
Computational Design of 2D-Mechanical Metamaterials

Kiara L. McMillan

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Mechanical Engineering

Pinar Acar, Chair

Gary D. Seidel

Robert L. West

Giti A. Khodaparast

May 5, 2022

Blacksburg, Virginia

Keywords: Mechanical metamaterials, computational design tools, data-driven modeling,

uncertainty, inverse design

Copyright 2022, Kiara L. McMillan



Computational Design of 2D-Mechanical
Metamaterials

Kiara L. McMillan

ABSTRACT

Mechanical metamaterials are novel materials that display unique properties from their un-

derlying microstructure topology rather than the constituent material they are made from.

Their effective properties displayed at macroscale depend on the design of their microstruc-

tural topology. In this work, two classes of mechanical metamaterials are studied within

the 2D-space. The first class is made of trusses, referred to as truss-based mechanical meta-

materials. These materials are studied through their application to a beam component,

where finite element analysis is performed to determine how truss-based microstructures

affect the displacement behavior of the beam. This analysis is further subsidized with the

development of a graphical user interface, where users can design a beam made of truss-

based microstructures to see how their design affects the beam’s behavior. The second class

of mechanical metamaterial investigated is made of self-assembled structures, called spin-

odoids. Their smooth topology makes them less prone to high stress concentrations present

in truss-based mechanical metamaterials. A large database of spinodoids is generated in

this study. Through data-driven modeling the geometry of the spinodoids is coupled with

their Young’s modulus value to approach inverse design under uncertainty. To see mechan-

ical metamaterials applied to industry they need to be better understood and thoroughly

characterized. Furthermore, more tools that specifically help push the ease in the design of

these metamaterials are needed. This work aims to improve the understanding of mechanical

metamaterials and develop efficient computational design strategies catered solely for them.
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GENERAL AUDIENCE ABSTRACT

Mechanical metamaterials are hierarchical materials involving periodically or aperiodically

repeating unit cell arrangements in the microscale. The design of the unit cells allows these

materials to display unique properties that are not usually found in traditionally manufac-

tured materials. This will enable their use in a multitude of potential engineering applica-

tions. The presented study seeks to explore two classes of mechanical metamaterials within

the 2D-space, including truss-based architectures and spinodoids. Truss-based mechanical

metamaterials are made of trusses arranged in a lattice-like framework, where spinodoids

are unit cells that contain smooth structures resulting from mimicking the two phases that

coexist in a phase separation process called spinodal decomposition. In this research, com-

putational design strategies are applied to efficiently model and further understand these

sub-classes of mechanical metamaterials.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Mechanical metamaterials are novel materials that provide a multitude of new and fasci-

nating applications to many fields of technology. They can elicit unique properties such as

high strength-to-weight ratios, negative Poisson’s ratios, high energy absorption and mul-

tifunctional capabilities [1], [2]. Their effective properties depend primarily on their inner

architecture rather than the base materials they are formed from [1]. Given their unique

properties, they have a wide range of potential applications. However, in order to see them

utilized in industry, these materials need to be further studied. Like traditional materials,

in order to see them applied within industry, they need to be thoroughly understood by

fully characterizing their properties and behavior [3]. Furthermore, this understanding can

also be driven by the establishment of new efficient design and modeling techniques catered

specifically towards mechanical metamaterials [3].

Within this research two subsets of mechanical materials are studied within the 2D-space.

The first type is based on truss-like structures. These truss-based mechanical metamaterials

are explored through the construction of a mechanical beam component, where the effect

of applied external forces was determined through finite element analysis. A graphical user

interface is created and implemented such that a user could easily understand how differing

geometries of truss-based unit cells can affect the resultant properties of the beam compo-

1



2 CHAPTER 1. INTRODUCTION

nent. Mechanical metamaterials with spinodal topologies, also known as spinodoids, are the

second type of mechanical metamaterials explored within this research. These materials are

investigated by generating a large database of 2D-spinodoid unit cells which are represented

through monochrome images. By using surrogate modeling techniques a relationship be-

tween their calculated mechanical property and parameters controlling the geometry of the

unit cell is found. Through this established relationship, the design of spinodoids is further

investigated.

Through the study of these mechanical metamaterials the following contributions are made

to this particular field of material research:

• Developing a computational methodology and a graphical user interface to explore the

design of truss-based mechanical metamaterials.

• Considering the effects of uncertainty on spinodoids with data-driven modeling.

• Investigating the inverse design of spinodoids under uncertainty using data-driven mod-

eling.

• Forwarding the progress toward the realization of mechanical metamaterials within

industry by exploring efficient design and modeling techniques that have helped further

the understanding and characterization of these materials.

1.2 Mechanical Metamaterials

Metamaterials are a relatively new class of artificially developed materials that exhibit unique

properties and multifunctional capabilities. The properties they demonstrate are not fre-

quently found in nature, furthermore, these properties can even be tailored through the
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design of the material itself [1]. These materials were first recognized as “metamaterials”

in 1999 by the Defense Advanced Research Projects Agency Symposium on Meta-Materials

[4]. The prefix “meta” is a Greek loanword meaning “beyond”, this prefix was chosen due

to these materials’ abilities to demonstrate very unique properties compared to the average,

naturally derived materials [4]. These unique properties most commonly fall under the field

classifications of mechanical, acoustic, electromagnetic, optical, and thermal [3]. The effec-

tive properties of mechanical metamaterials are dependent on the underlying microstructural

topology rather than the constituent material it is constructed from. These microstructures

usually consist of repeated geometries called unit cells. Altering the unit cell geometry and

varying how the unit cell is repeated and patterned control the material properties on the

macroscopic scale [3], [4]. Patterning of the unit cell can be completed by distributing the

unit cells periodically or aperiodically, while also altering the specific gradients of cell thick-

nesses throughout the entire material [3]. The shape, size, and the overall topology of the

unit cell architectures can be designed in a manner so that the material displays specific

mechanical properties as well [3]. There are several popular categories of mechanical meta-

materials that are more notable which include truss-based, chiral, and origami, visualized

in Figure 1.1 [5]. The images used in Figure 1.1 are derived from literature, examples of

truss-based mechanical metamaterials courtesy of [1], [6], origami-based examples courtesy

of [7], [8], chiral-based examples courtesy of [9], and kirigami-based examples courtesy of

[10].

Mechanical metamaterials have many theorized applications, including to the fields of biomed-

ical, robotics, aerospace, and civil [1]. Some of these theorized applications include foldable

solar arrays based on origami structures, custom shoe soles inspired from truss-like struc-

tures, and medical implants formed by mimicking honeycomb microstructures [1], [11], [12].

Theorized applications of mechanical metamaterials are summarized in Table 1.1.
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Figure 1.1: Popular types of mechanical metamaterials. examples of truss-based mechanical
metamaterials. The images utilized in this figure are derived from literature, examples of
truss-based mechanical metamaterials courtesy of [1], [6], origami-based examples courtesy
of [7], [8], chiral-based examples courtesy of [9], and kirigami-based examples courtesy of
[10].

Much of the research within this field is driven by the multitude of potential properties these

materials may elicit [3]. Although there are some instances of mechanical metamaterials

utilized in industry, given their potential applications and capabilities, they still are not

widely seen within the commercial industry. This may be due to the lack of research in

proving their reliability and resiliency compared to traditionally manufactured materials

[3]. Investigating these materials’ strength, toughness, and fatigue behavior is crucial in

determining how these materials can be properly applied in industry [3]. Understanding

the performance of mechanical metamaterials requires further experimental testing, as well

as the development of high-fidelity computational models and design tools. As with any
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Table 1.1: Examples of the theorized applications of mechanical metamaterials

Potential Application Fields

Aerospace Biomedical Robotics
• Foldable solar arrays [13] • Bone implants [5], [14] • Soft robotics [15]

• Materials within airplanes • Orthopedic support (shoe • Mechanical actuators
or satellites [16] soles) [12] [17], [18]

• Morphing airfoils [9] • Medicine delivery [19]

material, mechanical metamaterials may not perform to their original design and predicted

properties [3]. Therefore, determining the reasoning as to why mechanical metamaterials

may not perform as predicted or determining the uncertainty associated in their fabrication

is also necessary for characterizing them. The stray in predicted behavior can be quantified in

terms of uncertainty due to manufacturing or human interference in their eventual assembly

[20]. Part of this research focuses on quantifying the uncertainty and its effects on the design

of mechanical metamaterials by specifically focusing on spinodoids.

1.2.1 Truss-Based Mechanical Metamaterials

The first studied class of mechanical metamaterials in this research is the truss-based mechan-

ical metamaterials. These materials are made of trusses purposefully repeated or arranged

in a lattice-like framework [21]. Truss-based mechanical metamaterials can remain relatively

simple, but they can also be arranged in configurations that increase their complexity. Such

arrangements include octet-truss or cuboctahedron [22]. They can achieve high strength

and stiffness while remaining lightweight and they also have been found to demonstrate

high-energy absorption capabilities [23], [24].

Given their ability to demonstrate high strength and stiffness while remaining lightweight,
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they have the potential to be utilized within aerospace applications to aid in the ongoing

goal of weight reduction [25], [26]. Other applications that have been explored include heat

transferring and vibration control [24], [27], [28]. This idea of vibration control has also been

further expanded to include piezoelectric properties, which would allow the production of

electricity through vibrational harvesting [29]. Wang et. al have studied mechanical meta-

materials with beam-like structures with theorized applications in the field of construction

or materials with collapsible and flexible features [30].

1.2.2 Mechanical Metamaterials with Spinodal Topologies

Mechanical metamaterials with spinodal topologies form by following the process of spinodal

decomposition. Kumar and coworkers coined these materials as spinodoids, by utilizing a

simplified formulation of this decomposition process [5], [31]. They are a particular subset of

mechanical metamaterials that are formed through a phase separation process called spin-

odal decomposition. Compared to truss-based or origami-based mechanical metamaterials,

their design allows non-periodically repeating unit cell arrangements consisting of smooth

and bi-continuous structures, as shown in Figure 1.2. The phase separation process that they

are formed through occurs when two liquids or solids separate from each other, from one

thermodynamic phase to two separate phases that exist in cohesion [32]. This process can

be modeled analytically by the Cahn-Hilliard equation [33]. Yet, the numerical solution of

the Cahn-Hilliard equation is computationally expensive due to the time-marching scheme.

Therefore, Kumar and co-workers efficiently model the phase separation process through

the application of Gaussian random fields (GRFs). The approximated spinodal topologies

with the GRF model are defined as spinodoids [5], [31]. Unlike the more popularly known

truss- or origami-based mechanical metamaterials, spinodoids are less prone to high stress

concentrations that are more prevalent in the sharp corners existent in these metamateri-
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als. Additionally, because of their self-assembled structure they are also less susceptible to

symmetry-breaking defects which can cause unexpected behavior in more periodic geometries

such as truss-based materials.

Figure 1.2: The geometry of spinodoids is made of smoother structures lacking sharp corners,
this 3D-model was extruded from a generated 2D-spinodoid. Figure derived from [60].

Kumar and co-workers theorize spinodoids as replacements for bone implants as they were

able to match target properties of bones through the tailored design of 3D-spinodoids [5].

Kochmann et. al investigated the ease of manufacturing spinodoids through another method

aside from additive manufacturing using self-assembling polymers, allowing for easier scala-

bility of spinodoids [34].
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1.3 Design of Mechanical Metamaterials

Compared to traditionally manufactured, the microstructure topology of mechanical meta-

materials can be designed to meet specific targets on mechanical performance. The ability to

have such freedom in design results in vast design spaces for mechanical metamaterials [35].

In addition to this, the macro-scale properties are controlled by the microscale architecture

involving the repeating patterns of unit cells [1]. This creates a hierarchy in the material, that

can cause the property determination of the material to be difficult and computationally ex-

pensive, due to many complex microstructure topologies. Therefore methods to characterize

mechanical metamaterials are usually based on homogenization and reduced-order modeling

[36], [37]. With advancements in 3D-printing technology, the physical fabrication of me-

chanical metamaterials with complex geometries can also be achieved. Modeling difficulty

further increases when these materials are represented in three dimensions, therefore there is

a need to establish high-fidelity two-dimensional characterization methods to decrease this

computational complexity [38], [39].

1.3.1 Inverse Design of Mechanical Metamaterials

As stated, the unit cells of mechanical metamaterials can be designed to elicit specific me-

chanical properties. This gives the opportunity to approach the design of these materials in

the inverse manner. Meaning that the material can be tailored to the desired property, as

opposed to a choosing a material to satisfy the desired property. With mechanical metamate-

rials providing such a large design space, efficient optimization techniques are needed to help

approach the inverse design of these materials. Topology optimization is one method that

has been applied to optimize different types of mechanical metamaterials to meet specific

material properties [40], [41], [42]. Other methods of optimization that have been applied
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include stochastic optimization, linear-response optimization, and global optimization tech-

niques such as differential evolution algorithm [35], [43], [44]. Another method used in

approaching the inverse design of mechanical metamaterials include utilizing machine learn-

ing [45], [46], [47], [48]. In the inverse design approach of spinodoids by Kumar et. al, deep

neural networks were applied to help relate the parameters controlling the spinodoid design

and the mechanical properties [5]. Through a data-driven model, this research explores the

inverse design of 2D-spinodoids with the consideration of fabrication-related uncertainty.

1.3.2 Design of Mechanical Metamaterials under Uncertainty

Although a lot of research in the field of mechanical metamaterials is focused on the discovery

of new geometries that produce novel capabilities and properties, in order to see them uti-

lized in real-world applications, they need to be studied to the same lengths as traditionally

manufactured materials. Meaning that they need to be fully characterized in terms of how

they behave under mechanical defects, repeated, cyclic loading, and other more detailed, ex-

tended mechanical tests [3]. One property of materials that affects the expected behavior is

the effect of uncertainty on the design. This uncertainty stems from the fluctuations associ-

ated with manufacturing methods or any human interference in the development of materials

[20]. The effects of uncertainty on mechanical metamaterials have been explored in recent

years through robust optimization and with the consideration of hybrid uncertainties [49],

[50]. In this study, the numerical methodology is extended to design metamaterials under

the effects of the inherent uncertainty arising from processing and computational modeling.

This is achieved by developing a data-driven framework using Gaussian process regression

(GPR) to predict the expected behavior and variations of the mechanical properties as a

function of the microstructural topology.



