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Fuzz Testing Architecture Used for Vulnerability Detection in Wire-
less Systems

Stephen R. Mayhew

(ABSTRACT)

The wireless world of today is essential to the everyday life of millions of people. Wireless

technology is evolving at a rapid pace that’s speed outmatches what the previous testing

can handle. This necessitates the need for smarter and faster testing methods. One of the

recent fast and efficient testing methods is fuzz testing. Fuzz testing is the generation and

injection of unexpected input called ”fuzzed” input for a system by slightly changing a base

input hundreds or even thousands of times and introducing each change into a system to

observe its effects. In this thesis, we developed and implemented a fuzz testing architecture

to test 5G wireless system vulnerabilities. The proposed design uses multiple open-source

software to create a virtual wireless environment for testing the fuzzed inputs’ effects on the

wireless attach procedure. Having an accessible and adaptable fuzzing architecture to use

with wireless networks will help against malicious parties. Due to 5G simulation technology

still being developed and the cost of ready-made 5G testing equipment, the architecture was

implemented in an LTE environment using the srsRAN LTE simulation software, the Boofuzz

fuzzing software, and Wireshark packet capture software. The results show consistent effects

of the fuzz testing on the outputs of the LTE eNB. We also include a discussion of our future

suggestions to improve the proposed fuzzing architecture.



Fuzz Testing Architecture Used for Vulnerability Detection in Wire-
less Systems

Stephen R. Mayhew

(GENERAL AUDIENCE ABSTRACT)

The persistence of the cellular network is essential to the everyday life of millions of people.

Cell phones and cell towers play an important role in business, communication, and recreation

across the globe. The speed of advancements made in phones and cell towers technology is

outpacing the speed of security testing, increasing the possibility of system vulnerabilities

and unexplored back-doors. To cover the security testing gap, different automated testing

models are being researched and developed, one of which is fuzz testing. Fuzz testing is the

generation and injection of unexpected input called ”fuzzed” input for a system by slightly

changing a base input hundreds or even thousands of times and introducing each change into

a system to observe its effects. The fuzzing architecture proposed in this thesis is used to

test for security flaws in wireless cellular networks. We implemented our fuzz testing model

in a simulated 4G cellular network, where the results show the effectiveness of the model on

tracing network vulnerabilities. The results of the experiment show consistent effects of the

fuzz testing on a wireless system. A discussion of how the proposed model can be further

improved for future work is added to the end of this thesis.
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Chapter 1

Introduction1

1.1 Motivation

Wireless Networks make up a significant part of modern-day life; people spend their free

time and professional time on their phones and other mobile devices. Enhancing network

security is important to avoid harmful attacks that may exploit user data and disrupt network

connections.

Identifying vulnerabilities prevents malicious entities from exploiting users. These bad actors

can use the vulnerabilities to track users or disconnect users from the network [3]. In cellular

networks, fuzzing is not uncommon when testing the UE side, and for this research we explore

the utility of the approach for base station testing. Base station attacks, when successful,

can have a much more pronounced effect on the network as the malicious attack likely affects

more than one user’s experience. A single user affected by an attack is already an unwelcome

occurrence, but a compromised base station may impact hundreds of people. Fuzz testing

can uncover these vulnerabilities in networks especially at the physical and MAC layers

(layers 1 and 2, respectively). Once the vulnerabilities are known, steps can then be taken

to fix the vulnerabilities so that malicious entities cannot take advantage of them.

1The research for this thesis was done together with Dimitri Dessources and Daniel Setareh. Dimitri
worked together with the author of this thesis on the planning, theorizing, and implementation of the fuzz
testing in 4G and 5G environments. Daniel Setareh assisted with writing code and implementing it into
srsRAN.

1



2 CHAPTER 1. INTRODUCTION

The goal of this thesis is to design a fuzzing architecture that detects vulnerabilities in a

wireless system. The architecture developed for this thesis was designed for use in future

wireless generations to detect vulnerabilities. The author pursued this goal because of the

uniqueness of fuzz testing and his interest in wireless technology.

1.2 Significance

The rapid advancements in wireless technology necessitate faster vulnerability detection.

To accommodate these advancements and elevate network security, a method of security

vulnerability testing with minimal knowledge of the system is essential. In this thesis, we

developed a testing framework by combining open source wireless simulation software with

fuzzing software in order to test for vulnerabilities. This novel approach is designed to test

network connections and their standards rather than user equipment. The standards are

a guide for wireless connections, but the standards have flaws and can be exploited. The

implementation of a wireless network has weaknesses that are overlooked by the standards.

Past research on this topic concentrated on vulnerabilities in user equipment. The focus on

UE security is because customers of a wireless network are protective of their own devices.

The significance of this project is the development of an architecture to test the security

of a network connection. This architecture is designed to be easily implemented, uncover

vulnerabilities, and be adaptable to future wireless networks.

Fuzzing is a testing method similar to a brute force attack, which sends countless input

variations to monitor the system for negative responses. When the system reacts negatively

to the fuzz test, the tester can take that knowledge to the appropriate authority such as the

standards committee or product manufacturer to responsibly report the vulnerability. The

fuzz testing that is being used in this thesis has a straightforward implementation comprised
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of open-source software. A consequence of this architecture is that a malicious entity could

establish a similar system and use these testing methods as a way to probe for vulnerabilities.

The methodology designed to find the vulnerabilities in a wireless network was co-designed

by this author. The testing results of our proposed framework show an efficient and successful

performance in finding vulnerabilities in the system under test.

1.3 Overview

Chapter 2 provides the background of fuzz testing and wireless systems, reviews similar

methods of fuzz testing, and compares other types of attacks on wireless systems. Chapter

3 discusses the roadblocks of building a 5G system. The architecture of the 5G network

has some similarities and some important differences to the 4G network. Two notable dif-

ferences in the 5G architecture are the transformed core network, and the addition of a

Non-Standalone(NSA) mode. The challenges of building an end to end emulated system for

testing are discussed in this section. Chapter 4 discusses the ideal architecture for fuzz test-

ing a wireless network. A high level description of the fuzz testing architecture is presented

and explained. Chapter 5 discusses the design of the fuzzing system. The software used and

the architecture of the system is discussed in addition to the advantages and disadvantages

to the architecture. Chapter 6 presents preliminary results of this experiment and discusses

the possible vulnerabilities found during the testing. Chapter 7 makes concluding remarks

about the experiment and discusses how this research can be expanded in the future.

