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ABSTRACT 

 

 Antibiotic resistance (AR) is a critical and looming threat to human health that requires 

action across the One Health continuum (humans, animals, environment). Coordinated 

surveillance within the environmental sector is largely underdeveloped in current National Action 

Plans to combat the spread of AR, and a lack of effective study approaches and standard analytical 

methods have led to a dearth of impactful environmental monitoring data on the prevalence and 

risk of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in aquatic 

environments. In this dissertation, integrated surveillance approaches of surface water and 

wastewater systems are demonstrated, and efforts are made towards standardizing both 

metagenomic- and culture-based techniques for globally comparable environmental monitoring. 

 A field study of differentially-impacted watersheds on the island of Puerto Rico post-

Hurricane Maria demonstrated the effectiveness of metagenomics in defining direct impact of 

anthropogenic stress and human fecal contamination on the proliferation of ARGs in riverine 

systems. The contribution of treated wastewater effluents to the dissemination of highly mobile 

and clinically-relevant ARGs and their connection to local clinical settings was also revealed. At 

the international scale, a transect of conventional activated sludge wastewater treatment plants 

(WWTPs), representing both US/European and Asian regions, were found to significantly 

attenuate ARG abundance through the removal of total bacterial load and human fecal indicators, 

regardless of influent ARG compositions. Strong structural symmetry between microbiome and 

ARG compositions through successional treatment stages suggested that horizontal gene transfer 

plays a relatively minor role in actively shaping resistomes during treatment. Risk assessment 

models, however, indicated high-priority plasmid-borne ARGs in final treated effluents discharged 

around the world, indicating potentially increased transmission risks in downstream environments.  

Advancements were also made toward standardizing methods for the generation of globally 

representative and comparable metagenomic- and culture-based AR monitoring data via two 

comprehensive and critical literature reviews. The first review provides guidance in next-

generation sequencing (NGS) studies of environmental AR, proposing a framework for 

experimental controls, adequate sequencing depths, appropriate use of public databases, and the 

derivation of datatypes that are conducive for risk assessment. The second review focuses on 

antibiotic-resistant Enterococcus spp. as robust monitoring targets and an attractive alternative to 

more widely adopted Gram-negative organisms, while proposing workflows that generate 

universally equivalent datatypes.  

Finally, quantitative metagenomic (qMeta) techniques were benchmarked using internal 

reference standards for high-throughput quantification of ARGs with statistical reproducibility.  
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GENERAL AUDIENCE ABSTRACT 

 

Antimicrobials have contributed to the reduction of infectious diseases in humans and 

animals since the early 20th century, increasing productivity and saving countless lives. However, 

their industrial-scale application across human, animal, and agricultural sectors over the last 

several decades, especially the use of antibiotics, have engendered the proliferation of antibiotic 

resistance (AR). AR occurs when changes in bacteria cause the drugs used to treat infections to 

become less effective and has become one of the leading public health threats of the 21st century. 

The global spread of AR through the transmission and evolution of antibiotic resistant bacteria 

(ARB; known colloquially as “superbugs”) and antibiotic resistance genes (ARGs) across the One 

Health continuum (i.e., humans, animals, and the environment) is resulting in increased 

hospitalization, length of hospital stays, suffering, death, and overall health-care associated costs 

globally. This dissertation demonstrates the use of metagenomics, the sequencing of all genetic 

material (e.g., DNA) recovered from a microbial community, for the comprehensive monitoring 

of ARB and ARGs in aquatic environments, a key pathway for the dissemination of AR into and 

out of human populations.  

 In order to impede the proliferation of AR, surveillance systems are currently in place to 

track the spread and evolution of ARB and ARGs in humans and livestock, as well as agri-food 

sectors. However, the surveillance in natural and built environments (i.e., rivers and domestic 

sewage) has significantly lagged due to the lack of standard monitoring targets and methodologies. 

It is also a goal of this dissertation to suggest guidance for the collection of metagenomic- and 

culture-based AR monitoring data to generate universally comparable results that can be included 

in centralized databases. 

 Riverine systems are ideal models for tracking input of antibiotic resistance to the natural 

environment by human activity. After Hurricane-Maria, many of Puerto Rico’s wastewater 

treatment plants (WWTPs) went offline, discharging raw sewage to local surface waters. In a cross-

sectional study of watersheds impacted by WWTPs, the abundance of ARGs was directly 

correlated to increases in local population density. Also, highly mobile and clinically-relevant 

ARGs were found directly downstream of WWTPs across the island. We found that many of these 

ARGs corresponded well to forms AR endemic to the region.  

 WWTPs are the primary engineering controls put in place to curb the spread of human and 

animal waste streams and can help to reduce AR. An international transect of conventional 

activated sludge WWTPs representing US/Europe and Asia were sampled to garner a mechanistic 

understanding of the fate or ARGs through treatment. Although WWTPs remove total bacteria, 

human fecal indicators, and much of the abundance of ARGs, mobile and clinically-relevant ARGs 

are discharged around the world in large quantities. Consideration is needed in certain regions of 
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the world where the managing of human waste streams is the first line of defense against the 

dissemination of resistance to local communities. 

 Two comprehensive critical literature reviews were conducted to evaluate the various 

methodologies for generating and analyzing metagenomic- and culture-based AR monitoring data. 

These reviews address the need for experimental rigor and disclosure of extensive metadata for 

inclusion in future, centralized databases. The articles further provide guidance with respect to 

universally comparable datatypes and efficient workflows that will aid in the scale-up of the 

collection of environmental monitoring data within a global surveillance framework.  

 Finally, a study was conducted to benchmark the use of internal DNA reference standards 

for the absolute quantification of ARGs (i.e., on a ARG copy per volume of sample basis). The 

statistical framework for ARG detection and its implications for wastewater-based surveillance 

systems of AR are also discussed. 
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1. CHAPTER 1: INTRODUCTION 

 

OVERVIEW AND RESEARCH MOTIVATIONS 

 

The magnitude of the societal and economic costs of antibiotic (AR) and its effect on human 

wellbeing are still being realized, but current estimates from the European Union (EU) place the 

burden of resistant bacterial infections to be comparable to influenza, tuberculosis, and HIV/AIDS 

combined.1 Antibiotic-resistant bacteria (ARB) and the genetic information which encode for their 

resistance mechanisms, antibiotic resistance genes (ARGs), are spreading globally among humans, 

animals, food production systems, and the environment, making AR a true “One Health” problem.2 

According to the World Health Organization (WHO), the increase in AR in human and animal 

pathogens is among the top ten threats to global health,3 and some stark estimates predict resistant 

bacterial infections will become the leading cause of death worldwide by 2050.4 Under a high-AR 

impact scenario with no mitigation efforts, an additional 8 million people may fall into extreme 

poverty, seeing a global reduction in GDP comparable to the 2008-2009 financial crises by as soon 

as 2030.5 

In 2015, the WHO put forth a Global Action Plan to help combat the development of AR 

through “strengthen[ing] the knowledge and evidence base through surveillance and research” in  

humans, animals, and the environment.6 In the environmental sector, a growing body of research 

has demonstrated that water bodies are key recipients, pathways, and sources of AR via anthropic 

activities such as aquaculture, livestock and agricultural runoff, pharmaceutical manufacturing 

wastewater, and especially the treatment, or lack thereof, of human waste streams.7 Globally, it is 

estimated that nearly 80% of all human excreta is directly discharged into the environment, 

primarily in low-income and developing countries.8 In fact, the global burden of disease of AR 

infection, transmission, and colonization is more attributable to a lack of clean drinking water and 

poor sanitation infrastructure than regional antibiotic consumption rates.9,10 Environmental 

surveillance systems that are aimed at identifying key transmission and evolutionary routes 

between humans and water environments is therefore critical for understanding and mitigating AR, 

a point further emphasized in recent EU and US National Action Plans.11,12 Correspondingly, 

surface water and wastewater monitoring programs aimed at tracking AR impacts on human and 

animal populations are currently being developed by the US Environmental Protection Agency13 

and Centers for Disease Control.14 Much of the focus of these programs have focused on the urban 

wastewater treatment plant (WWTP) and their influents (i.e., raw sewage) and effluents (i.e., 

treated sewage being discharged to surface waters), and work is still needed in understanding AR 

dynamics through conventional biological treatment and the effect of treated sewage on receiving 

water bodies.15,16 

Surveillance of surface water and wastewater indicators of AR, through the use of conventional 

quantitative polymerase chain reaction (qPCR) or culture methods, can provide vital information 

on the relative prevalence of ARGs and ARB in a sample, establish baselines for prioritizing 

mitigation efforts, and directly assess attenuation efficiencies put in place by engineering controls 

(e.g., WWTPs).17,18 However, AR as an environmental contaminant and phenomenon is a complex 

and integrated microbiomics problem that warrants sophisticated methodologies for holistic 
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evaluations of environmental health and AR dynamics. As a result, next-generation nucleic acid 

(i.e., DNA and RNA) sequencing (NGS) approaches to evaluate water and wastewater quality are 

rapidly evolving in the fields of environmental science and engineering.19 Environmental 

metagenomics, or the use of NGS to study the collection of genetic material recovered directly 

from an environmental microbial community, has emerged as a powerful tool for the study of 

environmental AR.20 Global wastewater surveillance systems have already been proposed21 and 

pilot tested using the technique.22 In order to realize the full potential of metagenomics for 

integrated surface water and wastewater surveillance programs, extensive research is needed for 

ensuring the representativeness of sample processing and handling of in situ resistomes (i.e., total 

ARGs carried across a microbial community characteristic of a given environment), universal 

comparability of metagenomic libraries, and data analytics for accurate and reproducible 

monitoring data.23 Ultimately, the field must move towards collaborative insight into the 

environmental circumstances, human exposures, targeted mitigation strategies, and dose-response 

considerations for human health risk assessments.24 

Antibiotic Resistance in the Environment 

Samples from 30,000 year old permafrost have revealed that AR is an ancient and naturally 

occurring phenomenon that well predates the modern antibiotic era.25 It was not until recently; 

however, that the industrial-scale application of antimicrobials globally accelerated the evolution 

of resistance mechanisms via unprecedented and sustained selection pressures, particularly on the 

enteric bacteriomes of humans and animals.26,27 These selection pressures have induced the 

mobilization of a large diversity of ARGs across entire microbiomes, particularly pathogenic taxa 

that are commensal to gastrointestinal tracts.28 It is currently understood that most ARGs and 

virulence factors that occur in modern bacterial pathogens were acquired by horizontal gene 

transfer (HGT) from commensal or environmental microorganisms.29,30 In contrast to typical 

chemical contaminants, once excreted, exogenous ARB and ARGs can persist and even spread in 

the environment; in other words, they are anthropogenic, self-replicating contaminants, making 

them distinctly difficult to track and adequately characterize amongst the complexity of 

environmental microbiomes and the physicochemical dynamics of natural and engineered 

systems.31,32 The increased dissemination of AR in the environment is likely due to three principal 

mechanisms, which occur in tandem: HGT of ARGs within and between phylogenetic groups; 

genetic mutation and recombination; and the maintenance and enrichment of ARGs and ARB 

owing to widespread and sustained selection pressures via antimicrobials and other contaminants 

(e.g., heavy metals and biocides).33 It has been demonstrated that even sub-minimum inhibitory 

concentrations (MICs) of antibiotics have the ability to select for ARB and maintain resistance in 

filter-sterilized wastewater34,35, warranting new classifications appropriate for environmental 

settings, such as proposed no effect concentrations (PNECs) of antibiotics.36  

Pollution is a direct driver of AR in the environment, primarily via human and animal excreta, 

which can contain high concentrations of ARB, ARGs, and antimicrobials. Although 

environmental concentrations of antibiotics are often well below MIC and PNEC levels, untreated 

municipal and hospital wastewater, as well as surface waters impacted by pharmaceutical 

manufacturing wastes, routinely contain antibiotics at selective concentrations.37 Metals and 

biocides can also co-select for AR via co-resistance (i.e., genetic linkage through neighboring 

genes) and cross-resistance (i.e., the same gene with multiple functions).38,39 In the environment, 
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antibiotics and ARG abundance regularly correlate. However, these observations are often 

accompanied with parallel levels of fecal pollution, which is a source of both, confounding the 

ability to discern the contributions of in situ selection pressure to observed ARG occurrence 

patterns.40 It is also often difficult to distinguish whether changes in ARB and ARG abundance are 

attributed to direct selective pressure imposed by antimicrobials in the environmental matrix, or 

merely the result of shifts in taxonomic structure due to ambient physicochemical changes.41 The 

relative rates of induced HGT versus direct selection or co-selection by naturally-occurring or 

anthropogenic stressors are also unknown, making HGT events exceedingly difficult to quantify 

and assign causal effects in situ.42 This is problematic because there is great concern that novel 

resistance mechanisms to critically important antibiotics are being recruited into pathogens from 

the vast and diverse reservoir of environmental microbiomes that is being induced by 

anthropogenic pollution.28  

In addition to evolutionary concerns of new resistant strains, the environment provides a route 

for already-resistant bacteria to colonize or infect humans. There is a great deal of literature on the 

transmission of resistant bacteria that occurs in food production environments (e.g., Salmonella 

enterica) and especially within the hospital “environment” (e.g., methicillin-resistant 

Staphylococcus aureus and vancomycin-resistant Enterococcus spp.).43 Exposures to surface 

waters polluted with fecal contamination can also lead to various antibiotic-resistant infections.44 

It has been demonstrated that recreational swimmers utilizing surface water impacted by treated 

wastewater discharge were more likely to be colonized by cephalosporin-resistant E. coli than 

control groups.45,46 Transmission and colonization events are further highlighted in areas with poor 

sanitation and hygiene infrastructure47, but also in regions of developed countries with 

decentralized (e.g., on-site septic systems) or aging wastewater treatment systems. Drinking water, 

stormwater, and wastewater infrastructure in the US were recently assigned grades “C-”, “D”, and 

“D+”, respectively by the American Society of Civil Engineers, with increasing prevalence of 

sanitary sewer overflow events that will inevitably be impacted by changing climates.48 In the US, 

we are plagued by a tremendously “leaky” and aging system that is reaching its designed lifespan, 

which will further exacerbate the ability to control AR outputs. Now is a critical moment to begin 

to consider how our infrastructure can be improved in a manner that reduces the evolution and 

dissemination of AR.  Establishing appropriate, globally comparable, AR monitoring programs is 

a critical need towards achieving this goal. 

RESEARCH OBJECTIVES 

The specific objectives of the research described herein were to: 

1. Investigate the effect of wastewater effluent discharge and anthropogenic stress on the 

proliferation of AR in impacted watersheds, 

2. Investigate the dynamics of conventional biological wastewater treatment on the 

attenuation or proliferation of AR across a global transect of WWTPs and assess risk for 

mobility and dissemination of ARGs to receiving environments, 

3. Critically review and assess current culture- and metagenomic-based AR monitoring 

techniques, and provide guidance towards standard protocols that will produce globally 

comparable data to support environmental monitoring of AR, 

4. Explore quantitative metagenomic techniques with internal reference standards for high-

throughput quantification of ARGs in wastewater. 
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ANNOTATED DISSERTATION OUTLINE 

  

 Each chapter in this dissertation is formatted according to the scientific journal to which 

it was submitted or is intended to be submitted. 

 

Chapter 1: Introduction 

This chapter introduces the general themes of the research described herein and provides context 

for the specific research objectives addressed in this dissertation. 

Chapter 2: Demonstrating an integrated antibiotic resistance gene surveillance approach in 

Puerto Rican watersheds post-hurricane Maria 

Chapter 2 addresses objectives (1) and (2) by investigating the relationship between qPCR 

indicators of antibiotic resistance, human fecal markers, and resistome dynamics in three 

differentially-impacted watersheds on the island of Puerto Rico after a natural disaster. The 

manuscript highlights the applicability of metagenomics for in-depth surveillance of clinically-

relevant and mobile ARGs and their relationship to treated wastewater inputs across 

anthropogenically-impacted watersheds. It further makes direct connections between resistance 

prevalence throughout the surface water and wastewater samples to historical AR prevalence in 

local clinical settings. 

This manuscript has been published: 

Davis, B. C., Riquelme, M. V., Ramirez-Toro, G., Bandaragoda, C., Garner, E., Rhoads, 

W. J., ... & Pruden, A. (2020). Demonstrating an integrated antibiotic resistance gene 

surveillance approach in Puerto Rican watersheds Post-Hurricane Maria. Environmental 

Science & Technology, 54(23), 15108-15119. https://dx.doi.org/10.1021/acs.est.0c05567 

Attributions: I conducted surface water and sediment sampling, analysis of samples, analyzed data, 

and led the writing of the manuscript. Virginia Riquelme collected wastewater treatment plant 

samples. I, Graciela Ramirez-Toro, William Rhoads, Virginia Riquelme, and Amy Pruden 

designed the sampling scheme. Christina Bandaragoda conducted ArcGIS land use analysis of 

watersheds. Emily Garner provided guidance on the qPCR and metagenomic analysis of the 

samples and assisted in manuscript preparation. Manuscript revisions and presentation was 

primarily done by Amy Pruden.  

Chapter 3: Evaluation of resistome risk reduction through secondary wastewater treatment 

across an international transect 

Chapter 3 addresses Objective (2) more thoroughly via the systematic assessment of an 

international transect of wastewater samples that highlight resistome behavior through 

conventional biological treatment trains. The manuscript explores the convergent aspects of 

wastewater treatment process on overall microbiome and resistome dynamics across 

geographically-distinct WWTPs located in six countries and makes critical assessments on the 

potential for ARG mobilization. It finally reports a comprehensive relative resistome risk 

assessment, derived from metagenomic-based estimates of ARG and MGE prevalence in human 

https://dx.doi.org/10.1021/acs.est.0c05567
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pathogens, and identifies clinically-relevant ARGs that are commonly being emitted to surface 

water around the world.  

This manuscript is in preparation for Microbiome. 

Attributions: Samples were collected, processed, and sequenced by Virginia Riquelme, Jake 

Metch, Emily Garner, Matt Blair, Joyce Zhu, Haniyyah Majeed, Greg House, Marjorie Willner, 

Gustavo Arango-Argoty, Ayella Maile-Moskowitz, Suraj Gupta, Ishi Keenum, Kris Mapili, me, 

and many others. I conducted the data analysis and led the writing of the manuscript. Peter 

Vikesland, Emily Garner, and Amy Pruden contributed to the data interpretation and well as 

manuscript preparation and review.  

Chapter 4: Critical review of metagenomic workflows for monitoring antibiotic resistance in 

water and wastewater 

Chapter 4 address Objective (3) through a systematic review of 95 workflows for the metagenomic 

investigation of surface water, wastewater, and recycled water resistomes. The manuscript 

proposes critical AR monitoring objectives for which metagenomics as a technique is particularly 

well suited for addressing. Guidance is provided for the appropriate design and implementation of 

metagenomic-based monitoring programs, including the use of DNA extraction techniques, 

process controls, the curation of ARG databases, and selection of bioinformatic software and 

parameters for universal comparability and reproducibility across studies. It concludes with a view 

of the future of metagenomics as a tool for the comprehensive monitoring of AR in aquatic 

matrices and posits the integration of such techniques into comprehensive risk assessment 

frameworks. 

This manuscript will be submitted to Critical Reviews in Environmental Science and Technology. 

Attributions: The literature review was conducted by me, Erin Milligan, Jeanette Calarco, Krista 

Liguori, and Ishi Keenum. I conducted the manual extraction and analysis of data from the 

identified articles. Ishi Keenum and I wrote the first draft of the manuscript. Amy Pruden and Ishi 

Keenum conducted in-depth reviews and revisions of the manuscript and helped frame the article 

to get it to its current state. 

Chapter 5: Towards the standardization of Enterococcus culture methods for waterborne 

antibiotic resistance monitoring: a critical review and analysis of environmental trends 

Chapter 5 addresses Objective (3) through a critical review and meta-analysis of over 100 articles 

that report enumeration of resistant Enterococcus spp. in surface water, wastewater, and recycled 

water matrices. The manuscript proposes a standardized framework for the isolation and 

characterization of total and resistant Enterococcus from these environments, considering the 

universal applicability of datatypes derived from culture-based methods and standard techniques 

already in place for water quality monitoring. Methods that allow phenotyping, genotyping, and 

cross-isolate comparisons for epidemiological source tracking and human-health risk assessments 

are critically reviewed, with an emphasis on vancomycin resistance among the genus. Through the 

systematic collection of species and phenotypic frequency across studies and water matrices, the 

manuscript further provides overarching trends in antibiotic-resistant Enterococcus prevalence in 

various impacted water matrices to inform future studies. 

This manuscript has been submitted to Water Research. 
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Attributions: The literature review was conducted by me, Erin Milligan, Jeanette Calarco, Krista 

Liguori, and Ishi Keenum. I conducted the manual extraction and analysis of data from the 

identified articles and writing of the manuscript. Valerie Harwood and Amy Pruden conducted in-

depth reviews and revisions of the manuscript and lead the framing of the article. 

Chapter 6: Benchmarking quantitative metagenomics for wastewater-based surveillance of 

antibiotic resistance 

Chapter 6 addresses Objective (4) through a proof-of-concept experimental validation of internal 

reference standards for absolute quantification of ARGs in wastewater samples. The study applies 

deep metagenomic sequencing of replicate influent, activated sludge, and secondary effluent 

samples to identify the limits of quantification and detection of the analytical technique with direct 

comparison to qPCR. The study provides a discussion on the implications of non-targeted 

sequencing approaches for the wastewater-based surveillance systems and the statistical thresholds 

necessary for consistent ARG detection at extremely low abundances.   

This manuscript is in preparation for Applied Environmental Microbiology. 

Attributions: I came up with and designed the experiment myself. I also conducted the field 

sampling, sample processing, and coordination of all sequencing services. The qPCR data was 

generated by Gabriel Moldonado Rivera. I analyzed the data and led the writing of the manuscript. 

Amy Pruden and Peter Vikesland provided critical feedback in the writing of the first draft of the 

article. 

Chapter 7: Conclusions and recommendations for future work 

This final chapter briefly synthesizes the body work presented herein and summarizes its 

contributions to the field environmental AR research. Future research directions are also presented. 

 

Published: In addition to the five manuscripts that are included in this dissertation, described 

above, several related collaborative works have recently been published: 

1. Liguori, K., Keenum, I., Davis, B. C., Calarco, J., Milligan, E., Harwood, V. J., Pruden, A. 

(2022) Antimicrobial resistance monitoring of water environments: A call for standardized 

methods and quality control. Environmental Science & Technology (in press) 

https://doi.org/10.1021/acs.est.1c08918 

2. Keenum, I., Liguori, K., Calarco, J., Davis, B. C., Milligan, E., Harwood, V. J., & 

Pruden, A. (2021). A framework for standardized qPCR-targets and protocols for 

quantifying antibiotic resistance in surface water, recycled water and wastewater. Critical 

Reviews in Environmental Science and Technology, 1-25. 

https://doi.org/10.1080/10643389.2021.2024739 

3. Pruden, A., Vikesland, P., Davis, B. C., de Roda Husman, A.M. (2021). Seizing the 

moment: now is the time for global surveillance of antimicrobial resistance in wastewater 

environments. Current Opinion in Microbiology, 64, 91-99. 

https://doi.org/10.1016/j.mib.2021.09.013 

4. Majeed, H. J., Riquelme, M. V., Davis, B. C., Gupta, S., Angeles, L., Aga, D. S., Garner, 

E., Pruden, A., & Vikesland, P. J. (2021). Evaluation of metagenomic-enabled antibiotic 
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resistance surveillance at a conventional wastewater treatment plant. Frontiers in 

Microbiology, 12, 1048. https://doi.org/10.3389/fmicb.2021.657954 

5. Garner, E., Davis, B. C., Milligan, E., Blair, M. F., Keenum, I., Maile-Moskowitz, A., 

Pan, J., Gnegy, M., Liguori, K., Gupta, S., Prussin II, A.J., Marr, L.C., Heath, L.S., 

Vikesland, P.J., & Pruden, A. (2021). Next generation sequencing approaches to evaluate 

water and wastewater quality. Water Research, 116907. 

https://doi.org/10.1016/j.watres.2021.116907 
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ABSTRACT 

Comprehensive surveillance approaches are needed to assess sources, clinical relevance, and 

mobility of antibiotic resistance genes (ARGs) in watersheds. Here, we examined metrics 

derived from shotgun metagenomic sequencing and relationship to human fecal markers (HFMs; 

crAssphage, enterococci) and anthropogenic antibiotic resistance markers (AARMs; intI1, sul1) 

in three distinct Puerto Rican watersheds as a function of adjacent land-use and wastewater 

treatment plant (WWTP) input six months after Hurricane Maria, a Category V storm. Relative 

abundance and diversity of total ARGs increased markedly downstream of WWTP inputs, with 

ARGs unique to WWTP and WWTP-Impacted river samples predominantly belonging to the 

aminoglycoside and β-lactam resistance classes. WWTP and other anthropogenic inputs were 

similarly associated with elevated resistome risk scores and mobility incidence (M%). Contig 

analysis indicated a wide variety of mobile β-lactam ARGs associated with pathogens 

downstream of WWTP discharge that were consistent with regional clinical concern, e.g., 

Klebsiella pneumoniae contigs containing KPC-2 within an ISKpn6-like transposase. HFMs and 

AARMs correlated strongly with the absolute abundance of total ARGs, but AARMs better 

predicted the majority of ARGs in general (85.4% vs <2%) and β-lactam ARGs in particular. 

This study reveals sensitive, quantitative, mobile, clinically-relevant, and comprehensive targets 

for antibiotic resistance surveillance in watersheds. 

 

INTRODUCTION  

The need for environmental surveillance to better understand the development, spread, 

and circulation of antibiotic resistance between and among humans, animals, food, and water 

networks is increasingly being recognized by the World Health Organization (WHO) and others 

(Aarestrup & Woolhouse, 2020; United Nations, 2017; World Health Organization, 2015). 

Surface waters and sediments are an environmental monitoring point of interest (Qiao, Ying, 

Singer, & Zhu, 2018; J. Xu et al., 2015; Zhu et al., 2017), as they are recipients, reservoirs, and 

pathways for the transport of antibiotics, antibiotic resistance genes (ARGs), and antibiotic 

resistant bacteria (ARB) from a variety of point and non-point sources, including wastewater 

treatment plants (WWTPs) and livestock operations (Amos, Zhang, Hawkey, Gaze, & 

Wellington, 2014; Knapp et al., 2012; Luo et al., 2010; Marti, Variatza, & Balcazar, 2014; 

Pruden, Arabi, & Storteboom, 2012). Correspondingly, watershed monitoring programs aimed at 

tracking antibiotic resistance impacts are currently being explored by the U.S. Environmental 

Protection Agency (EPA) (Garland et al., 2019; Nappier, Ichida, Jaglo, Haugland, & Jones, 

2019) and Centers for Disease Control (Kirby, 2020).   

Surveillance of various indicators of and contributing factors to antibiotic resistance in 

watersheds can help identify input sources, understand microbial ecological processes 

contributing to ARG amplification or attenuation, establish a baseline for targeting and 

prioritizing mitigation efforts (Berendonk et al., 2015; Crofts, Gasparrini, & Dantas, 2017), and 

assess impacts of major disruptions, such as storms (Yu et al., 2018). Of particular interest is 

whether ARGs in rivers and streams originate from human fecal material, versus other sources, 

and the extent to which horizontal gene transfer and selection pressure drive in situ propagation 

and amplification of ARGs. In a recent in silico study of ~500 publicly-available metagenomes, 

it was found that, in the majority of cases, total ARGs in WWTP-influenced environments 

strongly correlated with the highly-specific human fecal marker (HFM), crAssphage (Karkman, 

Pärnänen, & Larsson, 2019). Given that the exceptions to this case were rivers in India with 
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extremely high concentrations of antibiotics, the authors proposed a monitoring scheme in which 

deviations from correlation between ARGs and HFMs are flagged as presumable hot spots for 

environmental selection pressure and gene exchange. While such an approach is promising, 

improvements can be made by increasing resolution with respect to which ARGs are best 

predicted by HFMs versus coming from other sources, in addition to characterizing these ARGs 

in terms of their mobility, likelihood of being carried by human pathogens, and correspondence 

to endemic antibiotic resistance in clinical settings (Aarestrup & Woolhouse, 2020; Karkman et 

al., 2019; Pruden et al., 2018). 

The purpose of this study was to pilot-test an integrated antibiotic resistance monitoring 

scheme targeting three distinct watersheds on the island of Puerto Rico representing a gradient of 

anthropogenic inputs, having experienced the same massive natural disturbance as a result of 

Hurricane Maria, a Category V storm that made landfall in September 2017. Following Maria, 

over a third of the 55 WWTPs operated by the Puerto Rico Aqueduct and Sewer Authority were 

inoperable due to widespread flooding and power outages, allowing untreated raw sewage to be 

discharged into streams, rivers, and coastal waters (EPA, 2017). Urban flooding and hurricanes 

are known to significantly disturb the microbial composition and quality of surface waters 

leading to elevated levels of fecal indicator organisms and pathogenic bacteria (Kapoor, Gupta, 

Pasha, & Phan, 2018; Schwab et al., 2007; Sinigalliano et al., 2007; ten Veldhuis, Clemens, 

Sterk, & Berends, 2010). Inputs of untreated human waste streams have also been directly linked 

to the emergence of carbapenem- and cephalosporin-resistant Enterobacteriaceae in urban 

sediments (Marathe et al., 2017). Thus, analysis of Puerto Rican watersheds post-Hurricane 

Maria could further provide insight into the extent to which antibiotic resistance is dispersed by 

major storms. 

The integrated surveillance scheme evaluated herein combined shotgun metagenomic 

DNA sequencing for high resolution comparison of resistomes (i.e., total ARGs) along with 

more technologically-accessible quantitative polymerase chain reaction (qPCR) targets. 

Specifically, analysis of a relatively pristine rural low impact (RLI) watershed served to 

distinguish native/background ARGs from those found in periurban medium-impact (PMI) and 

urban high-impact (UHI) watersheds. Correlations with crAssphage and enterococci (HFMs) 

(Stachler, Akyon, Carvalho, Ference, & Bibby, 2018) versus the class 1 integron integrase gene, 

intI1 (Gillings et al., 2014), and associated sulfonamide ARG, sul1 (Gillings, 2014) 

[anthropogenic antibiotic resistance markers (AARMs)], aided in identifying ARG classes and 

mechanisms specifically associated with human fecal versus more generalized anthropogenic 

pollution, respectively. Read matching and assembly strategies were applied to gain insight into 

the roles of WWTP discharges and non-point sources on ARG occurrence patterns, mobility, and 

association with putative pathogens of concern regionally in Puerto Rico. The approach 

demonstrated herein can be applied to other watersheds, globally, with varying degrees of 

anthropogenic and other impacts, to assess effects of disruptive events such as major storms and 

begin to identify and prioritize mitigation efforts and interventions to protect public health. 

 

MATERIALS AND METHODS 

Sample collection and processing 

Location and characteristics of the sampling sites are shown in Figure 2-1. According to 

ArcGIS analysis (USA NLCD Land Cover), watersheds RLI and PMI are sparsely populated, 
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rural systems with less than 1% cropland and 99.5% and 96% of land cover attributed to 

evergreen forest, respectively. A single WWTP treating 4000 cubic meters per day (CMD at the 

outlet of the PMI catchment services 20,000 residents in the city of Patillas (Table S2-1). There 

were no identified wastewater point-sources to the RLI catchment. The UHI watershed is a 

highly developed urban area with a 2200 CMD WWTP servicing 28,000 residents in the city of 

Aguas Buenas to the west and a 150,000 CMD plant servicing 130,000 residents in the city of 

Caguas to the east. All WWTPs were in operation at the time of sampling. Moderate commercial 

and industrial development was noted along the length of UHI’s riverine system. Sixteen 

sampling sites were chosen to capture within-river and across-watershed anthropogenic 

gradients, sampling as far upstream as possible for pristine samples and directly upstream and 

downstream of three WWTPs. The influent and final effluent of the Patillas WWTP were 

sampled as combined sewage resistome of the local population (Hutinel et al., 2019). 

           Surface water (2 L) and sediment (~5 g) grab samples were collected in April of 2017 (6 

months after Hurricane Maria), immediately placed on ice, and transported to El Centro de 

Educación, Conservación e Interpretación Ambiental (CECIA) for same-day processing. Water 

samples were taken from the top 0.5 m of the surface of the center of the flow in autoclaved 

polypropylene bottles. One liter of water was collected in an acid-washed HDPE bottle for 

inorganics analysis (Table S2-11). Sediment samples were taken in 50 mL tubes from the top 2-3 

cm of sediment. The water samples for DNA extraction were homogenized and filter-

concentrated in duplicate onto 0.22-µm mixed-cellulose ester filters (Millipore, USA) until 

clogging. The volume that could be filtered was recorded, as filtering was limited by the extent 

of clogging for each sample (15-1000 mL) (Table S2-2). Filters were transferred to sterile 2-mL 

tubes and fixed in 50% ethanol. For sediments, samples were homogenized, 0.5 g were aliquoted 

in duplicate and then fixed in 100% ethanol. All samples were stored at -20°C before being 

shipped on ice to Virginia Tech, Blacksburg, VA, for further processing. One liter of autoclaved 

deionized water was prepared at Virginia Tech prior to the trip and accompanied all sampling 

events. It was then shipped back unopened, and DNA extracted to serve as a “trip blank”.  

DNA extraction and qPCR 

The ethanol-fixed filters were fragmented (~1 cm2) with flame-sterilized tweezers and 

transferred to 2-mL DNA extraction tubes. The remaining ethanol solution was centrifuged at 

5,000 x g for 10 minutes and the pellet resuspended in FastDNA Spin Kit for Soil sodium 

phosphate buffer (MPBio, USA) and added to the extraction tube. Both water and sediment 

samples were homogenized via bead-beating (40 seconds at 6 m/s) with the FastPrep-24™ 5G 

(MPBio, USA) and then further extracted according to manufacturer instructions. One liter of 

autoclaved deionized water was also filtered and extracted as a filter bank to ensure no 

contamination during DNA extraction. Using qPCR, the abundance of total bacteria (16S rRNA 

genes) (Suzuki & Taylor, 2000), sul1 (Pei, Kim, Carlson, & Pruden, 2006), intI1 (Hardwick, 

Stokes, Findlay, Taylor, & Gillings, 2008), crAssphage-056 (Stachler et al., 2017), and 

enterococci (EPA, 2012) were quantified in analytical triplicate. Each assay included autoclaved 

deionized water as no template control. Dilution series were carried out for the 16S rRNA gene 

as a representative assay to select a dilution for each sample type (i.e., bulk water, sediment, and 

wastewater) that minimized effects of PCR inhibitors (Table S2-2). Standard curves were 

generated from double-stranded gBlockTM gene fragments (IDT, USA), resuspended according 

to manufacturer specifications, and quantified via dsDNA High Sensitivity Assay kit on a 

Qubit® Fluorometer (Invitrogen, USA). The minimum accepted qPCR standard curve 
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efficiencies and R2 values were 80% and 0.980, respectively. The limit of quantification was set 

as the lowest standard that amplified at least in duplicate.  

Metagenomic Sequencing and Bioinformatics Pipeline  

One-hundred nanograms of DNA (260/280 ratio 1.8-2.1; Table S2-2) from a subset of 24 

samples were subjected to library preparation using a NexteraXT DNA Library Prep Kit and 

were sequenced via 2 x 150 bp paired-end shotgun metagenomic sequencing on an Illumina 

NovaSeq 6000 by Diversigen, Inc. (Houston, Texas). All metagenomic reads were deposited to 

the Sequence Read Archive under accession number PRJNA626373. For quality trimming, gene 

annotation, and contig assembly, all samples were analyzed via MetaStorm (G. Arango-Argoty 

et al., 2016). For functional analysis, short reads were annotated against the Comprehensive 

Antibiotic Resistance Database (McArthur et al., 2013) (CARD, v2.0.1), the ACLAME (Leplae, 

Lima-Mendez, & Toussaint, 2009) database for plasmid-associated protein alignment (v0.4), and 

MetaStorm’s mobile genetic elements (MGEs) dataset, which is a collection of all NCBI non-

redundant genes related to any of the following keywords — transposase, transposon, integrase, 

integron, and recombinase to identify indicators of mobility (Forsberg et al., 2014a) (MetaStorm 

MGEs, v1.0) using MetaStorm’s default parameters (minimum length alignment = 25 aa, aa 

identity ≥ 80%, e-value cutoff 1e-10). To estimate relative abundance, functional genes were 

normalized to 16S rRNA abundance as enumerated by alignment to the Greengenes Database 

(Larsen et al., 2006). Absolute abundances were calculated by multiplying the relative 

abundances of the functional genes by total abundance of 16S rRNA quantified by qPCR (Garner 

et al., 2018). Reads were assembled via MetaStorm’s assembly pipeline, which utilizes the 

IDBA-UD de novo assembler (Peng, Leung, Yiu, & Chin, 2012), and the resulting contigs were 

analyzed via NanoARG (G. A. Arango-Argoty et al., 2019) for functional annotation, taxonomic 

assignment using the Centrifuge engine (Kim, Song, Breitwieser, & Salzberg, 2016), and gene 

contextualization. NanoARG outputs were filtered for Centrifuge scores ≥300 (hit length ≥ 31) 

and Diamond (Buchfink, Xie, & Huson, 2014) alignments with bitscores ≥ 50 and e-values ≤ 1e-

15. Contigs were then comprehensively searched for WHO Global Priority List of Antibiotic-

Resistant Bacteria (Tacconelli et al., 2018; WHO, 2017) ARG-taxonomy co-locations. Contigs 

were also analyzed via the MetaCompare pipeline (Oh et al., 2018) for the determination of each 

metagenome’s relative “resistome risk” (Martínez, Coque, & Baquero, 2015; Oh et al., 2018) by 

projecting each sample into a 3-dimensional hazard space, normalizing the co-occurrence of (1) 

ARGs, (2) ARGs and MGEs, and (3) ARGs, MGEs, and human bacterial pathogens to the total 

contig library size. 

