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Support for Accessible Bitsliced Software

Thomas J. Conroy

(ABSTRACT)

The expectations on embedded systems have grown incredibly in recent years. Not only are

there more applications for them than ever, the applications are increasingly complex, and

their security is essential. To meet such demanding goals, designers and programmers are

always looking for more efficient methods of computation. One technique that has gained

attention over the past couple of decades is bitsliced software. In addition to high efficiency

in certain situations, including block ciphers computation, it has been used in designs to

resist hardware attacks. However, this technique requires both program and data to be

in a specific format. This requirement makes writing bitsliced software by hand laborious

and adds computational overhead to transpose the data before and after computation. This

work describes a code generation tool that produces it from a higher-level description in Ver-

ilog. By supporting the synthesis of sequential circuits, this tool extends bitsliced software

to parallel synchronous software. This tool is then used to implement a method for accel-

erating software neural network processing with reduced-precision computation on highly

constrained devices. To address the data transposition overhead and to support a hard-

ware attack-resistant architecture, a custom DMA controller is introduced that efficiently

transposes the data as it transfers along with dedicated hardware for masking and redun-

dancy generation. In combination, these tools make bitsliced software and its benefits more

accessible to system designers and programmers.
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(GENERAL AUDIENCE ABSTRACT)

Small computers embedded in devices, such as cars, smart devices, and other electronics,

face many challenges. Often, they are pushed to their limits by designers and programmers

to reach acceptable levels of performance. The increasing complexity of the applications

they run compounds with the need for these applications to be secure. The programmers

are always looking for better, more efficient methods of doing computations. Over the past

two decades bitsliced software has gained attention as a technique that can, in certain situ-

ations, be more efficient than standard software. It also has properties that make it useful

for designs implementing secure software. However, writing bitsliced software by hand is

a laborious task, and the data input to the software needs to be in a specific format. To

make writing the software easier, a tool that generates it from the well-known Verilog hard-

ware description language is discussed in this work. This tool is then used to implement

a method to accelerate artificial intelligence calculations on highly constrained computers.

A custom hardware module is also introduced to speed up the formatting of data for bit-

sliced processing. In combination, these tools make bitsliced software and its benefits more

accessible.
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Chapter 1

Introduction

With every passing year in recent memory, the unremitting march of technological progress

makes more powerful computing machines available—and last year’s models cheaper. When

the Commodore 64 was announced in early 1982 its 64 kibibytes of memory were an upgrade

over other home computers at the time. Today, it is common to own a cell phone with many

thousands of times the memory capacity.1 By modern standards, its memory alone makes

the Commodore 64 ill-suited as a home computer, but it becomes even less attractive due to

its $595 price (initially, in 1982 dollars) [1]. Computing machines have become cheaper and

can have the resources and speed directly out of the dreams of a Commodore 64 user, but

products more like it than a modern home computer did not simply cease to exist. As rose

the performance-to-cost ratio of home computers, so it did for lower-cost options. In fact,

products with similar performance to the Commodore 64 can be found for less than a dollar.

It was no longer prohibitively expensive to embed these in other products and devices, thus

becoming embedded systems.

Embedded systems are more capable than ever, and the growth of expectations for them

never halts. With the recent explosion of “smart devices” becoming available and embedded

systems’ continually increasing ubiquity, the tasks asked of embedded systems increase in

complexity. One task is deep learning neural network processing, which is usually done with

expensive and powerful hardware available in contrast to the low-power, high-constraints

1One gibibyte is 16,384 times larger than the memory capacity of the Commodore 64

1



2 Chapter 1. Introduction

environment of embedded systems [2]. Hence, there has been great interest in the efficiency

of such computing tasks [3].

Beyond resource constraints, by nature embedded systems designers and programmers must

also deal with the problems arising from the technology interacting with the physical world

more than other computing machines. One problem this thesis focuses upon is that bad

actors can have easier physical access to embedded systems. This allows an adversary to

subject the device to powerful attacks on the device’s security, such as power-based side-

channel analysis and fault injection attacks. Power-based side channel analysis can recover

secret information, such as cryptographic keys, from a system by passively measuring and

analyzing one or more traces of the power usage of the device during computation with

secret data [4]. Fault attacks, on the other hand, actively cause—or “inject”—faults in the

device (i.e., cause incorrect results via violating hardware timing requirements) and relate the

result to secret data [5]. Extensive research has explored these attacks and countermeasures

to prevent the reveal of secret information. Among these countermeasures include masking

[6] and intra-instruction redundancy [7]—for power side-channel analysis and fault attacks,

respectively.

One technique that has been studied that supports both masking and intra-instruction re-

dundancy in a flexible manner is bitslice programming [8]. This technique treats every bit

in a processor word as a separate parallel processor via only using bitwise instructions. For

example, a bitsliced program running on a 32-bit processor would be computing 32 parallel

instances of the same program in lockstep.
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1.1 Contributions

Though bitslice programming has its benefits, in both security and performance, neverthe-

less there are issues facing programmers who wish to employ the technique. First, writing

bitsliced programs by hand is inefficient and time consuming. As will be explained in Chap-

ter 2, it is at least as tedious as designing a hardware module entirely at the gate level.

Second, because bitsliced programs treat every bit of a processor word separately, typical

data inputted to the program must be transposed into a correct format for computation and

transposed a second time afterwards. These transpositions, when done in software, can be

costly and represent a considerable portion of the total computation in some cases.

The primary objective of this work is to improve the accessibility of bitslice programming

by providing software and hardware tools to programmers and designers that make writing

bitsliced programs easier and transposing data more efficient. To achieve this, the following

contributions are made:

• To support the creation of efficient bitsliced code, the Parallel Synchronous Program-

ming Code Generator (PSPCG) was developed. This tool accepts a Verilog hardware

design as input and produces bitsliced C code as output. The bitsliced code it gener-

ates, however, can be seen as part of a new paradigm of Parallel Synchronous Program-

ming [9] since the stateful elements of the hardware design are also synthesized into

software. Bitslice programming traditionally focuses only upon representing combina-

tional logic in software. Including support for sequential logic expands the capabilities

of the generated software to include emulation of Finite State Machines with Datapath

(FSMDs).

• As an application of Parallel Synchronous Programming, we investigate how PSPCG

can be applied to accelerate matrix-vector multiplication in software neural networks
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by utilizing the full width of the processor for reduced-width operands.

• A custom, special-purpose DMA controller is described with the capability to accelerate

the conversion of data into and out of the bitsliced format as well as support coun-

termeasures for side-channel and fault attacks. This DMA controller, the transposing-

DMA (tDMA), was designed specifically to support the bitslice representations from

the SKIVA architecture [8], but it can be integrated in traditional System-on-Chips

(SoCs) as well. The tDMA was integrated for testing and performance measurements

with both a MicroBlaze soft processor core [10] and an ARM Cortex A-9 in a Zynq-

7000 SoC [11]. To show the correctness of the implementation, major parts of the

controller’s algorithm were formally verified using model-checking.

1.2 Organization

The rest of the thesis is organized as follows. In Chapter 2 the background of relevant topics

is discussed. Afterwards, Chapter 3 gives an overview of related work found in literature.

The PSPCG is discussed in Chapter 4 along with its use in implementation of fast block

ciphers. Chapter 5 discusses a method of efficient matrix-vector multiplication for neural

networks using software created with the PSPCG. In Chapter 6 the design, implementation,

and performance of the tDMA are analyzed and discussed. Chapter 7 concludes the work

with a summary of the results and high-level discussion.



