LINEAR, BRANCHED AND CROSSLINKED POLYESTERS, POLYURETHANES AND POLYMETHACRYLATES DERIVED FROM ROTAXANE FORMATION: SYNTHESES AND PROPERTIES

Caiguo Gong

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMISTRY

Dr. Harry W. Gibson, Chair Dr. Brian E. Hanson Dr. Herve Marand Dr. James E. McGrath Dr. James M. Tanko

> November 30, 1997 Blacksburg, Virginia

Keywords: Polyurethane, Polyester, Polymethacrylate, Polyrotaxane, Hydrogen Bonding, Self-assembly, Crown Ether Copyright 1997, Caiguo Gong

Linear, Branched and Crosslinked Polymers, Polyesters, Polyurethanes and Polymethacrylates Derived From Rotaxane Formation: Syntheses and Properties

Caiguo Gong

(Abstract)

As new family of composite materials, polyrotaxanes, polymers containing rotaxane units, have interested scientists world wide in last few decades because of their new properties. Crown ethers have been widely used as the cyclic component in various polyrotaxanes. However, due to significant loss of threaded cyclic during polymerization, the driving force for threading remains unidentified.

To prevent threaded cyclics from slipping off the backbone during polycondensation, a diol blocking group (BG) and a diacid chloride BG were prepared and incorporated into polyesters as monomers or comonomers. Using these BG's effectively reduced or prevented dethreading and thus indeed increased threading efficiency (m/n, average number of cyclics per repeat unit). The study also brought about new evidences for the formation of the polyrotaxanes, i.e., the hydrolytic recovery of threaded crown ether, different chemical shift of the threaded cyclic from the free species and nuclear Overhauser effect spectroscopy (NOESY) correlation. The threading efficiencies increased with lower polymerization temperature and increasing feed ratio of the cyclic vs. diol monomer. H-bonding between the crown ether and the OH groups of the diol monomers was identified as the driving force for threading and detailed threading and dethreading mechanisms were revealed.

Co-polyurethane rotaxanes were also prepared by polymerization of diol BG, tetra(ethylene glycol) and 4,4'-methylenebis(*p*-phenyl isocyanate) (MDI) using 30C10 as solvent. Compared to that with the polyester backbone, dethreading was slower with the polyurethane because of H-bonding of the threaded cyclics with the in-chain NH groups. Interestingly, as proved by proton NMR spectra, the cyclics were locked at the NH sites in chloroform but pushed away from the site in DMSO. Thus these polyurethane rotaxanes were solvent switchable molecular shuttles with controlled microstructures. Based on H-

bonding theory, a new method for the preparation of polyrotaxanes, a melt threading process, was demonstrated by threading "42C14" onto a preformed polyurethanes. The properties of the resulting polyurethane rotaxanes depended on threading efficiency (m/n): the higher m/n was, the lower the T_g was but the higher the intrinsic viscosity was.

Novel topological polymers, mechanically-linked branched and crosslinked poly(methyl methacrylate)s were synthesized by pendant group modification of a preformed poly(methacryloyl chloride) with 5-hydroxymethyl-1,3-phenylene-1,3-phenylene-32-crown-10 (hydroxymethyl BMP32C10). The rotaxane structure was directly proved by NOESY. The polycondensation of di(hydroxymethyl)-BMP32C10, tetra(ethylene glycol) and MDI afforded similar mechanically-linked polyurethanes. The branching points were manifested by the complexation of the polyurethane with paraquat. The polydispersities (PDI) and topologies (linear, branched and crosslinked) of these polymers were simply controlled by the polymerization conditions; this will ultimately afford polymers with different processibility (melt viscosity) and mechanical properties, e.g., the slippage of the cyclics along the backbone ensures a higher elongation.

The complexation between a preformed polymeric crown ether and paraquat afforded a novel class of main chain polyrotaxanes. The continuous titration method afforded accurate estimates of the equilibrium constant, enthalpy and entropy changes and thus polyrotaxanes with certain m/n can be simply designed. Compared to the starting polymers, polyrotaxanes had higher viscosity, higher glass transition temperature and different solubilities. A concept for the preparation of reversible branched and/or crosslinked homo- or co-polymers was invented, which was demonstrated by preparation of a reversibly branched polymer by selfassembly of a preformed polymeric crown ether and a polyurethane bearing paraquat moieties. This concept can be applied to increase the compatibility and the interfacial interaction for polymer blends and construct reversible networks.