Systematic Review of Local Clinical Data 

A systematic literature review was carried out to identify antibiotic-resistant bacterial 

infections of concern locally in Puerto Rico. Boolean keyword searches such as “antibiotic” or 

“antimicrobial” and “resist*” and “clinic” and “Puerto Rico” were carried out in the Web of 

Science and PubMed. Search terms and relevant results are summarized in Table S2-4.  

Statistical Analysis and Visualizations  

Data were analyzed using R (v3.6.1) with a significance cutoff of α < 0.05. For analysis 

of significant differences in abundances and Shannon diversities between groups, the non-

parametric Wilcox Rank Sum test was used. Shannon diversities, non-metric multidimensional 

scaling (NMDS) plots, and analysis of ordination similarities were generated in the ‘vegan’ 

(Oksanen et al., 2009) (v2.5-6) package with functions ‘diversity’, ‘isoMDS’, ‘anosim’, ‘envfit’, 

and ‘protest’. Boxplots, non-metric multidimensional scaling coordinates, and stacked bar charts 
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were visualized with the ‘ggplot2’ (v3.2.1) package. Heat maps and Venn diagrams were 

generated using the ‘pheatmap’ (v1.0.12) and ‘VennDiagram’ (v1.6.20) packages, respectively.  

 

RESULTS AND DISCUSSION  

Defining Pristine, Core, Background, and Anthropogenically-Sensitive Resistomes 

 Metagenomic sequence quality and detection of ARGs are summarized in SI Section 2-1. 

Notably, very strong correlations were found between metagenomic versus qPCR enumeration of 

both sul1 and intI1 (Pearson R2 >0.9), supporting quantitative analysis of metagenomic data 

(Figure S2-1). To gain insight into which ARGs were anthropogenically-sensitive, we 

characterized the Pristine, Core, and Background resistomes. We considered ARGs found in 

samples furthest upstream in each catchment to represent Pristine conditions, while the Core 

resistome was defined as the subset of ARGs common to every sample. The Background 

resistome, i.e., the portion of the resistome that is least sensitive to anthropogenic influence, was 

further defined as ARGs found in the Core + Pristine samples. Remarkably, 282 of the 816 ARG 

types observed were shared among all four sample groupings (WWTP, WWTP-Impacted, 

Impacted, Background), representing 93.01% of the total abundance (Figure 2-2). The Core 

resistome shared across all samples consisted of 63 ARGs and was primarily composed of 

multidrug (75.2%), peptide (8.8%), and macrolide-lincosamide-streptogramin (MLS) (5.2%) 

ARGs. The Background resistome consisted of 394 ARGs and was dominated by the same three 

classes (53.5%, 5.1%, 12.5%, respectively).  

 

 

Figure 2-1: Sampling scheme for surface water and wastewater samples across Puerto 

Rico. Geographical distribution of sampling sites and corresponding municipalities (A). The 

dashed red line indicates the path of Hurricane Maria. (B) Sampling points for the watersheds 

Rural Low Impact (RLI) and Periurban Medium Impact (PMI). (C) Sampling points for the 

Urban High Impact (UHI) watershed. 
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The types of ARGs detected in high abundance in the Core resistome across watersheds 

were consistent with the assumption that they were not anthropogenically- or clinically-relevant. 

For example, the dominant functional categories were almost exclusively intrinsic ATP-binding 

cassette, major facilitator superfamily, and resistance-nodulation-cell division antibiotic efflux 

pump systems common in both Gram-negative and Gram-positive bacteria (Table S2-6). The 

relative proportions of each ARG class were noted to be distinct across the four sample 

groupings (Figure 2-2, S3-2). For example, ARGs that were unique to the WWTP-Impacted and 

WWTP compartments, and their overlap, were proportionally dominated (67.8%) by 

aminoglycoside and β-lactam ARGs.  

 

Figure 2-2: Venn Diagram of overlapping unique ARGs across all watersheds and WWTP 

samples through metagenomics. ["Background” ARGs are the Core ARGs common to all 24 

samples plus ARGs identified in the pristine samples furthest upstream in each catchment, 

“Impacted” ARGs are those from sites influenced by adjacent land-use, “WWTP-Impacted” are 

those from any sites where their bulk water consists of some portion of wastewater effluent, and 

WWTP are those from the influent and effluent of the 4,000 CMD WWTP in the PMI 

watershed]. Values in parentheses correspond to the percent relative abundance of each ARG 

category relative to the total abundance of ARGs detected across all samples. 
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Trends in Abundance and Diversity of ARGs across Watersheds with Varying Land-Use 

and WWTP Inputs 

A striking trend of increased total ARG relative abundance with increased anthropogenic 

impact was noted across watersheds, with the WWTP samples representing the theoretical 

maximum (Figure 2-3A). Total ARG relative abundance was significantly higher in WWTP and 

UHI watershed samples than those collected from the PMI or RLI watersheds (Wilcox, p<0.05). 

Hierarchical clustering of Bray-Curtis dissimilarities of total ARG absolute abundances 

generated two distinct clusters (Figure S2-3). The first cluster was comprised of bulk water 

samples taken directly downstream of WWTP discharge, urban sediments, and the raw and 

treated wastewater, while the second cluster consisted of rural and lesser impacted riverine sites.  

Remarkably, diversity of total ARGs followed a similar trend as total ARG relative 

abundance (Figure 2-3B). The most diverse classes of ARGs across all sites were multidrug and 

β-lactam, with average Shannon diversities of 3.52 and 3.49, respectively, highlighting the array 

of β-lactam ARGs inherent to these environments. The Shannon diversity was significantly 

higher in UHI and WWTP samples than in RLI or PMI samples (Wilcox, p<0.05). While WWTP 

samples were not significantly higher than UHI samples (likely because of low statistical power 

of two WWTP samples), they did trend highest when compared to all other samples. The 

compositions of the resistomes were also measurably different across the watersheds (ANOSIM, 

R2 0.1963, p < 0.05) (Figure S2-4A). 

 

 

Figure 2-3: Resistome abundance and diversity across watersheds. (A) Total ARG relative 

abundance (ARGs/16S rRNA) identified by metagenomics read matching to CARD (v 2.0.1) by 

watershed: Rural Low Impact (RLI, n=7), Periurban Medium Impact (PMI, n=6), and Urban 

High Impact (UHI, n=9) and a 4,000 CMD WWTP (Influent and Effluent) serving watershed 

PMI. (B) Shannon diversity of detected ARGs by watershed. Midlines represent the median and 

the box represents the upper and lower quartiles (25th and 75th percentiles). Outliers are indicated 

* 

* 

** 

** 
* 

A) Total ARG Relative Abundance B) Shannon Diversity 
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by red triangles. Pairwise differences were determined by Wilcoxon Rank Sum test. Significance 

cutoffs: * 0.05, ** 0.01, *** 0.001. 

 

WWTP Effluents as a Key Driver of Riverine Resistomes 

WWTP effluent was associated with a significant increase in the absolute and relative 

abundance of ARGs in downstream versus upstream riverine samples collected across all three 

WWTP discharge sites (Wilcox, p < 0.001) (Figures S3-5, S3-6). Further, the composition of the 

resistome also shifted from upstream to downstream (ANOSIM, R2 0.2465, p < 0.001) (Figure 

S2-4A). Certain ARG classes; including aminoglycoside, β-lactam, fluoroquinolone, MLS, 

phenicol, tetracycline, and trimethoprim, were higher in both relative and absolute abundance in 

bulk water of sites with any portion of flow consisting of effluent (n=5), when compared to sites 

unimpacted by wastewater (n=11) (Table S2-7) (Wilcox, p < 0.05). Aminoglycoside, β-lactam, 

and tetracycline classes also increased in richness (i.e., total number of unique ARG types 

observed) (Table S2-7), although inherent variance in ARG class richness limited the ability to 

compare across classes (e.g., there are only 4 known sul gene variants, but over 1,500 gene 

variants in the β-lactam class in CARD). Still, the increase in β-lactam ARG richness from 46.7 

± 14.0 to 85.6 ± 27.2 from upstream to downstream of WWTPs was particularly striking.  

Diversity of β-lactam ARGs and their Taxonomic Associations Across Watersheds  

As a class of resistance with critical clinical significance globally and substantial 

diversity and apparent anthropogenic influence in their occurrence among the samples collected 

in this study, the β-lactam ARGs were subject to further analysis. Across all samples, β-lactam 

ARGs represented 5.18% of the total ARG abundance, with 267 unique β-lactam ARGs detected 

spanning 78 different families, conferring resistance to all major β-lactam antibiotics. The 

greatest number of recognized gene variants within a single β-lactam ARG family was noted 

among several carbapenamase-encoding ARGs, including IMP (20 variants), KPC (4 variants), 

OXA (51 variants), and VIM (1 variant). Other notable β-lactamase families detected were GES 

(5 variants), CMY (10 variants), CTX-M (12 variants), SHV (9 variants), TEM (9 variants), and 

MOX (9 variants), which are all plasmid-mediated and common to Gram-negatives and 

Enterobacteriaceae. These ten clinically-relevant gene families were predominantly found in 

high abundance in the UHI watershed downstream of WWTP discharge, with the greatest 

absolute abundance in sediments but greatest relative abundance in the water column, as well as 

the influent and final effluent of the WWTP itself (Figure 2-4, Table S2-7, S3-8).  

Using the WHO Global Priority List of Antibiotic-Resistant Bacteria(Tacconelli et al., 

2018; WHO, 2017) as guidance, assembled contig libraries were comprehensively searched for 

clinically-relevant β-lactam ARG-taxonomy associations. Characteristics of the assembled 

contigs across samples and relationship to sequencing coverage are summarized in SI Section 3-

2. Of interest were contigs corresponding to carbapenem and third-generation cephalosporin 

resistant Acinetobacter baumanii, Pseudomonas aeruginosa, and members of the family 

Enterobacteriaceae (including Escherichia coli and Klebsiella pneumoniae), which have been 

ranked as Priority 1: Critical. The most common β-lactam-taxa associations detected were the 

class D β-lactamases, OXA (oxacillinase), where at least a single association was found in every 

sample, co-located with 35 different taxonomic families representing 51 different genera. 

Notably, the most clinically-relevant co-locations among A. baumanii (OXA-35, 97, 420), P. 

aeruginosa (OXA-10), K. pneumoniae (OXA-163), and E. coli (OXA-10) were found almost 
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exclusively in the UHI watershed (Table S2-10). The second most common WHO-relevant ARG 

with the widest taxonomic distribution was the class B metallo-β-lactamase IMP (imipenemase) 

gene, which was found associated with 15 different genera across 15 taxonomic families, the 

most notable of which was E. coli (IMP-8, 11, 47). By contrast, KPC (Klebsiella pneumoniae 

carbapenamase) contigs exhibited a narrow taxonomic and geographic distribution. KPC-2 was 

the only corresponding variant found in the contig dataset and was exclusively associated with A. 

hydrophila, Proteus mirabilis, and its genetic originator, K. pneumoniae. It was found in the 

water column downstream of WWTP discharge across all three plants, in the influent and final 

effluent of the WWTP, and in one water sample in the UHI watershed (UHI_Wat_UP_2; Table 

S2-10).  
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Figure 2-4: Heat map of absolute abundance of all β-lactam ARG types. Each gene/protein is 

represented as the sum of all detected variants (right axis). Color gradient represents log10 

transformed absolute abundances. Complete-linkage clustering was used to hierarchically cluster 

both samples (columns) and ARGs (rows). Columns have been separated between the two main 

sample clusters. Sample coding convention is as described in 
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Relative Resistome Risk and Mobility 

Assembled scaffolds were further analyzed to characterize relative “resistome risk”, an 

empirical comparative analysis of the relative degree of co-localization of ARGs, MGEs and 

human pathogen taxonomies (Martinez, Coque, & Baquero, 2015; Oh et al., 2018). Consistent 

with the above observed trends in total ARG relative abundance and diversity, the relative 

resistome risk scores were significantly higher in the UHI and PMI watersheds than in the RLI 

watershed (Wilcox, p < 0.05) (Figure 2-5A). Interestingly, while WWTP and WWTP-impacted 

samples trended towards higher resistome risk scores, the two samples with the highest scores 

were impacted riverine samples, not samples of the WWTP itself (UHI_Sed_UP_2 and 

UHI_Wat_UP_2 samples upstream of the 150,000 CMD Caguas WWTP, but downstream of the 

most densely developed urban area). This suggests that mixtures of WWTP effluent and other 

anthropogenic stresses with natural riverine microbiomes elevate the potential for a mobile 

resistome and for pathogens to acquire new resistance genotypes. However, it is acknowledged 

that, although sequencing depth was uniform across this study, the percent of reads successfully 

assembled varied (<1% - 64%). In general, more pristine samples yielded greater sequence 

diversities and assembled less effectively. Although resistome risk scores were normalized to the 

contig library size, their comparability cannot be guaranteed. It is also noted that ARGs are 

especially difficult to accurately assemble from short reads, especially in complex environmental 

samples, because they occur in multiple contexts (Ayling, Clark, & Leggett, 2020; Ghurye, 

Cepeda-Espinoza, & Pop, 2016). Limitations of assembly and how they were addressed in this 

study are discussed further in SI Section S2-3. 

Co-localization of indicators of mobility (e.g., plasmids, transposons, integrons) 

(Forsberg et al., 2014b; Ju et al., 2019) with ARGs on assembled contigs was also examined as a 

proxy for potential of ARGs to be transferred among bacteria and to provide information about 

their genetic history (Forsberg et al., 2014b; Ju et al., 2019). Analysis of variance indicated that 

WWTP samples and those directly impacted by wastewater (3.97%) had a greater average 

mobility incidence (M%)(Ju et al., 2019) than pristine environments (1.18%) (p = 0.00157). 

Within the ARG contig library (225,342 contigs), 83,193 contigs were also co-located with an 

indicator of mobility (36.92%). The average M% of individual ARGs detected in this study was 

4.67%, 2.93%, and 2.35% for wastewater, sediment, and the bulk water samples, respectively, 

but this varied substantially by ARG class. Specifically, the β-lactam and aminoglycoside ARGs 

displayed disproportionally high M% due to many of the individual ARGs occurring at low gene 

abundances, but with a high likelihood of being co-located with an MGE indicator (Figure 2-5B). 

For example, there were 13 instances of a β-lactam ARG (ACT-28, ADC-23, CMY-99, DHA-22, 

IMP-33, OXA-228, OXA-398, OXA-420, OXA-97, OXY-1-2, PDC-90, TEM-194, TEM-33) 

occurring only on one contig that was also co-located with an indicator of mobility.  
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Figure 2-5: Relative resistome risk and ARG mobility potential across anthropogenic 

gradient. (A) MetaCompare relative resistome risk scores by watershed: Rural Low Impact 

(RLI, n=7), Periurban Medium Impact (PMI, n=6), and Urban High Impact (UHI, n=9) and a 

4,000 CMD (Influent and Effluent) serving watershed PMI. Significance difference determined 

by Wilcoxon Rank Sum test. * = p < 0.05 (B) Mobility incidence (M%) compared across 

samples with varying degrees of anthropogenic stress ["Pristine” samples are sites at the 

headwaters of catchments within watersheds, “Impacted” ARGs are those from sites influenced 
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by adjacent land-use, “WWTP-Impacted” are those from any sites where their bulk water 

consists of some portion of wastewater effluent]. M% is defined as the percentage of ARG 

contigs co-occurring with an indicator of mobility (i.e., contigs where MGEs were annotated). 

ANOVA, p = 0.00157. Post-hoc TukeyHSD, WWTP-Impacted > Pristine; WWTP > Pristine (p 

< 0.05). 

Comparing Clinically-Relevant ARG-MGE-Taxonomy Annotations with Local Clinical 

Resistance Prevalence 

The systematic literature review identified clinical surveillance reports highlighting KPC 

and IMP in clinical isolates of P. aeruginosa (Wolter et al., 2009), A. baumanii (Robledo et al., 

2010), and K. pneumoniae (Gregory et al., 2010) across Puerto Rico 2008-2012 (Table S2-4). 

Notably, KPC has been increasingly reported in hospitals in Latin America, including Brazil, 

Argentina, Uruguay, and Cuba (Belder et al., 2017). In an island-wide survey, 10,507 clinical 

Gram-negative bacilli isolates were investigated from 17 hospitals, representing primarily 

nosocomial-, but also environmentally-acquired infections and colonizations (Robledo, Aquino, 

& Vázquez, 2011). Of the 1,239 multi-β-lactam-resistant isolates, 534 (5.1% of all isolates) were 

KPC-positive (Table S2-4). The source of rapid dissemination of KPC is still unknown. The 

authors hypothesized that the small size of Puerto Rico (3,435 square miles), high population 

density, global connectivity of the San Juan airport, ease of ground-travel, and frequent patient 

transport between hospitals are contributing factors. Additionally, broad-spectrum antibiotics are 

widely used due to the already high number of extended-spectrum β-lactamase infections, while 

carriage of KPC on MGEs facilitates mobilization and co-selection (Robledo et al., 2011). 

It is noteworthy that some β-lactam ARGs, including KPC, OXA, and IMP known to be 

locally problematic in the clinic, were found in the Background resistome in this study, 

highlighting the endemic nature of these ARGs. But such β-lactam ARGs also independently 

stood out in terms of both non-point-source adjacent land-use and WWTP inputs, elevating their 

numbers and diversity in affected rivers and streams (Table S2-9). KPC is generally located in 

Tn4401 transposons and other Tn3-like genetic elements found on conjugative plasmids, flanked 

by ISKpn6 and/or ISKpn8-like insertion sequences (Belder et al., 2017). Here, KPC-2 was found 

on six distinct K. pneumoniae contigs, co-located with the insertion sequence ISKpn6, two 

contigs of which were also co-located with TEM-17. These contigs were found downstream of 

the three WWTPs and in sample UHI_Wat_UP_2, consistent with detection of these ARGs in 

human feces and environments contaminated with human fecal material (Bengtsson-palme, 

Kristiansson, & Larsson, 2018). These findings demonstrate that clinically-relevant β-lactam 

ARGs could serve as sensitive surveillance targets (Huijbers, Flach, & Larsson, 2019) and also 

inform risk assessment models for individuals coming into direct contact with contaminated 

water, which would especially be a concern in a scenario of improper sewage control such as that 

instigated by Hurricane Maria. 

Predicting Resistomes with Human Fecal and Anthropogenic Antibiotic Resistance 

Markers 

To advance an integrated surveillance scheme, we cross-compared the above resistome 

characterization via metagenomics with direct enumeration of the highly-specific HFM, 

crAssphage 056 (Stachler et al., 2017) and the large ribosomal RNA gene common to 

Enterococcus spp. (EPA, 2012), via qPCR. CrAssphage and enterococci were detected in all 24 

samples. The absolute abundance of HFMs were significantly elevated in the UHI watershed 

samples (UHI > RLI) and a clear ranking was seen in samples impacted by wastewater (WWTP-
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Impacted > Impacted > Pristine) (Wilcox, p < 0.001). Further HFM performance metrics can be 

found in the SI Section S2-7. 

Of particular interest were ARGs successfully predicted by the HFMs versus the more 

generalized AARM indicators, sul1 and intI1. All four markers correlated well (Pearson, R2 > 

0.7, p < 0.0001) with the absolute abundance of total ARGs (log10 Total ARG copies), with sul1 

performing the best (R2 = 0.901) (Figure S2-8). Remarkably, a clear divergence was observed in 

terms of the individual ARGs that were successfully predicted by the HFMs versus the AARMs 

(i.e., Pearson R2 ≥ 0.7, p < 0.0001) (Figure 2-6). Of the 816 unique ARGs detected, 368 were 

successfully predicted by the AARMs, representing 93.4% of the total ARG abundance, whereas 

the HFMs predicted 140 ARGs, representing less than 2%. The AARMs successfully predicted > 

85% of the abundance of the aminoglycoside, macrolide-lincosamide-streptogramin, peptide, 

fluoroquinolone, glycopeptide, and streptogramin ARGs and 100% of the quinolone, 

sulfonamide, and elfamycin. They also predicted 62/63 core ARGs (all except AAC(6’)-32) and 

94.7% of the Background resistome abundance. The HFMs correlated with less than 3% of the 

abundance of any individual gene class, except the β-lactams. The clinically-relevant β-lactams 

were more consistently predicted by the AARMs than the HFMs, although KPC-2 was correlated 

strongly with both HFMs (Table S2-9). There was not a single instance of an HFM and an 

AARM successfully predicting the same ARG, suggesting that HFMs and AARMs predict 

distinct and complimentary attributes of the resistome. 

 

Figure 2-6: Venn Diagram of accurately predicted ARG types (measured by metagenomic 

sequencing) by each anthropogenic marker (measured by qPCR). Accurate predictions 

defined as cutoff for strong Pearson correlations, i.e., R2 > 0.7 with p-values < 0.0001. 

Correlations were performed on absolute abundances of individual ARGs with the corresponding 

qPCR assay (excluding WWTP samples). Values in parentheses correspond to the abundance of 

the successfully predicted ARG types as a percent of the total ARGs detected by metagenomic 

sequencing for all non-WWTP samples. 
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An Integrated Surveillance Approach for ARGs in the Environment  

Here we demonstrated a comprehensive ARG monitoring approach, integrating 

metagenomics with qPCR enumeration of HFMs and AARMs, by characterizing three distinct 

Puerto Rican watersheds in the wake of massive disruption by Hurricane Maria. Metagenomic-

based approaches are particularly attractive, as they have the potential to capture the full 

resistome of a given environment, as well as indicators of ARG mobility (e.g., plasmids, 

integrons, transposons, and modulators of genetic mobility) and host organisms. Consistent with 

studies of other riverine environments (Koczura, Mokracka, Taraszewska, & Łopacinska, 2016; 

Rodriguez-Mozaz et al., 2015; Xiang, Chen, Zhu, An, & Yang, 2018), a clear ranking of ARG 

abundance and diversity metrics was observed as environments shifted in both land use 

characteristics and population density (Fresia et al., 2019; Y. Xu et al., 2016; Zheng et al., 2018). 

Prior studies have reported ARGs that correlate well with anthropogenic activity in 

watersheds (He et al., 2014; Pruden et al., 2012; Storteboom, Arabi, Davis, Crimi, & Pruden, 

2010). The present study employs metagenomics to expand this list of ARGs, while also 

combining with qPCR to further gain insight into their sources. Metagenomic approaches remain 

limited by cost and specialized expertise for analysis, with a lack of consensus on protocols 

(Hendriksen, Bortolaia, et al., 2019), while also facing inherent limitations in terms of high 

detection limits. Recently it has been pointed out that the majority of ARGs can simply be 

predicted by HFMs, especially the highly-specific crAssphage (Karkman et al., 2019). qPCR 

assays are attractive for monitoring of environmental sources of resistance, as they are much 

more broadly accessible, while also yielding sensitive quantitative information. This study takes 

a step towards validating such qPCR-based monitoring approaches, providing insight with 

respect to the specific ARGs predicted by crAssphage and other proposed monitoring targets and 

the extent of their clinical-relevance and mobility.  

A striking finding of the present study is not only confirmation of a strong correlation between 

crAssphage and total ARG abundance (Karkman et al., 2019), but the fact that the AARMs, sul1 

and intI1, exhibit stronger correlations and predict an entirely different and broader range of 

ARGs. The clinically-derived class 1 integron integrase gene, intI1, has been established as a 

highly sensitive stressor-responsive, xenogenetic, generic marker that has the ability to 

accumulate gene cassettes from the environment and integrate them into both commensal and 

pathogenic bacteria (Gillings et al., 2014). The prevalence of intI1 has been used as a direct 

bioindicator of these evolutionary pressures in riverine environments at the full-watershed scale 

(Barrón, Merlin, Guilloteau, Montargès-Pelletier, & Bellanger, 2018; Koczura et al., 2016; 

Lehmann et al., 2016). Still, accurately predicting which ARGs emanate from human fecal 

contamination versus other sources, and their relative proportions, remains a challenge (Li, Yin, 

& Zhang, 2018). In this study, many of the same environments were likely affected both by 

human fecal contamination and generalized anthropogenic pollution. In such situations, we 

expect that the AARMs reflect, in part, enrichment of ARGs represented in the Core resistome, 

by selection or gene exchange, while ARGs sourced directly from human fecal-related taxa 

would be more subject to attenuation in the environment. This is consistent with the observation 

in this study that ARGs that correlated strongly with HFMs, although clinically-relevant, made 

up a small fraction of the total resistome. 

β-lactam and aminoglycoside ARGs were disproportionately diverse, co-located with 

indicators of mobility, and associated with increased anthropogenic stress in these sub-tropical 

catchments, suggesting that they are largely allochthonous. Studies have shown highly diverse β-
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lactam ARGs in aquatic environments (Bai, Jing, Teng, Chen, & Chen, 2018; Zhang et al., 

2019), but these prior studies of arguably more polluted riverine environments in China and 

India did not detect the extent of the diversity of 3rd-Generation cephalosporinases or 

carbapenamases that were observed in the present study. Interestingly, compared to mainland 

United States and Canada in recent decades, there has been an observed increase in β-lactam 

resistant Enterobacteriaceae, A. baumanii, and P. aeruginosa nosocomial infections in Puerto 

Rico which also displayed increased levels of aminoglycoside and quinolone resistance (Doern, 

Jones, Pfaller, Erwin, & Ramirez-rhonda, 1998; Vazquez et al., 2003). The clear clustering of 

these enzymatic signatures surrounding urban developments and WWTPs, compounded with the 

observed increase in co-occurrence of these genes with indicators of mobility, highlights the 

need for increased surveillance approaches appropriate for these clinically-relevant ARGs. 

Future surveillance efforts targeting antimicrobial resistance in watersheds would ideally 

be centered around inputs from WWTPs and other sources of human, as well as livestock/animal, 

fecal bacteria introduced to aquatic environments. It is also worth considering industrial inputs, 

e.g., Puerto Rico has a substantial drug production industry. Surveillance efforts can be 

implemented using lower cost and more technologically-accessible approaches, such as culturing 

of extended-spectrum beta-lactamase (ESBL)-producing E. coli (Kirby, 2020) and qPCR assays 

for select ARGs, ideal candidates being 3rd-Generation cephalosporinases and carbapenamase-

producing genes/bacteria already prominent in the healthcare system (e.g. KPC-2 and IMP 

variants). These methods, alongside routine screening of indicators, such as crAssphage and 

intI1, would aid in identifying input sources, assessing potential for ARGs to amplify/mobilize, 

and establishing baselines for assessing trends with time and effects of disruptions, including 

storms or intentional interventions intended to mitigate the spread of antibiotic resistance. 

Recently, it has been suggested that metagenomic sequencing of urban sewage could be an 

informative tool for assessing the resistome composition of local populations. The authors found 

that the resistomes of individual sewage samples were mainly influenced by local factors and 

tended to be representative of broader patterns observed across a given country (Hendriksen, 

Munk, et al., 2019). Here, a profile of the local resistome was revealed via shotgun 

metagenomics of the Patillas WWTP, but it would be of interest to compare to the more densely 

populated San Juan metropolitan areas as well. 

In an era of increasing intensity and frequency of major storms (Levin, 2019; Rahmani et 

al., 2016; Roque-malo & Kumar, 2017), surveillance can also help address concerns that such 

events may exacerbate the spread of ARB and ARGs. WWTPs are of particular interest, as they 

serve as central nodes for the processing of human waste, acting as both a barrier and a source 

for ARGs and ARB entering the aquatic environment (Bürgmann et al., 2018). During storms, 

loss of WWTP functionality or discharge of untreated wastewater when WWTPs become 

inundated could elevate their potential role in disseminating antibiotic resistance and increasing 

risk of infection in human populations. The downstream environment of the WWTPs that were 

the subject of this study certainly presented concerns with respect to the clinically-relevant 

ARGs detected. Thus, as surveillance methodologies and the information yielded are established, 

future studies are merited to more intentionally assess the impacts of major storms on the spread 

of antibiotic resistance. 
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SUPPLEMENTAL MATERIALS FOR CHAPTER 2 

Section S2-1: Metagenomic Sequence Quality and Detection of ARGs 

Shotgun metagenomic sequencing of 24 samples across the three differentially-impacted 

watersheds and one WWTP produced 952 million paired-end short reads representing 238 Gb, 

averaging 39.6 million reads (9.9 Gb) per metagenome. A total of 320,528 metagenomic short-

reads were aligned to the CARD database, representing 816 unique ARGs belonging to 18 

different antibiotic classes. This constituted 0.034% of the complete short-read dataset, whereas 

the MGE and plasmid-protein sequences were more abundant, representing 0.47% and 1.39%, 

respectively. Very strong correlations were observed between sul1 and intI1 annotated in 

metagenomic libraries versus measured via qPCR (sul1 Pearson R2 = 0.951, p = 9.5e-13; intI1 

R2 = 0.921, p = 1.8e-10) (Figure S2-3). Along with the uniform sample collection and 

processing applied here, this result provided validation for subsequent semi-quantitative and 

quantitative comparisons applied across metagenomic data sets. An overview of percent relative 

and absolute abundances of ARG classes detected across watersheds is provided in Table S2-5. 

All qPCR targets measured below detection in trip, DNA extraction, and no template control 

blanks.  

Section S2-2: Metagenomic Assembly Quality  

Nonpareil coverage estimates1, a measurement of sequencing redundancy in a sample and 

an indication of biological sequencing depth, were dependent on sample type and location. For 

example, more polluted samples had less inherent sequence diversity and therefore had higher 

sequencing coverage. This discrepancy in sequencing coverage was reflected in overall assembly 

qualities, with short-read assembly percentages ranging from less than 1% in pristine river water 

to 64% in raw sewage (Table S2-3). Still, de novo assembly of the metagenomic short-reads 

generated 9,162,997 contigs with N50 length of 915 bp containing 13,378,273 open-reading 

frames, allowing for broad ARG contextualization. Of the total library, 225,342 contigs were 

identified as carrying an ARG (2.46%). To account for inherent limitations of metagenomic 

sequence assembly, the MetaCompare algorithm2 used to assess relative resistome risk is 

normalized to total contig library size, facilitating comparison across assembly qualities.  

Section S2-3: Microbial Community Analysis  

Microbiomes (i.e., taxonomic microbial community composition derived from 

metagenomic sequencing) were profiled, with microbial classification performed using 

Centrifuge3 with a preconstructed index of all bacterial and archaeal genomes (4/15/2018 update) 

contained within the RefSeq database (http://www.ccb.jhu.edu/software/centrifuge/). The engine 

was run with the default parameters using both the forward and reverse, quality trimmed4 reads 

from each sample. Classified reads were filtered for Centrifuge Scores ≥ 300 (hit length > 31) 

and the engine’s calculated abundances were used for all downstream analyses. Procrustes 

analysis of NMDS ordinations of the microbiomes annotated using Centrifuge indicated strong 

association with the resistome (Bray-Curtis dissimilarity index; sum of squares M12 = 0.4372, R 

= 0.751, p < 0.001, 999 permutations). This observation was further corroborated with the 

Mantel test (R = 0.4588, p < 0.001). While these statistical tests confirm the expectation that 

there is a relationship between the microbiome and resistome, lack of a perfect relationship (i.e., 

R=1.0) is consistent with the assumption that at least some portion of the resistome is mobile 

across bacterial species. 
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Section S2-4: Influence of Land-Use and WWTP Inputs Across Watersheds  

In general, in moving from less impacted to more impacted sites, the proportion of 

Proteobacteria was reduced from as high as 91% in pristine headwaters (RLI_Wat_WP), down to 

23% in a UHI sample (UHI_Wat_MID). The relative abundance of Proteobacteria was 

diminished and replaced by the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Nitrospirae 

in these more impacted environments (Figure S2-7). In every instance, sediments directly 

downstream of WWTP discharge showed high proportions of Nitrospirae, as high as 31.8% of 

the relative abundance downstream of the 40 MGD WWTP (UHI_Sed_DN_2), which is likely 

due to their emission from nitrification processes in the WWTP. Chemical analysis showed that 

the concentration of nitrite was significantly enriched downstream of these plants (Wilcox < 

0.05) (Table S11). The shift in microbial communities is also reflected by NMDS, where the 

location within each respective watershed (e.g., pristine, residential, upstream and downstream of 

effluent discharge) was associated with an altered microbiome (ANOSIM, R2=0.206, p<0.05) 

(Figure 2-3B). Microbial communities across each watershed were also distinctly separated 

(ANOSIM, R2=0.254, p<0.001), indicating a microbiome that is sensitive to watershed-specific, 

non-point source effects as well. 

 Section S2-5: Environmental Indicators of Pollution also Correlate with ARGs 

According to vegan ‘envfit’ analysis, the total ARG absolute abundances were further 

correlated with total and soluble phosphorus concentrations, nitrite, and temperature variations. 

Notably, the average measured temperature was 22.0°C for pristine samples versus 27.7°C for 

urban samples and samples downstream of WWTP discharges (Table S2-11). 

Section S2-6: Sediment Resistome Harbored Much Greater Abundance but Lower Gene 

Richness and Diversity Compared to Bulk Water 

Absolute ARG concentrations in the sediments were high, with an average of 4.91 x 108 

copies per gram compared to raw influent/treated effluent and river water with average 

abundances of 5.45 x 107 and 3.45 x 105 copies per mL, respectively.  When comparing 

sediment samples directly upstream (n=3) and downstream (n=3) of the three WWTP discharge 

points, there was an increase in absolute abundance of all 18 detected ARG classes (Table S2-8). 

The Shannon diversity also increased across 12/18 antibiotic classes in downstream sediments. 

Comparing diversity metrics from wastewater impacted bulk water samples (Table S2-7) to 

downstream sediment samples (Table S2-8) though, there was a marked decrease in the number 

of detected ARGs for the aminoglycoside, beta-lactam, fluoroquinolone, fosfomycin, 

glycopeptide, MLS, multidrug, other, phenicol, tetracycline, and trimethoprim classes.  

Section S2-7: Performance of Human Fecal Markers  

All three watersheds had little to no agricultural activity, although it was common for the rural 

households in the RLI and PMI areas to maintain small to medium sized livestock including 

chickens, ducks, and goats. These rural households were also primarily on individual septic 

systems and in some cases, informal waste detention mechanisms, e.g., cesspools or direct 

discharge onto land or streams5. These factors likely contributed to the detection of both 

crAssphage and enterococci in every sample, including pristine samples with no direct human 

influence, albeit at levels below quantification. Detection of both crAssphage and enterococci 

was confirmed via Sanger sequencing in samples below the limit of quantification (10 
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copies/mL). The wastewater treatment plant sampled saw a 4-log reduction of crAssphage and a 

6-log reduction of enterococcus markers from influent to final effluent. Sediment samples 

harbored much greater abundances of both markers per gram (4.16 – 5.2 log10) compared to the 

water column per milliliter (1.76 – 1.97 log10). The detection of human feces was corroborated 

via cross correlation of each marker where remarkably, the two targets exhibited a near perfect 

correlation (Pearson R = 0.9987, p < 1e-16). We further note that the original environmental 

crAssphage studies6,7 employed a 0.45 um filter to quantify the human fecal bacteriophage 

whereas the present study used a 0.22 um filter, which would be expected to provide even greater 

viral capture efficiency.  
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Figure S2-1: Comparison of quantitative metagenomics and qPCR for quantifying both the sul1 

and intI1 genes across all samples. Absolute abundances in the metagenomes were calculated by 

multiplying the relative abundances of the functional genes by total abundance of 16S rRNA 

quantified by qPCR. 

 

 

Figure S2-2: Resistome composition by Venn diagram compartment. Pie charts were generated 

using the absolute abundance of detected ARGs by class located in their respective 

compartments.  

log (sul1 copies per mL or g)  

Pearson = 0.951 

p = 9.5e-13 

 

log (intI1 copies per mL or g)  

Pearson = 0.921 

p = 1.796e-10 
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Figure S2-3: Hierarchical clustering dendrogram of absolute abundance of ARGs across all 

samples by Bray-Curtis dissimilarity matrix. Generated using the ‘vegan’ package in R.  