Chapter 2

Background

We first discuss some preliminaries that give context to the contributions in this work.

These topics include an overview of bitslice programming and its history, cryptographic

block ciphers, masking, intra-instruction redundancy, and model checking.

2.1 Bitslice Programming

Bitslice programming is a technique originally introduced by Biham in 1997 [12] for creating

high-performance cryptographic software. That paper describes an implementation of the

Data Encryption Standard (DES) block cipher using bitslice programming that at the time

was the fastest known. By computing 64 parallel instances of the cipher on a 64-bit processor,

the processor is better utilized than by a standard implementation. That is, due to how

DES is designed a standard implementation may operate on data smaller than 64 bits. For

example, each DES S-box takes a 6-bit input and produces a 4-bit output [13]. Each S-

box could be implemented as a look-up table, and the processor is being under-utilized. In

bitslice programming, each of those 6 input bits are stored in 6 separate processor words, and

the S-box is computed on all 64 parallel instances. Bitslice programming requires data to be

represented such that the multiple bits of a data word are each located in separate processor

words—called slices. This allows each bit of a slice to represent a different data word. A

transformation from a standard representation to the bitsliced representation is shown in

5



6 Chapter 2. Background

Figure 2.1. This transformation is referred to as a transposition, like matrix transposition,

since considering each word to be a row in a matrix and each bit a column, the transformation

flips the matrix over its minor diagonal.

..
.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 word 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 word 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 word 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 slice 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 slice 1

31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 slice 31

..
.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 word 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 slice 2

transposition

Figure 2.1: A transposition of 32 words of 32 bits into slices

Instead of using a look-up table, the bitsliced S-box is computed as a series of logical bitwise

operations (AND, OR, NOT, XOR, etc.) that directly follow the structure of the S-box imple-

mented in hardware as logic gates. That is, each logic gate in the hardware description is

converted into a bitwise instruction in software. While the width of inputs to logic gates is

a single bit, this is not the case for bitwise instructions. For example, consider Figure 2.2,

which shows a simple circuit comprising two gates and the bitsliced equivalent in C-code.

In Figure 2.2b, MDTYPE is the type that represents a full-width unsigned integer. This code

computes multiple copies of the circuit in parallel, again depending on the size of MDTYPE.
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One caveat, however, when considering mapping logic gates to logic instructions is that al-

though logic gates can be specified an any order (since all “execute” at the same time), the

logic operations in software must satisfy the dataflow dependencies created by the structure

of the circuit. In our toy example, the AND operation must be computed before the XOR,

otherwise n would be used before its initialization.

a

b

c
d

n

(a) Toy logic gate circuit

void toy_circuit(MDTYPE a, MDTYPE b, MDTYPE c, MDTYPE* d) {

MDTYPE n;

n = a & b;

*d = c ^ n;

}

(b) The logic gate circuit implemented as a C bitsliced function

Figure 2.2: Toy example of a circuit and possible bitsliced function implementation in C

In [12], the DES gate-level circuit is computed using this technique. It is clear to see how

any cycle-free combinational circuit can be implemented this way in software. However, this

form of computation is not always preferable to standard software implementations. Many

algorithms are better suited for software rather than hardware for one reason or another.
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Nevertheless, as bitsliced functions directly follow the hardware design, more efficient hard-

ware leads to faster bitsliced code, and there are reasons to believe block ciphers are good

candidates for bitslice programming:

1. Block ciphers often contain elements that are efficiently implemented in hardware. One

popular class of block cipher designs are Substitution-Permutation Networks (SPNs),

which, as the name implies, contain permutations. These are “free” in hardware (mean-

ing only wires are required)—so also very low-cost in bitslice programming.

2. Similarly, block ciphers designers often consider hardware implementations during the

design process.

3. They may use small-width S-boxes or otherwise work on words smaller than optimal

for software implementations [12].

4. The algorithms are often not control-intensive. Because bitsliced functions emulate the

entire gate-level circuit, algorithms that require branching logic lead to a selection at

the end between pre-computed results, which is largely performance disadvantage.

Bitslice programming has been applied to ciphers other than DES to great effect. Matsui

and Nakajima [14] in 2007 used bitslice programming to create a high-performance Advanced

Encryption Standard (AES) [15] implementation targeting an Intel Core2 processor. This

version set a record for software AES speed at the time by targeting 128-bit Single Instruc-

tion, Multiple Data (SIMD) XMM instructions. These instructions operate on registers a

multiple of times larger than the processor word size—allowing for greatly increased paral-

lelism and performance for bitsliced programs. Simply put, doubling the word size doubles

the performance for bitsliced programs.
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Beyond using bitslice programming to implement ciphers, some block cipher designers have

tailored their algorithms with bitsliced computation in mind. Notable examples include

Serpent [16], RECTANGLE [17], and GIFT [18]. Serpent, a finalist in the NIST AES

selection process (by which Rijndael was selected) [19], was designed to fully utilize the

parallelism of bitslice programming on a 32-bit processor. Instead of computing 32 blocks

at the same time, however, a single block’s encryption was split into 4 slices. This meant

32 S-boxes could be computed in parallel and a linear transformation layer computed using

just bit shifts, bit rotations, and XOR of the slices [16].

2.2 Masking

Masking is a typical software countermeasure against differential power analysis (DPA) at-

tacks. As introduced by Kocher et al. [20], DPA is based on statistically distinguishing an

intermediate value in security-critical computation. An attacker must collect many traces

and corresponding output of the computation—usually ciphertext. By guessing part of the

key (a small number of bits, e.g., 6) and using that to recreate an intermediate value of the

computation, the traces can be separated into groups based on that value. The difference of

the averages of these two groups will show large spikes when the guess is correct and will be

flat otherwise.

The general idea behind the masking countermeasure to this attack is to decouple the dy-

namic power of the device from the computation on secret data. The way this is accomplished

is through splitting the data and computation into several separate parts—or shares—that

do not give information about the original data unless all are known. The standard way to

split a bit variable v is to create a set of d shares v1, v2, . . . , vd such that v = v1⊕v2⊕· · ·⊕vd

[21, 22]. The desired property is satisfied if v1 = v ⊕ v2 ⊕ v3 ⊕ · · · ⊕ vd and v2, . . . , vd are
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random. Unless the attacker has information about all the shares, no information about the

original v is known. The number d − 1 is referred to as the masking order, which refers

to the number of intermediate values that an attacker could target and still be thwarted.

A masked implementation of the algorithm is then used to compute the result. What cre-

ating a masked implementation of an algorithm entails largely is algorithm dependent, but

in general linear operations are simple to mask since a linear operation f by definition

f (v) = f (v1) ⊕ f (v2) ⊕ · · · ⊕ f (vd). Nevertheless, block ciphers contain non-linear elements

by design; the traditional example being S boxes. Research has been done into masked

implementations of these elements (full S boxes [21] or at a gate level [23, 24]).