The present work is supported by the Division of Materials Research, National Science Foundation, through individual investigator grant DMR-93-20196.

Acknowledgments

My deepest gratitude goes to my advisor, Dr. Harry W. Gibson for his valuable advice, patience and continued encouragement. His guidance provided me with not only chemistry knowledge but also scientific methodology and professionalism essential for all great scientists.

I would also like to thank Dr. Brian E. Hanson, Dr. Herve Marand, Dr. James E. McGrath and Dr. James M. Tanko, for serving on my committee and for their helpful suggestions.

Special thanks go to Dr. Ji for obtaining GPC data, Mr. Glass for his great support in the NMR field and Dr. Beckham at Georgia Tech for providing Solid State NMR training opportunity.

I would like to thank my groupmates: Donghang, Bill, Darin, Lance, Dev., Shu and Sang-hun, and all the people who made my stay at Virginia Tech an enjoyable experience.

I want to thank my parents, sisters and brothers in China for their endless love and support, who have never "asked for anything" but "given".

My wholehearted thanks go to my wife, Mei, for her endless love, support and sacrifice, and my daughter, Diana, for bringing me a sea of happiness.

Table of Contents

Chap	pter 1: Literature Review	1
1.1	Introduction	1
	1.1.1 Topologies of conventional polymers	1
	1.1.2 Mechanically linked polymers	4
1.2	Monorotaxanes	7
	1.2.1. Statistical threading	7
	1.2.2 Chemical conversion	8
	1.2.3 Threading driven by enthalpy	8
1.3	Polyrotaxanes	21
	1.3.1 Cyclodextrin-based polyrotaxanes	22
	1.3.2 Crown ether-based polyrotaxanes	28
	1.3.3 Other cyclics-based polyrotaxanes	33
1.4	Summary and conclusions.	33
Chaj	pter 2: Research Objectives and Scopes	36
Chaj	oter 3: A Diol Blocking Group-based Polyester/Crown Ether Rotaxane	38
3.1	Introduction	38
3.2	Results and discussion	39
	3.2.1 Synthesis of diol functionalized blocking group 3.7	39
	3.2.2 Synthesis and characterization of diol BG-based polyrotaxanes 3.8	43
	3.2.3 Threading and dethreading	47
	3.2.4 Temperature and feed ratio dependence of threading efficiency	49
	3.2.5 The relationship of H-bonding vs. m/n	52
3.3	Conclusions	57
3.4	Experimental	57

Chap	pter 4: Dethreading during the preparation of poly(ester/crown ether	
rotaxane)s		62
4.1	Introduction	62
4.2	Results and discussion	64
	4.2.1 Synthesis of diol BG-based copolyester 30C10 rotaxanes 4.8, 4.9 and 4.10	64
	4.2.2 NMR Spectroscopy	64
	i Hydrolysis of copolyester 30C10 rotaxane 4.9	65
	ii 2D COSY and NOESY measurements	66
	4.2.3 Threading and dethreading	71
4.3	Conclusions	74
4.4	Experimental	74

Chapt	er 5: Diacid chloride blocking group and its derived polyester re	otaxanes: a
strateg	gy to eliminate dethreading	78
5.1	Introduction	78
5.2	Results and discussion	81
	5.2.1 Diacid Chloride-functionalized Blocking Group 5.14	81
	5.2.2 Polyrotaxanes 5.16a and 5.16b	83
	5.2.3 Polyrotaxanes 5.17a, 5.17b and 5.17c and Model Polymer 5.17d	83
	i Synthesis	83
	ii Characterizations	85
	5.2.4. Threading and dethreading mechanisms	90
	5.2.5 Temperature dependence of threading efficiency	92
	5.2.6 Comparison of threading ability of different macrocycles	95
5.3	Conclusions	100
5.4	Experimental	101

Chap	ter 6: Poly(urethane/crown ether rotaxane)s with controlled microstructures	105
6.1	Introduction	105

