed the only

ReDoS-specific approach of this kind, applying deep learning to detect attack strings and

redirect them to a sandbox [14]. More general approaches that consider anomalous resource

utilization, e.g., time [30], CPU [59], or other resources [34].

3.4 Addressing ReDoS during Regex Composition

While substantial study has been made of dealing with SL regexes after they enter a code-

base, only two existing approaches (partially) support developers at composition time. The
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philosophy of these approaches is to avoid composing IA regexes in the first place. Davis et

al. characterized a set of practitioner anti-patterns to avoid ReDoS, but reported that these

have a high false positive rate [29]. Alternatively, Brabrand & Thomsen developed theories

to identify unambiguous regexes, and treat all other regexes as suspect, including both SL

regexes and merely finitely ambiguous (i.e., non-vulnerable) regexes [18].

Our proposed work provides important improvements over these two approaches. In contrast

with Brabrand & Thomsen’s, our theory distinguishes between finite and infinite ambiguity,

enabling developers to distinguish between likely-unproblematic (non-IA) and problematic

(IA) regexes. In contrast with practitioner-prescribed anti-patterns, we provide a theoreti-

cal grounding to formally capture their limitations, and we provide new anti-patterns that

provide higher precision and recall capturing IA regexes.



Chapter 4

Problem Statement and Proposed

Approach

4.1 Problem Statement

In light of the gap in the first stage of the Swiss cheese model (Figure 1.1), our goal is to

support developers to avoid composing regexes vulnerable to ReDoS. An ideal solution must

accomplish this while honoring three additional properties drawn from regex engineering

practices.

Lightweight: First, developers may compose and evolve multiple drafts before settling on

a regex to commit into their code base [13, 60]. They also often consider multiple regex can-

didates to reuse, from multiple sources (e.g., StackOverflow, or other software projects) [60],

and in multiple programming languages [31]. Thus, developers wanting to avoid composing

SL regexes need a technique that they can apply in an agile way to assess multiple (alterna-

tive or refined) candidate regexes coming from diverse programming languages and sources,

some of which may be incomplete, incorrect, or not in an executable environment (e.g., in

StackOverflow).

Regex-modality-based: Second, even if there are many ways to describe regex behavior

mathematically, including transducers, NFAs, and Brzozowski derivatives, many developers

17
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can only understand the regex modality [13]. Therefore, any approach to help developers

avoid composing SL regexes and aiming to support a wide population of developers should

analyze and explain its results in the regex modality.

Conservative: Finally, developers evolve regexes over time in their codebases, often by

extending their language [84]. Therefore, a technique supporting developers to avoid com-

posing SL regexes is ideally conservative in the regexes that it identifies as risky —potentially

also including regexes that may not be currently SL, but are likely to become SL after being

modified.

4.2 Proposed Approach

Our work aims to help developers to avoid introducing SL regexes. For that goal, we propose

a novel theory of regex infinite ambiguity (IA) (chapter 5), and we derive a collection of anti-

patterns from it (chapter 6).

Lightweight: To support developers in diverse scenarios of regex composition, we propose

a theory and anti-patterns that developers can learn and apply manually in their head, as

they assess draft regexes (complete or not, correct or not, executable or not, and in any

language).

Regex-modality-based: To support a wide population of developers, our theory and anti-

patterns let developers assess regexes in the regex modality. For many developers, it is the

only one that they understand [84].

Conservative: To provide a conservative assessment of the risk of regexes, our theory and

anti-patterns help developers identify IA regexes (instead of SL ones). IA regexes capture

all SL regexes —they are a necessary condition for them. Also, non-SL IA regexes can



4.3. THE NATURE OF OUR CONTRIBUTIONS 19

accidentally become SL during maintenance [84], e.g., by potentially introducing a mismatch-

triggering suffix that makes them SL. As a final benefit, detecting IA regexes is likely simpler

for developers to apply, since it requires fewer conditions.

4.3 The Nature of our Contributions

Our theory is a foundational contribution: it provides a set of rules to soundly and completely

describe the characteristics of IA regexes. Our anti-patterns are a practical contribution:

a simplified articulation of our theory into a collection of anti-patterns that developers can

apply to assess whether their regex under composition is IA. We discuss how these approaches

complement existing ReDoS defenses in chapter 9.

4.4 Evaluation Design

Next, we prove our regex IA theory (chapter 5 and Appendix A). We then evaluate our

regex IA anti-patterns in two complementary ways: in comprehensiveness (chapter 7) and

in usability (chapter 8). For comprehensiveness, we measured their effectiveness to capture

IA over a diverse collection of real-world regexes. For usability, we studied how they helped

developers wen composing regexes, in a human subjects experiment.



Chapter 5

Theory of Regex Infinite Ambiguity

This section introduces an existing theory of regex ambiguity [18], discusses its limitations,

and presents our novel theorems.

Recalling chapter 2, a regex with an infinite degree of ambiguity (IA) [86] has the necessary

condition for super-linear (SL) regex behavior [27, 28, 29]. Though the NFA-level conditions

for IA regexes (namely PDA and EDA regions) are well known [86], we lack characterizations

in terms of regex syntax and semantics. We provide such a description to help developers

avoid ReDoS at regex composition time.

5.1 Preliminaries

Brabrand & Thomsen [18] developed the state of the art description of regex-level ambiguity.

They introduced an overlap operator, ∨∩ , between two languages L(R1) and L(R2). The set

L(R1) ∨∩ L(R2) contains the ambiguity-inducing strings that can be parsed in multiple ways

across L(R1) and L(R2). More formally, with X = L(R1) and Y = L(R2),

X ∨∩ Y = {xay | x, y ∈ Σ∗ ∧ a ∈ Σ+ ∧ x, xa ∈ X ∧ ay, y ∈ Y }

Using this operator, Theorem 0 summarizes their findings.

20
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Theorem 0 (Brabrand & Thomsen [18]). Given unambiguous regexes R1 and R2:

(a) R1|R2 is unambiguous iff L(R1) ∩ L(R2) = ϕ.

(b) R1·R2 is unambiguous iff L(R1) ∨∩ L(R2) = ϕ.

(c) R1∗ is unambiguous iff ϵ /∈ L(R1) ∧ L(R1) ∨∩ L(R1∗) = ϕ.