In 2004, a powerful side-channel attack was introduced named Correlation Power Analysis

(CPA) [25]. This attack has the same general setup as DPA, in that the attacker measures

a number of traces of computation with secret data and records the output, but instead

uses a Hamming distance leakage model. That is, the power usage does not just depend on

the value of the data being processed but the number of bits flipped when a constant but

unknown reference state changes to a value of interest. A correlation factor for the power

and Hamming distance is computed for guesses of the unknown values and maximized. In

[25], Brier et al. explain that CPA requires fewer traces than DPA and does not suffer from

some of the problems and limitations that were identified with DPA. However, masking is

still an effective countermeasure against this form of power analysis. In fact, there has been

work showing that masking, under certain conditions, is provably secure [6]. Translating the

information theoretic security to a real-world implementation, however, has been shown to

have serious issues for designers of those systems [26, 27].
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2.3 Intra-Instruction Redundancy

Another class of attacks to which embedded systems are vulnerable because an attacker may

have physical access is fault attacks. Injecting errors by various means into computation using

secret data can lead to the extraction of that secret information. The seminal paper on fault

attacks on symmetric key cryptographic algorithms by Biham and Shamir [28] introduced

Differential Fault Analysis (DFA). In this attack, an attacker encrypts the same plaintext

twice. During one of the encryptions a fault is injected into the device and a single bit is

flipped, which causes the corresponding ciphertext to be incorrect. The attacker does not

tamper with the second encryption and the correct ciphertext is produced. Information about

the internals of the algorithm, such as part of the key, may be extracted by comparing the

two ciphertexts even if the specific location in which the fault was injected in the algorithm

is not known. With enough pairs of ciphertexts the attacker may be able to extract the

entire key.

The standard countermeasure against fault attacks includes some form of redundancy. That

is, after computation the results are checked for faults against some secondary data. This

may include designs that compute the results twice and compare at the end, take the results

and undo the computation to see if it matches the original input, or check that the processor

jumps to the correct location in code based on a precomputed signature [29]. One specific

countermeasure of interest (because work in this thesis supports it) is intra-instruction redun-

dancy [7]. Like other countermeasures based on redundancy, this countermeasure computes

multiple copies of the data and compares the results. This, however, is done synchronously

via the use of bitslicing. Multiple copies of the data are transposed into slices and computed

on in parallel. If a fault is injected and flips a bit, the difference in results is detected. Ad-

ditionally, data with known ciphertext is also included in the slices so that if an instruction

is skipped the result will not match the expected value.
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2.4 Model Checking

Model checking [30] is a verification technique that shows a design satisfies a set of require-

ments. By modeling a finite-state system at a reasonable level of abstraction with these tools

the desired properties can be verified in all possible executions. This makes model checking

a powerful tool when designing systems, especially when systems are safety critical, and pro-

vides a higher confidence of correctness than standard testing methods. Requirements are

specified using temporal logic, which allows future behavior to be specified along with the

current state. This lets properties like “the algorithm will always finish” to be formalized

and checked. One other strength of model checking is that when checking properties fails,

the tool can present the violating behavior of the system as a counterexample.

The model checker used in this thesis is the TLC model checker for the TLA+ language [31].



Chapter 3

Related Work

In this chapter we will discuss previous research on the problems that this thesis focuses upon.

The primary categories of works are generation of bitsliced code, use of DMA controllers for

data processing, and generation of slices.

3.1 Bitsliced Code Generation

One of the issues facing programmers wishing to use bitslice programming is the creation

of bitsliced code itself. Early bitsliced implementations often took parts of algorithms de-

scribed as Boolean functions and manually converted them to bitsliced code, such as how

[32] compared different DES S-box implementations. Or, in the case of [33, 34], extensive

search through possible Boolean S-box functions to find efficient implementations. Others,

such as [12], start with a gate-level hardware design and then move that implementation

to software. In either case a manual conversion to software is required. Writing bitsliced

code by hand, however, is no less tedious as it is equivalent to describing the algorithm

as an ordered hardware circuit. For large designs, this becomes very time consuming and

the chance of errors increases. This problem sets the scene for automated bitsliced code

generation tools.

The first automatic bitsliced code generator was the BitSlice Compiler (bsc) [35, 36]. To

use bsc, a user would specify their algorithm in a custom language, and the compiler would

13
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generate bitsliced code in C. The language was designed with block cipher implementation in

mind and provides, among other things, the user the ability to define variable-size registers,

permutations, and look-up tables, and to apply logical operations, concatenation, permu-

tations, and table look-ups to those registers. All are standard design elements of block

ciphers. Like software, the compiler treats the actions in the language as ordered, and so

the user is responsible for incorrect ordering of instructions in the generated C code.

Close to two decades passed before the problem of automated bitsliced code generation

was studied again. In 2017, Xu and Gregg [37] developed efficient bitsliced code for opera-

tions—addition, multiplication, shifts, etc.—on customizable data precisions of integer and

floating-point types. In some applications, it is often the case that the data does not need

the full width of a processor word, so full width operations include some wasted computa-

tion. Via bitslicing, creating words of variable precision, such as 3-bit, 5-bit operands, is as

straightforward as choosing the number of slices to represent the data. To operate on these

vectors of slices, Xu and Gregg first wrote bitsliced C code by hand, in some cases, “using

circuit techniques that were originally developed for hardware” [37]. However, to further op-

timize the code, they traced the execution of logical operations in their code, and from that,

generated a hardware design in Verilog, which could be put through a logic optimization

tool. Finally, the optimized Verilog was converted back to C by mapping the hardware to a

library of cells describing supported bitwise instructions in the processor’s instruction set.

The following year, Mercadier et al. introduced a successor to Pornin’s bsc named Usubac

for the Usuba language [38]. Usuba includes many of constructs that were supported by

bsc for cryptographic implementation while also providing support for hierarchical designs

via defining “nodes,” which are compiled into individual functions. This allows repeated

sections of bitsliced code, common in block cipher designs, to be replaced by a function call

with inputs and outputs as arguments. One significant difference between the bsc language
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and Usuba is that Usuba is a “synchronous dataflow language” [38], meaning that all the

orderings of the equations are equivalent. Usubac schedules the bitsliced code such that

it does not violate the dataflow structure of the design. This also provides the benefit of

efficient scheduling since the compiler can optimize instruction ordering to prevent register

contents from spilling into memory.

3.2 DMA Data Processing

DMA controllers are a class of hardware peripherals that—as the name implies—have direct

access to memory. In the standard design of a microcontroller, a processor is surrounded by a

number of hardware modules, including memories and peripherals. The processor commonly

communicates with these devices over a bus. Peripherals, such as timers, GPIO, various

interfaces, and hardware accelerators, often are not able to have control over the bus and

only send and receive data as directed. DMA controllers, however, are an exception because

having a hardware module dedicated to moving data around—in memory or between memory

and peripherals—can be more efficient than the processor managing the transfers [39, 40].

The processor may work on some other task or be put into a low-power state while the transfer

completes. Alternatively, the DMA can be transferring data for the next computation step

from slow memory to faster memory while the processor computes—effectively removing the

latency of the slow memory from the processor’s perspective. This technique can be referred

to as double buffering or a ping-pong scheme [41].

As shown in [39], introducing a DMA to a system with a high-performance accelerator/co-

processor can reduce data transfer overhead for a small increase in area. This is taken

further in works like [42] where the accelerator itself includes a DMA controller. In that

work a binary convolutional neural network accelerator includes a feature map memory for
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temporary internal storage of layer inputs and partial results since the task is so data heavy.

A DMA controller is included to manage access to this internal memory. The DMA controller

also packs results into words before writing to memory. As such, this is an example of how

DMA controllers can also be used for some data processing/reorganizing tasks, though this

is not very common outside of ones from digital signal processors.