6.2	Results and Discussion	109
	6.2.1 Polyrotaxanes prepared by approach II	109
	i. Synthesis of model polyurethanes 6.7a-b and poly(urethane rotaxane)s 6.7c-g	109
	ii. Characterization of polyrotaxanes 6.7c-g	112
	iii. Microstructures of polyrotaxanes 6.7c-6.7g	114
	iv. Threading and Dethreading	118
	v. DSC analyses of model polyurethanes and poly(urethane rotaxane)s	120
	6.2.2 Polyrotaxanes prepared by approach I	120
	i. Synthesis of model polymer 6.18 and polyrotaxanes 6.19a-f	120
	ii. Model studies	122
	iii. Threading mechanism and threading efficiency	122
	iv. Some properties of polyrotaxanes	124
	a) Intrinsic viscosity	124
	b) Thermal properties	126
6.3	Conclusions	127
6.4	Experimental	128

Chapter 7: Branched and/or cross-linked poly(methacrylate rotaxane)s derived from

self-threading		131
7.1	Introduction	131
7.2	Results and discussion	135
	7.2.1 Preparation of hydroxymethyl BMP32C10 (7.10)	135
	7.2.2 Preparation of poly(methacrylate)s	136
	7.2.3 Characterization of 7.15 and 7.16	138
	i GPC analysis	138
	ii NMR study	141
	iii DSC analysis	144
7.3	Conclusions	146
7.4	Experimental	146

Chapt	er 8: Mechanically linked network and branched poly(urethane rotaxane)s	with
contro	llable polydispersity	150
8.1	Introduction	150
8.2	Results and discussion	153
	8.2.1 Synthesis of bis(hydroxymethyl) BMP32C10 (8.7)	153
	8.2.2 Syntheses of polyurethanes 8-11 and 12a-c	154
	8.2.3 GPC measurements and mechanism for branching and crosslinking.	156
	8.2.4 NMR studies	161
	8.2.5 Thermal properties	168
8.3	Conclusions	168
8.4	Experimental	169
Chapt	er 9: Poly(arylene ether/"42C14" rotaxane)s	173
9.1	Introduction	173
9.2	Results and Discussion	174
	9.2.1 "42C14"	174
	9.2.2 Poly(ether sulfone/"42C14" rotaxane) (9.6), poly(ether ketone/"42C14"	
	rotaxane) (9.7), poly(ether ether ketone/"42C14" rotaxane) (9.8) and poly(ether	
	ketone/30C10 rotaxane) (9.9)	178
	i Preparation and purification.	178
	ii Characterizations	180
	iii. Solid State NMR	184
9.3	Conclusions	187
9.4	Experimental	187

Chapter 10: New Classes of Linear and Branched Main Chain Polyrotaxanes by Self-assembly10.1Introduction10.2Results and Discussion195

	10.2.1 Syntheses of precursors	195
	10.2.2 Complexation	198
	i Model study: [2]rotaxane	198
	ii Polyrotaxane 10.11	207
	10.2.3 Physical properties of polyrotaxanes 10.11.	216
	i Solubility	216
	ii Viscosity	217
	iii Glass Transition Temperatures, Melt Threading and Dethreading	219
	10.2.4 Reversible Mechanically-linked Branched Polymers: Interpenetration of	
	Preformed Polymers	220
10.3	Conclusions	226
10.4	Experimental	227