Chapter 2

Investigating Truss-based Mechanical

Metamaterials

2.1 Research on Truss-based Mechanical Metamateri-

als

The main goal of the research on truss-based mechanical metamaterials is focused on de-

termining the best way to model a mechanical beam component made of 2D-truss based

microstructures. This mechanical component represents a smaller unit that would be re-

peated throughout a larger component to create a hierarchical structure. This larger com-

ponent would then contain a hierarchy of structures resulting in a mechanical metamaterial.

Although this research is based in the 2D-space, the modeling techniques established help

better understand how this could be expanded to the 3D-space. With emerging additive

manufacturing technology, the hierarchy that begins on the nano- to microscale can now be

achieved through advanced 3D-printing techniques. This study aims to develop a modeling

method to understand how external forces affect a 2D-mechanical beam made of truss-based

microstructures. This is completed by developing a database of microstructures of differing

truss-based geometry, constructing the beam component from these created microstructures,

and modeling the effect of external forces on the beam’s displacement behavior through fi-

10
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nite element analysis (FEA). An initial goal of optimizing the microstructure topology of

the beam eventually led to development of a graphical user interface (GUI). This GUI al-

lows users to design their own beam component and understand the resultant deformation

behavior subject to forces given by the user. Throughout this research an efficient modeling

technique is developed to represent the connecting interfaces between the truss-based mi-

crostructures so that FEA can be efficiently performed on a mechanical component. This

modeling technique allowed for the eventual creation of an easy-to-use GUI that could serve

as a template for future design tools specific to the design and development of mechani-

cal metamaterials. Some methods and techniques proposed in this chapter are published

as a journal article on AIAA Journal: K. McMillan and P. Acar, “Database Development

and Component Design with Two-Dimensional Trusslike Microstructures”, AIAA Journal,

published 2021 [51].

2.2 Development of a Database Made of 2D Truss-

Based Microstructures

The truss-based microstructures were created by first establishing a square border with

equal side lengths. Within this square border, trusses were connected in several different

arrangements that would produce a variety in structural layouts. These microstructures are

represented by black and white images, where the black lines represent trusses and white is

interpreted as void. See Figure 2.1 to view the 12 different structures composing the 2D-

database. These 12 microstructures make-up the selection of structures that can construct

the mechanical beam component to be modeled.
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Figure 2.1: The database of microstructures contains 12 truss-based structures, each refer-
enced as a number, for example the first microstructure would be referenced as “Microstruc-
ture 1” or “MS-1” [53].

2.3 Modeling the Beam Component Constructed of Mi-

crostructures

Within this research, an optimization problem is set to determine the optimum layout of the

truss-based microstructures constructing the beam to minimize its horizontal displacement

when subject to external tensile forces. The mechanical beam component considered in this

optimization problem is modeled as a simple cantilever beam. The beam is considered to

be split up into equal length, square sections, where each section is comprised of one of the

twelve microstructures in the database. The external tensile force acts throughout the beam
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by pulling on the right corners of each microstructure section. The length and number of

sections within the beam can be arbitrarily chosen, therefore the size of the microstructure

contained within each section is determined as the entire beam’s length divided by the total

number of sections. A diagram of the described beam in the initial optimization problem is

displayed in Figure 2.2.

Figure 2.2: Representation of the cantilever beam made of five microstructures, with an
external tensile force acting on the two outer corners of each microstructure section [51].

2.3.1 Finite Element Analysis of Beam Component

After establishing the database of microstructures and the representation of the mechanical

beam component, the next task was determining how to model the component so that finite

element analysis (FEA) could be applied. FEA would need to be completed to determine

the beam’s deformation behavior when subject to the external forces. The formulation used

to perform FEA on the beam made of microstructures is described by,

[D] [K∗] [u] = [F ] , (2.1)

where [D] and [K∗] relate to the elastic material properties and stiffness of the microstruc-
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tures (where the global stiffness matrix [K] is given by [K] = [D] [K∗]), [u] is the vector of

the beam’s nodal displacements, and [F ] is the applied force vector. To obtain the displace-

ment of the beam, [u] is solved for given the force, [F ], and material properties of the beam,

[D] and [K∗].

The FEA code utilized is a numerically, efficient code developed through MATLAB, that is

based on modeling the elements as trusses. The structure that is analyzed within this code

is constructed through the connections of the nodes which define the elements within the

structure. This takes into consideration the total number of elements, the amount of nodes

contained in each of these elements, and the total number of nodes in the entire structure.

The connections are established through the definition of one node connection to the next,

which results in the formation of one element. For example, if one element contains the

first and second nodes then this connection is defined as “(1,2)”. These connections are

defined until all elements of the structure have been described. Following the definition of

the structure, the properties of the structure are given by matrices [D] and [K∗]. Matrix [D]

is first defined by the stiffness properties given by C1,1, C1,2, C1,3, C3,3, and C4,4. From the

definition of these stiffness values the elastic moduli and Poisson’s ratios of the material can

be calculated. Which together form the needed material property matrix, [D]. The matrix,

[K∗], is defined by the length of each truss element, in which case of the beam are the bars

making up each structure. The length of each element is equal to the total length of the

beam divided by the total number of sections in the beam. Once the material properties

are defined through matrices, [D] and [K∗], the local stiffness matrices can be established.

These local stiffness matrices are formed by also taking into account the element connections

and compiled to form the global stiffness matrix which represents the entire structure. This

global stiffness matrix along with the defined force vector is then used in Equation 2.1 to

solve for the displacements of the defined nodes in the analyzed component.
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Since the design of the beam can be arbitrarily altered given by the database of 12 varying

truss-based microstructures, the main part of the FEA code described above that considers

the changing microstructure topology, is the definition of the element and nodal connections.

Therefore, two different methods in modeling the individual microstructures for the appli-

cation of the FEA formulation were executed. Each method was derived using MATLAB.

The first method was applied to the initial optimization problem in determining the opti-

mum microstructure layout to minimize the horizontal displacement of the beam subject to

tensile force. The results from this completed optimization problem would command for the

derivation of the second modeling method. This second method allowed for a more compre-

hensive approach by modeling the entire beam as an assembly of underlying microstructural

members for the application of FEA. This second method of modeling the changing topology

would eventually be utilized in the development of the graphical user interface (GUI).

Method 1: FEA Performed on Each Microstructure Section

The first method used to establish the element and node connections of the beam for FEA

involved analyzing each separate section made of a microstructure. This involved creating

individual MATLAB functions, each belonging to one of the twelve microstructures within

the database. Depending on the microstructure assigned to the section of the beam, that

function would be called on to perform a FEA on that particular microstructure. This

function would then provide an output providing the summed displacement of all of the

nodes contained within that microstructure. The resultant displacement of each section

would then be stored and summed, once all of the sections were evaluated, to determine

the total displacement of the beam. As stated previously in order to perform the FEA

on the changing microstructures within the beam, the nodes and elements of each created

microstructure would need to be assigned. These assignments were manually defined for
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each microstructure and set at the beginning of each of its respective functions. Several

of these manual assignments are displayed as examples in Figure 2.3. As the FEA code is

completed within each individual function, each function requires the material properties

and force vector acting on the structure. Therefore, each function requires the input of the

material properties, which are defined by matrices [D] and [K∗], followed by the input of

the force vector, which indicates that the external force is acting on the right corners of

each section. The material properties are assumed to be consistent throughout the entire

beam so the property matrices are consistent throughout each function. Finally, another

aspect to consider in the FEA is the differing boundary conditions of each section within

the beam. In the initial optimization problem, the only differing boundary condition is the

first section attached to the fixed end of the cantilever beam. This boundary condition fixes

the displacement of all nodes connected to that fixed end, while all other nodes are free to

displace in both the x- and y-directions. This boundary condition is another input within

each function that is defined by a “0” or “1”. This binary condition indicates whether the

microstructure is connected to the fixed end of the beam, indicated by “1”, or if it is free,

indicated by “0”. Once all the functions were constructed for each microstructure within the

database, the initial optimization problem was analyzed.

An optimization problem was conducted to determine the best layout of microstructures

to form a beam component that minimizes the horizontal displacement. Therefore, the

design goal was to determine the optimum placement of 2D-microstructures within each

section of the beam that would minimize the displacement resulting from a constant external,

horizontal force acting throughout the beam. A visual diagram of the defined optimization

problem is shown in Figure 2.4.

In order to determine the optimum microstructure topology, a central code was developed

that utilizes the 12 FEA functions defined in the first modeling method. As the beam
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Figure 2.3: Node and element assignments manually defined for the first method in modeling
for FEA. Microstructures 1, 5, and 7 are displayed. Node assignments are indicated by the
blue circles, where element assignments are indicated by the numbers inscribed by circles
[51].

properties can be arbitrarily chosen, the developed central code asks the user to input several

important factors that define the construction of the beam. This information is then utilized

in the FEA code within each function. The main code asks the user to input the material

properties of the beam, defined by C1,1, C1,2, C1,3, C3,3, and C4,4, the length of the entire

beam, and the number of sections within the beam, once these properties are established

matrices, [D] and [K∗], can be assembled. After the beam properties are established, the

magnitude of the force acting on throughout the beam is also defined by the user. Once

these values are entered, the central code finds the optimum topology of the beam by looping

through each of the 12 microstructures within the database. This loop accesses each of

the defined functions, developed in the first modeling method, which runs a FEA on each

microstructure. The main code then stores the microstructure that produces the smallest

horizontal displacement. Once a microstructure for each section of the beam is determined,

the displacements are summed at the end to determine the final overall displacement of the

beam.

The developed code for the optimization problem was tested by defining an arbitrary beam

made of Ti-6Al-4V, which is a common Titanium-Aluminum alloy used in aerospace materi-
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Figure 2.4: Diagram of the defined optimization problem, where the goal is to find the
optimum layout of microstructures to minimize displacement due to an external horizontal
force [53].

als. The properties defining this material given to the code are 168, 95, 69, 191, and 48 GPa

for C1,1, C1,2, C1,3, C3,3, and C4,4, respectively [52]. The length of the test beam was defined

as 10 mm with a total of five sections and a force with a magnitude of 1000 N acting on the

appropriate nodes was applied. Through the exhaustive search performed in the main code,

this resulted in the beam having the layout of Microstructure 1 being attached to the fixed

end of the beam, and all remaining sections set as Microstructure 4 [51]. This led to the

sectional displacement of 0.04 mm for Microstructure 1 and sectional displacements of 0.47

mm for the remaining sections made of Microstructure 4. Resulting in a total horizontal

displacement of 1.91 mm [53]. The output of the completed code and its results are displayed

in Figure 2.5. This resultant layout was consistent with altering the customizable factors

of the beam such as the length, number of sections, and magnitude of external force. With

changing magnitude of the force, the resultant displacement behavior changed accordingly,
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meaning a force with higher magnitude led to the same displacement, but with higher magni-

tude [53]. To verify that the code would always result in the same layout of microstructures,

each FEA function was tested individually with the same boundary conditions to determine

if Microstructures 1 and 4 would always result in the smallest displacement. This analysis

led to the realization that this first method used in modeling the beam for the application

of FEA may not be taking into account the structural connections between each section of

the beam. Meaning that although this method of modeling indicates the sensitivity of each

section contained in the beam, it may not be the most accurate method in that it does not

consider how the force is acting throughout the entire beam as a whole. More specifically,

it does not provide information regarding how the displacement behavior of one section of

the beam affects the next section. This led to the need of determining another method that

would allow FEA to be applied to the beam as an entirety as opposed to a conglomerate

of separate sections. The main part that would need to be altered in the first established

modeling technique is how the element and node connections of the beam are defined. In-

stead of defining the node and element connections manually, a method that determines

these connections automatically is needed. This led to the development of second modeling

technique defined in the following section.

Method 2: FEA Performed on the Beam as a Whole

The analysis of running the initial optimization problem with the first method in model-

ing the beam indicated that this initial method is not taking into account the behavior of

the interfaces between each section. Utilizing the first method of manually assigning the

node and element connections would require a high amount of human input. For just one

microstructure, the process of assigning the proper nodes and elements was extensive. Man-

ually assigning the nodes and elements for a beam made of more than one section would
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Figure 2.5: Input and result of the optimization code applied to the arbitrary beam made
of Ti-6Al-4V [51].

be inefficient and most likely lead to human error. Therefore, the second method in model-

ing the beam for the FEA code, involved determining a technique that would allow for the

automatic assignment of the node and element connections.

After observing the geometry of the 12 microstructures, each structure could be defined

as a set of two or three triangles. Within MATLAB, using the plotting command, these

triangles can be traced by following a path of predefined x- and y- coordinates. The vertices

of each triangle can be considered as nodes within the entire microstructure. With the

idea that these nodes can be defined by x- and y- coordinates, in conjunction with the

plotting command in MATLAB, the microstructures can be “drawn” by following a path of

coordinates defining each triangle in the microstructure. This was accomplished by defining a

three-by-three grid system that each microstructure can be placed on. The triangles making

up each of the 12 microstructures can be drawn using this grid system. The triangles within

each microstructure are defined by a path dictated by defining the smallest coordinate first,

considering the x-coordinate before the y-coordinate, this guideline is followed until the

triangle is closed by repeating the first pair of coordinates on its path. These base coordinates

make up each of the elements in the microstructure, which hold length values defined by the
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section length. The “pathway” of coordinates are the only parts of this method that require

manual input and these coordinates would be stored in a database or reference “library”,

which is in the form of a MATLAB function. This database is then called upon in later code

to construct the entire beam. See Figure 2.6 that shows how this process of defining each

microstructure through a list of coordinates was applied to Microstructure 1 (MS-1).

Figure 2.6: Method of defining each microstructure with a set of coordinates making up
the triangles contained within each structure. This method is applied to Microstructure 1
(MS-1). Figure derived from [53].

The reference library contains a total of 12 matrices, each matrix defining the triangles

making up each microstructure. The size of each matrix is 2 x n, where the first row

contains the x-coordinates and the second row contains the y-coordinates, and n depends

on number of total coordinates to construct each triangle, as some microstructures contain

three triangles while others only contain two. These 12 matrices are the only values that are

manually defined in this code and by using the standard three-by-three grid that was used

to define each structure, any structure can be defined using this grid system. The automatic

assignment of nodes and elements for the entire beam component is completed in the main

code, outside of the reference library of matrices.
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This main code no longer considers the initial optimization problem, instead the basis of

this main code builds a beam of microstructures that is defined by the user and solves how

the displacement behavior of the constructed beam depends on the external force applied.