The research concluded that there are possible weaknesses in either the 3GPP standards or

the code of the srsRAN software. When tested, the response of the system was measured

using specific key performance indicators(KPIs). The response revealed a weakness: delay of

data being sent. The research was performed using open-source LTE simulation and fuzzing
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software.



Chapter 2

Review of Literature

2.1 Relevant Fuzzing Work and Fuzzing Background

Fuzzing is categorized into multiple sub-types based on the target application structure,

the input format, and the input generation. The application structure formatting has three

categories: blackbox fuzzing, whitebox fuzzing, and greybox fuzzing. These three types of

fuzzing are shown in Figure 2.1. Blackbox fuzzing is when the fuzzer has no knowledge

of the code or protocol that it is fuzzing. Whitebox fuzzing is when the fuzzer knows the

complete structure of the code and uses this knowledge while fuzzing. Greybox fuzzing is

when the fuzzer has moderate knowledge of the code or protocol that it uses when fuzzing.

Greybox can be thought of as halfway between whitebox and blackbox fuzzing with some of

the benefits as well as downsides to each. Blackbox and greybox are easier to implement than

whitebox fuzzing as they require less knowledge, but whitebox can fuzz more complicated

systems than either blackbox or greybox [4] [5].

Input format has two categories: smart and dumb. This naming convention can be easily

misunderstood, but a smart fuzzer is not necessarily better than a dumb fuzzer; they are

simply different tools used in different scenarios. A smart fuzzer knows the format for the

input and restricts the fuzzing so that it will fit this format [6] [7]. A dumb fuzzer on the

other hand has no knowledge of the input format and fuzzes without any restrictions. A

smart fuzzer could be used in a case that the input has specifications such as the size of a

5
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Figure 2.1: Blackbox, Greybox, and Whitebox Fuzzing Diagram[1]

message. A dumb fuzzer can be used in most situations where a format is not required and

the input can be completely random [7]. The authors of [6] demonstrate the use of a smart

fuzzing method to test file transfer protocol implementations.

Input generation can be split into two categories as well: generation and mutation. A

generation based fuzzer takes no prior input and generates the fuzzed input without any

basis. A mutation based fuzzer uses prior input and modifies it in various ways to create

fuzzed input. A mutation based fuzzer can mutate the prior input in a variety of ways such
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as swapping bits, flipping bits, appending bits, and removing bits. The way mutations are

generated depends on the fuzzing software being used. The author of [8] uses a genetic

algorithm to mutate the inputs, but other fuzzers can do this by cycling through a list of

possible mutations [9] [10].

In [11] the author uses Peach framework to fuzz REDHAWK communication software. They

state that one of the benefits to blackbox fuzzing is the detection of edge case errors, which

they themselves discovered during their tests. Although the target for the fuzz testing in

their paper is different, the purpose is the same as ours. The author uses fuzzing to test for

edge cases in a wireless system similarly to the fuzzing used for this research. Peach fuzzer

[12] is used to fuzz test REDHAWK, while the fuzz testing in this work is performed using

Boofuzz [13]. At the time of writing this paper, Peach is a fuzzing tool owned by Mozilla,

but when [11] was written, Peach was an open source fuzzer similar to Boofuzz. Each of

these testing environments was developed to uncover flaws in a wireless related system.

The authors of LTEFuzz [14] developed a semi-automated testing tool for LTE networks using

open-source LTE software. They analyzed the LTE security standards to identify possible

vulnerabilities. Using the analysis of the standards, different properties were designated

based on handling of the messages and compliance with 3GPP standards. The standards

were then used to generate test cases for each property and used fuzz testing to assess these

test cases. The results of the test cases were used to identify negative responses from the

system. The authors uncovered a variety of negative behaviors such as denial of service and

de-registration of a UE. The authors uncovered 36 new vulnerabilities in the LTE network

using this method. While [14] uses in-depth analysis of the standards to find properties to

test, our straightforward approach negated the need for this analysis.

The author of [8] uses a physical environment to implement their fuzz testing. They used

a genetic algorithm to fuzz the data rather than Boofuzz because their genetic method had
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better compatibility with their physical environment. The author states that due to the way

that Boofuzz generates inputs, it would be difficult to make the inputs compatible with the

equipment they were using. The set up for the testing environment discussed later in this

thesis is held in a virtual environment, which allowed the generation of more test cases faster

compared to a physical environment. The fuzzing proposed in this thesis focuses more on

the 3GPP technical standards and correctly implementing them in order to see whether the

standard itself is exploitable, in comparison to the fuzz testing of [8] which seeks to evaluate

fuzz testing with specific equipment in LTE.

In [15] the author performs fuzz testing on the physical layer of a Wi-Fi access point. The

author uses a fuzzer to modify drivers responsible for the Physical Layer Convergence Pro-

tocol (PLCP) and Protocol Data Unit (PDU). It was concluded that physical layer fuzzing

is possible, but there were concerns about the meaning of the results that they produced

because of a lack of insight into the system’s response. Similar to this thesis, [15] is also

concerned with fuzzing a wireless connection. However, they are focused on the physical

layer and Wi-Fi implementation whereas this thesis focuses on fuzzing the network layer of

4G and 5G networks.

The authors of [16] perform fuzz testing on MAC Layer protocols. They use mutation

based fuzzing alongside an analysis algorithm called Relationships Analysis and Testing case

Marking (RATM). RATM is a model for analyzing the relationships between multiple fields

in a protocol. The mutation based fuzzing is used on MAC layer protocols and RATM is

used to analyze the effects of the fuzzing. The authors uncover multiple vulnerabilities using

this method including crashing the server used in their testing. [16] has a similar goal to

this thesis. The focus of [16] is on the MAC layer whereas this thesis focuses on the network

layer. Their use of an analysis algorithm to observe the effects also contrasts to the single

field focus of this thesis.
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There is different fuzzing software that can be used for testing listed in Table 2.1. Boofuzz

[13] is an open-source fuzzing software that has a straightforward implementation, extensive

documentation, and a variety of useful features. It generates exportable response data from

the system and monitors the testing target for possible crashes. An arguable downside to

Boofuzz is the unsophisticated fuzzing that it performs. Peach [12] is another fuzzer that

was previously open-source, but was purchased by Mozilla in 2020. The previous open-

source code for Peach is available, but it is no longer maintained or updated. Because it is

now commercial it has the benefits of having professional support. One can only use it if

they purchase the software. AFL [17] is another open-source fuzzing software with extensive

documentation and many useful features. AFL was initially considered for use in this project,

but it could not be used because AFL requires a binary file to interact with the fuzz target.