List of Figures

Figure 1.1	Various topologies of conventional polymers	2
Figure 1.2	Various types of main chain and side chain polyrotaxanes	6
Figure 3.1	The 400 MHz proton NMR spectrum of diol BG 3.7 in CDCl ₃	42
Figure 3.2	The 400 MHz proton NMR spectra of a) top, polyrotaxane 3.8 and b)	
	bottom, model polyester 3.9 in CDCl ₃ at 25 °C	43
Figure 3.3	The 400 MHz proton NMR spectra of a) top, recovered 30C10, b) middle,	,
	the neutral hydrolytic products and c) bottom, polyrotaxane 3.8 in $CDCl_3$	44
Figure 3.4	400 MHz proton 2D COSY spectrum of polyrotaxane 3.8 in $CDCl_3$	45
Figure 3.5	Correlated regions of 2D NOESY spectrum of polyrotaxane 3.8 in CDCl ₃	46
Figure 3.6	The relationship of threading efficiency of polyrotaxane 3.8 vs.	
	polymerization temperature	50
Figure 3.7	The relationship of threading efficiency of polyrotaxane 3.8 vs. feed ratio	
	of 30C10 vs. 3.7	51
Figure 3.8	The van't Hoff plots at different assumed values of γ	56
Figure 4.1	400 MHz proton NMR spectra of a) polyrotaxane 4.6 , b) copolyester rotax	ane
	4.9 and c) model copolyester 4.7 in $CDCl_3$	65
Figure 4.2	The 400 MHz proton NMR spectra of a) polyrotaxane 4.9 , b) the neutral	
	hydrolytic products from 4.9 and c) recovered $30C10$ in $CDCl_3$	66
Figure 4.3	400 MHz proton 2D COSY spectrum of polyrotaxane 3.9 in $CDCl_3$	67
Figure 4.4	The correlated regions of 2D NOESY spectrum of polyrotaxane 4.9	
	in CDCl ₃	68
Figure 4.5	Expanded region for threaded 30C10 in 400 MHz proton NMR spectra of	a)
	4.10 , b) 4.9 and c) 4.8 in CDCl ₃	70
Figure 4.6	The relationship of threading efficiency of copolyrotaxanes vs. the feed	
	percentage of diol BG 4.4 in total diol	71
Figure 4.7	The relationship of dethreading degree vs. the feed percentage of diol BG	
	4.4 in total diol	74

Figure 5.1	The 400 MHz proton NMR spectrum of diacid chloride BG 5.14 in	
	DMSO- d_6	83
Fihure 5.2	The GPC traces of a) 30C10, b) a mixture of 5.17c and 5 % 30C10 and c)	
	5.17 (eluting solvent: CHCl ₃)	85
Figure 5.3	The 400 MHz proton NMR spectra of a) top, polyrotaxane 5.17a and b)	
	bottom, model polymer 5.17d in CDCl ₃	86
Figure 5.4	The 400 MHz proton NMR spectra of a) polyrotaxane 5.17c , b) the neutral	1
	hydrolytic products and c) recovered 30C10 in CDCl ₃	87
Figure 5.5	The 400 MHz proton NMR 2D COSY spectrum of 5.17c products and c)	
	in CDCl ₃	88
Figure 5.6	The correlated region of 400 MHz proton 2D NOESY spectrum of	
	polyrotaxane 5.17c in CDCl ₃ at 25 °C	89
Figure 5.7	The relationship of threading efficiency of polyrotaxane 5.17 vs.	
	temperature	93
Figure 5.8	The 400 MHz proton NMR spectra of a) top, BPP34C10 and b) bottom,	
	polyrotaxane 5.18 in CDCl ₃	98
Figure 6.1.	400 MHz proton NMR spectra of a) polyrotaxane 6.7e and b) model	
	polymer 6.7b in CDCl ₃ at 30 °C	112
Figure 6.2.	The expanded aliphatic region of the 400 MHz proton NMR spectra of	
	poly(urethane rotaxane)s a) 6.7d, b) 6.7e, c) 6.7f and d) 6.7g in	
	CDCl ₃ at 30 °C	113
Figure 6.3	The expanded aliphatic region of the 400 MHz proton NMR spectra of	
	poly(urethane rotaxane)s a) 6.7d, b) 6.7e, c) 6.7f and d) 6.7g in	
	DMSO- d_6 at 30 °C	115
Figure 6.4	The expanded 30C10 region of the 400 MHz proton NMR spectra of	
	poly(urethane rotaxane)s a) 6.7e and b) 6.7f in the mixtures of DMSO- d_6	
	(relative percentage shown) and $CDCl_3$ at 30 $^{\circ}C$	117
Figure 6.5	The dependence of dethreading degree on the feed percentage of diol BG	
	6.4 a) for poly(urethane rotaxane)s and b) for poly(ester rotaxane)s	118

