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ABSTRACT

The rise of 5G and beyond systems has fuelled research in merging machine learning with

wireless communications to achieve cognitive radios. However, the portability and limited

power supply of radio frequency devices limits engineers’ ability to combine them with pow-

erful predictive models. This hinders the ability to support advanced 5G applications such

as device-to-device (D2D) communication and dynamic spectrum sharing (DSS). This chal-

lenge has inspired a wave of research in energy efficient machine learning hardware with low

computational and area overhead. In particular, hardware implementations of the delayed

feedback reservoir (DFR) model show promising results for meeting these constraints while

achieving high accuracy in cognitive radio applications. This thesis answers two research

questions surrounding the applicability of FPGA DFR systems for DSS. First, can a DFR

network implemented on an FPGA run faster and with lower power than a purely software

approach? Second, can the system be implemented efficiently on an edge device running at

less than 10 watts?

Two systems are proposed that prove FPGA DFRs can achieve these feats: a mixed-signal

circuit, followed by a high-level synthesis circuit. The implementations execute up to 58 times

faster, and operate at more than 90% lower power than the software models. Furthermore,

the lowest recorded average power of 0.130 watts proves that these approaches meet typical

edge device constraints. When validated on the NARMA10 benchmark, the systems achieve

a normalized error of 0.21 compared to state-of-the-art error values of 0.15. In a DSS task,

the systems are able to predict spectrum occupancy with up to 0.87 AUC in high noise,

multiple input, multiple output (MIMO) antenna configurations compared to 0.99 AUC in

other works. At the end of this thesis, the trade-offs between the approaches are analyzed,

and future directions for advancing this study are proposed.
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GENERAL AUDIENCE ABSTRACT

The rise of 5G and beyond systems has fuelled research in merging machine learning with

wireless communications to achieve cognitive radios. However, the portability and limited

power supply of radio frequency devices limits engineers’ ability to combine them with pow-

erful predictive models. This hinders the ability to support advanced 5G and internet-of-

things (IoT) applications. This challenge has inspired a wave of research in energy efficient

machine learning hardware with low computational and area overhead. In particular, hard-

ware implementations of a low complexity neural network model, called the delayed feedback

reservoir, show promising results for meeting these constraints while achieving high accuracy

in cognitive radio applications. This thesis answers two research questions surrounding the

applicability of field-programmable gate array (FPGA) delayed feedback reservoir systems

for wireless communication applications. First, can this network implemented on an FPGA

run faster and with lower power than a purely software approach? Second, can the network

be implemented efficiently on an edge device running at less than 10 watts? Two systems are

proposed that prove the FPGA networks can achieve these feats. The systems demonstrate

lower power consumption and latency than the software models. Additionally, the systems

maintain high accuracy on traditional neural network benchmarks and wireless communica-

tions tasks. The second implementation is further demonstrated in a software-defined radio

architecture. At the end of this thesis, the trade-offs between the approaches are analyzed,

and future directions for advancing this study are proposed.
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Chapter 1

Introduction

1.1 Motivation

The past decade has been characterized by an unprecedented growth in machine learning.

Seemingly every industry has found some way to integrate the various statistical modeling

approaches that have emerged from this topic. Consider Tesla, one of the world’s largest

suppliers of electric vehicles. The company has invested heavily in the development of

its Autopilot platform to enhance its vehicles with autonomous driving [1]. Autonomous

driving is enabled by sophisticated deep neural network algorithms such as convolutional

neural networks (CNNs), which are among the best methods to perform object recognition.

This is demonstrated by the ImageNet benchmark results provided by [2]. The ImageNet

benchmark, proposed in [3], tasks models with classifying millions of images into one of

1,000 different classes. The highest CNN performance recorded in [2, 4] was 89.2% in 2021.

The automotive industry is not the only area where machine learning has been leveraged

to create a world changing impact. Natural language processing and machine translation

are two additional applications enabled by dedicated machine learning cores in smartphones.

This technology enhances the ability for communities across the world to communicate with

each other and paves the way for future innovation.

1
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Breakthroughs in computer hardware have significantly contributed to the growth of machine

learning applications. The graphics processing unit (GPU), originally designed to accelerate

computer graphics rendering, has found new life in machine learning acceleration. In 2009,

[5] was one of the first works to demonstrate GPUs’ ability to parallelize neural network

training. Using NVIDIA’s general-purpose GPU programming framework, CUDA, the group

found that the same large scale single-instruction multiple data (SIMD) architecture that

could be used to improve graphics rendering performance could similarly be used to reduce

matrix multiplication latency, which is a frequently used operation in machine learning.

GPU acceleration is often used to rapidly train contemporary models. The combination of

GPU acceleration paired with the introduction of TensorFlow, a machine learning framework

developed by Google in 2016 [6], and Big Data fueled the growth of machine learning research

and development. The trends analysis shown in Figure 1.1, conducted using Google Trends,

visualizes the relationship between these technologies and search interest in machine learning

[7].

Large-scale cloud computing platforms, such as Amazon Web Service (AWS), benefited

from the application of GPUs to machine learning hardware. AWS servers equipped with

NVIDIA’s state of the art A100 Tensor Core GPUs provide efficient training platforms

for dense machine learning models [8]. Mobile “edge” devices can leverage powerful cloud

computing servers to bring accurate predictive capabilities to consumers. However, cloud

computing is affected by communication latency, network bandwidth limits, unstable con-

nections, and low privacy [9]. Moreover, it is impractical to implement cloud servers’ special-

ized processing hardware on mobile devices due to size and energy constraints. According

to NVIDIA, the A100 Tensor Core GPU has a typical power consumption of 200 watts [10].

This sharply contrasts the power consumption of a typical cellphone which is on the order

of 10 watts.

Alternatively, consumer electronics companies such as Apple and Qualcomm have con-

tributed to the growth of embedded machine learning at the edge. Both companies have

produced several system-on-chip (SoC) integrated circuits (ICs) that feature dedicated ma-
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Figure 1.1: The impact of GPUs, TensorFlow and Big Data on machine learning research

and development.

chine learning hardware accelerators. For example, the A15 Bionic chip featured in the

iPhone 13 contains a 16 core neural engine that detects faces and enhances the quality of

consumers’ images [11]. This neural engine core contains 14 more cores than the precursor

version of the engine announced with the iPhone X in 2017 [12]. Dedicated accelerators

inside of smartphones have expanded smartphone capabilities by enabling intelligent con-

sumer features such as natural language processing (NLP), language translation and facial

recognition.

One of the most remarkable aspects of machine learning accelerators in smartphones is how

little energy and circuit area are required to realize them. Experiments conducted by [13]

suggest that the A15 Bionic has an average power consumption of 4.11 watts when tested

against the SPECint2017 benchmark. This is nearly two orders of magnitude less than that

recorded by NVIDIA’s A100 GPU. Maintaining low power consumption is ideal in these

types of mobile devices because of the limited energy made available by their batteries.
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Energy constraints are critical in edge devices to provide continuous operation to the user

for the longest amount of time possible.

This emphasis on power consumption has shifted the focus of machine learning. While

first wave of the machine learning was revolutionized by the repurposing of the SIMD GPU

architecture, the next wave of machine learning will emphasize simpler models with high

energy efficiency. This effort will be supported by the growth of 5G and the internet-of-

things (IoT) to create a world of intelligent, interconnected technologies. Dynamic spectrum

sharing (DSS), which enables device-to-device (D2D) communication, is one area that can

benefit from efficient models. This work hypothesizes that a neural network model known

as the delayed feedback reservoir (DFR) can achieve a lower average power consumption,

latency and area for spectrum occupancy predictions on FPGAs compared to general-purpose

CPU-based neural network approaches.

1.2 Objectives

The objective of this thesis is to compare the average power consumption, latency and

area of FPGA and CPU-based DFR implementations for spectrum sensing. This thesis

aims to prove that FPGA implementations are ideal for this application compared to CPU-

based implementations. The DFR, conceptualized in [14], has shown promising results for

enabling low power machine learning in wireless edge devices [15–18]. In this thesis, the

mathematical DFR algorithm is translated into a digital hardware implementation for a

field-programmable gate array (FPGA). The FPGA is used to verify the DFR’s plausibility

as a method to support cognitive radio applications in edge devices, such as spectrum sensing.

Lastly, the DFR architecture is optimized using high-level synthesis (HLS) design techniques

and integrated with a software-defined radio (SDR) architecture to demonstrate its ability

for real-time radio frequency (RF) data processing. After an examination of the model’s

predictive performance and efficiency on two different FPGAs, new directions for further
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improvement are suggested. To the best of our understanding, this is the first work to

demonstrate a mixed-signal reservoir computing system for spectrum sensing, as well as on

a software-defined radio.