In their implementation of this Theorem, Brabrand & Thomsen use Møller’s BRICS li-

brary [61], and actually rely on what we call the Møller overlap operator, Ω. We use this

operator in our theorems. The Møller overlap operator describes only the ambiguous core

“a”:

X Ω Y = {a | a ∈ Σ+ ∧ ∃ x, y ∈ Σ∗s.t. x, xa ∈ X ∧ ay, y ∈ Y }

Limitation: Given unambiguous regex components, Theorem 0 specifies when a composed

regex remains unambiguous. Yet not all ambiguity is harmful. For example, the regex \w|\d

is finitely ambiguous. This may improve readability [9]; it is not a ReDoS risk.

5.2 Regex Infinite Ambiguity Theorems

This section presents our regex ambiguity theory for composition with alternation (Theo-

rem 1), concatenation (Theorem 2), and star (Theorem 3). We give proof sketches, examples,

and the ReDoS implications. Full proofs are in Appendix A.
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Theorem 1 (Ambiguity of Alternation). Given unambiguous regexes R1 and R2,

(a) R1|R2 is finitely ambiguous iff L(R1) ∩ L(R2) ≠ ϕ.

(b) R1|R2 cannot be infinitely ambiguous.

Proof Sketch: The theorem states that given unambiguous regexes R1 and R2, if R1|R2 is

ambiguous, then it is always finitely ambiguous. Since R1 and R2 are both unambiguous,

for any matching input w, there is only one path through R1 and R2. Therefore, for R1|R2

and any matching input w, there are at most two matching paths.

Example: For the regex a*|a*, consider an input “a...a” of length N . Regardless of the

input length, the number of accepting paths will be at most 2: i.e., the first a∗ or the second

a∗.

ReDoS Implications: If two regexes R1 and R2 are unambiguous, R1|R2 is always safe

(does not form IA).

Theorem 2 (Ambiguity of Concatenation). Suppose unambiguous regexes R1 and R2,

and that L(R1) ∨∩ L(R2) ̸= ϕ (so R1·R2 is ambiguous by Theorem 0). Then:

(a) R1·R2 is infinitely ambiguous iff L(R1) contains the language of a regex BC ∗ D

and L(R2) contains the language of a regex EF ∗G, where ϵ /∈ L(C) ∧ ϵ /∈ L(F ) ∧

L(C) ∩ L(F ) ∩ L(DE) ̸= ϕ.

(b) Otherwise, R1·R2 must be finitely ambiguous.

Proof Sketch: ⇐= : Consider the string “bcc...cdeff...fg” ∈ L(R1·R2) which can be divided

into two strings “bcc...cd” ∈ L(BC ∗D) ⊂ L(R1) and “eff...fg” ∈ L(EF ∗G) ⊂ L(R2) where
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c = f = de. By hypothesis, the string “dede...de” can be matched arbitrarily many times in

R1 (by C*) and in R2 (by F*). We can choose an arbitrarily long string and obtain arbitrary

ambiguity in R1·R2.

=⇒ : Suppose R1·R2 is infinitely ambiguous. The NFA corresponding to R1·R2 cannot

contain the EDA structure because this requires a self-loop — i.e., that R1 or R2 is already

ambiguous. Therefore the NFA of R1·R2 must contain an PDA structure, as shown in Fig-

ure 2.1(a). We can map the two loops π1 and π3 with C* and F* respectively; and the bridge

π2 with D·E in the regex representation, where L(C) ∩ L(F ) ∩ L(DE) ̸= ϕ.

Example: For (a*a)(aa*) and the input “aa...a” of length N , it has N accepting compu-

tations, one for each of the indices of the input at which to split the string into a left half

consumed by R1 and a right half consumed by R2.

ReDoS Implications: Though two regexes R1 and R2 are unambiguous, R1·R2 could be

IA, thus concatenation should be used with care. Theorem 2(a) implies that for R1·R2 to be

IA, there must be a star component in both R1 and R2. In §6.1, we introduce three forms

of concatenation anti-patterns based on this observation.

Theorem 3 (Ambiguity of Star). Given unambiguous regex R,

(a) R∗ is infinitely ambiguous iff ϵ ∈ L(R) ∨ L(R) Ω L(R∗) ̸= ϕ.

(b) R∗ cannot be finitely ambiguous.

Proof Sketch: The theorem states that given an unambiguous regex R, if R∗ is ambiguous,

then it is always infinitely ambiguous. Suppose R∗ is ambiguous. Then there is some input

w that it can match in k ways, k > 1. So there is an input ww that it can match in k∗k = k2

ways. The degree of ambiguity increases as a function of input length: i.e., R∗ is infinitely
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ambiguous.

Example: For the regex (a*)*, consider an input “aaa...a” of length N . There are two

ways (inner * or outer *) to match each ‘a’ of the input, making the total number of ways

to match to be 2N .

ReDoS Implications: Even though an original regex R is unambiguous, R∗ can be IA.

Later in §6.2, we introduce an anti-pattern that only checks for a subset of conditions for

simplicity.

Theorem 4. Given a finitely ambiguous regex R, R∗ is always infinitely ambiguous.

Proof Sketch: The proof follows the same logic as Theorem 3.

Example: For the regex (a|a)*, consider an input “aaa...a” of length N . There are two

ways (first a or second a) to match each ‘a’ of the input, making the total number of ways

to match to be 2N .

ReDoS Implications: If R is finitely ambiguous, from alternation (R = P |Q) or concate-

nation (R = P ·Q), R∗ is always IA. Later in §6.2, we introduce two anti-patterns of the

form (P |Q)∗.



Chapter 6

Anti-patterns for Regex Infinite

Ambiguity

This chapter describes the proposed anti-patterns for IA regexes (IA anti-patterns, in short),

derived from the above theory of regex infinite ambiguity. Ideally, anti-patterns should be

sound and complete as the theory, yet usable and simple as existing anti-patterns. With

the two goals in mind, we extracted six IA anti-patterns from the theory that we thought

are common and easy to describe. They were iteratively refined through internal discussion

between several of the authors. Table 6.1 summarizes our proposed IA anti-patterns and

examples. Since alternation itself cannot make a regex IA (Theorem 1), there is one group

of concatenation anti-patterns derived from Theorem 2 and another group star anti-patterns

from Theorem 3. Later in chapter 7 and chapter 8, we quantitatively and qualitatively

compare our anti-patterns with state-of-practice (SOP) anti-patterns.

6.1 Concatenation Anti-patterns

The Concat anti-patterns are based on Theorem 2, stating that a concatenated regex R =

R1·R2 becomes IA if L(R1) contains the language of a regex BC ∗ D and L(R2) contains

the language of a regex EF ∗G, where L(C)∩L(F )∩L(DE) ̸= ϕ. In other words, L((BC ∗

D)(EF ∗G)) ⊂ L(R). This implies that R has a sub-regex of the form P ∗SQ∗ in which P∗

25
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Table 6.1: Description of our proposed IA anti-patterns with examples.