 

 

Figure S2-4: (A) Non-metric Multidimensional Scaling (NMDS) plot of calculated absolute 

abundances of individual ARGs detected via alignment of metagenomic reads to CARD (v2.0.1). 

(B) NMDS plot generated from Bray-Curtis dissimilarity matrix of Centrifuge’s calculated 

taxonomic relative abundances at the genus level across all water and wastewater samples 

(n=18).  "Pristine” are those samples furthest upstream in each catchment, “Impacted” ARGs are 

those from sites influenced by adjacent land-use, “WWTP Impacted” are those from any sites 

where their bulk water consists of some portion of wastewater effluent, and WWTP are those 

from the influent and effluent of the 1.0 MGD WWTP in the PMI watershed. (ANOSIM) 

Microbiome by Location (e.g., pristine, residential, upstream and downstream of effluent 
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discharge), R2=0.206, p<0.05; Microbiome by Watershed, R2=0.254, p<0.001; Resistome by 

Watershed, R2 0.1963, p < 0.05; Resistome by WWTP Impact, R2 0.2465, p < 0.001. 

 

 

 

  

Figure S2-5: Absolute abundance of ARGs per mL or g by antibiotic class as enumerated by 

alignment of shotgun metagenomic sequences to the Comprehensive Antibiotic Resistance 

Database (v2.0.1). Samples are designated by their sample type and position within the 

watershed (P=Pristine, UP=Directly Upstream of WWTP effluent, DN= Directly Downstream of 

WWTP, IN=Influent to Patillas WWTP, FE=Final Effluent of Patillas WWTP, Wat=Bulk water, 

Sed=Sediment).  
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Figure S2-6: Relative abundance of ARGs per 16S rRNA copies by antibiotic class as 

enumerated by alignment of shotgun metagenomic sequences to the Comprehensive Antibiotic 

Resistance Database (v2.0.1). Samples are designated by their sample type and position within 

the watershed (P=Pristine, UP=Directly Upstream of WWTP effluent, DN= Directly 

Downstream of WWTP, IN=Influent to Patillas WWTP, FE=Final Effluent of Patillas WWTP, 

Wat=Bulk water, Sed=Sediment). 

 

 

 

Figure S2-7: Relative abundance of taxonomic assignments generated using the Centrifuge 

engine against all bacterial and archaeal genomes contained in the RefSeq database (updated 
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4/15/2018). The Proteobacteria phyla is divided into its individual class assignments. Phyla with 

less than 1% abundance representation were binned as “other”.    

 

 

 

Figure S2-8: Correlations between human fecal markers (HFMs) (crAssphage and enterococcus) 

and anthropogenic antibiotic resistance markers (AARMs) (intI1 and sul1) with log10 Total 

ARG copies per sample. 

 

Supplemental data tables can be found under my Open Science Framework projects: 

https://osf.io/xty5v/ 
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ABSTRACT 

 Wastewater treatment plants are at the forefront of mitigating the impact of human fecal 

pollution on the environmental dissemination of antibiotic resistance. Understanding the dynamics 

of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) through conventional 

activated sludge (AS) treatment plants is critical for evaluating both the human health and 

ecological resistome risks that treated wastewater effluents pose to receiving environments. To 

investigate ARB and ARG dynamics, and their relationship to the human fecal microbiome and 

resistome risks, 11 WWTPs representing distinct influent compositions from Europe/US and Asia 

were sampled and investigated using shotgun metagenomic sequencing and qPCR. From primary 

effluents (PE) to final treated effluents (FE), total ARG abundance was significantly reduced (~2 

log reduction), regardless of PE composition or the bioinformatic normalization strategy 

employed. These reductions directly reflect the efficiency of individual WWTPs at removing both 

total bacterial cells (measured as 16S rRNA gene copies) and the abundance of human fecal 

indicators (crAssphage). Procrustes analysis revealed high structural symmetry of microbiome and 

resistome compositions in each treatment compartment, suggesting each stage of treatment 

represents distinct wastewater ecosystems with limited horizontal ARG transfer. Contig-based 

analysis indicated that a majority of ARGs were chromosomally-bound and directly tied to their 

host taxa. Resistome risks, measured as the prevalence of high-risk ARGs and their co-localization 

with mobile genetic elements and pathogens, were significantly reduced in final treated effluents. 

However, several high-priority and mobile ARGs persisted globally across effluents. These 

findings support the use of conventional biological treatment as a significant barrier to the 

dissemination of antibiotic resistance.   

INTRODUCTION 

Antibiotic resistance is an urgent threat to global human health [1,2]. Wastewater treatment 

plants (WWTPs) have been identified as critical barriers to, but also potential foci for, the 

dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) to 

receiving environments [3,4]. WWTPs receive diverse anthropogenic biotic and abiotic pollutants 

in raw sewage including human pathogens, antibiotics, biocides, and heavy metals that could 

possibly select or co-select for ARB and ARGs. Although WWTPs are efficient at attenuating total 
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microbial load, they are not designed to specifically remove ARB and may be engendering the 

mobilization of ARGs during biological treatment.  

Conventional activated sludge (AS) WWTPs are the most widely applied in world, particularly 

in urban areas, and typically involve three fundamental treatment processes: biological (i.e., 

aeration), physical (i.e., gravimetric settling), and disinfection [5]. Several concerns have been 

raised about the potential for biological treatment to facilitate the mobilization and proliferation of 

ARGs [6]. The high cell density and prevalence of stressors (e.g., antimicrobials and heavy metals) 

in aeration basins may facilitate horizontal gene transfer (HGT) and potentially increase the total 

abundance of the collection of ARGs (i.e., the resistome). The increased stressor to planktonic cell 

concentration ratio present in secondary clarifiers have also been demonstrated to exhibit stronger 

selection potential for ARB and ARGs [7]. Disinfection processes, which undoubtedly reduce 

pathogenic bacteria and further reduce microbial loads, have been shown to increase the relative 

abundance of ARGs in final effluents [8,9]. Together, these treatment processes represent dynamic 

and complex microbial networks that undergo various levels of stress, selective pressures, and 

ultimately, potential for attenuating or proliferating resistance as unique wastewater “ecosystems” 

[10,11]. Due to this complexity, there have been several conflicting reports regarding the extent to 

which ARGs are removed through treatment [12–14]. Many factors may attribute to these 

disparities, including differences in influent microbial community composition, heterogenous 

sampling strategies, variable ARG databases and bioinformatic strategies employed (e.g., 

sequence-based homology-based cutoffs), and ultimately, individual WWTP performances.  

Many studies have attempted to use operational conditions (e.g., temperature, pH, biochemical 

oxygen demand, etc.) to predict ARG dynamics, but to date, no single physicochemical factor has 

been shown to reliably predict the fate of ARB and ARGs through treatment [15]. The use of 

human fecal indicators is an attractive alternative as a holistic measurement of overall treatment 

performance and ARG removal. The human fecal microbiome is one of the dominant sources of 

high-priority ARGs and pathogenic taxa to environmental systems [16], and thus understanding 

the behavior and the fate of ARB, ARGs, and human fecal bacteria through conventional 

secondary treatment is critical for evaluating the risks that treated effluents pose to both the 

transmission and evolution of resistance into receiving waters around the world. The human fecal 

microbiome represents not only a human health risk, but also an ecological risk for the 

dissemination of mobile ARGs [17].  

Managing human waste streams is a critical facet of efforts to combating the spread of AMR 

[19]. Here we seek to establish the extent to which conventional wastewater treatment; including 

biological, physical, and disinfection processes, act to shape the resistome of the final effluent 

released to the environment and the relative risk it poses to human health and the dissemination of 

antibiotic resistance. To accomplish this, we examined an international transect of WWTPs that 

receive influents that represent extremes in influent composition (i.e., Europe/US versus Asia), 

comparing shifts in resistome composition with each stage of treatment [18]. Primary effluent 

(PE), activated sludge (AS), secondary effluent (SE), and final effluent (FE) was collected across 

eleven WWTPs located in Switzerland, India, Hong Kong, Sweden, the United States, and the 

Philippines. We utilized qPCR, metagenomic sequencing, and de novo assembly to gain a 

quantitative and mechanistic understanding into how each stage of treatment can act either to 

amplify or to attenuate ARG abundance. We further relate ARG removal to the removal of the 

human fecal marker, crAssphage, as well as a collection of human gastrointestinal bacterial 

genomes, the Unified Human Gastrointestinal Genome (UHGG) collection, to establish the extent 
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to which treatment processes that are well functioning according to design also remove ARGs.  

The findings will help prioritize where improvements to wastewater treatment may be warranted 

to further reduction of mobile, pathogen-associated ARGs (i.e., “resistome risk”), both on a 

geographic and treatment scale. 

 

MATERIALS AND METHODS 

Sample Collection and Processing 

A total of 52 wastewater samples were collected over the course of 2 years (2016-2018) 

from 11 WWTPs employing conventional biological treatment in Switzerland, India, Hong Kong, 

Sweden, the United States, and the Philippines. The Hong Kong WWTPs were sampled on two 

separate occasions with a year of separation. A summary of the WWTP characteristics can be 

found in Table S3-1. The collection and processing of samples from PE, AS, SE, and FE was 

uniform as previously described [20]. Briefly, grab samples were taken in autoclaved 

polypropylene bottles and transported to nearby laboratories on ice. Samples were homogenized 

by shaking and biomass was filter concentrated in triplicate on three individual 0.22-µm mixed 

cellulose ester filters at equal volumes, fixed in 50% ethanol, and stored at -20 °C. Ethanol-fixed 

filters were shipped back to Virginia Tech on ice packs for further processing. DNA extraction 

was performed with the FastDNA Spin Kit for Soil (MP Biomedicals, Solon, OH) and total double-

stranded DNA was quantified via the dsDNA High Sensitivity Assay kit on a Qubit® Fluorometer 

(Invitrogen, USA) and its quality was assessed with a NanoPhotometer® Pearl (Implen, USA). 

One liter of deionized water was also filter concentrated and extracted to ensure no contamination 

occurred during DNA extraction. 

Quantitative Polymerase Chain Reaction 

Using qPCR, the abundance of total bacteria (16S rRNA genes) [21], sul1 [22], and intI1 

[23] were quantified for each filter triplicate. Each assay was then performed in analytical triplicate 

with autoclaved deionized water as no template control. Double-stranded gBlock gene fragments 

(IDT) were used to generate standard curves. The minimum accepted efficiencies and R2 values 

for standard curves were 80% and 0.980, respectively. Before sample quantification, dilution 

curves were performed on random samples from each treatment stage using the 16S rRNA gene 

assay to determine the per-compartment dilution factor appropriate to minimize PCR inhibition.  

Shotgun Metagenomic Sequencing 

Before library preparation, equal mass of DNA from each of the triplicate DNA extracts 

were pooled as a composite sample. For primary and secondary effluent composites, libraries were 

constructed using a NexteraXT DNA Library Prep Kit and sequenced by Diversigen, Inc (Houston, 

TX) via 2 × 150 bp paired-end shotgun metagenomic sequencing on an Illumina NovaSeq 6000. 

For final effluent samples, TrueSeq libraries (Illumina, San Diego, CA) were constructed and 

sequenced via 2 × 100 bp paired-end sequencing on an Illumina HiSeq 2500 by Virginia Tech 

Biocomplexity Institute Genomic Sequencing Center (Blacksburg, VA). Activated sludge libraries 

were constructed using a NEB Ultra II DNA Library Prep kit for Illumina (New England Biolabs, 

USA) and sequenced via 2 × 75 bp paired-end sequencing on an Illumina NextSeq500 by the 

Scripps Research Institute (La Jolla, CA). All sequences were deposited to the Sequence Read 

Archive (SRA) under accession number PRJNA527877. 
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ARG and Taxonomic Analysis 

All reads were trimmed and filtered using Trimmomatic to remove adapters and low quality 

nucleotides [24]. Paired-end reads were then merged using Vsearch [25]. ARG annotation was 

performed using the DIAMOND blastx [26] (v.0.9.14) aligner against the Comprehensive 

Antibiotic Resistance Database (CARD, v.3.0.7, protein homolog model) with the representative 

hit approach (e-value ≤ 1e-10, bitscore ≥ 50, identity ≥ 80%, query coverage ≥ 80%). To normalize 

the probability of differing read lengths finding representative alignments, the minimum amino 

acid length was set to 80% of the length of the query (i.e., 150 bp = 40 aa, 100 bp = 27aa, 75 bp = 

20 aa). The CARD database was modified for metagenomic analysis, as previously described [16], 

by removing ARGs known as global regulators and those that confer resistance by point mutations. 

The list of removed ARGs can be found in Table S3-2.  Relative abundance was estimated by 

normalizing gene hits to 16S rRNA gene copies as enumerated by alignment to the Greengenes 

database [27]. The absolute abundance (gene copies/mL) was then derived as the relative 

abundance multiplied by the total abundance of 16S rRNA gene quantified using qPCR [28]. 

Fragments per kilobase million mapped reads (FPKM) was further used to account for differences 

in library sizes and confirm aggregate trends in resistome dynamics. Where both a R1 and a R2 

read were aligned, the best hit based on bitscore was used in the FPKM calculation. Taxonomic 

analysis was performed in Kraken2 [29] (v.2.0.7) with default settings using the standard database 

of complete genomes in RefSeq for bacterial, archaeal, and viral domains. Relative abundances at 

each taxonomic ranking were then calculated from Kraken reports using Bracken [30] with a 

100mer distribution classification.  

Analysis of Human Fecal Indicators 

The abundance of crAssphage was estimated by mapping the short-read library to the 

crAssphage genome using Bowtie2 [31] and calculating the average genome coverage depth using 

Samtools [32] as previously described [33]. The abundance of total human gastrointestinal bacteria 

was estimated in the same manner as crAssphage using all 204,928 reference genomes from the 

UHGG catalogue [34] (http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/). Both 

crAssphage and UHGG abundances were normalized to sample library size in giga base pairs. 

De Novo Assembly and ARG Contextualization 

Quality filtered and trimmed reads were de novo assembled using IDBA-UD [35] with 

default parameters. The resulting contigs were then filtered for assemblies ≥ 1000 bp and protein-

coding regions (CDS) were predicted using Prodigal [36] (v.2.6.3) with the “-p meta” option. 

CDSs were annotated against the CARD and the mobileOG dataset using the DIAMOND blastp 

aligner with stringent parameters (90% identity, aa length ≥ 100, e-value ≤ 1e-10, bitscore ≥ 50). 

We additionally checked for and removed overlapping ARG and MGE annotations as this has been 

shown to bias co-occurrence investigations [37]. To determine if ARGs were putatively positioned 

on plasmids, contigs were also subjected to the PlasFlow [38] pipeline, a software used to predict 

plasmid sequences in metagenomic data using genomic signatures. PlasFlow predictions were then 

supplemented by aligning the contigs to the COMPASS [39] database, a comprehensive dataset of 

over 12,000 complete plasmids, using blastn. Metagenomic contigs that were annotated as 

plasmids by PlasFlow or exhibited ≥ 90% identity over an alignment length ≥ 1000 bps to the 

COMPASS database were identified as plasmid-like contigs. Correspondingly, any contig that was 

not annotated as plasmid-like or that was predicted as “chromosome” by PlasFlow, was determined 

to be chromosomal. To illuminate putative ARG hosts, each contig was assigned taxonomy using 

Kraken2 as previously described. The normalized abundance of each CDS was calculated as the 
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coverage depth of the contig containing the CDS divided by the per-sample library size. This was 

performed by mapping the short-reads to the contig library using Bowtie2 and calculating coverage 

using “idxtstats” within Samtools. The relative contig abundance (i.e., library-normalized 

coverage) calculation is as follows: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑡𝑖𝑔 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 (𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒) =  ∑
𝑛 𝑥 

𝑅
𝐿

𝐺

𝑁

1

 

where N is the number of contigs in a sample, n is the number of reads mapped to the 

contig, R is the length of the short-read, L is the length of the contig, and G is the size of the 

sequence library in total number of reads [40]. 

Diversity and Statistical Analysis 

Non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity 

matrices, permutational multivariate analysis of variance (adonis), and procrustes analysis was 

also performed in vegan. Boxplots, bar charts, linear models, and NMDS coordinates were plotted 

in ggplot2 (v3.2.1). Heat maps were generated using the pheatmap (v1.0.12) package. Nonpareil 

was also used to estimate metagenomic sequence diversity and coverage as a function of library 

size to determine the relative representativeness of individual metagenomes in downstream 

analyses [42]. Significant differences (α < 0.05) in abundance and diversity metrics between 

groups were determined using pairwise Wilcox Rank Sum tests with Bonferroni corrections. 

RESULTS AND DISCUSSION 

Sequencing Resulted in Differential Coverage Across Treatment Compartments 

Shotgun metagenomic sequencing yielded a wide range of library sizes per sample (0.8-

16.3 Gb;10.6-112.2 million paired-end reads). Given that discrepancies in coverage could conflate 

ecologically-relevant differences and random variation [43], we estimated the relative sequencing 

coverage per sample using Nonpareil. The intrinsic sequence diversities varied significantly across 

wastewater ecosystems, with AS and PE displaying higher nucleotide diversity over the SE and 

FE compartments (Wilcox, p < 0.05). As a result, the mean metagenomic sequencing coverage (0-

100 scale) was dependent on sample library size and varied by treatment process (PE=65.0; 

AS=26.8; SE=69.9; FE=51.5), where the deeper sequenced PE (mean=11.6 Gb) and SE samples 

(11.2 Gb) had significantly higher metagenomic coverages than the AS (1.3 Gb) and FE (2.6 Gb). 

To account for discrepancies in coverage, all subsequent analyses entailing comparison to the AS 

ecosystem were normalized to the abundance of total ARGs or all ARGs pertaining to the 

resistance class of interest.  

de novo assembly resulted in a large collection of contigs (24,483,089 total: 14,455-

1,256,698 per sample) with an average N50 of 1,234 bp (509-4771 bp) representing 4.9 Gb.  

Libraries were filtered for contigs ≥1000 bps to minimize false and fragmented assemblies [44], 

which reduced the collection by 82.4% to 4,305,338 contigs (889-220,150 per sample). This 

approach supported proportional comparisons of ARG-MGE and ARG-taxonomy associations, 

while also reducing potential for false assemblies. This truncated contig library resulted in a 

collection of 14,928,407 CDSs with an average contig N50 of 4,459 bp (1490-31,572 bp). We 

identified 304,132 individual contigs annotated with an ARG that allowed further determination 

of mobility potential and putative bacterial hosts carrying the ARGs through wastewater treatment.  
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Abundance of Total ARGs Decrease through Activated Sludge Treatment but Increase in 

Final Treated Effluents 

 We first calculated the abundances of total annotated ARGs across all 11 treatment plants 

to identify aggregate trends in resistome fluctuations through each stage of treatment. We 

compared trends resulting from normalizing abundances to biologically-relevant (gc/16S rRNA 

genes), volumetric (gc/mL), and library size corrected (FPKM) denominators. The coefficients of 

variation were 0.651, 4.65, 0.285 for each of the three normalization approaches, respectively. We 

found strong correlations between concentrations derived from our quantitative metagenomic 

method and qPCR for both sul1 (Pearson; R2 = 0.959; p < 2.2e-16) and intI1 (Pearson; R2 = 0.892; 

p < 2.2e-16), supporting further quantitative analysis of the metagenomic dataset (Figure S3-1). 

Assessing the metagenomic dataset in aggregate, all three normalization strategies 

indicated a significant reduction in total ARG abundance as a result of activated sludge treatment, 

as apparent from comparison of PE to SE compartments (Wilcox, p<0.001) despite differences in 

influent resistome composition, climate, geographic location, and individual plant configurations 

(Figure 3-1ABC). Similar trends were observed when comparing PE to AS compartments or PE 

to FE compartments, but significant differences in resistome reduction or amplification in final 

treated effluents were dependent on the normalization strategy applied. Normalized to the bacterial 

fraction (i.e., 16S rRNA gene copies), total resistome abundance was reduced by an average of 

51.7% from PE to the AS basins and remained significantly reduced through the FE compartments 

(Figure 3-1A). From an engineering perspective, relative to the PE compartment, the absolute 

abundance of total ARGs was reduced by ~2 logs after secondary clarification, and significantly 

reduced in 14 out of the 16 detected ARG classes (Figure 3-1BD, Table S3-3). Reductions in 

resistome abundance using FPKM normalizations resulted in an average reduction of 19.9% from 

PE to FE. Further, using sul1 and intI1 as proxies for resistome dynamics in urban WWTPs [45], 

we observed comparable magnitudes of attenuation in the complementary qPCR data as well 

(Figure S3-2) [46].    

Interestingly, an increase in ARG abundance was observed from secondary clarifiers to the 

final treated wastewater across several plants, although this was statistically insignificant in 

aggregate (Figure 3-1BC). As our derivation of absolute concentrations of total ARGs are a 

function of 16S rRNA gene copies determined via qPCR, the recovery in abundance was due to a 

significant increase in total bacterial cells from the secondary clarifiers to the final treated effluents 

across several WWTPs (p < 0.05, Figure S3-3). Several plants that were sampled were not 

employing a disinfection step prior to discharge (Table S3-1), but we found no significant 

differences between total ARG abundances in the final effluents employing disinfection versus 

those that did not. The increase in abundance was primarily due to outlier WWTPs in India that 

had disproportionately elevated 16S rRNA gene copies per mL in their effluents (Figure 3-1D, S3-

3). This same trend was further highlighted in the FPKM normalized data, as well as sul1 and intI1 

qPCR data, where the two sampled WWTP effluents in India and one in the Philippines were clear 

outliers (Figure S3-2, S3-4). The uptick in overall ARG abundance was primarily a result of 

enrichment of glycopeptide, trimethoprim, and ‘other’ ARG classes from the SE to FE across the 

dataset (p<0.05, Table S3-3). Together, these observations strongly suggest that conventional 

activated sludge WWTPs are significant barriers to the dissemination of ARGs to receiving 

environments and do not facilitate the relative enrichment of ARGs through treatment. However, 
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these observations are WWTP-specific and in direct correspondence to an individual WWTP’s 

ability to remove total bacteria.  

 

 

Figure 3-1: Resistome summary statistics across all 52 samples identified by metagenomic 

read matching to CARD (v3.0.7). (A) Relative abundance of total ARGs [gc/16S rRNA genes] , 

(B) volumetric (absolute) abundance [copies/mL], and (C) fragments per kilobase million 

[FPKM]. (D) Heat map of ARG abundance by resistance class. Color gradient represents log10 

transformed absolute abundances in [gc/mL]. Primary effluent (PE, n = 13), activated sludge (AS, 

n=14), secondary effluent (SE, n=13), and final effluent (FE, n =12). Significant differences 

determined by pairwise Wilcox Rank Sum test with a Bonferroni correction: * 0.05, ** 0.001, *** 

0.0001. Outliers are represented as red triangles. 

 

Succession of Resistomes and Microbiomes Through the WWTP Trains  

Across all samples, we detected 1094 unique ARGs derived from the CARD protein 

homolog database using the representative hit approach. The dominant ARG classes across all 

WWTPs were aminoglycoside, beta-lactam, tetracycline, macrolide-lincosamide-streptogramin 

(MLS), and sulfonamide ARGs (Figure 3-1D), which is consistent with larger scale international 
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surveys of wastewater resistomes and the geographic regions represented in this dataset [47]. 

Although sequencing coverages varied across treatment compartments, FPKM normalizations 

allowed us to reveal overarching ecological observations. For instance, based on Bray-Curtis 

dissimilarities, the resistome compositions were primarily shaped by the treatment compartments 

themselves (ADONIS, R2=0.117, p<0.001) (Figure 3-2A), owing to the semi-uniform selectivity 

of engineered systems on wastewater resistomes. Further, we observed clear successional 

dynamics in resistome compositions whereby each treatment stage resulted in distinct resistome 

compositions over their previous compartments (PE vs AS, ADONIS, R2=0.0804, p = 0.03; AS vs 

SE, ADONIS, R2=0.061, p = 0.051; and SE vs FE, ADONIS, R2 = 0.123, p = 0.006) (Figure 3-

2A). Similar successional resistome dynamics have been reported in the literature, even across 

treatment strategies [30]. These dynamics are especially highlighted for time-sampled studies of 

the same WWTP [31] as well as collections of geographically-proximal WWTPs [32]. Here, the 

overarching dynamics spanning 11 treatment plants across climactically and demographically 

distinct regions indicates that the shifts in resistome composition through conventional biological 

treatment are relatively convergent.  

 Parallel shifts in composition were also observed in the microbiome data, but were far more 

defined (Figure 3-2B). The largest shift in composition was observed between the PE to the AS 

compartments (ADONIS, R2 =0.651, p < 0.001), where there was an immediate shift from obligate 

anaerobic phyla and classes common to human and animal gastrointestinal tracts (e.g., 

Bacteroides, Firmicutes, Epsilonproteobacteria) to facultative, motile, and filamentous genera 

that are members of the Pseudomonadota (e.g., Thauera, Burkholderia, Pseudomonas, 

Dechloromonas) (Figure S3-5) [33]. Similarly strong shifts were observed from AS to SE 

(ADONIS, R2=0.617, p < 0.001) and from SE to FE (ADONIS, R2=0.469, p<0.001), suggesting 

a strong turnover of the bacterial community through each progressive stage of the treatment. We 

further investigated the direct relationship between resistome and microbiome compositions 

through Procrustes analysis, wherein pairs of data matrices, in this case pairwise distance matrices, 

are compared using a rotational fit algorithm that minimizes the sum-of-squares residuals between 

them [34] (Figure 3-2C). We found strong correspondence between the structures of the total 

resistome and microbiome datasets (protest, R=0.771, p < 0.001). Remarkably, when we 

investigated each treatment stage independently, we found even stronger structural symmetry: PE 

(R=0.8706, p <0.001), AS (0.8589, p <0.001), SE (R=0.9011, p<0.001), and FE (0.894, p=0.003) 

(Figure 3-2C), illustrating distinct wastewater ecosystems. Additionally, we observed strong 

correspondence between the proportion of phyla putatively harboring ARGs in the contig dataset 

with that of the total microbiome data (Figure S3-5, S3-6), further highlighting the interdependence 

of the microbiome and resistome compositions and validating the relative accuracy and 

representativeness of the contig library for the overall structure of each original metagenome. 

 Several studies have shown that microbial phylogeny structures the resistome [35,36]. In 

other words, most ARGs are immobile, directly associated with their host taxa of origin, and are 

not actively being exchanged across taxa. If HGT events were occurring at appreciably high 

frequencies through wastewater treatment, we would expect significant deviations in 

compositional symmetry between the microbiomes and resistomes. Here we observe significant 

structural symmetry through each successional stage of treatment and that these observations are 

convergent even across an international transect of WWTPs. This suggests that vertical 

transmission of ARGs is likely the dominant mechanism of ARG transference and that any shift 
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in resistome abundance is likely tied to microbiome shifts driven by deterministic physicochemical 

factors (e.g., dissolved oxygen, temperature, pH, and COD). 

 

 

Figure 3-2: Non-metric multidimensional scaling (NMDS) plots on Bray-Curtis dissimilarity 

matrices of microbiome and resistome. (A) The resistome non-metric multidimensional scaling 

(NMDS) plot was generated from Bray-Curtis dissimilarity matrices of ARG FPKM abundance 

data. (B) The microbiome plot was generated from Bray-Curtis dissimilarity matrices on rarefied 

Bracken estimated read counts at the genus level. (C) Procrustes rotations were generated using 

the “protest” function in “vegan” and are paneled by treatment process with independent x- and y-

axes. 
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Relationship Between Human Fecal Indicators and the Resistome 

It has been illustrated that the human fecal indicator, crAssphage, is a strong predictor of 

resistome abundance in anthropogenically impacted environments, including WWTP ecosystems 

[33]. To test if this was the case with our dataset, we quantified both crAssphage and a dataset of 

208,928 complete genomes collected from human gastrointestinal samples, the UHGG catalogue. 

Because crAssphage is a unique biomarker (i.e., a single viral particle), we hypothesized that a 

more comprehensive dataset representing the full diversity of human gastrointestinal taxa would 

provide greater resolution in predicting resistome fluctuation. Human feces is also one of the 

greatest sources of human pathogenic bacteria and high-priority ARGs and estimating its removal 

efficiency is advantageous for monitoring WWTPs.  

The relative abundance of crAssphage (library-normalized coverage) had a 5-log range 

across all samples (8.4x10-4 – 13.2) and was significantly reduced (~2-log reduction) in the AS 

basins, remaining significantly reduced through the SE and FE compartments (Wilcox, p<0.0001) 

(Figure 3-2A). The UHGG catalogue abundance was much lower (due to the size of the database) 

and had a much narrower range than crAssphage (3.3x10-4 – 4.7x10-2), but mirrored its dynamics, 

showing significant reductions through secondary clarification (Figure 3-2A). The relative 

abundance of both indicators correlated strongly with each other (Pearson, R2 = 0.771, p=2.23e-

11) (Figure 3-2B), consistent with crAssphage being largely representative of the behavior of the 

cumulative human gastrointestinal microbiome in wastewater. Interestingly, there was a 

significant increase in the UHGG abundance from SE to FE compartments across the dataset 

(Figure 3-2A). There were weak correlations between 16S rRNA gene copies and crAssphage 

(Spearman, ρ=0.332, p=0.016) and UHHG abundances (Spearman, ρ=0.241, p=0.084), indicating 

that the apparent recovery of total bacterial cells may be in part due to human fecal-related 

microbiota in discharged water. The resistome abundance significantly correlated with crAssphage 

through wastewater treatment (Pearson, R2 = 0.3756, p=0.0061), although not as strongly as the 

UHGG catalogue (Pearson, R2 = 0.6146, p=1.25e-6). While crAssphage is an excellent indicator 

of human fecal pollution in environmental microbiomes [48], it is still a singular biomarker that 

may be dependent on other factors for its abundance on a per sample basis (e.g., particulate 

adhesion, decay). The crAssphage capsid is also ~70 nm in diameter and may have passed through 

our 0.22 um filters. This suggests that using UHGG normalized coverage may be a more robust 

metric for assessing both human gastrointestinal bacteria abundance and its relationship to the 

resistome in complex environmental metagenomes utilizing the commonly applied filter 

concentration method. 

It is often difficult to discern whether an increase in resistome abundance is due to the 

selection of ARB and ARGs by antimicrobials, metabolic selection of taxa harboring ARGs due 

to shifts in ambient physicochemical parameters, or simply the result of an increased prevalence 

of fecal bacteria [49]. The clearest evidence for resistance selection in environmental samples, 

where there is a deviation from the correlation of levels of fecal pollution and resistome abundance, 

has come from sediments impacted by pharmaceutical wastes with antimicrobials exceeding 

clinical concentrations [33]. If there is an observed increase in resistome abundance relative to the 

human fecal bacteriome, this is therefore evidence for the environmental selection of ARB or 

ARGs. To investigate this hypothesis, we normalized total resistome abundance (as FPKM) to the 
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abundance of the UHHG catalogue through each stage of treatment (Figure 3-2C). Relative to the 

PE, we found a significant increase in the fecal normalized resistome abundance in the activated 

sludge basins (Wilcox, p=0.00093) (Figure 3-3C). This increase was sustained through secondary 

clarification, where it eventually returned to levels comparable to the PE in the final treated 

effluents. This increase in fecal normalized abundance in aeration basins may be in part due to the 

overall shift in taxonomic structure that was incurred via the shift to aerobic conditions. The fecal 

taxa were replaced by WWTP-taxa that also harbored ARGs. This is an observation of metabolic 

selection that allow specific genera of bacteria to proliferate in aeration basins, not necessarily the 

selection of ARB or the induction of HGT.   

 

 

Figure 3-3: Behavior of fecal indicators through wastewater treatment and relationship to 

total resistome. (A) Normalized abundance of crAssphage and Unified Human Gastrointestinal 

Genome (UHGG) catalogue through wastewater treatment. Abundance calculated as the genome 

coverage normalized to total library size in reads queried. (B) Pearson correlations of log10 

transformed data between crAssphage and UHGG abundance. (C) Fecal normalized resistome 

abundance across treatment compartments and individual treatment plants. Fecal normalized 

resistome abundance calculated as FPKM of ARGs/normalized UHGG abundance. Significant 

differences determined with Bonferroni corrected pairwise Wilcox Rank Sum tests: * 0.05, ** 

0.001, *** 0.0001. 
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The Genetic Context of ARGs 

We next investigated the genetic context of ARGs and their mobility potential through 

wastewater treatment by analyzing the library of assembled contigs. Results from PlasFlow 

analysis indicated that, the ratio of chromosomal to plasmid contigs was 80:20 across the contigs 

that could be classified. This ratio was remarkably consistent through each treatment compartment 

(Figure 3-4D). These proportions were ARG class-specific, however, with sulfonamide, 

aminoglycosides, and beta-lactam ARGs disproportionately occurring on plasmids (Wilcox, p < 

0.001) (Figure S3-7). We then analyzed ARG co-occurrence patterns with a database of MGE 

hallmark genes related to insertion sequences, integration/excision proteins, conjugation 

machinery, and replication initiation modules, to estimate the frequency of these co-occurrences. 

If an increase in the relative proportion of ARGs co-occurring with MGEs through treatment is 

observed, this may reflect evidence for selection of ARGs or ARB or provide evidence for HGT. 

The average mobility association of ARGs, calculated as the number of ARG contigs co-located 

with an MGE (24,770 contigs) as a proportion of all ARG contigs (304,132 contigs), was 6.6%, 

7.9%, 6.9%, and 7.2% for PE, AS, SE, and FE samples respectively, with no significant increase 

in co-occurrence with respect to PE (Figure 3-4A). Across the dataset, the classes with the highest 

median mobility association were multidrug (34.8%), MLS (16.0%), and tetracycline (12.7%) 

ARGs, with the lowest belonging to phenicol (0.58%), fosfomycin (0.50%), and elfamycin 

(0.23%). At the individual gene variant level, we observed highly mobilized ARGs (100% MGE 

co-locations) notably conferring beta-lactam resistance; specifically, several variants of high-

priority ARGs identified by the CDC as posing serious health threats including blaCTX-M-15, 

blaKPC-2, blaOXA-48, and blaVIM [50].  

To further investigate the context of these potentially mobile ARGs, we subset the ARG-

MGE contigs and determined the proportion of contigs that were associated with plasmids. We 

found that only a small fraction of mobile ARGs were annotated as plasmid-associated. 

Specifically, the median percent plasmid associations were 14.8%, 6.1%, 7.4%, 8.3% for PE, AS, 

SE, and FE, respectively, and these proportions were significantly reduced after secondary 

clarification (Wilcox, p<0.0001) (Figure 3-4B).  The ARG classes most co-located with MGEs 

and annotated as plasmid-associated were sulfonamides, beta-lactams, aminoglycosides, and MLS 

(Figure 3-4B). These data indicate that, overall, there was not a proliferation of plasmid-borne 

ARGs capable of intercellular transfer after treatment and that over 90% of potentially mobile 

ARGs were chromosomally-bound. We further estimated the relative abundance of ARG-

containing contigs by mapping the short-read data back to each contig and calculating the library-

normalized coverage depth. We found a significant reduction in the relative abundance of 

chromosomal ARG contigs, and ARG contigs co-occurring with MGE or plasmid sequences from 

PE to FE compartments (Wilcox, p<0.001) (Figure 3-4C). Although certain clinically-relevant 

ARGs and ARG classes were associated with mobility, these contigs represented a small fraction 

of the total metagenome and their abundances were being incrementally attenuated. As the 

majority of ARG and ARG-MGE contigs were found to be chromosomal, this indicates that their 

removal was primarily driven by the removal of their host bacterium.  
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Figure 3-4: Genetic context of ARGs across treatment compartments. (A) Percent mobility 

association by treatment stage and ARG class. Percent mobility association determined as the 

number of ARG contigs co-located with an MGE (24,770 contigs) as a proportion of all ARG 

contigs (304,132 contigs) within each sample. (B) Percent of ARG-MGE contigs annotated as a 

plasmid-like sequence. (C) Relative abundance of ARG contigs and ARG contigs co-located with 

MGEs and plasmid-like sequences. Relative contig abundance calculated as the coverage of each 

contig normalized to the library size in number of reads. (D) Results of PlasFlow analysis. The 

number of ARG contigs representing each treatment stage are in parentheses. Significant 

differences determined using a pairwise Wilcox Rank Sum test with Bonferroni corrections. 