1.3 Thesis Organization

This chapters of this thesis are organized in a way that (1) introduces neural network mod-

els for time series prediction, (2) details the time series prediction task of interest, namely

spectrum sensing, and (3) proposes the novel DFR architectures for FPGAs that can per-

form spectrum sensing on edge devices. Chapter 2 summarizes reservoir computing for

time series prediction and the DFR model. Chapter 3 overviews previous approaches for

applying machine learning and reservoir computing methods for wireless edge device ma-

chine learning tasks. Chapter 4 discusses FPGA design methodologies for creating hardware

neural networks. Chapter 5 overviews the hybrid FPGA-ASIC DFR system developed and

demonstrates the system’s capabilities. Chapter 6 analyzes HLS techniques that can further

optimize the DFR system. Chapter 7 overviews the HLS DFR system integrated with a

software-defined radio. Chapter 8 concludes the work presented in this thesis and proposes

directions for future research.



Chapter 2

Reservoir Computing

2.1 Recurrent Neural Networks

While on the one hand convolutional neural networks (CNNs) have revolutionized image

processing capabilities, shown by their ImageNet classification performance in [4], recurrent

neural networks (RNNs), on the other hand, have proven to be invaluable for processing time

dependent data. Unlike CNNs, RNNs feature feedback connections between neurons which

allow the network output values from previous data samples to influence the output of future

samples. Figure 2.1 shows a simple one neuron RNN and an unrolled version of the network.

Here, at a single time step t, both the input xt and the feedback from the neuron ht are

weighed by u and v respectively before being passed through the neuron. The result from

the neuron is multiplied by w to produce the network’s output prediction. This behavior is

equivalent to an unrolled version of the network where the output from the neuron at the

first time step, h0, is used to determine the output of the neuron at the second time step,

h1.

Traditional RNNs are trained using an approach called backpropagation through time (BPTT).

Similar to standard backpropagation used for CNNs, BPTT works by using the error of the

6
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Figure 2.1: Basic architecture for a single neuron, recurrent neural network.

network’s prediction to adjust the input, feedback, and output weights. The size of the time

window used for BPTT can be adjusted to evaluate the influence of multiple time steps on

the network’s accuracy. However, many have found that the practice of increasing the time

window leads to the exploding gradient and vanishing gradient issues [19].

The exploding gradient issue occurs when a particular feedback weight, v, has backprop-

agated error values (i.e., the gradients) whose product is greater than 1 for each weight

update [19]. When this occurs, the gradient that is used to update the feedback weight will

continue to grow exponentially. An exponentially large weight value significantly reduces

the accuracy of the network by increasing the output error calculated by the cost function.

A similar phenomena occurs when the product of the gradients for a feedback weight is less

than 1 for each weight update, resulting in the vanishing gradient issue. In this scenario the

feedback weights will not be updated and the output of the cost function will remain un-

changed. The exploding and vanishing gradient problems have inspired researchers to study

new forms of recurrent neural networks that avoid these issues: long short-term memory

(LSTM) and reservoir computing (RC) networks.

LSTM networks, proposed in [19], are composed of memory cells: artificial neurons that

retain data and use gates to control the flow of this data. Contemporary LSTM cells use three

types of gates: (1) input gates to control when new data is processed by the cell and stored



Chapter 2. Reservoir Computing 8

in memory, (2) output gates to control when output is read from the cell, and (3) forget gates

to clear information stored in the cell [20]. When paired with gradient clipping techniques,

LSTMs effectively solve the exploding and vanishing gradient issues. LSTMs have achieved

state of the art accuracy on time series prediction tasks such as speech recognition [21].

However, hardware implementations of LSTMs are still limited by their complexity since a

large number of computationally intensive matrix multiplications are required for inference

and BPTT-based training.

2.2 Reservoir Computing Networks

Reservoir computing (RC) networks were proposed as an alternative to traditional RNNs in

the early 2000s [22]. The model proposed, called an echo state network (ESN), is composed

of a “reservoir” of randomly and sparsely connected neurons. These neurons resemble those

found in traditional neural networks with the sum of the weighed inputs being transformed

by an activation function. The process by which the neurons are interconnected establishes

the “echo state property”. This property states that neurons shall be connected in such a way

that the output of each neuron echoes throughout the network and establishes a type of short

term memory [23, 24]. Training in ESNs only occurs on the output synapses, which avoids

the exploding and vanishing gradient issues that were found with BPTT methods. Training

can be performed with simpler linear regression algorithms such as ridge regression, ordinary

least squares (OLS), and stochastic gradient descent. Jaeger demonstrated that an ESN was

able to achieve similar performance to a standard RNN for modeling a moving average time

series [22]. He also notes that ESNs may be preferable to other RNN techniques because of

their simplified architecture and linear training at the output layer.

Figure 2.2 visualizes the organization of layers and neurons in a typical ESN. In this image,

portions of a discretized input time series u(n) are multiplied by input weights win and fed

into the ESN’s neurons. The neurons process the weighed input data, along with data from
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Figure 2.2: Basic architecture for a five neuron echo state network.

feedback connections multiplied by feedback weights wfb. Neurons with connections to the

output layer have their output weighed by wout and accumulated to model or classify the

time series.

Similar to ESNs, liquid state machines (LSMs) are reservoir computing networks that feature

randomized internal connections and exclusive training at the output layer. LSMs differ from

ESNs by leveraging spiking neurons as their basic processing elements as opposed to artificial

neurons [25]. Spiking neurons work by accumulating a sum, called a membrane potential, of

binary spikes that arrive from their synapses to produce an output [26]. These neurons only

produce an output after a certain threshold has been reached, and the dynamics for how the

values inside of these neurons can vary depending on the model.

While the ESN and LSM models introduced nearly two decades ago provide techniques to

model sequential data with significantly less complex, they have not been used as widely

as LSTM RNNs. One reason for this may be due to a lack of industry exploration on

practical applications for reservoir computing. However, these models have the potential

to revolutionize time series prediction. ESNs and LSMs have been demonstrated in several
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applications, including spoken word detection, human activity recognition (HAR), and wave-

form classification [23,27]. Some authors have also demonstrated their ability to be modeled

and optimized using custom integrated circuit designs [28, 29]. The idea of implementing

simplified RC models in hardware has been one of the major drivers in the research of an

even more minimalistic model known as the delayed feedback reservoir.

2.3 Delayed Feedback Reservoir

The delayed feedback reservoir (DFR) is a type of reservoir computing network that features

neurons arranged in a ring topology [14]. DFR networks have three primary features: an

input layer where input data gets masked and sent to the reservoir, a reservoir layer where

input gets passed through a non-linear transformation and delayed by N time steps, and an

output layer where each of the reservoir neurons has their data weighed and accumulated to

form an output prediction. The DFR simplifies the ESN architecture by utilizing only one

non-linear activation function at the first neuron, while the remaining neurons simply delay

the output value. The reservoir neurons are arranged in a simple ring architecture which

further reduces complexity. The advantage of the DFR architecture over the ESN is its ability

to be more easily realized in computer hardware as demonstrated by [14, 15, 17, 23, 27, 30].

Since the ESN features a large number of non-linear nodes, its hardware implementation

would utilize significantly more energy and area compared to the minimal DFR model.

Additionally, some works have shown that the DFR can accomplish nearly the same accuracy

as the ESN on time series benchmarks such as NARMA10 [14, 30].

The DFR can be conceptualized as a type of folded ESN. Figure 2.3 helps to show this

by picturing a simple DFR architecture, and the unrolled version of the architecture. In

the first stage of the DFR, the masking stage, each input sample u(t) is multiplied by an

N × 1 matrix of scalar values M . Once the input is masked, now J(t), each of the N sub-

samples is sent to the DFR’s non-linear node which is the first node of the reservoir. The
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Figure 2.3: Basic architecture for a five neuron delayed feedback reservoir network.
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DFR’s non-linear node transforms the weighted sum of the input J(t) and the time-delayed

reservoir output x(t − τ) based on a non-linear transformation function f(x). The output

of the transformation function is then sent to the chain of N virtual nodes that delays the

feedback by τ . Equation 2.1 below models the behavior of the DFR’s reservoir stage. Here,

the input gain γ and the feedback scale η are used to adjust the influence of the new input

and feedback on the reservoir state.

x(t) = f [γ · J(t) + η · x(t− τ)], (2.1)

During the readout stage, an output prediction ŷ(t) is generated by evaluating the weighted

sum of the values in each of the virtual reservoir nodes. Equation 2.2 models the behavior

of the DFR’s readout stage. In this equation, wi is the weight of virtual node i, τ is the

feedback delay, and N is the number of virtual nodes.

ŷ(t) =
N∑
i=1

wi · x(t−
τ

N
(N − i)), (2.2)

In order to train the DFR to accurately model a given time series, linear regression can be

applied at the readout layer. Equation 2.3 shows the ridge regression approach taken to

generate a matrix of weights according to the previous reservoir states for each input.

w =
y ·X

X ·XT + λI
, (2.3)

In this equation, y is an M length vector of expected outputs, X is a matrix of N reservoir

node values for each of the M inputs, I is the identity matrix, and λ is the regularization

coefficient.

The delayed feedback reservoir pioneered the idea of performing predictive tasks using neu-

ral network models with few non-linear transformations and recurrent connections. Future

experiments inspired by the Appeltant’s work, such as the folded-in-time neural network
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proposed in [31], would demonstrate the capability of compacted neural networks on sophis-

ticated image classification benchmarks such as MNIST, CIFAR-10 and SVHN.