Sulley [18] was also considered, but it is an antiquated version of Boofuzz so it was discarded.

Another fuzzer that was researched was LibFuzzer [19]. LibFuzzer is a fuzzing software used

to fuzz libraries rather than programs or inputs so it was not considered for use. Boofuzz

was chosen to be the best program to use for this project.

There is debate about the best method of fuzz testing. Techniques applied to one system

could be less effective when applied to a different system. A technique such as RATM used

in [16] would not be applicable to a system with only one input, but RATM was highly

effective when it was used by the authors of [16]. Recent efforts in fuzz testing have included

researchers developing there own fuzzers as well as incorporating machine learning into the

fuzz testing process [20] [21] [22] [9].
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Table 2.1: Fuzzing Software

Fuzzing Software Pros Cons Reference
Boofuzz Open-source, straight-

forward implemen-
tation, extensive
documentation,
python code

Unsophisticated
fuzzing

[13]

Peach Extensive documenta-
tion, commercial sup-
port and maintenance

Commercial, not
open-source

[12]

AFL Open-source, exten-
sive documentation

Requires binary files,
not compatible with
this architecture

[17]

Sulley Open-source, straight-
forward implementa-
tion

Antiquated version of
Boofuzz, lacks docu-
mentation

[18]

LibFuzzer Open-source, exten-
sive documentation

Made to fuzz libraries,
not compatible with
this architecture

[19]

2.2 Relevant Wireless Work and Wireless Background

2.2.1 LTE and 5G Stack

The LTE protocol stack between the UE and the eNB, shown in Figure 2.2, can be sectioned

into three layers. Starting from the bottom the layers are split into the physical layer, the

data link layer, and the network layer. The physical layer transmits information over the air

interface between the UE and the eNB. It is also in charge of cell search, cell synchronization,

and encoding and modulation schemes.

The data link layer is in charge of linking the physical and network layers and is split into

three subsections. From the bottom the subsections are the Media Access Control(MAC)

protocol, the Radio Link Control(RLC) protocol, and the Packet Data Convergence Proto-

col(PDCP). At a high level, the MAC protocol is in charge of controlling radio resources for
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allocation. The RLC protocol is in charge of error detection, error correction, and transfer

of network layer PDUs. The PDCP manages transfer of user and control plane data to the

network layer as well as encryption and integrity protection.

Figure 2.2: LTE Stack Architecture[1]

Figure 2.3: 5G Stack Architecture[1]

The network layer, similarly to the data link layer, is split up into three subsections. The

network layer subsections are the Non-Access Stratum(NAS), the Radio Resource Con-
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trol(RRC), and Internet Protocol(IP). The NAS is tasked with establishing and maintaining

continuous communications between UEs and core networks. The RRC by contrast is in

charge of communications between UEs and eNBs. The IP manages messages to the trans-

port layer and connections to the internet.

The 5G protocol stack is similar to the LTE protocol stack with a few key differences. A

diagram for the 5G stack can be seen in Figure 2.3. Due to differences in the core network

that are discussed later, the NAS interaction between the UE and the MME has been split up

into the NAS Mobility Management (NAS-MM) and the NAS Session Management (NAS-

SM) with the AMF and SMF, respectively. The NAS-MM is responsible for communication

between the UE and the AMF of management functionality as well as ciphering and integrity

protection of the NAS signalling. The NAS-SM is responsible for the session management

between the UE and the SMF. The rest of the core network is functionally the same as the

EPC, with the physical and data link layers being comprised of the same elements with the

same functions as the EPC [23] [24] [25].

RRC

The experiment in this thesis primarily deals with the RRC protocol. At its core the RRC is

in charge of communicating between the UE and the eNB in the RAN over what is called the

RRC connection. More specifically the RRC handles specifics like the broadcasting of system

information and characteristics of the entities such as the Temporary Mobile Subscriber

Identity(TMSI) that lets the eNB identify who or what is trying to connect. In addition the

RRC handles activating the security mode during the connection procedure. Security mode

handles the ciphering and integrity protecting of Signalling Radio Bearer(SRB) and Data

Radio Bearer(DRB) messages. The RRC also handles handover procedures when transferring

from one eNB to another. The handover procedure also accounts for transferring from an
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eNB to a base station from a newer or older mobile network like 5G or 3G.

The RRC has two states that it can be in LTE: idle mode(RRC_IDLE) or connected

mode (RRC_CONNECTED). In RRC_IDLE, the eNB is not connected to any UE and

it remains in this state until the RRC connection complete message has been sent. In

RRC_CONNECTED, the eNB is actively connected to a UE. While in RRC_CONNECTED

the UE and eNB transmit and receive traffic and signaling data from each other. To enter

connected mode the UE and eNB have to go through the LTE attach procedure which is

discussed in a later section.

RRC in 5G has been generally unchanged since LTE, but there are differences that need

to be mentioned. In LTE, RRC switches between idle and connected mode, but in 5G a

new state called inactive mode(RRC_INACTIVE) exists as a middle-ground between idle

and connected mode. Inactive mode takes down the radio bearers but keeps the signalling

connection and the UE’s connection to the core network. This allows smartphone apps to

keep running in the background without completely disconnecting.

2.2.2 LTE and 5G Core Networks

The focus of the testing performed for this thesis was on the connection between a UE

and eNB, but understanding how these interface with the core network is important. The

core network of an LTE network, also commonly called the Evolved Packet Core(EPC),

is composed of four main components. These components are the Mobility Management

Entity(MME), the Home Subscriber Service(HSS), the Serving Gateway(SGW), and the

PDN Gateway (PGW). The MME is responsible for control plane functions and session

management. The HSS is in charge of user identification information for authentication and

supports the mobility management of the MME. The SGW and PGW are both responsible
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Figure 2.4: LTE Core Network Diagram[1]

for user plane functions. The SGW handles the connection between the RAN and the EPC by

routing IP packets both coming and going from the EPC. The PGW handles the connection

between the EPC and external IP networks. One part of the EPC not shown in the figure

is the Policy and Charging Rules Function Server(PCRF). The PCRF manages the service

policy and quality of service information for user sessions as well as charging rules selection

for a given service.

The 5G Core Network (5GC) has the same overall function as the 4G core network, but it

has a service based architecture. The MME, HSS, SGW, and PGW’s functionality has been

split up into different core network functions. The ten network functions of the 5GC that

can be seen in Figure 2.5 are listed below.