A DMA controller not part of a larger accelerator with this capability has been introduced

in [43]. This work is the closest to the DMA controller presented in this thesis. A number of

different transfer modes are supported to accelerate common scientific operations, including

a “reshape” transfer to change format of two-dimensional arrays. Moreover, it includes a

“matrix transposition module” for accelerating that operation, though the elements in this

case are words rather than individual bits. Words are written into an internal buffer row-wise

and then read out column-wise. This is the same approach used in this thesis.

3.3 Slice Generation

One drawback of bitslice programming is that transforming data in and out of a bitsliced

representation (see Section 2.1) incurs a performance overhead. This penalty can be a

significant fraction of the total computation depending on the algorithm. Consider the task

of generating slices for n words of n bits each as the transposition of a n × n bit matrix. A

näıve algorithm for this builds each row in the output matrix one bit from each input row

at a time, which is O(n2) operations.

Better algorithms for this operation have been identified. In [35, 36], Pornin describes a

recursive algorithm that only requires O(n log n) operations. With an n-bit processor, many

smaller transpositions are computed in parallel, which build up to a full n×n transposition.

This algorithm has become the standard for slice generation, though it has a few different
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formulations at this point. Once such formulation uses the SWAPMOVE technique [44].

Although the recursive transposition algorithm has a better algorithmic complexity, that does

not imply it is the most efficient in all cases. Matsui and Nakajima [14] provided an assembly

transposition algorithm for the Intel Core2 processor using XMM SIMD instructions for 128

words of 128-bits. This method, despite not being based on the recursive algorithm, achieved

speeds of sub-1 cycle per byte.

Until now we have only discussed software algorithms for transposition. The SKIVA ar-

chitecture from [8] includes hardware support for slice generation in the form of the TR2

and INVTR2 custom instructions. These instructions interleave the bits of two registers and

stores the results in two other registers. Implementing the “balanced two-way merge sort-

ing” algorithm from [45]—which is the basis for Pornin’s recursive algorithm [35, 36]—using

these instructions is also O(n log n) but requires fewer bit manipulation instructions than

standard software implementations.
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Software Support for Bitslicing

In this chapter we will discuss the PSPCG. The PSPCG is a software tool for creating bit-

sliced code that fits in the Parallel Synchronous Programming (PSP) paradigm [9]. The user

of the tool describes their design in the well-known Verilog hardware description language

(HDL), and PSP C-code is produced as output. Verilog allows description of the bitsliced

design at the Register-Transfer Level (RTL) or behavioral level rather than specifying at the

gate level. The tool is built as a back-end for the Yosys Open Synthesis Suite (Yosys) [46].

This open-source software tool synthesizes the design into logic gates, which are converted

into the C language by the back-end. This tool supports architectures of any bit-width and

with varying bitwise instructions. For example, later sections of this chapter discuss code

generated for ARM, ARM NEON, and MicroBlaze architectures. Chapter 5 discusses code

for RISC-V.

4.1 Functionality

This section describes the steps a user takes to synthesize their design from Verilog into

C-code using Yosys and the PSPCG and the relevant options the tools provide to the user.

This general procedure and necessary inputs are shown in Figure 4.1. As shown in that

figure, there are two previously undiscussed inputs needed in the process that depend on the

architecture being targeted. Assume for example’s sake that the user has a design to be run

18



4.1. Functionality 19

Yosys

Verilog Design

Cell Library

PSP C-code

PSPCG
Back-end

Cell Macros

Figure 4.1: Procedure of using the PSPCG

on architecture A. The width of a processor word in A does not matter until later, but the

supported bitwise instructions do. Say A has the following standard bitwise instructions in

its instruction set:

• not rd, rs (the complement of rs is stored in rd)

• and rd, rs, rt (the AND of rs and rt is stored in rd)

• or rd, rs, rt (the OR of rs and rt is stored in rd)

• xor rd, rs, rt (the XOR of rs and rt is stored in rd)

The first step in using the PSPCG is synthesis of the design into a netlist of wires and

cells. These wires and cells become the variables and instructions in PSP. However, the cells

that should be used in the netlist depends solely on the instructions A supports. The “Cell

Library” input in Figure 4.1 is the file that provides Yosys with the cell definitions from

which it should construct the netlist. The cell library for A (only one “Cell Library” and

“Cell Macros” file needs to be written for each architecture) would define the above bitwise
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instructions as equivalent one (for not) and two input logic gates. The library would also

include definitions for Flip-Flops. It should be noted that Yosys is also used in this step to

optimize the design using a variety of techniques. In this step the user has the option of

flattening their design into a single module. Typical hardware designs have a hierarchical

structure of instantiated modules. Hardware modules are converted into functions by the

PSPCG. Flattening in this step causes the PSPCG to generate a single C function in the

end for the entire design. As will be explained in Subsection 4.3.2, this may decrease the

performance of the code and increase code size, but it allows the PSPCG to support more

types of designs.

The next step in the process is done by the PSPCG back-end. It converts the netlist (rep-

resented in the internal Yosys language) into PSP C-code. Modules are converted into C

functions. Their inputs and outputs become function parameters. Wires are converted di-

rectly into local variables and cells are converted into C macros and written into the function.

These macros are defined in the “Cell Macros” input (typically a C header file) from Fig-

ure 4.1. An example of these header files is shown in Figure 4.2 for the A architecture. Since

the bitwise instructions A supports are easily defined using C bitwise operators, they suffice.

However, these macros could also be expanded into inline assembly to force the compiler to

use a specific instruction. The macros’ names need to be the same as the corresponding cell

in the “Cell Library.”

The library also includes definitions for Flip-Flops, which in PSP store their value between

function calls. Each time the PSP function is called is equivalent to a new clock cycle in

hardware. The default way the PSPCG creates values that persistent between calls is by

having the target of each Flip-Flop declared a local static variable. The user also has the

option named “external-state.” Instead of static variables, the state of each function is is

stored in a C struct that is passed to the function as an argument each call. This has a
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#ifndef _CELLS_H_

#define _CELLS_H_

#define MDTYPE unsigned int

#define NOT1(a,r) { r = ~a; }

#define AND2(a,b,r) { r = a & b; }

#define OR2(a,b,r) { r = a | b; }

#define XOR2(a,b,r) { r = a ^ b; }

#define DFF(clk,d,q) { q = d; }

#endif

Figure 4.2: Example contents of a “Cell Macros” header file for the A architecture

number of benefits:

• The function is not tied to a specific instance of the design. Multiple “states” of the

design could be held separately and interleaved if desired.

• A typical PSP design needs to be reset to a known state before execution. Instead of

doing a function call to reset the state, which needlessly evaluates the full function,

external state allows the state to be reset externally. This avoids a full function call

and reduces the size of the function as reset logic can be removed.

• External state is required to support some hierarchical designs. Similar to the first

benefit, if a hardware submodule is instantiated multiple times, external-state allows

the reuse of single function definition. The states struct of submodules are included

in the state struct of their parent. This allows a hierarchy of state to match the

design’s module hierarchy. See Subsection 4.3.2 for more details.

The one final definition included in the “Cell Macros” header file is MDTYPE. This is the type
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of a slice, and the PSPCG uses it for all variables. For typical C implementations MDTYPE

may be an unsigned int, uint64 t, or similar depending on the width of the processor. It

may also be types for targeting SIMD instructions for example.