Chapter 3

Reservoir Computing for Wireless

Communications

3.1 Device-to-Device Communications

Cisco’s annual internet report indicates that nearly 30 billion devices will be connected

to the internet by 2023: an increase of 5 billion devices from 2021’s estimate [32]. The

company suggests that the growing number of devices communicating directly, without the

need for human intervention, will attribute to this rapid growth. Machine-to-machine (M2M)

connections enable internet of things (IoT) devices to share data necessary for automation.

For example, a user’s internet-connected car may transmit its position to a smart home

controlling control the state of lights, air conditioning and security systems. Such an increase

in data being transmitted over the air will continue to impact the bandwidth and latency of

cellular communications.

This poses a challenge for emerging 5G networks. 5G networks are characterized by mas-

sive data transmission, strict latency requirements, and high device diversity compared to

previous generations [33]. To fulfill these requirements, researchers have proposed device-

14
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Figure 3.1: Sample use cases for device-to-device (D2D) communications.

to-device (D2D) links that circumvent communication through intermediary cellular base

stations, and instead transmit data directly between the devices [34, 35]. These D2D links

take advantage of the spatial locality between devices to achieve faster and energy efficient

communication. D2D links are enabled by intelligent spatial spectrum sensing capabilities

within a transmitting device [36]. By analyzing the cellular spectrum for idle subcarrier

frequencies, a transmitting device can attempt to send data to a receiver without explicit

time and frequency allocations [37]. Figure 3.1 depicts several example use cases for D2D

enabled technologies. In this image, 1⃝ depicts a standard cellular link, 2⃝ depicts simple

D2D transactions between in-coverage mobile phones, 3⃝ depicts a scenario where D2D links

can extend the base station coverage to out-of-range devices, and 4⃝ depicts transactions

between devices both in and out of the coverage area.

D2D communication requires devices to analyze the RF spectrum before attempting to

communicate directly with other devices. This process, know as spectrum sensing, is an

important step to avoid interfering with other users operating within the same frequency

channel. Spectrum sensing is one of many cognitive radio applications where machine learn-
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ing algorithms are finding new applications.

3.2 Spectrum Sensing

The number of connections that can be made over cellular frequency bands is limited by

the amount of spectrum available to users. Spectrum sharing is an approach that aims to

multiplex spectrum allocations by allowing secondary users to transmit data over a pre-

allocated channel when it is not being actively used by its primary users. The secondary

users are able to analyze the channel activity using machine learning spectrum sensing algo-

rithms that learn the access patterns of other users over time to avoid interfering with their

transmissions, while also providing efficient data transmissions of their own.

Traditionally, energy detection algorithms have been used for determining the availability of

spectrum frequencies. In such approaches, the energy of a received signal is simply compared

to a specific threshold to decide if it is safe to transmit over a wireless channel. In recent

years, machine learning (ML) has been proposed as a more sophisticated method for real-

izing distributed spectrum analysis in embedded systems [38]. ML algorithms demonstrate

the ability to learn temporal patterns in the signal’s energy variations over time to dynam-

ically predict whether or not a transmitter can send data over the channel. [39] provides a

survey of the potential applications of machine learning techniques for wireless communi-

cation, including dynamic frequency allocation, cooperative spectrum sensing, and channel

estimation. [40] overviews a joint recurrent neural network (RNN) and reinforcement learn-

ing approach which has been demonstrated by previous works to be well suited for practical

spectrum sensing.

[17] demonstrates a reservoir computing approach where a delayed feedback reservoir (DFR)

can be used to predict the occupancy of a wireless channel. This approach was noted to re-

quire low training complexity, few hardware resources, and minimal energy consumption,

which enables it to be realized in energy-constrained wireless edge devices. Figure 3.2 illus-
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Figure 3.2: Execution of a delayed feedback reservoir (DFR) network used for spectrum

sensing.

trates how the DFR can be interfaced with an RF transceiver to perform spectrum sensing.

Typically the energy observed at the antennas of an RF receiver is used to determine whether

or not a subcarrier frequency is being occupied. During this process, in-phase and quadrature

(IQ) samples are first read from the RF interface of a receiver and converted into digital

representations using an analog-to-digital converter. Next, the measured energy of the RF

spectrum for the sample is calculated using the amplitude equation:

E =
√

I2 +Q2 (3.1)

The resulting energy is finally processed by the spectrum sensing algorithm to determine

whether or not the channel is occupied.

The challenge in spectrum sensing occurs when there is noise and interference present that

affects the expected energy measurement. Figure 3.3 demonstrates this phenomena with

different levels of Additive White Gaussian Noise (AWGN). Here, four constellation diagrams

show the in-phase and quadrature components of four quadrature phase shift keying (QPSK)

symbols. As the amplitude of AWGN increases, the ability to determine if the spectrum is
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Figure 3.3: A visualization of the impact of noise on the ability to detect symbols from

in-phase and quadrature data.

being utilized becomes increasingly difficult. This is where static energy detection methods

would fail due to high variations in the energy calculated by Equation 3.1. On the other

hand, dynamic spectrum sensing algorithms use previous spectrum occupancy behaviors

to determine the probability of spectrum occupancy. [41] has recorded sets of spectrum

occupancy data at various locations throughout Germany and the Netherlands. This data

can be used to recreate sets of RF samples that model realistic spectrum occupancy activity.

3.3 Software-Defined Radio

Software-defined radios (SDRs) are often used to test cognitive radio tasks such as spec-

trum sensing [42–44]. SDRs have historically been a popular way to implement flexible RF
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Figure 3.4: A GNU Radio Companion flowgraph featuring a DFR block for spectrum sensing.

functions using general purpose computing hardware [45]. The hardware within an SDR

(1) acquires analog RF signals, (2) performs filtering on the signals, (3) converts the signals

into sets of digital samples using an ADC, and (4) sends the samples to a computer. The

computer uses software programs to perform additional filtering, demodulation, and pro-

cessing on the samples for the end user. While the digital signal processing performed by

an SDR may lack the speed of dedicated hardware, a primary advantage of this approach

is the reconfigurability allowed through the use of different programs. An SDR can initially

be configured to interpret a frequency modulated (FM) waveform at one frequency, then

modified to demodulate QPSK symbols on a different frequency.

GNU Radio Companion is a popular SDR software programming framework [46]. The tool

runs Python and C++ code that can perform filtering and modulation on RF samples for

a variety of different SDR platforms. In GNU Radio, users create flowgraphs to configure

the digital signal processing performed on the samples. Flowgraphs can be modified to

include specialized cognitive radio blocks. Figure 3.4 shows a GNU Radio flowgraph con-

figured to perform spectrum sensing using a custom delayed feedback reservoir block. This

demonstrates one approach for testing the DFR model analyzed in this work.



Chapter 4

Field-Programmable Gate Array

Development

4.1 FPGA Motivation

When determining the best approach to optimize the inference and training speed of neural

network algorithms, it is common for practitioners to turn to hardware. While software

optimizations allow these algorithms to be compiled and executed on general purpose pro-

cessors (e.g., ARM, Intel), hardware optimizations tend to provide significant performance

boosts in all aspects of machine learning. This is especially true for matrix multiplication

which frequently involves hundreds to thousands of multiply and accumulate (MAC) oper-

ations per second [5]. Graphics processing units (GPUs) have been an incredibly popular

and accessible approach for accelerating neural networks. These devices feature vast arrays

of simple arithmetic logic units (ALUs) that can process data concurrently. The Compute

Unified Device Architecture (CUDA) is a device programming library that enables develop-

ers to process data in parallel on NVIDIA GPUs. Popular machine learning frameworks like

TensorFlow and PyTorch leverage CUDA to allow programmers to efficiently create machine

learning models and accelerate training and testing performance [6, 47].

20
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While GPUs have greatly benefited machine learning, many find that the performance of

these models can be improved with hardware designed and fabricated intentionally for the

purpose of machine learning. Apple’s M1 SoC, which has gained worldwide recognition

due to its radical improvements in energy efficiency and performance, features a neural

engine built specifically to accelerate machine learning [48]. These neural engines, sometimes

called neural processing units (NPUs), consist of dedicated hardware to perform machine

learning tasks with high efficiency. Application-specific integrated circuit (ASIC) design

approaches for machine learning have been used by other companies such as Google and

NVIDIA, and provide the best way to achieve efficient machine learning [10, 49]. ASIC-

based accelerators have significantly lower execution times and consume much less power

than general purpose computing approaches, with growing research in analog computing

methods further highlighting this advantage [50, 51]. However, these approaches can be

expensive if designers determine that changes need to be made to the circuit. This is due to

the high monetary and time cost of designing, fabricating, and testing the ASICs. Typically

this process takes up to one or more years for small designs, and even longer for intricate

SoC designs.

Field-programmable gate arrays (FPGAs) strike a balance between general purpose and

accessible CPUs/GPUs and custom ASICs. FPGAs offer hardware designers a platform to

rapidly prototype and deploy new ML accelerators, while attaining lower power consumption

compared to CPU and GPU alternatives [52,53]. Furthermore, these devices avoid the high

costs associated with ASIC fabrication and testing.