The automatic assignment of nodes and connections is completed in this main code by

first gathering the vector that defines the make-up of the beam. This vector is a list of

microstructures that can be any combination of the 12 microstructures in the database.

This vector tells the library function, containing the definition of each microstructure, which

matrices of coordinates to pull out in order to construct the beam within the main code. The

construction of the entire beam is defined as a matrix containing a list of all of the coordinates

pulled from this library. When this matrix is defined, it ensures that the coordinates of each

node within each microstructure is based on its current position of the beam, instead of its

base coordinates from the library. Therefore each new section or microstructure contains

coordinates that are based on n × L, where n is the number of sections that precede that

microstructure and L is the length of each section of the beam which is still based on the

total length of the beam divided by the total number of sections contained in the beam.

This matrix of coordinates defining the entire beam structure is then filtered by eliminating

repeated coordinates, as each, unique coordinate needs to define a node only once. This

filtered matrix is then converted into node numbers, from 1 to the total length of the matrix,

which also defines the total number of nodes in the beam. The conversion of coordinates

to node numbers is completed by using the same guidelines when defining the triangles of

each microstructure, where the smallest x-coordinate is defined first. After each, unique

coordinate is defined a node number, the pre-filtered matrix containing all of the original

coordinates that define the construction of the entire beam is called back. Each coordinate

within this matrix is then assigned its respective node number. The node connections that

define the finite elements are found by first separating this pre-filtered matrix into the

triangles making up the structure. This can be done by finding where adjacent, same-valued
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nodes are located in the matrix, since this would indicate the end and beginning of a new

triangle. Once the number of triangles in the beam is established the connections between

each node or the definition of elements can be found. This is done by following the same

tracing technique used to define the triangles of each microstructure, as the nodes are in the

original order of the coordinates defining each of these triangles. Since some connections

will be repeated in the connecting interfaces of each section, these repeated connections are

identified and eliminated. See Figure 2.7 to view the visual output that demonstrates an

example of the automatic definition of node numbers and their connections, defined as the

elements, for the entire beam of microstructures.

Figure 2.7: Automatic assignment of nodes and subsequent elements by using the second
method, for a beam made of Microstructures 1, 12, and 5 in that order. Figure derived from
[51].
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This method allowed for the length of each element to be automatically defined as well as

the automatic generation of the force vector affecting the entire beam. Through this second

method of modeling the beam, the FEA of any length beam, made of any combination

of microstructures within the database, can be performed. As a result of the freedom of

design this modeling technique provides, the initial optimization problem was not applied.

As if the same exhaustive search method was used in completing this problem, it would

be computationally expensive to search through 12n different combinations, where n is the

number of sections making up the beam. Although this optimization was not analyzed, this

method led to the development of a graphical user interface (GUI) that allows users to build

any kind of beam made of the truss-based microstructures and subsequently, understand

how differing materials and external forces may affect the displacement behavior of their

built beam through FEA.

2.4 Development of Graphical User Interface

From literature review, the lack of design tools specifically for mechanical metamaterials was

listed as one of the factors that contributes to the delay in the application of these kinds of

materials in industry [3]. The developed graphical user interface (GUI), that allows FEA

to be performed on a beam made of truss-based microstructures, was made possible by the

development of the second modeling method previously described. This GUI could serve as

a template for future GUIs and design tools specifically meant to target users working with

truss-based or any kind mechanical metamaterial.

The GUI was created using MATLAB’s App Designer Tool. The main panel of this GUI,

shown in Figure 2.8, displays the different options a user can select from which allows them

to customize and construct their beam made of microstructures. The first property that
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the user needs to define is the material the beam is made of. They have the option of

selecting material presets of α-Ti-6Al-4V or β-Ti-6Al-4V, or they can select the “Manual

Input” option and enter the property values of C1,1, C1,2, C1,3, C3,3, and C4,4 in order to

build a beam with any material of their choice. The following step is defining the boundary

conditions of the beam. The ability to define different kinds of boundary conditions of the

beam was not previously possible with the first method in modeling the beam, but with the

automatic assignment of the nodes and elements these boundary conditions can be adjusted

for. The beam’s boundary conditions that the user can select from include “Fixed-Free”,

“Fixed-Fixed”, “Fixed-Roller”, or “Roller-Roller”. The length of each section of the beam

is then defined by numerical input, this length value is consistent across each section of the

beam. The user then needs to input the external, horizontal force that is distributed across

all nodes of the beam, which can be defined as either tension or compression. When these

values are defined, the user can then design the microstructure topology of the beam. They

have the option of creating a beam of 1 to n number of sections. If their beam contains

five or fewer sections they can select from a drop-down menu of microstructures for each

section and see their constructed beam in real time. Otherwise they can type in a vector

that defines the microstructure make-up of the beam in a separate input. This allows the

user to exceed a beam made of five sections. Additionally, if the user has a pre-defined beam

make-up they can upload an Excel file into the program as well. This freedom of choice in

the design of the microstructures making up each section of the beam, allows a user to choose

from 12n combinations to define the microstructure topology of the beam, where n is the

number of sections they decide to have in their beam. The user does not need to input the

beam’s properties in the particular order described, to indicate when the beam is completely

defined the “Calculate Total Beam Displacement” button will turn from red to green. This

shift indicates that a FEA can then be applied to their constructed beam. Once this button

is pressed the total x- and y-displacement caused by the set external force will be displayed
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in the adjacent box. While this number describes a simple summary of the beam’s resultant

behavior, there is another tab the user can view that will provide a more detailed overview

of the resultant beam.

Figure 2.8: The main panel of the GUI that allows the user to build a beam of their choice
[51].

Once the user is done defining and running the FEA on their beam they can select the “Resul-

tant Beam” tab to switch to another panel that displays a more detailed account of the beam’s

displacement behavior, shown in Figure 2.9. Within this panel the user can view the individ-

ual displacement of each node of the beam. More detailed information, aside from the total

displacement of the beam is also included, such as the x- and y-displacement at the start and

end nodes, along with indicators that select the nodes of maximum x- and y-displacement.

By preferences of the user, this amount of detail can be toggled on and off by the knobs
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located on the left panel and saved as a photo. A video demoing this GUI is provided,

https://youtu.be/YF1iXNcSl20. This developed GUI has been published on the open-source

platform of GitHub, available at https://github.com/kmcmi486/buildabeamofmicrostructures/.

By having this code available to the public, anyone has the opportunity to interact with this

interface and understand how truss-based microstructures can affect the displacement be-

havior a mechanical beam component.

Figure 2.9: The resultant panel of the GUI that displays a more detailed account of the
beam’s displacement behavior. This beam is the result of the design and inputs displayed
in Figure 2.8 [51].

To ensure that the developed GUI was working properly, several varied beam configurations

were tested and analyzed. Two configurations were directly compared to one another in

order to determine the direct effect that different inputs would have on the resultant beam

output. The first configuration that will be discussed is a beam made of α-Ti-6Al-4V. This
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beam contains a total of four sections and a fixed-free boundary condition. The horizontal

force acting on the beam is a tensile force of 2500 N. The second configuration is made of β-

Ti-6Al-4V with four sections and a fixed-roller boundary condition. In this configuration, a

compression force double in magnitude, of 5000 N, is acting on the beam. Both configurations

have section lengths of 1 mm. Each configuration and their resultant x- and y-displacement

values are summarized in Table 2.1, while Figure 2.10 displays the resultant first and second

beam configurations respectively from left to right, respectively.

Table 2.1: The varied parameters for each beam configuration and their resultant x- and
y-displacements [51]

Input Parameters Configuration 1 Configuration 2
Material α-phase Ti-6Al-4V β-phase Ti-6Al-4V

Applied Force (N) 2500 -5000
Section Length (mm) 1 1
Boundary Conditions Fixed-Free Fixed-Roller
Microstructure Design [1,6,5,3] [12,7,10,11]

Resultant Total Displacement Values
X-Displacement (mm) 0.837 -1.859
Y -Displacement (mm) -1.582 3.403

Figure 2.10: The beams resulting from the defined first and second configurations [51].

When analyzing the first configuration that experiences a smaller, tensile force the resultant
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direction of the beam is the southeast direction, with displacement values smaller in value

when compared to the second configuration which experiences a compression force twice

higher in magnitude. The resultant beam of this second configuration is also displaced in

the opposite direction of northwest. After analyzing the numerical and visual results of the

configurations, it was determined that the GUI executes properly, but in order to verify the

results more extensively, external FEA software can be utilized [53].

2.5 Possible Improvements to Developed Graphical User

Interface and Future Work on Truss-Based Me-

chanical Metamaterials

The development of the GUI led to a generation of new ideas in how this GUI could be

improved for actual industry. As the microstructure for mechanical metamaterials can be

selected and designed to exhibit certain properties, instead of having the GUI display the

resultant behavior of a predefined mechanical beam the user could instead input design

constraints or goals which could then be interpreted as objectives in the design of beam.

This objective would be to determine an optimum layout of microstructures that satisfies

the user’s inputs. These kind of inverse design problems could be approached as optimization

problems, similar to the initial optimization problem discussed during the development of the

first method in modeling the beam of microstructures. Yet, instead of utilizing an exhaustive

search, a time-efficient, gradient-based optimization algorithm can be applied so that an

optimum solution could be obtained more efficiently. Extending on this idea, developing a

machine learning algorithm that can learn from the solutions of the inverse design problems,

could possibly lead to the generation of more kinds of truss-based geometries that are based
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on the defined grid system discussed in the second modeling method. While the original

developed database of truss-based microstructures does provide a variety in topology, along

with idea of adding solutions by applying machine learning, the database could also be

improved by having the user input their own geometry based on the same grid system.

To expand outside of the option of analyzing transversely isotropic materials, more kinds

of materials could also be considered by expanding the manual input material properties.

To verify the results from the GUI, several 2D-beam configurations within the GUI were

tested and analyzed. In order to further verify these results from the GUI, the 2D-beam

component could be translated in external FEA software or to an actual 3D-component

through additive manufacturing. Once 3D-components are fabricated, the 2D-results can be

analyzed and compared to corresponding tension and compression tests.

Aside from possible improvements to the developed GUI, other ideas on how to further study

these truss-based mechanical metamaterials is also considered. To further characterize the

effect of these truss-based microstructures on the mechanical beam component, other proper-

ties beside displacement behavior could be investigated. This could include observing failure

behavior of these microstructures such as buckling and how long term force applications,

such as cyclic loading, affects these structures as well.

2.6 Summary

In this research, truss-based mechanical metamaterials were studied through their applica-

tion to a 2D-mechanical beam component. This was completed by developing a database

made of 12 truss-based microstructures that make up the topology of the beam component.

In order to understand how the beam component would behave with these kinds of structures

a computational modeling strategy would need to be employed in order to conduct FEA on
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the beam. As the beam is split into square sections that can be filled with the database of

truss-based microstructures, the first method developed to model the beam analyzed each

section individually. Using an exhaustive search method an optimization problem was ap-

proached in which the optimum layout of microstructures was determined to minimize the

displacement of the beam subject to an external, horizontal force. From the analysis of the

results of this optimization problem, the interfaces of each beam section were not accurately

being accounted for, therefore the second method in modeling the beam for FEA resulted.

This method led to standardizing the make-up of each microstructure on a grid system. This

standardization allowed for the automatic assignment of nodes and elements, and their subse-

quent connections. Therefore, no matter the microstructure topology of the beam, the beam

could be analyzed in its entirety as opposed to a conglomerate of individual microstructure

sections. This second modeling method led to the development of an easy-to-use GUI, which

helps users easily understand how truss-based microstructures can affect the displacement

behavior of a mechanical component. This GUI allows a user to construct a beam of any

combination of the 12 microstructures from the database and understand the deformation

behavior of their designed beam. It is aimed that the GUI contributes to the development

of computational tools for the design of mechanical metamaterials in industry. Although

there are promising applications for truss-based mechanical metamaterials, such as to fields

of biomedical and aerospace, literature has indicated that these materials are prone to high

stress concentrations in their corners and susceptible to symmetry breaking defects when

manufactured [5], [25], [54]. This is also implied by the displacement results of Figure 2.10.

With the continued study of different kinds of mechanical metamaterials, a self-assembled

kind of mechanical metamaterial was discovered. Contrast to trusses and other periodic

mechanical metamaterials, the geometry of the unit cells is smooth and less susceptible to

high stress concentrations. These found mechanical materials are called spinodoids and the

study completed with these materials will be discussed in Chapter 3.



Chapter 3

Investigating Mechanical

Metamaterials with Spinodal

Topologies, Spinodoids

3.1 Research on Spinodoids

The beginning of this research involved studying mechanical metamaterials with truss-based

geometry. These truss-based structures were studied within the 2D-space through the devel-

opment of a database which was applied to the construction of a mechanical beam compo-

nent. The research was finalized through the development of a graphical user interface which

allows users to understand the effect these truss-based microstrucures have on a mechanical

component. To further extend the study of mechanical metamaterials, more research was

completed on a novel kind of mechanical metamaterial called spinodoids. Spinodoids form

by replicating the process of spinodal decomposition. Spinodal decomposition is a phase

separation process that results in the formation of two smooth phases [55]. In the formation

of spinodoids, one phase from the process is classified as void, while the other is classified as

solid [5]. The combination of these phases produces the smooth, bi-continuous structures,

seen in Figure 3.1. The smoothness of these structures makes these materials less susceptible

to high stress concentrations present in truss-based mechanical metamaterials. In addition,

32
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the spinodal topologies are aperiodic compared to more commonly known origami-, plate-,

or truss-based mechanical metamaterials [5]. Periodic geometries are more prone to symme-

try breaking defects that lead to unpredictable mechanical behavior [5]. With the perceived

benefits over commonly known mechanical metamaterials, these spinodal topology-based

mechanical metamaterials, known as spinodoids, were further studied within the 2D-space.

Within this study, 2D-spinodoids were generated and characterized and through the use of

data-driven modeling techniques the inverse design of these structures was performed. Some

methods and techniques proposed in this chapter have been submitted as a journal article to

AIAA Journal: K. McMillan and P. Acar, “Inverse Design Optimization of 2D-Mechanical

Metamaterials under Uncertainty”, AIAA Journal, under review.