Anti-
pattern

Description Example

Concat 1 R = ...P*Q*... (R has a sub-regex P*Q*):
The two quantified parts P* and Q* can gen-
erate some shared string s.

a*(aa)* : both can generate aa

Concat 2 R = ...P*SQ*... (R has a sub-regex P*SQ*):
The two quantified parts P* and Q* can gen-
erate a string s from the middle part S.

(a|b)*ab(ab)* : quantified parts (a|b)*
and (ab)* can generate the middle part
ab.

Concat 3 R = ...P*S*Q*... (R has a sub-regex
P*S*Q*): Advanced form of Concat 1. Since
S* includes an empty string, the ambiguity
between P* and Q* can be realized.

a*b*a*, b* can be skipped.

Star 1 R*, R= (P|Q|...): There is an intersection
between any of the two alternates i.e., both
can generate some shared strings.

(\w|\d)*, both can generate digits [0-9].

Star 2 R*, R= (P|Q|...): You can make one option
of the alternation by repeating another op-
tion multiple times or by concatenating two
or more options multiple times.

(x|y|xy)*, we can create the 3rd option
xy by adding the first option x and second
option y.

Star 3 R*, R= (...P*...): Nested quantifiers, but
only if RR would follow any of the concat an-
tipatterns above.

For (a*)*, we write a*a*, it is infinitely
ambiguous by Concat 1. For (xy*)*, we
write xy*xy*, it is not infinitely ambigu-
ous by any of the concat anti-patterns.

and Q∗ are mapped to the C∗ component and F∗ component respectively, and S is mapped

to the bridge component DE between C∗ and F∗.

Concat-1: The anti-pattern where P ∗ Q∗ is a sub-regex of R represents a simplest form

without the bridge S. Developers only need to consider if there is a string matched in both

P∗ and Q∗.

Concat-2: The anti-pattern where P ∗SQ∗ is a sub-regex of R has the bridge S component.

Developers need to find a string matched in all P∗, Q∗, and S.

Concat-3: The anti-pattern where P ∗ S ∗Q∗ is a sub-regex of R represents the case with
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the optional bridge S. As in Concat-1, developers consider for a string matched in both P∗

and Q∗.

Gap Analysis: The Concat anti-patterns represent three different ways that the bridge

component DE (from Theorem 2) may appear as a sub-regex of the form ϵ, S, or S∗. Thus,

there is no gap between theory and anti-patterns.

6.2 Star Anti-patterns

The Star anti-patterns stem from Theorem 3 and Theorem 4.

Star-1 and Star-2: These anti-patterns are designed to prevent (some) regexes of the form

R∗ where R = (P |Q|...). Theorem 4 states that if R is finitely ambiguous, then R∗ becomes

IA. From Theorem 1(a), alternations may introduce finite ambiguity. The Star-1 and Star-2

anti-patterns describe two common conditions when the subregex (P |Q|...) becomes finitely

ambiguous.

Gap Analysis: There is a gap between Theorem 4 and the Star-1 and Star-2 anti-patterns.

Our anti-patterns do not consider all possible forms of finitely ambiguous regexes. For

instance, the concatenation may also introduce finite ambiguity (Theorem 2(b)). Thus,

some regexes of the form (P ·Q)∗ could be IA as well: e.g., ((a|ab)(c|bc))*. Regexes

under these missing conditions would appear as false negatives for these anti-patterns.

Star-3: This anti-pattern prevent (some) regexes of the form R∗ where R has a sub-regex

of the form P∗. Theorem 3 states the conditions when R∗ becomes IA. considering the first

condition ϵ ∈ L(R) is relatively trivial. Yet, the second condition L(R)ΩL(R∗) ̸= ϕ requires

reasoning about a language overlap between L(R) and an arbitrary repetition of L(R∗),

which could be tricky. Based on the common knowledge that a nested quantifier (e.g.,
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(P∗)∗) is bad [76], the Star-3 anti-pattern only considers the case where R has a sub-regex

P∗, a more general form of nested quantifiers. The Star-3 anti-pattern further simplifies the

condition and asks developers to consider the overlap between L(R) and (twice-repeated)

L(R·R), using the above Concat anti-patterns.

Gap Analysis: The Star-3 anti-pattern does not incorporate all the conditions in Theo-

rem 3. Thus, regexes under the missing conditions would appear as false negatives for this

anti-pattern.



Chapter 7

Experiment 1: Comprehensiveness

Our proposed IA anti-patterns (chapter 6) are backed by our theory (chapter 5 and Ap-

pendix A). Next, we further validated our IA anti-patterns with an automated experiment.

We evaluated how effective our proposed (IA) anti-patterns would be in identifying IA

regexes among a broad set of regexes. —over a large-scale dataset of 209,188 real-world

regexes [31]. To validate our IA anti-patterns over such a large set of regexes, we automated

their application —by implementing an experimental prototype in the form of automatic

scripts. To provide a point of reference, we also implemented scripts for the existing state-

of-the-practice (SOP) anti-patterns, and we also executed them over the same dataset. We

then measured the effectiveness of both sets of anti-patterns using precision and recall.

7.1 Studied Techniques

We studied two sets of anti-patterns in this experiment:

7.1.1 Our Proposed (IA) Anti-patterns

For each anti-pattern, we implemented a script in Java that checks if a given regex is IA

according to it. We parsed regexes in the PCRE format, using the ANTLR 4 grammar and

parser for PCRE [1]. We used the BRICS [61] tool to measure whether multiple sub-regex

29
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parts can generate any shared string.

We implemented our IA anti-patterns to support K-regexes, i.e., all regex features except for

non-regular ones, since they are complex and rare (see §2.1.1). We also excluded extended

character classes such as POSIX and Unicode (for simplicity). These non-regular features and

extended character classes are also not supported by most past approaches to automatically

identify ReDoS during software maintenance [16, 52, 65, 77, 78, 88, 89, 90].

Our implementation supports 450,753 regexes (83.8%) of our studied large-scale dataset (all

but 10% with non-regular features, 6% not supported by BRICS, and 0.2% with extended

character classes). This level of completeness is comparable to prior research prototypes for

regex analysis [33, 65, 90].

7.1.2 State-of-the-practice (SOP) Anti-patterns

To provide a point of reference, we also executed a set of state-of-the-practice (SOP) anti-

patterns that are discussed in reference texts on regexes to avoid ReDoS [39, 44, 45, 76]. We

used their implementation provided by Davis et al. [29].

QOA (Quantified Overlapping Adjacency): An example of this anti-pattern is: /\w*#?\w*/.