4.2 FPGA Architecture

At the core of all Xilinx FPGAs are configurable logic blocks (CLBs), also referred to as logic

array blocks (LABs) by Intel [54,55]. As shown in Figure 4.1, these circuits are composed of

lookup tables, flip-flops and multiplexers that can be configured to reproduce the behavior of
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Figure 4.1: A simplified schematic for a configurable logic block (CLB) and its equivalent

combinational logic circuit.

other digital logic circuits. The output values and interconnects between CLBs are managed

by a configuration engine, which uses a set of binary instructions provided by a developer

to configure the FPGA. These binary instructions are stored in the form of a bitstream file,

which is shifted into the device using a serial interface such as JTAG. Bitstream files are

generated based on synthesized netlists created using hardware description languages (HDL),

such as Verilog or VHDL.

In addition to CLBs, FPGA packages are often designed to include a plethora of other

components to improve their utility. Digital signal processors (DSPs), a staple component in

modern FPGA architectures, provide complex arithmetic capabilities in a small area [55,56].

FPGA design tools often substitute logic that uses computationally complex arithmetic

with DSPs that are able to perform the operations faster and with less energy than CLBs.

Additionally, embedded RAMs offer dense on-chip volatile memory that is essential when

a design needs to reference an array of values [55, 56]. Intel FPGAs also feature elements

called memory logic array blocks (MLABs) that can use LUTs to form RAMs.

In recent years, FPGA vendors have sought to provide even more functionality to their

FPGA devices. Xilinx’s Zynq-7000 exemplifies this by featuring a programmable logic system

coupled with an embedded ARM microcontroller [56]. The processing system inside of the

Zynq-7000 XC7Z020 contains a dual core ARM Cortex-A9 multiprocessor with UART, I2C,

USB and Ethernet controllers. These features enable hardware-software co-design where
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Figure 4.2: A successive approximation register (SAR) analog-to-digital converter (ADC).

designers can develop software that is very closely interfaced with custom programmable

logic, allowing for a variety of different accelerator applications to be tested.

Analog mixed signal (AMS) design is also capable with modern FPGAs thanks to their

inclusion of embedded analog-to-digital converters (ADCs). The Zynq-7000 package includes

a 12-bit successive approximation register (SAR) ADC with a maximum sampling rate of 1

million samples per second (MSPS) [56, 57]. The SAR ADC works by using a DAC to first

approximate the input analog voltage, and then providing the binary representation of the

analog signal to the digital logic [58].

4.3 Hybrid FPGA-ASIC Machine Learning Systems

Research on hybrid integrated circuits that leverage both FPGA and ASIC technology in a

combined ML system is limited, likely due to the effort it requires to merge the two medi-

ums. [59] is one of the few works that accomplishes this by featuring an FPGA-ASIC system

that performs real-time object detection with data-intensive 1080HD video at 60 frames/sec-

ond. The impressive aspect of such a project is that their implementation consumes a mere

45.3mW of power, making it highly capable of being deployed into power-constrained un-

manned aerial vehicles (UAVs). [60] is even more interesting as it merges a Stratix 10 FPGA
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with multiple TensorRAM ASIC chiplets to improve both energy efficiency and latency of

RNN workloads compared to GPU approaches. In this structure, the FPGA is used as a

central controller and sends data to high-speed matrix-vector multiplication hardware within

the chiplets. BrainScaleS, a wafer-scale neuromorphic computing system, interfaces 48 Xilinx

Kintex-7 FPGAs with 384 analog neural network ASICs [61]. The FPGAs in BrainScaleS

configure the system and allow for the spike data to be fed into the wafers, while the ASICs

model the dynamics of continuous time spiking neurons.

The state-of-the-art systems in [59–61] demonstrate the potential of using hybrid FPGA-

ASIC architectures to achieve low energy and low latency in ML tasks. In this work, an

energy-efficient FPGA-ASIC hybrid DFR system is proposed which, along with [15, 27], is

one of the few approaches that utilizes heterogeneous hardware platforms to accelerate RC

applications.



Chapter 5

Hybrid FPGA-ASIC Delayed

Feedback Reservoir

5.1 Proposed Design

In this work, a 16-bit, fixed-point DFR accelerator was developed [18]. The system is built

using a Zynq-7000 XC7Z020 SoC, which interfaces with a custom 180nm CMOS chip. A

programming interface is provided via the SoC’s embedded dual-core ARM Cortex-A9 pro-

cessor. The controller, reservoir, and readout layer for the DFR are instantiated in the

SoC’s programmable logic (PL) fabric. Data that enters the reservoir is sent to the analog

ASIC, which models a Mackey-Glass (MG) activation function. Figure 5.1 illustrates the

connections between the components of the introduced system.

5.1.1 FPGA Architecture

Inference on the testing samples is performed using the FPGA’s PL, which contains a physical

version of the DFR described in Chapter 2. The accelerator is interfaced with the embedded

processor using an advanced extensible interface (AXI) interconnect that can be used to

25
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Figure 5.1: Overview of the hybrid delayed feedback reservoir (DFR) system architecture.

access the system’s registers and internal memories. Ten configuration registers control the

system, monitor its status, and specify the number of samples used for initialization and

testing. Four internal dual-port memories are used to store the masked input samples,

reservoir node values, output weights, and predicted outputs.

When launched, the system goes through three states: (1) reservoir initialization, (2) reser-

voir emulation, and (3) output evaluation. In the first two states, 16-bit input values are

read into the reservoir from the input memory. To calculate the output of the single non-

linear neuron, each new input is added to the scaled output of the last virtual neuron and

sent to the ASIC via an external 16-bit digital-to-analog converter (DAC) with a reference

voltage of 2.5V. The DAC’s output voltage is updated according to this sum, which causes a

change in the ASIC’s output voltage. The ASIC’s output is read back into the FPGA using

an embedded 12-bit analog-to-digital converter (ADC) with a reference voltage of 1V. The

12-bit ADC value is then stored in the first virtual neuron of the chain of nodes, and the

cycle continues for subsequent inputs. A diagram illustrating the datapath of this operation
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Figure 5.2: Hardware architecture for the (A) reservoir and (B) matrix multiplication blocks.
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is shown in Figure 5.2A.

In the output evaluation state, each set of N virtual neuron states corresponding to the

test inputs is multiplied by the output weight matrix to determine the output predictions.

The matrix multiplication block is composed of several hardware counters to indicate the

matrix data being read from the BRAM memories. A state-machine controller manages the

values of the hardware counters to accurately perform the matrix multiplication function.

Three DSP48E1 blocks are used to realize the 16-bit multiplication between the reservoir

outputs and the output weights. This method of performing time-multiplexed operations

is an optimization technique used in other works such as [28]. The matrix multiplication

block’s datapath is shown in Figure 5.2B.

Xilinx Vivado was used to synthesize the register transfer language (RTL) code and export

the implemented bitstream file. The RTL was designed using SystemVerilog1 and includes

several generalized parameters to specify the DFR properties before synthesis (e.g., number

of virtual nodes, input bit width). The logic utilization for the hardware implementation of

the DFR accelerator is shown in Table 5.1. In this implementation, BRAMs are used over

external DDR3 memories to simplify memory access operations and to improve read and

write times. The bitstream was packaged with a PetaLinux image, which was used as the

boot image for the Zynq SoC.

The reported dynamic power of the FPGA DFR hardware is 130 milliwatts when operating

at a clock rate of 10MHz. With these settings, the system is able to process approximately

1625 samples per second. Table 5.2 below shows the power and latency measurements for the

software DFR run on an AMD Ryzen 7 1700 CPU [62], the DFR from [17], and this work’s

DFR. The power dissipation of a single core of a the AMD Ryzen 7 CPU is approximated

as 8.125 watts since the entire eight core processor has a power dissipation of 65 watts. The

proposed DFR demonstrates a clear power improvement compared to the software model

executed on the AMD processor. However, the latency decreases by 0.311 milliseconds. The
1SystemVerilog code for this project is available at https://github.com/oshears/hybrid_dfr_system.



Chapter 5. Hybrid FPGA-ASIC Delayed Feedback Reservoir 29

Table 5.1: Zynq-7000 XC7Z020 Post-Implementation Logic Utilization

Logic Type Elements Used Utilization Percentage

Slices 1319 9.92%

Slice LUTs 2328 4.37%

Slice Registers 1934 1.82%

DSPs 3 1.36%

Block RAM Tiles 118 84.29%

Table 5.2: Comparison of DFR Implementations on FPGA and CPU

Implementation Metric Measure

Software DFR Average Power 8.125 W (65 W)

Hamedani DFR [17] Average Power 0.199 W

This Work Average Power 0.130 W

Software DFR Sample Latency 0.304 ms

Hamedani DFR [17] Sample Latency 302 ms

This Work Sample Latency 0.615 ms

latency of the mixed signal DFR can likely be improved by increasing the clock speed of the

circuit to 20 MHz, causing the FPGA DFR to match the CPU DFR’s latency. Compared

to [17]’s implementation of the DFR, this system demonstrates a 34.7% power reduction,

and a latency improvement of more than 90%.
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5.1.2 ASIC Mackey-Glass Function

Activation functions allow neural networks to model non-linear data. Recent studies show

that the Mackey-Glass (MG) function is the ideal activation function for DFR networks due

to its natural nonlinear behavior and delay properties [14,15,23,30]. The nonlinear behavior

of the MG function is modeled by the differential equation from [16], which can be depicted

as:
dx

dt
=

ax(t− τ)

1 + x(t− τ)ξ
− bx(t), (5.1)

where a and b are scaling parameters, and ξ is a nonlinear exponent. Additionally, the MG

function has a straightforward analog circuit implementation with an adjustable nonlinear

exponent [14, 30]. [30, 63] further show that the natural delay property of the MG function

makes it more capable of mapping temporal data over traditional sigmoid and hyperbolic

tangent functions used for artificial neurons.