Figure 3.1: Example of a spinodoid-like structure created from 3D-extrusions of generated
images representing spinodoids. These extrusions were meshed together to form the spinodal-
like geometry seen in this structure. Figure derived from [60].
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3.2 Mechanical Metamaterials Formed from Spinodal

Decomposition: Spinodoids

The materials studied take form by simulating the phase separation process called spinodal

decomposition. This is a natural process that is taken advantage of in the manufacturing

of polymeric membranes, binary alloys, and micro-emulsions [5], [33], [56], [57]. Spinodal

decomposition occurs in a thermodynamically unstable solid solution [32], [58]. The process

first appears as a solution of finely mixed precipitates, as it eventually evolves, two-distinct

phases form, which then coexist in equilibrium [32]. Compared to other phase separation

processes, the dynamics of spinodal decomposition can be modeled through an approximate

analytical solution known as the Cahn-Hilliard Equation [55], [59]. Although this phase

separation can be modeled through this analytical solution, it is computationally expensive

to model it numerically. Therefore Kumar et. al utilized an efficient model of the equation by

ridding of its time dependency and applying Gaussian random fields (GRFs) [5], [31]. This

formulation can be described by defining a phase field of φ that represents the fluctuations of

the differing concentrations of the two separating phases. When considering the formation of

spinodoids, one phase is defined as solid, while the other is defined as void. Through GRFs,

this phase field can be decomposed with Fourier analysis. With this, the concentration φ

can describe the solid or void phase at x ∈ V , where V is described by V ∈ R3 [5],

φ(X) =

√
2

N

N>>1∑
i=1

cos(βni · x + γi),with

ni ∼ U(S2), γi ∼ U([0, 2π])

(3.1)

where S2 = {k ∈ R2 : ∥k∥ = 1} represents the unit circle in two dimensions. Within this
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equation N is the number of waves, β > 0 is a constant wave number, ni ∼ U(S2) is the

direction of the wave vector, and γi ∼ U([0, 2π]) is the phase angle of the ith wave vector,

both the direction and phase angle of the wave vector are uniformly-distributed. Equation

3.1 represents the GRF that produces isotropic topologies, where anisotropic topologies

are resultant of the approximation produced from a non-uniform orientation distribution

function (ODF) described by [5],

ni ∼ U({k ∈ S2 : (|k · ê1| > cos θ1)⊕ (|k · ê2| > cos θ2)⊕ (|k · ê3| > cos θ3)}), (3.2)

where the θ values control the resultant formed spinodoid topologies. To determine the

assignment of solid and void phases in the structure the level sets of the phase field were

computed. Through a binary indicator function, solid or void is assigned at X by [5],

solid network : χ(X) =


1 if φ(X) ≤ φ0

0 if φ(X) > φ0

(3.3)

where φ0 is the threshold at the average relative density of the solid phase. This is described

by [5],

φ0 =
√
2erf−1(2ρ− 1) (3.4)

where ρ is defined by ρ = E[χ]. To prevent disjoint solid domains ρ is contained within the

range of ρ ∈ [0.3, 1], in this research a value of ρ = 0.64 was used. To summarize, these

equations allow for the generation of spinodal-like topologies without the need to undergo

computationally expensive simulations of the Cahn-Hilliard equation [5], [31]. In this study,

these equations are considered in the 2D-domain as opposed to the 3D-domain considered
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in Kumar et al.’s work.

3.3 Generating Spinodoids

Like the research on truss-based mechanical metamaterials, MATLAB was utilized in the

generation of the 2D-spinodoids in this research. The geometries are produced by following

the formulations defined in Equations 3.1 and 3.2. The geometries are considered as unit cells

that can be repeated or distributed throughout a material to create a hierarchy that defines

a mechanical metamaterial. The spinodoid geometries in this research are represented by

2D-monochrome images, where black is considered solid material and white is considered as

void. These images are defined by square arrays, whose size depends on the pixel resolution

of the image. These arrays consist of zeros and ones, where zero indicates black and one

indicates white. The geometries are controlled by the θ values displayed in Equation 3.2. The

range of these values lie between 0 and π/2, as symmetric values would produce duplicate

geometries. Although there is not a set number of θ parameters that control the resultant

geometry of the spinodoid, the same number of θ parameters set in Kumar et. al’s research

were used in this study. To study the effect of increasing the number of θ parameters on

the spinodoid geometry, the Young’s modulus, which is the mechanical property that is

later used to characterize the generated spinodoids, was compared for spinodoids controlled

by four and five θ parameters. The ranges of the Young’s modulus values resulting from

spinodoids controlled by four and five θ values were determined through a genetic algorithm

where the highest and lowest values were determined. Figure 3.2 demonstrates that the

range of the Young’s modulus values did not differ significantly between spinodoid geometry

controlled by three, four, or five θ parameters [60]. This indifference to increasing the amount

of controlling parameters justified using only three θ parameters. In addition, increasing the
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amount of θ parameters increases the dimensionality of the system, which would eventually

lead to a system that is not as efficient to model as one controlled by fewer parameters.

A lower amount of parameters was not utilized, as it would not allow for a greater control

over the geometry compared to three. Therefore, due to the idea of reducing the amount of

parameters that would later be defined as design variables and to also maintain a greater

control over the resultant geometry, three θ values were selected to be used in generating the

data set of spinodoids. Depending on the pixel resolution of the desired image, the spinodoid

can be generated in under a few minutes, but as the pixel resolution of the image increases

so does the required time to produce the image within MATLAB, see Figure 3.3 [60]. Within

this research the idea of computational efficiency was kept in mind, therefore a large database

of lower resolution images were generated to be utilized later in the data-driven modeling

techniques.

Figure 3.2: The value of Young’s modulus dependent on the number of θ-parameters con-
trolling the resultant spinodoid [60].
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Figure 3.3: The time it takes to generate a 2D-spinodoid image depends on the pixel reso-
lution of the image [60].

Examples of generated spinodoids and the θ values that produced them are displayed in

Figure 3.4, the top images have a 50 by 50 pixel resolution, while the remaining bottom

images have a 200 by 200 pixel resolution. To generate an extensive training data set, a

total of 10,000 50 by 50 images were generated as the initial set of images representing

different spinodoid unit cells. This data set was later extended for a specific data-driven

modeling technique by the addition of 100 200 by 200 pixel images.

3.4 Characterizing Spinodoids

As the potential applications for this kind of mechanical metamaterials have been theorized

to serve as replacements for bone implants, the mechanical properties of these generated

spinodoids need to be determined [5]. Calculating the Young’s modulus values of the gener-
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Figure 3.4: Examples of the generated spinodoid monochrome images, the top images have
a resolution of 50x50 pixels, while the bottom images have a resolution of 200x200 pixels.
Figure derived from [60].

ated 2D-spinodoids would allow for the determination of the design space of these materials.

Since spinodoids are represented in the form of 2D monochrome images, their Young’s mod-

ulus is calculated through density-based pixel calculations. These calculations follow the

formulation presented by Wang et. al, who used a modified solid isotropic material with

penalization (SIMP) to calculate the Young’s modulus of porous 2D-mechanical metama-

terials while optimizing their designs [61], [62]. As this formulation calculates the Young’s

modulus of each element within the unit cell, the generated spinodoid images needed to be

discretized based on their pixel resolution. Therefore the total number of elements whose

Young’s modulus would be calculated would be n2, where n is the size of the square pixel

resolution. The Young’s modulus of the unit cell is then taken as the average of the Young’s

modulus of each element. Which is found by summing each modulus value and dividing the

sum by the total number of elements in the image. The formulation applied to these images

is provided [61], [62],
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Ee(ρe) = Emin + ρpe(E0 − Emin), (3.5)

where Ee, is the Young’s modulus of each element, Emin is the Young’s modulus of the

void material to prevent singularity of the stiffness matrix (this was set to 10−9 GPa), ρe is

assigned a value of 0 or 1 depending on if the pixel is black or white, p is the penalization

factor if ρe was not a discrete value of 1 or 0 (to further drive the density to a 0 to 1

solution), and E0 is the Young’s modulus of the material that makes up the solid spinodoid.

In this study, black pixels are considered solid material and white pixels are void, therefore

ρe is assigned a value of 1 if the element is a black pixel and assigned a value of 0 if the

element is a white pixel. Additionally, this density-based pixel formulation is not sensitive to

direction. The solid material assigned to the spinodoids was arbitrarily chosen as polymethyl

methacrylate (PMMA), leaving E0 to be 3.3 GPa, but any material could be assigned if the

Young’s modulus is known [63]. The final Young’s modulus of the spinodoid would then be

found through,

Espinodoid =

∑
Ee, black pixels +

∑
Ee, white pixels

n
, (3.6)

where Espinodoid is the Young’s modulus of the spinodoid,
∑

Ee, is the summation of the

Young’s modulus values for all of the black and white pixels respectively, and n is the

total number of elements (or pixels) in the image. Using this formulation, the Young’s

modulus value of all generated spinodoids was calculated. Figure 3.5 demonstrates the

entire design space of the 10,100 generated spinodoids, where the range of Young’s modulus

values lies between 1.55 and 1.71 GPa. This figure also indicates that the calculated Young’s

modulus value does not depend on the pixel resolution as similar modulus ranges arise

between the 50 by 50 and the 200 by 200 resolution images. Some spinodoids and their
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corresponding Young’s modulus values are displayed in Figure 3.6. With these calculated

values, a relationship between the θ parameters controlling the resultant geometry of the

spindodoids and the Young’s modulus value could be explored through data-driven modeling

techniques. By defining the relationship between the input, the controlling θ parameters,

and the output, the Young’s modulus value, an inverse design approach can be used to drive

the unique design of a spinodoid that is created from a desired material property, as opposed

to selecting a material satisfying a desired material property.

Figure 3.5: The calculated Young’s modulus depending on θ1, θ2, and θ3 for all generated
spinodoids is displayed on the left and on the right, the same relationship is displayed for
the generated 200 by 200 resolution images. Figure derived from [60].

Figure 3.6: Examples of spinodoids and their calculated Young’s modulus values found
through density-based pixel calculations. Figure derived from [60].
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3.5 Graphical User Interface to Design Spinodoids

With the capability to generate a 2D-monochrome image to represent the spinodoid and

calculate the Young’s modulus of the generated spinodoid, another graphical user interface

(GUI) was created. This GUI allows a user to enter in three θ values, which give them control

of the resultant geometry of the spinodoid. Along with these parameters, the user must enter

the pixel resolution of their image and the material that their spinodoid unit cell is be made

from. Once these values are entered into the GUI, seen in Figure 3.7, the user would then

press the “Generate Spinodoid” button. This prompts the program to begin generating the

spinodoid image. Once the spinodoid is generated, the Young’s modulus value is calculated

using the same density-based pixel formulations described above and the calculated value

is displayed under the resultant spinodoid image. The first version of the developed GUI is

published on GitHub and available at https://github.com/kmcmi486/designaspinodoid. A

video demoing this GUI is provided, https://youtu.be/YF1iXNcSl20. This GUI is another

design tool created to aid in the same goal described in the development of the GUI in

Chapter 2.4, that allows users to construct a beam made of truss-based microstructures.

These GUIs are based solely around working with and designing mechanical metamaterials,

with the common goal of understanding the specific mechanical metamaterials studied in

this research.

3.6 Data-driven Modeling of Spinodoids

Data-driven modeling is a popular method used in many areas of research particularly in

the materials field [64], [65], [66]. This kind of modeling is utilized in materials research to

estimate the non-explicit relationship between the materials and properties [67]. Machine
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Figure 3.7: The main panel of the GUI created to design spinodoid unit cells. Figure derived
from [60].

learning is a popular technique used to determine the relationship between the material and

its property or more generally the input and output [31], [68], [69], [70]. In this research,

principal component analysis (PCA) was first applied to the large database of spinodoid

images. PCA was used to reduce the dimensionality of the image-based design space. How-

ever, the reduction in the problem dimension was not found to be satisfactory. Therefore,

Gaussian process regression (GPR), was then applied to model the relationship between the

controlling θ parameters and the resultant spinodoid geometry. With using this method

comes the added benefit of considering uncertainty. The GPR model computes the expected

values and the associated uncertainty of the material properties, without using a numerical
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uncertainty quantification algorithm [71].

3.6.1 Principal Component Analysis

Principal component analysis (PCA) is a machine learning method whose main goal is to

reduce the dimensionality of a system, while also keeping the key characteristics of the

system [72]. It is mainly applied to image-based data due to the high amount of dimensions

contained within a color or monochrome image. PCA reduces the dimensions of the data by

projecting the data onto lower dimensions defined as principal components (PCs). In order

to reduce the dimensions while also covering the design space of the system the projected

points are found by maximizing the variance of each PC, while also ensuring that each PC

is uncorrelated. Therefore, each PC is orthogonal to each other in its projection to a lower

dimension. These PCs are considered numerical representations of the data that describe

the features or patterns of the high-dimensional data [73].

Initially a large database of 10,000, 50 by 50 monochrome images were generated. With each

spinodoid being represented by a 50 by 50 pixel image the number of dimensions describing

this data is 2500, derived from the resolution of the image. The high problem dimensionality

increases the required computing times exponentially. Once the dimensions of the system

are reduced, the PCs could be summed together with linear coefficients to describe each

spinodoid. Ideally if the 2500 dimensions could be reduced to a reasonable amount of PCs,

the resultant linear coefficients could be used as design variables to later optimize or derive

a spinodoid with a specific modulus value. Using Scikit-learn library of Python, PCA was

applied to the data set of 10,000 images [74]. With the initial application of PCA, a total

of 450 PCs were needed to cover 90% of the data and a total of 938 PCs were needed to

cover 95% of the data. See Figure 3.8 to view the explained variance based on the number
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of dimensions utilized, the figure demonstrates the number of dimensions needed to cover a

certain percentage of the image-based data. After filtering was applied to the images, a total

of 18 PCs were still needed to cover 80% of the data. Although this is significantly smaller

than the pre-filtered data, it is still a high amount of PCs to work with, especially if the

subsequent coefficients of these terms are to be considered in future optimization problems.