The two quantified \w* nodes overlap, and are adjacent because one can be reached from

the other by skipping the optional octothorpe. From each node we walk forward looking for

a reachable quantified adjacent node with an overlapping set of characters, stopping at the

earliest of: a quantified overlapping node (QOA), a non-overlapping non-optional node (no

QOA), or the end of the nodes (no QOA).

QOD (Quantified Overlapping Disjunction): An example of this anti-pattern is /(\w|\d)+/.

Here we have a quantified disjunction (/(...|...)+/), whose two nodes overlap in the dig-
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its, 0-9.

Star height >1: An example of this anti-pattern is /(a+)+/. To measure star height, we

traverse the regex and maintain a counter for each layer of nested quantifier: +, *, and check

if the counter reached a value higher than 1.

7.2 Ground Truth

We assessed the ground truth for whether a regex is IA or not by using one of the exist-

ing techniques intended to identify SL regexes during software maintenance: Weideman et

al.’s [88, 89] —we avoid potential implementation bias by not implementing our own ground-

truth checker, e.g., applying our theory. For a given regex, Weideman et al.’s detector returns

whether it is SL or not by analyzing its NFA. To fit our experiment, we modified it to return

instead if a regex is IA or not —making it stop after looking for IDA in the NFA, skipping

the search for the prefix and suffix that would make it SL

7.3 Dataset

We executed our studied anti-patterns over a large-scale dataset of real-world regexes from

open source software [31]. It contains 537,806 unique regexes, extracted from 193,524

projects, written in 8 programming languages. This dataset has been used by previous

studies for measuring ReDoS [31], repairing ReDoS [21, 33] and measuring general charac-

teristics of regexes [32]. We curated the dataset for our experiment. First, we removed the

295,151 regexes that were not supported by the tool that we used to obtain ground truth

(Weideman et al.’s [89]). Note that, while our implementation of our IA anti-patterns sup-

ported a larger percentage of the dataset (see §7.1 above), we had to discard those for which
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we could not collect ground truth, i.e., those unsupported by Weideman et al.’s.

Then, we also discarded 32,413 additional regexes that were not supported by the library

that we used to implement our anti-patterns (BRICS [61]), and 1,054 regexes with unicodes

and posix character classes, which are not supported by our implementation. This resulted

in 209,188 regexes that we analyzed in our experiment — one order of magnitude larger than

the evaluation of past ReDoS-detection approaches, which analyzed 15,000-30,000 regexes

e.g., [56, 70, 88, 89]. 32,005 of our studied regexes were IA, according to our ground truth.

7.4 Metrics

We evaluate our studied anti-patterns using the metrics expressed in Eqt. (7.1).

• Coverageap captures what ratio of all the IA regexes (irrespective of their ground-truth

anti-patterns) were predicted as IA by a given anti-pattern (ap). When we apply Coverageap

to the union of all anti-patterns together, we refer to it as Recall.

Coverageap =
|Predicted IAap ∩Ground-truth IA|

|Ground-truth IA| (7.1)

7.5 Results

We answer two separate questions, and discuss false positives/negatives.
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7.5.1 How Effective was Each of Our IA Anti-patterns at Identi-

fying IA Regexes?

Table 7.1 shows the Coverageap provided by each of our proposed IA anti-patterns. Note that

the Coverageap values do not add up to 100%, since some IA regexes may contain multiple

anti-patterns.

We make multiple observations in this table. First, all our IA anti-patterns as a group pro-

vided very high precision (100% altogether) and very high Coverageap —which is equivalent

to Recall in this case (99%, making false negatives also rare).

Second, we observed wide variations in the values of Coverageap for individual anti-patterns.

This means that they could be further simplified and still obtain very high Coverageap

altogether. Somebody wanting to learn only a single anti-pattern could learn only Concat 1

and still cover 54% of IA regexes —adding Concat 2, one would cover the large majority of

IA regexes, and so on.

Finally, before considering ignoring the less common (lower Coverageap) IA anti-patterns,

one should also consider their risk. While the star anti-patterns are less common (about

6% of all IA regexes), they are riskier —our theory shows that they lead to exponential

ambiguity.

7.5.2 How Effective were Our IA Anti-patterns Compared to the

State-of-the-practice (SOP) Anti-patterns?

In Table 7.2, we report the results for our studied anti-pattern families. It shows that

our proposed IA anti-patterns provided a substantial improvement in both precision (100%

compared to 50%) and recall (99% compared to 87%) when compared to the SOP anti-
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Table 7.1: Coverageap provided by our proposed IA anti-patterns. As some regexes fit
multiple IA anti-patterns, the final row eliminates double-counting.

IA Anti-pattern # correctly
flagged IA

Coverageap

Concat 1 17,349 54%
Concat 2 12,419 39%
Concat 3 414 1%
Star 1 192 <1%
Star 2 639 2%
Star 3 1,133 4%

All anti-patterns 31,537 99%

Table 7.2: Comparison between anti-patterns

Anti-patterns Precision Recall
IA anti-patterns 100% 99%
SOP anti-patterns 50% 87%

patterns. After taking a closer look, we found that the main reason why our IA anti-patterns

provided much higher precision than the SOP anti-patterns is that we reduced the number

of false positives. For example, the Star height > 1 anti-pattern can produce many false

positives e.g., the non-IA regex /(b*c)*/ has Star height = 2. Similarly, the main reason

why the IA anti-patterns provided higher recall is that we reduced the number of false

negatives for IA regexes, e.g., for regexes like (a|b)*(ab)* and (a|b|ab)*, where the SOP

anti-patterns would not find any overlap between (a|b) and (ab) and would not label them

as IA. In contrast, our concat 1 and star 2 anti-patterns, respectively, would label both as

IA.

We also observed that the SOP anti-patterns provided higher precision and recall in our study

than in Davis et al.’s [29]. This difference may be caused by multiple reasons: we studied

a different dataset; we applied them to identify IA regexes (Davis et al. applied them to

identify SL regexes); and we assumed full match for unanchored regexes (e.g., converting a+

to /^.*?a+$/) [31]), which reveals more IA regexes in the dataset.



7.6. RESULTS SUMMARY FOR EXPERIMENT 1 35

7.5.3 Understanding False Negatives

Finally, we also performed a deeper investigation into the root cause of the false negatives

of our IA anti-patterns (the 1% of IA regexes that they did not flag as IA).

From the comparison of our IA anti-patterns with our theory chapter 6, we know that some IA

regex constructions lead to IA that our anti-patterns will not capture, i.e., /((ab|a)(bc|c))*/.