In this work, the 180nm CMOS analog circuit model of the MG function developed in [63]

was used as a portion of the proposed mixed-signal DFR. Figure 5.3 demonstrates sample

output voltage readings of the MG function collected from the fabricated ASIC prototype

for all 216 DAC voltage settings.

From Figure 5.3, it can be observed that the measured nonlinear characteristic resemble

the ideal MG function from [14] with a scaling parameter and nonlinear exponent of a = 1

and ξ = 16, respectively. The measured power consumption of 24.55µW and silicon area

of 372µm2 demonstrate the capability of realizing an efficient nonlinear transformation in

silicon, potentially reducing computational resources and improving energy efficiency.

5.1.3 Software Training

To obtain the masked input data and readout layer weights for the FPGA-ASIC system, a

pre-trained DFR model was developed in Python using the NumPy library2. As described
2Python code for this project is available at https://github.com/oshears/hybrid_dfr_system
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Figure 5.3: Measured Analog ASIC Mackey-Glass (MG) activation function.

in Chapter 2, all inputs from the dataset are masked by an N × 1 matrix. Each element

in the mask matrix is a random integer from the set [0, 216 − 1]. Once the masked dataset

is obtained, the reservoir is initialized with a specified number of samples dictated by the

application. After the reservoir is initialized, the M training samples are then provided.

For each group of N samples, the entire reservoir state (i.e., the values of the N virtual

neurons) are recorded to be used for training the output weights. Lastly, the output weights

are obtained using Equation 2.3. The resulting masked input and output weights are loaded

into the PL from the embedded processor via AXI. The hyperparameters of the model used

in both the software and FPGA implementations are noted in Table 5.3. Note that the

value for the feedback scale, η, was implemented as a tunable parameter based on the tested

application.
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Table 5.3: Delayed Feedback Reservoir Hyperparameters

Hyperparameter Name Symbol Value

Input Gain γ 1

Feedback Scale η -

Feedback Delay τ 100

Virtual Nodes N 100

Regularization Constant λ 108

Mask Matrix Range M [0, 216 − 1]

5.2 Experimental Results and Analysis

The hardware used in this combined FPGA-ASIC implementation is visualized in Figure 5.4.

In this image, the Zynq-7000 SoC shown by 1⃝ is located on the FPGA development board

(ZedBoard). The Zedboard’s PMOD pins shown by 2⃝ are interfaced with an external DAC

found on the ASIC’s board. The ASIC’s I/O interface on the board, shown by 3⃝, receives

data from a voltage divider circuit at 4⃝ and sends the data back to the FPGA. Lastly, a

serial console displaying programmable PetaLinux environment from the Zynq-7000 SoC is

shown by 5⃝.

To evaluate the predictive performance of the system, it was tested it against two appli-

cations: the NARMA10 benchmark, and a spectrum sensing task. For NARMA10, The

inference accuracy of the system was measured using the normalized root mean squared

error (NRMSE) equation:

NRMSE =
||yi − ŷi||
||yi||

, (5.2)

This metric was chosen because it has been extensively employed for evaluating the accuracy
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Figure 5.4: Hardware setup of the proposed FPGA-ASIC DFR system.

of DFR models [14, 30, 64]. Receiver operating characteristic (ROC) curves were used to

evaluate the system’s accuracy for spectrum sensing. Due to significant signal variations

when reading the output of the ASIC-based MG function shown in Figure 5.3, the outputs

of the activation function for each of the 216 input voltage levels were recorded and used to

evaluate the system’s accuracy.

5.2.1 NARMA10 Benchmark

The tenth-order nonlinear autoregressive moving average (NARMA10) benchmark was first

introduced as a method to evaluate RNN performance in [65]. This was primarily due to its

ten step time dependency, which makes it harder for an RNN to learn. The inputs of the

dataset are composed of uniformly distributed random numbers from the set [0, 0.5], while

the outputs are determined by the equation:
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Table 5.4: Model Accuracy for NARMA10

Model γ η τ θ N Testing NRMSE

[14] 0.05 0.5 80 0.2 400 0.15

[64] 0.05 0.75 40 0.2 200 0.17

This Work 1 0.5 100 1 100 0.21

y(k + 1) = 0.3y(k − 1) + 0.05y(k)[
9∑

i=0

y(k − i)] + 1.5u(k − 9)u(k) + 0.1, (5.3)

where u(t) represents an input at timestep k. A total of 100 samples were used for reservoir

initialization, 5900 for training, and 4000 for testing. The feedback scale, η was configured

as 0.5 for this application. As shown in Table 5.4, the proposed DFR achieved an NRMSE of

0.21 for the test samples, demonstrating a difference of 0.06 from the best performing DFR

on this benchmark from [14]. This difference in accuracy is due to the selected parameter

configurations, which were modeled after the DFR in [30] and reduced hardware complexity.

Here 100 virtual nodes are used with a separation factor θ of 1, compared to [14]’s 400 virtual

nodes with a separation factor of 0.2. Furthermore, the input gain γ and feedback scale η

are set as 1 and 0.5, respectively, as opposed to [14]’s optimal values of approximately 0.1

and 0.4. The predictive performance of the DFR in modeling this time series is visualized

in Figure 5.5.

5.2.2 Spectrum Sensing Benchmark

In this experiment, three different MIMO antenna array configurations were tested, in ad-

dition to three signal-to-noise ratios (SNRs) for the additive white Gaussian noise. The

feedback scale, η was configured as 0.0625 for this application. A total of 20 samples were

used for reservoir initialization, 980 were used for training, and 5082 were used for testing.
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Figure 5.5: A graph showing the DFR’s predictive performance on NARMA10.
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Since spectrum sensing is a binary classification task requiring the model to determine if

the spectrum is free or occupied, the accuracy was measured using receiver operating char-

acteristic (ROC) curves. ROC curves show the relationship between the false positive rate

and true positive rate for varying thresholds that are used in the model’s decision making

process. The false positive and true positive rates are calculated according to the Equations

5.4 and 5.5 below.

FPR =
FP

TN + FP
(5.4)

TPR =
TP

TP + FN
(5.5)

In these equations, for a given threshold, FP represents the number of false positives, FN

represents the number of false negatives, TP represents the number of true positives, and

TN represents the number of true negatives. When the area under the ROC curve (AUC)

of a model is 1, it indicates that the model is able to accurately classify samples in the data

set. Table 5.5 shows the accuracy of the hybrid DFR system in predicting the availability

of the spectrum for the tested configurations. To better visualize the binary classification

performance, the ROC curves are plotted in Figure 5.6.

As shown by both Table 5.5 and Figure 5.6, when given ideal conditions for performing

the spectrum sensing task (i.e., a noise level of -10db with 6 antennas), the system is able

to achieve an AUC of 0.999. When compared with traditional energy detection based ap-

proaches, such as the square law combining (SLC) technique discussed in [17], the model

performs better than SLC in low antenna configurations with high noise settings. With a

SNR setting of -20dB, the SLC used in [17] achieves an AUC of 0.11 and 0.7 for the 2-antenna

and 4-antenna settings, compared to the proposed model’s performance of 0.6 and and 0.76.

Additionally, the DFR developed in [17] achieves an AUC of 0.99 for the 6-antenna and

-20dB SNR configuration, compared to the proposed model’s AUC of 0.87. [14] uses a 2D

heat map to help visualize the model’s accuracy for various input weight and feedback weight
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Table 5.5: Model Accuracy for Spectrum Sensing

Model SNR Antenna Count AUC

Hamedani SLC [17] -20dB 2 0.11

Hamedani SLC [17] -20dB 4 0.7

Hamedani SLC [17] -20dB 6 0.97

Hamedani DFR [17] -20dB 2 0.76

Hamedani DFR [17] -20dB 4 0.95

Hamedani DFR [17] -20dB 6 0.99

This Work -20dB 2 0.603

This Work -20dB 4 0.764

This Work -20dB 6 0.871

Figure 5.6: ROC curves for the spectrum sensing configurations.
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Figure 5.7: Effect of Input and Feedback Weight on Spectrum Sensing AUC.

configurations. Figure 5.7 visualizes the effect of tuning the input and feedback weight values

on the model’s accuracy with a configuration of one receiving antenna, 50 nodes and a -10dB

SNR. For this scenario, the input weight is significantly tied to the AUC since low values

for Win, correspond to higher AUC measurements, while the feedback weight Wfb has little

effect on the AUC.

