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Andrew Chung Chee Law 

ABSTRACT 

 Additive manufacturing (AM) technology is a key emerging field transforming how 

customized products with complex shapes are manufactured. AM is the process of layering 

materials to produce objects from three-dimensional (3D) models. AM technology can be used to 

print objects with complicated geometries and a broad range of material properties. However, the 

issue of ensuring the quality of printed products during the process remains an obstacle to industry-

level adoption. Furthermore, the characteristics of AM processes typically involve complex 

process dynamics and interactions between machine parameters and desired qualities. The issues 

associated with quality assurance in AM processes underscore the need for research into smart 

quality assurance systems.  

 To study the complex physics behind process interaction challenges in AM processes, this 

dissertation proposes the development of a data-driven smart quality assurance framework that 

incorporates in-process sensing and machine-learning-based modeling by correlating the 

relationships among parameters, signatures, and quality. High-fidelity AM simulation data and the 

increasing use of sensors in AM processes help simulate and monitor the occurrence of defects 

during a process and open doors for data-driven approaches such as machine learning to make 

inferences about quality and predict possible failure consequences.  

 To address the research gaps associated with quality assurance for AM processes, this 

dissertation proposes several data-driven approaches based on the design of experiments (DoE), 

forward prediction modeling, and an inverse design methodology. The proposed approaches were 
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validated for AM processes such as fused filament fabrication (FFF) using polymer and hydrogel 

materials and laser powder bed fusion (LPBF) using common metal materials. The following three 

novel smart quality assurance systems based on a parameter–signature–quality (PSQ) framework 

are proposed:  

1. A customized in-process sensing platform with a DOE-based process optimization 

approach was proposed to learn and optimize the relationships among process parameters, 

process signatures, and parts quality during bioprinting processes. This approach was 

applied to layer porosity quantification and quality assurance for polymer and hydrogel 

scaffold printing using an FFF process.  

2. A data-driven surrogate model that can be informed using high-fidelity physical-based 

modeling was proposed to develop a parameter–signature–quality framework for the 

forward prediction problem of estimating the quality of metal additive-printed parts. The 

framework was applied to residual stress prediction for metal parts based on process 

parameters and thermal history with reheating effects simulated for the LPBF process. 

3. Deep-ensemble-based neural networks with active learning for predicting and 

recommending a set of optimal process parameter values were developed to optimize 

optimal process parameter values for achieving the inverse design of desired mechanical 

responses of final built parts in metal AM processes with fewer training samples. The 

methodology was applied to metal AM process simulation in which the optimal process 

parameter values of multiple desired mechanical responses are recommended based on a 

smaller number of simulation samples. 
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GENERAL AUDIENCE ABSTRACT 

 

 Additive manufacturing (AM) is the process of layering materials to produce objects from 

three-dimensional (3D) models. AM technology can be used to print objects with complicated 

geometries and a broad range of material properties. However, the issue of ensuring the quality of 

printed products during the process remains a challenge to industry-level adoption. Furthermore, 

the characteristics of AM processes typically involve complex process dynamics and interactions 

between machine parameters and the desired quality. The issues associated with quality assurance 

in AM processes underscore the need for research into smart quality assurance systems.  

 To study the complex physics behind process interaction challenges in AM processes, this 

dissertation proposes a data-driven smart quality assurance framework that incorporates in-process 

sensing and machine-learning-based modeling by correlating the relationships among process 

parameters, sensor signatures, and parts quality. Several data-driven approaches based on the 

design of experiments (DoE), forward prediction modeling, and an inverse design methodology 

are proposed to address the research gaps associated with implementing a smart quality assurance 

system for AM processes. The proposed parameter–signature–quality (PSQ) framework was 

validated using bioprinting and metal AM processes for printing with polymer, hydrogel, and metal 

materials.  
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1. Introduction  

1.1 Background and motivation 

 AM technology is a key emerging field transforming how products are manufactured. In 

AM, materials are layered to produce objects from 3D models. AM technology can be used to print 

objects with complicated geometries and a broad range of material properties. However, the issue 

of ensuring the quality of printed products remains an obstacle to industry-level adoption. 

Furthermore, the characteristics of AM processes typically involve complex process dynamics and 

interactions between machine parameters and desired qualities. The issues associated with quality 

assurance in AM processes underscore the need for research into smart quality assurance systems.  

 A smart quality assurance system framework that can incorporate in-process sensing 

technology and utilize machine-learning-based modeling by correlating the relationships among 

process parameters, sensor signatures, and parts quality is proposed to address the complex physics 

behind process interaction challenges in AM processes. High-fidelity AM simulation data and the 

increasing use of sensors in AM processes help simulate and monitor the occurrence of defects 

during a process and open doors for data-driven approaches such as machine learning to make 

inferences about quality and predict possible failure consequences. Although simulation and 

experimental studies can provide high-quality data on AM processes, the high computational costs 

and time involved remain concerns at the industry level in implementing quality monitoring 

systems for AM processes. Hence, there is a pressing need for machine-learning-based forward 

modeling and inverse design as a high-fidelity and low-computational-cost surrogate modeling 

approach that relates desired quality characteristics to optimal input process parameter values. 
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1.2 Research objectives 

 This dissertation proposed a smart quality assurance system using a data-based parameter–

signature–quality (PSQ) framework to address the research gaps associated with quality assurance 

for AM processes. This system is integrated with the design of experiments (DoE), forward 

prediction modeling, and inverse design across AM processes, namely, bioprinting and metal AM. 

The research had the following three specific objectives:  

1. Learning the relationship between process parameters, process signatures, and parts 

quality during bioprinting processes: The question addressed was how to map process 

parameters corresponding to the quality characteristics of printed parts in an in-process 

quality monitor and control system? 

2. Developing a PSQ framework for forward prediction of the quality of metal additive-

printed parts: The question addressed was how to integrate simulation insights and 

surrogate modeling of the signature–quality relationship in the forward prediction of parts 

quality? 

3. Recommending optimal process parameter values to achieve the inverse design of 

desired mechanical responses of final built parts in metal AM processes with fewer 

samples: The question addressed was how to optimize optimal process parameter values 

that will achieve the desired quality for the inverse design of a metal AM process with 

fewer training samples?  
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 The contributions of this dissertation work can be summarized by the achievement of these 

three research objectives, as summarized by the following three points:  

1. First, the work established a novel PSQ framework for correlating the relationships among 

process parameters, sensor signatures, and parts qualities for bioprinting processes using a 

customized in-process sensing platform and DoE approach.  

2. Second, the work offered a deep-learning-based surrogate modeling solution for utilizing 

machine parameters and process signatures corresponding to mechanical responses for 

rapid residual stress estimation inference. 

3. Third, the work explored the promising neural network architecture of deep-ensemble-

based neural networks that employ predictive uncertainty and active learning to optimize 

optimal process parameter values of the inverse design of desired mechanical response 

requirements with fewer samples.  

The potential extension of the proposed application frameworks to any AM process is 

demonstrated. The proposed data-driven PSQ framework can be applied to other areas of the 

manufacturing processes domain.  

1.3 Dissertation organization  

 The remainder of this dissertation is organized as follows. The proposed research 

framework, related literature, and research gap analysis are presented in Chapter 2. In Chapter 3, 

a customized in-process DoE-based sensing platform is presented to demonstrate process 

parameter optimization for layer porosity quantification of polymer and hydrogel scaffold printing. 

In Chapter 4, a deep-learning-based surrogate modeling approach to utilizing the underlying 

process physics of AM simulation data is presented for the forward prediction of a metal AM 

process. Deep-ensemble-based neural networks that employ predictive uncertainty and active 
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learning to optimize the optimal process parameter values for the inverse design of desired 

mechanical responses are proposed in Chapter 5. In Chapter 6, the contributions of the research 

work and promising future research directions are summarized.  
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2. Research overview and literature review 

2.1 Research overview  

 As described in Chapter 1, the goal of this dissertation research was to develop a smart 

quality assurance system framework that can correlate the relationship between process 

parameters, process signatures, and product quality for AM applications. As illustrated in Figure 

2-1, the proposed research methodologies focus on establishing a data-driven parameter–

signature–quality (PSQ) framework that integrates in-process sensing, statistical analysis methods, 

physics-based simulation data, advanced machine learning algorithms, and active learning-based 

inverse design. In this research framework, a customized in-process sensing platform is established 

to provide experimental in-process data. Finite element modeling (FEM) software is utilized to 

supply high-quality simulation AM data as process signatures for training and testing samples for 

deep learning approaches.  

 

Figure 2-1: Overview of the proposed research PSQ framework. 
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 Following this PSQ framework, the research goals were achieved by conducting three 

specific tasks, illustrated in Figure 2-2.  

• Task 1: This task was to learn the relationship between process parameters and 

corresponding part quality using an in-process sensing platform integrated with statistical 

design-of-experiment techniques to implement proper process mapping and optimization 

for bioprinting (Chapter 3).  

• Task 2: This task was to develop a deep-learning-based surrogate modeling approach using 

high-fidelity physics-based simulation AM data to take advantage of the reheating effects 

of thermal histories and process parameters for residual stress prediction for metal AM-

printed parts (Chapter 4).  

• Task 3: This task was to establish a sequential learning-based inverse design problem for 

optimizing optimal process parameters, given desired mechanical responses, using two 

deep-ensemble-based neural networks that employ predictive uncertainty and active 

learning (Chapter 5).  
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Figure 2-2: Overall structure of the proposed research PSQ framework. 

2.2 Literature review 

 This research was motivated by the need for a smart quality assurance system for AM 

processes using a data-driven PSQ framework.  Section 2.2.1 summarizes related studies on quality 

assurance of AM processes and the PSQ concept. Related studies on process parameter 

applications in bioprinting are reviewed in Section 2.2.2. The need for surrogate modeling in AM 

processes is described in Section 2.2.3. The literature on the forward prediction modeling of AM 

processes is summarized in Section 2.2.4. The application of inverse design to AM processes is 

reviewed in Section 2.2.5. The research gaps addressed by the current work are identified in 

Section 2.3.  

2.2.1 Quality assurance of AM process  

 One of the challenges facing AM is quality assurance  [1]. Many researchers have identified 

quality assurance and control as the greatest challenge to the industry-wide adoption of AM 
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technologies [1]. One active research initiative to improve the quality assurance of AM is to 

develop in situ process monitoring and control systems [2] that can correlate process parameters, 

process signatures, and product qualities. Mani et al. [3, 4] introduced the concept of process 

parameters, process signatures, and product qualities for AM processes. They emphasized the 

importance of identifying the correlations between parameters, signatures, and qualities.  In Mani 

et al., AM process parameters are defined as the inputs that are controllable machine parameters 

and predefined material properties. Process signatures are described as intermediate measurements 

of AM physics’ dynamic characteristics, observable using in-process sensing techniques or derived 

through analytical simulation and modeling. Product qualities are described as the final state of 

printed parts, categorized as geometric, mechanical, and physical qualities. The concept of a PSQ 

framework is insightful and is needed to implement sensing technology, advanced data analytics, 

and informed adjustment of AM process parameters to characterize, correlate, and control AM 

processes.  

2.2.2 Process parameter optimization in the bioprinting process 

 A systematic study of the correlations between process parameters and product quality can 

ensure scalable bioprinting processes [5]. Process parameter optimization in bioprinting is critical 

to establishing the relationships between printing parameters (e.g., air pressure, print speed, print 

height, and nozzle design) and the quality of the printed part (e.g., geometric accuracy and 

mechanical properties). Gleadall et al. [6] reviewed how scaffold design parameters, including 

extruded filaments, laydown patterns, and layer alignment patterns, can affect the mechanical 

properties of scaffolds and cell biological performance. Kang et al. [7] concluded that printing 

parameters such as pressure, layer height, and path space significantly improve the dimensional 

accuracy of PEG-DA and gelatin constructs. Kang et al. [7] showed that the predicted optimal 
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values of these printing parameters varied for both materials and performed better than non-

optimal parameters in dimensional accuracy. Most of these research efforts emphasized the 

relationship between printing process parameters and the physical properties of the printed parts 

without identifying an optimal set of process parameters to achieve desired properties. 

 The quality of bioprinted parts is highly dependent on material composition and printing 

process control [8]. However, the current bioprinting practice is to apply a trial-and-error approach 

using a series of printing process configuration parameters to achieve a high-fidelity print, which 

is time-consuming and costly [9]. A statistical design approach such as DoE is useful in bioprinting 

applications for studying the effects of process parameters and their interactions on the quality 

properties of bioprinted parts [10]. DoE can be used to reduce the number of experimental trials 

required compared to the typical trial-and-error approach. In previous studies, DoE has been 

applied throughout the bioprinting process, from material design [11-14] to process parameter 

optimization [15, 16]. Huber et al. [15] applied the Taguchi DoE method to obtain the optimal 

printing settings for a cellulose gel by correlating pressure and speed with geometry fidelity. 

Carlier et al. [16] used DoE to examine the relationships of deposition temperature, rate, and layer 

thickness to physical properties for a polylactic acid (PLA) implantable biodevice application. 

Guerra et al. [17] optimized five photocrosslinkable variables for the stereolithography bioprinting 

process to achieve the desired dimensional accuracy of printed resin components using Taguchi 

DoE. Gonzalez et al. [18] conducted a fractional factorial design and Taguchi study of six process 

and cell parameters versus the cell survivability rate. Trachtenberg et al. [19] employed a full 

factorial design to optimize propylene fumarate printability by considering the interactions among 

process parameters, namely, nozzle extrusion pressure, material concentration, travel speed, and 

filament spacing, versus the material viscosity, filament thickness and pore size. Their work 
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showed that the extrusion pressure, filament spacing, and nozzle movement speed had the largest 

effects on the printed pore sizes.  

To understand the dynamic bioprinting process, a sensing platform customized for 

bioprinting is essential to acquire the necessary process data for statistical analysis. In the 

literature, lacking process sensing tools is identified as limiting the in vivo functionality of 

bioprinted parts. Precise biomaterial deposition is crucial to determining the success rate of 

mimicking the heterogeneous structures of native tissues [20]. Wang et al. [21] utilized 3D 

quantification of optical coherence tomography to develop an iterative feedback bioprinting 

approach to improving the optimal geometric fidelity of cell-laden hydrogel scaffolds. Their work 

modified the pore size design based on an initial scaffold characterization to meet the target pore 

size in the second print. Ashley et al. [20] used a non-contact 2D laser displacement scanner to 

enable single-layer material deposition measurement. Their work presented a process 

measurement and control strategy for single-layer biomaterial extrusion to improve material 

placement and width.  

2.2.3 Thermal and mechanical modeling trend of AM process 

 The thermal history modeling of AM processes [22]  has been studied extensively to 

understand the dynamic processes underlying the interactions among process parameters, 

structures, properties, and the quality of AM processes. Selective laser melting (SLM) [23], a 

process similar to laser welding, uses a laser to melt metals to achieve the goal of geometry build-

up. Understanding the thermal distribution history can help prevent defects (such as porosity). On 

a larger scale, the thermal distribution of a printed part, which is related to the thermomechanical 

behavior of the molten pool, is the primary factor affecting residual stress formation and 

microstructure properties [24]. Because of the nature of the layerwise laser heating pattern, the 
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thermal distributions of printed parts exhibit thermal reheating effects that lead to the cyclical 

thermal distribution of the process dynamics.  

 Thermal distribution modeling has been studied numerically and experimentally [24-33]. 