4.2 Implementation Details

This section will discuss some of the implementation details of how the C++ PSPCG back-

end produces correct C-code. Though producing syntactically correct code is important, it

is not sufficient for the back-end to directly dump the netlist as provided by Yosys synthesis

in “C format” for the code to have correct behavior. The function needs to be structured

and cells need to be ordered for sequential evaluation. The general structure of a module is

shown in Figure 4.3 along with an example of a simple hardware design for the A architecture

with “external-state” enabled. This structure supports a single-pass sequential evaluation

of a hardware module. All local variables are declared first. Then non-Flip-Flop cells are

evaluated in topologically sorted order. This group of cells also includes submodule function

calls. Next, any direct connections from Flip-Flop outputs to module outputs are written.

Finally, Flip-Flops are evaluated, and the module’s state is updated.

4.2.1 Identification of State

One crucial step before declaring local variables is identifying which signals constitute the

state of the module. These signals are either declared static so that they persist between

function calls or are omitted entirely if “external-state” is used. In this case they appear as

fields in the state struct. The PSPCG identifies these signals via their connection to the \Q

port on a cell. In Yosys, a cell has a \Q port if and only if it is a Flip-Flop. If “external-state”
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a
n q y

(a) Example sequential circuit

void f(MDTYPE a, MDTYPE* y, f_state* state) {

MDTYPE n;

XOR2(a, state->q, n);

*y = state->q;

DFF(0x0, n, state->q);

}

Local Variable Declarations

Combinational Logic Cells
Submodules

Output Connections

Flip-Flops

(b) The logic gate circuit implemented as a PSP function and sections

Figure 4.3: Structure of a module implemented as a PSP function with example
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is specified and a hierarchical design is being synthesized, then the state of a module also

includes any state of any submodules.

4.2.2 Netlist Sorting

The non-Flip-Flop and Flip-Flop cells are also ordered, separately. For combinational cells,

no cell appears in the function until its inputs have been produced (either as input to the

function, state, or by another cell). The algorithm used for this sorting is based directly

on the Yosys “torder” pass, which recursively works backwards through the circuit until an

acceptable order is found. Any combinational loops are detected and reported along with

the involved cells to the designer. For Flip-Flop sorting, the opposite relationship is needed:

each Flip-Flop’s output needs to be fully consumed before it produces the next. This orders

them such that their values are not overwritten. Similarly, any loop caused by the Flip-Flops

is reported to the designer.

4.3 Discussion and Analysis

4.3.1 Design Considerations

Code produced with the PSPCG is originally described in Verilog. However, designers should

not confuse writing Verilog that becomes hardware with writing it for PSP code generation.

The main distinction between the two is that hardware is massively parallel while software is

primarily sequential. As such, not all techniques for enhancing the performance of hardware

designs have a benefit when targeting software. Pipelining is a good example of this. Pipelin-

ing can increase throughput in hardware by introducing delay stages to decrease the critical

path and increase the operating frequency at the cost of increased latency. However, the
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benefit of this is lost when computing the design sequentially in software. Instead of comput-

ing each pipeline stage in parallel, each must be computed sequentially, which is equivalent

to having no pipelining at all. In fact, the addition of delays may hinder performance.

When designing the circuit to run in software, area is doubly important. Not only does the

code size increase with the number of gates but also the computation time. Specifically, the

computation time is proportional to the number of gates times the number of calls of the

PSP function (number of clock cycles in hardware). Though they are often competing goals

when targeting hardware, reducing area also often increases throughput in this situation.

The typical way of improving performance in hardware of utilizing more spatial resources to

increase parallelism does not translate to sequential software evaluation. Instead, designers

should try to find a balance between area and number of calls. Fully unrolling to a design

that requires only a single call may reduce the overhead associated with calling, but it incurs

other performance penalties. Namely, increased code size, register pressure, and instruction

cache misses may occur. Such problems are detailed in later sections.

Performance can be gained, however, by using the software memory model. With the

“external-state” option, software outside of the PSP function can read and modify the state

of the design, which leads to a number of optimizations:

• There is no need for reset logic to be included in designs since any state can be initialized

externally. This saves a full call to the PSP function to reset the state. It also saves

area, which decreases the computation time of each call, since any reset logic, even if

not being used, is still evaluated.

• In some cases, there is no need to include logic that “loads” a value into the state of a

design. This could be, for example, loading plaintext or key into a cipher design. By

loading values directly into state through external means, the area can be reduced by
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removing this load logic.

• There is no need to have an output that is simply part of the state. The calling code

can read the state directly out of the struct at the end of computation.

4.3.2 Hierarchical Designs

Table 4.1: Code size and computation time for hierarchical design vs. flattened design of
AES-128 PSP code on a MicroBlaze soft processor core

.text Size (bytes) Computation Clock Cycles Cycles / byte

Flattened 289,740 2,450,191 4,786
Hierarchical 113,600 1,089,326 2,128

Relative Change −60.8% −55.5%

Designers should also consider making their designs compatible with hierarchical PSP syn-

thesis. For supported designs the PSPCG can create separate PSP functions for submodules,

including those that have associated state. Hierarchical synthesis can greatly decrease the

code size and increase the performance of the design in software. To demonstrate this,

two PSP versions (one hierarchical, one flattened) of AES were synthesized from a design

from OpenCores [47]. The target architecture was the 32-bit MicroBlaze soft processor core,

which has a typical set of bitwise instructions. The results of this experiment are shown

in Table 4.1. The reduced code size (a smaller .text memory segment) of the hierarchical

code has a straightforward explanation: the reuse of submodule functions means less code

needs to be generated. In the AES example there are, in total, 20 instantiated S-box mod-

ules. The flattened design makes the equivalent of 20 copies of this module in its single

function while the hierarchical design calls the S-box function 20 times. This, however, does

not explain the drastic increase in performance. One typically useful analysis technique for

PSP functions is to create a breakdown of the instructions present. The number of instruc-
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tions directly reflect the gates of the circuit along with overhead from managing memory.

When the circuit is wide enough, the compiler can no longer store all intermediate values

in registers, and values “spill” into memory. The instruction breakdown in Table 4.2 shows

the counts of instructions the processor does during a call to the PSP code. That is, it is

the effective instruction breakdown rather than a breakdown of the instructions present in

the .text segment. Because PSP functions contain no branching instructions, finding the

effective counts is just a matter of counting the instructions in each function and multiplying

by the number of times that function is called. The hierarchical design shows a modest im-

provement in the breakdown over the flattened design, but this cannot be solely responsible

for the performance increase.

Table 4.2: Effective instruction breakdown for hierarchical design vs. flattened design of
AES-128 PSP code on a MicroBlaze soft processor core

Logic Overhead

not∗ xor and or Total lwi swi Other Total

Flattened 793 1,373 8,851 11,677 22,694 22,749 6,897 3 29,649
Hierarchical 546 1,253 8,888 11,866 22,553 19,736 6,926 190 26,852

Change −0.62% −9.4%

(∗) not implemented as xori with 0xFFFFFFFF immediate

To further investigate, MicroBlaze profiling was done for the two implementations (Ta-

ble 4.3). The standout difference was the cycles per instruction metric. The flattened

implementation had over twice the cycles/instruction despite having a similar instruction

makeup and data cache miss rate. The primary explanation for this—and the performance

difference—comes from differences in instruction cache use. Though both designs are too

large to fit entirely in the 16KiB instruction cache, the hierarchical design better utilizes it

due to the reuse of the S-box function (which contains 88% of the total effective instructions

over its 20 calls). Through its reuse, the function remains in instruction cache, and cycles
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are not wasted—as happens in the flattened design—fetching from main memory what are

effectively the same instructions 20 times per execution.