5.2.3 System Limitations

While the proposed system demonstrates an effective way of realizing energy-efficient spec-

trum sensing in a small area, there are several limitations that hinder the applicability of

the system. First, there is a large amount of noise that is experienced while reading the

analog output from the Mackey-Glass ASIC circuit. This noise is visualized in Figure 5.3

which shows jittering in the output voltage, compared to a smooth, continuous curve. This

results in large prediction accuracy variations since the output values that were used to train
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the network in software are often misaligned with the output values used to evaluate the

network. The XADC’s averaging capabilities described in [57] can be leveraged to reduce

this noise by averaging the input voltage of up to 256 samples. However, this would reduce

the system’s energy efficiency and inference speed.

Another limitation of the system is the ability to implement it on an actual RF device.

Currently the design uses two separate IC packages: one containing the Zynq-7000 SoC,

and another containing the Mackey-Glass circuit. Since the two implementations are in

separate packages, the system can not be as easily demonstrated on a small device such as

a cellphone. An ASIC implementation of the system that combines the two circuits into one

package would solve this issue, but would also introduce more design and verification costs.

Furthermore, this implementation makes it more challenging to test the circuit against real

time wireless communications applications due to the lack of a dedicated RF interface.

The follow sections of this thesis propose an alternative approach to realizing the DFR on an

low-profile edge device. The approach leverages a circuit board with built-in RF capabilities

to stream data directly to the DFR for real-time spectrum sensing. The approach uses high-

level synthesis design tools to further optimize the DFR and to provide increased design

customization.



Chapter 6

High-Level Synthesis

6.1 High-Level Synthesis Overview

Traditionally, FPGA designs are created using a hardware description language (HDL) that

can be synthesized into a gate-level representation, called a netlist, that can be implemented

on the FPGA. Testbenches consist of non-synthesizable HDL code that can be used to

simulate and verify the functionality of the designed hardware. However, the process of

using HDL to create and verify an FPGA design can be inaccessible, time consuming, and

prone to errors. To avoid these issues, a growing number of designers have begun to adopt

a new approach known as high-level synthesis.

High-level synthesis (HLS) seeks to reduce the design and verification time of custom hard-

ware by directly translating C and C++ code directly into an HDL representation [66]. This

provides a more accessible approach to creating custom intellectual property (IP) cores by

letting the designer focus on the algorithmic implementation while the HLS tool will create

the hardware implementation. Figure 6.1 illustrates the idea behind this process. Further-

more, HLS streamlines the verification process by allowing a software testbench written in

C++ to test both the software and hardware versions of the IP.

40
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Figure 6.1: An example of C++ code for a full adder compiled using high-level synthesis to

generate the equivalent Verilog code and circuit schematic.

Several recent works have demonstrated the capability of using HLS to model neural networks

in hardware. [67] uses HLS to develop a graph convolutional network and evaluates the

ability of this hardware to cluster data across graph data sets. [68] shows how HLS can

be used to optimize the clock speed, throughput and scalability of hardware convolutional

neural networks (CNNs). [69] proposes a custom HLS library for CNNs that extends the

functionality of Xilinx Vivado HLS.

As demonstrated in these works, a number of optimization techniques are made available

by HLS that can improve the area, latency, and power consumption of generated IP. These

optimizations include arbitrary precision data types, loop pipelining, loop unrolling, and

memory instantiation.

6.2 Arbitrary Precision Data Types

Arbitrary precision data types in HLS allow a designer to specify the number of bits used

to represent a numeric value [70]. Typically in software programs, an integer is represented

by 32 bits, however, HLS allows designers to have direct control over the number of bits

used. This can potentially reduce the area of a design since smaller registers and fewer

components will be required. When considering more sophisticated applications such as
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machine learning, care should be taken when modifying the number of bits used since a

model’s accuracy is often directly proportional to the number of bits used. The reduced

double exampled overviewed in [71] summarizes the benefits of using arbitrary precision

floating point data types. In this example, a 30% reduction in area is observed by using a

56-bit floating point representation, in addition to a 15% reduction in latency.

6.3 Loop Unrolling

Loop unrolling is the process of taking a software loop and executing each of the loop

iterations in parallel [70]. For example, a loop that modifies five samples of independent

data over the course of five clock cycles can modify all of the data in a single clock cycle if

unrolled five times. This idea is visualized in Figure 6.2. It should be noted that while loop

unrolling may significantly increase computational performance through parallelism, it can

increase the amount of logic used by a factor of the unrolling amount. This behavior may

not be ideal when designing IP for devices with high area constraints.

The Intel HLS guide explores the effect of unrolling in the resource sharing filter example [71].

Here, a finite-impulse response (FIR) filter is implemented with and without the unroll

directive. Data from simulations of these two versions of the filter show that the rolled

(resource-shared) version of the loop has an average latency of 801 cycles, compared to the

unrolled version’s latency of 719 cycles. This produces a speed up of 11%. However, the

unrolled FIR filter uses 20 times as many ALUTs and 30 times as many DSPs to achieve

this speedup.

6.4 Loop Pipelining

Loop pipelining takes a different approach to optimizing loop performance [70]. Pipelining

is a well studied technique that has been used to overlap instruction execution in general
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Figure 6.2: An example of unrolling a loop in C++ using Intel HLS Compiler.

purpose CPU architectures. This results in a reduction in execution time and usually an

increase in clock frequency. Instead of duplicating the loop’s logic as shown with unrolling,

pipelining allows different stages of the loop to be broken down into overlapping sub-steps.

Consider a program that reads data from an array, multiplies the data, and stores the result

in a new array. Using loop pipelining optimizations would allow a second value to be read

from the array, while the first value is being multiplied. By default Intel HLS compiler

attempts to pipeline the operations in loops. The amount of time required to start a new

loop in the pipeline is referred to as the initiation interval (II) [72].

6.5 Memory Instantiation

HLS also supports the ability to instantiate memory interfaces and components [70]. When

a component is configured with a memory address pointer as an argument, the HLS tool

translates this into a memory interface on the generated IP. During logic verification, the

IP will send memory read and write requests through this generated interface. Memory can
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also be created directly inside of a HLS IP by declaring an array. The static identifier allows

the memory to retain its contents each time the component function is invoked.



Chapter 7

Delayed Feedback Reservoir on a

Software Defined Radio

7.1 High-Level Synthesis DFR Core

To demonstrate the capabilities of the delayed feedback reservoir (DFR) for cognitive ra-

dio applications such as spectrum sensing, this effort aimed to train a DFR network and

synthesize it in the hardware of a software-defined radio. Similar to the experiments from

Chapter 5, the DFR model was first constructed in Python1 to train it to accurately pre-

dict spectrum occupancy according to the fabricated data set. As discussed in Chapter 3,

spectrum occupancy measurements were obtained from RWTH Aachen University’s spec-

trum occupancy data set. The portion of this data set that was referenced contains 6102

orthogonal frequency-division multiplexing (OFDM) frames across 40 subcarriers. Whether

data was transmitted over a given frame is indicated by a 1 or a 0 in the data set. Based on

the spectrum occupancy behavior for one of these 40 subcarriers, 6102 random quadrature

phase-shift keying (QPSK) symbols were generated. Each symbol corresponding to a point
1Python, HDL, and C++ code for this project is available at

https://github.com/oshears/bladerf_dfr_accelerator.
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Table 7.1: Delayed Feedback Reservoir Parameters

Parameter Value

Mask Range [-0.5,0.5]

Reservoir Nodes 50

Input Gain γ 0.5

Feedback Scale η 0.4

Floating Point Exponent Precision 8 bits

Floating Point Mantissa Precision 17 bits

Input Data Resolution 16 bits

in the sequence of OFDM frames where the spectrum was not busy was cleared from the

frame. Once the array of symbols were generated, random additive white Gaussian noise

(AWGN) was added to each symbol. The in-phase and quadrature (I/Q) components of

each symbol were then translated into signed 16-bit binary numbers to represent the output

of the SDR’s analog-to-digital converters (ADC).

The parameters of the DFR implemented in Python are shown in Table 7.1. At each frame

the DFR was presented with the generated I/Q components. The energy of a given frame was

calculated using Equation 3.1. This energy measurement was then fed into the input layer

of the DFR where it was masked and sent to the single non-linear node. Once the outputs of

all training samples were calculated, ridge regression was used to adjust the DFR’s output

weights. The optimal configurations for the mask range, number of reservoir nodes, input

gain, and feedback scale were determined after simulating several variations of the DFR and

evaluating its performance for this task.

After verifying the DFR in Python, a C++ model of the network was developed using the

Intel HLS Compiler libraries [73]. The floating point precision of the DFR implemented in

C++ is shown in Table 7.1. The precision was chosen to minimize the number of resources

required by the DFR hardware implementation, while sustaining accuracy. Once the C++
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Table 7.2: Delayed Feedback Reservoir Logic Utilization

Logic Element Utilization Utilization Percentage

Adaptive Logic Modules (ALMs) 9,149 50%

Block Memory Bits 118,212 58%

Digital Signal Processors (DSPs) 48 73%

model was verified, the HLS tool was used to create Verilog hardware description language

(HDL) code corresponding to the software model. Pseudocode for the HLS C++ implemen-

tation DFR is provided in Appendix A of this document. The logic utilization of the DFR

IP core for the Cyclone V 5CEBA4F23C8 FPGA, shown in Table 7.2, was obtained after

synthesizing the core in Quartus Prime.