Korner et al. [25] noted the physics involved in melting pool behavior, including 

melting/solidification, solidification shrinkage, convection, heat conduction, radiation, sintering, 

gravity, Marangoni convection, capillary forces, vaporization, and laser absorption. Foroozmehr 

et al. [26] developed a 3D finite element simulation for the SLM. This model included the optical 

penetration depth of the laser in the powder bed. Peyre et al. [32] developed a numerical model of 

the thermal distribution of the laser metal deposition process and validated it using experimental 

thermal data from thermocouples. Foteinopoulos et al. [30] developed a 2D finite-difference model 

to simulate the thermal history of manufactured parts. The model was used to examine the thermal 

cycle during the process and was validated by modeling a temperature distribution profile by 

consecutive layers. Ramano et al. [31] presented a thermal model for the laser melting process, 

including the thermal distribution and melt pool behavior, for titanium, stainless steel, and 

aluminum materials. Their study concluded that the optimal process parameter sets for maintaining 

consistent melt pools during the process differ by material type. Promoppatum et al. [24] 

investigated the thermal history of the AM component experimentally and numerically. Peyre et 

al. [32] utilized thermocouples to acquire temperature measurements to validate the thermal 

predictions of their proposed thermal model. Denlinger et al. [33] developed a 3D FEM to predict 

the temperature, residual, and distortion of a bulk geometry. They found that a newly deposited 

layer and the layers beneath experienced reheating effects involving residual stress response 

accumulation in these layers.  
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 Residual stress and distortion formation during metal AM processes can directly influence 

the mechanical properties of built parts and diminish their structural integrity. Therefore, the ability 

to predict the development of residual stress and deformation becomes essential to managing the 

quality assurance of metal AM processes. Existing physics-based predictive models for residual 

stress and deformation can be categorized into finite element methods (FEM), mesoscopic 

modeling, and surrogate modeling [34-36]. Most predictive modeling of metal additive 

manufacturing in this area has been studied using computational techniques such as FEM to handle 

nonlinearity. Mukherjee et al. [36] developed a thermomechanical model to predict residual 

stresses and distortion. The model utilized heat transfer, fluid flow theory, and the temperature-

dependent material properties of Inconel 718 and Ti–6Al–4V. Wangre et al. [37] proposed a 3D 

model for use in investigating thermal behavior and residual stress during selective laser melting 

of AlSi10Mg. Yang et al. [38] implemented a sequential thermomechanical analysis method to 

predict residual stress and deformation of an LPBF build part.   

Another high-fidelity approach described in the literature is the use of mesoscopic-based 

models incorporating mathematical formulations of complex physical processes, accounting for 

multiple phenomena caused by fluid dynamics in the melt pool and heat transfer between the 

interaction of heat source and powder particles [35]. Fergani et al. [39] built a novel physics model 

based on sequential predictions of the temperature profile, the thermal stresses, and the predicted 

residual stresses. Pal et al. [40] developed an integrated 3D dislocation density-based 

thermomechanical framework using physics-driven coupled multiscale process modeling. Despite 

the high degree of agreement between the predicted results and experimental data, these FEM-

based models are computationally intensive and time-consuming, which could cause difficulty in 

implementation as part of the rapid quality control system for metal additive manufacturing. 
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2.2.4 Surrogate modeling need for AM process 

 Another emerging application of predictive modeling of AM processes is predicting the 

mechanical properties of built parts from process parameters or/and process signatures acquired 

from sensing technology. In current industry practices, quality evaluation of mechanical properties 

is conducted experimentally to ensure quality compliance with stringent standards. However, the 

time-consuming and costly experimental validation process suggests research opportunities in this 

field. In literature, Campoli et al. [41] utilized FEM to predict the elastic constants, including 

Young’s modulus and Poisson’s ratio, of specimens fabricated by SLM. The previously mentioned 

work by Yang et al. [38] extended the kinetics-based model to predict the hardness in an LPBF 

build by inputting the predicted temperature history. Hayes et al. [42] developed a constitutive 

equation for the yield strength of Ti–6Al–4V specimens fabricated by an electron beam 3D 

printing process. Similar challenges inherited by FEM-based models or physics-based models 

present a need for an efficient computational approach. Tapia et al. [43] developed a predictive 

model based on the Gaussian process as a surrogate model to predict the density of metallic 

specimens fabricated by selective laser melting (SLM). Francis and Bian [44] established a deep 

learning-based distortion modeling by considering the local heat transfer for pointwise distortion 

prediction. Mozaffar et al. developed a recurrent neural network with a gated recurrent unit (GRU) 

model to predict thermal histories for various designs and process parameters [45]. Their models 

accurately predict the thermal history of builds. These works demonstrate a promising direction 

for the use of surrogate models as an efficient computational approach that utilizes experimental 

studies and high-fidelity simulation knowledge to correlate process parameters, process signatures, 

and part qualities.  
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2.2.5 Inverse design of AM process  

 In the forward prediction modeling of AM processes, 3D computer simulations study the 

interaction between processing parameters and the printed parts’ thermal behavior [46-48]. 

However, these computer simulations are associated with a higher computational cost from 

complex physical models accounting for thermomechanical behavior interaction during printing. 

Furthermore, the simulation is complicated to reverse modeling for obtaining the optimal 

parameters inversely. For instance, the simulator is a unidirectional model that yields temperature 

and mechanical info sequentially but not technically in an inverse form [49]. Besides, the 

experimental approach of exploring the high-dimensional process parameters design space is also 

tedious. Many process parameters [49, 50] could influence the process dynamics and the final 

quality of the printed part. Thus, there lie research opportunities in the inverse design of high-

dimensional data of AM processes.  

The existing literature on the inverse design is often associated with novel material design 

discovery, namely porous material design [50], nanophotonic device design [51], composite 

material design [52], titanium panel [53], and steel material design [54]. For AM processes, the 

inverse design can be extended to the quality assurance system level, including process parameters 

optimization and dynamic control at the process level and material design [55]. In general, the 

inverse design problem optimizes PSQ relationships. The linkage between these three components 

is often considered an unknown black-box function, where optimization methods are deployed to 

determine optimal inputs that achieve desired outputs. There are three typical inverse design 

applications in surveyed literature, including material design, process parameter optimization, and 

dynamic control at the process level. For instance, inverse problems in materials design are 

formulated as a parameter–quality optimization challenge. The optimization objective of material 
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design is to achieve desired quality by optimizing a set of material properties parameters. Another 

inverse design application can be extended to dynamic control at the process level, utilizing the 

knowledge of PSQ linkage to inform adaptive control strategies for achieving the desired quality 

of printed parts. Furthermore, the inverse problems in process parameter optimization involve 

parameter-quality relationships that explore the optimal set of process parameter solutions that can 

yield the desired quality, namely mechanical properties, or dimensional accuracy of printed parts.  

Inverse design for AM is commonly accomplished using surrogate models with parameter-

quality knowledge extracted from statistical models, namely DoE or physics-based simulation, 

which accounts for process dynamics. The optimal parameter settings can be determined using 

evolutionary optimization methods and emerging machine learning techniques. A few recent 

studies have utilized machine learning, namely, artificial neural networks (ANN), deep neural 

networks (DNN), and active learning (AL), to optimize process parameters for a given desired 

quality characteristic, as described below. 

Researchers have deployed two-step statistical tools, namely, the design of experiments 

(DOE), to map process parameters with investigated quality characteristics and then perform 

process parameter optimization using experimental data. For instance, Peng et al. [56] applied 

response surface methodology (RSM) coupled with a fuzzy inference system to optimize the 

process parameters for desired dimensional accuracy. Raju et al. [57] developed a hybrid 

evolutionary algorithm optimization method. They utilized the Taguchi method to determine the 

optimal parameter solutions for a printed part’s mechanical properties and surface quality. Deswal 

et al. [58] presented multiple approaches that utilize RSM (response surface modeling)–ANN, 

ANN, and ANN-GA (Genetic algorithm) to correlate and optimize the fused deposition modeling 

(FDM) process for dimensional accuracy of printed parts. Panda et al. [59] demonstrated the usage 
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of bacterial foraging optimization (BFO) for achieving the desired mechanical properties of the 

printed part based on central composite design (CCD) to determine FDM parameters. Sood et al. 

[60] applied quantum-behaved particle swarm optimization (QPSO) to achieve the desired 

compressive strength using face-centered CCD (FCCCD). Mahapatra and Sood [61] determined 

the optimal process parameters corresponding to the surface roughness of FDM-built parts using 

the BFO methodology. Rayegani and Onwubolu [62] optimized process parameter settings that 

yielded optimal tensile strength using group data handling and differential evolution. Rao and Rai 

[63] demonstrated teaching–learning-based optimization for single-objective and multiple-

objective optimization problems in FDM to determine the best process parameter settings in each 

case study. Mohamed et al. [64] utilized a definitive screening design for process characterization 

and an Artificial neural network (ANN) for process parameters optimization to improve desired 

creep performance. Saad et al. [65] demonstrated an integrated RSM approach and particle swarm 

optimization (PSO) to achieve the desired flexural strength by optimizing layer thickness, print 

speed, print temperature, and outer shell speed. Rajpurohit and Dave [66] deployed an adaptive 

neural network-based Fuzzy Interference System (ANFIS) to correlate between tensile strength 

and build directions of polylactic acid (PLA) printed parts.  

In literature, surrogate-based modeling is emerged to supplement the simulation and 

experimental approaches to correlate the linkage of process-structure-property-quality for AM 

processes. Among the surrogate modeling methods, the neural network showed its superior 

performance in understanding AM processes such as defect detection [67], surface morphology 

measurement [68], porosity prediction [69], and in-process monitoring and control [70, 71]. 

Nonetheless, the existing literature lacks uncertainty quantification among neural network 

architectures. However, these neural networks are deterministic and lack quantifying predictive 
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uncertainty, which may lead to overfitting issues [72]. Inevitably, uncertainties are present in 

various stages of AM processes. These uncertainties could be identified from experimental 

approach, simulation modeling, and surrogate modeling [73] . The detailed sources of uncertainties 

in AM processes have been reviewed intensively in [74].  Hence, a proper framework of neural 

network considering uncertainty quantification is crucial to implement for achieving the rapid 

quality assurance system of AM applications. 

2.3 Research gaps analysis 

 The reviewed literature in Section 2.2.1 has emphasized the need for AM qualification and 

the fundamental PSQ framework introduced by Mani et al. [3] which correlates process 

parameters, process signatures, and product qualities is essential for establishing the cornerstone 

of a smart quality assurance system for AM processes. However, there is limited literature 

expanding on the PSQ framework by further integrating in-process sensing, advanced data 

analytics, and control adjustments of AM processes.  

 The related literature review in Section 2.2.2 demonstrated a need for a mathematical 

approach for bioprinting to correlate process parameter interactions and their effects on desired 

properties of printed scaffolds. Furthermore, the impact of controllable process parameters on the 

quality of structural geometry and scaffold properties has not been thoroughly investigated. The 

existing literature is mainly applied to the material design of the biomanufacturing process and 

less extended to the process parameter optimization application of bioprinting. In addition, most 

literature review in Section 2.2.2 is limited to post-process measurement and lacks in-process 

measurement to acquire multilayer porosity conditions. Hence, characterizing layer porosity 

during the print is critical for understanding the process dynamics, enabling process parameter 

optimization to meet the desired porosity quality requirement of the final printed product. 
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 A comprehensive literature review of thermal and mechanical modeling methods for AM 

processes is presented in Section 2.2.3. However, physical simulation and modeling are limited in 

that they are time-consuming and computationally costly. Furthermore, little research has focused 

on data-driven surrogate models for correlating process parameters, thermomechanical behavior, 

and residual stress distribution. For instance, reheating effects are closely related to the formation 

of residual stress during AM processes. This creates a need for a data-driven surrogate modeling 

approach using high-fidelity physics-based modeling that considers process parameters and 

process signatures to improve the performance of forward prediction problems, as described in 

Section 2.2.4.  

 The literature on inverse design applications in AM processes, summarized in Section 2.2.5, 

focuses primarily on FDM processes and less on metal AM processes due to the extensive 

requirement of experimental approaches or computer simulations to establish the relationship 

between process parameters and parts quality. However, these computer simulations are associated 

with higher costs for computational execution from complex physical models accounting for 

thermomechanical behaviors during the printing processes. In addition, the experimental approach 

of exploring the design space of process parameters is tedious because there are many process 

parameters [105, 106] that could influence the process dynamics and the final quality of the printed 

part. Thus, research opportunities lie in the inverse design of parameter optimization that is critical 

for achieving the desired quality of printed parts with better and more reliable performance.  
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3. Process parameter optimization for layer porosity accuracy of 3D 

printing polymeric and hydrogel scaffold application 

Bio additive manufacturing (bioprinting) technology is a critical emerging field for transforming 

tissue engineering regenerative medicine (TERM) to produce biological constructs and scaffolds 

in a layerwise fashion. Geometric accuracy and spatial distribution of scaffold porosity are critical 

factors associated with the quality of 3D-printed tissue scaffolds. Determining optimal process 

parameters for tissue scaffold microextrusion 3D printing by traditional trial-and-error approaches 

is costly, labor-intensive, and time-consuming. In addition, there remains a need for effective in-

process sensing techniques capable of observing internal multilayer scaffold structures, such as 

porosity. Therefore, a DoE-based in-process sensing platform based on integrated light scanning 

and microscopy was proposed to acquire in-process layer information during the fabrication of 

polymeric and hydrogel scaffolds. This work implements a customized sensing platform consisting 

of a 3D scanner and digital microscope for in-process quality monitoring of tissue scaffold 

biofabrication that provides in situ characterization of each printed layer’s geometry condition 

(e.g., porosity). The proposed sensor-based in-process quality monitoring system can accurately 

capture layerwise porosity quality. DoE experimental analysis yielded a set of optimal process 

parameters that significantly improved the geometric accuracy and compressive modulus of 

thermoplastic- and hydrogel-based tissue scaffolds. The developed sensing system coupled with 

the DoE approach enables effective process parameter optimization to fabricate porous 3D-printed 

tissue scaffolds. It can significantly improve the quality and reproducibility of research associated 

with porous 3D-printed products, such as tissue scaffolds and membranes. 
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3.1 Introduction  

 In recent years, 3D bioprinting processes have emerged as computer-aided biofabrication 

methods for fabricating engineered tissues that support tissue engineering and regenerative 

medicine (TERM) [75]. 3D printed scaffolds are fabricated as layer-by-layer constructs based on 

the deposition of thermoplastics or cell-laden hydrogels [76]. Tissues may also be fabricated 

through the layer-by-layer deposition of thermoplastic and cell-laden hydrogels. The reproducible 

deposition of 3D-printed construct layers is critical for the resultant tissue quality.  

 The porosity of a 3D-printed tissue construct plays a significant role in cellular behavior, 

as well as tissue formation, properties, and function [77-79]. However, 3D-printed tissue scaffolds 

often exhibit common defects, including voids, overfill, and underfill [67, 80, 81], as illustrated in 

Figure 3-1, which implies that the process parameters are not optimal. Furthermore, given the 

inherent process variability of hydrogel dynamics, 3D printing of hydrogel-based tissue scaffolds 

under non-optimal printing process parameters results in undesirable geometry, affecting cell 

growth factors [82, 83]. Figure 3-2 shows a porous hydrogel-based tissue scaffold that exhibits 

poor quality because of non-optimal printing process parameter selection. Furthermore, the need 

to capture dynamic 3D bioprinting processes for scaffold designs with porous architectures using 

different materials requires the application of in-process sensing technology. Therefore, it is 

crucial to leverage sensing technology to capture the scaffold geometry during the dynamic 3D 

bioprinting process to print complex geometries with high accuracy [21].  
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Figure 3-1: Highlights of polymer based tissue scaffold defects (pore structure asymmetry and distribution 

non-) that occur when the printing parameters are not optimal: (a) Void defect, (b) Under-fill defect, and 

(c) Over-fill defect. 