However, we did not find such cases among the false negatives of our experiment.

The false negatives in our experiment were mainly regexes with constructions that were too

complex for our current anti-pattern scripts to detect. While this limitation of our imple-

mentation caused a few false negatives (affecting only 1% of IA regexes), our implementation

is still sound for our studied dataset —it caused no false positives.

7.6 Results Summary for Experiment 1

Experiment 1 shows a strong validation of our theory, and thus supports the proposed IA

anti-patterns derived therefrom. Our IA anti-patterns correctly classified the wide majority

of our studied regexes (over 99%) as true positives or true negatives, which also substantially

improved the state of the practice (SOP) anti-patterns.
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Experiment 2: Usability

We also evaluated whether our anti-patterns help developers when used in practice to com-

pose regexes — if developers can understand them and apply them in practice. For that

goal, we recruited 20 software developers and asked them to perform 5 regex composition

tasks. We asked them to use our anti-patterns to avoid introducing IA regexes in those

tasks. As baseline, we also asked them to perform the same tasks using the same state-of-

the-practice (SOP) anti-patterns that we studied in Experiment 1 (§7.1). We measured how

many developers correctly assessed whether their composed regex was IA, for each family of

anti-patterns and task.

8.1 Experiment Process

Our experiment consisted of four phases. (1) Training phase, where we trained the partic-

ipants about basic regex syntax, how ambiguity and infinite ambiguity work in regex and

some useful terminology for the study. (2) First task phase, where we showed participants

our IA anti-patterns (as in Table 6.1) and we asked our participants to perform 5 regex com-

position tasks. (3) Second task phase, where we showed participants the SOP anti-patterns

(as in §7.1) and we asked our participants to perform the same 5 regex composition tasks,

in the same order. To guard against learning effects, 50% of our participants (randomly

selected) applied first the IA anti-patterns first, and second the SOP anti-patterns, and the

36
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other 50% applied them in the opposite order. All participants applied both sets of anti-

patterns for all 5 tasks. (4) Concluding questions phase, where we asked the participants

some concluding questions.

For each regex composition task, we asked the participants to evaluate their regex drafts

to see if they were IA or not, using the assigned set of anti-patterns. We emphasized that

developers should apply the given anti-patterns, and not their opinion. We also explained

that they should not think that one set of anti-patterns was more correct than the other one

—so that they applied the anti-patterns, regardless from their perception of their correctness.

To learn if the anti-patterns were usable in a reasonable time-frame, we gave participants a

limit of 5 minutes to complete each task. We also asked them to think out loud. One author

of this work was present during all the human subject experiments to answer clarifying

questions.

8.2 Participant Recruitment

The target audience for this experiment consisted of practitioners with professional experi-

ence in software development, with knowledge about writing regexes (knows what repetition

operators like ∗ and + do). To recruit and screen for participants with these characteris-

tics, we distributed a survey. We obtained approval from our institution’s ethics board and

posted the survey on Twitter, Reddit (r/regex) and our institution’s mailing lists.

After screening our survey respondents for the criteria above, we performed our experiment

with 21 eligible participants. After the experiment was performed, we discarded one partic-

ipant, who composed incorrect regexes —that did not match any of the examples provided

in the specification— for 70% of the study tasks. As a result, we analyzed the performance

of 20 participants in this experiment. We compensated each participant with a $15 Ama-



38 CHAPTER 8. EXPERIMENT 2: USABILITY

Table 8.1: Our studied regex composition tasks.

Task Description Possible solution

1
Write one regex that matches one or more ‘b’ followed by a single ‘c’:
Example matching strings: bc, bbc, bbbbc, bbbbbc,
bbbbbbbbbbbbbbbbbbbbbc

non-IA: b+c
IA: (b+)+c

2

Write one regex that matches one or more repetitions of the following:
one or more ‘b’ followed by a single ‘c’: Example matching strings:
bcbc, bbcbbcbbc, bbbbbcbbbbbc,
bbbbbbbbbbbbbbbbbbbbbcbbbbbbbbbbbbbbbbbbbbbc

non-IA: (b+c)+
IA: ((b+)+c)+

3
Write a regex to match one or more ‘a’ or ‘b’, followed by one or more
repetitions of ‘ab’ Example matching strings:aab, bab, aaab, aaaaab,
bab, bbbab, aaaabababab, bbbbababababab

non-IA: (a+|b+)(ab)+
IA: (a|b)+(ab)+

4
Write a regex to match one or more occurrences of the strings ‘a’, ‘b’,
or ‘ab’. Example matching strings: aaaaaaaaaa, bbbbbbbbbbbb,
ababababababababab

non-IA: a+|b+|(ab)+
IA: (a|b|ab)+

5
Write one regex that matches one or more ‘a’ followed by an optional
‘b’ followed by one or more ‘a’. Example matching strings:
aaaabaa, aaaaa, abaaaa

non-IA: a+|a+ba+
IA: (a+b?a+)

zon gift card for participating in our study. Our participants had a median 1-2 years of

programming experience and median intermediate level of regex expertise (they understood

non-simple features, like non-greedy quantifiers, and character classes).

8.3 Studied Techniques

In this human-subjects experiment, we aim to evaluate the effectivenes provided by our IA

anti-patterns, in comparison with existing techniques that were proposed for the same context

i.e., to be applied manually by humans, at regex-composition time. Thus, we evaluated our

IA anti-patterns and the SOP anti-patterns, as described in §7.1.
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8.4 Tasks

We list the tasks that we asked our participants to perform in Table 8.1. We designed these

tasks so that participants could perform them in a bounded amount of time (5 minutes),

while still being representative of real-world regex composition. The draft solutions that we

anticipated for our tasks (and that our participants composed) had similar complexity to

typical real-world regexes according to [32]. For example, drafts had length 6-11 (median

regex length in Java: 15) and used 2-3 operators (Java: median 3).

Task 1 was an easy task, as warm-up, to get participants familiar with the structure of the

experiment. We designed the remaining 4 tasks to evaluate 4 specific scenarios. Tasks 2, 3,

and 4 targeted limitations that we identified in each of the three SOP anti-patterns, to learn

if our IA anti-patterns are more effective in those scenarios. Task 5 targets a scenario in

which the SOP anti-patterns are not limited, to learn if our IA anti-patterns are not worse

in such scenario. We expected both sets of anti-patterns to perform equally in tasks 1 and

5, and our IA anti-patterns to be more effective in tasks 2, 3, and 4. For task 2, we expected

Star height > 1 to flag the participant’s composed regex as IA, even when it is not. For task

3, we expected QOA to not flag the participant’s composed regex as IA, even when it is. For

task 4, we expected QOD to not flag the participant’s composed regex as IA, even when it

is.