Significance cutoffs: * 0.05, ** 0.001, *** 0.0001 

 

 

Resistome Risk Assessment Across Wastewater Resistomes 

 To conduct a comprehensive resistome risk evaluation through treatment, we utilized two 

existing bioinformatic pipelines that analyze both the contig and short-read datasets. The first is 

MetaCompare [53], which calculates a “relative resistome risk” score as a function of the 

cooccurrence patterns of ARGs, MGEs, and pathogens within contigs. The second is “arg_ranker”, 

which utilizes a similar framework for rank ordering individual ARGs detected within the short-

read dataset, considering their enrichment in human-associated environments, their history of 

mobility, and their host pathogenicity [54]. The “arg_ranker” pipeline further demarcates 
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individual ARGs into Ranks 1-4, Rank 1 being the ‘current threats’ that are already present in 

pathogens and represent a hazard to human health, which we utilized in this analysis. Similar to 

trends observed in the total resistome abundance, we observed significant reductions in relative 

resistome risk and Rank 1 ARG Risk across most treatment plants (Figure 3-5AB). WWTPs in 

India and the Philippines, however, displayed marked increases in resistome risk and Rank 1 ARG 

risk scores from PE to final treated effluents. Within the MetaCompare dataset we recognized a 

clear regional divide in relative resistome risk scores across all samples between WWTPs located 

in Asia versus those in Europe/US (Wilcox, p=0.0002) (Figure 3-5A). This divide was statistically 

significant between PE (p=0.045), SE (p=0.0016), and FE compartments (p=0.048). These 

regional divides were not present in the arg_ranker dataset either across the full dataset (p=0.299) 

nor within individual treatment stages.  

 

 

Figure 3-5: Resistome risk assessment across all samples. A) Relative resistome risk score 

derived from MetaCompare [53] using assembled metagenomic data. Risk scores are calculated 

using (i) the number of occurrences of ARGs on assembled contigs, (ii) the number of co-

occurrences of ARGs and MGEs, and (iii) the number of co-occurrences of ARGs, MGEs, and 

human pathogen-like sequences normalized to the library size. B) Risk scores for individual 

high-priority ARGs derived from “arg_ranker” pipeline [54] using short-read data. Risk 

calculation considers relative abundance of individual ARGs for anthropogenic enrichment, 

mobility, and putative host pathogenicity. 

 

CONCLUSIONS 

 Overall, we found strong evidence for the attenuation of the resistome through 

conventional biological wastewater treatment. Reduction in ARGs was primarily driven by the 

removal of the bacteria carrying ARGs and corresponded with an overall removal of fecal-derived 

microbiota due to (i) the metabolic selection of aerobic bacteria in aeration basins, and (ii) an out-

competition of fecal bacteria by naturalized activated sludge communities. We found evidence for 
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potential resistance selection using fecal normalized resistome data and class 1 integrons, but this 

is likely due to the proliferation of ARGs related to taxa native to aeration basins becoming 

subdominant over fecal-related ARGs. This is supported by the NMDS observations where there 

was a clear turnover of ARGs through each stage of treatment and that these ARGs were directly 

correlated to their host taxa. Co-occurrence analysis revealed that there was not an overall 

mobilization of ARGs because of biological treatment trains and the mobility was dependent upon 

ARG class. Approximately 80% of ARGs were found to be chromosomally-bound and not 

associated with plasmid sequences. This conflicts with studies utilizing Nanopore data that suggest 

a much larger fraction of the resistome is plasmid-borne, however, our data display strong 

correspondence between short-read and assembled data. Resistome risk was significantly reduced 

as well as resistant ESKAPE pathogens, suggesting that secondary wastewater treatment is a 

significant barrier to the dissemination of high-priority ARB and ARGs, although there are still 

significant fluxes of resistance in effluents around the world and advanced treatment should be 

considered in many high transmission-risk areas.  
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SUPPLEMENTAL MATERIALS FOR CHAPTER 3 

 

Figure S3-1: Comparison of ARG targets derived by quantitative metagenomics and qPCR. 

 

 

Figure S3-2: Summary boxplots of qPCR data. (A) Abundance of intI1 and sul1 determined via 

qPCR by treatment process (B) and location. (C) Abundance of intI1 and sul1 normalized to 16S 

rRNA copies determined vi qPCR by treatment process (D) and location. 
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Figure S3-3: Abundance of 16S rRNA gene copies (gc) determined via qPCR deliminated by 

treatment process and location of WWTP. 

 

Figure S3-4: Stacked bar chart of FPKM abundance of resistomes across all WWTPs 

demarcated by antibiotic class. Samples have been ranked ordered by total FPKM abundance to 

highlight the stratification in abundances across geographies and individual treatment plants.  
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Figure S3-5: (A) Distribution of phyla determined by classification of all metagenomic short reads using 

Kraken2 and Bracken. (B) Distribution of phyla of all ARG-containing contigs (304,132 contigs). 

Proteobacteria are split into their individual classes. Any phyla with less than 1% relative abundance were 
categorized as “Other”. Contigs that could not be taxonomically classified in panel B are labeled as 

“Unclassified”. 
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Figure S3-6: Correlations between the proportion of phyla in the total microbiome (Centrifuge 

classified short-reads) and those found in the ARG-containing contigs (i.e., putative ARB) in each 

sample. The proteobacteria are split into their individual classes. All correlations are significant at 

the p<0.0001 level (Pearson). These correlations represent a strong correspondence between the 

short-read and assembled data in recovering the general structure of the microbiome.   
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Figure S3-7: Results of PlasFlow annotations of assembled contigs demarcated by treatment 

compartment and ARG class. 

Table S3-1: Overview of WWTP characteristics 

Country Location WWTP Name 
Sample 
Name 

WWTP Configuration Disinfection 

India Chennai Nesapakkam IND_P1 

Primary treatment: grit 
chamber; Secondary 

treatment: activated sludge 
with diffused oxygenators 

Chlorination 

India Chennai Perungudi IND_P2 Secondary treatment: foaming None 

Switzerland Lucerne Emmen CHE_P1 

Primary treatment: grit 
chamber; Secondary 

treatment: activated sludge 
(conventional) 

None 

Switzerland Zurich Dubendorf CHE_P2 

Primary treatment: fine rake; 
Secondary treatment: 

activated sludge 
(conventional) 

Ozone 

Sweden Boras Gasslosa SWE_P1 
Secondary treatment: 

conventional activated sludge 
(70%), trickling filter (30%) 

None 
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Sweden Skovde Skovde SWE_P2 
Secondary treatment: 

conventional activated sludge 
None 

Hong Kong Hong Kong Sha Tin HKG_P1 
Secondary treatment: 

conventional activated sludge 
Chlorination 

Hong Kong Hong Kong Shek Wu Hui HKG_P2 Conventional activated sludge Chlorination 

USA Christiansburg Christiansburg USA_P1 

Primary treatment: bar 
screen, grit chamber, EQ used 

sometimes (not on day of 
sampling), primary; Secondary 

treatment: 
nitrification/denitrification, 

conventional AS 

UV 

USA Virginia Beach 
Hampton 

Roads 
USA_P2 

Primary: screening, grit 
removal, primary clarifier; 
Secondary: nitrification, 

denitrification 

Hypochlorite 

Philippines Binan Laguna Water PHL_P2 

Primary: bar rake; Secondary: 
MMBR (attached growth 
bioreactor) with aeration 

basin as polishing step 

Chlorine 

 

Table S3-2: List of removed ARGs from the CARD database to reduce potential for detecting 

wild-types  

ARO Accession gene function Resistance Mechanism 

ARO:3000124 mecI Negative regulator antibiotic target replacement protein 

ARO:3004185 mecD Variant of PBP2a antibiotic target replacement protein 

ARO:3000815 mgrA Ambigous 
efflux pump complex or subunit conferring 

antibiotic resistance 

ARO:3000656 AcrS Negative regulator 
efflux pump complex or subunit conferring 

antibiotic resistance 

ARO:3000559 adeN Negative regulator 
efflux pump complex or subunit conferring 

antibiotic 

ARO:3000526 cmeR Negative regulator 
efflux pump complex or subunit conferring 

antibiotic 
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ARO:3000518 CRP Negative regulator 
efflux pump complex or subunit conferring 

antibiotic 

ARO:3000516 emrR Negative regulator 
efflux pump complex or subunit conferring 

antibiotic 

ARO:3000746 mepR Negative regulator 
efflux pump complex or subunit conferring 

antibiotic 

ARO:3003710 MexL Negative regulator 
efflux pump complex or subunit conferring 

antibiotic resistance 

ARO:3000160 blaI Negative regulator antibiotic inactivation enzyme 

ARO:3000817 mtrR Negative regulator 
protein(s) and two-component regulatory 

system modulating antibiotic efflux 

ARO:3003318 

Streptomyces rishiriensis 
parY mutant conferring 

resistance to 
aminocoumarin 

Mutant antibioitc target alteration 

ARO:3003784 

Mycobacterium 
tuberculosis intrinsic 

murA conferring 
resistance to fosfomycin 

Mutant antibioitc target alteration 

ARO:3003785 

Chlamydia trachomatis 
intrinsic murA 

conferring resistance to 
fosfomycin 

Mutant antibioitc target alteration 

ARO:3003730 
Bifidobacterium ileS 

conferring resistance to 
mupirocin 

Mutant antibioitc target alteration 

ARO:3003359 

Streptomyces 
cinnamoneus EF-Tu 
mutants conferring 

resistance to elfamycin 

Mutant antibioitc target alteration 

ARO:3004480 

Bifidobacterium_adoles
centis_rpoB_mutants_c
onferring_resistance_to

_rifampicin 

Mutant 
antibioitc target alteration, target 

replacement 

ARO:3000521 
Staphylococcus_mupA_
conferring_resistance_t

o_mupirocin 
Mutant antibioitc target alteration 

ARO:3000501 rpoB2 Mutant 
antibioitc target alteration, target 

replacement 
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Table S3-3: Pairwise Wilcox Rank Sum tests of absolute abundances (copies/mL) by treatment 

process across all WWTPs. Wilcox test run with alternative hypothesis set to "greater" and p-

values are Bonferroni corrected. P-values < 0.05 are highlighted in green and represent 

significant reductions. FE-SE highlights in red indicate a significant enrichment from SE to FE. 

 

  

  PE-AS PE-SE PE-FE FE-SE 

aminocoumarin 1.0000 0.1300 1.0000 0.4300 

aminoglycoside 0.1160 0.0003 0.0038 0.6904 

beta-lactam 0.1746 0.0001 0.0038 0.1282 

fluoroquinolone 1.0000 0.0010 1.0000 1.0000 

fosfomycin   0.0008 0.0750 1.0000 

glycopeptide 1.0000 0.0006 0.0111 0.0246 

MLS 0.0007 0.0008 0.0052 0.7833 

multidrug 0.0012 0.0014 0.0009 0.6337 

other 0.7815 0.0004 0.0424 0.0153 

peptide 0.0025 0.0018 0.0152 0.3447 

phenicol 1.0000 0.0006 0.0773 0.7140 

quinolone 0.0596 0.0006 0.0020 1.0000 

rifamycin 1.0000 0.4300 1.0000 0.1800 

sulfonamide 0.1990 0.0210 0.4320 0.7150 

tetracycline 0.0001 0.0000 0.0009 0.0773 

trimethoprim 0.1361 0.0001 1.0000 0.0038 
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ABSTRACT 

Antibiotic resistance (AR) is a rapidly evolving global health threat. The relevance of 

environmental dimensions to the human clinical problem of AR is increasingly being recognized. 

Shotgun metagenomic sequencing of the collective genomic information carried across microbial 

communities is emerging as a powerful approach for monitoring AR in environmental matrices. 

A tremendous advantage of metagenomics is that all known and putative antibiotic resistance 

genes (ARGs) (i.e., the resistome), mobile genetic elements (i.e., the mobilome), and other genes 

of interest can be detected simultaneously, without a priori selection of gene targets. However, 

standardization of metagenomic data collection and processing is needed to support 

comparability across space and time. To support reproducible downstream analysis, guidance is 

needed with respect to sampling design, sample preservation and storage, DNA extraction, 

library preparation, sequencing depths, and experimental controls. Recommendations with 

respect to databases, sequence-based homology cutoffs, and data normalization strategies are 

also needed. Here we conducted a critical review to assess current practices for the application of 

metagenomics for AR profiling of aquatic environments and to offer recommendations to 

support comparability in the collection, production, and analysis of resulting data. 

KEYWORDS: antibiotic resistance, metagenomics, next-generation sequencing, 

standardization, wastewater, surface water 
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INTRODUCTION  

Antibiotic resistance (AR) is a growing global health threat (World Health Organization 

2015; O’Neill 2016) and, increasingly, the importance of environmental dimensions to its 

transmission and evolution are being recognized (European Commission 2017; United Nations 

2017). Correspondingly, the need for unified approaches to assessing AR in the environment is 

becoming apparent (Huijbers et al. 2019; JPIAMR 2019). Environmental monitoring can help to 

assess baselines of AR in pristine and anthropogenically-influenced environments, as well as 

local human and animal populations, and further aid in identifying high-risk areas for the 

evolution, selection, and transmission of antibiotic resistant bacteria (ARB) (Berendonk et al. 

2015; Larsson et al. 2018; Pruden et al. 2021). Such information promise to be especially 

valuable towards informing specific policy/mitigation measures (Aarestrup and Woolhouse 

2020). Monitoring of influent sewage to wastewater treatment plants (WWTPs) has especially 

garnered attention as a means to capture collective antibiotic resistance genes (ARGs) circulating 

amongst the corresponding human population and has been shown to reflect local clinical 

prevalence of ARB (Pärnänen et al. 2019). The WWTP itself also represents a significant barrier 

to the dissemination of ARB and ARGs to receiving surface waters and therefore removal 

efficiencies are also of interest.  

Next-generation sequencing (NGS) is emerging as a highly powerful and promising tool 

for water and wastewater monitoring (Hendriksen et al. 2019; Garner et al. 2021a). Shotgun 

metagenomics applies NGS for the sequencing of DNA extracted across microbial populations 

inhabiting an environmental sample (e.g., water or wastewater). The resulting metagenomic 

library can be analyzed to characterize the resistome (i.e., the collective ARGs carried across a 

microbial community). The most common approach is to compare the metagenomic library 

against publicly-available databases to identify functionally verified ARGs, which currently 

number in the thousands (Alcock et al. 2020). The number of ARGs and different types can then 

be compared across samples of interest. Detected ARGs can be classified and ranked by various 

means; this includes the antibiotics they encode resistance to, the mechanism of resistance, and 

their degree of clinical relevance (i.e., extent to which they are found to interfere with treatment 

of human infections). The genetic context of various ARGs can then be explored using de novo 
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short-read, long-read, or hybrid assembly algorithms to predict whether they are intrinsic or 

mobile, what kinds of mobile genetic elements (MGEs, e.g., plasmids, integrons, transposons) 

they are carried on, or whether they occur in known human pathogens or the commensal 

environmental flora. Metagenomics is also being evaluated as a means of identifying recently 

evolved or mobilized ARGs before they become problematic in the clinic (Arango-Argoty et al. 

2018; Berglund et al. 2019).  

Because NGS approaches to water quality monitoring have only arisen relatively 

recently, the data generation techniques, software, and databases that are used are still in a period 

of rapid innovation and expansion. This has led to inconsistent data generation and reporting, 

which hinders the ability to compare measurements across studies. The overall purpose of this 

critical review was to assess the potential for a shotgun metagenomic approach to AR monitoring 

of wastewater and other impacted aquatic environments and to provide a framework towards 

standardizing approaches and ensuring comparability of the data and downstream analyses. 

Similar initiatives for consensus data reporting guidelines and improved reproducibility have 

recently been proposed in other fields of NGS (Mirzayi et al. 2021). The specific objectives of 

this review were to (1) evaluate strengths and weaknesses of existing workflows for 

metagenomic analysis of water and wastewater resistomes, (2) identify sources of variability 

introduced by different data processing techniques, including sequencing depth and coverage, (3) 

identify opportunities for standard reporting metrics, and (4) propose standardized workflows for 

generating meaningful and reproducible metagenomic data. We further provide a projection of 

the field as it moves toward standardized data reporting, NGS process controls, and datatypes for 

integration into future risk assessment models. The overall recommendations provide a 

framework to support the representativeness and comparability of metagenomic data and 

analysis for the purpose of AR monitoring of aquatic environments.  

 

LITERATURE REVIEW PROTOCOL 

To generate a systematic critical review, a three-tiered approach was used to establish 

search terms (Table S1). Tier 1 established topic level keywords that identified studies that were 

relevant to water reuse, wastewater, and surface water environments. Tier 2 ensured that the 

studies were relevant to AR, while Tier 3 established keywords to identify studies focusing on 

metagenomics and NGS applications. Literature returned via this search strategy were manually 

screened by two independent researchers to ensure that all included papers fully met the search 

criteria. Articles focused on aquaculture, biosolids and biosolid treatment (anaerobic digestion, 

composting, etc.), or laboratory-scale experiments were excluded. Studies involving only the use 

of secondary data (i.e., a meta-library of metagenomic sequences from other studies) were also 

excluded. Any disagreements between the two screeners on relevance were presented to a 

broader team of 5 researchers to reach a consensus on the applicability of the study towards 

informing a workflow that includes sampling, DNA sequencing, and data analysis. This 

approach produced 95 articles for inclusion in this review. Studies that met eligibility criteria 

were subjected to data extraction for the parameters outlined in Table S2.  

DATA EXTRACTION AND ANALYSIS 

 All publicly-available metagenomes from the 95 retrieved articles were downloaded from 

the Sequence Read Archive (SRA), European Nucleotide Archive (ENA), and MG-RAST 

servers (n=1775) for depth and coverage analysis. We then filtered for paired-end Illumina 
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datasets pertaining to wastewater, surface water, and recycled water matrices using available 

metadata (n=1440). Briefly, we cleaned paired-end data using Trimmomatic (Bolger et al. 2014) 

(leading:3, tailing:3, slidingwindow:4:15, minlen:36) and ran forward reads through Nonpareil 

(Rodriguez-R et al. 2018) with option “-T kmer” to determine the relative metagenomic coverage 

as function of library size. Data were analyzed and visualized in R (v 4.1.2) using ggplot2 

(Wickam 2009). 

ESTABLISHING WATER AND WASTEWATER RESISTOME MONITORING 

OBJECTIVES 

 To ensure that metagenomic sequencing is optimally applied, it is especially critical to be 

clear on the objectives of the monitoring program and that the sampling design can achieve those 

objectives. This point was emphasized in a recent study that drew from an expert survey and 

workshop to develop a framework for culture-, qPCR-, and metagenomic-based monitoring of 

AR in water environments (Liguori et al. 2022). Here we elaborate upon monitoring objectives 

for which metagenomics is particularly well-suited, drawing from other recent reviews that have 

generally addressed the need to harmonize environmental AR monitoring efforts (Berendonk et 

al. 2015; Huijbers et al. 2019; Aarestrup and Woolhouse 2020; Larsson and Flach 2021).  

 

1. Monitor ARB and ARGs circulating in human populations through municipal and 

hospital wastewater systems (i.e., wastewater-based surveillance) 

2. Comprehensively quantify attenuation or amplification of ARGs of clinical concern 

through wastewater or recycled water treatment processes and determining removal 

efficiencies 

3. Identify transmission pathways of ARGs that escape engineering controls and their 

potential to be assimilated by pathogens and move across human, animal, and 

environmental matrices 

4. Assess the evolution and mobilization of new ARGs and pathogen hosts via 

biological wastewater treatment and various sources of anthropogenic pollution  

 

As described in subsequent sections, the objectives will consequently dictate decisions in 

metagenomic workflows, particularly regarding short- versus long-read sequencing strategies 

and the analytical advantages provided by each. Figure 4-1 illustrates elements to consider in a 

standard metagenomic workflow and subsequent sections provide further detail regarding the 

inherent biases and considerations that may affect downstream data comparability and 

hypothesis testing.   
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Figure 4-1: Overview of key decision points to consider in developing a workflow for 

metagenomic-based monitoring of ARGs in aquatic environments that are highlighted in 

this review.  

 

SAMPLING AND PROCESSING 

Sampling Frequency, Replication, And Controls 

A growing body of research is providing insight into baseline variability of WWTP and 

other aquatic system resistomes (Yin et al. 2019; Majeed et al. 2021).  In a landmark study of a 

Hong Kong WWTP, monthly sampling of the activated sludge basin was performed over a nine-

year span and  the resistome composition was found to turnover every 2-to-3-years (Yin et al. 

2019). However, it is unclear the extent to which the observed patterns are generalizable across 

all WWTPs or how such dynamics vary with each stage and type of treatment. Coordinated 

surveillance is needed to help inform the sampling frequency and number of replicates needed to 

achieve metagenomic monitoring objectives. For example, if influent sewage resistomes are 

relatively stable across WWTPs with time, as observed in one particular conventional WWTP in 

the US (Majeed et al. 2021), then less frequent sampling may be necessary when the purpose is 

broader resistance monitoring of human populations (Objective 1). However, if the purpose is to 
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determine if anomalous ARGs of clinical concern are present in the influent and escaping into 

surface waters, then much more frequent sampling with replication and deep sequencing may be 

necessary (Objective 2) (Majeed et al. 2021).  

The need for biological replication, in this case sequencing of multiple samples 

representing a given condition, is a critical consideration for any methodology and depends on 

the statistical power needed to capture the signal of interest and test a given hypothesis. Among 

the articles identified in this study, replicate sampling and sequencing was universally lacking 

(Figure 4-1, 2). The high per-sample cost of generating metagenomes is likely a major factor in 

this deficiency. Also, ecological surveys tend to favor breadth over depth in sampling design. 

Limitations of this nature are also inherent to field ecology in general (Filazzola and Cahill 

2021). Sequencing of at least one condition in triplicate would help in revealing systematic 

biases in sample processing and support the statistical power needed to distinguish signal from 

stochastic variation and sequencing bias. The inclusion of negative controls (e.g., field, trip, and 

extraction blanks) were also absent. Negative controls serve as a check for any contamination 

events that occur during sampling, processing, and DNA extraction that may contribute to 

background detection of microbes and ARGs (Figure 4-2). This is especially useful in 

differentiating low abundance taxa or ARGs from technical noise or laboratory contamination 

(Borchardt et al. 2021).  

In the studies examined in this review, samples were almost exclusively taken as grab 

samples. Composite samples, which may be flow- or time-weighted, may be more appropriate 

where replicate grab samples are infeasible (Centers for Disease Control and Prevention 2020). 

Studies evaluating time-sensitive wastewater-based surveillance of illicit drugs (Rodayan et al. 

2014), total phosphorus and nutrients (Johannessen et al. 2012), and SARS-CoV-2 (Kopperi et 

al. 2021) demonstrated that time-weighted composite and grab samples yielded highly 

comparable results. This suggests the relative stability of wastewater compositions and treatment 

efficacy over diurnal timescales such that a reasonable degree of replication should be able to 

capture signals of interest.  

Sample Preservation and Storage Affect Sample Representativeness 

 Appropriate preservation and storage ensure that subsequent analysis is representative of 

the sample at the time it was collected. This is particularly critical for time series data and 

comparisons across systems. A recent comprehensive analysis of storage conditions of raw pig 

feces and domestic wastewater samples revealed systematic biases that impacted downstream 

metagenomic analysis (Poulsen et al. 2021). The authors found that both storage time (immediate 

processing, 16 hrs, 64 hrs; and long-term storage at 4, 8, and 12 months) and temperature (deep 

freezer, -80°C; freezer, -20°C; refrigerator, 5°C; room temperature, 22°C) resulted in significant 

fluctuations in taxonomic and resistome composition; although if immediately frozen (at either -

20°C or -80°C), batch effects were minimized. If freezer storage is not possible, the authors 

stressed that samples should be processed immediately. The need to immediately freeze or 

analyze the sample poses a challenge when seeking to include low income countries in global-

scale studies  (Hendriksen et al. 2019). Where the shipping of samples is necessary, fixing 

samples in 50-100% ethanol, freezing at -20°C, and shipping on ice has shown to both prevent 

significant fluctuation of resistomes and preserve the integrity of DNA (Li et al. 2018a). Other 

sample preservation reagents (e.g., Zymo DNA/RNA Shield) have been shown to preserve the 

integrity of soil microbiomes (Pavlovska et al. 2021), human microbiomes (Bartolomaeus et al. 

2021), and fecal SARS-CoV-2 RNA (Natarajan et al. 2021), even at room temperature; although 
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these techniques have not been systematically assessed for analysis of aquatic resistomes. The 

addition of preservation reagents may also preclude sub-sampling the same sample for multiple 

analyses (e.g., transcriptomics, metabolomics, cultivation, pharmaceuticals analysis) (Poulsen et 

al. 2021).  

Sample Concentration Techniques 

Sample concentration serves to recover an adequate mass of microbial cells for analysis 

and ideally should be applied in a way that maintains representativeness of the corresponding 

microbial populations. Low mass samples yield low concentrations of DNA, which may preclude 

library preparation or necessitate amplification, which may introduce bias (see Library 

Preparation). Among the articles identified in this review, the two most common sample 

concentration methods were membrane filtration (62 studies) and centrifugation (23 studies). 

Membrane filtration was more common for less turbid waters (e.g., drinking water, river water, 

final treated wastewater effluent) and centrifugation was more common for more turbid waters 

(e.g., raw wastewater, activated sludge).  

The most applied membrane pore sizes amongst the identified studies were 0.2 µm (12 

studies), 0.22 µm (37 studies), and 0.45 µm (12 studies). Because the smallest prokaryotic cell 

diameter is approximately 0.2 µm, a pore size approaching that threshold will allow for the 

adequate representation of the bacterial and archaeal composition of a given water sample. The 

tradeoff of smaller pore sizes is that less water will be able to pass through due to clogging, 

decreasing the representative volume and increasing the detection limit. Pre-filtration of 

environmental samples using larger pore size membranes (1.2 µm – 1 mm) was common to 

reduce particulates before passing through subsequent filters, increasing the representative 

sample volumes. However, this effectively eliminates the particle-bound fraction of the 

microbiome and may significantly alter representativeness of the sample. For samples with 

extremely low cell densities and/or turbidity (e.g., advanced water treatment products), 

ultrafiltration is a means to concentrate volumes up to 100 liters, although this may still be 

insufficient for recovering enough nucleic acid for sequencing extremely clean samples (Stamps 

et al. 2018). Centrifugation workflows typically involved pelleting biomass from raw wastewater 

at 4,000 to 15,000xg. The supernatant is discarded, and the pellet is resuspended in buffered 

solution that is either then passed through an additional 0.22-µm membrane or directly subject to 

DNA extraction. Sample concentration techniques are unlikely to influence the 

representativeness and comparability of generated metagenomic libraries investigating 

bacteriomes, although researchers should strive for uniformity within individual experiments.  

DNA EXTRACTION DICTATE REPRESENTATIVENESS AND COMPARABILITY OF 

METAGENOMES 

Because no DNA extraction approach is 100% efficient or unbiased, DNA extraction 

methodologies should be consistent across sample sets intended to be compared by 

metagenomics. This can be challenging when seeking to compare metagenomic data across 

published studies, especially as DNA extraction kits and procedures continue to evolve. At a 

minimum, DNA extraction methods need to be reported in associated metadata so that they can 

be accounted for in any future meta-analyses. Ideally, a positive control sample should be 

included to identify potential biases in the extraction. However, mock community controls, either 

as standalone samples or as exogenous cell spike-in process controls (Figure 4-2), were almost 

entirely absent from workflows reported in the identified literature (Uyaguari-Díaz et al. 2018). 

Generally, these controls are comprised of known mixtures of organisms with varying 
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recalcitrance to cell lysis (e.g., Gram-positive versus Gram-negative bacteria) and thus serve to 

assess the efficiency of the DNA extraction method and give insights into the representativeness 

and reproducibility of NGS workflows. These process controls are standard practice in many 

fields of molecular biology, the most  recent example being the inclusion of Bovine Coronavirus 

as a surrogate RNA extraction control in the wastewater monitoring of SARS-CoV-2 (Natarajan 

et al. 2021).  

Recently, mock communities have been used to highlight DNA extraction and 

bioinformatic workflow bias in interlaboratory studies (Han et al. 2020; O’Sullivan et al. 2021). 

Irreproducibility has even been shown in replicated metagenomics work within individual 

experiments due to batch effects across sequencing runs (Yeh et al. 2018). Mock communities 

and process controls help to assess reproducibility across space, time, and laboratory groups and 

should be included during submission to public data repositories to evaluate the 

representativeness and comparability of metagenomes used in meta-analyses. However, these 

communities are typically much simpler (less diverse with less inhibition) than the target 

environment of interest and therefore cannot fully reproduce the sampling environment.  
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Figure 4-2: Framework of process controls for metagenomic investigations of 

environmental AR. 
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Bead Beating Kits Are Ideal for Short-Read Metagenomics 

Across the studies identified, almost all DNA extractions were performed using 

commercial kits that employ both chemical lysis and bead beating, along with purification 

through a spin column (93%). The most popular were the FastDNA Spin Kit for Soil (36 

studies), PowerWater or PowerSoil Kits (30), and the QIAamp DNA Stool Mini Kit (6). 

Previous studies comparing the efficacies of commercial DNA extraction kits for metagenomic 

sequencing found that the FastDNA Spin Kit for Soil (MP Biomedicals) generated the highest 

yield and purity of DNA from three commonly sampled WWTP compartments (influent, 

activated sludge, final effluent), resulting in the detection of the greatest diversity of ARGs when 

compared using an Illumina sequencing platform (Guo and Zhang 2013; Li et al. 2018a). Two 

main distinctions of the FastDNA Spin Kit for soil are that it employs a range of bead diameters, 

and that the DNA is suspended with the binding matrix during isolation as opposed to the 

binding matrix being confined to the spin column.  A modified standard protocol using the 

QIAamp DNA stool Mini Kit (Qiagen) has also proven to be a popular and unbiased approach 

for aquatic resistome sampling that uses both mechanical and enzymatic lysis (Knudsen et al. 

2016). These approaches aim to evenly lyse both Gram-negative and Gram-positive cells using a 

combination of high shear forces, enzymatic lysis of cellular membranes, and chemical 

precipitation of protein debris and are near ideal for large-scale environmental monitoring 

projects due to their ease of implementation and reproducible results.  

High Molecular Weight DNA Extraction Optimizes Long-Read Sequencing 

The above-cited studies were conducted for optimization of short-read sequencing 

platforms and therefore DNA damage during extraction is less of a concern. While bead-beating 

can reduce bias in DNA recovery, it also shears and fragments DNA (Quick and Loman 2019).  

Commercial spin column kits with bead-beating generally produce fragment lengths  ≤ ~60 kbp 

(Quick and Loman 2019). Short and damaged DNA fragments can be detrimental to optimized 

long-read sequencing which preferentially sequence shorter sequences at higher molarity and 

thus high-molecular weight (HMW) DNA extraction methods should be prioritized. For instance, 

the traditional phenol-chloroform method can recover DNA with average fragment lengths 

approaching 150 kbp and maximum fragment lengths > 1 Mbp, although this method is 

inefficient for large numbers of samples and utilizes carcinogenic reagents. Several commercial 

HMW kits have been developed but have not been fully benchmarked for complex 

environmental matrices or resistome analysis. It should further be noted that minimum per-

sample DNA inputs of 1-2 µg are required for long-read Nanopore sequencing, and this may be 

difficult to obtain from some aquatic sample types. 

DNA Quality Control Necessary for Successful Library Preparations 

Additional purification steps for the removal of PCR inhibitors from DNA extracts was 

uncommon among the reviewed workflows. Common PCR inhibitors; such as humic/fulvic 

acids, tannins, melanin, and lingering reagents from DNA extraction, have been shown to 

interfere with NGS library preparation and inhibit loci typing (Sidstedt et al. 2019, 2020). 

Inhibitors such as EDTA and other salts can also cause library preparation failure. DNA 

sequencing cores commonly determine the quantity and purity of submitted DNA extracts as a 

prerequisite for sequencing. A minimum of 1 ng of DNA per sample is generally acceptable for 

PCR-based library preparation (see Library Preparation). Among the reviewed articles, DNA 

was quantified using three different platforms: Qubit™ dsDNA HS Assay Kit (Life 

Technologies, 27 articles), Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen, 5 articles), 
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and the NanoDrop™ 2000/2000c Spectrophotometer (Thermo Scientific, 24 articles). Qubit and 

PicoGreen assays use fluorescing dyes that are highly specific to double-stranded DNA and 

accurately quantify 10 pg/µL to 100 ng/µL. NanoDrop uses spectrophotometry to assess the 

absorbance profiles of nucleic acids, proteins, and other contaminants. A 260 nm/280 nm 

(DNA/protein) optical density ratio (OD) of 1.8 to 2.0 is considered high quality DNA suitable 

for library preparation. Gel electrophoresis is also commonly used to assess the distribution of 

molecular weights of extracted DNA and provides a quick quality check to ensure HMW 

extracts. Sequencing cores will typically run gels on samples before and after shearing and after 

adaptor ligation using a TapeStation (Agilent) to ensure the correct insert sizes of the final 

library. Twenty-six of the ninety-five identified articles did not report quantification or QA/QC 

of their DNA extracts. 

LIBRARY PREPARATION AND SEQUENCING 

Different Sequencing Platforms Achieve Different Monitoring Objectives  

Roche 454 Pyrosequencing was the first highly parallelized platform (released in 2005) 

applied for shotgun metagenomics in environmental research (Barba et al. 2013), but has since 

been discontinued, with the Ion Torrent (Thermo Fisher) (released in 2010) and Illumina 

sequencing platforms (MiSeq released in 2011) still in use today. These technologies all yield 

relatively short reads (75-300 bp for Ion Torrent and Illumina and 800 bp for 454) (Metzker 

2005). Long-read sequencing, including PacBio (Pacific Biosciences) and Nanopore (Oxford 

Nanopore Technologies) platforms, entered the market more recently and are advantageous when 

the objective is to examine the genetic context of ARGs with greater accuracy (i.e., their 

association with MGEs and host organisms) (Objectives 3 & 4). Short-reads are limited in this 

regard because they must be assembled into longer contigs in order to examine neighboring 

genes, which introduces substantial uncertainty and bias (Bengtsson-Palme et al. 2017) (See 

below section on Metagenomic Assembly for ARG Contextualization). The tradeoff is that long-

read sequencing tends to be relatively shallow (5.4 Gbp maximum identified in this review), 

while deep Illumina sequencing was reported to reach 77.5 Gbp (Liu et al. 2019) for wastewater 

samples and thus can more comprehensively profile ARGs (Figure 4-3). The base error rates for 

Nanopore platforms are also higher (1-20%) (Sahlin et al. 2021) compared to Illumina (~0.1%) 

(Stoler and Nekrutenko 2021). Studies surveyed indicated recovery of 1-500 million reads per 

sample for Illumina sequencing, while reports of Nanopore sequencing of aquatic matrices to 

date were in the tens to hundreds of thousands, limiting the absolute number of genomic 

inquiries per sample. These issues of sequencing depth and read lengths ultimately factor into the 

degree of sample coverage achievable by each platform (i.e., the fraction of the total genomic 

information from the microbial community that was sequenced) (Figure 4-3). However, with the 

advent of newer Nanopore (GridION and PromethION) and PacBio platforms (Sequel II with 

HiFi reads), this gap in depth, error rate, and ultimately sample coverage will continue to shrink 

between long-read and short-read platforms. 

Among the studies identified by the search criteria, 89% utilized Illumina sequencing, 4% 

Oxford Nanopore sequencing, 3% Ion Torrent sequencing, and 3% Roche 454 Pyrosequencing. 

Thus, current understanding of optimal conditions for metagenomic monitoring of AR in water 

and wastewater systems is largely based on what has been learned from Illumina sequencing. 

However, it is important to also look to the future as long-read DNA sequencing is rapidly 

gaining ground and presents many advantages for certain monitoring objectives, specifically 

assessing the mobilization and host-context of ARGs (Che et al. 2019; Dai et al. 2022). 
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Hereafter, we primarily focus on what is known based on Illumina sequencing but point out 

distinctions and opportunities related to long-read sequencing where relevant.  

Library Preparation Techniques Exhibit Inherent Biases 

There are several commercial kits available for library preparation. Library preparation 

generally comprises three steps: DNA fragmentation to a uniform insert size (enzymatic or 

mechanical), repairing and end polishing of fragmented DNA, and ligation of platform-specific 

adaptors (Sato et al. 2019). Illumina library preparation was almost exclusively performed by the 

core facility performing the sequencing analysis. Consequently, available options are often 

restricted to the research facility providing the service.  