 
Figure 3-2: Undesired geometry for hydrogel material: (a) incomplete hydrogel material deposition, 

(b)  over-fill defect. 

 The quality of the layer porosity depends upon process parameters to ensure the geometry 

accuracy of 3D printed scaffolds [84]. Accurate layer deposition is critical to fabricating the 

designed geometric structures of hydrogel scaffolds because the geometric cues in tissue-

engineered constructs play crucial roles in cell and tissue engineering, including cell maturation, 

cell differentiation, and tissue regeneration [20]. In addition, deposition defects and inconsistent 

pore porosity affect the amount of bone growth in bone scaffolds [85]. Hence, the work described 

in this chapter proposes a sensor-based layerwise porosity monitoring system coupled with DoE 

to address the above challenges. DoE is a systematic experimental design approach that can be 

applied to correlating process parameters and the layer porosity of printed scaffolds, significantly 
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reducing trial-and-error time. The applicability of the proposed method is demonstrated by 

utilizing experimentally acquired 3D point cloud data and 2D image data from an fused filament 

fabrication (FFF) platform for bioprinting. The 3D point cloud data and 2D image data provided 

complementary information regarding the layer porosity quality. The proposed study was 

accomplished through two major tasks.  

(1) A sensor-based in-process monitoring system coupled with a 3D scanner and digital 

microscope was developed to characterize the layer porosity quality by analyzing high-

resolution point cloud data and digital images captured from each layer. 

(2) DoE-based process parameter optimization was conducted to identify significant 

process parameters that affect layer porosity accuracy and determine the optimal process 

parameter response. The resulting process parameter set was validated through 

experimental studies to demonstrate the effectiveness of the proposed method.  

 The remainder of this chapter is organized as follows. The experimental method, in-process 

sensing platform setup, materials, and data processing procedures, are discussed in Section 3.2. 

The proposed research framework is presented in Section 3.3. The DoE setup, validation results, 

and discussion are presented in Section 3.4. Conclusions and future research recommendations are 

presented in Section 3.5. 

3.2 Experimental platform development 

 The experimental method, including the platform setup, material, and data processing 

procedures,  is presented in detail in this section. First, the in-process sensing platform setup with 

related machines and sensors is presented in Section 3.2.1. Second, the material and methods 

related to the scaffold materials, design, print approach, fabrication, and characterization are 

introduced in Section 3.2.2 until Section 3.2.5. Third, the data processing procedures related to 
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layer porosity quantification are discussed in Section 3.2.6 and Section 3.2.7. The material testing 

procedures are described in Section 3.2.8.  

3.2.1 In-process sensing platform   

  

Figure 3-3: Experimental platform with Hyrel System Hydra 460 3D printer for printing the polymeric 

scaffold: (a) setup with 3D scanner and digital microscope installed to monitor the printed scaffold layer 

by layer, (b) extrusion system for polymeric scaffold using a heated extruder system. 
 

In this study, an FDM 3D printer, namely a 3D printer (Hyrel System Hydra 640), paired 

with a 3D scanner (HP 3D Structured Light Scanner Pro S3) and a digital microscope (OPTI-

Tekscope OT-V1), as shown in Figure 3-3, were used. The 3D scanner was mounted 45° to the z-

plane and 45° to the x-plane to avoid reflection. For high-quality point-cloud data acquisition, the 

3D scanner was calibrated to a 73µm/pixel spatial resolution (the average point-to-point distance 

in the point cloud data) [86]. This spatial resolution was calculated using the field of view (140 × 

87.5mm2) divided by the camera’s pixel resolution (1920 × 1200pixels). A digital microscope was 

installed next to the extruder head in the negative z-plane to capture 2D scaffold surface images 

from a top-down view. The spatial resolution of the digital microscope, 41.6µm/pixel,  was 
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calculated using the field of view (26.6 × 20mm2) divided by the microscope’s pixel resolution 

(640 × 480pixels).  

Figure 3-4 shows sample data collected from the 3D scanner system. During the data 

acquisition process, the position of the 3D scanner was fixed to the region of interest on the printed 

part. The top-view image acquired from the digital microscope was aligned with the 3D point 

cloud-processed data for geometry verification. A binary image was segmented based on a 

processed point cloud image with Z-height information to maintain the current layer information. 

When the printing for each layer is completed, the printing bed is lowered with the digital 

microscope by the layer height, which is 0.05mm in this experimental setting. The depth of the 

field is sufficient to capture the surface quality without losing data accuracy. The data processing 

details for quantifying layer porosity are explained in Section 3.2.6 and Section 3.2.7.  

 

Figure 3-4: A data processing flow from the 3D scanner data acquisition system for PLA (a-c) and Pluronic 

F127 (d-f):  These processed data is for layer 14 of both materials, which the top view image acquired from 
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the digital microscope (a,d), processed point cloud data of the scaffold surface from the 3D scanner (b,e) 

and binary segmented image based on point cloud data (c,f).  

3.2.2 Scaffold fabrication   

 This study used two types of scaffold materials: polymeric and hydrogel. The material 

selected for the polymeric scaffold was polylactic acid (PLA) filament (HATCHBOX, white, 

diameter 1.75mm), which is a commonly used polymeric scaffold material. The selected hydrogel 

material was made of Pluronic F127 (Sigma-Aldrich). The hydrogel was mixed with 10% (by 

weight) cellulose nanofibrils (UMaine PDC) to increase the fluid viscosity and enhance printability 

[87]. Pluronic F127 hydrogel (30% by weight) was prepared using deionized water, and blue food 

coloring was added to the hydrogel to decrease the reflectivity of the ink for the 3D scanning 

process. The ink was mixed for two minutes (Thinky ARE-310) before being transferred to 10 ml 

syringes to ensure the dispersion of the cellulose nanofibrils and coloring agent.  

3.2.3 Scaffold pore size design 

 This study investigated two scaffold designs to evaluate the general applicability of the 

proposed method and its performance over two pore size ranges commonly used in 3D bioprinting 

scaffold design. A 20mm x 20mm x 4mm solid square was designed using AutoCAD software and 

sliced into two squared pores structures using scafSLICR, an open-source MATLAB-based 3D 

scaffold slicing algorithm [88]. A pore size of 1mm with 50% layer porosity was selected for 

polymeric scaffold applications, given the range of common polymeric scaffolds in TERM 

reported in the literature [14]. For the hydrogel scaffold application, the pore size of 0.5mm with 

50% layer porosity was determined based on ranges for typical hydrogel scaffold applications 
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reported in the literature [18]. Two pore size designs with a layer porosity of 50% are illustrated 

in Figure 3-5.  

 

Figure 3-5: Pore size design of printed scaffold: (a) 1-mm pore size with 50% layer porosity for the 

polymeric-based scaffold, (b) 0.5-mm pore size with 50% layer porosity for the hydrogel-based scaffold.  

3.2.4 Scaffold fiber spacing option 

 The design goal of tissue engineering aims to form pores with spatial control and 

heterogeneous patterns that can meet different mechanical properties required for the tissue 

components [88]. Hence, the scaffold fiber spacing is a critical factor in being designed 

concurrently in XY and Z directions, creating different pore sizes designs. In this study, the 

scaffold fiber spacing option was chosen as one of the DoE experimental factors, which defines 

how the scaffold fiber spacing is controlled in the XY and Z directions, as shown in Figure 3-6 (a) 

and Figure 3-6 (b), respectively. Figure 3-6 (a) demonstrates the scaffold fiber spacing option 

determined by fiber-fiber spacing in the XY-plane, which is rotated every layer at a 90° angle to 

create a 0-90 print layout frequently used in the literature [13]. Figure 3-6 (b) and Figure 3-6 (c) 

illustrate the scaffold fiber spacing option two determined by the fiber-fiber spacing in the Z 
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direction, repeated at a certain number of horizontal and vertical layouts to create an isometric pore 

size of 1mm and 0.5mm on XY-plane and Z-plane [14].  

 

Figure 3-6: The illustration of the scaffold fiber spacing option. a) fiber-fiber spacing in the XY-plane, 

which is rotated every layer at a 90° angle to create a 0-90 print layout, b) and c) fiber-fiber spacing in the 

Z direction, which is repeated at a certain number of horizontal and vertical layouts to create an isometric 

pore size of 0.5mm and 1mm on XY-plane and Z-plane.  

3.2.5 Scaffold fabrication 

 In this study, the industrial FDM printer has versatile material printing abilities and utilized 

a heated extruder with a 0.5mm nozzle diameter to print 1.75-mm-diameter PLA. This printer can 

switch the modular extruder heads for different materials. Pluronic-made hydrogels can also be 

printed using a mechanical-based piston with a standard syringe and 21-gauge syringe needle, as 

shown in Figure 3-7.  
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Figure 3-7: The experimental platform for hydrogel scaffold. (a) Overall setup with 3D scanner and digital 

microscope installed to monitor the printed scaffold layer by layer; (b) the extrusion system for a polymeric 

scaffold that uses a screw-driven piston and syringe system.  

 The polymer scaffold was printed using an MK1-250 extruder head and a 0.5 mm extruder 

nozzle with 210°C nozzle temperature of 50°C substrate temperature within a closed chamber. The 

filament was heated to 210°C above the PLA melting point. The melted PLA was then extruded 

onto a heated glass-printing plate through a nozzle. The designed square pore structures were 

printed layer-by-layer, with 20 layers of each layer height of 0.2mm. The scaffold fabrication 

procedures were similar to those for the Pluronic hydrogel material, except for the extruder head. 

This modular SDS-10 extruder is a piston-driven Pluronic F127 hydrogel deposited from a syringe 

needle.  

3.2.6 Data acquisition flow   

 The printed PLA and Pluronic F127 hydrogel scaffolds were characterized layerwise 

during the printing process using the customized 3D scanner data acquisition system with the flow 

described in Figure 3-8. The extruder head is pre-programmed to move sideways and resume 

printing the next layer after the 40-s pause. Within the pause period, the 3D scanner scans the 
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scaffold surface for about 30s, and then the digital microscope takes a series of images within 10s. 

These images were used for the spatial alignment of the processed 3D point cloud data, as 

described in Section 3.2.7.  

 

Figure 3-8: Scaffold fabrication and characterization workflow. 

3.2.7 Layer porosity quantification 

 The geometry of the printed scaffold was captured in every layer using the 3D scanner 

from the experimental platform. The acquired 3D point cloud was then processed offline using 

CloudCompare (open-source software for processing point cloud data [89] to extract the current 

layer information for porosity accuracy quantification in the following steps. Because the scanned 

data is only obtained from one angle and has a blind spot issue, even though it is in 3D, it cannot 

directly provide the volumetric information for each layer. In a real case study, the edges of the 

extruded lines are rounded (see blue actual extruded line region in Figure 3-9. Hence, the extruded 

volume was simplified as the cuboid formed by the red dashed lines in Figure 3-9 [90]. 

 

Figure 3-9: Illustration of the volume modeling of the extruded line.  
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A series of data preprocessing techniques, such as plane transformation [91], region 

cropping [92], plane fitting [93], cloud to plane distance computation [94], point cloud filtering 

[95], and point cloud rasterization [89], are applied to transform the raw point cloud into a 2D top 

view image that was filtered based on the layer height of the printed scaffold. Figure 3-10 shows 

that the transformed point cloud images were mapped onto the acquired digital images to verify 

the effectiveness of the point cloud data transformation in terms of geometry and surface 

information. These 2D point cloud images were processed using ImageJ [96] to binarize the as-

printed region of interest (ROI) for layer porosity quantification. A pixel with a value of one was 

considered part of the material, and a pixel with a value of zero was considered part of the void. 

The scaffold was designed to have 50% layer porosity. The actual porosity of the printed scaffold 

within the ROI could be estimated by the total number of pixels in the void over the total number 

of pixels.  

 

Figure 3-10: (a) (d) The image data of polymer and hydrogel scaffold captured from the digital microscope 

at layer 14, (b) (e) The raw point cloud data of polymer and hydrogel scaffold acquired by the 3D scanner 

system at each layer, (c) (f) The transformed point cloud images (color mask) are mapped onto digital 

images acquired for each layer. 
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3.2.8 Material testing 

 Compression tests were performed on PLA scaffold samples (1-mm pore design) under 

two printing scenarios using optimized process parameter optimization and process parameters set 

in the DoE trial. Compression testing was performed according to the ASTM D965-15 standard at 

a 12mm/min deformation rate to 50% strain (KN Instron; 2 kN load cell) machine. The 

compression modulus of both samples was determined from the slope of the elastic region of the 

engineering stress-strain curve. The mean ± standard deviation (SD) was used for data expression 

and analysis. An independent sample t-test was used for compressive modulus studies. The 

compression tests were repeated three times for each PLA scaffold sample to determine the 

statistical significance of the compression test results. 

 

3.3 Research methodology 

 The proposed research framework is summarized in Figure 3-11, which consists of the 

following three main parts:  

(1) In-process sensing platform development for layerwise porosity monitoring: the 

development of the 3D scanner data acquisition system for the scaffold layer porosity 

monitoring is presented in Section 3.2.1. The material and methods, including the scaffold 

design, and fabrication methods, are detailed in Section 3.2.2 until Section 3.2.5. The 

experimental procedures, including data acquisition flow, layer porosity quantification, and 

material testing, are detailed in Section 3.2.6 until Section 3.2.8.      

(2) Process parameter optimization focuses on the relationship between the layer porosity 

quality and process parameters. The DoE procedure is established to investigate the 

relationship between product quality and process parameters in Section 3.3.1. The two-
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level full factorial experimental analysis and process parameter optimization are discussed 

in Section 3.4.1. 

(3) Experimental validation studies on the quality performance of the proposed DoE-based 

process parameter optimization: the DoE validation for layer porosity quantification is 

verified in Section 3.4.2. The material properties testing results are shown in Section 3.4.3.   

 

Figure 3-11: The framework of the proposed research approach.  

3.3.1 DoE-based process parameter mapping and optimization 

 A two-level full factorial experimental design was used to investigate the relationship 

between the desired quality and machine parameters. The results were used to determine 

appropriate process parameter values.  

 The two goals of DoE-based process parameter optimization are 1) to minimize the mean 

error between as-designed layer porosity and as-printed layer porosity estimation and 2) to 

minimize the standard deviation among all printed layers. Hence, the mean and the standard 

deviation of layer porosity were selected as the outputs. These two values are calculated by taking 

the average of all layers based on three replications of DoE experiments. Given the existing 

literature on process parameters affecting the geometric accuracy of 3D printed scaffolds [67, 96, 

97], two machine parameters, including material flow rate (𝑅) and extruder print speed (𝑆) and one 

design parameter, namely scaffold fiber spacing option, were selected as the factors to carry out 

the DoE experiments. For the chosen parameters, R refers to the rate at which material was being 
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extruded through the nozzle; S controls the extruder head print speed and governs the extrusion 

flow path. The scaffold fiber spacing option determines how the scaffold fiber spacing is controlled 

on XY-plane and Z-plane. These selected factors may impact the quality of extrusion and thus 

affect the porosity level during the bioprinting of polymer and hydrogel.  