Figure 3.8: Explained variance of the database of 10,000 spinodoids based on the number
of principal components utilized, as the percentage increases so does the number of required
principal components [60].

Since this attempt with PCA led to a high number of required PCs to accurately represent

the data, the goal of utilizing PCA as a potential modeling technique could not be proceeded

with. Instead, another efficient data-driven modeling technique would need to be applied.

This led to the application of GPR as another method to model the potential relationship
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between the spinodoids and their resultant Young’s modulus value.

3.6.2 Gaussian Process Regression

Gaussian process regression (GPR) is a data-driven technique that is used to model and

explore unknown relationships and functions [75]. This regression method has the same

goal as other machine learning techniques of establishing a connection between the inputs

and outputs of the system model. The added benefit of GPR over image-based modeling

techniques, including PCA, is its ability to simultaneously calculate uncertainty associated

with the expected value predictions. The analysis of uncertainty will also provide a better

understanding on the effects of the fabrication-related uncertainty on spinodoid design. GPR

works by predicting the probability distributions over functions that fit over a set of points.

The form of these functions depends on the kernel function and its hyperparameters. The

hyperparameters can be optimized to improve the fidelity of the GPR predictions [76], [77].

In this study, a multi-fidelity surrogate model is developed using GPR. This multi-fidelity

model is built from low- and high-fidelity data, where the high-fidelity data is considered

to be a more accurate representation of the problem. The high-fidelity data was created by

generating higher resolution images of 200 by 200 pixels, that represent larger microstructural

solution domains. This is characterized as high-fidelity data as the homogenized material

property predictions over large microstructure domains are expected to be more convergent

than the predictions over smaller domains. Accordingly, the low-fidelity data was assigned

as the lower resolution images of 50 by 50 pixels.

To apply GPR, the input and output data needed to be established. The input data in this

system are the three θ parameters that control the geometry of each of the spinodoid and the

output data is the Young’s modulus value of each spinodoid. The GPR model attempts to
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find a correlation between this data, while also predicting the Young’s modulus values based

on the θ parameters. In addition, GPR does not need a high amount of data to establish

a model, therefore only 10% of the original database of 10,100 samples were utilized. In

order to build and test the model, the data needed to be separated into training and testing

for both the low- and high-fidelity data. A total of 80% of low-fidelity data and 70% of

high-fidelity data was assigned as training data. The remaining percentage from each data

set was assigned for testing. The application of GPR was completed in MATLAB. The

following formulation describes the process in which GPR was applied to this system. Since

calculations would be performed in matrix form, the input and output data of both training

and testing are represented by matrices [X] and [Y],

[Xr] =

[XH ]

[XL]

 , [Yr] =

[YH ]

[YL]

 [Xt] =

[XH ]

[XL]

 , [Yt] =

[YH ]

[YL]

 , (3.7)

where [Xr] is a r by 3 matrix, where r is the number of training samples and the value, 3,

represents the three θ values that control the geometry of each spinodoid, and [Yr], with

size of r by 1. The test samples are represented similarly in that [Xt] is a t by 3 matrix and

[Yt] is a t by 1 matrix, where t is the number of test samples. Within the GPR formulation

a multi-fidelity covariance needs to be calculated to determine the variance within the data

points considered as inputs, these inputs are the θ values that generated each image. The

covariance matrix is constructed by plugging the input data into a kernel function. As

mentioned, any kernel function can be used, but a rational quadratic kernel function was

used in this model. To see other types of kernel functions, see Appendix A. The rational

quadratic kernel function takes the form below,
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K(x, x̄) =

(
1 +

(x− x̄)

2αl2

)−α

, (3.8)

where α and l are the hyperparameters to be optimized and the x-values are the input values

to be used to calculate the covariance [78]. The covariance matrix that holds the calculated

values from the kernel function is represented by matrix, [K̄],

[K̄] =

 [K] [K∗]

[K∗]
T [K∗∗]

 , (3.9)

where [K] compares the correlation within the training data of θ values with a size of r x

r x p, where p represents the number of input parameters, which takes the value of 3, as

there are three θ values that are being varied to generate each spinodoid. [K∗] compares the

correlation between the training and test data with a size of r x t x p, [K∗]
T is the preceding

matrix transposed, and [K∗∗] compares the correlation between the test data of θ values with

a size of t x t x p. Once this covariance matrix is found, the expected values of the output

data, which are the Young’s modulus values, can be found through,

E[ �Y∗] = [K∗]
T [[K] + σ2[I]rxr]−1[Y], (3.10)

where σ2 is the initial estimation of the variance of the system, E[ �Y∗] is the expected value of

Young’s modulus and the matrix, [Y] includes both the low- and high-fidelity training mod-

ulus values. The GPR model is calibrated by optimizing the hyperparameters in Equation

A.1 which is completed by minimizing the objective function,

f = ∥E [Y∗]− EH [Y∗]∥+
1

2
∥STD − STDH∥ , (3.11)
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where the amount of error in the prediction of the modulus values and associated standard

deviation is minimized in comparison to the high-fidelity test points, which portray a more

accurate representation of the system. This optimization problem was completed using a

genetic algorithm, where the optimum values of σ, α, and l, were found to be as 0.0661,

0.0406, and 4.4396, respectively [60]. The uncertainty of the predictions can also be found

simultaneously by,

[Σ∗] = [K∗∗]− [K∗]
T [

[K] + σ2 [Inxn]
]−1

[K∗] + σ2 [Itxt] , (3.12)

with this, variance of the output or Young’s modulus can be found, from which unit variance

can be calculated.

With the above formulation, MATLAB was used to derive the GPR model to represent the

relationship between the input of the θ parameters and output of Young’s modulus values.

Figure 3.9 demonstrates the GPR model predictions plotted with the test data to verify the

model [60]. The range of values expanding the predictions represent the uncertainty of the

predictions. This uncertainty may arise from pre- and post-processing-related variability,

inherent material uncertainty, variations arising from computational models, and any hu-

man involvement in the manufacturing. Since the training values of Young’s modulus were

dominated by values around 1.63 GPa, specifically with an average of 1.635 GPa, the GPR

predictions also fall within this range of hovering around 1.63 GPa. When calculating a

value to multiply by σ to cover 95% of the data, a value of 3.1σ was found, see Figure 3.10

[60]. Since this value falls within a range of 3σ to 3.5σ it helps further validate that the

predictions also follow a Gaussian distribution as the test values follow a Gaussian distribu-

tion, shown by Figure 3.11. Figure 3.11 also demonstrates how closely the distribution of

the GPR predictions replicates the test data. This help support the idea that the developed
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SPINODOIDS

GPR serves as an accurate model to represent the system. With the establishment of the

GPR model that is able to link the θ parameters and Young’s modulus, inverse design under

uncertainty with spinodoids could be approached and is discussed in the following chapter.

Figure 3.9: Test data compared to the GPR predictions for expected values, this also demon-
strates the uncertainty associated with the GPR predictions [60].
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Figure 3.10: A value of ±3.1σ with the GPR predictions covers 95% of the test data [60].

Figure 3.11: Probability distribution functions of the predictions from the GPR model and
test data [60].



Chapter 4

Inverse Design of Spinodoids Under

Uncertainty

4.1 Inverse Design of Spinodoids using Gaussian Pro-

cess Regression

The benefit of mechanical metamaterials over that of traditionally manufactured materials

is the ability to design the underlying microstructure topology so that the material can elicit

specific, desired properties. This capability provides the opportunity to approach the design

of mechanical metamaterials inversely, where the properties can first be defined and the

material is then constructed based on these set properties. In this study, inverse design

is explored with 2D-spinodoid unit cells, with the additional analysis of uncertainty in the

resultant design. In the inverse design problems explored in this research, the desired spin-

odoid is found by determining the three θ parameters that control the spinodoid geometry, as

these variables are the inputs that the developed Gaussian process regression (GPR) model

is based upon. The desired properties that can be targeted include a specific Young’s mod-

ulus or the uncertainty in the design. The inverse design problems are approached through

the definition of optimization problems. A total of three inverse design problems are de-

fined and analyzed. These three optimization problems focus on generating a spinodoid

52
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that satisfies an arbitrarily selected Young’s modulus value, minimizing the uncertainty or

variance of Young’s modulus in the spinodoid design, and a combination of the two where

a desired Young’s modulus value is set with the additional goal of minimizing the expected

uncertainty.

4.2 Defining the Inverse Design Problems

The first design problem aims to find the three θ values that will generate a spinodoid with

a desired Young’s modulus value. The goal of this optimization problem is to minimize the

error between the desired modulus value and the Young’s modulus found through the cali-

brated GPR model created through the process detailed in Chapter 3.6. This optimization

problem takes the form of,

min ∥E [Y∗]− Edesired∥

E [Y∗] = f([K̄](l, σ, α, θ1, θ2, θ3))

s.t. 0 ≤ θ1, θ2, θ3 ≤
π

2
,

(4.1)

where E[Y∗] is the target expected E value that is predicted by the calibrated GPR model

whose predictions depend on the multi-fidelity covariance matrix [K̄] and hyperparameters,

l, σ, and α that were optimized to calibrate the model. The θ values selected must fall

within the same range used to generate the spinodoid of 0 ≤ θ1, θ2, θ3 ≤ π/2. These θ

values are also the input values that are used as the test values in the formation of the

GPR model, which also affect the multi-fidelity covariance matrix. The resultant expected

Young’s modulus value, E, is compared to the target Young’s modulus value. Given that

the range of the Young’s modulus values used to train the model were dominated by values
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around 1.63 GPa and the GPR model resulted in a prediction range of 1.63 to about 1.64

GPa, the target Young’s modulus value for this initial optimization problem was set to 1.636

GPa [60]. This target Young’s modulus value would be utilized in the two remaining inverse

design problems. The second inverse design problem focused on producing a spinodoid

with a minimum amount of uncertainty associated with the design, therefore minimizing

its subsequent unit variance associated with the Young’s modulus. This unit variance is

interpreted as the variance per number of test samples. This kind of optimization focused

on minimizing uncertainty is also known as robust optimization. This optimization problem

has a similar form as the first established optimization problem, excluding the objective

function,
min σ2[E]

σ[E]2 = f([K̄](l, σ, α, θ1, θ2, θ3))

s.t. 0 ≤ θ1, θ2, θ3 ≤
π

2
,

(4.2)

where σ2[E] is the unit variance of the expected Young’s modulus, E. The last inverse

problem combines the design goals of the first two, resulting in the goal to find a target

Young’s modulus, while also minimizing the associated uncertainty in the spinodoid design.

This led to the development of a multi-component objective function that is a sum of both

previous objective functions. This optimization problem is defined as follows,

min ∥E [Y∗]− Edesired∥+ STD[E]

E [Y∗] , σ
2[E] = f([K̄](l, σ, α, θ1, θ2, θ3))

s.t. 0 ≤ θ1, θ2, θ3 ≤
π

2
,

(4.3)

here both goals are considered through the composite objective function. Each of these

optimization problems were executed within MATLAB using an interior-point optimization
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algorithm. In addition, to determine if a global minimum existed for each optimization

problem, several initial guesses of θ values were tested for each problem. The same initial

guesses were given to each formulated optimization problem. The results of each optimization

problem are discussed in detail in the following section.

4.3 Analysis of Optimum Spinodoids Found with In-

verse Design

After executing the optimization problems defined in the previous section, the first goal

of finding a specific Young’s modulus and third goal that is a combination of finding a

specific Young’s modulus value and minimizing the uncertainty in Young’s modulus resulted

in multiple possible solutions. The second optimization problem, which focused solely on

minimizing the uncertainty of Young’s modulus, initially resulted in only one solution, but

with further analysis the resultant uncertainty or variance value was consistent with other

optimized spinodoids.

The first problem focused on finding a target Young’s modulus value of 1.636 GPa. By using

an interior-point algorithm, a spinodoid with θ values of 0.850, 0.309, and 0.332 for θ1, θ2,

and θ3, respectively, satisfied the target Young’s modulus value. After trying another initial

guess for the θ parameters, another spinodoid, generated from θ values of 0.827, 1.321, and

0.459 also met the design target for Young’s modulus. These spinodoids serve as two options

that satisfy the first inverse design problem in targeting a specific Young’s modulus value

and are displayed in Figure 4.1 [60]. Other initial guesses were tried and the associated

optimized spinodoids are summarized in Figure 4.4.

For the second design goal, focused on minimizing the uncertainty of Young’s modulus, only
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Figure 4.1: The two spinodoids and their θ values that are solutions to the first inverse
design problem of targeting a specific Young’s modulus of 1.636 GPa. Figure derived from
[60].

one solution within the bounds of 0 to π/2 was found after attempting the same initial

guesses utilized in the first and last optimization problems. Optimized values for θ1, θ2, and

θ3 of 0.827, 0.790, and 0.787, produced a spinodoid with a Young’s modulus of 1.636 GPa and

a unit variance value of 0.0221 GPa2 [60]. The resultant simple geometry of this spinodoid

compared to other spinodoids, led to the initial conclusion that simple geometry was expected

to decrease uncertainty. However, further investigation reveals that this conclusion did

not withstand. Once other initial guesses were attempted, outside of the initial guesses

used in the other optimization problems, a spinodoid with θ values of 0.794, 1.571, and 0,

also satisfied the design goal. See Figure 4.2 to view both of the discussed solutions [60].

Continued closer inspection of the unit variance values given with each step taken during the

optimization process, the value of the unit variance centered around 0.0221 GPa2. This unit

variance value was also consistent in the other optimized spinodoids as well. This consistency

may indicate that the geometry of the spinodoid may have little effect on the uncertainty

of properties. Another reason could be the prediction dependency on the 2D-domain and a

future work is recommended to investigate the uncertainty behavior of spinodoids in large

3D-microstructural spaces.
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Figure 4.2: The solutions found for the second inverse design problem focused on minimizing
the uncertainty of the spinodoid. Figure derived from [60].