There are two main categories of library preparation, PCR-free and PCR-based, with the 

latter introducing biases associated with PCR amplification. The choice between the two is 

typically a function of available sample DNA, where a threshold mass is required (~25 ng) for 

PCR-free preparations. PCR-based library preps, like the Nextera XT DNA Library Preparation 

Kit, use a transposome complex to simultaneously shear and ligate adaptor sequences to 

fragments (tagmentation) (Sato et al. 2019). Research by (Bowers et al. 2015) documented the 

effect of input DNA quantities and library preparation methods on the ability to reconstruct a 

mock community consisting of pre-extracted genomic DNA. Input DNA quantities reaching as 

low as 1 picogram could successfully pass library preparation using PCR-based kits, but bias 

towards GC rich sequences was apparent as DNA inputs fell below 1 ng, as compared to a 

control generated with the PCR-free TruSeq kit and 200 ng of DNA. (Sato et al. 2019) carried 

out a similar study and also found that PCR-based kits were unable to accurately reflect extremes 

in genomic GC content.  The most variable reconstructions of mock communities were derived 

from the Nextera XT and TruSeq nano kits, presumptively due to non-random DNA 

fragmentation during sonication and PCR amplification. Other kits, including the newer Nextera 

DNA Flex (now simply Illumina DNA Prep) and the TruSeq DNA and KAPA HyperPlus PCR-

free workflows, reconstructed statistically identical mock communities, even at a shallow 

sequencing depth (~1 Gb) (Sato et al. 2019). These studies indicate that PCR-free library prep is 

the best option, but that newer PCR-based methods can help to reduce bias observed in previous 

generation kits. Regardless, metagenomes will be most comparable when generated from the 

same library prep method. 

Library preparations for long-read sequencing, specifically on Nanopore platforms, were 

done in-house and are less flexible. All four articles identified in this review used the SQK-

LSK108 1D ligation genomic DNA kit (Oxford Nanopore Technologies) in-house, with 1 – 2 µg 

of input DNA per sample for sequencing on the MinION platform (Che et al. 2019; Hamner et 

al. 2019; Białasek and Miłobędzka 2020; Yadav et al. 2020). This library preparation generally 

involves four steps: end-repair of extracted DNA, Nanopore-specific adaptor ligation, barcoding, 

and purification. As noted above, the DNA extraction strategy employed will determine the 

suitability of DNA fragment size distributions for long-read sequencing. A study conducted by 

(Che et al. 2019) used a bead-beating and spin column DNA extraction approach for wastewater 

samples and then selected DNA fragment sizes > 8 kb by manually excising them from an 

agarose gel for library preparation. They then compared long-reads with sequenced and 

assembled Illumina data and found that the average N50 from Nanopore was 8.1 kbp (average 

depth 3.4 Gb), compared to 1.7 kbp from Illumina (14.5 Gb). All four articles used a bead-

beating and spin column DNA extraction approach for long-read sequencing, but as HMW 

extraction techniques continue to emerge (Maghini et al. 2021), reconstruction of complex 
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microbial communities and optimization of long-read sequencing from environmental samples 

will continue to improve. 

Sequencing Parameters Dictate Depth And Coverage Of Metagenomes 

When selecting a sequencing technology and associated parameters, the platform, target 

read length, and depth per sample must be considered. The primary unit of “currency” for 

sequencing platforms is the flow cell. Each flow cell contains one to multiple lanes, or physically 

partitioned regions of the solid surface that enable multiple experiments to be run in parallel, but 

independent of each other (i.e., without cross contamination). For example, the NovaSeq 6000 

platform (Illumina) has SP (2 lanes, ~ 800M reads per lane), S1 (2 lanes, ~1.5B reads per lane), 

S2 (2 lanes, ~1.8B reads per lane), and S4 flow cells (4 lanes, ~2.5B reads per lane). These flow 

cells can then be run with varying paired-end sequencing chemistries (i.e., 50-250 bp reads), 

which dictates the number of base pairs generated for each experiment. The number of reads 

generated per flow cell (and therefore per lane) are fixed, meaning the number of reads generated 

per sample will be a function of the number of samples multiplexed on that flow cell.  

There is typically a need to strike a balance between the depth of sequencing and level of 

replication needed to achieve monitoring objectives, while also bearing in mind cost. The level 

of microbial diversity anticipated in the sample and the need to detect rare sequences and taxa 

will both drive the need for deeper sequencing. Careful consideration is needed when choosing 

sequencing depths. Comparing two environmental samples with significant differences in 

coverage severely inhibits accurate and ecologically-relevant insights into microbiome and 

resistome dynamics (Rodriguez-R and Konstantinidis 2014; Zaheer et al. 2018; Gweon et al. 

2019). Metagenomic sequencing preferentially sequences the most abundant features, and 

shallow sequenced datasets are severely disadvantaged in their ability to detect differentially 

abundant features at low abundances (Rodriguez-R and Konstantinidis 2014). To provide 

guidance with respect to sequencing depths, we empirically estimated metagenomic coverage as 

a function of library size using Nonpareil (Rodriguez-R et al. 2018) across all publicly-available 

paired-end Illumina data from the studied articles (n=1440) (Figure 4-3). We then used the 

generated models to predict coverage at a depth of 10 Gb and found an average coverage of 

0.779 across all water types (Influent = 0.794, Activated Sludge = 0.774, Effluent = 0.849, 

Recycled Water = 0.810, Surface Water = 0.757).  The authors of Nonpareil observed that 

metagenomes with coverages ≥ 0.60 performed better in terms of assembly and detection of 

differentially abundant genes and can be regarded as a universal minimum. Comparing samples 

with greater than two-fold differences in coverage should be avoided (Rodriguez-R and 

Konstantinidis 2014). Effort is needed to determine whether these general guidelines are also 

suitable for resistome analysis, especially considering that ARG diversity does not correspond 

1:1 with phylogenetic diversity. 

Further, there is a trade-off with depth and length of sequences, where longer sequences 

improve read alignments, overall annotation, and are more amenable to assembly. Most studies 

assessed (58%) utilized 150 bp paired-end reads, followed by 100 bp paired end reads (32%). 

Across these studies, the average library size of Illumina datasets was 7.0 Gb (Figure 4-3).  
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Figure 4-3: Sequencing depth and coverage by water matrix. Library sizes were determined 

from all publicly-available paired-end Illumina metagenomes from the 95 studied articles 

downloaded from the Sequence Read Archive, MG-RAST, and European Nucleotide Archive 

(1440 metagenomes). Metagenomic coverage was estimated using Nonpareil (Rodriguez-R et al. 

2018) with option “-T kmer” on all cleaned and trimmed forward reads. Y-axis represents the 

frequency of individual metagenomes occurring at that library size or coverage factor. 
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SHARING OF COMPREHENSIVE METADATA IS NEEDED TO REAP THE VALUE 

OF METAGENOMIC DATA 

 Collection and sharing of appropriately rigorous metadata is a critical feature of any 

standardized framework for AR monitoring. Contextualizing resistome analysis is needed to 

accurately evaluate and compare samples across studies and space and time. Such metadata 

includes not only physicochemical parameters (e.g., temperature, pH, turbidity), but also water 

volumes collected, sample preservation (if any), DNA extraction methods/kits, and library 

preparation methods/kits (Liang et al. 2021). These metadata should be offered by researchers in 

all available instances, especially when uploading raw data to public repositories. Sparsely 

collected or vague reporting of metadata and effects on interpretation of results were common 

problems across the articles examined in this study. Notably, inspection of metadata reported 

across 1440 publicly-available metagenomes housed by SRA, ENA, and MG-RAST revealed 

several instances of sample types labeled “wastewater metagenome” without specifying the stage 

of biological wastewater treatment. Given that each stage of wastewater treatment is a distinct 

microbial ecosystem, lack of reporting of this nature renders the data unusable for meta-analysis, 

which is the intended purpose of data sharing. 

BIOINFORMATICS AND DATA ANALYSIS 

 Online Platforms For Resistome Analysis 

Depending on level of expertise, online data processing tools may be the most feasible 

option for resistome analysis (Table 4-S2). While such tools can aid in rapid analysis, it is 

important to be aware of any “black box” type assumptions that might be inconsistent with the 

nature of the samples or the monitoring objectives. Publicly-available data analysis pipelines, 

such as those hosted by Galaxy web portals (Giardine et al. 2005), can be beneficial where 

computational resources are minimal (no access to a computational server), for labs early along 

the adoption curve, or eventually, for when metagenomic methods for resistome monitoring 

become more standardized in common practice. The most commonly used online platform for 

environmental resistome analysis was ARGs-OAP executed in Galaxy (Yang et al. 2016; Yin et 

al. 2018) with its latest version utilizing DIAMOND and minimap2 against a custom, 

dereplicated database of ARGs, the Structured ARG Reference Database (SARG). MEGARes 

and its pipeline, AMR++, needs to be mentioned here. MetaStorm is another online platform 

with dedicated computational servers that enable the user to upload custom databases (Arango-

Argoty et al. 2016).  

Familiarity with command line data handling and processing for large datasets is 

advantageous for more advanced metagenomic analysis. This allows exploration and 

optimization of new analytical tools as they become available. As metagenomic profiling of 

ARGs is still largely implemented in the research domain, it is critical to be aware that there are 

numerous analytical parameters to choose from and each have implications for the 

research/monitoring objectives. As progress is made toward standardizing metagenomics for 

monitoring of resistomes in water and wastewater, agreement will be needed on default 

parameters (e.g., % identity, query coverage, amino acid length), depending on specific 

monitoring objectives, databases, and ideally, individual reference sequences.  

Read QA/QC And Merging Improve Resistome Analysis 

Following the generation and backup of sequencing reads, a critical first step is QA/QC 

assessment of the generated sequences to distinguish between natural genetic variations and 

sequencing errors or technical artefacts (i.e., adaptors and primer fragments). Because each 
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sequencing run is unique in the quality of generated data, exploratory analysis of library quality 

is useful in determining the degree of cleanup needed. FastQC (Andrews 2010) with MultiQC 

(Ewels et al. 2016) was found to be the most commonly employed software for this purpose, 

providing visualizations of key summary statistics of raw data, including read length, GC 

content, quality score distributions, number of duplicated reads, adaptor contamination, and 

number of Ns (unknown bases). These summary statistics can then inform appropriate read 

preprocessing, which involves trimming adaptors and low-quality ends, removing low quality 

and truncated reads, and choosing an acceptable number of Ns that define a valid sequence.  

Across the studies identified in this critical review, the most frequently implemented 

trimming and filtering tools were Trimmomatic (31 articles) (Bolger et al. 2014), Sickle (7) 

(Joshi and Fass 2011), Fastx-toolkit (5) (Hannon Lab 2009), BBduk (5) (Bushnell 2017), Trim 

Galore! (4) (Babraham Bioinformatics 2012), and Cutadapt (3) (Marcel 2011), although many 

others exist and perform similar functions. The parameters used with each software were study 

specific, as the degree of quality filtering is dependent on the outcome of each sequencing run 

and the researcher’s discretion. Reporting of trimming and filtering parameters, though, is 

essential for the reproducibility of metagenomic studies, as improperly cleaned data can result in 

artefacts that distort interpretation of the data (Del Fabbro et al. 2013; Bharti and Grimm 2021). 

The removal of reads originating from host organisms (i.e., host filtering) as a preprocessing tool 

was uncommon, although some chose to filter out reads aligning to Homo sapiens when 

analyzing municipal wastewater.  

After reads have been filtered and trimmed, merging of the paired-end sequences via their 

overlapping regions was performed by a minority of studies (15 articles) using FLASH (Magoč 

and Salzberg 2011), Vsearch (Rognes et al. 2016), SeqPrep (St. John 2011), or PEAR (Zhang et 

al. 2014). When insert sizes in paired-end Illumina libraries are shorter than twice the read 

length, read pairs can be merged via overlapping regions to generate much longer reads (Magoč 

and Salzberg 2011), improving genome assembly, binning, and read mapping algorithms and 

therefore should be included in workflows where applicable (Bushnell et al. 2017).  

Database Selection and Curation for ARG Annotation 

Metagenomic sequence data must be aligned to a database to identify genes of interest. 

Across the included studies, the most frequently used databases for ARG annotation were the 

Comprehensive Antibiotic Resistance Database (CARD; 42%) (Jia et al. 2017; Alcock et al. 

2020), the Antibiotic Resistance Genes Database (ARDB; 20%) (Liu and Pop 2009), Structured 

Antibiotic Resistance Genes (SARG; 11%) (Yin et al. 2018), ResFinder (10%) (Bortolaia et al. 

2020), ARG-ANNOT (4%) (Gupta et al. 2014), and MEGARes (2%) (Doster et al. 2020) (Table 

4-S3). ARDB and ARG-ANNOT, it should be noted, are no longer maintained and all sequences 

have been incorporated into several other databases. The National Database of Antibiotic 

Resistant Organisms (NDARO). ResFinder, SARG, MEGARes, and CARD remain actively 

curated. In many cases, a collection of these databases are manually combined and dereplicated 

on a per-study basis to increase the breadth of ARG detection (Subirats et al. 2016; Ju et al. 

2019; Liu et al. 2019).  ARGminer (Arango-Argoty et al. 2020) is a database that seeks to 

maintain active curation through crowd-sourcing, and is useful for exploratory research, bearing 

in mind that not all ARGs have been functionally validated in the laboratory.  

When choosing an ARG database, it is important to consider that each one is curated for 

specific purposes and has strengths and weaknesses. In terms of ARG monitoring, a common 
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objective may be to conservatively identify all known and functionally-validated ARGs 

(Objective 1), such as those in the CARD database. ResFinder focuses specifically on acquired 

resistance genes. On the other hand, if the objective is to identify potentially new ARG variants 

that could be of concern in a community, then the deep-learning enabled DeepARG or the 

probabilistic gene model based fARGene (Berglund et al. 2019) pipelines might be advantageous 

(Objective 4).  

Another concern is that many ARGs are conferred via single nucleotide polymorphisms 

(SNPs) of housekeeping genes, for example, the rpoB2 gene variant in Nocardia spp. found in 

the protein homolog database of CARD. Although a match may be found in the metagenomic 

dataset, even at 80-100% sequence homology, it cannot be guaranteed that the variant conferring 

resistance was detected. This is an intrinsic limitation of short-read shotgun metagenomics, 

where the length of the query is only a fraction of the reference sequence, and the sequencing 

error rate precludes confidence in detecting a SNP without sufficient query depth (Figure 4). 

ARGs that are known to be caused by SNPs such as parE, rpoB, phoP, phoQ, evgS, evgA, crp, 

evgA, envR, marA, cpxA, cpxR, ompF, and blaR should be checked for 100% peptide homology 

over a significant portion of the reference to prevent the overrepresentation of wild types (Doster 

et al. 2018). ARGs that are known as global regulators of efflux pump complexes are also 

commonly manually excised from databases before annotation (Lee et al. 2020a). Past efforts 

were made to manually remove such ARGs from the CARD database (e.g., through the 

development of SARG), but recent updates to CARD have continually improved this issue. 

Clustering ARG databases to generate consensus sequences of model reference genes may also 

help to eliminate these biases but would forgo gene variant level resolution. A recent review of 

available databases for metagenomic resistome analysis found that conclusions vary widely by 

which database is used and consensus references will be needed for universal data comparisons 

in the future (Lal Gupta et al. 2020). 
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Figure 4-4: Example of the limitations of sequenced-based homology strategies for ARG 

detection using Illumina short reads. The size of the reference gene for the “Nocardia rifampin 

beta-subunit of RNA polymerase (rpoB2)” within the CARD protein-homolog database is 1162 

aa long with the variable region conferring resistance (brown snippet) being 70 aa. Differences in 

amino acid sequences in the rpoB2 sequence are in bold. The probability that Illumina short 

reads align perfectly to the variable region identifying the rpoB2 variant (scenario 3) is unlikely 

and many databases are flooded with such variants of common orthologs, exacerbating ARG 

abundance calculations.   

 

Read Alignment Tools and Parameters Dictate Detection Stringency 

When performing read alignment to identify ARGs and other relevant genes, it is critical 

to assess what level of stringency is needed for the monitoring objective. Among the studies 

examined here, BLAST and its variants (Johnson et al. 2008) such as DIAMOND (Buchfink et 

al. 2014) and UBLAST/USEARCH (Edgar 2010) have emerged as the dominant family of read 

annotation tools. BLAST is known for its alignment accuracy (Buchfink et al. 2021), but 

DIAMOND and UBLAST provide much more reasonable turnaround time for metagenomic 

alignment and typically the accuracy trade-off is miniscule.  

It is critical to report any cut-off parameters applied, such as the e-value, amino acid 

identity, query coverage, and bit score, as these will dictate the stringency of database hits. Some 

articles identified in this review did not report these cutoffs, particularly when using online 
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platforms. Across studies utilizing short-read sequences, the e-values used ranged from 1E-10 to 

1E-4, while amino acid identity ranged from 50-95 percent, depending on the research question 

(Table 4-S4). When objectives are to conservatively identify known and functionally verified 

ARGs of clinical concern, parameters are stricter (e.g., query coverages of ≥ 80%, amino acid 

identities ≥ 80%, e-values ≤ 1e-10). The most applied alignment tool was BLASTx implemented 

in DIAMOND with an amino acid length of 25 at ≥ 80% identity. These parameters were first 

introduced by (Kristiansson et al. 2011) and have since been propagated throughout the field. 

Databases such as CARD also provide recommended bit score cutoffs for specific protein 

models, which can help to reduce guesswork in homology-based cutoffs.  

However, traditional sequence-based homology frameworks are not ideal for new gene 

discovery (Objective 4), where expanded databases and deep learning models (e.g., DeepARG 

and HMD-ARG (Li et al. 2021b)), Hidden Markov Model-based approaches (e.g., ARGsOAP v2 

(Yin et al. 2018) and ResFams (Gibson et al. 2015)), and probabilistic gene models (e.g., 

fARGenes (Berglund et al. 2019)) have been developed; Although the need for further validation 

has been duly noted (Bengtsson-Palme 2018). Permissive parameters are sometimes applied to 

more broadly capture putative ARGs. In any case, an agreed upon classification of allowable 

stringent to permissive alignment parameters would greatly enhance the comparability of 

resistome monitoring studies. 

Normalization and Comparison of ARGs Across Environmental Samples 

Because NGS does not directly yield absolute quantitative information, it is common 

practice to normalize to an internal or external parameter or to rarefy to a uniform read depth to 

facilitate comparisons across samples. Unfortunately, consistency in normalization is notably 

lacking and detracts from comparability across studies. Normalizing to the 16S rRNA gene (Li et 

al. 2015a) as a housekeeping gene present in all bacteria has been the most common approach 

and provides a biologically-relevant denominator, e.g., a proxy for ARGs/total bacteria. 

However, 16S rRNA gene copy numbers vary across species and therefore detracts from the 

biological relevance of this denominator. ARG/cell equivalent estimates are gaining ground as an 

alternative and can be obtained by using flow cytometry (Liang et al. 2020), by dividing by 

single copy genes (e.g., the β subunit of bacterial RNA polymerase, RpoB) (Zhang et al. 2019; 

Thornton et al. 2020), or by dividing the number of ARGs by the average coverage of a set of 

housekeeping genes (Yin et al. 2018; Dang et al. 2020; Lee et al. 2020b).  

Because gene lengths vary and are generally longer than a typical 100-300 bp read 

(Figure 4-4), normalization should also consider the reference sequence length. Reads per 

kilobase million (RPKM) and fragments per kilobase million (FPKM) are metrics derived from 

RNA-Seq and are common normalization approaches when the aim is to compare across 

different projects, where there may be significant variation in sequencing depths (Hendriksen et 

al. 2019). It is important to be aware that RPKM is derived for single-end data whereas FPKM is 

designed for paired-end reads, by restricting the double-counting of pairs of sequences aligning 

to the same reference. Thus, these two normalizations should not be used interchangeably. A 

parts-per-million (ppm) normalization was also common in the literature, which simply divides 

the number of ARGs found by the number of million-reads queried. Rarefaction, i.e., randomly 

subsampling to a consistent number of reads per sample, can also be useful to support statistical 

analysis when sequencing depth is highly variable (Karlsson et al. 2014), but results in a 

substantial loss of very costly data.  
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Among the studied articles, 21 studies normalized ARGs to 16S rRNA genes, 11 to an 

estimated cell count (RpoB or collection of single copy genes), 14 to ppm, 12 to the relative 

percentages of reads (i.e., a 0 to 1 scale), and 11 to either RPKM or FPKM. Normalizations that 

are used in differential abundance analysis in RNA-Seq or traditional microbiome studies (e.g., 

Cumulative-Sum Scaling or Trimmed Mean of M-Values) (Lin and Peddada 2020) were only 

encountered twice (Rovira et al. 2019; Zaheer et al. 2019). An evaluation of 14 of these methods 

for determining differentially abundant genes in comparative metagenomics revealed large 

discrepancies in performance, concluding that sample size, effect size, and gene abundance were 

key factors skewing biological interpretations (Jonsson et al. 2016). Systematic evaluation of 

normalization parameters for the purpose of ARG monitoring would be of value. 

QUANTITATIVE METAGENOMICS 

Relative abundance metrics are not always ideal for downstream analysis, especially for 

microbial risk assessment (Garner et al. 2021b; Li et al. 2021a). A few studies to date have 

sought to derive absolute ARG abundances (i.e., ARGs per volume or mass of sample) from 

environmental metagenomic data, i.e., quantitative metagenomics (qMeta). Hybrid spike-

independent approaches convert relative ARG abundances into absolute abundances by relying 

on supplementary quantitative analyses. For instance, (Garner et al. 2016), (Garner et al. 2018), 

and (Davis et al. 2020) determined the relative abundance of ARGs per 16S rRNA copies within 

the metagenomic dataset and correspondingly quantified the 16S rRNA copies per sample using 

qPCR. Applying the assumption that the target gene/16S rRNA quotient is equivalent between 

metagenomics and qPCR, a gene copy per unit volume metric is derived. Correlations between 

absolute ARG abundances derived from qPCR and hybrid spike-independent methods have 

shown strong correlations across several gene targets  (Davis et al. 2020; Majeed et al. 2021). 

However, the reliability was shown to diminish for low abundance ARGs where the limit of 

detection (LOD) for metagenomics exceeded that of the qPCR assay targets  (Davis et al. 2020; 

Majeed et al. 2021), or where primers fail to capture the full diversity of target ARGs (Crossette 

et al. 2021).  

Spike-dependent methods use internal nucleic acid reference standards that are 

incorporated directly into samples after DNA extraction (Figure 4-2). The reference standards 

are selected to be highly unlikely to be present in the sample, allowing them to be distinguished 

from the native microbial community. Recently, (Crossette et al. 2021) spiked genomic DNA 

from an exogenous marine organism (Marninobacter hydrocarbonoclasticus) into DNA 

extracted from digested and undigested cow manure to quantify tetracycline ARGs. Reads were 

mapped to all 4,272 genes comprising the genome and the average ratio of known spiked-in gene 

copies to reads mapped were used to calculate absolute abundances on a per-mass basis. The 

authors found that qPCR and qMeta were in strong agreement, but qPCR displayed a lower LOD 

than qMeta (2 to 8 copies/mg versus 3x104 copies/mg). The LOD for qMeta is directly 

proportional to the sequencing depth. Synthetic DNA reference standards (Li et al. 2021a) and 

quantitative ladders (Hardwick et al. 2018) have recently been developed and are worthy of 

exploration to support quantitative environmental monitoring of ARGs.  

The addition of internal DNA reference standards has the potential to normalize datasets 

across space and time, regardless of sequencing depth, and provide universal library 

comparisons. 
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METAGENOMIC ASSEMBLY FOR ARG CONTEXTUALIZATION 

The genetic context of ARGs is a crucial facet in defining their human and ecological 

health concerns (Objectives 3 & 4). In particular, mobile ARGs (i.e., carried on MGEs) are of 

greater concern because they can be acquired by a new bacterial host and result in a new resistant 

strain. Likewise, carriage in human pathogens presents greater concern than carriage in a non-

pathogens (Martinez et al. 2015; Bengtsson-Palme et al. 2017).  Assembly of short-read 

sequence data into contigs and scaffolds has been widely applied to identify genes neighboring 

ARGs to estimate whether they are mobile or present in pathogens. However, assembly 

algorithms diminish the quantitative value of the data. One workaround is to derive the relative 

abundance of protein coding regions (CDSs) within assembled libraries by mapping short-reads 

back to the assembled library (Ng et al. 2017; Zhou et al. 2019; Zhao et al. 2020). Still, the larger 

challenge is uncertainty in the accuracy of short-read assembly and lack of means to assess the 

accuracy. 

Environmental metagenomes are especially difficult to assemble due to the intermingled 

genomes of thousands of species at unknown abundance distributions, many of which are closely 

related or are not represented in databases. There are numerous options to assembling short-read 

data, each with their own assumptions, computational requirements, and overall limitations 

(Ayling et al. 2020). Due to the relatively low representation of environmental bacteria in 

taxonomic databases, de novo assembly is often implemented. Across the studies identified in the 

literature review, MEGAHIT (Li et al. 2015b), IDBA-UD (Peng et al. 2012), and SOAPdenovo2 

(Luo et al. 2015) were the most commonly used assemblers.  

Long-read sequencing is a promising way to circumvent the uncertainties associated with 

assembly of short-reads and has recently been demonstrated for ARG monitoring (Che et al. 

2019; Dai et al. 2022), but comes with the tradeoff of shallow sequencing depth and low 

coverage (Figure 4-3). A recent systematic evaluation of various assembly approaches for 

contextualizing ARGs found that a hybrid assembly approach resulted in the least number of 

erroneous contigs, suggesting a 10× minimum depth to minimize chimeric contigs that may skew 

resistome analysis (Brown et al. 2021). Following assembly, CDSs can be found using Prodigal 

(Hyatt et al. 2010), FragGeneScan (Rho et al. 2010), or MetaGeneMark (Zhu et al. 2010) and 

annotated for ARGs (Tables 4-S3, S4), MGEs, MRGs, or other functional genes.  

RESISTOME RISK ASSESSMENT MODELS 

 Looming large over efforts to monitor aquatic resistomes is the need to take steps towards 

translating the measurements to human and ecological health risks. The original framework 

proposed by (Martínez et al. 2015) ranks the “risk” posed by individual ARGs as a function of 

their documented ability to cause treatment failure, their association with MGEs, their carriage 

by human and animal pathogens, and their propensity for being transferred into pathogens. This 

framework was translated into an empirical model, MetaCompare (Oh et al. 2018), where the 

metagenomic reads are de novo assembled and annotated to identify ARGs, MGEs, and pathogen 

markers and their co-occurrence patterns. Samples are scored and ranked in accordance with 

these co-occurrences to identify potential “hot spots” for AMR evolution and transmission. A 

key limitation to this approach is the algorithm’s inability to rank the relative importance of 

individual ARGs and taxonomic sub-groups of bacteria. For instance, differentiating the relative 

importance of MGE-borne carbapenamases in Enterobacterales over ubiquitous efflux pumps in 

environmental strains of human pathogenic taxa is a critical distinction. More recently, a similar 

omics-based framework and software package “arg_ranker” was developed to categorize 
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individual gene targets by their enrichment in anthropogenically-impacted environments, their 

history of mobility, and their presence in ESKAPE (Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 

Enterobacter spp.) pathogens (Zhang et al. 2021). The framework made marked progress in 

sorting high- from low-risk ARGs from an environmental perspective and determined human-

associated, functionally verified, and mobilized ARGs to constitute only 3.6% of the known 

resistome. ARGs found by sequenced-based homology are ubiquitous in the environment, but 

only a small fraction pose a direct threat to human health (Fitzpatrick and Walsh 2016), while 

others may serve better as indicators of conditions that are conducive to the evolution and 

selection of resistant strains.  

 Advancements are also being made in the field of quantitative microbial risk assessment 

(QMRA), where the goal is to quantify the risk of human exposures to environmental AMR 

(Ashbolt et al. 2013). This approach, though, requires knowledge of the absolute concentrations 

(i.e., on a target per volume bases) of ARB and ARGs at exposure sites to derive dose estimates 

following ingestion, skin contact, or inhalation (Huijbers et al. 2015). A key hurdle to this 

framework as it is applied to AMR is factoring in HGT rates between commensal bacteria and 

pathogens in both the environment and in the human host following exposure (Li et al. 2018b). A 

recent review of research needs for risk assessment of recycled water matrices duly pointed out 

the need for reporting absolute concentrations of ARB and ARGs on a per volume basis for 

integration and further development of current QMRA frameworks as opposed to the myriad of 

relative abundance metrics derived by traditional shotgun metagenomics (Garner et al. 2021b). 

CONCLUSION 

 Metagenomics has emerged as a powerful tool for the monitoring of environmental 

resistomes. The near-random sequencing of all genomic fragments in a sample without a priori 

identification of gene targets allows for comprehensive assessments of microbial dynamics and 

risk factors for the development and proliferation of AR. However, several aspects of the 

workflow, from sample collection to NGS data generation and analysis, require careful 

consideration to ensure comparability of resulting data across space and time. Experimental 

controls were conspicuously absent from identified studies applying NGS for AR monitoring of 

aquatic environments and should be included in future studies. Sequencing depths should be 

appropriately targeted based on the research question and internal and external standards should 

be included to verify the accuracy and improve the quantitative capacity of resulting 

metagenomic data.  The recommendations here can aid in the generation of universally 

comparable sequence libraries needed to support broader ecological studies and environmental 

surveys. Sharing of metadata can also support larger-scale computational modeling. Given that a 

major advantage of NGS is the ability to store and analyze data retrospectively, the sooner the 

field can move towards improved quality and consistency in application of NGS for 

environmental AR monitoring, the better off we will be in our ability to accurately harvest the 

information needed to effectively combat the spread of AR. 
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Table S1: Search parameters 

Tier Attribute Keywords 

1 Topic “wastewater” OR “reclaimed water” OR “recycled water” OR “water reuse” OR “non-

potable reuse” OR “greywater” OR “hospital wastewater” OR “surface water” OR 

“sewage” OR “wastewater treatment plant” OR “filtration” OR “direct potable reuse” 

OR “indirect potable reuse” OR “river” OR “watershed” OR "lake" OR "pond" OR 

"recreational water" OR "influent" OR "effluent" OR "aquatic" OR "water quality" OR 

"de facto reuse" 

2 Topic “antibiotic resistan*” OR “antimicrobial susceptibility” OR “antimicrobial resistan*” 

OR “drug resistan*” OR “multi-drug resistan*” OR “resistome” OR "ARG" OR 

"antibiotic resistan* gene" 

3 Topic “Next generation” OR “metagenom*” OR "NGS" OR “sequencing” OR “high-

throughput sequencing”  
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Table S2: Data extracted from each included study 

Parameter Description 

Reference Formatted reference citation 

Country Where the study took place 

Continent 

General 

Environment 

Surface, Recycled or Wastewater 

Specific 

Environment 

What treatment stages were sampled/data extracted from? 

Sample Replicates How many samples were taken in replicate? 

Sampling Volume Minimum and Maximum of collected sample volumes 

Concentration 

Methods 

How were samples concentrated? 

DNA Extraction What kit/ method was used 

DNA Clean Up What DNA clean up kit was used (if applicable) 

DNA 

Quantification 

How was DNA quantified? (if reported) 

Library Prep What library prep kit was used? 

Sequencing 

Platform 

What sequencing platform was used? 

Read Length What length of reads were sequenced? 

Giga base pairs How many base pairs resulted from sequencing (if reported)? 

Analysis Tool What bioinformatic tools were used? 

Tool function Why was this tool applied? 

Parameters What parameters were used with the tool? 

Melt Curves Were melt curves analyzed? 

Database Which databases were used to annotate metagenomes? 

Metrics Which metrics were derived for assessing antibiotic resistance? 

Normalization What type of ARG count normalization was applied? 

Statistics What statistics were applied overall? 

Metagenome 

Accessions 

Sequence Read Archive, European Nucleotide Archive, and MG-RAST 

project identifications  
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Table S3: Free Web-based Metagenomic ARG Profiling Tools 

Tool 

Studies 

utilized 

(n) 

Sequence 

Platform 

Incorporated 

functions 
Databases used Reference 

ARG-OAPv2 10 Illumina 
Annotation, 

Normalization 
SARG [1] 

MetaStorm 3 Illumina 

Annotation, 

Assembly, 

Normalization 

Customizable [2] 

DeepARG 2 Illumina 

Annotation, 

Prediction, 

Normalization 

DeepARG-DB [3] 

NanoARG 2 Nanopore Annotation 

DeepARG-DB, 

NCBI-NR + I-VIP, 

BacMet, 

Centrifuge, 

ESKAPE+WHO 

[4] 

ARGPORE 1 Nanopore Annotation SARG [5] 

AMRPlusPlus  2 Illumina 
Annotation, 

Normalization 
MEGARes(1.0,2.0) 

[6,7] 
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Table S4: Databases used across all reviewed articles and motivations for ARG analysis 

 

Database 

Studies 

utilized 

(n) 

Approach 
Genes 

Contained 

Last Version 

Update 
Reference 

CARD 38 Highly curated ARG database 3,146 October 2021 [8] 

ARDB 18 All ARGs 4,545 July 2009 [9] 

SARG 14 Dereplicated ARG database 12,307 January 2021 [1] 

ResFinder 9 
ARGS from whole genome 

datasets 
2,236 April 2021 [10] 

DeepARG-db 5 
Machine Learning ARG 

Predication Database 
14,933 April 2020 [3] 

ARG-ANNOT 4 Point Mutation and all ARGs 2,038 May 2018 [11] 

ResFams 3 
HMM model for ARG 

Predication Database 
177 January 2015 [12] 

MEGARes 2 
ARGs, MRGs- hand-curated 

AMR database and annotation 

structure 

7,868 October 2019 [7] 

Resqu 2 
Horizontally transferred 

ARGs 
3,018  

https://www.1928

diagnostics.com/r

esdb/ 
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Table S5: Alignment parameters used in short-read and long-read queries of ARG databases. 

 Parameter Alignment Tools Used 

Studies 

Utilized 

(n) 

Range 

Observed 

S
h

o
rt

-R
ea

d
 A

li
g
n

m
en

ts
 

Query Coverage BLAT, BLASTx 12 50 - 90 % 

Amino Acid Identity 
BLASTx, RAPsearch, ShortBRED, 

UBLAST, Vmatch 
31 50 - 95 % 

Amino Acid Length 
BLASTx, RAPsearch, ShortBRED, 

UBLAST, Vmatch 
26 25 - 60 aa 

E value 
BLASTx, BLASTn, RAPsearch, 

HMMsearch, UBLAST 
31 1e-10 - 1e-3 

Bitscore   0   

Query Coverage BLASTn, BLASTp, LAST 20 40 - 95 % 

Nucleotide Identity BLASTn, LAST 5 70 - 97 % 

P
re

d
ic

te
d

 O
R

F
 

A
li

g
n

m
en

ts
  

(l
o
n

g
-r

ea
d

s)
 

Nucleotide Length BLASTn, LAST 5 50 - 100 nt 

Amino Acid Identity BLASTp 21 30 - 85 % 

Amino Acid Length BLASTp 4 25 - 100 aa 

E value BLASTp 24 1e-50 - 1e-3 

Bitscore BLASTp 3 50 
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ABSTRACT 

Antibiotic resistance is a major 21st century One Health (humans, animals, environment) 

challenge whose spread limits options to treat bacterial infections. There is growing interest in 

monitoring water environments, including surface water and wastewater, which have been 

identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). 

Enterococcus spp. often carry clinically-important antibiotic resistance genes and are of interest 

as environmental monitoring targets. Enterococcus spp. are Gram-positive bacteria that are 

typically of fecal origin; however, they are also found in relevant environmental niches, with 

various species and strains that are opportunistic human pathogens. Although the value of 

environmental monitoring of antibiotic-resistant Enterococcus has been recognized by both 

national and international organizations, lack of procedural standardization has hindered 

generation of comparable data needed to implement integrated surveillance programs. Here we 

provide a comprehensive methodological review to assess the techniques used for the culturing 

and characterization of antibiotic-resistant Enterococcus across water matrices for the purpose of 

environmental monitoring. We analyzed 105 peer-reviewed articles from 33 countries across six 

continents. The goal of this review is to provide a critical analysis of (i) the various methods 

applied globally for isolation, confirmation, and speciation of Enterococcus isolates, (ii) the 

different methods for profiling antibiotic resistance among enterococci, and (iii) the current 

prevalence of resistance to clinically-relevant antibiotics among Enterococcus spp. isolated from 

various environments. Finally, we provide advice regarding a path forward for standardizing 

culturing of Enterococcus spp. for the purpose of antibiotic resistance monitoring in wastewater 

and wastewater-influenced waters within a global surveillance framework. 

INTRODUCTION 

Enterococcus spp. are important members of the natural enteric microbiome of both humans 

and animals and have emerged as important antibiotic-resistant pathogens in clinical medicine 

(Arias and Murray, 2012). There are currently 60 published Enterococcus genomes in the 

National Center for Biotechnology Information database, most of which are commensal 
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microorganisms, although some act as opportunistic pathogens in humans. E. faecalis and E. 

faecium are among the most important etiological agents of nosocomial infections; including 

urinary tract infections (UTIs), central nervous system infections, endocarditis, bacteremia, 

neonatal infections, and surgical site infections (Moellering, 1992; Murray, 1990). From 2006 to 

2017, Enterococcus spp. were responsible for approximately 14% of all healthcare-associated 

infections in the US, ranking second overall behind Staphylococcus aureus (Hidron et al., 2008; 

Sievert et al., 2013; Weiner-Lastinger et al., 2020; Weiner et al., 2016). Enterococcus spp. 

possess full or partial intrinsic chromosomal resistance to cephalosporins, aminoglycosides, 

lincosamides, trimethoprim-sulfamethoxazole, and penicillins (Hollenbeck and Rice, 2012). 