 DoE experiments were conducted at two levels of the three process parameters. The ranges 

of factor levels for flow rate R and print speed S were selected based on experimental trials within 

the operating range of material printability for both materials, listed in Table 3-1. A 23 full factorial 

experimental design [98] with three replicates was used. A full factorial experiment was chosen in 

this study to estimate the main and interaction effects with reasonable experimental trials. In 

addition, the full factorial experiment results can provide process insights into the significance 

level of those parameters on the statistics of layer porosity quantification. Two experimental tests 

were performed using polymers and hydrogels, two widely used materials in 3D printed scaffold 

applications. Hence, 48 DoE experimental runs from two DoE experimental trials were completely 

randomized to analyze the optimal process parameters for polymer and hydrogel 3D printed 

scaffolds, respectively.  

Table 3-1: The three-factor levels of selected process parameters in two DoE experimental studies. 

Material Pore Size Scaffold Fiber 

Spacing 

Print Speed Flow Rate  

Polymer 

 

1mm 

 

Option 1 5mm/s 90% 

Option 2 10mm/s 170% 

Hydrogel 

 

0.5mm 

 

Option 1 5mm/s 100% 

Option 2 10mm/s 180% 

     

3.4 Case studies 

 Based on the DoE experimental studies outlined in Section 3.3.1, the two-level DoE full 

factorial analysis on process parameter significance and process parameter optimization are 

discussed in Section 3.4.1. Next, the experimental validation studies are performed in Section 
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3.4.2. Last, the material testing results are detailed in Section 3.4.3 and the results discussion is 

presented in Section 3.4.4.  

3.4.1 DoE full factorial results for process optimization 

 For the DoE experimental studies investigating both polymers and hydrogels, there were 

24 DoE runs for each material. The experimental results from all DoE trials are averaged and 

tabulated in Table 3-2 and Table 3-3. The experimental results showed the statistics of the porosity 

estimation at all layers across all runs in one case study. The statistics values shown in both tables 

were calculated based on the average values of three replications for the same process parameter 

settings of the DoE experimental study. DoE analysis was performed using Minitab software. The 

responses of the process parameters were optimized based on the fitted models determined by the 

significant factors in the DoE analysis. The optimization objectives were to minimize the mean of 

the porosity quantification error and the standard deviation of the layer porosity estimation. These 

procedures were performed in the same manner as for the case study of the Pluronic F127 hydrogel. 

Table 3-2: Full experimental results for DoE trials of four case studies of the PLA polymer material. 

Pore 

Size 

𝐑𝟏 S Scaffold Fiber 

Spacing 

Layer Porosity Estimation 

    Mean Std. Dev. 

1mm 90% 5mm/s Option 1 55.83 3.48 

90% 10mm/s Option 1 54.93 3.11 

170% 5mm/s Option 1 47.02 3.25 

170% 10mm/s Option 1 47.03 3.72 

 90% 5mm/s Option 2 54.99 3.70 

90% 10mm/s Option 2 55.77 3.19 

170% 5mm/s Option 2 30.58 5.12 

170% 10mm/s Option 2 28.55 5.62 
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Table 3-3: Full experimental results for DoE trials of four case studies of the Pluronic F127 hydrogel 

material.  

Pore 

Size 

𝐑𝟐 S Scaffold Fiber 

Spacing 

Layer Porosity Estimation 

    Mean Std. Dev. 

0.5mm 100% 5mm/s Option 1 54.42 4.73 

100% 10mm/s Option 1 61.07 5.52 

180% 5mm/s Option 1 46.17 3.07 

180% 10mm/s Option 1 40.26 4.33 

 100% 5mm/s Option 2 49.22 6.79 

100% 10mm/s Option 2 50.60 9.54 

180% 5mm/s Option 2 36.18 6.30 

180% 10mm/s Option 2 49.07 7.25 

 

 The ANOVA tables [99] show that each best DoE analysis model against the mean and 

standard deviation of layer porosity was determined based on their significance levels at a p-value 

less than 0.05. The ANOVA results for the PLA case study in Table 3-4 show that the flow rate 

R1, scaffold fiber spacing option, and the interaction between the two significantly affected the 

average layer porosity estimate of the printed scaffold. The ANOVA results for the PLA case study 

in Table 3-5 show that the flow rate R1, scaffold spacing option, and the interaction term between 

the two significantly affected the standard deviation of the layer porosity estimate of the printed 

scaffold.  

 In summary, the flow rate, scaffold fiber spacing option, and the interaction terms between 

them are significant variables corresponding to the mean and standard deviation of the layer 

porosity estimation. Furthermore, the print speed (S) was less significant in the polymer [99] case 

study because the nozzle temperature was kept at 210°C, higher than the PLA melting temperature. 

This observation agrees with the work reported in [96], which concluded that print speed is less 

significant in determining the dimensional accuracy of polymer for the FDM process. No further 

experiments are needed because the lack-of-fit error is insignificant, according to the ANOVA for 

the PLA polymer scaffold case study.  
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Table 3-4: ANOVA results for mean layer porosity for PLA polymer scaffold case study.  

Analysis of Variance (Mean) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 3 2874.16 958.05 732.36 0.01 

  Linear 2 2382.44 1191.22 923.04 0.01 

Flow Rate 1 1859.54 1859.54 1440.90 0.01 

Option 1 522.90 522.90 405.18 0.01 

  2-Way Interactions 1 491.72 491.72 381.01 0.01 

Flow 

Rate*Option 

1 491.72 491.72 381.01 0.01 

Error 20 25.81 1.29     

  Lack-of-Fit 4 2.43 0.61 0.42 0.79 

Pure Error 16 23.38 1.46     

Total 23 2899.97       
 

Table 3-5: ANOVA results for the standard deviation of layer porosity for the PLA polymer scaffold case 

study.  

Analysis of Variance (Standard Deviation) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 3 13.816 4.6054 4.62 0.01 

  Linear 2 10.528 5.2638 5.28 0.01 

Flow Rate 1 8.375 8.3748 8.40 0.01 

Option 1 2.153 2.1527 2.16 0.16 

  2-Way Interactions 1 3.289 3.2887 3.30 0.08 

Flow 

Rate*Option 

1 3.289 3.2887 3.30 0.08 

Error 20 19.951 0.9975     

  Lack-of-Fit 4 4.386 1.0964 1.13 0.378 

Pure Error 16 15.565 0.9728     

Total 23 33.767       
  

As shown in Table 3-6, the ANOVA results for the Pluronic F127 case study show that the 

flow rate R2, scaffold fiber spacing option, and the interaction term between the two are 

statistically significant factors that affected the average layer porosity estimation of the printed 

scaffold. The ANOVA results for the Pluronic F127 case study in Table 3-7 show that the print 

speed, flow rate, printing direction option, and the interaction between the print speed and the 

scaffold fiber spacing option are significant variables in the standard deviation of layer porosity 

estimation. The analysis results reveal that hydrogel material is sensitive to print speed (S), as this 

variable was statistically significant in the standard deviation of the layer porosity estimation. A 

significant level of print speed versus geometric fidelity was observed by Ramesh et al. [97]. No 
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further experiments are needed because the lack-of-fit error was found to be insignificant in an 

ANOVA of the Pluronic F127 hydrogel scaffold case study. 

Table 3-6: ANOVA of mean layer porosity for Pluronic F127 hydrogel scaffold case study. 

Analysis of Variance (Mean) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 3 1064.24 354.75 26.52 0.01 

  Linear 2 822.54 411.27 30.75 0.01 

Flow Rate 1 799.65 799.65 59.78 0.01 

Option 1 22.89 22.89 1.71 0.21 

  2-Way Interactions 1 241.70 241.70 18.07 0.01 

Flow 

Rate*Option 

1 241.70 241.70 18.07 0.01 

Error 20 267.52 13.38     

  Lack-of-Fit 4 70.42 17.61 1.43 0.27 

Pure Error 16 197.10 12.32     

Total 23 1331.76       

Table 3-7: ANOVA of mean layer porosity for Pluronic F127 hydrogel scaffold case study. 

Analysis of Variance (Standard Variation) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 4 70.573 17.643 13.46 0.01 

  Linear 3 50.614 16.871 12.87 0.01 

Print Speed 1 34.866 34.866 26.60 0.01 

Flow Rate 1 7.092 7.092 5.41 0.03 

Option 1 8.657 8.657 6.61 0.02 

  2-Way Interactions 1 19.959 19.959 15.23 0.01 

Print 

Speed*Option 

1 19.959 19.959 15.23 0.01 

Error 19 24.900 1.311     

  Lack-of-Fit 3 4.465 1.488 1.17 0.35 

Pure Error 16 20.435 1.277     

Total 23 95.473   

The step after the process parameter mapping is used to determine the optimal set of 

process parameters via optimization procedures. The process parameter optimization procedures 

were implemented using Minitab. Multiple responses with equal weights were optimized to 

achieve the target layer porosity of 50% and minimize the standard deviation of layer porosity for 

each case study. The process parameter optimization results are summarized in Table 3-8.  

Table 3-8: Process parameter optimization results (layer porosity estimation) for both case studies. 

Case Study 𝑹 S Scaffold Fiber Spacing Option 

    

Polymer (1.0 mm) 108% 5mm/s Option 2 

Hydrogel (0.5mm) 143% 5mm/s Option 1 
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3.4.2 DoE validation studies results 

This section presents the DoE validation studies for two verification scenarios (polymer 

and hydrogel materials). These two process parameter settings were obtained from DoE analysis 

based on the experimental results described in Section 3.4.1.  

 Six validation studies were conducted based on the recommended settings to assess the 

performance of DoE approaches for optimal process parameters, as summarized in Table 3-8. For 

each validation case study, three replications were performed to implement the identified process 

parameter settings from the full factorial DoE analysis. The full validation results, including the 

statistics of layer porosity estimation, are presented in Table 3-9. The statistics of the layer porosity 

quantification were calculated based on the average of three replications for each case study.  

Table 3-9: The full validation results (layer porosity %) table for both case studies. 

Case Study 𝑹 S Scaffold Fiber 

Spacing 

Layer Porosity Estimation 

    Mean Std. Dev. 

PLA Polymer (1.0 mm) 108% 5mm/s Option 2 50.72 4.25 

Pluronic F127 Hydrogel (0.5mm) 142% 5mm/s Option 1 48.72 2.12 
 

 The validation results in Table 3-9 showed that the proposed DoE approaches determine 

the proper process parameters that yield minimal mean porosity error and minimal deviation error 

for as-designed 50% porosity (the red line in Figure 3-12) together visualized with the ranges of 

DoE experimental runs (the blue line in Figure 3-12).  

 A line plot of layerwise porosity quantification for one set of full factorial experimental 

and validation studies of the PLA experiment is shown in Figure 3-12. From the line plot, the layer 

porosity estimation from the validation run achieved an average porosity (the average of all the 

layers in three replications) of 50.72% closer to the target porosity percentage with a minimum 

standard deviation of 4.25 (the average of all the layers in three replications).  
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A line plot of the layerwise porosity quantification for one set of full factorial experimental 

and validation studies of Pluronic F127 is shown in Figure 3-13. From the line plot, the layer 

porosity estimation from the validation run achieved an average porosity of 48.72% (the average 

of all the layers in three replications), closer to the target porosity percentage with a minimum 

standard deviation of 2.12 (the average of all the layers in three replications). The results 

demonstrate the successful use of a DoE-based approach to determine the significance of process 

parameter variables and appropriate process parameter settings for different materials (PLA and 

Pluronic F127). The validation experiment demonstrated the successful implementation of a 

design of experiment (DoE)-based in-process sensing platform to improve the geometric accuracy 

of the layer porosity of scaffolds by meeting the as-designed porosity with less mean error and 

standard deviation. 

 

Figure 3-12: Line plot of layerwise porosity estimation for DoE experimental and validation studies for 

PLA polymer case study. 
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Figure 3-13: Line plot of layerwise porosity estimation for DoE experimental and validation studies for 

Pluronic F127 hydrogel case study. 

3.4.3 Material testing results 

 The results of mechanical property characterization are presented in Table 3-10.  The 

compressive moduli of PLA scaffolds printed under the two printing scenarios (optimized process 

parameter vs. DoE trial) were significantly different. The average compressive modulus using the 

optimized process parameter scenario was 50.36 ±2.79 MPa (n = 3), while the average compressive 

modulus using the DoE trial process parameter scenario was 34.95 ± 1.37 MPa (n = 3).  Both 

independent sample t-tests of the compressive modulus studies were significantly different at a 

significance level of p < 0.05, as shown in Table 3-11.  

Table 3-10: Compressive modulus results for both case studies. 

Case Study Process 

Parameter 

Scaffold Fiber 

Spacing 

Compressive Modulus, MPa 

   T1 T2 T3 Average Std. Dev 

PLA 
Optimized Option 2 49.95 53.96 47.17 50.36 2.79 

DoE Trials Option 2 33.69 34.32 36.86 34.95 1.37 
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Table 3-11: Results of sample t-test of compressive modulus studies under two scenarios.  

Source DoE trials Optimized 

Mean 34.96 50.36 

Variance 2.82 11.64 

Obseravations 3 3 

Pool Variance 7.23  

Hypothesized Mean 

Difference 0 

 

df 4  

T Stat -7.01  

P(T<=t) one-tail 0.0011  

t Critical one-tail 2.13  

P(T<=t) two-tail 0.0023  

t Critical two-tail 2.78  

   

3.4.4 Results discussion  

 Few studies have been conducted on in-process characterization to capture layer 

information during the biofabrication of scaffolds. However, the lack of process sensing platforms 

limits the acquisition of in-process insights of bioprinted parts because precise material deposition 

is important in the biofabrication of porous constructs (e.g., tissue scaffolds or membranes). Hence, 

this work demonstrates a customized sensing platform for microextrusion 3D printing processes 

to acquire the necessary process data for the input and output of the DoE analysis. The proposed 

sensor-based in-process quality monitoring system can accurately capture layerwise porosity 

quality.  

 Research on the systematic study of the relationship between process parameters and 

product quality is limited in the bioprinting community. Through common trial-and-error 

approaches, experiments to determine the optimal process parameters for biomaterials are costly, 

labor-intensive, and time-consuming. This work implements DoE-based process parameter 

mapping and optimization to utilize the layerwise porosity quality and achieve the desired 

geometric accuracy with the recommended process parameter settings, resulting in fewer 

experimental trials. A two-level full factorial covering three factors was designed with 24 trials 
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conducted for the polymeric and hydrogel scaffolds. The ANOVA helped determine which 

significant factors, including print speed, flow rate, scaffold spacing option, and the interaction 

term between them, significantly affected the average and standard deviation of the layer porosity 

estimation of the printed scaffolds. Furthermore, the proposed DoE approaches recommended an 

optimal process parameter setting for polymer and hydrogel materials to achieve an as-designed 

50% porosity, with an average layer porosity of 50.72 ± 4.25% for PLA material and an average 

layer porosity of 48.72 ± 2.12% for hydrogel material. Achieving a minimal difference from the 

as-designed porosity indicates that the proper process parameters determined through the DoE 

approach meet the geometry design with fewer trials and errors.  

 In addition, the compression testing results showed that the proposed research framework 

led to a significant increase in the compression modulus of the printed polymeric scaffolds, as 

there was a significant difference in the average compressive modulus under the two printing 

scenarios, including the optimized process parameters and process parameters set in the DoE trials. 

Meeting geometry design is more efficient with fewer trials and errors, which leads to the desired 

geometry with improved mechanical properties. In this study, two different scaffold structures with 

polymeric and hydrogel materials were demonstrated to highlight the general applicability of the 

proposed research methodology, which can be extended to different bioprinting materials and 

designs.  

 Future work will involve extending this process parameter optimization to a bioink-based 

tissue construct to examine the effect of scaffold porosity variability on biological outcomes (e.g., 

differentiation outcomes) [100, 101].  Another future direction would extend the current research 

framework by implementing an in-process monitoring and control strategy to adjust the process 

parameters during bioprinting. The in-process data acquired at each layer can be utilized using a 



43 

 

data analysis approach to predict the layer quality condition and thus make recommended actions 

by adjusting the optimal process parameters in real-time.  