Figure 6.6	The relationship of m/n values for 6.19a-d vs. the molar feed ratios of	
	"42C14" to the repeat unit of 6.18	123
Figure 6.7	The DSC traces of a) 6.19b , b) 6.18 ; c) 6.19a and d) 6.19d	127
Figure 7.1	400 MHz proton NMR spectra of a) poly(methacrylate crown ether) 7.14,	
	b) branched poly(methacrylate crown ether) 7.15a and c) cross-linked	
	7.16 (swollen) in CDCl ₃ .	138
Figure 7.2	2D COSY spectrum of branched poly(methacrylate crown ether) 7.15a in	
	CDCl ₃	142
Figure 7.3	The correlated region of 400 MHz proton-proton 2D NOESY spectrum of	f
	branched poly(methacrylate crown ether) 7.15a in $CDCl_3$	143
Figure 7.4	400 MHz proton-proton 2D NOESY spectrum of BMP32C10 in $CDCl_3$	145
Figure 8.1	400 MHz proton NMR spectrum of polyurethane 8.12 in DMSO- d_6	151
Figure 8.2	The relationship of the polydispersity of polyurethanes 8.10-8.13 vs. the	
	feed percentage of macrocyclic diol 8.7	159
Figure 8.3	The GPC traces of a) polyurethane 8.14a , solid line and b) polyurethane	
	8.14b, dashed line with viscosity detector using NMP as solvent	160
Figure 8.4	The expanded 400 MHz proton NMR spectra of a) 8.14a in DMSO- d_6 , b)	
	8.14b in DMSO- d_6 and c) 8.14a in CDCl ₃ (for peak assignments, see	
	Scheme 8.5)	162
Figure 8.5	The 400 MHz COSY spectrum of 8.14a in CDCl ₃ at 26 $^{\circ}$ C (for peak	
	assignments, see Scheme 8.5)	164
Figure 8.6	The correlated region of 400 MHz NOESY spectrum of 8.14a in $CDCl_3$ a	t
	26 °C (for peak assignments, see Scheme 8.5)	165
Figure 8.7.	The expanded 400 MHz proton NMR spectra of a) 8.25, b) 8.14a, c)	
	8.14a with excess 8.25 and d) 8.14b with excess 8.25 in THF- d_5 /CD ₃ CN	
	(1:1 by volume) (for peak assignments, see Scheme 8.5)	167
Figure 9.1	RP-HPLC traces of 30C10 and "42C14" by 2+2 combination (C18, 70/30)
	water/acetonitrile, 2 mL/min, RI detector)	176

Figure 9.2	RP-HPLC trace of 42C14 by 1+1 combination (C18, 70/30		
	water/acetonitrile, 2 mL/min, RI detector)	178	
Figure 9.3	The GPC traces of a) polyrotaxane 9.6 and b) 9.7 AND C) "42c14" in		
	$CHCl_3$ (flow rate = 1 mL/min., RI detector)	180	
Figure 9.4	400 MHz proton NMR spectrum of poly(ether sulfone/"42C14"		
	rotaxane) 9.6 in CDCl ₃	181	
Figure 9.5	400 MHz proton NMR spectrum of poly(ether ketone/"42C14"		
	rotaxane) 9.7 in CDCl ₃	182	
Figure 9.6	The ¹³ C solid state NMR of polyrotaxane 9.8 with a) DP and B) CP		
	mode at room temperature	185	
Figure 9.7	The ¹³ C solid state NMR of polyrotaxane 9.7 with a) DP and B) CP		
	mode at room temperature	186	
Figure 10.1	The expanded aromatic regions of the 400 MHz proton NMR spectra for	a)	
	and d) 10.7, and b) and c) solutions of 10.7 and 10.9 in acetone- d_6	199	
Figure 10.2	The Benesi-Hildebrand plots based on proton H_a for the formation of		
	[2]rotaxane 10.10 with $[10.7]_0 = 7.350 \text{ mM}$ at a) 21.8 °C, b) 30.0 °C, c)		
	38.0 °C, d) 46.0 °C and e) 54.0 °C in acetone	202	
Figure 10.3	The Benesi-Hildebrand plots based on proton H_b for the formation of		
	[2]rotaxane 10.10 with $[10.7]_0 = 7.350 \text{ mM}$ at a) 21.8 °C, b) 30.0 °C, c)		
	38.0 °C, d) 46.0 °C and e) 54.0 °C in acetone	203	
Figure 10.4	The relationship of the fraction of rotaxane 10.10 vs. the feed		
	concentration of 10.9 with $[10.7]_{o} = 7.350$ mM in acetone at different		
	temperatures	205	
Figure 10.5	The van't Hoff plots: a) for the model system $(10.7 + 10.9)$ based on		
	proton H_a , b) for the model system (10.7 + 10.9) based on proton H_b , c)		
	for the polymeric system (10.8 + 10.9) based on proton H_A , and d) for the	;	
	polymeric system (10.8 + 10.9) based on proton H_B	207	
Figure 10.6	The expanded aromatic regions of the 400 MHz proton NMR spectra for a)		
	10.8 and b-e) solutions of 10.8 and 10.9 in acetone- d_6	209	