Intel HLS Compiler provides further information about the adaptive look-up table (ALUT)

utilization for each line of the C++ code. Each line of code was categorized into the relevant

DFR functions. Figure 7.1 illustrates the ALUT usage for each of these DFR functions.

From this figure, it is shown that the Mackey-Glass activation function uses more than half

of the ALUTs in the system. The maximum clock rate and latency measurements were

additionally obtained from the Intel HLS Compiler report. The system can operate at a

maximum clock rate of 194.40 MHz and has a latency of 374 cycles. This corresponds to an

inference time of 1.92µs, or approximately 520 thousand samples per second. The latency

of the circuit can be reduced to by using additional HLS parallelism techniques in the C++

algorithm, which are explored in the following sections.

The power estimates were obtained using Intel Quartus’ Power Analyzer Tool. With an

I/O toggle rate of 12.5%, the system has an average total power dissipation of 2.23W.

The power estimates generated from this tool indicate that the power consumption of the

DFR circuit falls within the same power consumption range of a cell phone that is actively

transmitting and receiving data (on the order of 1 watt to 6 watts). Table 7.3 compares

the power consumption and latency of the HLS DFR to the previous examples explored in
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Figure 7.1: HLS ALUT Utilization for DFR Functions.

Table 5.2 of Chapter 5. As shown, the HLS implementation uses significantly more power

than other hardware implementations, however, the latency is also greatly reduced. The

power consumption of this circuit can likely be reduced if it is optimized to use fixed point

arithmetic and a lookup table (LUT) activation function.

The last step in the development of this DFR IP core was verifying the hardware’s function-

ality in a simulation and in real-time on the software radio. The simulation DFR model was

verified using the test bench generated by the Intel HLS tool. To test the circuit in real-

time, the IP was integrated into the bladeRF 2.0’s FPGA architecture, then implemented

and programmed into the software radio’s FPGA.
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Table 7.3: Comparison of DFR Implementations on FPGA and CPU with HLS Results

Implementation Metric Measure

Software DFR Average Power 8.125 W (65 W)

Hamedani DFR [17] Average Power 0.199 W

Mixed-Signal DFR Average Power 0.130 W

HLS DFR Average Power 2.23 W

Software DFR Sample Latency 0.304 ms

Hamedani DFR [17] Sample Latency 302 ms

Mixed-Signal DFR Sample Latency 0.615 ms

HLS DFR Sample Latency 0.00192 ms

7.2 BladeRF Software-Defined Radio

7.2.1 BladeRF Board Design

The bladeRF 2.0 micro, shown in Figure 7.2, is a mid-tier software defined radio developed

by Nuand. The device is capable of transmitting and receiving RF data over two transmit

and two receive antennas.

At the heart of this device is an Intel Altera Cyclone V FPGA, indicated by 1⃝ in Figure 7.2.

The FPGA acts as a bridge between AD9361 RFIC which receives and transmits RF data,

and the host computer which performs digital signal processing on the in-phase and quadra-

ture (I/Q) samples. The FPGA enables further configurability of this system by allowing a

designer to implement custom logic in the FPGA architecture. Thus, a designer can create

custom hardware units to perform filtering, modulation and cognitive radio tasks directly in

the hardware. This is advantageous to designers because hardware implementations of these

algorithms are likely to run faster than software implementations, in addition to consuming
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Figure 7.2: bladeRF 2.0 Micro Software-Defined Radio

less power.

The Cypress FX3 USB 3.0 peripheral controller manages transactions between the SDR and

the host computer at the USB 3.0 interface shown by 4⃝ in Figure 7.2. The host sends

packetized data requests to the SDR to configure the frequency, voltage controlled oscillator

(VCO), and gain settings. These data packets are translated from the USB protocol to UART

and then interpreted by the FPGA which performs the hardware updates. The controller

also reads the stream of I/Q sample data over the general programmable interface (GPIF)

bus, and sends these to the host computer via the USB interface.

The last major component is the Analog Devices AD9361 RF transceiver, indicated by 2⃝ in

Figure 7.2. The transceiver is interfaced with four SMA antenna interfaces, shown by 3⃝, and

supports multiple-input, multiple-output antenna configurations. The device is configured

by the FPGA using the SPI interface which connects directly to its internal registers. The

TX and RX interfaces carry the IQ samples between the transceiver and the FPGA. The

SDR attributes, acquired from Nuand’s bladeRF web page [74], are summarized in Table
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Table 7.4: bladeRF 2.0 micro SDR Attributes

Attribute Capability

Frequency Range 47 MHz - 6 GHz

Sampling Rate 61.44 MHz

RX/TX Antennas 2/2

ADC/DAC Resolution 12 Bits

7.4.

The challenge in developing custom hardware to run on the programmable logic of this

device is the difficulty in learning and adapting custom hardware intellectual property (IP)

to the bladeRF’s FPGA architecture. Nuand has provided documentation to explain the

software and hardware features of their device [75]. However, designers must still spend time

dissecting the extensive list of VHDL and Verilog source code that is used to program the

FPGA in order to adequately integrate their own IP. The following sections will breakdown

the bladeRF’s FPGA architecture to provide readers with an understanding of the functional

units in this SDR system.

7.2.2 BladeRF FPGA Architecture

The bladeRF’s bridge logic between the AD9361 RFIC and the host computer is implemented

on the Intel Altera Cyclone V FPGA (5CEBA4F23C8). In this architecture, UART packets

are received from the external FX3 USB controller and processed by a Nios II soft processor

system. If the packets contain configuration data, the soft processor translates these packets

into configuration commands that get sent to the external power monitor, local oscillator,

or RFIC. The processor system is able to translate this data using several internal IP cores

that create I2C and SPI transactions. Otherwise if the packets contain data requests, the

processor instructs its internal AD9361 interface controller to read data from the RFIC and
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Table 7.5: bladeRF 2.0 micro A4 FPGA Logic Utilization

Logic Element Utilization Utilization Percentage

Adaptive Logic Modules (ALMs) 6,280 34%

Package Pins 173 77%

Block Memory Bits 1,824,256 58%

Digital Signal Processors (DSPs) 8 12%

Phase Locked Loops (PLLs) 3 75%

send it to the receive first-in first-out queue (RX FIFO). The RX FIFO acts as a buffer that

synchronizes the rate at which the host is requesting RX samples to the rate that the RFIC

is making them available. During its transition through the RX FIFO, the signed 12-bit

in-phase and quadrature samples from the RFIC ADCs are sign-extended to 16 bits and

concatenated to make 32-bit samples. These samples are sent to the host computer using

the FX3 GPIF bridge module. Table 7.5 shows the logic utilization of the unmodified FPGA

architecture.

Figure 7.3 illustrates the FPGA architecture observed in the top level bladeRF HDL file,

along with the proposed modifications to embed the DFR core and test memory. The

bladeRF Python package, documented in [75], is used to read the received samples from the

bladeRF device. In addition to reading and writing data to the device, the package can also

be used to program the FPGA with a custom bitstream file (.rbf).

7.3 Experimental Results and Analysis

7.3.1 Spectrum Sensing Benchmark

The performance of the DFR in modeling the spectrum occupancy data was evaluated in

a similar manner to that described in Chapter 5. Receiver operating characteristic (ROC)
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Figure 7.3: bladeRF FPGA Architecture with the HLS DFR Core.
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Table 7.6: Spectrum Sensing HLS DFR Performance

SNR Area Under the Curve (AUC)

-10dB 0.797

-15dB 0.737

-20dB 0.708

-30dB 0.688

curves were created to show the relationship between the false positive rates and true positive

rates for varying thresholds in the model’s decision making process. The false positive and

true positive rates were calculated according to equations 5.4 and 5.5. Table 7.6 shows the

model’s area under the curve (AUC) measurements across four noise levels for a single RX

antenna configuration.

To evaluate the hardware version of the spectrum sensing DFR core, the bladeRF’s top level

HDL file was modified to include the DFR IP core, in addition to a sample memory to test

the core’s real-time performance on the initial data set. Instructions for modifying the FPGA

image are provided on the bladeRF’s GitHub repository Wiki page [75]. All generated HDL

and modifications to the bladeRF’s FPGA image can be found in the GitHub repository for

this project1.

7.3.2 High-Level Synthesis Optimizations

A number of HLS optimizations were explored to observe their effect on the generated DFR

system. First, the impact of the floating point precision on the logic element utilization and

accuracy were evaluated. Figure 7.4 shows the relationship between precision and utilization

for the HLS DFR. Beyond the 46-bit floating point precision, a 97% increase in the memory

logic array block (MLAB) utilization is observed, followed by a 128% increase in DSP uti-
1Python, HDL, and C++ code for this project is available at

https://github.com/oshears/bladerf_dfr_accelerator.

https://github.com/oshears/bladerf_dfr_accelerator
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Figure 7.4: HLS Floating Point Precision Utilization.

lization. When considered with regard to the accuracy of the system, little improvement to

the AUC was observed after 26 bits, and therefore, indicates that this is the optimal value

for the area and accuracy trade-off. Alternatively the accuracy of the system decreases by

30% when the precision is reduced to 16 bits.