 This work provides a fundamental research framework by establishing a systematic two-

step parameter mapping and optimization process to fill the identified research gaps in the 

bioprinting literature that led to time-consuming bioprinting practice. First, we propose an in-

process sensor-based data-acquisition system to measure layerwise quality insights. Second, this 

work demonstrated a process parameter mapping and optimization strategy to improve the printed 

scaffolds’ geometric accuracy and porosity reproducibility. Under an optimal process parameter, 

conformance to geometry accuracy and internal scaffold microstructure characteristics, such as 

porosity, can be ensured, leading to an improved compressive modulus of the 3D-printed porous 

scaffolds. 

3.5 Conclusions and future work 

 This study successfully implemented a customized sensing data platform coupled with a 

3D scanner sensor and digital microscope as an in-process quality monitoring system for 3D 

printed scaffolds using PLA polymer and Pluronic F-127 hydrogel. This in-process sensing 

platform enables the layer scaffold quality characterization necessary for the in-situ monitoring of 

material extrusion conditions during 3D bioprinting processes. The in-process data acquired from 

the system can estimate layer porosity using point clouds and image post-processing techniques. 

Furthermore, the layer porosity estimation result is utilized as the output of process parameter 

optimization to achieve the desired scaffold porosity design with minimal standard deviation.  

 For case studies, two widely used materials in 3D bioprinting, namely, Pluronic F127 

hydrogel and PLA polymer, were used to demonstrate the effectiveness of the proposed in-process 

sensing system by integrating the acquired layer information into the DoE process. The proposed 
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DoE-based process parameter optimization was validated by executing the recommended 

parameter settings. The validation results of both case studies demonstrated that the proposed DoE-

based process parameter optimization approach improved the geometric accuracy of the layer 

porosity of scaffolds by meeting the as-designed porosity with a smaller mean error and standard 

deviation. With a target porosity design of 50%, the layer porosity estimation of PLA material 

achieved an average porosity of 50.72% with a minimum standard deviation of 4.25%. The layer 

porosity estimation of Pluronic F127 achieved an average porosity of 48.72%, with a minimum 

standard deviation of 2.12%. In addition, the results showed a successful demonstration of DoE-

based optimization to determine appropriate process parameter settings for different materials 

(PLA and Pluronic F127) to achieve minimal error and standard deviation compared to the as-

designed porosity quality.  
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4. Deep-learning-enabled surrogate modeling of process insights 

associated with metal AM quality for forward prediction problem  

Laser powder bed fusion (LPBF) is an AM technique that enables layerwise fabrication of complex 

objects with material flexibility and waste saving. Because of the labor-intensiveness of existing 

post-processing metrology assessment and the time-intensive requirement of the AM process 

simulation, surrogate modeling is essential as a rapid quality inference framework for quality 

assurance and control. Therefore, deep learning-based surrogate modeling is an emerging research 

trend that taps into big data that consists of process data and solves the forward prediction problems 

in AM processes. This chapter presents the high-fidelity AM simulation dataset for developing a 

deep learning-based surrogate model to predict the final residual stress formation based on high-

dimensional thermal history with variations in process parameters. The proposed work develops a 

deep learning-based surrogate model that considers reheating effects to predict the final residual 

stress formation based on process parameters and high-dimensional thermal history. It creates a 

computationally efficient approach for rapid quality assurance of AM processes. The case studies 

on the high-fidelity AM simulation dataset show that the model can precisely predict the residual 

stress matrix at each layer by considering reheating effects of thermal cycles and process parameter 

insights.  

4.1 Introduction  

 Metal AM can produce complex, functional components in small runs at unit costs 

competitive. However, to realize these potential benefits, research and development are essential 

in all aspects of production, ranging from a part material property to its dimensional accuracy [102] 

and surface topography [103]. The applications of AM simulation are emerging as the researchers 

develop and perform extensive model verification and validation tools. These tools ensure the 
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analytical accuracy of the simulation results and the reliability of the model predictions to represent 

the actual process using measured temperature and mechanical properties [49, 104-107].   

 The attractive feature of using the finite element method (FEM)-based simulation is that 

the simulator can produce high-fidelity simulation data representing AM processes' actual dynamic 

process. Though the finite element-based models provide a precise physical understanding of the 

thermomechanical behavior during the AM processes [108-110], the high computational cost and 

time inefficiency hurdle its industrial-level implementation for quality assurance (QA) system of 

metal AM. To overcome these computational cost and time issues, data-driven surrogate models 

have recently emerged as alternative modeling in metal AM for their low computational cost and 

better generalization of experimental and simulation results.  

 Current trends of machine learning applications in AM have led to extensive research in 

surrogate modeling for establishing a QA framework in the AM community [111, 112]. Data-

driven surrogate models have recently emerged for their low computational cost and 

generalizability of experimental and simulation results [44, 45, 113, 114]. Francis and Bian [44] 

established a deep learning-based distortion model by considering the local heat transfer for 

pointwise distortion prediction. Their work demonstrated a distortion prediction within the 

tolerance limits. Mozaffar et al. developed a recurrent neural network with a Gated Recurrent Unit 

(GRU) model to predict thermal history with various designs and process parameters [45]. Their 

models accurately predicted the thermal history of the builds.  

Establishing the correlation among process parameters, process signature, and product 

qualities in AM process is critical in the QA system of metal AM to achieve high-quality additive 

manufactured parts [1]. Remarkably, the reheating effects of thermal cycles contribute to residual 

stress formation that could affect the functionality of printed parts [115-117]. However, most 
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surrogate models only considered limited process parameter ranges and did not account for the 

reheating effects of thermal cycles in their modeling. There remains a lack of literature exploring 

surrogate models for correlating thermomechanical behavior and residual stress distribution. 

Therefore, we present a deep neural network-based framework for predicting residual stress of 

laser powder bed fusion (LPBF) under different parameter settings using thermal histories with 

reheating effects extracted from FEM.  

Thus, this chapter presents a need for a data-driven surrogate modeling approach using the 

high fidelity of physics-based modeling. In summary, a data-driven surrogate model with the 

ability to integrate knowledge across process parameters, thermomechanical behavior, 

microstructure, residual stress, distortion understanding, and mechanical responses is highly 

desired for the imminent implementation of the quality assurance system of metal AM. In addition, 

the proposed approach is promising with the ability to integrate knowledge from process 

parameters and thermomechanical behavior for the promising implementation of the QA system 

of metal AM.  

4.2 Theoretical background 

 The effects of process parameters and thermal reheating cycles on residual stress are briefly 

described in Section 4.2.1. The theoretical background of thermal and mechanical modeling is 

summarized in Section 4.2.2. An explanation of how AM simulation works based on physics-

driven theories is presented in Section 4.2.3.  

4.2.1 Process parameter and thermal reheating effects on residual stress formation 

Residual stress formation during metal AM processes occurs as a result of complex thermal 

phenomena arising from the thermal reheating effects of the localized heat source. The heat source, 

i.e., laser beam, rapidly heats the surface at the top layer and subsequently fully or partially reheats 
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the already solidified layers underneath. As a result of this heat source reheating effects, large 

temperature gradients occur in the applied heated area due to the high energy density heat input 

that leads to the effect of non-uniform thermal expansions and contractions [118]. These thermal 

fluctuations would repeatedly occur when increasing layer deposition and result in the 

accumulation of the residual stress in the additive printed part. In the end, the residual stress 

formation is not desired in most AM cases as these may lead to the severe consequence of build 

part failures that are subjected to other undesirable outcomes, including displacement, cracking, 

poor surface quality, and weakened fatigue performance [119].  

Given the significant impact of mechanical responses on the quality of printed AM parts, 

many studies have suggested that process parameters influence the residual stress [120, 121] and 

microstructure formation during AM processes [122, 123]. Investigating the correlation between 

process parameters and residual stresses, both experimental approaches and numerical simulation 

are thoroughly studied in these literature works [104, 121, 124-126]. Furthermore, these thermal-

related insights, particularly thermal reheating cycles, affect AM-built parts' microstructure and 

mechanical properties. For instance, Rodrigues et al. showcased that the microstructure and 

mechanical properties of HSLA steel parts are correlated with the thermal cycles involved in the 

wire and arc additive manufacturing process [116].   

The literature shows that process parameters and thermal reheating histories are key factors 

influencing residual stress in additive built parts. Therefore, thermomechanical models for 

simulating the metal AM process, including laser powder bed fusion (LPBF), offer insights into 

surrogate modeling for building and using data-driven smart quality assurance systems for AM 

systems that can relate process parameters, process signatures, and product qualities.   
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4.2.2 Thermal model 

The simulation data for this research task was acquired using Autodesk Netfabb Local 

Simulation, a Newton–Raphson-based nonlinear finite element model (FEM) [104]. The goal of 

the AM simulation was to simulate the thermomechanical behavior of AM processes. The 

thermomechanical FEM model is based on the thermoelastoplastic constitutive material model 

[49]. Therefore, the sequential thermomechanical modeling approach yields unique characteristics, 

which both thermal and mechanical analysis can be extracted separately from simulation modeling. 

Hence, both simulation data can be served as input and output of the machine learning model given 

the same spatial and temporal resolutions. Figure 4-1 illustrates the framework of physics-based 

simulation, which comprises three components: model inputs, FEM model, and model outputs. 

Material properties and process parameters are model inputs to simulate the temperature of the 

part on a temporal and spatial scale. Next, the thermal model simulates the thermal loads, and the 

simulated temperature insight is fed into the mechanical model. The mechanical model yields the 

simulated part qualities, including stress, strain, and displacement during the build process.  

 

Figure 4-1: A framework of physics-based simulation consisting of model inputs, FEM model, and model 

outputs. 
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 The thermal modeling of FEM simulation involves thermal equilibrium, which is governed 

by a set of thermal equations, including the heat source model, boundary condition, and boundary 

heat losses. These governing equations are required to generate the metal AM processes' thermal 

field throughout the history of the simulation process. Hence, the thermal model's outputs are 

temperature history, temperature gradient, heat flux, and interlayer temperature. Following [33], 

the simulation applies a weakly coupled modeling approach known as the Galerkin approach. The 

simulation results from the thermal analysis are then fed into the mechanical analysis. Figure 4-2 

describes the thermal equilibrium's critical governed thermal equations, including the heat source 

model, boundary condition, and boundary heat losses.  

 

Figure 4-2: The governing thermal equilibrium equations, including heat source model, boundary 

condition, and boundary heat losses.    

 The following paragraphs describe the governing thermal modeling used by Autodesk 

Netfabb Local Simulation, which explains how thermomechanical modeling generates the 

necessary dataset for machine learning-based modeling [127]. First, the thermal equilibrium for 

FEM simulation of AM process can be written as the following equation:  

𝜌𝐶𝑝

𝑑𝑇

𝑑𝑡
= −  

𝜕(𝑞𝑖(𝑥𝑗 , 𝑡))

𝜕𝑥𝑖
 + 𝑄(𝑥𝑗 , 𝑡) (1) 

 

where ρ is the constant density of a body,  𝐶𝑝 is the isotropic specific heat capacity of a body, T is 

the temperature, t is the time, q𝑖 is the local heat flux through the part, 𝑥𝑖 and 𝑥𝑗 are the location 
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vectors, respectively, and Q is the heat source model. Furthermore, the local heat flux vector can 

be expanded by using Fourier's conduction equation that describes the distribution of heat through 

the part: 

𝑞𝑖 =  − 𝑘(𝑇) 
𝜕𝑇

𝜕xi
 (2) 

 

where k(T) is the material’s thermal conductivity, which is dependent on the isotropic temperature, 

and 
𝜕𝑇

𝜕xi
 is the thermal gradient that reflects how temperature changes with location. 

Two boundary condition assumptions are made for the thermal modeling. The first 

assumption is that a Neumann boundary condition is considered to provide an equation for the 

boundary node. Under the Neumann boundary condition, the value of the gradient of the dependent 

variable is prescribed on the boundary [128]. The second assumption is that the initial condition 

assumes the initial temperature, 𝑇0  is equivalent to the ambient temperature or preheating 

temperature of build plate, 𝑇∞. For subsequent time steps, the initial condition of the temperature 

is updated to the nodal temperatures calculated at the previous time step.   

 Third, the heat source of metal AM is typically from the laser beam or electron beam. There 

are two heat input models for AM process simulation: 2D heat flux or a 3D body heat source 

distribution. The simulation applies the commonly used Goldak's 3D Gaussian ellipsoidal 

distribution heat source model [106]:  

𝑄 =  
6√3𝑃𝜂

𝑎𝑏𝑐√𝜋
𝑒𝑥𝑝 (−

3𝑥2

𝑎2
−

3𝑦2

𝑏2
−

3(𝑧 +  𝑣𝑠𝑡)2

𝑐2
) (3) 

 

where P is the heat source power; η is the absorption efficiency; a, b, and c are the width, depth, 

and length of the ellipsoid, respectively; x, y, and z are the local coordinates of the moving heat 

source; vs is the travel speed of the heat source; and t is the time.  
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 Fourth, another essential consideration for the simulation of thermal modeling is boundary 

heat losses that may occur during AM process in different forms. The governed boundary heat loss 

due to free convection, forced convection, and thermal radiation can be written as follows:  

𝑞𝑐𝑜𝑛𝑣 =  ℎ(𝑇𝑠 − 𝑇∞) (4) 

ℎ =  ℎ𝑓𝑟𝑒𝑒 +  ℎ𝑓𝑜𝑟𝑐𝑒 + ℎ𝑟𝑎𝑑) (5) 

 

where qconv is the total convective heat flux, h is the sum of the heat transfer coefficient of free 

convection (ℎ𝑓𝑟𝑒𝑒), forced convection (ℎ𝑓𝑜𝑟𝑐𝑒), and linearized thermal radiation (ℎ𝑟𝑎𝑑), Ts is the 

temperature at the surface, and 𝑇∞ is the ambient temperature.  

4.2.3 Mechanical model  

Since the simulation is sequential, mechanical modeling uses the previously generated 

thermal history across each node to calculate each step's mechanical responses. Figure 4-3 

summarizes the mechanical model's governed quasi-static stress equilibrium cases with associated 

equations. The Autodesk Netfabb Local Simulation implements these mechanical-related 

equations to demonstrate how the thermomechanical model simulates mechanical responses. In 

addition, the outputs of the mechanical model are stress-related properties (von misses stress, 

principal stress, and Cauchy stress), strain-related properties (plastic and elastic strain), and 

location-related properties (displacement).   
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Figure 4-3: The governing quasi-static stress equilibrium cases with associated equations in the FEM 

software.  

There are two mechanical model cases considering small deformation and large 

deformation. For the first case considering small deformation, the governing stress equilibrium 

equation is written as follows:  

∇  ∙  𝜎 =  0 (6) 

where σ is the stress.  

The generalized Hooke’s law, sometimes called the constitutive law, is required to relate 

the relationships among strain, stress, and material properties, which can be written in the 

following form:  

𝜎 = 𝐶𝜖𝑒 (7) 

where C is the symmetric fourth-order material stiffness tensor, and εe is the elastic strain tensor.  

In a small-deformation case, the elastic strain can be related to the total strain, which can 

be written as follows:  
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ϵ =  𝜖𝑒  +  𝜖𝑝  + 𝜖𝑇 (8) 

𝜖𝑒  = ϵ  +  𝜖𝑝  + 𝜖𝑇  

where ϵ is the total strain, 𝜖𝑒  is the elastic strain, 𝜖𝑝 is the plastic strain, and 𝜖𝑇  is the thermal 

strain.  