Figure 10.7	The Benesi-Hildebrand plots based on proton H_A for the formation of	
	polyrotaxane 10.11 with $[10.8]_{o} = 7.340$ mM at a) 21.8 °C, b) 30.0 °C,	
	c) 38.0 $^{\circ}$ C, d) 46.0 $^{\circ}$ C and e) 54.0 $^{\circ}$ C in acetone	211
Figure 10.8	The Benesi-Hildebrand plots based on proton H_B for the formation of	
	polyrotaxane 10.11 with $[10.8]_{o} = 7.340$ mM at a) 21.8 °C, b) 30.0 °C,	
	c) 38.0 °C, d) 46.0 °C and e) 54.0 °C in acetone	212
Figure 10.9	The relationship of threading efficiency (m/n) of 10.11 vs. the feed	
	concentration of 10.9 with $[10.8]_0 = 7.340$ mM in acetone at different	
	temperatures	215
Figure 10.10	The relationship of viscosities of 10.11 vs. the threading efficiency in	
	acetone at 21.8 °c	219
Figure 10.11	The expanded 400 MHz proton NMR spectra of solutions of 10.8 and	
	10.14 : (a) $[10.14]_0 = 0$ mM and $[10.8]_0 = 1.43$ mM; (b) $[10.14]_0 =$	
	3.82 mM and $[10.8]_0 = 1.43$ mM; (c) $[10.14]_0 = 3.82$ mM and $[10.8]_0 =$	
	4.00 mM; (d) $[10.14]_0 = 3.82$ mM and $[10.8]_0 = 12.58$ mM and (e)	
	$[10.14]_0 = 3.82 \text{ mM}$ and $[10.8]_0 = 0 \text{ mM}$ in THF- d_8 at 21.6 °C (all	
	concentrations are based on cyclic units for 10.8 and bipyridinium moietie	es
	for 10.14)	222
Figure 10.12	The GPC traces of solutions of (a) $[10.8]_0 = 3.93$ mM and $[10.14]_0 = 0$	
	mM; (b) $[10.8]_0 = 0$ mM and $[10.14]_0 = 3.83$ mM; (c) $[10.8]_0 = 1.31$	
	mM and $[10.14]_0 = 3.82$ mM; (d) $[10.8]_0 = 2.62$ mM and $[10.14]_0 =$	
	3.82 mM; (e) $[10.8]_0 = 5.24$ mM and $[10.14]_0 = 3.82$ mM; (f) $[10.8]_0 =$	
	7.86 mM and $[10.14]_0 = 3.82$ mM; (g) $[10.8]_0 = 10.48$ mM and	
	$[10.14]_0 = 3.82 \text{ mM in THF at } 21.6 ^{\circ}\text{C} (UV \text{ detector})$	225
Figure 10.13	Expanded 400 MHz proton NMR spectra of solutions of 10.8 and 10.14:	
	(a) $[10.14]_0 = 0$ mM and $[10.8]_0 = 1.43$ mM; (b) $[10.14]_0 = 3.82$ mM	
	and $[10.8]_0 = 1.43 \text{ mM}$; (c) $[10.14]_0 = 3.82 \text{ mM}$ and $[10.8]_0 = 4.00 \text{ mM}$	
	in DMSO- d_6 at 21.6 °C and (d) [10.14] ₀ = 3.82 mM and [10.8] ₀ = 1.43	
	mM in THF- d_8 at 60.0 °C	226