• Access and Mobility Function (AMF): Handles NAS ciphering and integrity protection,

mobility management, and registration management on top of other functions so it has

part of the MME’s functionality.

• Session Management Function (SMF): supports session management, UE IP address
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allocation, and traffic configuration for the UPF so it has parts of the MME and

PGW’s functionality.

• User Plane Function (UPF): handles packet routing and forwarding as well as quality

of service handling and external PDU session point of connection to the Data Network

which means it has parts of the SGW and PGW’s functionality.

• Policy Control Function (PCF): handles the unified policy framework and providing

rules to the control plane functions so it has part of the PCRF’s functionality.

• Authentication Server Function (AUSF): an authentication server like the HSS in an

LTE network.

• Unified Data Management (UDM): generates authentication and key agreement cre-

dentials and handles user identification and subscription management like the HSS

does in an LTE network.

• Application Function (AF): supports accessing the NEF, application’s influence on

traffic routing, and interactions with policy framework for the sake of policy control.

• Network Exposure Function (NEF): handles access to exposed network services and

their capabilities.

• NF Repository Function (NRF): provides a record of the network functions available

in a given area.

• Network Slice Selection Function (NSSF): handles network slicing. Network slicing is

a new capability to 5G that allows for virtualized end-to-end ”slices” of a network that

can be configured for specific uses.
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The NEF, NRF, and NSSF all have unique functionality to the 5G network that cannot be

compared to LTE core network functionality. The NSSF especially brings something unique

to the system, as network slicing is a new capability that 5G boasts [26] [27] [28] [29] [30].

Figure 2.5: 5G Core Network Architecture

2.2.3 LTE and 5G Attach Procedures

The LTE attach procedure, shown in Figure 2.6, follows a strict sequence of messages and

responses between the UE, eNB, and EPC. The research conducted focuses on the first

three messages in the initial attach procedure: the network acquisition, the random access

preamble, and the RRC connection setup. The network acquisition step is when the UE and

eNB send information to each other about specifications and capabilities of the network.

The random access preamble is a Zadoff-Chu sequence to establish synchronization between

the UE and the eNB. The RRC connection request is used to request an RRC connection

with the eNB from the UE. The next message, the RRC connection setup, is the eNB’s

response to the RRC connection request from the UE to initiate an RRC connection. The

RRC connection complete is an acknowledgement from the UE to the eNB that the RRC
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Figure 2.6: Diagram of LTE attach procedure[1]

Figure 2.7: Flow chart of 5G SA attach procedure

connection has been established. Once the RRC connection has been established the eNB

communicates with the MME to start an attach request to the core network. After the MME
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has confirmed the attach request, the UE and eNB initiate the security mode of the RRC.

Once the security mode has started the UE shares its capabilities, the RRC connection is

reconfigured, and the attach complete is sent to the MME. Messages sent after the security

mode complete are encrypted and integrity protected.

One aspect to consider in the design of a 5G network is the difference between stand

alone(SA) and non-stand alone(NSA) deployments. The attach procedure in a 5G stand

alone network is for the most part the same as the LTE attach procedure with the eNB

replaced with a gNB and the RAN interacts with the AMF rather than the MME.

However, the 5G non-stand alone attach procedure differs due to the difference in structure,

with the non-stand alone using an LTE core with 5G radio. Non-stand alone is a shorter

term solution for 5G since it uses 4G infrastructure that is already in place. Both setups

can be used to test for vulnerabilities, but since the non-stand alone procedure uses both an

LTE eNB and 5G gNB the messages that can be tested differ. The beginning of the 5G non-

stand alone attach procedure still uses the LTE attach procedure to establish a connection

between an LTE and 5G capable UE and an LTE eNB, but after that the procedure differs

with messages between the LTE eNB and 5G gNB. This could mean that any vulnerabilities

uncovered with this experiment may work in a non-stand alone environment, but until the

5G simulation software becomes available that is just speculation.

2.2.4 Related Wireless Work

Jamming and fuzzing are methods of attacking a network with vastly different methods.

With a fuzzing attack, the attacker sends legitimate bits to get accepted by the receiver and

then sends the fuzzed message that may or may not negatively affect the network. Jamming

differs in that it requires consistent use of resources to harm a network while fuzzing is a



2.2. RELEVANT WIRELESS WORK AND WIRELESS BACKGROUND 19

tool used on a network to find a specific message that can be used to harm the network.

Fuzzing does differ in that although during testing it is continuously sending fuzzed input to

get a response, once the harmful sequence has been found it would only take one message to

harm the system rather than the countless messages it takes for a jammer to be effective. 5G

is expected to be used for low-latency high-bandwidth services such as emergency services

and military. Any vulnerabilities during these operations can be extremely costly. A few

milliseconds of lag in a low-latency signal used for emergency medical services could be the

difference between life and death for a patient. The authors of [31] talk about jamming and

how it can affect a 5G network. They go over several types of jamming attacks. Regular

jammers inject signals continuously to occupy the transmission channel and make it harder

for legitimate users to send data. Delusive jammers continuously inject legitimate sequences

of bits into the communication channel so that the receiver waits for messages that will not

arrive. Random jammers act as regular or delusive jammers, but they alternate between

active and idle to conserve power.

Wireless networks have the nature of being open and shared which makes them vulnerable

to many kinds of attacks. A Generative Adversarial Network(GAN) uses a receiver and a

transmitter pair to learn the pattern of another legitimate transmitter receiver pair and fool

the legitimate receiver into thinking the malicious transmitter is legitimate. In [32], the

authors discuss spoofing attacks using GANs. When GANs are used to generate the signals

for a spoofing attack the probability of success increases compared to random or replayed

signals. The probability of success can be increased by using multiple antennas to attack.

This architecture is similar to fuzz testing; the adversary interacts with and measures the

response of the system under test. More specifically, a GAN synthesizes data samples similar

to real data samples. This contrasts with fuzz testing, which produces inputs that can differ

greatly from a real sample. GANs and fuzzing can be used together to test a network protocol
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more efficiently. The authors of [33] use a GAN to learn the protocol grammar. The results

from the GAN are then used to help generate better fuzzed inputs. GAN and fuzzing used

together in this case helped produce better test cases for the researchers.



Chapter 3

Building a Representative 5G Testing

System

The desirable characteristics of a 5G testing system are an end-to-end standalone simulation

and emulation of a 5G network and compatibility with various testing equipment. The

constraints and challenges of building a 5G testing system are a lack of available software

and cost of 5G equipment.