Their rapid development of multi-drug resistance has been attributed in part to their highly 

malleable genomes that lack CRISPR (clustered regularly interspaced palindromic repeats) 

elements, which has facilitated the ready acquisition of allochthonous mobile DNA (e.g., 

vancomycin resistance gene clusters) (Palmer and Gilmore, 2010). Nearly 25% of the genomes 

of many clinical E. faecalis and E. faecium isolates consist of acquired genetic elements 

(Hegstad et al., 2010; Paulsen et al., 2003). Recently, over 85% of E. faecium and 15% of E. 

faecalis isolates responsible for catheter-associated UTIs and central line-associated bloodstream 

infections diagnosed in the US have been found to be vancomycin resistant (Weiner-Lastinger et 

al., 2020). The US Center for Disease Control and Prevention (CDC) and the World Health 

Organization (WHO) have set VRE to “high” priority and a “serious” threat level (Centers for 

Disease Control and Prevention, 2019; Tacconelli et al., 2018).  

Enterococcus spp. are members of the larger, phenotypically-defined group known as 

enterococci, which are Gram-positive, catalase-negative, obligately fermentative 

chemoorganotrophs that can survive over a wide range of temperatures, pH, and salinity 

(Teixeira et al., 2015). Enterococci are found in many extraenteric environmental niches, 

including soils and sediments, beach sands, aquatic vegetation, and terrestrial vegetation. 

Enterococci have been extensively isolated from wastewaters, marine waters, and freshwaters 

(Byappanahalli et al., 2012). Because of their abundance in human and animal feces, their 

extraenteric persistence, and the ease with which they are cultured, enterococci have been 

targeted for decades as fecal indicators for the purpose of water quality monitoring (Jang et al., 

2017; Schoen et al., 2011; Sinclair et al., 2012). Enterococci (formerly classified within the 

larger group known as “fecal streptococci”) have been widely used to assess the microbiological 

safety of surface waters, drinking waters, recreational beaches, and as a target for assessing 

process removal efficiencies during wastewater treatment. Enterococci have also been found to 

correlate directly to public health measures; for example, across the US, the rate of 

gastrointestinal illness in swimmers has been correlated with Enterococcus spp. levels in 

recreational beach waters that are impacted by wastewaters (Prüss, 1998; Wade et al., 2006, 

2003). Their importance as water quality indicators and their inclusion in governmental 

regulatory frameworks has led to a great deal of method development for isolation and 

enumeration from environmental samples (Boehm and Sassoubre, 2014; Health Canada, 2020).  

Global and national action plans set in place to combat the spread of antibiotic resistance 

have generally embraced a One Health approach (humans-animals-environment) (European 

Commission, 2017; Hernando-amado et al., 2019), but a better understanding of the role of 

environmental dimensions is needed. Aquatic environments have been identified as a key 

recipient and transmission pathway of antibiotic resistant bacteria into and out of human and 

animal populations (Amarasiri et al., 2020; Larsson and Flach, 2021). Multidrug-resistant 
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pathogens and mobile antibiotic resistance genes enter the environment via treated and untreated 

wastewater across the globe (Alexander et al., 2020; Marathe et al., 2017; Zhang et al., 2020). 

Recently, the WHO put forth the Tricycle protocol as a standardized method for monitoring the 

dissemination, transmission, and evolution of antibiotic resistance along the One Health 

continuum: humans (hospitals and community), the food chain (animal husbandry), and the 

environment (human and animal fecal contamination) (WHO, 2021). Specifically, the protocol 

targets Gram-negative extended-spectrum beta-lactamase (ESBL) producing Escherichia coli, 

which display phenotypic resistance to third-generation cephalosporins. While ESBL E. coli was 

selected, in part, to coordinate with global surveillance of Enterobacterales (Marano et al., 

2020), the extent to which it is truly a representative indicator of resistome dynamics has not 

been established. Thus, the present is a critical moment to also consider other potential targets. 

Antibiotic-resistant enterococci present many advantages as a potential target for monitoring 

antibiotic resistance in the water environment.  The level of standardization for methods 

targeting Enterococcus spp. is arguably second only to E. coli in environmental waters. As such, 

Enterococcus spp. could present an attractive complimentary target to E. coli.  Notably, as Gram-

positive organisms, they provide insight into distinct genotypes and phenotypes of antibiotic 

resistance that would not be captured by monitoring only Gram-negative organisms.  In 

particular, the plasticity of enterococcal genomes and their propensity for horizontal gene 

transfer and exchange of virulence and antibiotic resistance determinants from clinical strains to 

environmental reservoirs of enterococci (Ekwanzala et al., 2020b; Gouliouris et al., 2019, 2018) 

marks them as potentially comprehensive targets for antibiotic resistance monitoring.  

Recent progress has been made in applying culture-based methods for monitoring antibiotic 

resistant Enterococcus spp. in the environment, with emphasis on human and animal wastewater, 

and hospital wastewater pollution (Gouliouris et al., 2019; Savin et al., 2020; Zaheer et al., 

2020). The phenotypic and morphological similarity of other Gram-positive organisms to the 

enterococci, however, makes isolation on selective media prone to false-positives, with cross-

selectivity with other cocci (e.g., Streptococcus, Pediococcus, Weisella) (Harwood et al., 2001). 

False positives are especially problematic for environmental samples (Pagel and Hardy, 1980). 

Non-selectivity can actually be exacerbated with addition of antibiotics to media, because several 

members of non-target Bacillus and other genera are intrinsically resistant to clinically-relevant 

concentrations of certain antibiotics (Woodford et al., 1995).  
The selection of any monitoring target or strategy entails consideration of the overarching 

purpose or questions to be addressed, and these may vary depending on the focus across the 

spectrum from wastewater to surface water.  The following are examples of key monitoring 

goals and considerations addressed by this review: 

• Monitoring antibiotic resistance among clinically-relevant strains of Enterococcus spp. in 

sewage as a means of assessing their levels carried in the human population 

• Assessing whether clinically-relevant Enterococcus spp. or specific resistance 

phenotypes are effectively removed during wastewater treatment and if they persist in 

impacted aquatic environments 

• Evaluating evidence that clinically-relevant Enterococcus spp. acquire antibiotic 

resistance genes from the environment 
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• Comparing resistant Enterococcus spp. in various water matrices both locally and 

globally to assess factors that may be contributing to antibiotic resistance in Gram-

positive organisms 

LITERATURE REVIEW PROTOCOL 

This systematic review was conducted in a four-tiered approach using search terms 

presented in Table 5-S1 to collect studies published between January 2000 and December 2020. 

Briefly, Tier 1 was designed to isolate topic relevant search terms for surface water, wastewater, 

recycled water, or reclaimed water (3,828,792 articles). Tier 2 was designed to select for those 

articles addressing antibiotic resistance (15,043). Tier 3 further narrowed the search to culturing 

techniques (5,439) and Tier 4 specifically to enterococci/Enterococcus (479). Initially, these 479 

articles were independently screened by two researchers for containing a complete workflow 

from environmental sampling through to characterization of individual isolates. Articles were 

excluded that were focused on secondary data. Further exclusions were articles that exclusively 

investigated: biofilms, mesocosms, drinking water, sediments, or digested sludge (e.g., anaerobic 

digestion). Fecal source tracking articles based on antibiotic resistance analysis were also 

excluded (Harwood et al., 2000). Articles that used a non-selective media for initial isolation, 

such as R2A or TSA, were also excluded. Disagreements on article inclusion from the initial 

screening were presented to a larger group of five researchers to reach a consensus. The resulting 

105 peer-reviewed articles were then subject to data extraction using parameters outlined in 

Table 5-S2.  

META-ANALYSIS OF PUBLISHED DATA 

A meta-analysis was performed to extract data relevant to the species and phenotypic 

distribution of all isolated enterococci. First, the number of isolates per species was extracted 

from articles in which libraries were speciated (86 articles) to reveal general population statistics 

across Enterococcus spp. Second, antibiotic susceptibility testing (AST) data were extracted 

from all articles that provided the percent of resistant isolates compared to total enterococci 

isolated in the absence of any antibiotic (66 articles). Studies that summed isolates with 

“intermediate” or “resistant” classifications of resistance without providing individual statistics, 

as well as studies that did not cite standardized methodology for classifying resistance (e.g., 

current CLSI breakpoints at the time of sampling), were excluded. 

Methods for Culturing Environmental Enterococci 

In the US and Canada, enterococci are recommended for monitoring saline (brackish or 

marine) and recreational freshwaters. In the EU, enterococci are regulated in both drinking water 

and recreational water by standardized culture methods (Agency, 2020). Several standardized 

culture methods have been developed, including the US Environmental Protection Agency 

(USEPA) Methods 1106.1 and 1600 for ambient waters and wastewaters (U.S. Environmental 

Protection Agency, 2009, 2006), the International Organization for Standardization (ISO) 

Methods 7899-1 and 7899-2 (International Organization for Standardization, 2000), and Method 

9230 (A-D) as part of the American Public Health Association’s (APHA) “Standard Methods for 

the Examination of Water and Wastewater” (APHA, 1999; Rice and Baird, 2017) (Table 5-1). 

These methods include three distinct techniques: membrane filtration (MF), multiple tube 

fermentation (MTF), and defined substrate techniques (e.g., Enterolert). The current “gold 

standard” for enterococci enumeration from the environment is considered the MF technique 

(Byappanahalli et al., 2012) and was used by over 90% of articles included in this review (Table 

5-1). 
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The principal selective and differential solid media used in standard MF assays are 

Slanetz-Bartley (SB), mEnterococcus (mE), and membrane-Enterococcus Indoxyl-β-D-

Glucoside (mEI). These media use various peptone and yeast extract-based nutrients with the 

addition of sodium azide and/or nalidixic acid. Sodium azide obstructs the growth of Gram-

negative bacteria through the inhibition of cytochrome oxidase. Both SB and mE agars include 

2,3,5-triphenyltetrazolium chloride (TTC), which dyes viable colonies red. Differentiated 

colonies grown on SB or mE are then confirmed as enterococci by their ability to hydrolyze 

esculin in the presence of bile using either Bile Esculin Azide or Esculin Iron agars. The 

hydrolyzed esculin product, esculetin, reacts with iron salt in the media to produce black to 

reddish colonies for enumeration. mEI is similar to mE medium, but contains the chromogen, 

indoxyl-β-D-glucoside. When cleaved by β-D-glucosidase positive enterococci, blue halos are 

formed around positive colonies. mEI is typically used a standalone media as all colonies with 

blue halos are considered enterococci.  

 

Table 5-1: Published standardized methods for the detection and enumeration of 

enterococci in different water matrices 

Organization 

and Method 

Recommended 

Matrix 
Media 

Number of 

Citationsa 

Assay 

Turnaround 

(hours) 

General Procedure 

Membrane Filtration (MF); (CFU/mL); Number of Studies Identified: 93/105 

EPA Method 

1600 

drinking water; 

source water; 

wastewater; marine 

and freshwater 

mEIb 18 24 
mEI (41°C for 24 

hrs); Count blue halos  

ISO 7899-2 
surface water; 

wastewater 

Slanetz-Bartley; 

Bile Esculin 

Azide  

15 48 

Slanetz-Bartley (36°C 

for 44 hrs); Bile 

Esculin Azide Agar 

(44°C for 2 hrs) 

EPA Method 

1106.1 

marine and 

freshwater (not 

applicable to 

wastewater) 

mEnterococcus; 

Esculin Iron 

Agar 

0 48 

mEnterococcus (41°C 

for 48 hrs); Esculin 

Iron Agar (41°C for 

20 min); Count pink 

to red colonies 

APHA SM 

9230C.2a 

drinking water; 

source water; 

wastewater; marine 

and freshwater 

mEnterococcus; 

Esculin Iron 

Agar 

3 48 

mEnterococcus (41°C 

for 48 hrs); Esculin 

Iron Agar (41°C for 

20 min); Count pink 

to red colonies 

APHA SM 

9230C.2b 

drinking water; 

source water; 

wastewater; marine 

and freshwater 

mEIb 0 24 
mEI (41°C for 24 

hrs); Count blue halos  

APHA SM 

9230C.2c 

drinking water; 

source water; 
mEnterococcus 10 48 

mEnterococcus (35°C 

for 48 hrs); Count 
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wastewater; marine 

and freshwater 

light and dark red 

colonies 

Multiple Tube Fermentation (MTF); (MPN/mL); Number of Studies Identified: 1 

APHA SM 

9230B 

drinking water; 

source water; 

marine and 

freshwater (not 

applicable to 

wastewater) 

Azide Dextrose 

Broth; Bile 

Esculin Azide 

Agar 

1 48-72 

Azide Dextrose Broth 

(35°C for 24-48hrs); 

Bile Esculin Azide 

Agar (35°C for 24 

hrs); Compute MPN 

Fluorogenic Substrate Test (MTF and MPN); (MPN/mL); Number of Studies Identified: 3 

APHA SM 

9230D 

drinking water; 

source water; 

wastewater; marine 

and freshwater 

Enterolert® 3 24 

Enterolert Media 

(41°C for 24 hrs); 

Compute MPN 

ISO 7899-1 
surface water; 

wastewater 
MUDc Media  0 36-72 

MUD Media in 

Microtitre Wells 

(44°C for 36-72 hrs); 

Compute MPN 
a The ‘Number of Citations’ under Membrane Filtration do not correspond to the number of 

citations in the table as many articles did not follow or cite a standard method. Techniques not 

listed are direct plating after serial dilutions (8 articles).  b membrane-Enterococcus Indoxyl-β-D-

Glucoside Agar (mEI), c 4-methylumbelliferyl-β-D-glucoside (MUD), Environmental Protection 

Agency (EPA), International Organization for Standardization (ISO), American Public Health 

Association (APHA) 

Performance of Standard Enterococci Culture Assays 

Several comparative studies have been conducted over recent decades to assess each 

medium’s selectivity for Enterococcus (Table 5-2). Pagel et al. 1980 used pure cultures to assess 

PSE (Pfizer), KF Streptococcus, mE, and SB agars against over 100 pure cultures of clinical and 

environmental isolates of various cocci. The highest selectivity for enterococci was observed for 

PSE (94%) and mE (94%) agars, with the lowest being KF Streptococcus (80%) and SB (78%) 

(Pagel and Hardy, 1980). Compared to mE, however, PSE was found to yield lower recovery 

efficiencies from wastewaters with much higher rates of background colony growth. Other 

comparative studies found enterococci selectivity on PSE and KF Streptococcus agars as low as 

86% and 54%, respectively (Brodsky and Schiemann, 1976). The original mE agar formulation 

study found a false positive rate of 10% and false negative rate of 11.2% for surface water 

isolates (Levin et al., 1975). Subsequent studies have confirmed false positive rates for mE agar 

as low as 2.5% when testing pure Enterococcus cultures (Dionisio and Borrego, 1995) and 1.7% 

in marine, riverine, and treated wastewater effluent (Adcock and Saint, 2001). The inclusion of 

the indoxyl-β-D-glucoside chromogen to mE agars resulted in an increase in specificity of 

Enterococcus to upwards of 99.7% in ambient freshwaters (Adcock and Saint, 2001). In a recent 

benchmarking study, ISO method 7899-2 (SB media) was found to have false positive rates as 

high as 18% and false negative rates as high as 57.1%, depending on the colony count on the 

filter membrane of recreational marine water (Tiwari et al., 2018). Differences in Enterococcus 

selectivity have also been documented between MF and defined substrate techniques, where E. 

faecalis is differentially selected for in wastewater using Enterolert, leading to the conclusion 
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that these methods should not be used interchangeably for regulatory purposes (Ferguson et al., 

2013, 2010; Kinzelman et al., 2003; Maheux et al., 2009).  

Significant differences Enterococcus concentrations have also been reported. For 

instance, several studies were conducted in the wake of the advent of Enterolert assays in the 

mid-1990s to compare its efficacy against established MF techniques for water quality 

monitoring (Fricker and Fricker, 1996). Significant differences in concentrations were reported 

between Enterolert and SB agar in marine and recreational freshwaters (Valente et al., 2010), 

while no significant differences were found between mE agar and Enterolert concentrations 

across surface water, wastewater, or marine waters (Abbott et al., 1998; Budnick et al., 1996; 

Eckner, 1998; Fricker and Fricker, 1996). No significant differences in enterococci 

concentrations were identified between mE mEI agar (Adcock and Saint, 2001). Importantly, no 

studies were identified that directly compared the specificities and concentrations derived from 

SB and mE or mEI across water matrices. Such a comparison should be considered in future 

studies that assess their utility for regulatory frameworks for antibiotic resistance monitoring 

internationally. Any biases in species distributions and total enterococci concentrations 

originating from the selective media could skew downstream distributions in resistance 

frequencies and introduce bias if the data are used for risk assessment. 

Table 5-2: Performance of Enterococcus selective media used in standard membrane 

filtration assays 

Medium Matrix Tested 
Presumptive 

Colonies 

Specificity 

(%)1 

Selectivity 

(%)2 Reference 

mEI Marine 1361 - 82.4 

(Ferguson et al., 

2005) 

mEI Pure Cultures  101 97.3 100 

(Maheux et al., 

2009) 

mEI Surface 54 - 100 

(Nishiyama et al., 

2015) 

mEI 

Surface; 

Wastewater; 

Marine 1279 - 94.9 

(Ferguson et al., 

2013) 

mEI 

Surface; 

Wastewater; 

Marine 641 - 94.5 

(Ferguson et al., 

2010) 

mEI 

Surface; 

Wastewater; 

Marine 361 - 93.9 

(Messer and 

Dufour, 1998) 

mEnterococcus Marine 80 - 97.5 

(Dionisio and 

Borrego, 1995) 

mEnterococcus Marine 624 - 94.2 

(de Oliveira and 

Watanabe Pinhata, 

2008) 

mEnterococcus Pure Cultures  93 91.0 88.2 

(Pagel and Hardy, 

1980) 

mEnterococcus Surface 2231 - 88.5 (Levin et al., 1975) 
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mEnterococcus 

Surface; 

Wastewater; 

Marine 1043 - 90.2 

(Adcock and Saint, 

2001) 

Slanetz-

Bartley Marine 97 - 93.8 

(Audicana et al., 

1995) 

Slanetz-

Bartley Marine 234 - 92.7 (Tiwari et al., 2018) 

Slanetz-

Bartley Pure Cultures  82 78 74.4  

(Pagel and Hardy, 

1980) 

Slanetz-

Bartley Surface 321 - 95.3 

(Łuczkiewicz et al., 

2010) 

Slanetz-

Bartley 

Surface; 

Wastewater 385 - 93.8 

(Fricker and 

Fricker, 1996) 

1. Specificity = (True Negatives)/(True Negatives + False Positives) 

2. Selectivity = True Positives/(True Positives + False Positives) or (Colonies Confirmed to 

Enterococcus Genus)/(Total Presumptive Enterococcus Colonies in Collection) 

 

Workflows for Antibiotic-Resistant Enterococcus Monitoring  

A useful method for culturing and enumerating both generic and antibiotic resistant 

environmental Enterococcus would strike a balance between sensitivity (i.e., detect all 

Enterococcus spp. that are present), specificity (i.e., avoid detecting other genera), and the high-

throughput needed for large-scale environmental monitoring. Aquatic matrices display a large 

and dynamic range of enterococci concentrations, and a method for their enumeration would also 

need an appropriately low limit of detection for “cleaner” samples and a sufficiently high limit of 

quantification for matrices like wastewater where enterococci are concentrated. Specific 

logistical considerations are also warranted, such as the ability to perform the assay in low-tech 

laboratories using materials, techniques, and media that are economically feasible for AMR 

monitoring in low- and middle-income countries. In this instance, standard methods that have 

been developed for enumerating generic enterococci can be leveraged for their extensive vetting 

with respect to quality assurance/quality control and adapted to the increased throughput needs 

of AMR monitoring projects.   

Culture-based approaches for investigating antibiotic resistance amongst environmental 

Enterococcus must be modified based on the aquatic matrix being investigated and the purpose 

of the assessment. Here we delineate these approaches into three general categories: population-

level surveys, targeted monitoring for specific antibiotic resistant phenotypes, and recovery of 

low concentration or viable but non-culturable (VBNC) populations (Figure 5-1), each with their 

own benefits and limitations.  

For population-level monitoring (66 articles) (Figure 5-1A), where the objective is to 

achieve an unbiased snapshot of the distribution of resistance phenotypes, a collection of isolates 

can be generated using an Enterococcus selective method (e.g., Table 5-1). After colonies have 

been counted, isolates with the specified morphologies can then be selected randomly off plates 

for phenotypic antibiotic susceptibility testing, generating an antibiotic resistance profile as a 

function of the total number of isolates subsampled. The disadvantage of this approach is that 
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most colonies screened may not be antibiotic resistant and finding colonies with the resistant 

phenotypes of interest, and to achieve required statistical power, can be akin to “searching for a 

needle in a haystack”.  The advantage to this approach is that it provides a denominator for total 

Enterococcus in the sample and an unbiased distribution of both enterococcal species and their 

genotypes and phenotypes, resulting in an ecologically-relevant analysis (Cho et al., 2019). 

If the phenotype of interest is already known (e.g., high-level VRE), targeted monitoring 

approaches may be more efficient for in-depth characterizations of sub-populations of 

Enterococcus. Such approaches use an antibiotic at clinically-relevant breakpoints to select for 

specific resistance phenotypes (Figure 5-1B).  The use of low/intermediate breakpoints of 

antibiotics may be useful for capturing a broad range of phenotypes in the environment but will 

frequently capture clinically-irrelevant organisms, especially in the case of glycopeptide 

resistance (Figure 5-1C). The sample can also be plated in tandem on the selective media without 

the antibiotic (Figure 5-1D), thus allowing the quantification of the resistant population as a 

fraction of the total enterococci measured in CFU/unit volume, a universally comparable 

monitoring value (e.g., see WHO Tricycle Program recommendations (WHO, 2021)). Studies 

utilizing targeted approaches often screen the identified resistant colonies against a panel of 

antibiotics, which can include the original selective antibiotic to confirm clinically-relevant 

levels of resistance. This approach requires the choice of initial selective antibiotic and therefore 

will exclude strains that are not resistant to the primary selective antibiotic. Using a selective 

antibiotic will also skew the distribution of Enterococcus spp. away from the true distribution, 

often selecting for closely related genera that share the same resistance phenotype, such as 

Lactobacillus, Leuconostoc, Weissella, and Pediococcus in the case of high levels of 

glycopeptide resistance (Harwood et al., 2001; Nishiyama et al., 2017, 2015). 

In some scenarios, the recovery of very dilute phenotypes (rare targets) or stressed cells is 

desirable, for instance in advanced treated wastewater intended for reuse or other disinfected 

waters. Pre-enrichment of samples in concentrated selective broth (e.g., Enterococcosel or Azide 

Dextrose Broth) amended with the selected antibiotic at low/intermediate concentrations can 

greatly increase the detection limit of rare phenotypes by helping to recover VBNC colonies 

(Blanch et al., 2003; Vilanova and Blanch, 2006). These recovered, resistant colonies can then be 

streaked on high-levels of the antibiotic to recover clinically-relevant phenotypes of interest. 

However, any protocol employing a target enrichment step will preclude the ability to quantify 

the resistant Enterococcus population or normalize to the total population, a necessity for 

universally comparable datatypes (Figure 5-1E). 

After the collection of isolates is generated, purification and confirmation of the genus 

can be performed on brain-heart infusion (BHI), bile esculin azide (BEA), or esculin iron agar 

(EIA) and the level of resistance (low, intermediate, full resistance) is determined. Further isolate 

characterization is advised, including speciation and genotyping for ARGs and virulence factors. 

Whole genome sequencing (WGS) is recommended as it is the most accurate and comprehensive 

method for speciation and genotyping and enables global isolate comparisons. A comprehensive 

evaluation of the suite of methods used for isolate characterization is presented in the following 

sections. 
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Figure 5-1: Workflows for monitoring antibiotic-resistant Enterococcus in the environment. 1Note that pre-enrichment for resistance 

phenotypes (injured or VBNC cells) prevents their quantification. 2Antibiotic susceptibility testing of subsampled colonies often includes 

original selective antibiotic to confirm full “resistant” classification. 3Whole genome sequencing is recommended for the most accurate 

speciation and comprehensive genotyping for global isolate comparisons. AntR = antibiotic resistance, VBNC = viable but non-culturable, 

BHI=brain-heart infusion, BEA=bile esculin azide, EIA=esculin iron agar, ARGs = antibiotic resistance gene 
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Antibiotic Susceptibility Testing Methods 

Several techniques and automated platforms exist for generalized antibiotic susceptibility 

testing (AST) or the determination of minimum inhibitory concentrations (MICs) of isolate 

libraries; including Kirby-Bauer disk diffusion assays (~ 47% of articles), various commercial 

automated systems (24%), manual broth or agar dilutions (20%), or strip test methods (9%) 

(Figure 5-2A). Over 90% of AST were performed on either Mueller-Hinton agar or in Mueller-

Hinton broth. Concentrations of antibiotics chosen for AST were predominantly determined by 

referencing the Clinical and Research Standards Institute (CLSI; 70%) breakpoints for 

Enterococcus, according to the most currently available guidelines. Other standardized 

breakpoint concentrations were specific to a particular nation or governmental body, e.g., 

including the European Committee on Antimicrobial Susceptibility Testing (EUCAST; 7%), the 

National Antimicrobial Resistance Monitoring System (NARMS; USA; 2%), and the Canadian 

Integrated Program for Antimicrobial Resistance Surveillance (CIPARS; 1%). Approximately 

15% of studies utilizing AST that also differentiated degrees of resistance (i.e., “susceptible”, 

“intermediate”, or “resistant”) did not cite a justification for antibiotic concentrations nor a 

standardized method for determining the level of resistance observed. 

The panel of antibiotics used to screen isolates varied across studies, but overarching 

trends were apparent. VRE was mentioned in the title of ~35% of articles identified, and 

vancomycin was included in the screening panel in over 75% of the articles (Figure 5-2B). The 

number of observed phenotypes among clinical and environmental isolates of Enterococcus are 

wide-ranging, which warrants a diverse range of antibiotics included in the panels. The 

antibiotics tested were further categorized into twelve distinct classes by activity. The most 

prominent classes across all studies were glycopeptides (76%), macrolide-lincosamide-

streptogramin (MLS; 72%), tetracyclines (72%), beta-lactams (especially penicillins) (70%), and 

aminoglycosides (64%). Interestingly, antibiotics that are either approved by the FDA to treat 

VRE infections or are commonly used to treat VRE (Arias and Murray, 2012) were less 

commonly included in panels. These compounds include linezolid (27%), 

quinupristin/dalfopristin (21%), daptomycin (8%), and the synthetic glycopeptide, teicoplanin 

(28%). High-level aminoglycoside resistance (e.g., gentamicin, streptomycin, and kanamycin) in 

enterococci isolated from the environment was the focus of small subset of studies. 
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Figure 5-2: Summary of antibiotic susceptibility testing (AST) methods applied across the 

reviewed articles. A) Distribution of assays and commercialized platforms used for AST. B) 

Distribution of antibiotics used for screening enterococci isolate collections. 

Multidrug Resistance Profiling 

Because enterococci are intrinsically resistant to several antibiotics; including 

cephalosporins, penicillins, clindamycin, and aminoglycosides, resistant phenotypes are 

commonly found in environmental samples. Plasmid- and transposon-mediated resistance to 

tetracyclines, erythromycin, chloramphenicol, trimethoprim, vancomycin, and clindamycin; 

however, have further allowed the genus to become a leading cause of multidrug resistant 

nosocomial infections, particularly in the US (Murray, 1998). Modern nosocomial E. faecium 

isolates, for example, are commonly resistant to ampicillin, vancomycin, and high levels of 

aminoglycosides (Miller et al., 2014). Recently, the emergence of multidrug-resistant VRE to 

newer, last-resort antibiotics; including oxazolidinone-linezolid, daptomycin, 

quinupristin/dalfopristin, and tigecycline, have caused frequent treatment failures and are of 

global concern (Ahmed and Baptiste, 2018). Thus, screening for multidrug resistance amongst 

isolated environmental enterococci is essential for monitoring the evolution of the genus over 

time, specifically as a function of anthropogenic pollution, as well as assessing the relative 

hazard posed by the isolate. The choice of antibiotics to include in screening panels is crucial, as 

most are not useful from a risk-based monitoring framework, although some may highlight 

ecological relevance. For instance, screening for phenotypes that are intrinsic to the genus may 
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not have clinical relevance but may be useful in determining the distribution of endemic 

phenotypes to contextualize the relative frequency of VRE detection. 

 

Biochemical and Molecular Speciation 

Because the virulence and resistance characteristics across different Enterococcus spp. 

vary substantially, speciation of resistant Enterococcus is desirable. A suite of biochemical tests 

has been developed by clinical microbiologists to confirm Enterococcus to the genus level. 

These tests include Gram staining, catalase testing, thermal growth range/thermotolerance 

(growth at 10 and 45°C), halotolerance (6.5% NaCl), growth at pH 9.7, pyrrolidonylarylamidase 

activity, and the ability to hydrolyze esculin in the presence of bile salts (e.g. growth on bile 

esculin agar) (Facklam and Collins, 1989; Teixeira et al., 2015). These tests were common 

features of nearly three quarters of articles and served as a prerequisite for inclusion in 

downstream characterization, including further speciation (Figure 5-S1). Studies that did not 

confirm isolates to the genus level either relied on chromogenic agar (e.g., mEI, CHROMagar 

VRE) to select presumptive enterococci or speciated their library without screening for 

characteristic metabolisms or morphologies. Genus-specific primers based on the 16S rRNA 

gene (Deasy et al., 2000), 23S rRNA gene (EPA Method 1611) (EPA, 2012), or the elongation 

factor EF-Tu (tuf) (Ke et al., 1999) gene have also been used for rapid identification of the genus 

Enterococcus. However, 16S rRNA primer sets are known to fail to capture all Enterococcus 

spp. (Botina and Sukhodolets, 2006). 

Speciation of enterococci libraries was common and performed in 86/105 articles, the 

most common approach of which was PCR. There are several conserved proteins and 

corresponding genes that are targeted in these assays. The simultaneous detection of enterococcal 

species and glycopeptide resistance was the first molecular approach to improve diagnostic 

speeds for clinical enterococci and was based on the detection of genes encoding D-alanine:D-

alanine (ddl) ligases and other glycopeptide resistance determinants. A reduced affinity for 

glycopeptides in VanA- and VanB-type resistance in enterococci are due to the integration of D-

alanyl:D-lacate into peptidoglycan precursors by the chromosomally-encoded ddl ligases (Dutka-

Malen et al., 1995a). The ddl enzymes in E. faecium (ddlE. faecium) and E. faecalis (ddlE. faecalis) are 

conserved, and in resistant strains, these enzymes are present in addition to vanA or vanB. 

Similarly conserved ligases, vanC1 and vanC2-3 are highly specific for E. gallinarum (Dutka-

Malen et al., 1992) and E. casseliflavus (Navarro and Courvalin, 1994), respectively. The 

primers published by Dutka-Malen et al. (1995) for ddlE. faecium, ddlE. faecalis, vanC1E. gallinarum, and 

vanC2-3E. casseliflavus have been the most widely used for the speciation of environmental 

enterococci, as many researchers are specifically concerned with the identification of these four 

most common and clinically-relevant species (Table 5-S3). Kariyama et al. (2000) (Kariyama et 

al., 2000) and Depardieu et al. (2004) (Depardieu et al., 2004) provided additional multiplex 

PCR assays for more high-throughput approaches to VRE surveillance. A multiplex PCR assay 

based on species-specific superoxide dismutase (sodA) genes developed by Jackson et al. (2004) 

includes primers for 23 different enterococcal species (Jackson et al., 2004).  

The PCR primers described above were in part developed due to a lack of consensus 

between commercially-available systems and kits, such as the Analytical Profile Index (API; 

bioMérieux), PhenePlate (PhPlate Microplate Techniques AB), Phoenix Microbiology Systems 

(BD Phoenix), VITEK (bioMérieux), Micronaut-Strep2 (MERLIN), MicroScan Walk Away 



120 

 

(Beckman Coulter), and BBL Crystal (MG Scientific) manual or automated rapid identification 

systems. The principles behind these higher-throughput systems are derived from conventional 

biochemical phenotyping of enterococci which involve differentiating carbohydrate fermentation 

of mannitol, sorbitol, sorbose, inulin, arabinose, melibiose, sucrose, raffinose, trehalose, lactose, 

glycerol, salicin, and maltose, among others (Facklam and Collins, 1989; Teixeira et al., 2015). 

The commercial methods employ a panel of biochemical tests in parallel to reduce the labor 

costs of manual phenotyping. However, if atypical species are present, these systems will 

struggle to identify the organism with acceptable levels of certainty (Castillo-Rojas et al., 2013). 

This issue is especially problematic in matrices outside of the clinical setting, as these systems 

were developed and validated targeting common clinical strains and reference cultures with 

distinguishable biochemical characteristics and not the wide phenotypic diversity of 

environmental samples. A comprehensive survey of these systems has been reviewed previously 

(Emery et al., 2016).  

An emerging technology for the rapid identification of microorganisms is matrix assisted 

laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) (Singhal et al., 

2015). This method uses lasers to generate singly protonated ions from analytes in the sample. In 

the process of identifying unknown microbes, these analytes are primarily housekeeping and 

ribosomal proteins, given that they constitute a large portion of the dry weight of microbial cells. 

The ionized proteins are then separated by their mass-to-charge ratio and depending on their time 

of flight through a channel, a peptide mass fingerprint is generated that can be compared to 

openly sourced databases. MALDI-TOF MS for the purpose of enterococci speciation emerged 

in the literature in 2017, as this is an emerging technique in environmental studies. MALDI-TOF 

MS systems are considerably more expensive than most molecular or phenotypic methods, but 

the throughput is generally larger (thousands of isolates) and can better accommodate the 

demand in clinical laboratories.  

16S rRNA gene sequencing was less frequently used than other methods due its non-

specificity. Other genes may be sequenced, including the sodA, rpoA, and pheS genes, which 

have shown to be more discriminatory than the 16S rRNA gene for closely-related species, such 

as E. casseliflavus and E. flavescens (Naser et al., 2005; Poyart et al., 2000). In a recent 

comparative study of various loci to differentiate closely-related Enterococcus spp., it was 

determined that the alpha subunits of ATP synthase (atpA), chaperonins (groESL), and 

phenylalnyl-tRNA synthase alpha subunits (pheS) performed equally well or better than 16S 

rRNA gene sequencing against 308 enterococci isolates from untreated urban wastewater 

(Sanderson et al., 2019). The rate of false identification of consensus reference strains based on 

loci sequencing was approximately 2%, much lower than the parallelized carbohydrate 

phenotyping systems discussed above, such as RapID STR, which had error rates of 15.9% for E. 

faecalis, 21.5% for E. faecium, and 56.9% for E. casseliflavus/ gallinarum. The gold standard for 

speciating enterococci, and any organism for that matter, is WGS (Sanderson et al., 2019). 

 

Genotyping Resistant Enterococci 

Numerous genetic determinants confer antibiotic resistance across the genus 

Enterococcus. Co-occurrence of resistance genes and virulence factors is of particular concern 

from a clinical standpoint and is common among nosocomial strains (Guzman Prieto et al., 2016; 

Pöntinen et al., 2021). Most genetic determinants of antibiotic resistance in Enterococcus spp. 
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are intrinsically encoded, i.e., they exist on the chromosome within the core genome of the 

genus. Typically, acquired resistance, i.e., a product of horizontal gene transfer, is of greater 

interest for monitoring, where the purpose is to examine trends in resistance patterns and if they 

are changing in time and space. Acquired resistance genes are of primary concern as drivers of 

failure of antibiotic treatment in clinical infections. Canonical mobile resistance determinants 

within enterococci include those that confer resistance to glycopeptides (van gene clusters), 

aminoglycosides (aac(6’)-Ie-aph(2”)-Ia and aph(3′)-IIIa), MLS (ermB), and tetracyclines (tetM 

and tetL) (Figure 5-S2). 