List of Tables

Table 3.1	Feed compositions and m/n values for polyrotaxane 3.8 at different		
	polymerization temperatures	49	
Table 3.2	Feed compositions and m/n values for polyrotaxanes 3.8 at the		
	different feed ratios	51	
Table 3.3	K values for H-bonding of diol 7 and 30C10 calculated from observed		
	m/n at 63 $^{\circ}\text{C}$ at different assumed values of γ	54	
Table 3.4	K values for hydrogen bonding of diol 3.7 and 30C10 calculated from		
	measured m/n values at different temperatures at different assumed valu	es	
	of γ	55	
Table 3.5	The ΔH and ΔS values based on van't Hoff plots at different assumed values		
	of γ	56	
Table 4.1	Threading efficiencies of copolyester rotaxanes with different feed ratio	s of	
	BG 4.4 vs. total diol	72	
Table 4.2	Extent of dethreading in the preparation of copolyester 30C10 rotaxanes		
	relative to polyrotaxane 4.6	73	
Table 4.3	Starting feed ratios for copolyester rotaxanes	76	
Table 5.1	Reaction conditions and results for polyrotaxanes 5.16 and 5.17	84	
Table 5.2	The threading efficiency of polyrotaxane 5.17 prepared at di	fferent	
	temperatures	92	
Table 5.3	K values calculated from m/n values (Table 5.2) at different t temperatu	res	
	and different assumed values of k'	95	
Table 5.4	Polymerization conditions and threading efficiencies for polyrotaxanes		
	5.17c, 5.18 and 5.19	98	
Table 6.1	The feed compositions and polymerization conditions for polyurethanes		
	6.7a-b and poly(urethane rotaxane)s 6.7c-g	111	
Table 6.2	Threading Efficiencies, dethreading degree, GPC and DSC results for		
	polyurethanes 6.7a-g	111	

Table 6.3	The feed compositions and threading efficiencies of polyrotaxanes 6.19a-f		
	and model studies	121	
Table 6.4	Intrinsic viscosities and glass transition temperatures of model polymer 6.18		
	and polyrotaxanes 6.19	125	
Table 7.1	Feed compositions for 7.12 , 7.14 , 7.15a , 7.15b and 7.16	136	
Table 7.2	GPC results for 7.12, 7.14, 7.15a, 7.15b and 7.16	139	
Table 8.1	Detailed feed compositions for polyurethanes 8.10-8.14	154	
Table 8.2	GPC and DSC results for polyurethanes 8.10-8.14	156	
Table 9.1	The threading efficiencies of polyrotaxanes 9.6-9.9	183	
Table 10.1	The chemical shifts of protons H_a and H_b of 10.7 upon complexation with		
	different amounts of 10.9 in acetone at different temperatures	200	
Table 10.2	The chemical shift changes of protons H_a and H_b of 10.7 (7.350 mM		
	initially) upon complexation with different amounts of 10.9 in acetone	at	
	different temperatures	201	
Table 10.3	The results from Benesi-Hildebrand plots for complexation of 10.7		
	and 10.9	204	
Table 10.4	The fraction of 10.7 (7.350 mM initially) complexed with 10.9	205	
Table 10.5	The enthalpy and entropy changes from van't Hoff plots for the		
	complexation of 10.7 with 10.9, and 10.8 with 10.9 at different		
	temperatures in acetone	206	
Table 10.6	The chemical shifts of protons H_{A} and H_{B} of $\textbf{10.8}$ upon complexation v	vith	
	different amounts of 10.9 in acetone at different temperatures	210	
Table 10.7	The chemical shift changes of protons H_{A} and H_{B} of $\boldsymbol{10.8}$ (7.340 mM		
	initially) upon complexation with different amounts of 10.9 in acetone	at	
	different temperatures	210	
Table 10.8	The results of the complexation of 10.8 and 10.9 based on Benesi-		
	Hildebrand plots	213	
Table 10.9	Threading efficiencies of 10.11 formed under different conditions		
	with [10.8] _o =7.340 mM	214	

Table 10.10	The solubilities of 10.8 , 10.9 and 10.11	216
Table 10.11	The viscosities and glass transition temperatures of 10.11 with	different
	threading efficiencies	218
Table 10.12	The GPC results for 10.8 , 10.14 and 10.15	224