8.5 Ground Truth

We used the same ground truth as in our previous experiment (§7.2) to label the regexes

composed by our participants as IA or not.
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Table 8.2: Accuracy: ratio of participants correctly using each anti-pattern set to identify if
their composed regex was IA.

SOP first, IA after
(N = 10)

IA first, SOP after
(N = 10)

All orders
(N = 20)

Task SOP
Accuracy

IA
Accuracy

SOP
Accuracy

IA
Accuracy

SOP
Accuracy

IA
Accuracy

1 100% 100% 100% 100% 100% 100%
2 10% 100% 0% 100% 5% 100%
3 20% 100% 20% 100% 20% 100%
4 30% 100% 20% 100% 25% 100%
5 100% 100% 100% 100% 100% 100%
All 52% 100% 48% 100% 50% 100%

8.6 Metrics

We measured how successfully our studied anti-patterns helped our study participants to

correctly identify whether their composed regexes were IA. For each studied task and possible

anti-pattern ordering (SOP first, or IA first), we measured the accuracy of each anti-pattern

set, i.e., the ratio of participants that could correctly identify whether their composed regex

was IA or not when using them.

8.7 Results

We report the results of our human-subjects experiment in Table 8.2. We calculated accuracy

as the ratio of participants that correctly identified whether their composed regex was IA.

In more detail:

For task 1, all participants (for all anti-pattern sets) composed a non-IA regex, and correctly

identified it as non-IA. We expected this result, since this was the warm-up task.
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For task 2, all participants when using SOP composed a non-IA regex, but only 1/20 correctly

identified it as non-IA. All participants when using our IA anti-patterns composed a non-IA

regex, and all correctly identified it as non-IA. In this task, the SOP anti-patterns misled

most participants to think that their composed regex was IA, when it was not.

For task 3, most participants when using SOP (15/20) composed an IA regex, but only 1/15

correctly identified it as IA. The remaining (5/20) participants when using SOP composed a

non-IA regex, but only 3/5 correctly identified it as non-IA. Then, most participants when

using our IA anti-patterns (16/20) composed an IA regex, and all correctly identified it as

IA. The remaining (4/20) participants when using our IA anti-patterns composed a non-IA

regex, and all correctly identified it as non-IA. In this task, the SOP anti-patterns misled

most participants to think that their composed regex was non-IA, when it was in fact IA.

For task 4, most participants when using SOP (13/20) composed an IA regex, but none

correctly identified it as IA. The remaining (7/20) participants when using SOP composed a

non-IA regex, but only 5/7 correctly identified it as non-IA. Then, most participants when

using our IA anti-patterns (15/20) composed an IA regex, and all correctly identified it as

IA. The remaining (5/20) participants when using our IA anti-patterns composed a non-IA

regex, and all correctly identified it as non-IA. In this task, the SOP anti-patterns misled

most participants to think that their composed regex was non-IA, when it was in fact IA.

For task 5, all participants (for all anti-patterns) composed an IA regex, and correctly

identified it as IA. We also expected this result, since this was the task in which we evaluated

non-inferiority, i.e., whether our IA anti-patterns would perform well in a scenario where the

SOP anti-patterns were not limited.

We make multiple observations from the results of this experiment. First, our proposed

IA anti-patterns allowed 100% of participants to correctly identify whether their composed
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regex was IA, for all tasks, and for all orderings. This is not surprising given that they are

derived from our theory, and the high precision and recall that they provided in chapter 7.

However, this result also shows that practitioners can apply them with high success in regex

composition tasks.

Second, the SOP anti-patterns showed their limitations in tasks 2, 3, and 4, as we expected

(§8.4) —and they were very similar irrespective of the ordering. For tasks 1 and 5, both the

SOP and IA anti-patterns allowed 100% of practitioners to correctly identify if the composed

regex was IA, also irrespective of ordering. This shows that our IA anti-patterns are much

more effective than the SOP ones in the situations when they are limited, and as good as

them when they are not.

We also tested for statistical significance applying the Wilcoxon signed rank test, because

our observations were not normally distributed and paired. We measured the difference

in the correctness of the IA assessments that participants produced when using our IA

anti-patterns in comparison with when they used the SOP anti-patterns. We tested this

difference separately for each ordering, and also for all orders together. For all these tests,

the differences observed were statistically significant (p < .00001)

Finally, in the concluding questions, we asked our studied participants which set of anti-

patterns was easier to understand and apply. 15 out 20 participants said our IA anti-

patterns were easier, 3 participants preferred the SOP anti-patterns and 2 participants were

undecided.
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8.8 Results Summary for Experiment 2

Practitioners were able to apply our IA anti-patterns in practice to compose regexes, and

accurately understand whether they were IA or not (in 100% of our observations). This

substantially outperformed the application of existing SOP anti-patterns, with which for

some tasks only 5-25% practitioners could accurately determine whether their composed

regex was IA or not.
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Discussion

9.1 Defense in Depth

Our proposed theory and anti-patterns complement the existing multi-layer defense against

ReDoS (see Figure 1.1). The existing approaches target the software maintenance (see §3.3

“Coping with SL Regexes”) and deployment stages (see §3.2 “Changing the Infrastructure”).

We propose a novel approach (a theory and anti-patterns) to target the regex composition

stage. Our approach complements the existing multi-layer defense strategy with a different

goal: helping developers avoid introducing SL regexes in the first place —allowing them to

manually assess whether their regexes are IA as they are composing them. As complement,

developers can still continue to apply techniques later in software maintenance to automat-

ically identify and repair SL regexes that have accidentally slipped through our proposed

first layer of protection.

This multi-layer approach to software security is commonly known as defense in depth, or

the “Swiss cheese” approach [7, 8, 51].

There are two major benefits to applying multiple complementary layers of defense against

security problems. First, the strengths of a layer may counterbalance the limitations of

others, e.g., coding guidelines may avoid problems that are hard to detect statically. Second,

one layer may reach developers that decided to not use others. The high-profile ReDoS
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outages [37, 46] involved regexes that could have been caught by static analysis tools — but

these organizations were not using the right tools.

Thus, the defense in depth approach is a general engineering principle, applied to prevent

many threats in software engineering (cybersecurity and otherwise). Most industry practi-

tioners (86.2%) complement automated tools with manual assessments and/or code review

for secure coding [41]. Security experts recommend that developers “think secure from the

beginning” [11], and follow a multi-method strategy of: static analysis, dynamic analysis,

penetration testing, and manual inspection [79]. More generally, software developers also

apply many layers of defense against design flaws: they learn and apply design patterns [40]

to avoid them at composition time; apply program analyses to detect them statically, e.g.,

high coupling [3]; and additionally look for them in code review [57].