The last optimization problem also resulted in multiple solutions. With the same two initial

guesses used for the initial optimization problem, the first optimum solution with θ val-

ues of 0.836, 0.309, and 0.330 satisfied the goal of targeting a Young’s modulus value and

minimizing uncertainty. The spinodoid forming from θ values of 0.824, 1.308, and 0.439

for θ1, θ2, and θ3, was the second found optimum solution [51]. Both of these solutions

are displayed in Figure4.3. Analyzing the multiple solutions that resulted from this last

design problem, where the goals included targeting a Young’s modulus value and minimiz-

ing uncertainty, the geometry of the optimum spinodoids were very similar to that of the

solutions found for the initial optimization problem, where the focus was just on targeting a

specific Young’s modulus value. This may indicate that the first design goal in targeting a

specific Young’s modulus value is dominating the objective function in this multi-objective

optimization problem, since the unit variance values do not change between solutions, given

by the analysis of the second optimization problem. The average objective function values

of each optimization problem was also analyzed. The first objective function had an average

value of 4.9491e-12 GPa, while the second and third average values increased in magnitude

of 0.0221 GPa2 and 0.0111 GPa, respectively. Figure 4.4 demonstrates a summary of all

of the optimized spinodoids given the trial of four different initial guesses for each inverse
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design problem, plus that of the second solution found for the second optimization problem,

resulting from an initial guess outside of the other four guesses.

Figure 4.3: The two spinodoids and their θ values that are solutions to the last defined
inverse design problem with the multi-objective goal in targeting a specific Young’s modulus
value and minimizing uncertainty. Figure derived from [60].

Figure 4.4 summarizes that more than one spinodoid can be chosen as solutions for each

optimization problem. These multiple solutions may be explained by Figure 4.5, which

demonstrates that the Young’s modulus values used in training the GPR model lie within

a range of 1.5484 to 1.6922 GPa, with many values lying within the range of about 1.62 to

about 1.64 GPa, with an average of 1.6350 GPa. Furthermore the resultant expected Young’s

modulus values used in finding the optimum spinodoids lie in the reduced range of 1.6318 to

1.6379 GPa, with an average of 1.6349 GPa. With the target Young’s modulus value used

in the optimization problems of 1.636 GPa, this study aimed to demonstrate the capability

of obtaining multiple optimum solutions, as shown in Figure 4.4. These multiple options

provide a potential benefit, as it gives the flexibility to choose more than one design over

the other if other considerations such as ease of manufacturing or possibly specific aesthetics

come into play.
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Figure 4.4: Summary of solutions from all the inverse design problems approached with
optimization problems [60].

4.4 Summary

In this study, spinodoids, a subset of mechanical metamaterials were further investigated

over that of truss-based mechanical metamaterials, due to their known benefits over this

popularly known sub-group. Spinodoids are less susceptible to high stress concentrations due

to their smoother topology and are less prone to symmetry breaking defects because of their

aperiodicity [5]. These materials were studied within the 2D-space by first generating a large

database of 2D-monochrome images representing individual spinodoid cells. Following the

formulation defined by Equations 3.1 and 3.2, the images were generated within MATLAB.

These spinodoids were then characterized by their Young’s modulus through density-based

pixel calculations. Once characterized by this mechanical property, data-driven modeling

techniques were then applied to derive a relationship between the spinodoid geometry or the

θ parameters controlling the geometry and their calculated Young’s modulus value. Initially,
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Figure 4.5: The θ parameters plotted against the Young’s modulus values used to develop
the GPR model for the optimization problems (left) and θ parameters plotted against the
expected or predicted Young’s modulus values resulting from the developed GPR model
(right) [60].

a principal component analysis was applied in an attempt to reduce the dimensionality of the

image-based data. Given that this method did not result in a significant enough decrease

in the needed dimensions to represent the data, another data-driven modeling technique

was applied. GPR was then applied given its added benefit of simultaneous uncertainty

quantification with its calculation of predictions. A GPR model was derived by using a multi-

fidelity approach and further utilized to approach several inverse design problems. These

inverse design problems were defined as three optimization problems. One had the objective

of finding a target Young’s modulus value, the second focused on minimizing uncertainty

with the design, and the last combined these goals to create a multi-objective optimization

problem. What was critical about the results of these inverse design problems was result of

multiple optimum spinodoid solutions [60]. Having a choice between which optimum design

to select from prevents a potential designer from being locked into a certain design, which

may not satisfy other manufacturing or cost constraints. The overall process in this study of

spinodoids is summarized by Figure 4.6. After developing a method to perform inverse design
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with spinodoids, the graphical user interface developed to design spinodoids in Chapter 3.5

could be expanded upon by also offering the option for a user to derive a specific spinodoid

that satisfies their design goals. These design goals can be defined by specific mechanical

properties, such as a target Young’s modulus value or uncertainty considerations. This

consideration of design tools keeps in mind that more tools focused specifically on the design

of mechanical metamaterials need to be developed in order for industry to understand and

utilize their many potential capabilities [3].

Figure 4.6: Summary demonstrating the research focused on spinodoids. Figure derived
from [60].



Chapter 5

Conclusion

5.1 Future Work

Although two different kinds of mechanical metamaterials were studied in this research,

truss-based and spinodoids, spinodoids were chosen to be studied in greater detail. Due to

their smoother and aperiodic topologies, they are less prone to high stress concentrations

and symmetry-breaking defects prevalent in truss-based mechanical metamaterials [5], [31].

Therefore, further interest in how this study of spinodoids can be expanded upon was ex-

plored, particularly in how the characterization of these spinodoids could be improved. In

the characterization process, a density-based pixel calculation was used to obtain the Young’s

modulus of each generated spinodoid. Although, the presented formulation has been utilized

in other peer-reviewed research [61], [62], the similarity in the resulting Young’s modulus

values between each image, could provide an indication that the characterization of these

materials should also consider the effects of the underlying topology in addition to the volume

fraction of the solid and void phases.

5.1.1 Analyzing Characterization Methods

Another factor to consider when characterizing each spinodoid could be the consideration of

the shapes making up each spinodoid. This consideration may allow for a more unique and
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explicit characterization for each spinodoid within the data set. To aid in quantifying the

shapes, the method of shape moment invariants could be applied. The calculation of shape

moments allows an image to be quantified in terms of moment values that are invariant to

rotation, scaling, or translation [79], [80]. The method of calculating moment invariants was

first utilized in recognizing patterns [81]. These calculated moment invariants are defined

as Hu moments [81]. Initial research on applying shape moment invariants to the generated

spinodoids is detailed in Appendix B.

In addition to characterizing the shapes effects using moment invariants, the mechanical

properties such as Young modulus should also be computed with a higher fidelity approach

than the density-based model. Therefore the Young’s modulus values calculated through the

density-based pixel calculations need to be verified through finite element analysis (FEA)

to determine if the found range of Young’s modulus values through these calculations is

sufficient in determining the Young’s modulus of the spinodoids. As well as verifying the

calculated Young’s modulus, directional properties could also be found by performing FEA.

These FEA simulations can be completed by transferring the 2D-geometry of a spinodoid to

a 2D-solid part within Abaqus or other FEA software. Ideas on how the geometry can be

transferred to Abaqus are visualized in Figure 5.1. These ideas show that the eventual part

within Abaqus can be constructed as one solid part with a thin frame in order to simplify

the application of loads and boundary conditions, or the part could be constructed of two

phases, solid and void. In this second idea, the void phase is assigned material properties

close to zero, such as 10−9 GPa for Young’s modulus, similarly done in the density-based

pixel calculations for the void material. Refer to Appendix C for suggestions on how to

utilize Abaqus to determine mechanical properties of a spinodoid unit cell.

Ideally, all of the Young’s modulus values within the data set of images would be calcu-

lated through FEA simulations and compared with the density-based, pixel calculations,
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Figure 5.1: Ideas on how to transfer a spinodoid image to a part in Abaqus. The left part
demonstrates a solid material with true void sections, whereas the right part is made of two
materials, one material has solid property values (green) and the other material has very low
material properties to closely represent true void (gray). Figure derived from [60].

but performing the FEA of 10,100 spinodoids through Abaqus would be computationally

expensive. Therefore, with a study by Chan et. al, only a small, yet diverse database of

unit cells are needed to develop sufficient machine learning techniques to model relationships

between unit cells and properties [46]. Therefore a machine learning model that relates the

Young’s modulus and the spinodoid could be developed by running FEA simulations on a

smaller subset of spinodoids containing specifically chosen diverse geometries [46]. This cho-

sen subset of spinodoids could be selected visually or through the analysis of their calculated

shape moment values. The shape moment values would be compared against one another

to determine which spinodoids have the most variation from one another. If the proposed

machine learning model provides higher fidelity predictions for the mechanical properties,

it can be used to replace the density-based model to compute the mechanical properties of

spinodoids.
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5.1.2 Development of a Graphical User Interface for Inverse De-

sign of Spinodoids

Although a graphical user interface (GUI) was developed in Chapter 3.5 that allows a user

to design a spinodoid, after establishing the process of approaching inverse design in Chapter

4, this GUI could be expanded upon by incorporating this inverse design process as another

feature of the GUI. This inverse design tool would allow a user to input the desired proper-

ties they would like a spinodoid to elicit. In terms of this research, their design goals could

be finding a specific Young’s modulus, minimizing the uncertainty related to the design,

or a combination of both. With their chosen design goal they would then need to enter

their desired Young’s modulus value and the GUI would then determine the three θ values

that would generate a spinodoid that satisfies their design requirements. This inverse de-

sign problem would be approached using the same method presented in Chapter 4 where

an optimization problem would be executed and multiple solutions would result using an

interior-point algorithm. The spinodoids resulting from this GUI would then be displayed

as potential options from which they could select from. See Figure 5.2 for a mock-up in how

the addition to this GUI could be designed.

5.1.3 3D-Modeling of Mechanical Metamaterials

Although this research focused primarily on the design of two classes of mechanical meta-

materials within the 2D-space, to provide a further accurate analysis of these materials they

would need to be considered in three dimensions. See Figure 5.3 on the theorized 3D-models

of one generated truss-based unit cell and one generated spinodoid unit cell from this re-

search. This may allow for a more holistic idea on how specifically the studied mechanical

metamaterials could be applied to different real-world applications. Given that 3D modeling
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Figure 5.2: Mock-up for a potential future addition to GUI developed in Chapter 3.5, this
addition would add the capability of performing inverse design for spinodoids. Figure derived
from [60].

significantly affects the computational time in modeling and calculations of properties, the

work completed within the 2D-space could serve as a step towards establishing a multi-scale

model that could be utilized in exploring the design and property space in 3D. Using a lower-

fidelity model may also assist with efficient, further characterization of other aspects of these

mechanical metamaterials as well. Further investigation of these materials could include ob-

serving their behavior under temperature effects, long-term loading, and determining their

behavior under failure.
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Figure 5.3: 3D-representations of one truss-based geometry from the database of 12 mi-
crostructures developed and one spinodoid unit cell from the generated data set of 10,100
spinodoid images. Figure derived from [51] and [60].

5.2 Concluding Remarks

In this research two kinds of mechanical metamaterials were investigated. The first type

are truss-based, whose geometry is based on lattices made of truss-like structures. These

mechanical metamaterials are well-known within this area of material research, with po-

tential applications including aerospace, medical, and construction fields [23], [25], [30].

These materials were studied by investigating how the deformation behavior of a mechanical

beam component changed based on the varying topology made of these microstructures. A

database of 12 2D-truss-based structures was developed. To analyze how these structures

would affect the displacement behavior of a simple cantilever beam, finite element analy-

sis (FEA) was applied to the beam. In order to apply FEA, the nodes and elements of the
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structures and eventually the entire beam needed to be assigned. Initially, these assignments

were manually determined for each of the 12 structures. With this method, an optimization

problem was developed to determine the topology of the beam in order to minimize the dis-

placement resulting from a force acting across the entire beam. The results of this problem

indicated that the first method developed to model the beam for FEA, only allowed for a

separate FEA of each individual microstructure within the beam. Although, this method

considered the sensitivity of each structure, it did not consider how one section of the beam,

containing one microstructure, would affect next section in the beam, containing another

microstructure. Therefore, a new method in modeling the beam such that FEA could be

performed on it as one entire component needed to be developed. In this method a standard

grid was defined, using this grid every structure within the database could be assembled.

Since each microstructure was made of a set of triangles, each microstructure was defined

through a path of coordinates that trace each triangle in the structure. This allowed for a

library containing the reference coordinates of each microstructure to be called upon when

constructing the beam component made of multiple microstructures. This method allowed

for the automatic assignment of nodes and elements, and their connections, which led to

capability to run a FEA on the mechanical beam component as a whole, no matter the

combination of the 12 microstructures used in its construction. This modeling led to the

development of graphical user interface (GUI) that allows a user to build a beam component

with any of the 12 microstructures and understand how any external tension or compression

force can affect the overall displacement of the beam. The development of this GUI helps

with the idea that new design tools need to be created to allow for a greater understanding

in the behavior and capabilities of mechanical metamaterials [3]. With further development,

the same optimization problem executed with the initial modeling method could be incor-

porated into the developed GUI, which could instead determine the topology of the beam to

minimize its displacement given an external force. The incorporation of this inverse design
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problem would be an added benefit to the developed design tool. The research performed on

truss-based mechanical metamaterials led to a better understanding of these materials, yet

with the known factors that these materials contain sharp corners and their properties are

highly dependent on their periodicity, making them susceptible to high stress concentrations

and symmetry-breaking defects, a relatively new kind of mechanical metamaterial based on

the process of spinodal decomposition was studied [5], [31].

The second kind of mechanical metamaterial investigated in this research is made of unit cells

generated from following the phase separation process of spinodal decomposition. This ther-

modynamic, phase transformation process leads to two distinct phases that coexist together

[32]. The microstructures resulting from following this process have smooth and aperiodic

geometry, which makes them less prone to the discussed susceptibilities of truss-based me-

chanical metamaterials. Through research from Kumar and co-workers, the spinodoids are

defined as geometries where one phase is assigned as solid and the other phase as void [5].

They modeled the process that these structures are simulated from through a simplification

of the Cahn-Hilliard equation which serves as an analytical solution to spinodal decomposi-

tion [5], [31], [55]. Through three θ values, the geometry of the spinodoid can be controlled.

In this research, this subset of mechanical metamaterials is studied within the 2D-space. To

study these materials, spinodoids were generated by representing unit cells with monochrome

images. In these images, black represented solid material and white represented void. A total

of 10,000 50 by 50 images were developed and later subsidized by 100 200 by 200 images.