3.1 Desirable Characteristics

When testing in a 5G environment there are many factors that a tester would desire de-

pending on their goals. In a perfect environment, a fully emulated end-to-end standalone

5G system would be available. Such technology is not readily available at this time, but

certain aspects can be highlighted for future testing purposes. The first desirable aspect

would be for the system to have an end-to-end connection between the 5G UE, gNB, and

core network. To achieve a full end-to-end system, a stand alone system would be desirable.

A testing environment with 5G stand alone is desired because the full capabilities of a 5G

network require 5G SA mode. A non-stand alone system can also be used to to achieve an

end-to-end system, but it comes with its own limitations which were discussed in Chapter 2.

Another desirable characteristic would be the ability to use hardware like USRPs to connect
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with the simulated core network. The ability to use a USRP and connect it to a COTS 5G

capable UE would be useful for testing the real world applicability of any testing that needs

to be done. Emulating the UE has benefits such as lowered cost and not needing to work

with real wireless signals, but it is just an imitation of a commercial deployment.

3.2 Constraints and Challenges

The main constraint in designing a 5G system is the lack of available software that can

support it. 5G COTS UEs started becoming available in the middle of 2020, but due to

the destructive goals of this experiment, there were risks that had to be mitigated. The

experiment could not be conducted on a 5G phone or on a cellular provider’s network as

it would go against FCC guidelines. The design instead used software simulations of the

wireless network to perform experiments. When this experiment started, srsRAN had not

released the 5G side of their software, so tests could not be run in a virtual 5G environment.

srsRAN has released a non-standalone version of the UE and eNB by the time this paper has

been written, so future tests can be run in 5G NSA mode and even SA mode once srsRAN

releases it.

Another constraint is the cost of 5G hardware, which was a reason the virtual route was

taken for testing. Testing a network with 5G hardware can be prohibitively expensive, but

5G hardware can have high capability and mimic a real radio environment better than other

testing environments. Physical environments can be simulated and emulated in a hybrid test

where a virtual eNB and EPC can be run on a computer with srsRAN. srsRAN is linked to

a USRP which can connect to another machine running a UE with srsRAN or a COTS UE

with 5G capability. This setup comes with some advantages and disadvantages compared

to the virtual implementation. Physical environments can provide more accurate testing



3.2. CONSTRAINTS AND CHALLENGES 23

when compared to an actual network, but the equipment needed can still cost thousands of

dollars and is more difficult to set up. Also for the purpose of this experiment, the UE and

eNB connected tens of thousands of times which would take significantly longer in a physical

realization. The third and final option is a fully virtual route. This option has the lowest

cost and the easiest setup, but is the furthest from a real-world environment. A virtual

environment does mimic an actual wireless network, but a simulation cannot fully recreate

a commercial deployment. These three environments are shown in Figure 3.1.

Figure 3.1: Diagram of Different Testing Environments[1]
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3.3 Architectural Considerations

An aspect to consider when testing a 5G network is the end-to-end connectivity needed for

testing purposes. Testing on a single 5G capable UE or 5G gNB can be done, but testing

each component individually could produce different results than when tested together. In

addition, the tests performed on an isolated UE or gNB would not have the same com-

munications, so testing the attach procedure would not be possible. The ideal fuzz testing

architecture would be implemented inside a 5G network. It is the next big innovation in

wireless networks because of its capabilities.



Chapter 4

Fuzz Testing Architecture Description

4.1 High Level Description

Figure 4.1: Fuzz Testing Block Diagram[1]

At a high level, fuzz testing follows the circular pattern shown in Figure 4.1. The target

system is identified and examined in order to accomplish the next step, identifying the in-

puts necessary. Once the inputs are identified, the fuzzed data is generated. This can be
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accomplished using one of the previously mentioned fuzz data generation techniques: gener-

ation or mutation. After the fuzz data is generated, it is sent to the system. The response

from the system is monitored and logged, then the whole process is repeated. In actual

implementations the order of the steps can be rearranged to accommodate characteristics of

the system under test. For example, if the system has strict timing constraints the fuzzed

data can be generated all at once, then sent one at a time.

The fuzz testing architecture used in this thesis follows this high level approach with minor

changes. First, the wireless attach procedure in 4G and 5G is selected as the target system.

Second, the RRC Connection Request is selected as the target input for fuzzing because it is

early in the attach procedure. The RRC Connection Request’s early occurrence in the attach

procedure means that the time required for each run is reduced, and the RRC Connection

Request is before the encryption is activated. All of the fuzzed data is generated before it

is introduced to the system because of timing constraints. Once the fuzzed data has been

generated, it is introduced into the system using modified wireless simulation software. The

system is monitored using packet capture software, and logs are generated using the packet

capture software. The logs of the wireless software are then examined to see the effects of

the fuzz testing.

4.2 Ideal Fuzz Testing Architecture

The ideal fuzz testing architecture follows the same high level approach, but with improve-

ments at various steps of the process. Figure 4.2 shows the ideal fuzz testing block diagram.

Intelligently selecting fuzzing inputs can increase the impact of fuzz testing. Intelligent se-

lection of the fuzz testing parameters can be done by studying the system and using analytic

techniques such as RATM to measure the impact of changing the input. Generating the
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Figure 4.2: Ideal Fuzz Testing Block Diagram[1]

fuzzed inputs can be improved by using machine learning to refine the fuzzed data being

produced. The speed of the system can be improved using a fast time scale and parallel

processing. A fast time scale can be used to reduce the amount of time for a simulated

wireless network to complete a testing run. Parallel processing can be used to have runs

executing simultaneously. With parallel processing, the fuzz data generated would need to

be divided among the different processes to avoid overlap in the fuzzed inputs sent to the

system.

In reality each of these implementations has disadvantages that limit their usefulness. In-

telligent selection of fuzz testing parameters takes time to accomplish. Getting machine

learning to give back useful changes to the fuzz testing input also takes time to optimise.

Fast time scale and parallel processing require more computing power to accomplish, which
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increases the cost of implementing the fuzz testing.



Chapter 5

Fuzz Testing Architecture

Implementation

5.1 Architecture Description

The current system is an amalgamation of a variety of software, each with a different purpose

and use. srsRAN is the base software used for this project and is an LTE simulation software

[34]. srsRAN simulates the UE, eNB, and EPC each in a different instance. This set up

can be used on multiple computers with USRPs with one computer running srsUE while the

other runs srseNB and srsEPC. srsRAN can also be run on a single computer using zeromq

drivers to emulate the network. The setup that was used for a majority of the testing used

zeromq so that tests could be run on a single computer. This version of srsRAN has been

edited to allow resetting the connection for quick testing. A stop has been put in the source

code for srsUE so that when srsUE gets to the message that we want to fuzz, the running

of the program stops so that our fuzzed input can be injected. The system then carries on

and generates a pcap file when srsUE disconnects from srsENB. This pcap file can then be

analyzed to learn how that particular input affected the system.