The thermal strain, the strain that forms during the heating and cooling phase of AM 

process, can be written in the following form:  

𝜖𝑇  =  𝛼 𝛥𝑇  (9) 

where α is the coefficient of thermal expansion and 𝛥𝑇 is the algebraic change in temperature. 

 

The plastic strain is defined as permanent deformation occurred when the material is loaded 

beyond its elastic limit. The plastic strain can be calculated by applying the von Mises yield 

criterion and the Prandtl-Reuss flow rule, which can be formulated as follows: 

𝑓 =  𝜎𝑚  −  𝜎𝑦(𝜖𝑞, 𝑇)  ≤ 0 (10) 

𝜖𝑝̇ =  𝜖𝑞̇𝑎  

𝑎 =  (
𝜕𝑓

𝜕𝜎
)

𝑇

 
 

where f is the yield function, 𝜎𝑚 is von Mises stress, 𝜎𝑦 is the yield stress, 𝜖𝑞̇ is the equivalent 

plastic strain, and a is the flow vector. 

For the second case of large deformation, the large deformation theory is accounted for the 

current spatial location experiencing unusual changes from its initial reference. In the case of a 

large deformation scenario, the governed stress equilibrium equation is different from the small 

deformation scenario. The governing stress equilibrium for a large deformation scenario is written 

as follows:  

∇𝑥  ∙  𝐏 =  0  (11) 
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where ∇𝑥 is the algebraic deformation change in part x and P is the first Piola-Kirchoff stress tensor 

P which can be written as follows: 

𝐏 = 𝐽𝜎 ∙  𝐹−𝑇  (12) 

 

where σ is the stress tensor and J is the determinant of the deformation gradient F, which is written 

as follows:  

𝐅 =
𝑑𝑥

𝑑𝐗
 (13) 

 

The deformation gradient F can be related to displacement gradient D, and the Green Strain E is 

written as follows:  

𝐄 =
1

2
(𝐷 + 𝐷𝑇)  + 

1

2
𝐷 ∙  𝐷𝑇    (14) 

𝐷 =  𝑭 −  𝐈 (15) 

 

where E is the Green strain,  D is the deformation gradient D, and I is the identity matrix.  

 

4.3 Research methodology 

Process parameters, thermal histories, and mechanical responses are closely related and 

interconnected through governed equations, given the dynamic physics-based theories behind 

thermal and mechanical modeling. The relationships among them are highly non-linear, and the 

data inherited by these parameters, signatures, and qualities in AM process is high-dimensional. 

In addition, a surrogate-based model is well fit for high-dimensional data and non-linear 

relationship modeling. Hence, a surrogate-based approach can be utilized to model thermal and 

mechanical modeling in a data-driven approach by feeding the model with physics-driven data 

input and output.  
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Figure 4-4: A machine learning-based surrogate model framework that integrates process parameters and 

thermal histories onto ANN and ResNet to predict von Mises stress of printed parts.   

Inspired by the convolutional neural network (CNN) and artificial neural network (ANN), 

a machine learning-based surrogate model is proposed to correlate process parameters and 

signatures with parts qualities. Similar to the physics-based modeling components shown in Figure 

4-1, the proposed machine learning-based surrogate does take model inputs to correlate with model 

outputs. However, one major difference between physics-based simulation and surrogate-based 

modeling is that the proposed machine learning-based surrogate model incorporates a deep neural 

network for predicting residual stress from the reheating effects of the thermal history of metal 

AM processes and process parameters. Both ANN and CNN architectures are utilized to create 

surrogate modeling that learns the non-linear correlation relationships of governed equations 

presented in thermal and mechanical modeling. Therefore, a machine learning-based surrogate 

model framework can be illustrated under the ANN and CNN model architecture ensemble, as 

shown in Figure 4-4.  

4.3.1 ResNet-ANN-Re model architecture 

 Figure 4-5 shows that the ResNet-ANN-Re model is proposed by taking layer-wise thermal 

histories with reheating effects to undergo a customized ResNet architecture. In addition, the 

proposed model considers process parameters, including laser speed, laser power, and hatch 
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spacing, by using an artificial neural network (ANN), as illustrated in Figure 4-5 (b). The four fully 

connected layers are utilized to extract the feature of process parameters. ResNet features are 

flattened and concatenated with ANN, and these are passed through a fully connected layer with 

the final regression layer to predict the residual stress. The model parameters are determined by 

grid search-based hyperparameter tuning. The model is trained using the mean squared error loss 

function between predicted and simulated residual stress.    

 
Figure 4-5: The overview of deep neural network architecture for the forward prediction modeling. a) 

Convolutional block, b) ResNet-ANN model architecture, c) identity block.   

 The advantage of AM simulation is its capability to extract thermal histories underneath 

layers known as reheating effects. Therefore, the convolutional neural network module with a 

ResNet backbone is adapted to account for the reheating effects, which involves high dimensional 

spatial-temporal thermal data. This deeper neural network applies residual connections as a 

shortcut over the convolutional layer to resolve the vanishing gradient problem [129]. The 

convolution and identity block mechanisms are illustrated in Figure 4-5 (a) and Figure 4-5 (c). The 

deep residual network of convolution layers can learn various low, mid, and high-level features in 

the data. Hence, the residual connection is a simple yet powerful design that enables deeper neural 
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networks without risking performance degradation. Thus, ResNet is selected for high dimensional 

data like FEM simulation data that can accelerate the speed of neural network training by having 

a smaller number of weights relative to the network depth.   

4.3.2 Dataset curation 

 The training dataset is acquired using Autodesk Netfabb Local Simulation, a Newton–

Raphson-based nonlinear FEM solver [104] as detailed in Section 4.2.1 and Section 4.2.2. The 

simulation software theoretically converts the governing physics equation to a weak formulation, 

assuming the one-way relationship between thermal and mechanical behaviors [49]. This 

sequential thermomechanical modeling yields thermal and mechanical analysis that can be 

extracted separately for the input and output of the proposed model. 

For the data curation of this work, Ti-6Al-4V alloy material is selected with three 

significant process parameters, including laser scan speed (200mm/s-1200 mm/s), laser power 

(50W-350W), and hatch spacing (0.08mm-0.18mm). The ranges of these process parameters are 

chosen to create a more extensive dataset covering the typical range of metal AM processes in the 

literature [49, 104]. The selected part design is a cuboid of 1mm × 1mm × 0.15mm (3-layer 

height). There are 27 data samples for model training, validation, and testing purposes. The 

visualization of thermal distribution followed by the moving laser source is illustrated in Figure 4-

6 (a), while the residual stress after printing is visualized in Figure 4-6 (b). 

Given that the thermal history of the bottom layers is impacted by the reheating [116, 117], 

these layers carry information about the reheating effect. Figure 4-6 (c) illustrates the case where 

reheating is not considered (we have only included the thermal data at the top layers). In contrast, 

Figure 4-6 (d) shows the case where the reheating effect is considered by including the thermal 
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data at the top layers and the thermal data from all the bottom layers. The thermal histories of the 

bottom layers are updated due to the reheating effects.  

 

Figure 4-6: (a) FEM simulation results of fine-scale temperature distribution with moving laser source; (b) 

residual stress at final time step with 200mm/s laser scan speed, 50W power, and 100µm laser spot; (c) the 

case where reheating is not considered (only considered thermal histories at each top layers); (d) the case 

where reheating is considered by including thermal histories at each top layers as well as thermal histories 

from all bottom layers. 

4.3.3 Proposed model setup  

 The proposed ResNet-ANN-Re model is trained using two NVIDIA GeForce RTX 2080 

Ti GPUs and TensorFlow Keras library [130]. The input is layerwise thermal histories, and the 

output is layerwise residual stress at the final time. All inputs and outputs are normalized using a 

min-max normalization method ranging from 0 to 1 [131]. The dataset is split between training 
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(18 samples), validation (5 samples), and testing (4 samples). The hyperparameter tuning is 

optimized by the grid search cross-validation method. The final models are completed within 18 

hours using an Adam optimizer [132] with a learning rate of 0.0005, a batch size of 4, and 700 

epochs [133]. 

4.4 Results and discussions 

 The proposed model is validated under three case studies to evaluate the effects of process 

parameters and reheating effects against the model prediction performance. Three models, 

including ResNet, ResNet-ANN, and ResNet-ANN-Re (proposed), are categorized by whether 

process parameters and reheating effects are considered. ResNet is base architecture without 

process parameters and reheating effects. In addition, the ResNet-ANN model considers only 

process parameters. The proposed ResNet-ANN-Re model considers both parameters and 

reheating effects. The performance of the three models is shown in Table 4-1. The correlation, 

mean square error (MSE) and mean relative error (MRE) for the ResNet architecture are 0.773, 

0.000215, and 1.04%, respectively. The correlation, MSE, and MRE for the ResNet-ANN model 

are 0.788, 0.000178, and 0.99%, indicating that the performance of a model with an ANN structure 

to account for process parameters is better than that of a model without such a structure.   

Table 4-1: The result of the deep neural network model for correlation, mean square error, and mean 

relative error percentage for all models.  

Model Process 

Parameter 

Reheating 

Effects 

Correlation MSE MRE (%) 

ResNet No No 0.773 0.000215 1.04 

ResNet-ANN Yes No 0.788 0.000178 0.99 

ResNet-ANN-Re 

(proposed) 

Yes Yes 0.814 0.000158 0.94 

 

 The proposed ResNet-ANN-Re model achieves the best performance with 0.814 

correlation, 0.000158 MSE, and 0.94% MRE. The correlation between predicted and simulated 
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residual stress by three models is illustrated in Figure 4-7. The result shows that the proposed 

model considering process parameter insights and reheating effects can accurately predict and 

capture the trend between predicted and simulated residual stress of LBPF.  

 

Figure 4-7: The correlation between simulated stress (horizontal axis) and predicted stress (vertical axis) 

by three models: a) ResNet; b) ResNet-ANN; c) ResNet-ANN-Re.  

4.5 Conclusions and future work 

 The correlation among process parameters, process signatures, and product qualities in the 

AM process must be established to achieve rapid quality assurance of the metal AM system. This 

work develops a deep learning-based surrogate model to predict residual stress based on the 

process parameters and thermal history with reheating effects during the LPBF process. The results 

demonstrate the effectiveness of the proposed research method in achieving an improved 

correlation and reduced error for multi-layer residual stress prediction. The main benefit of our 

proposed approach is the improvement of mechanical response prediction by correlating process 

parameters and reheating effects of thermal cycles in the surrogate modeling. Future work of this 

research involves improved algorithm performance focusing on spatial-temporal features. The 

generalization capability would be extended to other product qualities and geometry designs. 

For future work, there are few potential future works in which the algorithm performance and 

generalization capability can be improved. First, an exploration of including all samples from each 
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pattern to predict the unseen region of either pattern is expected. Second, exploring other neural 

network architecture that deals with spatiotemporal information to extract useful features from the 

time-series thermal history data is planned. Third, a potential solution is to generate a synthetic 

thermal history sample from simulation data using a generative adversarial network (GAN).   
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5. Optimal process parameter recommendation for the 

inverse design of product qualities   

This chapter describes a sequential learning-based inverse design approach that can be used to 

optimize optimal process parameters to achieve desired mechanical responses achieved in AM 

processes. The  parameter design space is crucial as AM processes have many parameters that lead 

to a high dimensional and complex optimal parameter design space, requiring further attention in 

parameter optimization. In the existing literature, neural network (NN)-based surrogate modeling 

has gained popularity in predicting linkages between process parameters, process signatures, and 

printed parts qualities. However, these neural networks are deterministic and lack quantifying 

predictive uncertainty, which may lead to overfitting issues. Hence, we propose a deep ensemble 

that employs predictive uncertainty to contribute to the inverse design of optimal parameter values 

for AM processes. This work will utilize a high-fidelity AM simulation dataset as training and 

testing data to guide deep-ensemble-based neural networks for predicting and recommending the 

optimal process parameter sets given mechanical response requirements. We integrate an active 

learning algorithm for a deep ensemble with predictive uncertainty. The case studies are based on 

the curated simulation dataset of the powder bed fusion AM process. The numerical study 

demonstrates that the proposed approach can effectively improve the performance of predictor and 

recommender by incorporating predictive uncertainty with fewer samples.  

5.1 Introduction  

 AM is a promising technology that enables the fabrication of complex, graded material 

compositions and customized parts and devices. To take advantage of these capabilities, it is 

critical to explore optimal regions of process parameter design spaces given desired regions of 
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quality performance spaces [134]. Research utilizing physics-based simulations of AM processes 

to predict material properties and defects is common. In contrast, the data-driven surrogate 

modeling approach in this research effort is intended to replace computationally intensive and 

time-consuming issues inherent in physics-based simulations. However, the forward prediction 

model only helps answer “what-if” questions to predict parts’ quality based on different 

combinations of process parameters. The industry is also interested in the inverse of this feed-

forward prediction problem, i.e., determining the optimal combination of inputs/process 

parameters given a desired output/parts’ quality. Such inverse problems can be formulated as 

optimization problems. Mohamed et. al. [135] reviewed extensive studies of approaches to such 

problems, including full factorial designs, Taguchi methods, response surface methods, genetic 

algorithms, machine learning, and experimental field approaches for correlating process 

parameters with quality results.  

 In the parameter optimization of AM process, 3D computer simulations are often applied 

to understand the relationship between processing parameters and the thermal behavior of the 

printed parts [46-48]. However, these computer simulations are associated with higher costs for 

computational execution because of  complex physical models accounting for thermomechanical 

behaviors during printing processes. In addition, the experimental approach to exploring the design 

space of process parameters is tedious because there are many process parameters [136, 137] that 

can influence the process dynamics and the final quality of the printed part. Thus, research 

opportunities lie in the inverse design of parameters optimization, which is critical for achieving 

the desired quality of printed parts with quicker and more reliable performance.  

 This chapter proposes a deep ensemble with active learning (DEAL) framework to address 

research gaps identified in the literature. Uncertainties are inevitably present in various stages of 
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AM processes. These uncertainties could be identified from the experimental approach, simulation 

modeling, and surrogate modeling [73, 74]. In this work, we identify uncertainty sources to focus 

on surrogate modeling. Firstly, the proposed deep ensemble is used to incorporate prediction 

uncertainty into surrogate modeling, which is lacking in existing neural network architectures. 

Several approaches have been developed to consider and quantify prediction uncertainty in neural 

network applications. Most previous research efforts in this area have adopted a Bayesian 

architecture incorporating a prior distribution of weights in an NN and a posterior distribution of 

parameters to quantify predictive uncertainty. In practice, a Bayesian NN is difficult to implement 

with the “correct” distribution of priors and is computationally slower to train than a neural 

network. Thus, there is a need to develop a neural network with predictive uncertainty estimation 

capability that can be adapted straightforwardly to the current neural network architecture. 

Lakshminarayanan et al. [138] demonstrated the success of a simple yet scalable neural network 

considering predictive uncertainty, called a deep ensemble of neural networks. Their work 

demonstrated the proper scoring rule of negative log-likelihood as a training criterion and the 

implementation of an ensemble of NNs to showcase the improved predictive performance with 

uncertainty quantification that compared well with Bayesian NNs.  

 Secondly, the active learning approach is integrated into the DEAL framework to improve 

predictive modeling for metal AM processes with an adaptive training data sampling technique. 