When the floating point precision increases from 48 bits to 56 bits, the DSP utilization

increases by more than 2×. Figure 7.5 explores this increase by reporting the number of

DSPs required for each floating point arithmetic operation. The multiplication and power

operations largely contribute to this increase in DSP utilization. Intel’s DSP blocks support

multiplication of two 32-bit floating point numbers [76]. For 16-bit and 26-bit multiplications,

only a single DSP is required. However, when the precision increases to 35 bits, more DSPs

and ALUT logic must be introduced to perform the operation. A similar result is observed

for the number of memory logic array blocks (MLABs).

The impact of loop unrolling on the system’s latency and power was also analyzed. Figure

7.6 shows the trade-off between three levels of loop unrolling on the inference time and power
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Figure 7.5: DSP Utilization for Floating Point Arithmetic Operations.

of the system. As shown, when the feedback loop of the system is unrolled 3 times compared

to 1 time, the power consumption doubles while the inference time reduces only by 3%. This

indicates that with the tested implementation, loop unrolling has little benefit for reducing

latency.
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Figure 7.6: HLS Loop Unrolling Power and Latency Impact.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis hypothesized that FPGA implementations of delayed feedback reservoir circuits

would achieve lower power consumption and latency compared to CPU-based approaches.

The mixed-signal DFR has an average power of 0.130 watts and a latency of 0.615 millisec-

onds. The HLS DFR has an average power of 2.23 watts and a latency of 1.92 nanoseconds.

Compared to the CPU estimates of 8.125 watts and 0.304 milliseconds, these approaches

show that FPGA implementations of the DFR are faster and require less energy than soft-

ware models. By performing this analysis, the plausibility of using these systems for edge

device spectrum sensing is demonstrated. As noted, edge devices have a power dissipation

on the order of 10 watts. Both circuits operate within this range, while still being able to

accurately model the NARMA10 benchmark and spectrum occupancy datasets.

The first implementation leveraged digital and analog circuits to optimize the energy effi-

ciency of the reservoir computing system. This mixed-signal DFR used a digital circuit to

store the reservoir states and to perform the readout layer evaluation, and an analog cir-

cuit to serve as the non-linear transformation function. The major benefits of this approach

58
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include its simplified hardware architecture thanks to the utilization of a low area Mackey-

Glass function, and high energy efficiency because of fewer required FPGA logic elements.

However, this mixed-signal approach has limitations that hinder its applicability. First, the

output voltage variations observed from the analog activation function significantly affect

the predictive performance of the system. This is likely caused by either the analog circuit

attempting to settle on an output value, or by inaccurate voltages being generated by the

digital-to-analog converter. The averaging feature of the analog-to-digital converter can be

used to reduce these variations in the output voltage readings, but this will induce additional

latency in the design and thus affect the inference time. Furthermore, the conversion time

and energy required to translate values between the analog and digital domains affects the

practicality of this system. Additionally, in its current state, the system cannot be effectively

demonstrated in a real-time spectrum sensing application.

Alternatively, the high-level synthesis (HLS) DFR provides a practical way to implement

and test the reservoir computing network against different applications. Accessible C++

code can be quickly developed to generate a component and to verify its functionality. Due

to the HLS implementation being purely digital, it can be easily integrated in contemporary

software-defined radio (SDR) architectures that use FPGAs, such as Nuand’s bladeRF 2.0

and Ettus Research’s USRP devices. Furthermore, it achieved the lowest sample latency for

the spectrum sensing task. However, this HLS approach is limited by the large amount of

logic elements required to implement the Mackey-Glass activation function on the FPGA.

The high utilization of the activation function constrains the amount of additional logic that

can be added to the SDR’s FPGA architecture. Furthermore, this high utilization causes

the power dissipation to be the highest among the other FPGA approaches. A lookup

table (LUT) could be used to help combat this high utilization by replacing dynamically

generated values with those stored in on-chip memories. Overall, the experiments conducted

here provide a foundation for future implementations of reservoir computing systems in

digital hardware for cognitive radio applications.
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8.2 Future Work

8.2.1 Advanced Applications

Future work building off of this research could explore other real-time wireless communica-

tions, audio processing, and image processing applications. [29] demonstrates the ability of

an echo state network on an FPGA to perform wireless symbol detection. [28] shows that

similar ESNs can be optimized using on-the-fly binarized weight generation techniques, and

applied to applications such as spoken digit recognition (TIDIGITS) and human activity

recognition (HAR). [27] shows that DFRs can also be effectively applied to identify specific

emitters and communication protocols used in RF settings. They also demonstrate the abil-

ity to train the DFR during runtime, often referred to as online learning, which is essential

for high accuracy in real world applications. Lastly, [31] shows that single neuron systems

inspired by the DFR have the potential to accurately classify images from the MNIST and

CIFAR10 data sets.

8.2.2 Spiking DFR

The DFR’s energy efficiency and area utilization could be further improved through the

use of neuromorphic computing. Neuromorphic computing systems are composed of spiking

neuron models, instead of artificial neuron models. As briefly described in Chapter 2, spiking

neurons receive data in the form of spikes. Each spike corresponds to a weight specified by

the synapse it travels across. As a neuron receives spikes, its membrane potential increments

towards a threshold value. When the membrane potential exceeds this threshold value, the

neuron emits a spike which gets transmitted to all other neurons connected to it.

SNNs are believed to have more potential than traditional ANNs in several aspects. The

energy efficiency of an SNN can outperform that of an ANN depending on the technique

used to encode the input data into spikes. The reason for this is because an input neuron
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will not necessarily produce a spike at each timestep (data sparsity), reducing the amount of

energy consumed. SNNs also do not inherently feature any large-scale matrix multiplication.

Each neuron is only required to add the weight values of the synapses that had spikes to its

current membrane potential, and to check if the potential exceeds a threshold value. Thus,

SNN neurons can be realized with only adders and comparators, which combined have a

lower area and power consumption than the multipliers and adders required by a traditional

ANN hardware implementations [77]. SNNs may also be more capable of learning patterns

in time series and real-time problems due to their temporal properties, and their biologically

accurate representation may allow them to better accelerate neuroscience research.

Several works have shown the ability of the DFR to be used effectively with spiking neurons

in analog hardware and in software [78–84]. Extensions of the work proposed in this thesis

could explore digital hardware implementations of spiking DFRs and demonstrate the ability

to perform online learning with techniques such as spike-timing dependent plasticity (STDP).
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Appendix A

DFR High-Level Synthesis Source

Code

Here an overview of the HLS code used to synthesize the delayed feedback reservoir network

is provided. In Intel HLS Compiler, the “component” keyword is used to indicate C++

that should be transformed into a synthesizable intellectual property (IP) core. Also shown

in this example is the usage of the “unroll” directive to expand the single loop into two

parallelized versions. Other HLS constructs used in this example include: (1) the initialize

on reset keyword to indicate a synthesizable memory that is reset to a default value when

the reset is asserted; (2) the stable argument keyword to indicate input values to the IP will

remain fixed; and (3) the custom delayed feedback reservoir floating point type to control

the quantization level of the data.

Listing A.1: C++ Code for HLS DFR Core

#include "HLS/hls.h"

#include "HLS/math.h"

#include "HLS/hls_float.h"

#include "HLS/hls_float_math.h"

73
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using DFR_FP = hls_float <8, 17, fp_config::FP_Round::RNE>;

component hls_stall_free_return DFR_FP dfr(hls_stable_argument short i_data,

hls_stable_argument short q_data) {

// persistent reservoir

static DFR_FP reservoir[N] hls_init_on_reset;

// track output

DFR_FP dfr_out = 0;

// calculate energy

DFR_FP i_data_scaled = DFR_FP(i_data) / DFR_FP(MAX_ADC_SIGNED);

DFR_FP q_data_scaled = DFR_FP(q_data) / DFR_FP(MAX_ADC_SIGNED);

DFR_FP sample = ihc_sqrt(i_data_scaled * i_data_scaled + q_data_scaled *

q_data_scaled);

// loop through each masked input subsample

#pragma unroll 2

for(unsigned node_idx = 0; node_idx < N; node_idx++){

// calculate next node value based on current subsample

DFR_FP masked_sample_i = MASK[node_idx] * sample;

DFR_FP mg_in = dfr_gamma * masked_sample_i + dfr_eta * reservoir[

LAST_NODE - node_idx];

// Mackey Glass Equation

DFR_FP mg_power = ihc_pow(mg_b * mg_in,mg_p);

DFR_FP mg_denominator = mg_a + mg_c * mg_power;

DFR_FP mg_numerator = mg_C * mg_in;

DFR_FP mg_out = mg_numerator / mg_denominator;

// update reservoir

reservoir[LAST_NODE - node_idx] = mg_out;
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// calculate output

dfr_out += W[LAST_NODE - node_idx] * mg_out;

}

return dfr_out;

}
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