For the first incarnation of the test, the RRC connection request was chosen as the target

for the fuzz testing. The RRC connection messages are early enough in the attach procedure

that security mode commands are not initiated yet or completed yet which leaves them more
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open to tampering. The early nature of the RRC connection request in the protocol exchange

also means that testing is faster because not as many messages need to be completed to get to

the target fuzzed message. This time to insertion of the fuzzed message would be negligible

in a single trial, but due to the repetitive nature of fuzz testing with thousands of tests

executed the time expended is very long.

The fuzzing software used in the system is Boofuzz [13]. Boofuzz is a fuzzing software which

was created as a successor to Sulley, another fuzzing framework, after it had fallen out of

maintenance. Boofuzz is a dumb, greybox, mutation-based fuzzer. This means it gets input

that it knows nothing about, changes it, and injects it into the system targeted for fuzz

testing. Boofuzz uses Python code for implementation. In our architecture Boofuzz is given

an initial value that could be used by srsUE. Boofuzz then modifies and sends the value

numerous times.

This combination of software is used in the VT CORNET [35] servers, running on multiple

virtual machines running in parallel so that many tests can be run simultaneously. To

analyze the resulting pcap files from srsRAN, different tools have been used. Originally the

pcap files were analyzed using Wireshark packet capture software, but with the volume of

data that needs analyzing manually, looking at the data was not efficient. Instead, Pyshark

was used to convert the pcap files to json files to analyze them.

The design of the implemented fuzzing architecture is summarized by the following steps

with Figure 5.1.

1. Boofuzz is used to generate a number of byte sequences whose elements correspond to

the values of the fields specific to the network message to be fuzzed. Each individual

sequence generated serves as one fuzz test case. The number of test cases is determined

by the number of fields specific to the message of interest.



5.1. ARCHITECTURE DESCRIPTION 31

Figure 5.1: Diagram of RRC connection fuzzing setup

2. Python code external to Boofuzz is then run to scrape the byte sequences generated

from step 1 and concatenates them all to a ‘test-case list’ file.

3. The srsRAN executables: srsEPC which serves as the LTE core network and srsENB,

which serves as the LTE eNodeB, are initiated, and their respective outputs are sent

to a logfile.

4. The srsUE executable, which serves as the UE transmitting the fuzzed message, is then

initiated. Here, the srsUE executable has been modified to replace the field values in

the message of interest with the fuzzed values of the current test case. The new fuzzed

message is then sent from UE to eNB.
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5. The srsRAN stack is then taken down upon completion, and srsENB saves MAC-Layer

network transmissions to a pcap file upon termination.

6. Steps 3 to 5 are repeated 100 times for every fuzz test case, and the pcap and the log

files are all saved to separate folders. The repetition is done for probability analysis of

eNB reponse outputs found in the pcap files.

7. The pcap files generated by srsENB are fed through a python script utilizing ‘tshark’

to generate ‘plaintext’ json data.

8. Analytics of generated pcaps are performed to determine results by comparing the

outputs of the fuzzed data to the outputs of non-fuzzed data.

5.2 Advantages and Features

A major advantage to this setup is the fact that all of the software used in the design is

open-source. This reduces the cost of the experiment since no licenses or software had to be

purchased to use the software. In addition this allows recreation of this experiment process

for other researchers or for verification of the results of this experiment. The open source

nature of srsRAN was an important attribute of our implementation. The open-source nature

of srsRAN was a critical aspect because it allowed us to introduce fuzzed data by editing

the srsRAN code.

Another advantage to our architecture is the ease of implementation. Once the sections of

code that need to be edited are found implementing the fuzz testing is simple. A snippet of

the default srsUE code is shown in A.1 while the modified srsUE code is shown in A.2. Both

of these code snippets show the ue_identity implementation in srsUE, which is the target

of the fuzz testing. The code did not require much change. The default values are assigned
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new values that were generated by Boofuzz. B shows the Boofuzz code that can be used

to fuzz the RRC Connection message. The code goes through the message sections down

to the ue-Identity level where it signifies the Mobility Management Entity Code (MMEC),

MME Temporary Mobile Subscriber Identity (M-TMSI), and establishmentCause as fuzzing

targets. The ue-Identity is included in the RRC Connection Request to facilitate contention

resolution. The mmec and m-tmsi comprise the ue-Identity. The MMEC and M-TMSI

are used to identify a unique Mobility Management Entity(MME) within a group of MME.

The establishmentCause is a value that describes one of 15 establishment cause values in

the srsRAN code. Adding the fuzz test to the srsRAN code is uncomplicated with this

implementation.

5.3 Downsides

The most apparent downside to this setup is the computing power or time required to run

the tests. The first setup that was implemented was on a commercial laptop PC. This PC

had a third generation Intel i7 CPU, an AMD FirePro M4000 Mobility Pro GPU, and 32GB

of RAM. This computer took a month to complete 250,000 runs while the VT CORNET

setup took a day to do the same amount. The VT CORNET server used to run the fuzz

tests had an Intel Xeon E5-2687W CPU, and 128 GB of RAM with each VM using 2 CPU

cores and 4GB of RAM. A significant amount of computing power is required. Multiple

commercial computers cuts down on the time required, but that increases the testing cost.

Cloud computing was considered, but then discarded because it increased the difficulty of

implementation.

Another limitation of the implementation is the dependency on srsRAN rather than another

wireless simulation software. While srsRAN is a well functioning software, it also has limita-
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tions. It could be possible that other RAN and core network simulation could be used in its

place, but whether it will work the same as this implementation is not known. Furthermore,

the software execution needs to stop for the fuzzed data to be introduced to the system.

This increases the time it takes for each run, which adds a great deal to the overall time

if numerous tests are conducted, and distorts the response time of the system. The stop

put in the code was necessary to change the fuzzed values, but there may be other more

efficient methods of introducing the fuzzed data. This approach that predefined the fuzzed

states does make it awkward to find sequences of fuzzed values that could result in security

vulnerabilities.
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Results

As mentioned earlier, the goal of this thesis is to show a proper fuzzing architecture that

indicates the presence of security vulnerabilities. Security vulnerabilities can take the form

of any number of negative responses from the system, such as a crash or a memory leak.