Table 4.3: Profiling for hierarchical design vs. flattened design of AES-128 PSP code on a
MicroBlaze soft processor core

Cycles/Instruction Data Cache Miss Rate

Flattened 3.16 1.19%
Hierarchical 1.43 0.49%

One instruction cache feature we found useful was speculative prefetching of instructions.

The MicroBlaze can be configured to prefetch cache lines that correspond to linear code

execution. Because PSP code contains very few jumps or branches, this feature provides a

large boost in performance to both flattened and hierarchical designs but does not solve the

flattened design’s instruction cache inefficiencies in this experiment.

Supported Designs

One important topic we have heretofore neglected to discuss is what makes a design compat-

ible with hierarchical synthesis. The decider is if all submodules are used in a combinational-

like manner. That is, synthesis will succeed if you assume all submodules are purely com-

binational and there are no combinational loops introduced. The submodules need not be

purely combinational, but this requirement is introduced to allow evaluation and update of

state in the same step for each module. The AES design is an example of a reasonably large

design that has this property. On the other hand, the circuit shown in Figure 4.4 does not.

The submodule s has a combinational path from its output q to its input n through the

XOR gate. The issue this causes for synthesis targeting sequential evaluation is that there

is no solution to the question “should the XOR gate or s be evaluated first?” The XOR gate

needs q to be present before evaluation, but s needs n to be present.
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Figure 4.4: A circuit for which the PSPCG does not support hierarchical synthesis

There is, however, a work around to this problem. During the design process, if the designer

raises the state in the hierarchy (that is, move state to a higher module) then the “com-

binational loops” will be broken. This does lead to changes in port definitions of modules.

The designer would need to add an input for the state and output for the next state, but no

combinational logic needs changing.

4.3.3 Applications

To evaluate how well the generated code performs, we chose to implement the GIFTb cipher

on a couple of architectures. This block cipher was chosen, in part, because it is used

in the GIFT-COFB [48] algorithm, which is a Round 2 candidate in NIST’s Lightweight

Cryptography Standardization Project. Additionally, as GIFT was designed with bitslicing

in mind, it should be a good candidate for a PSP implementation. The Verilog design used

for PSP synthesis is based off the one presented and described in [49] with the optimizations

described in Subsection 4.3.1 applied. More specifically, “load” logic was removed along with

direct output of the ciphertext since “external-state” was used. The “done” signal was also
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removed as the calling function can count the rounds more easily. One other change to the

design was the exclusion of round constant generation. Because each of the bits uses the

same round constant, these are more efficiently passed in via an argument than generated

in the PSP function.

For benchmarking the code, the Cortex-M4F of a Texas Instruments MSP432P401R was

targeted. This device could be considered a “highly-constrained device” [50] like those for

which the NIST Lightweight Cryptography Standardization Project exists. The code was

compiled with GCC optimizing for size. Size optimization often produces smaller and faster

PSP code than other optimization choices. The benchmarking results are shown in Table 4.4

along with other implementations’ results from other works. The computation clock cycle

counts are for encryption of 32 blocks (with round key generation). It should be noted

that the data is assumed to be in the correct transposed format for PSP. For comparison

of performance, the Fixsliced implementation is the fully unrolled, high-performance ARM

assembly implementation.

Table 4.4: Code size and computation time of GIFTb-128 PSP code vs. reference imple-
mentations on an ARM Cortex-M4F

.text Size (bytes) Computation Clock Cycles Cycles / byte

Näıve [51] - - 523.4
Tornado [52] - - 358
Fixsliced∗ [51] 29,536 84,191 164.4

PSP 25,976 74,121 144.8

(∗) Our measurement

Another GIFTb benchmark was also done to showcase the capabilities of the PSPCG. This

benchmark targets the ARM NEON SIMD architecture [53] of a Cortex-A9 in a Zynq-7000

SoC. This architecture offers greater parallelism (and performance) for PSP functions due

to its 128-bit quad registers. To target these registers and use NEON instructions, MDTYPE

was defined to be uint32x4 t and the cell definitions used NEON intrinsics. However, these
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are the only changes required since the ARM NEON logic instructions match the base ARM

instructions. This means the same PSP function could be used for both the Cortex-M4

and NEON (with a different cells.h). The results are shown in Table 4.5. For a baseline,

the reference implementation is the fixsliced C implementation from [51], which uses only

standard ARM instructions. Once again only PSP computation is included in the cycle

counts. For analysis of the cycles spent transposing data, see Chapter 6. As expected, the

SIMD implementation is very fast in comparison to a standard software implementation.

Table 4.5: Code size and computation time for 128 blocks of GIFTb-128 NEON PSP code
vs. reference implementation on an ARM Cortex-A9

.text Size (bytes) Computation Clock Cycle Cycles / byte

Reference∗ [51] 63,964 288,858 141.0
PSP 67,760 171,614 83.8

Relative Change 5.9% −40.6%

(∗) Our measurement



Chapter 5

Application of Software Tools to

Neural Networks

This chapter is based on work presented in:

R. Singh, T. Conroy, and P. Schaumont, “Variable Precision Multiplication for Software-

Based Neural Networks,” in 2020 IEEE High Performance Extreme Computing Conference

(HPEC), Waltham, MA, USA, Sep. 2020, pp. 1-7. [Online]. Available: https://ieeexplore.

ieee.org/document/9286170/ c⃝ 2020 IEEE

Up until now we have focused on applying PSP code generation for block cipher applications.

However, the technique is more general purpose than this. In this chapter, we will discuss

its application to neural network (NN) processing on embedded devices. Recent years have

seen massive growth in the field of deep learning and its uses in solving difficult problems.

Along with this growth has been a push to move computation away from centralized servers

to the edge of networks where data can be gathered and processed (at least partially) by

low-cost, highly constrained devices. One task these devices might do is inference, which

evaluates a pre-trained NN on the collected data. Naturally, the efficiency of this task has

garnered interest from the academic community and private enterprise. Among many others,

one technique of interest to this paper that has been studied is the use of reduced-precision

operands [3, 54]. It has been shown that full-width (say 16-bit) operands are not needed in

many cases to achieve results with similar accuracy [55].
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The particular operation we use PSP to accelerate is at the center of deep neural networks.

Each neuron with k inputs i1, i2, . . . , ik in such a network computes its activation y as

y = f

( k∑
n=1

wn in + b

)

where b is the neuron’s bias, wn is the weight for input in , and f is its activation function.

At the heart of this equation is the weighted sum of the input neurons. When viewed at a

network level, multiple neurons do this operation in parallel on the same inputs with different

weights. An example of this shown in Figure 5.1. In general, this operation can be described

as parallel dot products (of weight vectors with the same input vector), or a matrix-vector

multiplication. For the example the operation is compactly shown as



s1

s2

s3

s4


=



w11 w12 · · · w1k

w21 w22 · · · w2k

w31 w32 · · · w3k

w41 w42 · · · w4k





i1

i2
...

ik


.

Highly constrained embedded devices sometimes lacking a hardware multiplier, however,

are not well equipped to benefit from matrix-vector multiplication with reduced-precision

operands using standard software techniques. Bitsliced software, and more generally PSP,

is very capable with data of unusual precision. A set of 5-bit values, for example, is stored

in 5 processor words. This sets the scene for software acceleration via PSP. The question

then becomes “what is the appropriate design to synthesize?” Focusing on the parallel dot

product view of matrix-vector multiplication hints at what operation the “thread” of the

PSP function could be doing in parallel. For example, one “thread” should compute the dot
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product highlighted in red:

s1 = w11 × i1 + w12 × i2 + · · ·+ w1k × ik .