The goal of active learning is to achieve more with less. Our framework uses active learning to 

achieve better predictive performance and inverse process parameter design with fewer training 

samples. For instance, the process parameter design space in AM manufacturing is easy to define 

using classic sampling techniques. However, its corresponding output responses are typically 

tedious, expensive, and time-consuming to acquire using computer simulations or experimental 
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approaches. These challenges motivated us to implement an active learning algorithm with a deep-

ensemble model. We propose to utilize predictive uncertainty information to maximize the 

information in the data training pipeline to reduce the training dataset size while achieving better 

performance.  

 We propose a deep ensemble with an active learning (DEAL) framework to achieve an 

inverse process parameter design with smaller sample sizes. First, we develop a deep ensemble 

algorithm for adapting an existing neural network to consider predictive uncertainty. We use 

negative log-likelihood as the scoring rule of training criteria to yield the prediction’s mean and 

variance. Then, we implement an ensemble of neural networks to correlate process parameters and 

mechanical responses for inverse process parameter design. We integrate a variance-based active 

learning algorithm into the deep ensemble to improve the predictive modeling and process 

parameter design recommendation with fewer samples. The well-trained deep-ensemble network 

is then utilized to optimize optimal process parameters using grid-based sampling of a process 

parameter design space. To the best of our knowledge, this is the first application of a deep-

ensemble method with an active learning framework in the context of optimal process parameter 

recommendation for the inverse design of mechanical responses of AM parts.           

 The remainder of this chapter is organized as follows: Section 5.2 describes the theoretical 

background of neural networks and active learning. Section 5.3 presents the proposed DEAL 

framework for inverse process parameter design, including deep-ensemble and active learning 

algorithms. Section 5.4 presents case studies of AM application, including a background 

introduction of mechanical response prediction for metal AM processes and DEAL framework 

evaluation. Lastly, Section 5.5 summarizes the conclusions of this chapter and suggests future 

work.  
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5.2 Theoretical background  

5.2.1 Neural networks 

 Data-driven models such as neural networks are used in a wide range of applications, such 

as computer vision, natural language processing, and autonomous driving. Neural networks have 

also emerged among AM applications for their cost-effectiveness and efficient use of 

computational power. The emergence of neural network applications for predicting linkages 

between process parameters and properties has been reviewed thoroughly in the literature [112, 

139]. Neural networks are categorized as supervised machine learning in which the dataset that 

they learn has input features and corresponding labels. They are popular and appropriate for AM 

processes because there are well-defined inputs and outputs.  

 Determining optimal process parameters is highly desirable to achieve rapid quality 

assurance for AM processes. Predictive models are needed to describe relationships among process 

parameters, process signatures, and printed parts’ qualities. However, PSQ relationships are often 

highly nonlinear since the process parameter design space of an AM process is typically high-

dimensional and complex. Given their unique nonlinear characteristics, NN algorithms have been 

demonstrated to perform well in identifying PSQ relationships in AM applications. For instance, 

Shen et al. developed a two-layer neural network structure to correlate process parameters (laser 

power, scan speed, scan spacing, and layer thickness) with density prediction for selective laser 

sintering [140]. Caiazzo et al. [141] proposed neural network-based machine learning for 

correlating process parameters and printed trace geometry with good prediction performance. 

Zhang et al. [142] demonstrated the use of recurrent NN in a fused deposition modeling (FDM) 

process to predict the tensile strength of printed products. However, these neural networks are 
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deterministic and are unable to quantify predictive uncertainty. Existing neural networks are also 

vulnerable to adversarial examples and prone to overfitting issues [72, 143].  

Uncertainty quantification is critical for designing robust models that consider various 

sources of uncertainty underlying the AM processes in terms of material properties, process 

parameters, and property measurement [74]. In surrogate modeling, it is vital to consider model 

uncertainty, particularly predictive uncertainty. Therefore, uncertainty estimation is necessary for 

neural network-based AM applications to understand their predictive model performance. A 

common approach to quantifying predictive uncertainty is to utilize Bayesian neural networks 

[144], which are difficult to set up in practice and computationally intensive to run. These 

disadvantages of Bayesian neural networks motivate research in adapting NNs with uncertainty 

quantification. Lakshminarayanan et al. [138] demonstrated a simpler yet scalable method called 

a deep neural network ensemble with predictive uncertainty consideration. Their work 

demonstrated the usage of negative log-likelihood as a training loss and ensemble training tool for 

neural networks to showcase improved uncertainty-aware predictive performance. This deep-

ensemble technique has demonstrated superior performance with classical classification and 

regression datasets and compares well in performance with Bayesian networks. Our review of the 

literature discloses that little research has been done on the use of surrogate modeling for AM 

applications using neural networks with uncertainty. This research gap motivates our work to 

explore and contribute to this field by demonstrating the effectiveness of neural networks with 

uncertainty-aware predictions in AM applications.  

5.2.2 Active learning 

 Active learning (AL) is iterative supervised learning that maximizes information 

acquisition and improves model performance with fewer training samples [145]. Active learning 
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for regression tasks can be thought of as a learner starting with many unknown output responses 

and only a small amount of input data. A learner’s goal is to establish a mapping function based 

on limited input data. Then, the learner selects the subsequent instances from the unlabeled dataset. 

The instance query strategy may vary depending on the nature of the application. In the literature, 

many proposed active learning query strategies have been adapted to different applications. For 

instance, the subsequent sample can be selected based on the most uncertainty in predicting the 

output. As a result of the new query instance, the prediction performance improves because the 

least certain instances might contribute more toward it. The domain expert or oracle usually labels 

the query instances in this process. After obtaining the query instance’s response, the instance and 

its output are added to the initial training set. The mapping function is then updated using a revised 

dataset. This process repeats until the preset stopping criteria are met or the process runs out of 

query budget. Hence, the AL algorithm benefits highly complex processes with constraints on the 

budget and computational time, especially for additive manufacturing applications [139].  

 Examples of AL algorithm integration into AM applications are limited in the literature. 

Few studies have utilized active learning in manufacturing systems, such as composite fuselage 

applications and additive manufacturing applications [146, 147]. For instance, Yue et al. [145] 

demonstrated a Gaussian process that considers uncertainty with a variance-based weighted active 

learning and a D-optimal weighted active learning algorithm. Their work showed that proposed 

active learning strategies could improve the predictive modeling for composite fuselage 

applications. Van Houtum and Vlasea [146] integrated an active learning algorithm to classify 

melt-pool quality conditions for the DED process via an adaptive weighted uncertainty sampling 

strategy. Their proposed active learning method reduces the data necessary for achieving desired 

DED quality conditions with a low-cost computational advantage. Dasari et al. [147] showcased 
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the application of active learning in reducing the number of data samples required to develop 

classification models for in situ process monitoring in AM. Their work utilized clustering and 

committee-based sampling techniques to decrease the amount of data labeling required by the AM 

processes for condition classification. 

The literature shows that active learning can be used for performance prediction with fewer 

samples. However, in previous studies [146] and [147], active learning has been used mainly for 

classification tasks. Therefore, we identify this as a research gap to be filled by integrating active 

learning into a deep-ensemble framework for effective training data selection for neural networks.    

5.3 Deep ensemble with active learning (DEAL) framework 

 
Figure 5-1: The DEAL framework flow involves forward modeling and inverse design from process 

parameters to product qualities and vice versa. The DEAL framework utilizes a predictor neural network 

as a surrogate model, a recommender neural network for design space exploration, and active learning 

algorithms for effective data sampling.    
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The proposed deep ensemble with active learning (DEAL) framework aims to achieve 

optimal process parameter recommendation for the inverse design of mechanical responses of AM 

parts with predictive-aware uncertainty and fewer training samples. Hence, the DEAL framework 

comprises two major components: deep ensembles (DE) and active learning (AL). The research 

framework architecture using DEAL, illustrated in Figure 5-1, consists of two deep ensembles, a 

predictor and a recommender, and an active learning algorithm as a learner.  

5.3.1 Predictor neural network 

A deep ensemble is an ensemble of neural networks that uses a proper scoring rule as the 

training criterion to achieve predictive uncertainty [138]. The deep-ensemble algorithm can be 

formulated as follows: 

S = {𝑥𝑛 , 𝑦𝑛 }n=1
𝑁  (16) 

where S is the dataset, N is the total number of data samples,  𝑥𝑛 ∈ ℝ𝐷  denotes the D-dimensional 

set of features of the input space, and 𝑦𝑛 ⊂ ℝ is the set of prediction responses in the output space. 

The deep-ensemble method utilizes a neural network that represents the probabilistic predictive 

distribution 𝑝𝜃(y|x), where 𝜃 represents the parameters of the neural network.  

The two key aspects of a deep ensemble that employs predictive uncertainty are 1) using a 

proper scoring rule as the training requirement and 2) training an ensemble of neural networks. 

First, a proper scoring rule is defined as a quality measurement of predictive uncertainty that 

rewards better-calibrated predictions. In this deep-ensemble formulation, we minimize the 

negative log-likelihood loss as described as follows:  

− log 𝑝𝜃(𝑦𝑛|𝑥𝑛) =  
log 𝜎𝜃

2(𝑥)

2
+

(𝑦 − 𝜇𝜃(𝑥))2

2𝜎𝜃
2(𝑥)

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (17) 

The major difference between a deep ensemble and a plain neural network is that a deep 

ensemble has two outputs in the final layer corresponding to the predicted mean and variance 
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[148]. This additional variance layer can be achieved by adding a new Gaussian layer and treating 

the observed value as a sample from a Gaussian distribution.  

 Second, we train an ensemble of independent neural networks simultaneously. Ensemble 

techniques are not uncommon in machine learning research, as a wide variety of methods exist to 

improve the performance of neural network-based applications [149-151]. We utilize random 

subsamples of the data at each iteration and a random initiation of the neural network parameters. 

As a result, the ensemble of neural networks is a uniformly weighted mixture model with combined 

predictions, which is written as follows:  

𝑝(𝑦|𝑥) = 𝑀−1 ∑ 𝑝𝜃𝑚
(𝑦|𝑥,

𝑀

𝑚=1
𝜃𝑚) (18) 

where M is the number of neural networks in the deep ensemble and 𝑝𝜃𝑚
 is the probabilistic 

predictive distribution.  

In the following case study, we designed a base neural network with three hidden layers of 

128 neurons, 64 neurons, and 32 neurons, respectively. We deployed M = 5 neural networks for 

the deep ensemble of five base neural networks. The deep-ensemble model was trained using an 

Adam optimizer with a learning rate of 0.001, a batch size of 32, and 500 epochs. The model was 

trained using two NVIDIA GeForce RTX 2080 Ti GPUs and the TensorFlow Keras library [130]. 

We used a grid search cross-validation for hyperparameter tuning to determine these neural 

network parameters. The dataset was split between training (60%), validation (10%), and testing 

(30%) subsets.  

5.3.2 Recommender neural network 

In contrast to a previous study [138], we adapted a deep ensemble for the recommender 

neural network. The goal was to recommend optimal process parameters, given the inverse design 

of the desired mechanical responses of AM processes. Unlike the predictor neural network, the 
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role of the recommender neural network performs is as an inverse design model in which the 

weights and biases of parameters are not learnable. The learning outcomes in the recommender 

neural network are the process parameter variables. In our case study, the objective of the 

recommender neural network was to recommend the top five process parameter settings that 

achieve each desired mechanical response. The process parameter designs are initiated by a grid-

based sampling approach, maximin Latin hypercube sampling (LHS) [152]. These process 

parameter designs are different from the training data sets, which are not seen or used in the 

training pipeline. Then, these process parameter settings are treated as the inputs of the 

recommender neural network. The outputs of the recommender neural network are the top five 

process parameter variables that meet the objective functions of multiple mechanical response 

prediction. The top five optimal process parameter variables from each objective function are 

selected and verified by a physics-based simulation oracle.  

5.3.3 Active learning  

In this section, we propose integrating the active learning algorithm into the deep-ensemble 

framework to reduce the number of training samples required to improve prediction performance 

and optimal process parameter recommendation. The integration flow of the active learning 

algorithm with the predictor and recommender neural networks is illustrated in Figure 5-2. The 

primary setup difference is that this DEAL framework starts with a small dataset and improves its 

predictive performance by adding new data samples sequentially with an effective active learning 

strategy.   
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Figure 5-2: Integration flow of active learning algorithms with predictor neural network and recommender 

neural network.  

The core of the active learning algorithm is to select the subsequent sample wisely, as this 

is a significant component of active learning for regression tasks. Given that subsequent samples 

are chosen from within the sample pool, we can define these samples as ℏ = {ℏ1, ℏ1, … . , ℏ𝑛}, 

where n denotes the size of the sample pool ℏ. The recommended active learning strategy can be 

viewed as a balanced trade-off between the exploitation and exploration of the sample pool. In this 

active learning approach, the maximin Latin hypercube design [152] was selected to obtain the 

initial samples in the sample pool. Since a deep ensemble is trained with predictive uncertainty, 

the output variance of its prediction can be further utilized for the active learning query strategy. 

Therefore, we suggest a variance-based active learning query strategy for the deep ensemble, 

written as follows:  

ℏ𝑛𝑒𝑤 = arg max
ℏ ∈{ℏ1,ℏ1,….,ℏ𝑛}

∑ 𝑉𝑎𝑟𝑚 = 𝑀−1 ∑ (𝜎2
𝜃𝑚

(𝑥) +  𝜇2
𝜃𝑚

(𝑥))

𝑚

−  𝜇∗
2(𝑥)

𝑀

𝑚=1

 (19) 

where ℏ𝑛𝑒𝑤 is the subsequent sample query and 𝑉𝑎𝑟𝑚 is the variance of the deep ensemble for the 

predictor neural network.  
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 We utilized model parameters from the deep ensemble considering predictive uncertainty 

to evaluate the sample pool for fully implementing the variance-based active learning strategy. 

The deep-ensemble predictor calculates the variance of each sample query. Then, the new sample 

query ℏ𝑛𝑒𝑤 is chosen that meets the variance requirement, as described by Equation 19. The oracle 

used in this active learning framework is the FEM simulation that provides output responses 

Y(ℏ𝑛𝑒𝑤). The deep-ensemble predictor is first trained with 20 samples that are randomized from 

the sample pool. This initial sample number was selected based on a rule of thumb mentioned in 

the literature [145] that it should be five times the number of investigated process parameters. The 

size of dataset S was updated and increased iteratively by adding new sample queries and their 

corresponding responses. A new set S was trained sequentially to update its predictive performance 

and uncertainty. The procedures were repeatedly updated by adding new samples to dataset S until 

the stopping criteria were met. The process stopped when the iteration number reached the 

maximum allowable number of iterations.   

 

5.4 Case studies 

 To validate the effectiveness of our proposed DEAL framework, we conduct a real-world 

case study regarding optimal process parameter recommendations for the inverse design of desired 

mechanical responses of the AM process. First, we introduce the case study background regarding 

multiple mechanical response prediction of metal AM processes, as detailed in Section 5.4.1. We 

describe the performance evaluation metrics of the DEAL framework in Section 5.4.2. We discuss 

the results of the DEAL framework in Section 5.4.3.  

5.4.1 Mechanical response prediction of metal AM simulation  

 The objective of this case study is to recommend optimal process parameter settings given 

desired mechanical responses of an AM process. We used Autodesk Netfabb Local Simulation to 
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generate high-fidelity data for the proposed framework. The simulator provides the flexibility to 

select process parameters—laser power, travel speed, layer thickness, and hatching pattern 

parameters—as thermal simulation model inputs, using common AM materials or customized 

materials in the library. As a result, for the data curation of this case study, a Ti-6Al-4V alloy 

material was selected for the study with four significant parameters: laser scan speed, power, hatch 

spacing, and layer thickness. The outputs considered in this case study were the von Mises stress, 

displacement, and Cauchy stress, as these mechanical responses are deemed significant variables 

affecting AM parts' quality. The ranges of these process parameters were chosen for an operating 

range described in the literature [49, 104] to create a more extensive dataset covering the typical 

range of metal AM processes. The chosen part design was a box 2 mm × 2 mm square and three 

layers in height. One thousand data samples were generated from the simulation model using the 

maximin Latin hypercube sampling (LHS) method [152]. The input bounds for each parameter are 

listed in Table 5-1.  