Just over a third of analyzed articles (38/105) genotyped colonies for antibiotic resistance 

determinants after they had been isolated on antibiotic-containing media, 34 using PCR and 4 

using WGS. The van operon was commonly targeted, with an emphasis on vanA and vanB 

within VRE isolates themselves (Figure 5-S2). There are nine distinct gene clusters conferring 

glycopeptide resistance in enterococci (VanA, B, C, D, E, G, L, M, N) (Hancock et al., 2014; 

Teixeira et al., 2015) and these determinants differ both genetically and phenotypically based on 

their physical location (encoded on mobile genetic elements or chromosomal), whether 

resistance is inducible or constitutive, the type of peptidoglycan precursor that is produced, and 

ultimately the level of resistance conferred. VanA gene clusters are the most common in clinical 

isolates and are typically found on Tn1546-like transposons, are frequently integrated into a wide 

range of plasmids, and produce clinical levels of resistance to vancomycin (MIC 64-1,000 

µg/mL) and teicoplanin (MIC 16-512 µg/mL) (Teixeira et al., 2015). Similar to VanA, VanB 

gene clusters are also typically found in clinical isolates and are present on transposons (Tn1547 

or Tn1549 to Tn5382), but differ from vanA due their inability to recognize teicoplanin, allowing 

strains with the VanB phenotype to remain susceptible (Miller et al., 2014). These two gene 

clusters are the most significant genetic determinants in clinically-resistant enterococci and 

several PCR assays have been developed for their detection (Dutka-Malen et al., 1995b; 

Kariyama et al., 2000; Nam et al., 2013; Rathnayake et al., 2011). Enterococci displaying 

susceptible to intermediate resistance are typically attributed to chromosomally encoded van 

clusters, like vanC1 in E. gallinarum and vanC2/3 in E. casseliflavus, which are commonly 

detected in environmental samples. The much more rare vanD-N genotypes were not detected in 

any articles that screened for them (Kotzamanidis et al., 2009; Taučer-Kapteijn et al., 2016; 

Zdragas et al., 2008).  

 

Virulence Factors and Pathogenesis 

The pathogenesis of infections caused by enterococci is still poorly understood (Teixeira 

et al., 2015). However, several PCR assays have been developed for the detection of virulence 

factors common to Enterococcus, including: surface adhesion proteins (esp), aggregation 

substances (agg), cytolysin (cyl) and hemolysin (hyl) secretion operons, collagen adhesion (ace), 

and gelatinase secretion proteins that are predominantly found in endocarditis isolates (gelE) 

(Eaton and Gasson, 2001; Mannu et al., 2003; Vankerckhoven et al., 2004). These virulence 

factors were primarily screened for in the studied articles due to their implications in 

pathogenesis routes from environmental reservoirs back into humans and animals. Only 18 of the 

studies identified screened for virulence factors, the most common being esp (all 18 articles), cyl, 

and gelE (Figure 5-S2). The first vancomycin-resistant E. faecalis strain documented in the US 

was revealed to carry a large, transmissible pathogenicity island containing both esp and a 

complete cyl operon, and several other functions that are non-essential to commensal behavior of 
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the organism (Shankar et al., 2002). The E. faecalis pathogenicity island is an integrative 

conjugative element that can mobilize between plasmids and chromosomes in E. faecalis and E. 

faecium, transferring virulence factors and antibiotic resistance determinants (Laverde Gomez et 

al., 2011; Manson et al., 2010). The co-occurrence of virulence with antibiotic resistance is a key 

consideration when screening the environment for the emergence of potentially hyper-virulent 

strains. Rathnayake et al. (2012) found significant correlations between the presence of virulence 

factors and phenotypic antibiotic resistance among both E. faecium and E. faecalis isolates in 

surface waters and regional clinical isolates in Australia (Rathnayake et al., 2012). Similarly, 

Lata et al. (2016) documented widespread co-occurrence of vanA and vanB genotypes with gelE, 

ace, efaA, and esp virulence factors in both E. faecalis and E. faecium in impacted surface waters 

in northern India (Lata et al., 2016). Such studies demonstrate the value of monitoring both 

antibiotic resistance and virulence, particularly for gaining insight into ecological factors at play 

in observed resistance patterns.  

 

Multilocus Sequence Typing 

Multilocus sequence typing (MLST) is a technique by which multiple loci, or specific 

internal DNA fragments within an organism’s genome, are amplified by PCR, sequenced, and 

then compared across multiple isolates of that species. The loci are typically housekeeping genes 

common to the genus, and the allelic composition of the set of targets determines the “sequence 

type”, allowing for the determination of clonal complexes (CCs; isolates with differences of no 

more than 2 loci) and potential source attribution of isolates. Sequence types can then be 

compared to publicly available and curated databases, such as PubMLST (Jolley et al., 2018), 

where global isolate comparisons can be made. Pulse-field gel electrophoresis is a similar 

technique to MLST and was previously known as the “gold standard” for source attribution and 

epidemiological linkages of bacterial isolates, but low interlaboratory reproducibility and 

inability to perform phylogenetic or population structure studies makes it unsuitable for global, 

long-term epidemiological studies (Nemoy et al., 2005).  MLST profiles of Enterococcus have 

only been developed for faecium (Homan et al., 2002) and faecalis (Ruiz-Garbajosa et al., 2006) 

and are therefore the only two species present in the PubMLST database. The two profiles are 

derived from a mixed set of 11 housekeeping genes: gdh (glucose-6-phosphate dehydrogenase), 

purK (phosphoribosylaminoimidazol carboxylase ATPase subunit), pstS (phosphate ATP-

binding cassette transporter), atpA (ATP synthase, alpha subunit), gyd (glyceraldehyde-3-

phosphate dehydrogenase), adk (adenylate kinase), ddl, gki (glucokinase), aroE (shikimate 5-

dehydrogenase), xpt (shikimate 5-dehydrogenase), and yqiL (acetyl-coenzyme A 

acetyltransferase), which were chosen for their low ratios of nonsynonymous to synonymous 

mutations and their dispersed locations on the chromosomes. MLST is useful when exploring 

potential clonal relationships between Enterococcus spp. isolated from the environment and 

those from critical AMR monitoring points such as hospital wastewaters and pharmaceutical 

production waste. The clonal complex 17 (CC17) of Enterococcus faecium, for example, is a 

nosocomial strain associated with outbreaks worldwide and is generally ampicillin and quinolone 

resistant and contains the esp surface adhesion protein (Top et al., 2008). CC17 has been 

detected in several environmental samples and is an indication of the interconnectedness of the 

environment and clinical wastewater streams (Caplin et al., 2008).  
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Whole Genome Sequencing 

Despite the development of several sophisticated molecular biological assays for the 

complete characterization of enterococcal isolates over the last few decades, the advent and 

proliferation of next-generation sequencing techniques has allowed for comprehensive and high-

throughput functionality of all the previous assays in a singular method (Figure 5-1). WGS of 

isolates allows for the simultaneous detection of ARGs, virulence factors, plasmids, 

bacteriophages, insertion sequences, transposons, and the sequence type and cladal relatedness of 

isolates that can be comparted with enterococcal libraries globally. Only 4 articles performed 

WGS in this review, indicating that comprehensive epidemiological analysis of antibiotic 

resistant, virulent, hospital-adapted enterococcal clades is largely absent from the environmental 

literature. In WGS workflows, resistant enterococci are initially screened for on selective media 

supplemented with antibiotics (in this case ampicillin or vancomycin) and then isolated and 

speciated before they are subject to sequencing. Genomic surveillance of E. faecium isolates 

from retail meat, patients with bloodstream infections, and wastewater treatment plants revealed 

distinct clades with limited sharing of ARGs between livestock and humans in the UK 

(Gouliouris et al., 2018). There was, however, extensive overlap between isolates from 

bloodstream infections and those from the influents and effluents of 17 different wastewater 

treatment plants (WWTPs) in the region, which could indicate the emergence of new lineages of 

E. faecium that are both hospital-adapted and persist in the environment (Gouliouris et al., 2019). 

Similarly, Ekwanzala et al. (2020) investigated the prevalence of VRE in hospital wastewater, 

municipal wastewater, and the receiving surface water in South Africa and found that 35% of the 

enterococci exiting the wastewater treatment plant were vancomycin resistant, leading to the 

greatest VRE loadings in the downstream sediment (Ekwanzala et al., 2020a). Subsequent 

comparative genomics found that ST40, a human pathogenic E. faecalis sequence type, and 

CC17 of E. faecium were found persisting in downstream sediments, posing a risk to human 

health, and demonstrating the need for more advanced wastewater treatment in this scenario. 

Although WGS is more expensive and difficult to perform than PCR-based genotyping, its high-

throughput and robust analysis is quickly becoming commonplace as sequencing costs continue 

to fall. Also, the storage and sharing of sequenced genomes to public databases allows for 

longitudinal, phylogenetic tracking of problematic clones as they are transmitted globally (van 

Hal et al., 2021).  

 

Trends in Total and Antibiotic-Resistant Enterococcus Found in Water Environments 

 A comprehensive meta-analysis was performed to identify overarching trends in the 

species distribution of generic and antibiotic-resistant Enterococcus spp. to illuminate general 

trends and inform sampling priorities, extracting data from all articles that reported resistance as 

a percentage of the total number of isolates in a collection. Together, this meta-collection 

consisted of 39,514 isolates extracted from 80/105 articles. To reduce the amount of bias 

introduced by sampling and enrichment procedures, only Enterococcus AST data that was 

generated in the absence of an initial selective antibiotic were used. This reduced the collection 

size for AST data to 16,593 isolates extracted from 68 articles but allowed for an estimation of 

the “true” phenotypic diversity of environmental antibiotic-resistant Enterococcus. This 

approach also allows for the empirical prioritization of monitoring targets for Enterococcus 

resistant to critical antibiotics as well as a baseline for further studies across different water 

matrices without a bias towards resistant populations.  



124 

 

 

Total Enterococci 

 Only 52 of the 86 articles in which libraries were speciated were the data provided in a 

format that could be extracted unambiguously (e.g., in tabular format) or detailed population 

statistics reported, resulting in a collective of 27,273 speciated isolates for meta-analysis (Figure 

5-3). The three most common Enterococcus spp. across the 52 articles were E. faecium (34.0%), 

E. faecalis (29.0%), and E. hirae (13.0%). Minor species such as E. raffinosus, E. avium, and E. 

pseudoavium (Table S3) each represented less than 2% of the total isolates, although this is likely 

influenced by underrepresentation of these species in common PCR confirmation assays. In fact, 

in many articles, only E. faecalis, E. faecium, E. gallinarum, and E. casseliflavus were screened, 

as these species represent the most encountered resistant clinical isolates. Despite the uneven 

representation of the number isolates from each water matrix, there were clear trends among 

enterococcal populations. In WWTP and hospital wastewater samples, the combined proportions 

of E. faecium, E. faecalis, and E. hirae were nearly identical, making up approximately 90% of 

all isolates (Figure 5-3). These proportions are consistent with the natural distributions of 

Enterococcus spp. in the gastrointestinal tract of healthy human adults and animals (Silva et al., 

2012). The proportions of non-fecal related or undefined Enterococcus spp. were greater in 

surface water and coastal water samples, consistent with dilution of fecal contamination with 

environmental strains. A large proportion E. hirae, the dominant species excreted by cattle 

(Jackson et al., 2011), was found in cattle feedlot drains examined by (Zaheer et al., 2020). The 

even proportions across comparable water matrices (e.g., WWTPs and hospital wastewater) 

suggest that there is a lack of systematic biases in either media selectivity or speciation 

techniques.
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Figure 5-3: Distribution of Enterococcus spp. isolates across all studies. A) Species distribution of the total speciated meta-library 

across all water types (27,464 isolates). “other (spp.)” is any species that was not detected at >2% of the total meta-library abundance 

or was reported only as Enterococcus spp. B) The distribution of generic enterococcal isolates by water matrix. The total number of 

isolates representing each matrix is indicated in parentheses. Concentrated animal feeding operation (CAFO) samples encompass 

wastewater lagoons, feedlot drains, and any on-site treatment systems.  WWTP samples encompass all treatment stages.
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Surface Water 

 The majority of isolates obtained across studies were derived from surface water, which 

included both urban and rural watersheds and riverine sites directly impacted by municipal or 

hospital wastewater discharge (5,530 isolates) (Figure 5-3). Compared to the other environments 

examined, surface waters displayed some of the lowest percentages of resistant isolates to all 18 

antibiotics and antibiotic classes. It should be noted that, despite dilution effects and 

environmental attenuation, 5.6 % of 8,538 Enterococcus spp. isolates were phenotypically 

resistant to vancomycin. The vast majority of these isolates were confined to E. faecium and E. 

faecalis. By contrast, vancomycin resistance was virtually non-existent in E. casseliflavus, E. 

gallinarum and the other less dominant species (Figure 5-3; Table 5-S3). Despite intrinsic 

resistance of E. casseliflavus and E. gallinarum by vanC genes, their phenotypes rarely exceeded 

CLSI breakpoints for clinical resistance. Łuczkiewicz et al. (2010) examined Enterococcus 

resistant to 13 different antibiotics in an urban river system in Poland in the absence of 

wastewater treatment plant discharge  and found that resistance to erythromycin, ciprofloxacin, 

and tetracycline was common among all isolates (Łuczkiewicz et al., 2010). They also found 

multidrug resistance (some to all 13 antibiotics tested), including vancomycin and high-level 

aminoglycoside resistance, among E. faecalis and E. faecium isolates in the two main tributaries 

feeding the coastal waters. The authors suggested that riverine enterococci should be considered 

as a potential risk for downstream recreational bathers, even in the absence of point-source 

wastewater pollution. In contrast, studies of rural watersheds (< 1 % urban) in Ontario (Canada) 

and Georgia (US) found that the diversity and distribution of antibiotic resistance among 

Enterococcus were strikingly different than in more anthropogenically-impacted waterways (Cho 

et al., 2019; Lanthier et al., 2011). These two studies, together comprising 2,195 isolates, indicate 

that the enterococcal species and their phenotypes were stochastically distributed and sparse, 

with few multidrug (< 6 antibiotics) resistant strains and no isolates reaching the CLSI 

breakpoints for vancomycin, teicoplanin, or linezolid. They attributed the dispersion of the 

resistant fecal indicators to domesticated animal and wildlife fecal pollution and their 

dissemination to not be significant. The most significant rates of resistance among Enterococcus 

isolates from surface water studies came from the North West province of South Africa where 

86/124 Enterococcus spp. were phenotypically resistant to vancomycin. These were isolated in 

the absence of a selective antibiotic and displayed multidrug resistance to ampicillin, amoxicillin, 

penicillin, ciprofloxacin, erythromycin, and tetracycline. Interestingly, a single isolate of E. 

sulfureus was found to be multidrug resistant to ampicillin, amoxicillin, penicillin, streptomycin, 

vancomycin, chloramphenicol, ciprofloxacin, erythromycin, and tetracycline (Molale and 

Bezuidenhout, 2016).  

Upstream and downstream sampling of municipal wastewater discharge was carried out 

in several studies. The detection of enterococci with resistance to clinically-relevant antibiotics 

downstream of municipal wastewater discharge was regionally dependent and linked to the 

degree of treatment employed by the WWTP. Ben Said et al. (2014) found no ampicillin-

resistant Enterococcus (ARE) or VRE in the influent, effluent, or receiving water in Tunisia, 

suggesting the regional variation in their distribution (Ben Said et al., 2015). Further, Bessa et al. 

(2014) found vanA positive E. faecium mostly upstream of WWTP discharge in Portugal (Bessa 

et al., 2014), a region where VRE has become endemic.  
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Municipal and Hospital Wastewater 

Municipal and hospital wastewater were commonly sampled across the identified articles. 

Together they accounted for 6,450 isolates in the meta-collection and, as one might expect, they 

displayed the highest rates of clinically-relevant phenotypes (Figure 5-4). Enterococcus spp. 

isolated from untreated hospital wastewater displayed the highest rates resistance to 

fluoroquinolones, ampicillin/penicillin, macrolides, and vancomycin.  

WWTPs, which encompassed raw influent, activated sludge, secondary effluents, and 

variably treated final effluents, yielded Enterococcus spp. isolates with the highest rates of 

resistance to cephalosporins, lincosamides, nitrofurantoin, and teicoplanin among Enterococcus 

spp. isolated from 15 different countries. Counterintuitively, within the “WWTP” category, only 

2.6% of 6,519 isolates were resistant to vancomycin in the meta-collection. Interestingly, when 

the isolates were binned into two separate categories, “WWTP Influent” and all other 

compartments of the WWTP, resistance percentages were highly similar: 136 of 5,279 isolates 

(2.57%) for influent samples and 33 of 1140 (2.89%) for all other treatment compartments. Thus, 

the meta-analysis revealed striking patterns in the geographical distribution of vancomycin 

resistance. Because the influent was disproportionately sampled, the number of VRE was likely 

diluted by regions in which VRE is not endemic.  

Although they represented a smaller fraction of isolates, hospital wastewater 

environments showed the most significant contributions of phenotypic resistance to receiving 

waters. For example, Novais et al. (2005) found statistically significant increases in phenotypic 

resistance exceeding CLSI breakpoints among E. faecium and E. faecalis for vancomycin, 

teicoplanin, ciprofloxacin, and ampicillin in urban sewers receiving hospital wastewater 

discharge in Portugal (Novais et al., 2005). Clonal analysis, Tn1546 typing, and virulence factor 

assays were also consistent with local clinics being the source of downstream surface water 

isolates. Similar observations were made along a medical center-retirement home-wastewater 

treatment plant-river continuum in France in 2013, where the hospital-adapted clonal complex, 

CC17 E. faecium, was culturable along the continuum and into receiving waters (Leclercq et al., 

2013). The CC17 concentration, though, was attenuated by the WWTP and the proportion of 

CC17 became outweighed by environmental strains. Further, epidemiological source tracking 

using WGS of VRE isolated from 20 WWTPs in the UK in 2019 determined that there was 

widespread dissemination of hospital-adapted E. faecium in WWTP effluents across eastern 

England (Gouliouris et al., 2019). They found that WWTPs receiving hospital wastewater had 

significantly higher VRE and ARE concentrations than non-hospital associated treatment plants 

and found highly similar isolates shared between the local teaching hospital and those emitted 

from surrounding WWTPs. Together, these studies provide strong support of Enterococcus spp. 

as both a clinically-relevant and environmentally-relevant target for waterborne monitoring. 

Hospital wastewaters, the municipal wastewater infrastructure responsible for treatment, and 

receiving waters are key monitoring points for tracking their dissemination. 

 

Pharmaceutical Wastewater 

 Pharmaceutical wastewater is a critical monitoring point in the dissemination of resistant 

microorganisms and is currently understudied in the field. Only two such articles focused on 

resistant Enterococcus were encountered in this review. Guardabassi et al. (2002) documented 

invariably high numbers of VRE (20 ug/mL vancomycin; 106 CFU/mL) in the waste biomass 



128 

 

from the fermentation tanks used in the production of vancomycin (Guardabassi et al., 2002). 

The WWTP treating the waste was also enriched with presumptive VRE, and quantifiable CFUs 

were routinely emitted from the plant after secondary clarification without disinfection. PFGE 

analysis found identical VRE patterns between vancomycin production fermentation waste and 

the final effluents of the WWTP, suggesting that pharmaceutical production waste can be a direct 

contributor to the dissemination of VRE into the environment. Further, Guardabassi et al. (2004) 

investigated the relationship of Tn1546-like elements in Enterococcus spp. isolated from 

municipal sewage, activated sludge, vancomycin production waste, human feces, mussels, and 

soil using long PCR-restriction fragment length polymorphism and found indistinguishable 

elements shared across the ecologically distinct locations and between enterococcal species, 

suggesting ready transferability of the VanA genotype between clinical and environmental 

strains (Guardabassi and Dalsgaard, 2004). 

 

Recycled Water 

Due to the increased pressures on freshwater around the world, wastewaters are increasingly 

being treated and reintroduced into water and food cycles as the recycled water is used for crop 

irrigation, groundwater recharge, and even direct potable reuse. Only three studies in the current 

review examined resistant Enterococcus in wastewaters intended for reuse. Goldstein et al. 

(2014) sampled two WWTPs in the Mid-Atlantic and two from the Midwest regions of the US 

that reuse their treated effluents and detected VRE in 27% of wastewater samples, with higher 

rates in the Mid-Atlantic plants. VRE were only detected in final treated effluents when there 

was lack of chlorination (Goldstein et al., 2014). Subsequent studies from the same WWTPs 

found that VRE are detectable at low concentrations at the point of use after recovery from UV 

disinfection, although other phenotypes are more prevalent (Carey et al., 2016). Both WWTPs 

studied receive hospital wastewater and their effluents were used for spray irrigation (Goldstein 

et al., 2012). 

 

Marine Waters and Recreational Beaches 

Freshwater and marine water environments used for recreational bathing are at the direct 

interface between environmental fecal pollution and human exposure and are therefore important 

monitoring points. Studies of enterococcal populations of marine and freshwater beaches from 

Spain, Puerto Rico, Poland, Greece, Malaysia, Brazil, Italy, and Michigan confirmed that many 

drug resistant strains are readily culturable in recreational marine water and sand (Alm et al., 

2014; Arvanitidou et al., 2001; Dada et al., 2013; de Oliveira and Watanabe Pinhata, 2008; 

Monticelli et al., 2019; Sadowy and Luczkiewicz, 2014; Santiago-Rodriguez et al., 2013; 

Tejedor Junco et al., 2001). High phenotypic and phylogenetic diversity was observed across all 

studies, and many non-fecal associated enterococci dominated local populations, including E. 

casseliflavus (Monticelli et al., 2019), E. hirae (Sadowy and Luczkiewicz, 2014), and E. avium 

and E. raffinosus (Arvanitidou et al., 2001). Beach sands are of particular interest as they 

represent a niche environment for enterococci where horizontal gene transfer can occur at higher 

frequencies than among planktonic bacteria, accelerating the rate at which fecal microbiota 

exchange genes with pathogens and engendering human-pathogen interactions (Alm et al., 2014; 

Oravcova et al., 2017).   
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CAFOs and Irrigation Water 

Studies of the effects of cattle and swine concentrated animal feeding operation (CAFO) 

wastewater on downstream environments were also prevalent in the literature. The enterococcal 

isolates from CAFO studies in the meta-library showed the highest resistance prevalence to 

tetracyclines, which is not surprising given that tetracyclines make up nearly 40% of all 

antimicrobials used in animal husbandry in the US. (CDC, 2013). As many CAFOs contain and 

treat their wastewater on-site, their direct impact on groundwater or downstream surface water 

(e.g., due to runoff or unintentional discharge) was a concern. The animal products themselves 

also represent a potential direct line of exposure from animals to humans through the food chain.  

Sapkota et al. (2007) sampled upstream and downstream of a high-density swine operation in the 

Mid-Atlantic region of the US and found higher MICs for clindamycin and tetracycline amongst 

the Enterococcus spp. in both downstream groundwater and surface water (Sapkota et al., 2007). 

Similarly, Stine et al. (2007) sampled the waste lagoons, surface waters, and well water of a 

swine CAFO in the US. that had been administering tetracycline-containing feed for over 20 

years and found that 68% of all enterococci were resistant to tetracyclines, and a total of 60 

different species displayed phenotypic resistance to tetracyclines across the sites (Stine et al., 

2007). Further evidence for the direct dissemination of clinically-relevant enterococci into 

ambient surface waters by CAFOs was documented by Jahne et al. (2015) (Jahne et al., 2015). 

They documented a cattle CAFO and its on-site wastewater treatment system comprising of an 

infiltration basin with subsequent sequestration by a constructed wetland. Enterococci that 

displayed co-resistance to vancomycin, linezolid, and daptomycin were common in the 

wastewater and, during rain events, the increased hydraulic loading on the infiltration basin and 

constructed wetland resulted in the direct emission of these organisms into downstream surface 

waters.  



130 

 

 

Figure 5-4: Distribution of percent of Enterococcus isolates resistant to each antibiotic by 

sample matrix. Isolates were only included if they were initially isolated in the absence of a 

selective antibiotic. The number of isolates representing each matrix is in parentheses in the 

headers. The number of resistant isolates per antibiotic tested is represented adjacent to each bar 

in each panel. CAFO = concentrated animal feeding operation, WWTP = wastewater treatment 

plant. 

 

 

Conclusion and Recommendations  

 In this review we recounted the last 20 years of research assessing antibiotic-resistant 

enterococci in various water environments. Because Enterococcus has been shown to be a 

reliable indicator of fecal contamination of water bodies, several nationally and internationally 

recognized standard culture methods have been developed for their enumeration. Various 

Enterococcus spp. are both clinically-relevant and survive and persist in the environment.  The 

studies surveyed here lay the groundwork for considering Enterococcus spp. as a standardized 

target for waterborne monitoring of antibiotic resistance.  



131 

 

Recently, the WHO put forward a standardized, comprehensive surveillance program for 

One Health-inspired monitoring, i.e., the Tricycle protocol (WHO, 2021), which targets the 

Gram-negative ESBL E. coli. Here, Enterococcus spp., as Gram-positive organisms, represent a 

compelling target to consider as a complement to such monitoring programs. Enterococcus spp. 

display resistance to critically-important antibiotics that would not be captured by an E. coli-

targeted monitoring program alone.  As observed in this critical review, Enterococcus spp. also 

display sensitive responses to anthropogenic pollution, including hospitals and CAFOs, that are 

apparent in their distinct geographical occurrence patterns.  

The recommended path forward for standardizing environmental antibiotic-resistant 

Enterococcus monitoring should ensure the comparability of monitoring points, methods 

employed, and reporting metrics. Accessibility and ease of application are also important 

considerations. Ideally, Enterococcus spp. monitoring for the purpose of antibiotic resistance 

surveillance could be incorporated into existing monitoring programs, especially considering the 

high level of existing standardization and regulatory requirements. The existence of nationally 

and internationally recognized standard culture methods is of great value in ensuring 

comparability of the data gathered in space and time, however, further standardization is needed 

for the purpose of antibiotic resistance surveillance specifically. The conclusions and 

recommendations based on this critical review are as follows: 

• mEI is a prime candidate for a standard selective media, given that it yields the highest 

selectivity over mEnterococcus and Slanetz-Bartley and is integrated into existing 

regulatory recommendations in the US. Still, the findings here were encouraging that 

studies are generally consistent, even if different media were employed, but confirmation 

of the genus is critical because no Enterococcus media is 100% selective. The addition of 

a selective antibiotic to the media can decrease specificity by selecting for intrinsically-

resistant, non-target genera. 

• In line with recommendations made in the WHO Tricycle protocol, plating the 

environmental sample on the selective media with and without a primary selective 

antibiotic produces both a percent resistance of the enterococci population and a 

CFU/unit volume measurement (e.g., CFU/ml). A CFU/mL measurement represents a 

universally comparable magnitude of antibiotic-resistant bacteria.  

• Depending on the research question, vancomycin and other antibiotics used for primary 

selection may be added to media at the breakpoint for full, intermediate, or low 

resistance. The full resistance breakpoint is the most useful for clinical relevance, but in 

some environments, one may be interested in intermediate resistance. Where one expects 

bacteria to be compromised (injured), use of low-level antibiotic in enrichment cultures 

may be useful for lowering detection limits. The use of low/intermediate breakpoints may 

complicate human-health risk assessments due to the isolation of intrinsically-resistant 

species that are common in the environment. 

• A defined set of key antibiotics aimed at treating VRE infections could also be employed 

for monitoring emerging phenotypes and multidrug resistance. These include ampicillin, 

teicoplanin, oxazolidinone-linezolid, daptomycin, quinupristin/dalfopristin, and 

tigecycline. The emergence of multidrug resistant VRE that are co-resistant to these 6 

antibiotics are of great concern.  

• AST using disk diffusion on Mueller-Hinton agar or agar dilutions in Mueller-Hinton 

broth should be followed according to the most up to date CLSI guidelines.  
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• Speciation and virulence typing of resistant enterococci is of interest for risk assessment 

and longitudinally tracking changing genotypes and phenotypes across the genus. PCR-

based approaches are appropriate for low-tech labs, specific loci sequencing, and 

emerging technologies such as MALDI-TOF MS will increase throughput without 

sacrificing accuracy.  

• Key monitoring points to consider for the dissemination of resistant enterococci are the 

hospital-municipal wastewater continuum and their receiving water bodies, especially 

where they impact recreational waters. Pharmaceutical wastewater and recycled water are 

critically understudied for resistant Enterococcus. The surrounding areas of CAFOs are 

of particular concern after storm events. 

• Whenever possible, isolation of resistant colonies for WGS will aid in determining the 

sequence type, virulence genotype, plasmid type, acquired AMR genes, and 

chromosomal point mutations. Public sharing of WGS data will help to advance 

understanding of the ecology, epidemiology, and global transmission of this important 

pathogen. 
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SUPPLEMENTAL MATERIALS FOR CHAPTER 5 

 

 

Figure 5-S1: A) Distribution of methods used for confirming enterococci to the genus (75/105 

articles performed genus confirmation). B) Distribution of methods used for confirming 

enterococci to the species (86/105 articles performed species confirmation). 

 

Figure 5-S2: Distribution of PCR targets used for genotyping Enterococcus spp. across all 

articles.  

Table 5-S1: Tiered search term approach for systematic review. All searches were done in Web 

of Science. 
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Table 5-S2: Data extraction parameters used for  

Parameter Description/Example 

Reference APA format reference 

Country Where the samples were taken 

Continent 

General Environment Surface water, wastewater, recycled water 

Specific Environment influent, effluent, river, saltwater beach 

Sample Volume What volume of water represents each sample 

Concentration Technique membrane filtration, enrichment 

Standardized method referenced ISO 7899-2, EPA Method 1600 

Selective media mEI, Slanetz-Bartley  

Incubation time and temp Recorded for any agar used in all workflows  

Confirmation media Brain Heart Infusion Agar, Iron Esculin Agar 

ATCC Controls Which reference cultures were used throughout workflows 

Antibiotic used in selective media What antibiotic was used in the initial agar and at what concentration 

Antibiotic susceptibility testing 

technique  

Disc diffusion, agar dilution, strip tests, automated platform  

Antibiotic used in susceptibility 

testing 

The antibiotic and the concentration used 

Susceptibility testing referenced  CLSI, EUCAST, NARMS 

DNA extraction technique For isolates characterized molecularly 

ARG screened for with PCR In DNA extracted isolates, which ARGs were searched for  

Speciation PCR target  The gene target for molecular speciation of isolates 

Total enterococci isolates Where applicable, the number of isolates in the article library 

Number of resistant isolates The number of isolates marked “resistant” to specified antibiotics 

Species distribution of enterococci Where applicable, the summary statistics of species distributions 

Search Tiers Search Terms 
Number of 

Articles 

Water Matrices 

“wastewater” OR “reclaimed water” OR “recycled water” OR “water reuse” 

OR “non-potable reuse” OR “greywater” OR “hospital wastewater” OR 

“surface water” OR “sewage” OR “wastewater treatment plant” OR “filtration” 

OR “direct potable reuse” OR “indirect potable reuse” OR “river” OR 

“watershed” OR "lake" OR "pond" OR "recreational water" OR "influent" OR 

"effluent" OR "aquatic" OR "water quality" OR "de facto reuse" OR “water*” 

3,828,792 

Antibiotic 

Resistance 

& “antibiotic resistan*” OR “antimicrobial susceptibility” OR “antimicrobial 

resistan*” OR “drug resistan*” OR “multi-drug resistan*” OR “resistome” OR 

"ARG" OR "antibiotic resistan* gene" 
15,043 

Culturing 
& “culture” OR “isolat*” OR "membrane filtrat*" OR "spread plating" OR 

"IDEXX" OR "Enterolert" 5,439 

Enterococci & “enterococc*” 479 
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Table 5-S3: The 10 most common Enterococcus species screened for antibiotic resistance across 

all published articles.  

Species Known Origins 1  
Opportunistic 

Human 

Pathogen 

Confirmed  

Vancomycin 

Resistance 

 

Reference 

E. faecalis 

Human, Animal, Plant, 

Insect Yes Yes 

 
2–4 

E. faecium 

Human, Animal, Plant, 

Insect Yes Yes 

 
4–7 

E. gallinarum Human, Animal, Insect Yes Rare* 
2,4,8 

E. 

casseliflavus 

Human, Animal, Plant, 

Soil Yes Rare* 

 
3,4,8 

E. hirae Animal, Plant Yes Rare 
4 

E. durans Human, Animal, Insect Yes Rare 
3 

E. mundtii Soil, Plant Yes Rare 
3 

E. avium Human, Animal Yes No  

E. raffinosus Human Yes No  

E. 

pseudoavium Human Yes No 

 

*Intermediate resistance is common 
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ABSTRACT 

 Metagenomics is gaining momentum as a comprehensive, non-targeted tool for the 

detection of antibiotic resistance genes (ARGs) in wastewater-based surveillance (WBS) 

systems. However, there is a need for quantitative metagenomic (qMeta) datatypes to support 

risk assessment and to improve cross-study comparability. Here we spiked in internal DNA 

reference standards (meta sequins) into replicate wastewater samples at decreasing concentration 

ratios to assess the variability of gene detection at low abundances. Meta sequin ladders 

exhibited strong linearity at input concentrations as low as 2×10-5 w/w% (R2 > 0.98) and 

displayed minimal GC bias. We calculated the limit of quantification (LoQ) and limit of 

detection (LoD) for the experiment to be 2.7×104 and 54 gene copies per µL DNA extract, 

respectively, and applied these cutoffs to the high-throughput quantification of ARGs. In 

influent, activated sludge, and secondary effluent samples, 75.8%, 86.2%, and 87.3% of detected 

ARGs fell below the LoQ, even at ~100 Gb per sample. Comparing qMeta to qPCR 

concentrations for 16S rRNA and sul1 genes, we found no significant differences between 

techniques. The result of this study will help to improve the comparability of metagenomics for 

WBS of antibiotic resistance and help support the statistical evaluation of ARG detection at 

extremely low abundances. 

INTRODUCTION 

 Quantitative molecular approaches are needed to support momentum towards 

establishing and expanding wastewater-based surveillance (WBS) and risk assessment of 

antibiotic resistance associated with wastewater ecosystems and associated aquatic 

environments. Quantitative polymerase chain reaction (qPCR) has been the gold standard for 

highly sensitive quantification of antibiotic resistance genes (ARGs) in environmental matrices 

for the past two decades and has been widely used to study ARG dynamics in surface waters 

(Davis et al., 2020; Pruden et al., 2012), recycled water (Garner et al., 2019), and wastewater 

systems (Mao et al., 2015; McConnell et al., 2018). qPCR is an attractive means to reliably 

quantify specific ARGs of interest carried across a microbial community with high sensitivity.  

Advantages relative to conventional culture-based investigations have been previously 

documented (Keenum et al., 2022). Realistically, however, qPCR is only capable of targeting a 

handful of ARGs at a time. Given that there are currently thousands of known functionally-

verified ARGs in public databases (Alcock et al., 2020), each with their own distinct relevance to 
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human and ecological health, higher-throughput techniques are needed to support comprehensive 

surveillance efforts.  

Recent advancements in microfluidic-based high-throughput qPCR have allowed the 

simultaneous detection of hundreds of ARGs, but currently lack quality control and validation 

metrics (e.g., standard curves and melt curves). This results in uncertainty in individual target 

detection and quantification (Waseem et al., 2019). Additionally, a priori identification of gene 

targets requires the design and validation of suitable primers, significantly hindering the ability 

to detect emerging ARG variants in real time. Metagenomic sequencing represents a distinct 

advantage in this regard, as it provides the high-throughput capabilities necessary for 

environmental monitoring whilst circumventing a priori identification of targets (Garner et al., 

2021a). Several studies have demonstrated the effectiveness of metagenomics for ARG 

monitoring in wastewater (Hendriksen et al., 2019; Majeed et al., 2021; Riquelme et al., 2021) 

and there is currently momentum in the proposition of the use of metagenomics for 

comprehensive surveillance of ARGs in wastewater treatment plants (WWTPs) at a global scale 

(Aarestrup and Woolhouse, 2020; Pruden et al., 2021). However, metagenomic data have been 

limited to compositional assessments of ARGs (i.e., relative abundances normalized to a 

denominator), where absolute concentrations (i.e., target normalized per sample volume basis) 

are needed for quantitative microbial risk assessments (Garner et al., 2021b; Haas, 2020). 

Additionally, due to the near random sequencing of all genomic DNA across complex 

microbiomes, metagenomic detection of individual ARGs is rife with uncertainty, and statistical 

thresholds are needed for defining the presence or absence of detected ARGs as they enter and 

traverse WWTPs.  

To achieve absolute quantification of gene targets, quantitative metagenomics (qMeta) requires 

the addition of internal nucleic acid reference standards to serve as a “ground truth” in 

experimental samples (Hardwick et al., 2017). Recent advances in process controls for next-

generation sequencing experiments have led to the development of synthetic DNA reference 

standards, termed “sequins” (sequencing spike-ins), that represent the range of features and 

complexity of natural microbial communities while sharing no homology to reference sequences 

(Hardwick et al., 2018). Sequins designed for metagenomics (meta sequins) are mixtures of 86 

unique DNA oligonucleotides of varying lengths (987-9120 bp) and GC content (24-71%) that 

are present at 16 discrete input proportions, forming a ladder with a 3.2×104 fold range 

(Hardwick et al., 2018). Meta sequins were originally benchmarked for inter-sample 

normalizations as well as for measuring fold changes between microbial communities, but to 

date, have not been used for absolute quantification of ARGs in wastewater environments. 