In order to understand the behavior of the generated spinodoids, the Young’s modulus for

each spinodoid was found through density-based pixel calculations. In order to relate the

spinodoid geometry to the calculated modulus values, two different kinds of data-driven

modeling techniques were applied to the characterized data set. Principal component analy-

sis (PCA) was the first method applied. With the application of PCA, the dimensionality of
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the 10,000 50 by 50 images (2500 dimensions) could only be reduced to 450 principal com-

ponents (PCs) to represent 90% of the original image data. Through further filtering 80%

of the data could be represented by 18 PCs. Although, the dimensions were significantly

reduced from 2500, this high number of PCs would still be difficult to model and utilize in

determining the relationship between the PCs and calculated Young’s modulus values of each

spinodoid. The second data-driven technique applied to the data set was Gaussian process

regression (GPR). Compared to PCA, this method had the added benefit of simultaneously

calculating uncertainty associated with its eventual predictions. In this research a multi-

fidelity model was used, where the 10,000 50 by 50 images were considered as low-fidelity

data and the 100 200 by 200 images were considered as high-fidelity data. This model would

help define a relationship between the parameters controlling the geometry of the spinodoid,

θ1, θ2, and θ3, and the calculated Young’s modulus values through the development of a

covariance matrix constructed from the training data, a rational-quadratic kernel function,

and optimized hyperparameters. Using this developed GPR model several inverse design

problems were defined and solved through gradient-based optimization. Multiple solutions

resulted for each defined problem, indicating that there is more than one solution in tar-

geting a specific Young’s modulus and minimizing uncertainty. These multiple options offer

choice in the design, therefore the selection of a spinodoid to satisfy a certain design is

not constrained to one specific geometry. To expand on this research, the characterization

methods would like to be further investigated through further quantification methods such

as shape quantifiers, like Hu moments [81]. Additionally, the calculated Young’s modulus

values would like to be compared to FEA simulations. With these additions, a more unique

and verified model between the controlling parameters of θ and the Young’s modulus could

be established. This improved model could help further improve the inverse design prob-

lems to later be incorporated into the GUI that allows a user to develop spinodoids. This

added capability would again serve as another design tool that allows others to understand
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and design unique mechanical metamaterials. These kinds of design tools need to be devel-

oped in order to help further the realization of these materials in industry and real-world

applications. Mechanical metamaterials have many potential applications, inverse design is

a unique design approach that can be applied to develop mechanical metamaterials with

outstanding mechanical properties. The methods developed in this research to study the

design of mechanical metamaterials are aimed to contribute to the ongoing research for their

design and development in different engineering fields.
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Appendix A

Types of Kernel Functions

A.1 Rational Quadratic Kernel Function

This rational quadratic kernel function was used in the development of the Gaussian process

regression (GPR) model. The rational quadratic kernel function takes the form below,

K(x, x̄) = σ2

(
1 +

(x− x̄)

2αl2

)−α

, (A.1)

where σ2 the initial estimation of the variance of the system, α and l, are the hyperparameters

to be optimized and the x-values are the input data [78].

A.2 Constant Value Kernel Function

A more simple kernel function where a constant value is solved for is,

K(x, x̄) = σ2c, (A.2)

where σ2 is the variance of the training data or hyperparameter to be optimized and c is the

constant value to be solved for, and the x-values are the input data [82].
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A.3 Squared Exponential Kernel Function

Squared exponential kernel function is defined as,

K(x, x̄) = σ2exp
(
−(x− x̄)2

2l2

)
, (A.3)

where σ2 is the initial estimation for variance or hyperparameter to be optimized, l is another

hyperparameter to be optimized, and the x-values are the input data [78].

A.4 Periodic Kernel Function

Periodic kernel function is defined as,

K(x, x̄) = σ2exp(−2sin(π |x− x̄| /ρ)
l2

), (A.4)

where σ2 is the initial estimation for variance or hyperparameter to be optimized, ρ and l

are additional hyperparameters to be optimized, and the x-values are the input data [78].



Appendix B

Potential Application of Shape

Moment Invariants

The topology of the spinodoids can be characterized using the shape moment invariants

that are defined in terms of Hu moments. Although shape invariants involve seven different

Hu moment functions, the first moment value is found to capture sufficient information of

different microstructural topologies [83]. Therefore, in this analysis only the first moment,

ϕ1, is used to quantify the topology of spinodoids. Initially to determine whether each

individual θ value had an effect on the resulting spinodoid, three sets of spinodoids were

generated. The first set of 50 200 by 200 images was generated by varying θ1, and keeping

θ2 and θ3 constant. The remaining two sets were generated by varying θ2 orθ3 and keeping

the remaining θ parameters constant. Figure B.1 demonstrates how the ϕ1 values varied

with each varying θ value, along with how the ϕ1 values varied with the calculated Young’s

modulus of the generated spinodoids in the each set. These Young’s modulus values were

also found by using the density-based pixel calculations detailed in Chapter 3.4. Initially it

appears that there could a relationship between these moment values and the θ parameters,

but to verify this a larger data set of 1,000 50 by 50 images were generated that varies θ1.

Figure B.2 shows a random ϕ1 distribution for varying θ1 values. The figure also indicates

that there is no explicit relationship between ϕ1 and Young’s modulus values. This analysis

demonstrates that the potential relationships seen in Figure B.1 does not continue, and the
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ϕ becomes more randomly distributed with varying θ1 and that there is no clear relationship

between ϕ1 and Young’s modulus.

Figure B.1: Each varying θ parameter plotted against the calculated shape moment value of
ϕ1 (top). Young’s modulus values for each spinodoid set are compared to the calculated ϕ1

values (bottom).

The moment values were also calculated for all of the 50 by 50 pixel images of spinodoids

generated, a total of 10,000 images. Within this data set none of the θ are kept constant,

therefore all θ values are randomly varied. With this larger data set it appears that a large

amount of spinodoids circles around one particular value. Figure B.3 demonstrates that with

the entire data set of 10,000 images, the first moment value (ϕ1) is centered around a Young’s

modulus value of about 1.63 GPa. Although these ϕ1 values circle around one particular

Young’s modulus value and have a particular range within itself as well, incorporating the

values of ϕ1 along with the density-based pixel calculations may allow for a more unique

characterization of each spinodoid. The similar ϕ1 may also indicate that many of the

spinodoids within the data set have similar geometries as well. One observation from this
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Figure B.2: Larger set of 1,000 50 by 50 images with spinodoids generated by varying θ1, the
left figure shows ϕ1 plotted against θ1 and the right figure demonstrates Young’s modulus
plotted against the calculated ϕ1 values.

initial analysis of shape moment invariants, was the somewhat differing ranges of ϕ1 from

images with different resolutions. As the moment invariants should not be sensitive to

image-scaling, this observation should be further investigated.
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Figure B.3: Largest set of 10,000 50 by 50 images generated, the left figure shows ϕ1 plotted
against θ1 and the right figure demonstrates Young’s modulus plotted against the calculated
ϕ1 values.



Appendix C

Potential Application of Finite

Element Analysis Software

Utilizing external finite element analysis (FEA) software such as Abaqus can help determine

the validity or verify the Young’s modulus calculations found through a density-based pixel

formulation. Abaqus can run FEA simulations of this 2D-solid to determine the desired

properties. By simulating a tensile test on the spinodoid unit cell, the average stress and

strain can be found through Abaqus. Another method to find material properties could

be through the application of an Abaqus plug-in, called EasyPBC [84]. An exemplary

mesh generated in Abaqus that could be utilized in future simulations is shown in Figure

C.1. By running such FEA simulations or utilizing other Abaqus tools, the density-based

computations can be verified for the studied database of spinodoids. The FEA can also be

used to develop surrogate models with the integration of the shape moment invariants.
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Figure C.1: The mesh file created for a spinodoid transferred to Abaqus.



Bibliography

[1] J. U. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, N. X. Fang, and Y. Lu, “Mechanical

metamaterials and their engineering applications,” Advanced Engineering Materials,

vol. 21, no. 3, p. 1800864, 2019.

[2] N. Yang, Y. Deng, S. Zhao, Y. Song, J. Huang, and N. Wu, “Mechanical metamateri-

als with discontinuous and tension/compression-dependent positive/negative poisson’s

ratio,” Advanced Engineering Materials, p. 2100787, 2021.

[3] S. C. Fischer, L. Hillen, and C. Eberl, “Mechanical metamaterials on the way from lab-

oratory scale to industrial applications: challenges for characterization and scalability,”

Materials, vol. 13, no. 16, p. 3605, 2020.

[4] A. Valipour, M. H. Kargozarfard, M. Rakhshi, A. Yaghootian, and H. M. Sedighi,

“Metamaterials and their applications: an overview,” Proceedings of the Institution

of Mechanical Engineers, Part L: Journal of Materials: Design and Applications,

p. 1464420721995858, 2021.

[5] S. Kumar, S. Tan, L. Zheng, and D. M. Kochmann, “Inverse-designed spinodoid meta-

materials,” npj Computational Materials, vol. 6, no. 1, pp. 1–10, 2020.

[6] M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3d metamaterials,” Nature

Reviews Physics, vol. 1, no. 3, pp. 198–210, 2019.

[7] Z. He and S. D. Guest, “On rigid origami ii: quadrilateral creased papers,” Proceedings

of the Royal Society A, vol. 476, no. 2237, p. 20200020, 2020.

81



82 BIBLIOGRAPHY

[8] H. Yasuda and J. Yang, “Reentrant origami-based metamaterials with negative poisson’s

ratio and bistability,” Physical review letters, vol. 114, no. 18, p. 185502, 2015.

[9] W. Wu, W. Hu, G. Qian, H. Liao, X. Xu, and F. Berto, “Mechanical design and

multifunctional applications of chiral mechanical metamaterials: A review,” Materials

& Design, vol. 180, p. 107950, 2019.

[10] Y. Tang, Y. Li, Y. Hong, S. Yang, and J. Yin, “Programmable active kirigami

metasheets with more freedom of actuation,” Proceedings of the National Academy

of Sciences, vol. 116, no. 52, pp. 26407–26413, 2019.

[11] Z. Zhai, Y. Wang, and H. Jiang, “Origami-inspired, on-demand deployable and col-

lapsible mechanical metamaterials with tunable stiffness,” Proceedings of the National

Academy of Sciences, vol. 115, no. 9, pp. 2032–2037, 2018.

[12] D. J. N. Amorim, T. Nachtigall, and M. B. Alonso, “Exploring mechanical meta-material

structures through personalised shoe sole design,” in Proceedings of the ACM Symposium

on Computational Fabrication, pp. 1–8, 2019.

[13] E. Barchiesi, M. Spagnuolo, and L. Placidi, “Mechanical metamaterials: a state of the

art,” Mathematics and Mechanics of Solids, vol. 24, no. 1, pp. 212–234, 2019.

[14] H. Kolken, K. Lietaert, T. van der Sloten, B. Pouran, A. Meynen, G. Van Loock,

H. Weinans, L. Scheys, and A. A. Zadpoor, “Mechanical performance of auxetic meta-

biomaterials,” journal of the mechanical behavior of biomedical materials, vol. 104,

p. 103658, 2020.

[15] A. Rafsanjani, K. Bertoldi, and A. R. Studart, “Programming soft robots with flexible

mechanical metamaterials,” Science Robotics, vol. 4, no. 29, p. eaav7874, 2019.



BIBLIOGRAPHY 83

[16] Q. Liu, “Literature review: materials with negative poisson’s ratios and potential ap-

plications to aerospace and defence,” 2006.

[17] S. Li and K. Wang, “Fluidic origami: a plant-inspired adaptive structure with shape

morphing and stiffness tuning,” Smart Materials and Structures, vol. 24, no. 10,

p. 105031, 2015.

[18] P. Bhovad, J. Kaufmann, and S. Li, “Peristaltic locomotion without digital controllers:

Exploiting multi-stability in origami to coordinate robotic motion,” Extreme Mechanics

Letters, vol. 32, p. 100552, 2019.

[19] S. Babaee, S. Pajovic, A. R. Kirtane, J. Shi, E. Caffarel-Salvador, K. Hess, J. E. Collins,

S. Tamang, A. V. Wahane, A. M. Hayward, et al., “Temperature-responsive biometama-

terials for gastrointestinal applications,” Science translational medicine, vol. 11, no. 488,

p. eaau8581, 2019.

[20] Y. Wang and D. L. McDowell, “Uncertainty quantification in materials modeling,” in

Uncertainty Quantification in Multiscale Materials Modeling, pp. 1–40, Elsevier, 2020.

[21] R. N. Glaesener, C. Lestringant, B. Telgen, and D. M. Kochmann, “Continuum models

for stretching-and bending-dominated periodic trusses undergoing finite deformations,”

International Journal of Solids and Structures, vol. 171, pp. 117–134, 2019.

[22] L. R. Meza, G. P. Phlipot, C. M. Portela, A. Maggi, L. C. Montemayor, A. Comella,

D. M. Kochmann, and J. R. Greer, “Reexamining the mechanical property space of

three-dimensional lattice architectures,” Acta Materialia, vol. 140, pp. 424–432, 2017.

[23] J.-H. Bastek, S. Kumar, B. Telgen, R. N. Glaesener, and D. M. Kochmann, “Inverting

the structure–property map of truss metamaterials by deep learning,” Proceedings of

the National Academy of Sciences, vol. 119, no. 1, 2022.



84 BIBLIOGRAPHY

[24] C. Pan, Y. Han, and J. Lu, “Design and optimization of lattice structures: A review,”

Applied Sciences, vol. 10, no. 18, p. 6374, 2020.

[25] Q. Liu, R. Xu, Y. Zhou, J. Ge, S. Yuan, Y. Long, and T. Shi, “Metamaterials mapped

lightweight structures by principal stress lines and topology optimization: Methodol-

ogy, additive manufacturing, ductile failure and tests,” Materials & Design, vol. 212,

p. 110192, 2021.

[26] L. Mizzi and A. Spaggiari, “Lightweight mechanical metamaterials designed using hi-

erarchical truss elements,” Smart Materials and Structures, vol. 29, no. 10, p. 105036,

2020.

[27] T. Kim, C. Zhao, T. Lu, and H. Hodson, “Convective heat dissipation with lattice-frame

materials,” Mechanics of Materials, vol. 36, no. 8, pp. 767–780, 2004.