Although nothing as significant or obvious as a crash was achieved with this fuzz testing

framework, other more subtle effects that provide clues to potential vulnerabilities on the

system were found. These Identified effects could be used to help identify combinations of

sequences that may lead to serious issues. However, examining such sequence combinations

is computationally infeasible for our resources.

To obtain these results, 250,000 fuzzed inputs were generated. Each of these inputs is

considered a test case. Each test case was run 100 times for a total of 25,000,000 runs.

The histograms presented in this chapter show 22 of the 100 runs from test case #40200

compared to 22 runs without fuzz testing implemented.

The eNB response values obtained from the pcap files were placed into the json files. There

are over 1300 eNB response fields that were extracted and from those, 42 were considered

to be of interest. These values are shown in Table 6.1 and were selected for specific reasons.

First, many of the fields extracted were categorical rather than numerical. A categorical

field has a word as its output rather than a number. For example, the rlc_lte_context_12

field predominantly contains the value ”Context.” The issue with categorical fields is that

manually examining the significance of hundreds of fields, each with thousands of values, is
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inefficient. The effects of fuzzing can be determined much more simply using numeric fields.

Numerical values can be statistically quantified and displayed. Another factor for choosing

the fields was noticeable deviation from the benchmark. The benchmark was obtained by

running the experiment without implementing fuzz testing. Many of the fields’ values were

static values that never changed from the benchmark by the fuzzed tests. These selection

metrics resulted in 42 fields potentially showing significant effects from the fuzz testing.

Table 6.1: Outputs of Interest

eNB Response Field
Function

eNB Response Field
Name

Packet Number

Code for Identifying Home
Network

e212 mnc 3

Length of GSM Signal gsm a len 3, 8
RRC Connection Setup
Message

lte rrc c1 12, 14, 15

RRC Establishment Cause lte rrc establishmentCause 1
UE Identity lte rrc ue Identity 1
Msg3 sent during RAP for
contention resolution

mac lte control ue con-
tention resolution msg3

2

Length of frame mac lte length 5, 8
Padding length mac lte padding length 3, 8, 15
Synchronization Channel
length

mac lte sch length 3, 8, 11

System frame number mac lte sfn 2
Subframe number mac lte subframe 0, 1, 4, 5, 7, 8, 10, 11, 14, 16
NAS Key set identifier nas eps emm nas key set id 3
EPS Identity has odd or
even numbered digits

nas eps emm odd even 3

Message type for EMM nas eps nas msg emm type 6, 8
Encryption and Integrity
protection used

nas eps security header type 3, 9

Length of octet string value per octet string length 3, 5, 8, 9
Length of RLC PDU rlc pdu length 3, 5. 11

These 42 fields were then observed in arbitrarily chosen test cases to observe any effects that

the fuzz testing had. One test case is described below to showcase the results of the fuzz
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testing. These effects are shown and discussed in the next section.

6.1 Histograms

The output of three fields are shown here to demonstrate the effects of fuzz testing. Figures

6.1, 6.3, and 6.4 each show outputs from the fuzzing test case #40200 compared to the

non-fuzzed default case.

Figure 6.1: Histogram of the security header type

For example, Figure 6.1 shows a histogram of the fuzz case #40200 compared to the non-

fuzzed default case for the nas_eps_security_header_type value of packet 9. The fuzzing

appears to have affected the nas_eps_security_header_type with the fuzzed tests all out-

putting a value of 0 while the default case outputs a value of 3 or 4. From Table 6.2 from
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the 3GPP standard 24.301, a value of 0 for the nas_eps_security_header_type means that

there is no encryption on what is being sent. A value of 3 means that the message has

integrity protection and a value of 4 means that the message has both integrity protection

and ciphering. It is suspected the encryption did not to appear in this message because

the fuzz testing delayed an earlier message from being sent. Figure 6.2 shows a theoretical

example. This delay of encryption can be utilized to extend the time frame available to send

harmful messages to the system.

Figure 6.2: Diagram of Delay Caused by Fuzz Testing [1]

Table 6.2: Security header type [2]

Bits(Binary) Bits(Decimal) Security Protocol
0 0 0 0 0 Plain NAS, not security protected
0 0 0 1 1 Integrity protected
0 0 1 0 2 Integrity protected and ciphered
0 0 1 1 3 Integrity protected with new EPS security context
0 1 0 0 4 Integrity protected and ciphered with new EPS security context
1 1 0 0 12 Security header for SERVICE REQUEST message

Figure 6.3 shows the histogram of the fuzz case #40200 and the default case of the Message
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Figure 6.3: Histogram of the Message type for EPS Mobility Management

type for the EPS Mobility Management in the 6th packet. In the default case this is shown

to be a value of 83 with a few outputs of 82. The fuzzed output shows a value of 86 for

most cases and a value of 85 for a couple. The meaning of these values can be understood

by referencing Table 6.3 from 3GPP standard 24.301 [2]. The value of the fuzzed output

is consistently an identity response or request message as compared to an authentication

response or request that occurs for the default case. Similar to what is shown in Figure

6.2, the message being sent is being delayed. In the non-fuzzed case the identity response

or request is being sent in packet 6, but with the fuzz testing the authentication response

or request is sent in packet 6. In the wireless attach procedure, the identity response and

request are sent during the random access procedure, and the authentication response and

request are sent during the DL and UL Info Transfer messages. This suggests that the fuzzing
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caused an earlier message to get delayed and that effect is propagating to this packet being

sent. The fuzzed RRC Connection Request is only sent once during the attach procedure,

and the system would discard a repeated one. This prevents repeating the message to further

propagate the delay would not be possible. However, the Random Access Preamble, RRC

Connection Complete, or another pre-Security Mode message can be fuzzed to attempt to

create a delay. If other fuzzed messages are found to produce a delay, messages could be sent

together to compound the delay in packets being sent. With enough delays to the system, a

crash could be created due to the strict limitations of wireless systems.