Table 5-1: Input bounds for each process parameter in the initial data sampling approach.  

Process 

Parameters 

Unit Low 

Range 

High 

Range 

Laser speed  mm/s 150 1150 

Laser power W 50 350 

Layer thickness mm 0.02 0.12 

Hatch spacing mm 0.08 0.18 

 

5.4.2 DEAL framework performance evaluation      

 To demonstrate the performance of the proposed DEAL framework, we introduced the 

following evaluation criteria for each component of the DEAL framework, including the predictor 

neural network and recommender neural networks. In addition, we evaluated the data sample 

efficiency of the deep-ensemble case with an active learning algorithm.  
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 For the performance comparison of the predictor and recommender neural networks, seven 

widely used regression-based machine learning algorithms—a Bayesian neural network (BNN), 

XGB regressor, random forest regressor, KNN regressor, GP regressor, support vector regressor, 

and standard neural network—were selected as the benchmarks for the predictor neural network. 

A Bayesian neural network is a neural network with a probabilistic structure that incorporates 

distributions statistics. However, the BNN used is difficult to tune. The settings used for the BNN 

were two layers with dense variational structures, trained with 1000 epochs. The standard NN is a 

common MLP architecture for AM process parameter prediction. The standard NN settings, like 

those of our proposed DE method, consisted of three MLP layers.  

The regression algorithms were trained to predict multiple mechanical responses for the 

predictor neural network evaluation criterion. The prediction performance of predictor neural 

networks was evaluated using the common regression metrics, namely, the root mean square error 

(RMSE) and correlation coefficient (CC) between the predicted and simulated output responses 

for the predictor neural network. The higher the CC is, the better the model predicts the trend. Ten 

replications were repeated for the predictor neural networks.  

 The goal of the optimal process parameter recommendation in this AM case study was to 

minimize certain mechanical responses, including the maximum von Mises stress, maximum 

displacement magnitude, and maximum Cauchy stress magnitude. For the recommender neural 

network evaluation criterion, the trained regression algorithms were used to recommend the top 

five parameter sets from the unseen testing pool of 300 process parameter settings. Given each 

objective function of the mechanical responses, the top five parameter sets that minimized each 

mechanical response were selected and compared with the actual top five parameter sets from the 

testing pool. The recommendation performance of the recommender neural network was measured 
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by three evaluation metrics: recommendation accuracy, RMSE, and relative error (RE) between 

the predicted and actual top five process parameter settings for the recommender neural network. 

Ten replications were repeated for the recommender neural networks.  

 The goal of the active learning integration with the deep ensemble is to demonstrate the 

effectiveness of the active learning algorithm in reducing the number of data samples required by 

the neural networks to achieve performance similar to that achievable using the entire data sample 

set. For the evaluation criterion for the active learner, we applied our proposed deep ensemble for 

the predictor and recommender neural networks to verify its mechanical property prediction ability 

and assess its performance in recommending the top five parameter settings. The variance-based 

active learning approach and three widely used regression-based methods—random, Upper 

Confidence Bound (UCB), and maximin distance—were compared to assess the effectiveness of 

the DEAL framework. The stopping criteria for active learning were set by limiting the number of 

iterations to 130 queries. Ten replications were repeated for the active learning algorithms.  

5.4.3 DEAL framework validation results 

The validation results of the DEAL framework are demonstrated to showcase the 

effectiveness of the predictor neural network in Section 5.4.3.1, the recommender neural network 

in Section 5.4.3.2, and deep-ensemble networks with active learning in Section 5.4.3.3.  

5.4.3.1 Predictor Neural Network  

The evaluation criteria for the predictor neural network were introduced in Section 5.4.2.  

The average of CC and RMSE for each mechanical property among the proposed and benchmark 

methods are summarized in Table 5-2. The methods were applied based on the entire training 

sample with ten replications. It is evident that the proposed deep-ensemble algorithm outperforms 

the benchmark methods in terms of all evaluation metrics. The results demonstrate that the 
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performance of a standard neural network can be further improved by incorporating prediction 

uncertainty, an appropriate training loss criterion, and the ensemble technique.  

Table 5-2: Performance comparison between the deep-ensemble method and benchmark algorithms for 

predictor neural network. 

 von Mises stress Displacement Cauchy stress Average 

Method CC RMSE CC RMSE CC RMSE CC RMSE 

BNN 0.750 0.101 0.716 0.143 0.658 0.179 0.708 0.141 

XGB 0.856 0.079 0.866 0.077 0.722 0.094 0.814 0.083 

Random Forest 0.904 0.064 0.853 0.080 0.773 0.085 0.825 0.080 

kNN 0.891 0.068 0.865 0.077 0.795 0.080 0.851 0.075 

GP 0.956 0.043 0.919 0.059 0.829 0.073 0.901 0.060 

Support Vector 0.887 0.070 0.784 0.082 0.856 0.073 0.856 0.073 

Standard NN 0.960 0.041 0.928 0.056 0.863 0.066 0.917 0.055 

Deep Ensemble 0.984 0.025 0.930 0.054 0.907 0.062 0.940 0.047 

 

5.4.3.2 Recommender Neural Network  

For the recommender neural network, the performance comparison between the deep 

ensemble and other benchmark algorithms is summarized in Table 5-3. The top five optimal 

process parameters for each mechanical property (von Mises stress, displacement, and Cauchy 

stress) are identified and compared with the recommended process parameter predicted by the 

recommender neural network under the listed methods. The recommender neural network aims to 

correctly identify the top five optimal process parameters with small RMSE and RE. The results 

show that the deep-ensemble model outperforms all other benchmark methods. It is evident that 

the deep-ensemble-based recommender neural network can provide an effective recommendation 

for the top five optimal process parameters of each objective function of desired mechanical 

responses. One observation from the performance is that the ensemble technique provides a better 

recommendation by aggregating the decisions from an ensemble of independent neural networks 

by utilizing the maximum information of predictive uncertainty, which is lacking in the standard 

neural networks. 
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Table 5-3: Performance comparison between the deep-ensemble method and benchmark algorithms for 

the recommender neural network. 

 von Mises stress Displacement Cauchy stress 

Method Accuracy RMSE RE Accuracy RMSE RE Accuracy RMSE RE 

BNN 0.75 0.092 0.097 0.68 0.194 0.143 0.54 0.092 0.243 

XGB 0.84 0.073 0.056 0.84 0.109 0.086 0.62 0.061 0.142 

Random Forest 0.90 0.032 0.071 0.84 0.113 0.068 0.68 0.046 0.125 

kNN 0.90 0.062 0.041 0.84 0.113 0.088 0.70 0.043 0.107 

GP 0.94 0.029 0.056 0.88 0.107 0.075 0.72 0.041 0.092 

Support Vector 0.88 0.081 0.059 0.80 0.142 0.092 0.74 0.037 0.082 

Standard NN 0.94 0.044 0.048 0.90 0.105 0.115 0.76 0.039 0.075 

Deep Ensemble 0.98 0.019 0.037 0.90 0.064 0.055 0.80 0.038 0.069 

 

5.4.3.3 Deep Ensemble with Active Learning Framework 

We evaluated four common active learning strategies used for regression tasks. The 

performance comparison for the correlation coefficients of the four active learning strategies, 

namely, random, maximin, Upper Confidence Bound (UCB), and variance, is summarized in Table 

5-4. It is evident that active learning strategies achieve relatively good performance with only 150 

data samples. Among the four active learning methods, the variance-based approach outperforms 

the other active learning strategies, indicating that the variance information from the deep 

ensemble can be utilized for effective data sampling selection. Figure 5-3 illustrates the active 

learning curves for the correlation coefficients of the four active learning strategies. Figure 5-3 

shows that as the number of queries increases, the performance metrics improve because more 

informative samples are added to enhance the predictive models. Figure 5-3 also shows that the 

variance-based active learning algorithm outperforms the other three approaches. The deep-

ensemble model with variance-based active learning strategy achieves a 0.886 average correlation 

coefficient with only 130 additional queries.  
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Table 5-4: Performance comparison of the deep-ensemble method with different active learning strategies 

for predictor neural network. 

 von Mises stress Displacement Cauchy stress Average 

Method CC RMSE CC RMSE CC RMSE CC RMSE 

Random 0.917 0.060 0.901 0.068 0.754 0.088 0.859 0.073 

Maximin 0.915 0.060 0.912 0.061 0.774 0.086 0.867 0.071 

UCB 0.923 0.057 0.925 0.061 0.755 0.089 0.869 0.071 

Variance 0.928 0.055 0.934 0.052 0.798 0.084 0.886 0.067 

 

 

Figure 5-3: Active learning curves for the correlation coefficients of active learning strategies, namely, 

random, maximin, UCB, and variance.  

Figure 5-4 shows that the variance-based active learning strategy outperforms the other 

three active learning strategies in terms of the RMSE performance metric for all mechanical 
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response cases. In the von Mises stress case, the variance-based active learning strategy achieves 

a 0.94 correlation coefficient and 0.049 RMSE within 130 sample queries. In summary, the 

proposed active learning-based algorithms achieve a 78.5% training data sample size reduction for 

the predictor neural network compared with 700 samples from the entire training data set. To 

further validate the performance of the recommender neural network with an active learning 

framework, Table 5-5 compares the performance of the deep-ensemble method with four methods: 

random, maximin, UCB, and variance. Table 5-5 shows that recommender neural networks with 

smaller training samples can achieve comparable performance across performance metrics by 

utilizing active learning strategies. Among these active learning strategies, the variance-based 

sampling approach performs the best in that it achieves the highest accuracy, lowest RMSE, and 

lowest RE in all cases of inverse design of mechanical responses.    

Table 5-5: Performance comparison of the deep-ensemble method with different active learning strategies 

for neural recommender network 

 von Mises stress Displacement Cauchy stress 

Method Accuracy RMSE RE Accuracy RMSE RE Accuracy RMSE RE 

Random 0.88 0.061 0.077 0.82 0.084 0.069 0.68 0.107 0.085 

Maximin 0.88 0.058 0.057 0.84 0.076 0.073 0.70 0.084 0.081 

UCB 0.90 0.051 0.049 0.86 0.076 0.069 0.68 0.094 0.075 

Variance 0.94 0.049 0.047 0.88 0.069 0.063 0.74 0.077 0.076 
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Figure 5-4: Active learning curves for the correlation coefficients of active learning strategies, namely, 

random, maximin, UCB, and variance. 

5.5 Conclusions and future work 

This research work developed deep-ensemble neural networks with active learning 

(DEAL) framework to optimize optimal process parameters for the inverse design of mechanical 

responses in the metal AM process. Specifically, the proposed DEAL framework allows 

computationally expensive physical-based simulation models to be replaced by data-driven 

surrogate models that can determine optimal parameters to achieve desired quality properties. This 
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work identifies the existing research gaps: 1) predictive uncertainty in existing neural network-

based AM applications, 2) inverse design of determining optimal parameter values is crucial for 

AM applications, and 3) information on data training sampling for existing neural networks is 

lacking. The proposed research framework fills these gaps by providing an alternative yet rapid 

inverse design solution in place of time-consuming simulation or experimentation data for 

achieving a smart quality assurance system for AM processes.  

For the DE-based predictor neural network, a deep ensemble considering predictive 

uncertainty was proposed to improve the predictive performance of multiple mechanical responses 

of AM process. The results from the deep-ensemble predictor achieved the best among seven other 

benchmark methods. The evaluation metrics for the DE-based recommender neural network, 

including recommendation accuracy, RMSE, and RE, showed that the proposed DEAL framework 

achieved the best performance for optimal process parameter recommendation compared with the 

benchmark methods. An active-learning-based DE-based neural network was developed to 

implement effective data sample reduction. The case study with active learning integration showed 

that the integrated active learning framework is very effective for making optimal process 

parameter recommendations with fewer samples, as demonstrated by the 78.5% data sample size 

reduction.  
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6. Conclusion and future research  

 This dissertation presents a data-driven PSQ framework for implementing and ensuring 

quality assurance in AM processes. Three data-driven approaches—DoE, forward prediction 

modeling, and inverse design—are integrated to identify the correlations among process 

parameters, process signatures, and product qualities. Two major AM processes (bioprinting and 

metal AM) were used to validate the proposed frameworks with three different materials (PLA 

polymer, Pluronic F127 hydrogel, and Ti-6Al-4V alloy). The challenges associated with the 

aforementioned AM processes, such as the labor-intensive trial-and-error approach, nonlinear 

process dynamics between thermal and mechanical responses, and high-dimensional process 

parameter design space, are addressed successfully by the proposed approaches, which are more 

data-driven, adaptable, and applicable to other domains of manufacturing systems.   

 The primary goal of this dissertation research was to develop a smart quality assurance 

system using a data-driven-based PSQ framework using DoE, forward prediction modeling, and 

inverse design in AM processes. The main contributions of this research effort are identified as 

follows:  

1. Learning the relationships between process parameters, process signature, and parts 

quality during bioprinting processes: Novel bioprinting in a multimaterial scaffold 

application is demonstrated to learn the relationships among process parameters and 

corresponding parts’ quality using an in-process sensing platform that is integrated with 

statistical DoE techniques to implement process mapping and optimization for bioprinting 

(Chapter 3).  

2. Developing a PSQ framework for the forward prediction problem in estimating 

printed parts’ quality: A novel deep-learning-based surrogate model was developed 
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using high-fidelity physics-based simulated AM data to predict the residual stress of AM 

printed parts (Chapter 4). 

3. Recommending optimal process parameters achieving desired printed parts quality 

of AM processes: A novel active learning-based deep-ensemble framework is developed 

to recommend optimal process parameters for the inverse design of the desired mechanical 

responses requirement with fewer data samples. (Chapter 5). 

 Specifically, the PSQ-oriented smart quality assurance framework was developed and 

implemented using statistical analysis and advanced surrogate modeling with high-dimensional 

process data acquired from in-process sensing platforms and physics-based computer simulation 

models. Three proposed framework holds promise for use in rapid quality assurance systems for 

two major additive manufacturing processes: extrusion-based bioprinting and laser-based metal 

AM process.    

 The proposed smart quality assurance system framework was initiated with clear research 

objectives and tasks. In the future, the following two research areas will be of great interest in 

extending the work described in this dissertation.  

1. PSQ framework extension to multi-scale modeling and multi-physics of AM applications:   

 

The first area to explore in extending the data-driven PSQ framework is the process–

structure–property–performance (PSPP) linkage, which involves multi-scale modeling and 

multi-physics phenomena. The data-driven framework proposed in this dissertation can be 

used to develop a smart quality assurance system by identifying the linkage between scales 

and physical phenomena.  

2. Uncertainty-awareness-based surrogate modeling for AM applications: The second area of 

future work is extending the uncertainty quantification of surrogate modeling by 
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considering both predictive uncertainty and uncertainties in process parameters and 

material properties. The deep-ensemble method with predictive uncertainty described in 

this dissertation can be utilized as an initial framework to integrate more sources of 

uncertainty identified throughout AM processes, including model uncertainty, input/output 

uncertainty, and experimental uncertainty.  
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