[28] D. M. Dykstra, S. Janbaz, and C. Coulais, “The extreme mechanics of viscoelastic

metamaterials,” arXiv preprint arXiv:2204.01375, 2022.

[29] L. Shu, R. Liang, Y. Yu, T. Tian, Z. Rao, and Y. Wang, “Unique elastic, dielectric

and piezoelectric properties of micro-architected metamaterials,” Journal of Materials

Chemistry C, vol. 7, no. 9, pp. 2758–2765, 2019.

[30] Y.-B. Wang, H.-T. Liu, and T.-J. Li, “Novel beam-like mechanical metamaterials with

different flexural rigidities in two directions,” Composite Structures, vol. 267, p. 113857,

2021.

[31] L. Zheng, S. Kumar, and D. M. Kochmann, “Data-driven topology optimization of

spinodoid metamaterials with seamlessly tunable anisotropy,” Computer Methods in

Applied Mechanics and Engineering, vol. 383, p. 113894, 2021.

[32] J. S. Langer, Spinodal Decomposition, pp. 19–42. Boston, MA: Springer US, 1975.



BIBLIOGRAPHY 85

[33] V.-N. Tran Duc and P. K. Chan, “Using the cahn–hilliard theory in metastable binary

solutions,” ChemEngineering, vol. 3, no. 3, 2019.

[34] C. M. Portela, A. Vidyasagar, S. Krödel, T. Weissenbach, D. W. Yee, J. R. Greer, and

D. M. Kochmann, “Extreme mechanical resilience of self-assembled nanolabyrinthine

materials,” Proceedings of the National Academy of Sciences, vol. 117, no. 11, pp. 5686–

5693, 2020.

[35] G. Oliveri and J. T. Overvelde, “Inverse design of mechanical metamaterials that un-

dergo buckling,” Advanced Functional Materials, vol. 30, no. 12, p. 1909033, 2020.

[36] O. Rokoš, M. M. Ameen, R. H. Peerlings, and M. G. Geers, “Micromorphic computa-

tional homogenization for mechanical metamaterials with patterning fluctuation fields,”

Journal of the Mechanics and Physics of Solids, vol. 123, pp. 119–137, 2019.

[37] J. Morris, W. Wang, D. Shah, T. Plaisted, C. J. Hansen, and A. V. Amirkhizi, “Ex-

panding the design space and optimizing stop bands for mechanical metamaterials,”

Materials & Design, vol. 216, p. 110510, 2022.

[38] P. Callahan, J. Simmons, and M. De Graef, “A quantitative description of the morpho-

logical aspects of materials structures suitable for quantitative comparisons of 3d mi-

crostructures,” Modelling and Simulation in Materials Science and Engineering, vol. 21,

no. 1, p. 015003, 2012.

[39] V. Sundararaghavan, “Reconstruction of three-dimensional anisotropic microstructures

from two-dimensional micrographs imaged on orthogonal planes,” Integrating Materials

and Manufacturing Innovation, vol. 3, no. 1, pp. 240–250, 2014.

[40] L. Ai and X.-L. Gao, “Topology optimization of 2-d mechanical metamaterials using a



86 BIBLIOGRAPHY

parametric level set method combined with a meshfree algorithm,” Composite Struc-

tures, vol. 229, p. 111318, 2019.

[41] Y. Wang, J. Gao, Z. Luo, T. Brown, and N. Zhang, “Level-set topology optimization for

multimaterial and multifunctional mechanical metamaterials,” Engineering Optimiza-

tion, vol. 49, no. 1, pp. 22–42, 2017.

[42] M. Ye, L. Gao, F. Wang, and H. Li, “A novel design method for energy absorption

property of chiral mechanical metamaterials,” Materials, vol. 14, no. 18, p. 5386, 2021.

[43] H. Ronellenfitsch, N. Stoop, J. Yu, A. Forrow, and J. Dunkel, “Inverse design of discrete

mechanical metamaterials,” Physical Review Materials, vol. 3, no. 9, p. 095201, 2019.

[44] J. Yao, Y. Su, F. Scarpa, and Y. Li, “An optimization approach to design deformation

patterns in perforated mechanical metamaterials using distributions of poisson’s ratio-

based unit cells,” Composite Structures, vol. 281, p. 115015, 2022.

[45] A. Challapalli, D. Patel, and G. Li, “Inverse machine learning framework for optimizing

lightweight metamaterials,” Materials & Design, vol. 208, p. 109937, 2021.

[46] Y.-C. Chan, F. Ahmed, L. Wang, and W. Chen, “Metaset: Exploring shape and

property spaces for data-driven metamaterials design,” Journal of Mechanical Design,

vol. 143, no. 3, 2021.

[47] R. Kulagin, Y. Beygelzimer, Y. Estrin, A. Schumilin, and P. Gumbsch, “Architectured

lattice materials with tunable anisotropy: Design and analysis of the material property

space with the aid of machine learning,” Advanced Engineering Materials, vol. 22, no. 12,

p. 2001069, 2020.

[48] L. Wu, L. Liu, Y. Wang, Z. Zhai, H. Zhuang, D. Krishnaraju, Q. Wang, and H. Jiang, “A



BIBLIOGRAPHY 87

machine learning-based method to design modular metamaterials,” Extreme Mechanics

Letters, vol. 36, p. 100657, 2020.

[49] J. Zheng, Z. Luo, H. Li, and C. Jiang, “Robust topology optimization for cellular

composites with hybrid uncertainties,” International Journal for Numerical Methods in

Engineering, vol. 115, no. 6, pp. 695–713, 2018.

[50] J. Wu, Z. Luo, H. Li, and N. Zhang, “Level-set topology optimization for mechanical

metamaterials under hybrid uncertainties,” Computer Methods in Applied Mechanics

and Engineering, vol. 319, pp. 414–441, 2017.

[51] K. McMillan and P. Acar, “Database development and component design with two-

dimensional trusslike microstructures,” AIAA Journal, pp. 1–6, 2021.

[52] Q. Chen, L. Liu, C. Zhu, and K. Chen, “Mesomechanical modeling and numerical

simulation of the diffraction elastic constants for ti6al4v polycrystalline alloy,” Metals,

vol. 8, no. 10, p. 822, 2018.

[53] K. L. McMillan and P. Acar, “Database development and topology optimization for 3d

printed microstructures,” in AIAA Scitech 2021 Forum, p. 1965, 2021.

[54] X. Zheng, X. Guo, and I. Watanabe, “A mathematically defined 3d auxetic metamaterial

with tunable mechanical and conduction properties,” Materials & Design, vol. 198,

p. 109313, 2021.

[55] J. W. Cahn, “Phase separation by spinodal decomposition in isotropic systems,” The

Journal of Chemical Physics, vol. 42, no. 1, pp. 93–99, 1965.

[56] M. N. Lee and A. Mohraz, “Bicontinuous macroporous materials from bijel templates,”

Advanced Materials, vol. 22, no. 43, pp. 4836–4841, 2010.



88 BIBLIOGRAPHY

[57] F. Findik, “Improvements in spinodal alloys from past to present,” Materials & Design,

vol. 42, pp. 131–146, 2012.

[58] S. Goryachev, “Theory of spinodal decomposition,” Physical review letters, vol. 72,

no. 12, p. 1850, 1994.

[59] C. P. Grant, “Spinodal decomposition for the cahn-hilliard equation,” Communications

in Partial Differential Equations, vol. 18, no. 3-4, pp. 453–490, 1993.

[60] K. L. McMillan, D. S. Öztürk, and P. Acar, “Inverse design of 2d-mechanical metama-

terials with spinodal topologies under uncertainty,” in AIAA SCITECH 2022 Forum,

p. 0811, 2022.

[61] L. Wang, Y.-C. Chan, Z. Liu, P. Zhu, and W. Chen, “Data-driven metamaterial de-

sign with laplace-beltrami spectrum as “shape-dna”,” Structural and multidisciplinary

optimization, vol. 61, no. 6, pp. 2613–2628, 2020.

[62] L. Xia and P. Breitkopf, “Design of materials using topology optimization and energy-

based homogenization approach in matlab,” Structural and multidisciplinary optimiza-

tion, vol. 52, no. 6, pp. 1229–1241, 2015.

[63] P. Christöfl, C. Czibula, M. Berer, G. Oreski, C. Teichert, and G. Pinter, “Comprehen-

sive investigation of the viscoelastic properties of pmma by nanoindentation,” Polymer

Testing, vol. 93, p. 106978, 2021.

[64] F. J. Montáns, F. Chinesta, R. Gómez-Bombarelli, and J. N. Kutz, “Data-driven mod-

eling and learning in science and engineering,” Comptes Rendus Mécanique, vol. 347,

no. 11, pp. 845–855, 2019.

[65] K. Choudhary, K. F. Garrity, A. C. Reid, B. DeCost, A. J. Biacchi, A. R. Hight Walker,

Z. Trautt, J. Hattrick-Simpers, A. G. Kusne, A. Centrone, et al., “The joint automated



BIBLIOGRAPHY 89

repository for various integrated simulations (jarvis) for data-driven materials design,”

npj Computational Materials, vol. 6, no. 1, pp. 1–13, 2020.

[66] P. Acar, “Crystal plasticity model calibration for ti-7al alloy with a multi-fidelity com-

putational scheme,” Integrating Materials and Manufacturing Innovation, vol. 7, no. 4,

pp. 186–194, 2018.

[67] M. Hasan and P. Acar, “Machine learning reinforced microstructure-sensitive prediction

of material property closures,” Computational Materials Science, p. 110930, 2021.

[68] T. Xue, A. Beatson, M. Chiaramonte, G. Roeder, J. T. Ash, Y. Menguc, S. Adriaenssens,

R. P. Adams, and S. Mao, “A data-driven computational scheme for the nonlinear

mechanical properties of cellular mechanical metamaterials under large deformation,”

Soft matter, vol. 16, no. 32, pp. 7524–7534, 2020.

[69] P. Acar, “Machine learning reinforced crystal plasticity modeling under experimental

uncertainty,” AIAA Journal, vol. 58, no. 8, pp. 3569–3576, 2020.

[70] A. Paul, P. Acar, W.-k. Liao, A. Choudhary, V. Sundararaghavan, and A. Agrawal,

“Microstructure optimization with constrained design objectives using machine learning-

based feedback-aware data-generation,” Computational Materials Science, vol. 160,

pp. 334–351, 2019.

[71] M. Hermkes, N. M. Kuehn, and C. Riggelsen, “Simultaneous quantification of epis-

temic and aleatory uncertainty in gmpes using gaussian process regression,” Bulletin of

earthquake engineering, vol. 12, no. 1, pp. 449–466, 2014.

[72] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics

and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.



90 BIBLIOGRAPHY

[73] J. Lever, M. Krzywinski, and N. Altman, “Points of significance: Principal component

analysis,” Nature methods, vol. 14, no. 7, pp. 641–643, 2017.

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in

python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[75] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on gaussian process regression:

Modelling, exploring, and exploiting functions,” Journal of Mathematical Psychology,

vol. 85, pp. 1–16, 2018.

[76] J. Wang, “An intuitive tutorial to gaussian processes regression,” arXiv preprint

arXiv:2009.10862, 2020.

[77] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer school on ma-

chine learning, pp. 63–71, Springer, 2003.

[78] A. Wilson and R. Adams, “Gaussian process kernels for pattern discovery and extrapo-

lation,” in International conference on machine learning, pp. 1067–1075, PMLR, 2013.

[79] J. MacSleyne, J. Simmons, and M. De Graef, “On the use of 2-d moment invariants

for the automated classification of particle shapes,” Acta Materialia, vol. 56, no. 3,

pp. 427–437, 2008.

[80] A. Senthilnathan and P. Acar, “Shape moment invariants as a new methodology for

uncertainty quantification in microstructures,” in AIAA Scitech 2021 Forum, p. 1697,

2021.

[81] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE transactions on

information theory, vol. 8, no. 2, pp. 179–187, 1962.



BIBLIOGRAPHY 91

[82] T. Beckers, “An introduction to gaussian process models,” arXiv preprint

arXiv:2102.05497, 2021.

[83] A. Senthilnathan and P. Acar, “Multi-scale modeling for texture and grain topology of

polycrystalline microstructures under uncertainty,” in AIAA SCITECH 2022 Forum,

p. 2106, 2022.

[84] S. L. Omairey, P. D. Dunning, and S. Sriramula, “Development of an abaqus plugin tool

for periodic rve homogenisation,” Engineering with Computers, vol. 35, no. 2, pp. 567–

577, 2019.


	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation and Objectives
	Mechanical Metamaterials
	Truss-Based Mechanical Metamaterials
	Mechanical Metamaterials with Spinodal Topologies

	Design of Mechanical Metamaterials
	Inverse Design of Mechanical Metamaterials
	Design of Mechanical Metamaterials under Uncertainty


	Investigating Truss-based Mechanical Metamaterials
	Research on Truss-based Mechanical Metamaterials
	Development of a Database Made of 2D Truss-Based Microstructures
	Modeling the Beam Component Constructed of Microstructures
	Finite Element Analysis of Beam Component

	Development of Graphical User Interface
	Possible Improvements to Developed Graphical User Interface and Future Work on Truss-Based Mechanical Metamaterials
	Summary

	Investigating Mechanical Metamaterials with Spinodal Topologies, Spinodoids
	Research on Spinodoids
	Mechanical Metamaterials Formed from Spinodal Decomposition: Spinodoids
	Generating Spinodoids
	Characterizing Spinodoids
	Graphical User Interface to Design Spinodoids
	Data-driven Modeling of Spinodoids
	Principal Component Analysis
	Gaussian Process Regression


	Inverse Design of Spinodoids Under Uncertainty
	Inverse Design of Spinodoids using Gaussian Process Regression
	Defining the Inverse Design Problems
	Analysis of Optimum Spinodoids Found with Inverse Design
	Summary

	Conclusion
	Future Work
	Analyzing Characterization Methods
	Development of a Graphical User Interface for Inverse Design of Spinodoids
	3D-Modeling of Mechanical Metamaterials

	Concluding Remarks

	Appendices
	Appendix Types of Kernel Functions
	Rational Quadratic Kernel Function
	Constant Value Kernel Function
	Squared Exponential Kernel Function
	Periodic Kernel Function

	Appendix Potential Application of Shape Moment Invariants
	Appendix Potential Application of Finite Element Analysis Software
	Bibliography