Table 6.3: Message types for EPS mobility management [2]

Bits(Binary) Bits(Decimal) EPS Mobility Management Messages
0 1 0 1 0 0 0 0 80 GUTI reallocation command
0 1 0 1 0 0 0 1 81 GUTI reallocation complete
0 1 0 1 0 0 1 0 82 Authentication request
0 1 0 1 0 0 1 1 83 Authentication response
0 1 0 1 0 1 0 0 84 Authentication reject
0 1 0 1 1 1 0 0 92 Authentication failure
0 1 0 1 0 1 0 1 85 Identity request
0 1 0 1 0 1 1 0 86 Identity response
0 1 0 1 1 1 0 1 93 Security mode command
0 1 0 1 1 1 1 0 94 Security mode complete
0 1 0 1 1 1 1 1 95 Security mode reject

Figure 6.4 shows the value of subframe 0 for the fuzzed and non-fuzzed case. This shows

that the fuzz testing caused the value of subframe 0 to stay the same throughout the runs.

Most of the outputs of the default case have a value of 6 with a few having a value of 8 or

0. Concurrently, case #40200 outputs a value of 6 every time. Fuzz testing did not change

the median value and it kept the output consistent. This is shown as a comparison to the

previous histograms as separate effect of the fuzz testing. The other histograms show a clear

separation of the outputs for the fuzzed test and the default while this one shows an overlap

in the outputs. The darker red in Figure 6.4 shows the overlap of test case #40200 and the
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Figure 6.4: Histogram of Subframe value of Packet 0

non-fuzzed test case while the lighter red is the non-fuzzed test case.



Chapter 7

Summary

A novel fuzz testing architecture is presented in this thesis. The architecture was designed

for use with 5G systems to test for vulnerabilities. The architecture is the process of using

a fuzzer within a wireless network to test for vulnerabilities. The architecture uses open-

source software for its implementation. The state of fuzz testing and similar efforts in

this field were discussed. Different fuzzing tactics are shown to be effective in different

environments. Due to the state of 5G software and the cost of 5G hardware, the architecture

had to be implemented in a 4G environment. The 4G implementation of the fuzz testing

was designed to be adaptable to 5G after simulation software for 5G network components

becomes available. The 4G implementation used Boofuzz to generate fuzzed data, srsRAN

to simulate the 4G network, and Wireshark to enable analysis. A VT CORNET server

utilized for wireless testing was used while implementing the fuzz testing architecture with

the mentioned software. The 4G fuzz testing implementation uncovered security risks. The

test case that was presented shows a message without encryption being sent by the eNB.

This lack of encryption is suspected to appear because of a delay in messages. The delay

causes a message without encryption to be sent when a separate message with encryption

would normally be sent. This shows that the fuzz testing causes a delay in the messages sent

to the system.
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7.1 Conclusion

The conducted experiments successfully showed the effectiveness of fuzz testing using the

proposed architecture produced significant results. The fuzz testing was able to uncover un-

encrypted messages being sent by the eNB. It also showed consistent impact on the responses

sent by the eNB in separate messages. Moreover, the fuzz testing caused messages to be

sent later than they were sent without fuzz testing. These results are significant because

they prove the effectiveness of the fuzz testing architecture. Our proposed architecture can

be used in future research to help find vulnerabilities in wireless networks. While none of

the effects observed caused the system to crash, they provide clues to possible issues in the

software or protocol standard.

7.2 Future Work

This research can be expanded on once 5G simulation software becomes available. 5G simu-

lation software would allow the ideal architecture to be implemented. This implementation

could be used to test 5G networks and the 5G simulation software once they become avail-

able. Another improvement that can be implemented is the use of AI and Machine Learning

techniques with the fuzzing process. AI can be used to refine the mutations made by a fuzzer

by measuring the response of the system. The response’s reaction to the refined mutations

can then be used by the AI ad infinitum to generate more effective fuzzed data. The fuzz

testing architecture could also be used in conjunction with known wireless attacks to test its

effectiveness. Fuzz testing has been proven to be effective with other vulnerability testing

methods such as GANs; combining fuzz testing with more testing methods could have a

synergistic effect for finding previously undiscovered vulnerabilities.
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Appendix A

srsUE Code

A.1 Default srsUE Code

1 s r s r an : : to_asn1(&rrc_conn_req−>ue_id . s_tmsi ( ) , ue_ident i ty ) ; //

d e f a u l t ue_ident i ty s e t

2 rrc_conn_req−>establ i shment_cause = ( establ ishment_cause_opts

: : opt i ons ) cause ; // e s tab l i shment cause s e t

3 send_ul_ccch_msg ( ul_ccch_msg ) ; // message queued

A.2 Modified srsUE Code

1 ue_ident i ty .mmec = ( uint8_t )fuzzedMMEC ; // s e t mmec to the bytes

loaded from f i l e

2 ue_ident i ty . m_tmsi = ( uint32_t ) fuzzedTMSI ; // s e t tmsi to the

bytes loaded from f i l e

3 rrc_conn_req−>establ i shment_cause = ( establ ishment_cause_opts

: : opt i ons ) fuzzedCause ; // s e t cause to the b i t s loaded

from f i l e

4 s r s r an : : to_asn1(&rrc_conn_req−>ue_id . s_tmsi ( ) , ue_ident i ty ) ;

// modi f i ed ue_ident i ty s e t

5 send_ul_ccch_msg ( ul_ccch_msg ) ; // message queued
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Appendix B

Boofuzz Code

1 from boofuzz import ∗

2

3 de f main ( ) :

4

5 s e s s i o n = Ses s i on (

6 t a r g e t=Target ( connect ion=UDPSocketConnection ( ” 1 2 7 . 0 . 0 . 1 ” , 57005) ) ,

7 s leep_time =0)

8

9 req = Request (”UL−CCCH−Message ” ,

10 c h i l d r e n =(Block (” c1 ” , c h i l d r e n =(Bytes (” b u f f e r ” , s i z e =6) ) ) ) )

11

12 req1 = Request (”UL−CCCH−Message ” ,

13 c h i l d r e n =(Block (

14 ” c1 ” ,

15 c h i l d r e n =(Block (

16 ” rrcConnect ionRequest ” ,

17 c h i l d r e n =(Block (

18 ” c r i t i c a l E x t e n s i o n s ” ,

19 c h i l d r e n =(Block (

20 ” rrcConnect ionRequest−r8 ” ,

21 c h i l d r e n =(Block (

22 ”ue−Indent i ty ” ,

23 c h i l d r e n =(Block (

24 ” s−TMSI” ,
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25 c h i l d r e n =(Byte (”mmec”) ,

26 DWord(”m−TMSI”) ) ) ) ) ,

27 Byte (” establ i shmentCause ” ,

28 max_num=15) ) ) ) ) ) ) ) ) ) )

29

30 s e s s i o n . connect ( req1 )

31 s e s s i o n . fuzz ( )

32

33 i f __name__ == ”__main__” :

34 main ( )
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