Previous studies have utilized exogenous whole genomes for ARG quantification (Crossette et 

al., 2021a), but genetic homology between naturally-derived spike-ins and environmental DNA 

cross-detection add uncertainty to quantification. To overcome this bias, synthetic DNA 

oligonucleotides with embedded xenobiotic insertions (consecutive stop codons) were recently 

benchmarked (Li et al., 2021), but small insertion sizes (103-430 bp) significantly reduce the 

probability of detecting references at extremely low abundance.  

The overall goal of this study was to propose and evaluate a qMeta protocol for the monitoring 

of WWTP associated ARGs.  Specifically, the objectives were to (i) benchmark the efficacy of 

sequin standards for quantifying ARGs and (ii) explore the technical limitations of Illumina 
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sequencing for detecting low abundance ARGs by defining the limit of quantification (LoQ) and 

detection (LoD). Meta sequins were spiked at logarithmically decreasing proportions (w/w%; 

mass of meta sequins/mass of total library x 100) into replicate wastewater samples representing 

three typical wastewater matrices: influent (INF), activated sludge (AS), and secondary effluent 

(SE). These matrices represent distinct levels of DNA complexity and expected ARG 

concentrations. Sequins were spiked into samples after DNA extraction to isolate the effects of 

library preparation and sequencing on the fidelity of the ladders and individual sequins at varying 

concentrations. The behavior of sequins across sample matrices, input concentrations, and 

individual sequin compositions were then assessed. To determine the overall variability of meta 

sequin detection at decreasing abundances, sequencing yields were calculated and used for 

quantifying ARGs. The result of this study will help to improve the quality, value, and overall 

comparability of environmental metagenomic data produced for ARG monitoring and other 

purposes. 

 

MATERIALS AND METHODS 

Sample Collection, DNA Extraction, and Cleanup 

 Wastewater grab samples were collected in November 2021 from a local 5 MGD 

conventional wastewater treatment plant. INF, AS, and SE samples were taken in 2L autoclaved 

polypropylene bottles and transported back to Virginia Tech on ice. Briefly, samples were 

vacuum filtered onto 0.45 µm mixed cellulose-ester filters in replicates of 10 (30 total filters). 

50, 10, and 500 mL was filtered for INF, AS, and SE samples, respectively. 100 mL of deionized 

water was vacuumed through an additional filter to serve as the filter blank and negative control 

for the experiment. Filters were placed in 2 mL centrifuge tubes, fixed with 1 mL 100% ethanol, 

and stored at -20°C for DNA extraction the following day. During DNA extraction, ethanol fixed 

filters were torn into small (~1 cm2) pieces with flame sterilized tweezers and placed into lysing 

matrix E tubes of the FastDNA Spin Kit for Soil (MPBio). Before the addition of phosphate and 

lysing buffer, 75 µL of the ZymoBIOMICS Spike-In Control II (Zymo Research, CA) was added 

to each sample. Samples were then homogenized via bead-beating (40 s at 6 m/s) with the 

FastPrep-24 5G (MPBio), further extracted according to manufacturer’s instructions, and eluted 

in 100 µL of elution buffer. DNA extracts were first quantified using a dsDNA high sensitivity 

assay kit on a Qubit Fluorometer (Invitrogen), and 260/280 ratios were checked on a 

NanoPhotometer® Pearl (Implen). Each sample was then cleaned using a ZymoBIOMICS DNA 

Clean & Concentrator kit, eluted with 50 µL elution buffer, and re-quantified and quality 

checked. 

Quantitative Polymerase Chain Reaction of Gene Targets 

 qPCR was performed on all cleaned DNA extracts to quantify the abundance of total 

bacteria (16S rRNA genes) (Suzuki and Taylor, 2000) and sul1 (Pei et al., 2006). Initially, 

subsampled DNA from the first replicates of each wastewater matrix were aliquoted to identify 

dilution factors that would minimize the effects of PCR inhibitors. 16S rRNA was quantified at 

1:1, 1:50, 1:100, 1:250, and 1:500 dilutions where 1:100 dilutions were shown to maximize 

output concentrations for all three wastewater matrices (Figure 6-S1). The filter blank was below 

the limit of quantification for 16S rRNA in all analytical triplicates and was what not processed 

further. Using diluted aliquots, each qPCR target was then quantified in analytical triplicate with 
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deionized water as the no template control. Standard curves were generated from double-

stranded gBlock gene fragments (IDT), resuspended according to manufacturer 

recommendations in molecular grade water, and quantified via Qubit. The minimum accepted 

qPCR standard curve efficiencies and R2 va;ues were 80% and 0.980, respectively. The limit of 

quantification for each assay was set to the lowest standard that amplified in at least duplicate.  

Internal Reference Standard Spiking and Sequencing 

 Sequins (https://www.sequinstandards.com/metagenome/) were received from the Garvan 

Institute of Medical Research (Sydney 2010 NSW, Australia) as lyophilized nucleic acids. Meta 

sequin “Mixture A” was resuspended according to manufacturer’s instructions to a concentration 

of 2 ng/µL using molecular grade water and quantified using a Qubit Fluorometer. Mixture A 

contains 86 individual sequins at 16 discrete input proportions with at least 5 unique sequins at 

each proportion level, forming a reference ladder. The details for these meta sequins can be 

found in Table 6-S2. To generate a logarithmically decreasing spike-in gradient, sample DNA 

extracts were first normalized to 1000 ng in clean 500 µL microcentrifuge tubes. Meta sequins 

were serially diluted 9 times, starting at 2 ng/µL, and 10 µL of each dilution were added to 

corresponding replicate samples. This achieved a 2%, 0.2%, 0.02%, etc. w/w% (meta sequin 

mass to sample mass) of sequins per DNA extract for sequencing. Manufacturer instructions 

recommend adding sequins at a 2% w/w ratio and was defined here as a dilution factor of 1. 

Samples shipped overnight to the Duke Center for Genomic and Computational Biology on dry 

ice for library preparation and sequencing. All 30 samples were prepped using a KAPA 

HyperPrep PCR-free workflow targeting 500 bp insert sizes. Libraries were then sequenced on a 

single NovaSeq 6000 S4 flowcell with 150 bp chemistry targeting ~100 Gb per sample.  

Bioinformatics and Statistics  

 Initially, R1 and R2 files from each of the 4 flow cell lanes were concatenated, 

respectively. Adapters were then removed and reads were quality filtered using fastp with default 

parameters (Chen et al., 2018). To align reads to the sequin reference standards, the Anaquin 

software, a dedicated package designed to analyze sequin reference standards, was run using the 

“meta” option (Wong et al., 2017). Calibration settings for each Anaquin command were kept at 

0.01 as calibration files were not used in downstream analysis. For ARG annotation, paired reads 

were merged via their overlapping regions using Vsearch for instances where paired read lengths 

were greater than the insert size (Rognes et al., 2016). Merged clean reads were queried against 

the Comprehensive Antibiotic Resistance Database (CARD, v. 3.0.3, protein homolog model) 

using DIAMOND blastx (max-target-seqs = 1, aa length ≥ 25, bitscore ≥ 75, identity ≥ 80%). 

Differences in sample group means were determined with paired t-tests (α < 0.05) 

Modeling qMeta Approach 

 The mathematical relationships between spiked internal reference standard concentrations 

and experimentally-detected reads (equation 1) were derived by (Li et al., 2021) and are 

synthesized and repurposed below for use in the study: 

𝐶𝑠𝑒𝑞𝑢𝑖𝑛−𝑖

𝐶𝑇𝑜𝑡𝑎𝑙
 𝑥 𝑌𝑠𝑒𝑞−𝑖 =

𝑛𝑠𝑒𝑞𝑢𝑖𝑛−𝑖

𝑛𝑇𝑜𝑡𝑎𝑙
                                            (1) 

 Where (
𝐶𝑠𝑒𝑞𝑢𝑖𝑛−𝑖

𝐶𝑇𝑜𝑡𝑎𝑙
) is the mass concentration ratio of sequin-i (Csequin-i, ng/µL) to the total 

concentration of DNA in the sample (CTotal, ng/µL) and (
𝑛𝑠𝑒𝑞𝑢𝑖𝑛−𝑖

𝑛𝑇𝑜𝑡𝑎𝑙
) is the ratio of experimentally-

https://www.sequinstandards.com/metagenome/
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detected reads per sequin-i (nsequin-i,) to the size of the total metagenomic library (nTotal, reads). 

The empirical parameter, Yseq-i, represents the sequencing yield for sequin-i. An overall 

sequencing yield, Yseq, can then be calculated as the sum of Yseq-i, with a theoretical value of 1 

and used to calculate the concentrations of target gene sequences (CTarget, ng/µL) in individual 

samples (equation 2). Concentrations can then be converted to gene copies (gc) per volume of 

DNA extract (CTarget gc/uL) (equation 3): 

   
𝐶𝑇𝑎𝑟𝑔𝑒𝑡

𝐶𝑇𝑜𝑡𝑎𝑙
 𝑥 𝑌𝑠𝑒𝑞 =

𝑛𝑇𝑎𝑟𝑔𝑒𝑡

𝑛𝑇𝑜𝑡𝑎𝑙
                                                (2) 

𝐶𝑇𝑎𝑟𝑔𝑒𝑡 𝑔𝑐/𝑢𝐿 =
𝐶𝑇𝑎𝑟𝑔𝑒𝑡  𝑥 𝑁𝐴

𝐿𝑇𝑎𝑟𝑔𝑒𝑡 𝑥 109 𝑥 650
                                       (3) 

 Where NA is Avogadro’s Number (6.02x1023 copies/mol), LTarget is the length of the target 

gene (bp), 109 is the conversion from nanograms to grams, and 650 is the average molecular 

weight of a bp (g/mol). For final conversion to gc per volume of extract, 𝐶𝑇𝑎𝑟𝑔𝑒𝑡 𝑔𝑐/𝑢𝐿 values are 

multiplied by the total volume of DNA extracted (VExtract) and divided by the volume of sample 

filtered (Vsample) (equation 4): 

                              𝐶𝑇𝑎𝑟𝑔𝑒𝑡 𝑔𝑐/𝑚𝐿 =  𝐶𝑇𝑎𝑟𝑔𝑒𝑡 𝑔𝑐/𝑢𝐿 𝑥 
𝑉𝐸𝑥𝑡𝑟𝑎𝑐𝑡

𝑉𝑆𝑎𝑚𝑝𝑙𝑒
                                 (4) 

 

RESULTS 

Behavior of Meta Sequins Across Spike-In Concentrations 

After read quality filtering and trimming, an average of 6.3×108 reads (94 Gb) were 

generated per sample, resulting in a total library size of 2.8 Tb (Table 6-S1). Total per sample 

reads derived from meta sequins ranged from a single read to 1.1×107 (Table 6-S1). Strong 

linearity (Pearson, R2 ≥ 0.980, p<1e-16) between expected input proportions and experimental 

read counts was observed across dilution factors, regardless of the original sample matrix. This 

linearity was maintained with inputs as low as 2×10-5 w/w% (Figure 6-1A), suggesting that 

sequins are highly stable and reliably detected at low input abundance. All 86 sequins were 

detected at the first two dilutions across the three sample matrices, and at least a single sequin 

was detected in 27/30 samples (Figure 6-S2, S3). At the lowest dilution factors, we generally 

found that longer sequins with average GC contents were detected the most reliably. 

Additionally, we found strong overall linearity (R2 = 0.983) between spiked concentration ratios 

(
𝐶𝑠𝑒𝑞𝑢𝑖𝑛−𝑖

𝐶𝑇𝑜𝑡𝑎𝑙
) and sequenced read ratios (

𝑛𝑠𝑒𝑞𝑢𝑖𝑛−𝑖

𝑛𝑇𝑜𝑡𝑎𝑙
) across a large dynamic range (1×10-9 – 1×10-2 

ng/ng) (Figure 6-S4), validating the mathematical relationships presented by (Li et al., 2021).  

At inputs greater than 2×10-4 w/w%, we found individual sequin read counts at each input 

proportion and dilution factor between INF, AS, and SE samples to be statistically 

indistinguishable (paired t-test, p < 1e-6), indicating that the inherent nucleic acid complexity of 

the DNA extracts did not influence detection. This observation allowed us to treat INF, AS, and 

SE samples at each dilution factor as technical replicates in downstream analyses. Total 

sequencing yield (Yseq) approached saturation at the highest input w/w% and was stable across 

replicates (mean ± standard deviation; 0.71 ± 0.27) (Figure 6-1B). This stability was not 

maintained at subsequent dilution factors, and Yseq values steadily fell to a minimum at 2×10-5 
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w/w% (0.132 ± 0.06) as the detection of individual sequins became sporadic (Figure 6-S2, S3). 

A recovery in Yseq was then observed as read counts began to surpass stochiometric inputs.  

 

 

Figure 6-1: Performance of sequin ladders across dilution factors. (A) Sequin “Mixture A” 

ladder linearity at decreasing input w/w% and constant sequencing depth. (B) Total average 

sequencing yield of sequin mixtures per sample and input w/w%. Dashed line marks the 

theoretical Yseq value of 1, representing equal proportions of input sequin mass and 

experimentally-detected sequin reads. 

 

Defining the LoQ and LoD 

To quantitatively explore the LoQ and LoD, the coefficient of variation (CV) of detected 

read counts for individual sequins were analyzed as a function of calculated input copies per µL 

of DNA extract (Figure 6-2). Here, INF, AS, and SE samples at each input w/w% were treated as 

technical replicates. Using general recommendations for qPCR experiments, we first stringently 

defined the LoQ as the lowest input sequin concentration that was detected across all three 

technical replicates with a read count CV ≤ 0.35, and the LoD as the lowest individual sequin 

concentration detected across all three technical replicates (Forootan et al., 2017). The LoQ of 

the study was determined as 4.7×104 copies/µL (1.1x10-8 ng/ng) with a LoD of 2.9×104 

copies/µL (1.8x10-8 ng/ng). However, there are no general guidelines for qMeta approaches for 

gene quantification and we explored more relaxed cutoffs for defining the LoQ by increasing the 

acceptable CV threshold to 1 with detection of an individual sequin in at least duplicate. These 

relaxed cutoffs resulted in a new calculated LoQ of 2.7×104 copies/µL (3.0x10-8 ng/ng). We also 

redefined the LoD as simply the lowest concentration of a sequin detected with at least a single 

read, however, this occurred in several instances. Sequins that were detected with a single read 

were found at an input concentration range of 54 – 5500 copies/µL (1.9×10-11 – 3.7×10-9 ng/ng), 

which when converted to a per volume of water filtered basis, equates to approximately 1.0 – 

243.6 input copies/mL. There was not an instance of a sequin being detected at a calculated input 

copy number < 1, suggesting strong agreement between theoretical stochiometric calculations 

and the physical presence of individual sequins. 
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Figure 6-2: Determining the LoQ and LoD of qMeta. INF, AS, and SE at each w/w% were 

treated as technical replicates. The black dashed line marks the recommended threshold CV = 

0.35 for qPCR experiments. The red dashed line marks an adjusted threshold CV = 1 for this 

study.  

High Throughput Quantification of ARGs 

 The absolute quantification of ARGs across all 30 samples was calculated using the 

average Yseq of the first dilution factor across the three sample matrices (0.721). We detected an 

average of 802 ± 62, 401 ± 28, and 542 ± 28 unique ARGs, resulting in total measured 

concentrations of 108.6±0.2, 107.9±0.001, and 106.3±0.02 gc/mL in the INF, AS, and SE samples, 

respectively. We then applied the LoQ to each sample matrix to determine the proportion of 

individual ARGs and total ARG concentrations that were not statistically quantifiable. For the 

detection of individual ARG occurrences, we found that on average only 24.2%, 13.8%, and 

12.7% of ARGs were above the LoQ, resulting in total ARG concentrations of 108.3±0.4, 107.8±0.2, 

and 106.2±0.2 for INF, AS, and SE, respectively. After the application of the LoQ, the calculated 

concentration of total ARGs was not significantly different than before the application of the 

cutoff (paired t-test, p=0.86) 
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Figure 6-3: Density plot of detected ARGs across concentration range. The dashed lines 

represent the LoQ of the entire experiment (2.7x104 gc/uL) converted to gc/mL for each sample 

matrix. Red = Influent, Green = Activated Sludge, Blue = Secondary Effluent. The black solid 

line represents the LoD.  

Comparison of qMeta and qPCR 

 The qMeta approach was verified by comparing absolute gene quantities (gc per volume 

of water filtered) to replicate qPCR measurements of two target genes, 16S rRNA and sul1 

(Figure 6-4). For qMeta gene calculations, all ten biological replicates were used with the 

average Yseq values as previously described. We found no significant difference between gene 

quantities derived from qMeta and qPCR for 16S rRNA (paired t-test, p = 0.64) or sul1 (paired t-

test, p = 0.45), although these targets were well above the LoQ. Comparing individual gene 

quantities in each sample matrix, however, we found significant differences in absolute gene 

concentrations between sul1 measurements derived from qPCR and qMeta in SE samples (paired 

t-test, p < 0.01). Despite these differences in derived gene target concentrations, the variance 

between calculated gene concentrations by each methodology were insignificant. For the 16S 

rRNA gene concentrations, the CV of qPCR-derived concentrations (0.365 ± 0.03) was not 

significantly different than qMeta (0.445 ± 0.147) (paired t-test, p = 0.41). The same was 

observed for sul1, where the CV of qPCR concentrations (0.42 ± 0.209) and qMeta (0.472 ± 

0.132) showed no significant difference (paired t-test, p = 0.95).  
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Figure 6-4: Comparison of qMeta and qPCR for absolute gene quantification. qPCR data 

for each sample matrix represents all 10 biological replicates in technical triplicate. qMeta 

represents the first 3 dilutions. Error bars represent ± the standard deviation between replicates.    

 

DISCUSSION 

This study demonstrated that qMeta is a feasible approach to broad, non-targeted 

monitoring of ARGs in wastewater samples. Benchmarking to qPCR, the most sensitive and 

quantitative method currently available for individual ARG monitoring, demonstrated no 

measurable difference in quantification of target genes as gc/mL.  This finding could be a 

significant game-changer, as the lack of quantitative capacity has been cited as a key limitation 

of the applicability of metagenomic data to inform human health risk assessment.  For qMeta to 

be widely and successfully adopted, it will be necessary to promote common protocols to sample 

preparation, including the spiking of internal reference standards, such as meta sequin ladders, 

and sequencing to sufficient depth to capture targets of interest.  However, it is important to 

recognize that there are still inherent limitations of metagenomics for ARG monitoring.   

In particular, rare targets, i.e., below ~103 gc/uL of DNA extract, will be extremely 

difficult to capture with acceptable consistency, even at sequence depths of 100 Gb with 

biological replication.  Based on this study, we can estimate a theoretical LoQ and LoD of 
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2.7×104 gc/uL and 54 gc/uL, respectively. Although the LoD presented here was further 

calculated to reach as low as 1 gc/mL, ARGs occurring at these extremely low concentrations 

will likely go undetected during conventional monitoring efforts that use much shallower 

sequencing depths. This has implications for the design of future WBS efforts because the 

emergence of novel resistance determinants will appear in wastewater samples well below the 

technical limitations of Illumina sequencing. Conversely, the ARGs that appear above the LoD, 

and especially above the LoQ, have likely already undergone the evolutionary jumps to become 

fixed in human populations (i.e., have been mobilized and are present in human commensals or 

pathogens). Approaches, however, can be derived from this work to define sequencing depths 

appropriate for the detection of ARGs on a sliding-scale, allowing a statistically defined 

threshold of ARGs to go “under the radar”. qPCR can be used to supplement and verify the 

stochastic detection of presumably novel ARGs and new ARG variants with higher specificity 

and verified using functional metagenomic techniques. Although sequencing costs will 

undoubtedly continue to fall, the sample preparation and sequencing in this proof-of-concept 

experimental design resulted in a per-sample cost approaching $1,000. This per-sample cost is 

well outside the realm of feasibility for large monitoring projects and trade-offs will inevitably 

need to be made for non-targeted approaches to ARG surveillance. 

These limitations in gene detection at low abundances may be an artefact of the Illumina 

sequencing platform itself. We used a PCR-based KAPA HyperPrep library preparation kit with 

consistent input of ~1000 ng of environmental DNA and observed minimal bias in the 

reconstruction of meta sequin ladders across sequin lengths and GC content that was maintained 

at low input concentrations. We did observe, however, a fall-off in Yseq values as meta sequin 

inputs fell below 2×10-5 w/w% which then recovered to exceed the theoretical value of 1. Based 

on these observations, Illumina sequencers may simply preferentially sequence the most 

abundant features in a metagenome, sequencing at random the highest concentration genomic 

fragments. Once a target sequence falls below the LoQ, however, its detection becomes a matter 

of chance and the number of total queries generated. In many cases, at the lowest spike-in 

concentrations, the number of detected meta sequins greatly surpassed the stochiometric 

concentration that were spiked-in (Yseq > 1), supporting this hypothesis. 

 Overall, this study supports the use of qMeta approaches for continued efforts in WBS of 

antibiotic resistance and made headway in the statistical analyses necessary for reproducible 

ARG detection. This approach will be especially useful in the future application of molecular 

data types that inform quantitative molecular assessments of both human and ecological health 

risks of ARGs.  
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SUPPLEMENTARY MATERIALS FOR CHAPTER 6 

 

 

Figure 6-S1: Dilution curve optimizing qPCR gene quantification across wastewater matrices 

using the 16S rRNA gene as the representative assay. A dilution factor of 1:100 was identified as 

optimal for all sample matrices.  
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Figure 6-S2: Heat map of detected meta sequins across all 30 samples. Rows represent expected 

input proportions for meta sequin ladders. The color gradient is the log10 mean detected read 

count. * = at least a single sequin was detected. 

 

 

 Figure 6-S3: Heat map of individual sequin detections across sample dilutions. 
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Figure 6-S4: Correlation between spiked meta sequin concentration ratios (
𝐶𝑠𝑒𝑞𝑢𝑖𝑛−𝑖

𝐶𝑇𝑜𝑡𝑎𝑙
) and 

experimentally-derived sequence base ratios (
𝑛𝑠𝑒𝑞𝑢𝑖𝑛−𝑖

𝑛𝑇𝑜𝑡𝑎𝑙
) across all 30 samples.  

 

Table S3: Summary of sample characteristics and sequin spike-in masses. 

Sample 
Filter 

Volume 
(mL) 

Final 
Qubit 
(CTotal) 

Sample 
Mass 

In (ng) 

Sequin 
Mass In 

(ng) 

Reads Passing 
QA/QC 

(150 bp) 

Base 
Pairs 
(Gb) 

Total 
Sequin 
Ladder 
Reads 

1-INF 50 28.6 1430 20 535,013,050 80.25 11,040,198 

2-INF 50 14.9 745 2 682,264,862 102.34 1,073,673 

3-INF 50 19 950 0.2 626,058,174 93.91 56,592 

4-INF 50 21.8 1090 0.02 852,102,356 127.82 1,942 

5-INF 50 18 900 0.002 537,603,870 80.64 332 

6-INF 50 25 1250 0.0002 714,076,610 107.11 24 

7-INF 50 20.4 1020 0.00002 484,396,382 72.66 2 

8-INF 50 26.2 1310 0.000002 559,475,636 83.92 1 

9-INF 50 22.4 1120 0.0000002 621,449,370 93.22 2 

10-INF 50 21.8 1090 0.00000002 599,232,550 89.88 2 

1-AS 10 19 950 20 663,293,200 99.49 7,551,758 

2-AS 10 17.4 870 2 644,302,050 96.65 503,012 

3-AS 10 18.9 945 0.2 561,812,936 84.27 42,191 

4-AS 10 21 1050 0.02 689,547,724 103.43 3,755 
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Table S2: Sequin “Mixture A” ladders (https://www.sequinstandards.com/metagenome/) 

Sequin_ID LENGTH (bp) GC 
Expected Input 

Proportion 
Molecular Weight 

(g/mol) 

S1092_MG_006_A 4215 0.427284 1 2,566,935 

S1100_MG_014_A 2878 0.341557 1 1,752,702 

S1155_MG_066_A 981 0.61264 1 597,429 

S1122_MG_036_A 2979 0.503525 1 1,814,211 

S1125_MG_039_A 2979 0.377308 1 1,814,211 

S1096_MG_010_A 3217 0.7106 0.5 1,959,153 

S1105_MG_019_A 2559 0.5932 0.5 1,558,431 

S1111_MG_025_A 4126 0.293989 0.5 2,512,734 

S1127_MG_041_A 2979 0.53575 0.5 1,814,211 

S1163_MG_074_A 1644 0.34854 0.5 1,001,196 

S1095_MG_009_A 3670 0.601907 0.25 2,235,030 

S1102_MG_016_A 2694 0.335932 0.25 1,640,646 

S1141_MG_052_A 1780 0.385393 0.25 1,084,020 

S1129_MG_043_A 2979 0.507217 0.25 1,814,211 

S1131_MG_045_A 2979 0.689157 0.25 1,814,211 

S1088_MG_002_A 2112 0.555398 0.25 1,286,208 

S1094_MG_008_A 3972 0.496979 0.125 2,418,948 

S1107_MG_021_A 2271 0.470718 0.125 1,383,039 

S1149_MG_060_A 1515 0.291089 0.125 922,635 

S1152_MG_063_A 1137 0.525066 0.125 692,433 

S1116_MG_030_A 2979 0.644512 0.125 1,814,211 

S1109_MG_023_A 2174 0.301748 0.0625 1,323,966 

S1147_MG_058_A 1590 0.51195 0.0625 968,310 

5-AS 10 22.4 1120 0.002 692,374,412 103.86 310 

6-AS 10 16.5 825 0.0002 644,008,238 96.60 8 

7-AS 10 15.6 780 0.00002 644,583,050 96.69 4 

8-AS 10 16.7 835 0.000002 727,957,052 109.19 7 

9-AS 10 20.8 1040 0.0000002 607,594,870 91.14 6 

10-AS 10 21.6 1080 0.00000002 587,974,204 88.20 0 

1-SE 500 17.8 890 20 668,746,476 100.31 7,528,242 

2-SE 500 21.6 1080 2 651,113,730 97.67 398,144 

3-SE 500 19.9 995 0.2 674,983,984 101.25 30,929 

4-SE 500 22.2 1110 0.02 654,267,052 98.14 2,185 

5-SE 500 18.1 905 0.002 538,684,262 80.80 123 

6-SE 500 17.5 875 0.0002 600,034,330 90.01 20 

7-SE 500 7.82 954 0.00002 516,485,834 77.47 0 

8-SE 500 19 950 0.000002 675,154,342 101.27 1 

9-SE 500 19 950 0.0000002 575,233,546 86.29 1 

10-SE 500 19.7 985 0.00000002 604,263,924 90.64 2 
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S1121_MG_035_A 2979 0.568983 0.0625 1,814,211 

S1134_MG_048_A 2979 0.47902 0.0625 1,814,211 

S1089_MG_003_A 3810 0.613386 0.0625 2,320,290 

S1166_MG_077_A 1137 0.538259 0.0625 692,433 

S1093_MG_007_A 4132 0.372459 0.03125 2,516,388 

S1099_MG_013_A 2969 0.339508 0.03125 1,808,121 

S1108_MG_022_A 2256 0.62367 0.03125 1,373,904 

S1140_MG_051_A 1823 0.462425 0.03125 1,110,207 

S1161_MG_072_A 996 0.711847 0.03125 606,564 

S1090_MG_004_A 2571 0.443796 0.03125 1,565,739 

S1084_ML_005_A 4719 0.581055 0.015625 2,873,871 

S1098_MG_012_A 2991 0.396189 0.015625 1,821,519 

S1114_MG_028_A 1929 0.399171 0.015625 1,174,761 

S1145_MG_056_A 1660 0.328313 0.015625 1,010,940 

S1115_MG_029_A 2979 0.413562 0.015625 1,814,211 

S1162_MG_073_A 999 0.717718 0.015625 608,391 

S1101_MG_015_A 2847 0.679663 0.007813 1,733,823 

S1106_MG_020_A 2373 0.438685 0.007813 1,445,157 

S1139_MG_050_A 1837 0.337507 0.007813 1,118,733 

S1144_MG_055_A 1667 0.397121 0.007813 1,015,203 

S1128_MG_042_A 2979 0.499161 0.007813 1,814,211 

S1167_MG_078_A 1694 0.603896 0.007813 1,031,646 

S1110_MG_024_A 2174 0.320147 0.003906 1,323,966 

S1085_ML_006_A 9120 0.516667 0.003906 5,554,080 

S1113_MG_027_A 2037 0.371625 0.003906 1,240,533 

S1148_MG_059_A 1557 0.428388 0.003906 948,213 

S1151_MG_062_A 1486 0.369448 0.003906 904,974 

S1158_MG_069_A 987 0.678825 0.003906 601,083 

S1082_ML_003_A 7059 0.420173 0.001953 4,298,931 

S1146_MG_057_A 1644 0.330292 0.001953 1,001,196 

S1120_MG_034_A 2979 0.418597 0.001953 1,814,211 

S1126_MG_040_A 2979 0.635784 0.001953 1,814,211 

S1168_MG_079_A 1929 0.372214 0.001953 1,174,761 

S1083_ML_004_A 6227 0.524651 0.000977 3,792,243 

S1104_MG_018_A 2571 0.457799 0.000977 1,565,739 

S1112_MG_026_A 2038 0.443081 0.000977 1,241,142 

S1150_MG_061_A 1515 0.333333 0.000977 922,635 

S1160_MG_071_A 999 0.678679 0.000977 608,391 

S1081_ML_002_A 5565 0.426415 0.000488 3,389,085 

S1118_MG_032_A 2979 0.658946 0.000488 1,814,211 

S1133_MG_047_A 2979 0.489426 0.000488 1,814,211 

S1156_MG_067_A 999 0.244244 0.000488 608,391 

S1165_MG_076_A 1823 0.456939 0.000488 1,110,207 
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S1080_ML_001_A 5313 0.386222 0.000244 3,235,617 

S1091_MG_005_A 2783 0.655767 0.000244 1,694,847 

S1143_MG_054_A 1680 0.464286 0.000244 1,023,120 

S1153_MG_064_A 999 0.268268 0.000244 608,391 

S1119_MG_033_A 2979 0.360524 0.000244 1,814,211 

S1086_ML_007_A 4509 0.481703 0.000122 2,745,981 

S1138_MG_049_A 1849 0.690644 0.000122 1,126,041 

S1123_MG_037_A 2979 0.36623 0.000122 1,814,211 

S1124_MG_038_A 2979 0.409198 0.000122 1,814,211 

S1157_MG_068_A 999 0.258258 0.000122 608,391 

S1103_MG_017_A 2648 0.635952 0.000061 1,612,632 

S1142_MG_053_A 1694 0.554309 0.000061 1,031,646 

S1154_MG_065_A 999 0.27027 0.000061 608,391 

S1132_MG_046_A 2979 0.505539 0.000061 1,814,211 

S1087_MG_001_A 3217 0.380168 0.000061 1,959,153 

S1097_MG_011_A 2973 0.503195 0.000031 1,810,557 

S1117_MG_031_A 2979 0.366902 0.000031 1,814,211 

S1130_MG_044_A 2979 0.527694 0.000031 1,814,211 

S1159_MG_070_A 999 0.703704 0.000031 608,391 

S1164_MG_075_A 1817 0.336269 0.000031 1,106,553 
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7. CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

In order to thwart the spread and proliferation of antibiotic resistance in the environment, 

integrated surveillance systems are needed to screen for and characterize ARB and ARGs 

coming into and out of human populations. An attractive and efficient place to start would be 

across the world’s WWTPs and the receiving water bodies that are impacted by human fecal 

pollution. Not one single method will suffice, and targeted and non-targeted culture-dependent 

and independent methods will need to be utilized in tandem with human and animal clinical data 

to capture the breadth of AR that threatens both human and ecological health in real time. While 

metagenomics is a promising tool for the implementation of environmental monitoring schemes, 

significant drawbacks with respect to costs, detection limits, and the need for high-throughput 

computing resources and technical expertise in data analysis are obvious hindrances to such an 

effort, especially in low- and middle-income countries. Regardless, much research is needed for 

the design and implementation of environmental monitoring programs with insightful and 

reproducible methodologies at their forefront. This dissertation contributed to this need by 

demonstrating usefulness of metagenomics for describing the occurrence of ARB and ARGs in 

surface water and wastewater systems and through the conductance of critical literature reviews, 

provide guidance for the future application of standard methods and analyses for NGS and 

culture data.   

Chapter two of this dissertation demonstrates the applicability of metagenomics for 

comprehensive characterizations of ARGs in surface waters impacted by anthropogenic pollution 

including treated wastewater effluents. We explored correlations to human fecal indicators and 

the genetic context of these ARGs, and bioinformatically assessed the relative risks posed by 

specific co-occurrences with MGEs and human pathogen gene markers. In addition, specific 

genetic signatures (e.g., transposon-mediated blaKPC ARGs) were putatively linked to local 

clinical presence of antibiotic-resistant Klebsiella pneumonia isolates, establishing clear 

connections between the environment and the local clinical setting.  

The third chapter sought to identify the efficacy of conventional biological treatment on 

the removal of ARGs across an international cross-section of WWTPs representing distinct 

compositions of influent ARGs. Metagenomic sequencing revealed distinct successional 

dynamics of both the microbiome and resistome compositions through influent, activated sludge, 

secondary effluent, and final treated effluent compartments with strong structural symmetry. 

Contig analysis revealed the genetic context of ARGs to be predominantly chromosomally bound 

and directly associated with host taxa, suggesting a limited role of horizontal gene transfer on 

structuring the resistome through treatment stages. Ultimately, however, high-risk and mobile 

ARGs traverse WWTPs across the globe and are discharged to surface waters in large quantities, 

posing distinct human health and ecological health risks.    

In the fourth chapter, we sought to comprehensively review next-generation sequencing 

methodologies for the investigation of aquatic resistomes from sampling design through to 
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sequencing and data analysis. We identified key shortcomings in current practice of 

metagenomics including the lack of experimental process controls, a dearth of properly reported 

metadata in public repositories, a lack of clear reporting standards for ARG detection from 

public databases, as well as unclear optimized normalization strategies. We further provided a 

critical discussion of the limitations of the use of short-read Illumina data for contextualizing 

environmental ARGs and suggest the use of longer Nanopore reads in future monitoring practice 

for efforts in contextualization. Additionally, we review emerging efforts in qMeta and risk 

assessment frameworks for environmental resistome analysis. We conclude with the call for the 

generation of representative and comparable metagenomic data for sharing in public repositories 

to reap the full benefits of high throughput sequencing for environmental resistome monitoring 

efforts globally.  

Chapter five continues the discussion for standard monitoring targets and methodologies, 

providing a discussion for the culturing of environmental antibiotic-resistant Enterococcus as an 

attractive Gram-positive organism to complement the popularized ESBL E. coli. Efficient 

culturing and isolate characterization workflows are proposed and individual analytical 

techniques for phenotyping and genotyping resistant isolates are critically evaluated. We suggest 

the repurposing of existing standard culture methods to take advantage of extensive QA/QC and 

existing regulatory recognition. Additionally, we provided aggregated occurrences of phenotypic 

antibiotic resistance profiles to aid in referencing typical detection frequencies across 

environmental matrices.  

Chapter six puts into practice the recommendations for use of internal reference standards 

during NGS experiments made by chapter four in a comprehensive benchmarking experiment of 

qMeta. The statistical thresholds defining the LoQ and LoD of qMeta experiments are then 

explored and applied to the high-throughput quantification of ARGs. The technique was further 

verified by proving qMeta’s direct comparability to qPCR measurements.  

Together, these chapters advance the state of knowledge of the environmental dimension 

of AR and take strides towards harmonizing monitoring techniques and frameworks for future 

surveillance efforts. However, these studies raise several research gaps and persistent questions. 

There is a pressing need for the integration of quantitative microbial risk assessment (QMRA) 

into AR monitoring that warrants increased research efforts. Given the sheer diversity of ARGs 

and ARB in natural systems, molecular methods will undoubtedly be at the forefront and much 

work is needed for bridging the gap between molecular detection of individual ARGs and 

assessment of both ecological and human health risk. To this end, the continued development, 

benchmarking, and implementation of internal reference standards for NGS investigations of 

environmental AR will help generate high-throughput, universally comparable, and quantitative 

monitoring data that will aid in developing such emerging QMRA models. Further, the genetic 

context of ARGs, including mobility potential and host viability and pathogenicity need to be 

better illuminated through the generation of closed bacterial genomes and plasmids at ecological 

scales. This can ostensibly be achieved through the application of emerging long-read 

sequencing technologies and hybrid de novo assembly techniques. 

 