9.2 Tools vs. Rules

Two families of approaches have been proposed to address ReDoS during the software main-

tenance stage — to automatically identify and repair SL regexes. Some of these techniques

could be adapted for usage during regex composition in two ways.

First, developers could apply the tools’ static analyses in their head during composition,

reasoning about their regex drafts in their NFA or evaluation-tree modalities. However,

many developers may only understand (or prefer to only use) the regex modality [13].

Second, developers could run these techniques in the background, continuously automatically

analyzing their regex drafts. No study of this approach has been conducted. Johnson et al.

imply that this scheme may be counterproductive for many engineers, who would find it too

invasive [50] —particularly when they interrupt their workflow, produce hard-to-understand



46 CHAPTER 9. DISCUSSION

results, or provide no suggestions to fix the found problems. Furthermore, developers may be

particularly unlikely to adopt verification tools for regexes. Recent work found that regexes

are poorly tested —software engineers cannot detect many regex regressions via unit test

suites [83].

Our proposed anti-patterns (based on the regex modality) complement such strategies, to

now reach a wider population of developers: those that only understand (or prefer to use)

the regex modality, and those that decide to not use existing static analysis tools during

regex composition.

9.3 Long-term Utility of our Anti-patterns

Several researchers have proposed ReDoS elimination by changing the regex engine algo-

rithm [25, 33, 48, 81]. These schemes would permanently eliminate ReDoS Condition 1,

obviating all other ReDoS aids, including the one proposed here. However, the nature of

legacy software makes it likely that ReDoS vulnerabilities will persist. Engineers working on

new web services can take advantage of these schemes, but existing web services will remain

vulnerable until the application is ported to a safe regex engine. Davis et al. showed that

this task is not trivial [31]. Furthermore, relying only on this layer of defense would imply

that IA regexes stay in the source code as a latent threat that can be triggered as soon as the

current project stops using these defense mechanisms, or when they are copied and pasted

into a different project that does not use them.
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Threats to Validity

10.0.1 Internal Validity

To guard internal validity, we carefully tested the implementation scripts of our anti-patterns

over small samples of the dataset. We also curated our studied dataset to prepare it for our

experiments. To the extent possible, we applied existing implementations of tools in our

evaluation, e.g., the SOP anti-patterns by Davis et al. [29] and Weidemann et al.’s SL

detector [89], to avoid errors introduced by implementing them ourselves. Finally, in our

human-subjects study, we studied both orders of anti-pattern application to the same extent,

assigning them to participants randomly.

10.0.2 External Validity

To increase external validity, we selected a popular dataset for our experiments [31]. We also

carefully screened the participants of our human-subjects experiment, so that it reflected

the target audience for our anti-patterns —participants with professional experience and

regular expression writing experience. We also studied a diverse set of tasks in our human-

subjects experiment, to understand various situations in regex composition. Finally, we also

applied multiple evaluation methods to our IA anti-patterns, that complement each other.

Experiment 1 shows that our anti-patterns were comprehensive, and experiment 2 shows

that practitioners can apply them successfully.

47



Chapter 11

Conclusions

In this paper, we proposed a novel theory of regex infinite ambiguity (IA) to characterize

regexes that can become vulnerable to ReDoS. We also proposed a set of IA anti-patterns,

derived from our theory, that developers can apply at regex composition time, to avoid

inserting regexes vulnerable to ReDoS in their source code.

We evaluated our IA anti-patterns in comparison with the state-of-the-practice (SOP) anti-

patterns, to understand both their comprehensiveness, and their usability. Our evaluation

showed that our proposed IA anti-patterns provide much higher precision and recall detecting

real-world IA regexes, and provide higher accuracy when used in practice. In the future, we

plan to apply our thorough methodology (developing a theory and anti-patterns) to also

strongly address other similar important security problems (e.g., in GraphQL).

Our contributions have significance for secure software engineering. They will help reduce

the impact of ReDoS: an important security vulnerability that affects hundreds of popular

websites [73]. Our theory is a foundational contribution to characterize an important concept

(regex infinite ambiguity) in a modality that was not addressed before (the regex), and which

is the more often preferred by developers [13]. Our anti-patterns will enable developers to

address an important gap in the protection against ReDoS: having a highly effective defense

mechanism at regex composition time.
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Appendix A

Proofs of Theorems

A.1 Definitions

We define the operators that we use in theorems 2 and 3.

A.1.1 ∨∩

Brabrand & Thomsen [18] introduced an overlap operator, ∨∩ , between two languages L(R1)

and L(R2). The set L(R1) ∨∩ L(R2) contains the ambiguity-inducing strings that can be

parsed in multiple ways across L(R1) and L(R2). More formally, with X = L(R1) and

Y = L(R2),

X ∨∩ Y = {xay | x, y ∈ Σ∗ ∧ a ∈ Σ+ ∧ x, xa ∈ X ∧ ay, y ∈ Y }

A.1.2 Ω

Brabrand & Thomsen use Møller’s BRICS library [61] for the implementation of their theo-

rems and actually rely on what we call the Møller overlap operator, Ω. We use this operator

62
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in our theorems. The Møller overlap operator describes only the ambiguous core “a”:

X Ω Y = {a | a ∈ Σ+ ∧ ∃ x, y ∈ Σ∗s.t. x, xa ∈ X ∧ ay, y ∈ Y }

A.2 Assumptions

In our theorems and proofs, we assume that we can convert regexes to their equivalent,

ambiguity-preserving, ϵ-free NFAs [86, 89] (with no ϵ-loops).

A.3 Theorems & proofs

Brabrand & Thomsen’s Theorem 0 [18] provides the conditions for unambiguity. Our proofs

consider the effect of negating the unambiguity condition, and distinguish the conditions

that lead to finite or infinite ambiguity.

A.3.1 Theorem 1: Ambiguity of Alternation

Given unambiguous regexes R1 and R2,

(a) R1|R2 is finitely ambiguous iff L(R1) ∩ L(R2) ̸= ϕ.

(b) R1|R2 cannot be infinitely ambiguous.

The components of Theorem 1 follow from proposition A.1.

Lemma A.1. Given unambiguous R1 and R2, if R1|R2 is ambiguous it is always finitely

ambiguous.



64 APPENDIX A. PROOFS OF THEOREMS

Proof. Given a string s there are four outcomes when it is matched against R1|R2 — s

may be matched by R1, by R2, by both, or by neither. In any case, since R1 and R2 are

unambiguous, there are at most two ways for R1|R2 to match s.