Hence, each bit—which executes an independent instance of the design—should compute

a dot product using a specific row. The chosen design is a multiplier-accumulator (MAC),

which supports vectors of variable dimension. Figure 5.2 shows a block diagram of the

MAC. To support variable precision operands, the design accepts a WIDTH Verilog module

parameter, which defines the width of a, b, out, and other relevant signals. By passing each

column of the weight matrix along with the inputs as arguments to the MAC PSP function,

the accumulated value at the end will be the desired weighted sum for all the neurons.

i
1

s
1

s
2

s
3

s
4

i
2

i
3

i
k

.

.

.

Figure 5.1: Fully-connected layer of a neural network with four weighted sums
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+

a

b

out

Figure 5.2: Multiplier-accumulator block diagram

5.1 Results

The target platform for the design was the PULPissimo SoC [56] implemented within a Zynq-

7000. This platform includes a 32-bit processor compliant with the RISC-V instruction set

architecture. The PSPCG was used to synthesize the MAC design for it like any other

architecture—a cell library and cell definitions were created. Multiple syntheses were done

for various operand bit precisions. To compare this method to standard implementations,

we target the multiplication of a 32× 32 matrix and a 32× 1 vector since this corresponds

to every bit in the PSP function doing useful work. The matrix and vector elements were

pseudorandomly generated integers of a given precision. The platform includes a hardware

multiplier, but by compiling code targeting the rv32i instruction set (the base RISC-V

integer instruction set), the compiler will instead use software multiplication only. The

average cycle count over 100 trials for each bit precision and implementation is presented in

Table 5.1. The implementation with a hardware multiplier naturally requires a set number

of cycles independent of the precision. This implementation outperforms the “no hardware

multiplier” implementation in all cases but is slower than the PSP implementation for very
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small precisions (≤ 3). When comparing standard software without a hardware multiplier

to the PSP implementation, the PSP function is better for small precisions with a crossover

point between 8 and 16 bits, which is sufficient to support its use in reduced-precision

NNs. Note that the number of cycles is consistent with a quadratic complexity with the bit

precision.

Table 5.1: Cycle counts of PSP matrix-vector multiplication vs. standard software with and
without a hardware multiplier for various bit precisions

[used with permission] c⃝ 2020 IEEE

Cycle Counts for Bit Precisions

2-bit 4-bit 8-bit 16-bit 32-bit

Standard Software (no HW mult.) 119,711 149,667 175,594 212,845 282,649
Standard Software (HW mult.) 10,418 10,418 10,418 10,418 10,418

PSP 2,613 12,309 66,870 345,174 1,492,374

5.2 Overhead Analysis

As we have found with other designs, register spilling adds a significant amount of overhead

to the design. Instead of keeping all intermediates in registers the compiler uses memory

(specifically the stack) to hold values it needs later, as needed. In the RISC-V architecture,

the performance overhead of this comes from load (lw) and store (sw) instructions. The

larger the fraction of instructions these are, the less efficient the design. Table 5.2 shows

an instruction breakdown for 5 MAC PSP functions of different precisions. The overhead

percentage (calculated as the number of overhead instructions over the total) remains in the

range of 34% to 50% despite the total number of instructions increasing by a factor of 772×

from 2-bit to 32-bit precision.

To better understand the need for these overhead instructions, we also analyze how well
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Table 5.2: Instruction breakdown of PSP matrix-vector multiplication of various bit preci-
sions

[used with permission] c⃝ 2020 IEEE

Logic Overhead

Bits not or xor and Total lw sw Total Other Overhead

2 6 5 9 15 35 17 8 25 0 41.67%
4 23 77 36 100 236 82 43 125 2 34.44%
8 119 451 196 489 1,255 605 192 797 2 38.80%
16 394 2,211 848 2,109 5,562 3,885 1,227 5,112 2 47.88%
32 1,968 9,499 3,009 8,727 23,203 17,369 5,729 23,098 2 49.88%

the compiler is using the registers. Ideally all registers are being used—at least, holding

intermediate values. To see if this is the case, we analyze the lifetimes of variables in the

assembly code of the PSP function. Due to the linear nature of the code, static analysis is

sufficient to fully understand how registers and the stack are used over time. A visualization

of the usage is shown in Figure 5.3 for the 4-bit precision function. Each instruction in the

function is numbered and placed on the x -axis. Because PSP functions have no jumps or

branches, this is equivalent to time being on the axis. The registers are shown on the top

half of the y-axis while the bottom half shows stack memory addresses (relative to the stack

pointer).

A colored line segment at a specific y-value corresponds to a value being held in a specific

register/memory address, otherwise it is not being used at that time. Of course, each register

and memory address always holds some value, but we only consider a value present if it is

used at a later time. A change in color corresponds to a new value being loaded by a specific

instruction. The register usage appears very dense for the 4-bit function as well as the 8-bit

function in Figure 5.4, and no registers are being completely unused. It is clear the 8-bit

function uses the stack much more extensively, but that is to be expected with a wider

design. Note that the line segments in memory are usually longer than those in registers,
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Figure 5.3: Register/Memory usage of the 4-bit MAC PSP function
[used with permission] c⃝ 2020 IEEE

which could reflect the compiler storing long-lived variables or those that are not used soon

after assignment. The very long-lived values at the bottom of the memory addresses are

the function saving callee-saved registers. Overall, we see no reason from this to believe the

compiler is producing sub-optimal results.
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Figure 5.4: Register/Memory usage of the 8-bit MAC PSP function
[used with permission] c⃝ 2020 IEEE



Chapter 6

Hardware Support for Bitslicing

Another problem facing programmers wanting to use bitsliced and PSP software is the trans-

formation of data to its standard representation into slices. The operation can take a sig-

nificant amount of time, which reduces overall performance. To improve the performance of

transposing into and out of bitsliced format, we introduce a hardware accelerator with DMA

capability called the tDMA. That is, the tDMA is given a source memory address of data in

one format and produced data in the other format at a destination address. The processor

needs only to specify the location, format, and shape of the data; start the transfer; and wait

for an interrupt when the transfer is complete. Beyond accelerating the transposition, the

tDMA also supports the creation of slices with masking and redundancy that are compatible

with the SKIVA architecture [8]. This chapter will discuss the design, implementation and

performance details, and algorithmic analysis of the tDMA.

6.1 Design Overview

The primary motivation for the tDMA is improving the interface between the standard

representation of data and the bitsliced representation in SKIVA though it can be used

effectively in many different architectures. The improvements it makes in particular are:

1. Acceleration of the transposition. Because the transformation is a permutation of

40
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bits, a hardware implementation is very efficient. In software the operation is done

via bit manipulation instructions while a permutation of wires is all that is needed

in hardware. This operation becomes the core structure of the tDMA datapath: the

transposer.

2. Masking and redundancy creation and removal. To achieve its security goals, the

SKIVA architecture utilizes masking and redundancy built into the bitsliced format.

See Figure 2 of [8] for details about such aggregations. The tDMA supports the auto-

matic and efficient production of these aggregations. It also handles the transformation

back to standard representation, which for SKIVA includes a check for redundancy er-

rors that could be caused by fault injection.