A.3.2 Theorem 2: Ambiguity of Concatenation

Suppose unambiguous regexes R1 and R2, and that L(R1) ∨∩ L(R2) ̸= ϕ (so R1·R2 is am-

biguous by Theorem 0). Then:

(a) R1·R2 is infinitely ambiguous iff L(R1) contains the language of a regex BC ∗ D and

L(R2) contains the language of a regex EF ∗ G, where ϵ /∈ L(C) ∧ ϵ /∈ L(F ) ∧ L(C) ∩

L(F ) ∩ L(DE) ̸= ϕ.

(b) Otherwise, R1·R2 must be finitely ambiguous.

2(a) is an iff so we need to prove:

=⇒ : If L(R1) contains the language of a regex BC ∗D and L(R2) contains the language

of a regex EF ∗G, where ϵ /∈ L(C) ∧ ϵ /∈ L(F ) ∧ L(C) ∩ L(F ) ∩ L(DE) ̸= ϕ, then R1 ·R2 is

infinitely ambiguous.

Proof. Consider a string q = bcmd ∈ L(BC∗D) where b, d ∈ Σ∗, c ∈ Σ+, b ∈ L(B), c ∈ L(C),

and d ∈ L(D). By hypothesis, L(BC∗D) ⊂ L(R1), so q ∈ L(R1). Similarly, consider another

string r = efng ∈ L(EF ∗G) where e, g ∈ Σ∗, f ∈ Σ+, e ∈ L(E), f ∈ L(F ), and g ∈ L(G).

By hypothesis, L(EF ∗G) ⊂ L(R2), so r ∈ L(R2). As L(C) ∩ L(F ) ∩ L(DE) ̸= ϕ, suppose

c = f = de.
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Consider the new string p = qr = bcmdefng ∈ L(R1)·L(R2) = L(R1·R2). In other words,

R1·R2 should include the following NFA accepting p.

... v1 v2 v3 ...b d e g
c f

For m = 2 and n = 2, p = bccdeffg. There are 5 ways to match. Ignoring prefix b and

suffix g, the five cases to match the middle ccdeff are:

• v1 →c v1 →c v1 →(de=c) v1 →(f=c) v1 →(f=de) v3

• v1 →c v1 →c v1 →(de=c) v1 →(f=de) v3 →f v3

• v1 →c v1 →c v1 →d v2 →e v3 →f v3 →f v3

• v1 →c v1 →(c=de) v3 →(de=f) v3 →f v3 →f v3

• v1 →(c=de) v3 →c=f v3 →(de=f) v3 →f v3 →f v3

where the superscript of an arrow represents the (input observed = path taken) pair.

The degree of ambiguity grows for each larger m and n (a function of input length). There-

fore, R1·R2 is infinitely ambiguous.

⇐= : If R1 ·R2 is infinitely ambiguous, then L(R1) contains the language of a regex BC ∗D

and L(R2) contains the language of a regex EF ∗ G, where ϵ /∈ L(C) ∧ ϵ /∈ L(F ) ∧ L(C) ∩

L(F ) ∩ L(DE) ̸= ϕ.

Proof. We will reason over an equivalent, ambiguity-preserving, ϵ-free NFA [86]. The NFA of

an infinitely ambiguous regex should include either a Polynomial or an Exponential Degree

of Ambiguity (PDA, EDA) section [86], as shown in Figure 2.1.

We first show that if R1 ·R2 is infinitely ambiguous, then the NFA of R1 ·R2 must contain a
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PDA (Figure 2.1(a)). R1 and R2 are unambiguous, so none of them should have a full EDA.

Concatenating two regexes R1 ·R2 cannot create a new self loop of EDA. Thus, R1 ·R2 must

contain a PDA.

Consider the two nodes p with the loop π1 and q with the loop π3 in Figure 2.1(a). As R1

and R2 are unambiguous, neither R1 nor R2 can include both nodes p and q — because then

they would be infinitely ambiguous (not unambiguous). Therefore, R11 and R2 each should

have a part of PDA; and the partition will appear somewhere along the path π2 as the loops

π1 and π3 cannot be newly introduced via concatenation.

Each partition of PDA consists of a prefix, a loop, and a suffix, which can be mapped to a

regex of the form PQ*R. As a PDA is a part of the whole NFA, more generally, we can say

that (1) L(R1) contains the language of a regex BC ∗D and (2) L(R2) contains the language

of a regex EF ∗G: i.e., L(BC ∗D) ⊂ L(R1) and L(EF ∗G) ⊂ L(R2).

After concatenation, the full PDA can be represented by a language of the formBC∗DEF∗G,

where C∗ is mapped to the first loop π1, DE to the path π2, and F∗ to the second loop π3.

Let s be the string that meets the PDA path conditions: label(π1) = label(π2) = label(π3).

Then, s ∈ L(C) (by label(π1), s ∈ L(DE), and s ∈ L(F ) And thus ϵ /∈ L(C) ∧ ϵ /∈

L(F ) ∧ L(C) ∩ L(F ) ∩ L(DE) ̸= ϕ.

Theorem 2(b) follows from elimination with Theorem 0.

A.3.3 Theorem 3: Ambiguity of Star

Given unambiguous regex R,

(a) R∗ is infinitely ambiguous iff ϵ ∈ L(R) ∨ L(R) Ω L(R∗) ̸= ϕ.
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(b) R∗ cannot be finitely ambiguous.

The components of Theorem 3 follow from proposition A.2.

Lemma A.2. if R* is ambiguous, it is always infinitely ambiguous.

Proof. We prove this by induction. From the contrapositive of Theorem 0(c), if R∗ is am-

biguous, L(R) ∨∩ L(R∗) ̸= ϕ. There exists an input string s = xay such that 1) x, y ∈ Σ∗,

2) a ∈ Σ+, 3) x, xa ∈ L(R), 4) y, ay ∈ L(R∗). In other words, there are at least two ways to

parse s.

Now consider ss = (xay)(xay). Let x′ = x, a′ = a, y′ = yxay then, ss = x′a′y′. Then

the following conditions are true: 1) x′, y′ ∈ Σ∗, 2) a′ ∈ Σ∗, 3) x′, x′a′ ∈ L(R), and 4)

y′, a′y′ ∈ L(R ∗ RR∗) ⊂ L(R∗). Now, for each xay there are at least 2 accepting paths.

Therefore, for ss there are at least 4 accepting paths. The degree of ambiguity grows for

each additional concatenation of an s. Therefore, R∗ is infinitely ambiguous.
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