To accomplish these goals, the design shown in Figure 6.1 was created. The tDMA was

designed to strike a balance between performance and resource utilization so that it is suitable

for inclusion in embedded designs. As such, AXI4-Lite [57] interfaces were chosen to connect

the peripheral to a SoC’s memory bus. Two interfaces are included in the design. The slave

interface receives programming from the processor, such as the source address, destination

address, and other parameters. The master interface is how the tDMA accesses memory

for the bitslicing transformation. The final port on the device is an IRQ that signals to

the processor that a transfer has completed or an error has occurred. Errors can either be

“Redundancy Errors” where a redundancy check failed or “AXI Errors” that happen if an

error occurs on the AXI4-Lite bus. The processor can read the tDMA’s status register to

confirm no errors occurred.

The IRQ signal is generated by the Controller module. This module directs the operation

of the other submodules and also generates addresses for the AXI interface. The controller

implements the “stride algorithm” for address generation that is shown in Figure 6.2 and
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Figure 6.1: tDMA block diagram

explained in detail in the next section.

Let us now turn our attention to the datapath. The core of it is the transposer, which also

includes a file of 32 registers each 32 bits wide. The file is this size because the tDMA

is designed for 32-bit systems. Unlike traditional DMA controllers that typically try to

push data words through the device as quickly as possible, because bits for each slice come

from multiple words in memory, a file of registers is needed to store all the words before a

single slice is created. Once the words for transposition are present, multiple slices can be

pulled from the registers and written into memory. Though before this happens, the slices

individually pass through a masking stage and then a redundancy stage.

In the masking stage three possible outputs are possible based on the parameter D ∈ {1, 2, 4}

(which corresponds to the variable d from Section 2.2) from SKIVA. If D = 1 then no masking
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is done. Because random values are needed (up to 24 bits per 32-bit slice) to create masks,

a PRNG from [58] is included in the design. The processor seeds the PRNG before masking

is needed. The output of this stage is passed to the redundancy stage.

In the redundancy stage, the parameter Rs ∈ {1, 2, 4} (as defined in the SKIVA architecture)

decides how much of the slice is redundant. Specifically, the 32-bit slice holds 32/Rs bits

of information. The rest is redundant copies of those bits in one of two forms. The tDMA

supports both “direct” redundancy, which is a direct copy of the bits, or “complementary”

redundancy, which stores the original as well as a bitwise inverted copy. The slice is then

passed into a FIFO along with its address for the AXI interface to process.

Because D and Rs are controlled independently and masking and redundancy do not interfere

with each other, these two stages are independent. This is also true for the reverse operation

by which slices are transposed back to words. First, redundancy is checked (that is, checking

if the copies agree with each other) and discarded. Next, masks are recombined, and the

slice is written into the register file.

6.2 Formal Verification

Verifying the correctness of hardware is extremely important. Unlike software, making

changes to hardware, if already fabricated, involves replacing the physical device. To gain

a high confidence in the correctness of the tDMA, core parts of the Controller’s algorithm

were verified using the TLC model checker. During the design process and before any HDL

for the Controller was written, the algorithm for slice and address generation was described

in the TLA+ language. This description is fully included in Appendix A.
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6.2.1 Stride Algorithm

The stride algorithm is the name given to the algorithm the tDMA uses to generate slices

and addresses. Its name comes from the strides an address pointer takes through memory

when processing words longer than 32 bits. Note that words in this section refer to distinct

elements to transpose rather than fixed-size 32-bit words. The size is specified when needed.

For example, a 128-bit plaintext is what we call a word despite it requiring four 32-bit

memory locations to store. See how words are identified in Figure 6.2. One of the core

features of the tDMA is that it produces slices for any number of words less than 216 of

any length less than 212 bits despite only having a 32× 32-bit register file. It accomplishes

this by working in chunks of 32-bit words called offsets. Figure 6.2 shows six offsets as

lightly shaded boxes. Note that these 32-bit words are not at consecutive memory addresses.

They occur, rather, at an “offset” of the starting address. Because the tDMA is designed

for 32-bit systems, the 32-bit word is the base unit of memory that is designed around. It

only accesses/writes memory as 32-bit words. The tDMA starts its processing by loading

from the source buffer. Once the register file has been filled with an offset, the tDMA stops

loading and switches to an unload state in which the registers contents are transposed and

written into the destination buffer at consecutive memory addresses. Once all the data has

been unloaded, the algorithm resumes loading.

However, it is not sufficient to only stride through memory. When the source buffer’s words

are longer than 32 bits (this length is referred to as WordLength), it takes up more than one

32-bit word in memory. The tDMA assumes a little-endian data format for such occasions.

That is, bits 31 down to 0 are at the 0th address, bits 63 down to 32 are at the 1st address,

. . . bits 32n+31 down to 32n are at the nth address. Since the processor is expected to work

on 32 words at a time (it has 32 bits for PSP after all), once an offset has been transposed

and unloaded, the algorithm loads the next offset from the same 32 words. These 32 words
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are referred to as a block. Only once all the offsets of a block have been processed does the

algorithm move to the next block.

The stride algorithm also works in the reverse direction, but the source buffer is read con-

secutively while the algorithm strides through the destination buffer.

Word Addr: 0 1 n - 1

n n + 1 2n - 1

2n 2n + 1 3n - 1

31n 31n + 1 32n - 1

...

..
.

..
.

...
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Figure 6.2: tDMA stride algorithm

6.2.2 Correctness

To show that the stride algorithm is correct for both forward and backward transformations,

the formula Correctness in Figure 6.3 is shown to be an invariant of the model.
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Correctness
∆
=

DMAState = “DONE” =⇒
∧ ∀ addr ∈ domain SrcMemReadCount :

SrcMemReadCount [addr ] = 1
∧ ∀ addr ∈ domain DstMem :

DstMem[addr ] ̸= {}
∧ if Direction = “FORWARD” then

∀ addr ∈ domain SrcMemReadCount :
∧ ∀ dstaddr ∈ MappedDstAddrs(addr) :

addr ∈ DstMem[dstaddr ]
∧ ∀ dstaddr ∈ domain DstMem \MappedDstAddrs(addr) :

addr /∈ DstMem[dstaddr ]
else Direction = “REVERSE”

∀ addr ∈ domain DstMem :
∧ ∀ dstaddr ∈ MappedDstAddrs(addr) :

dstaddr ∈ DstMem[addr ]
∧ ∀ dstaddr ∈ domain SrcMemReadCount \MappedDstAddrs(addr) :

dstaddr /∈ DstMem[addr ]

Figure 6.3: Correctness TLA+ formula

This invariant states that when the tDMA has finished a transfer, all source memory ad-

dresses have been read exactly once; every destination address has been written to; and data

from the correct source addresses have ended up in the correct destination addresses and

no incorrect data is present. These last two requirements use the MappedDstAddrs function

which maps a source address to a set of destination addresses where bits from that source

address should be located. The model abstracts the actual words and slices to just their

memory addresses, which is sufficient to track data through the algorithm. By running

the model checker on many possible WordLengths and word counts, we can be confident

that the algorithm is correct. Unfortunately, due to the explosion of the state space for

large WordLengths and WordCounts, all possible combinations of input configurations could

not be checked. However, the most important section of the initial state space (identified

through reasoning in later sections), the transposition of a m × n-bit matrix where m ≤ 32,
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was verified for n ≤ 512 and all values of D ,Rs in both directions.

6.2.3 Liveness

We have shown that the algorithm produces correct results when it finishes, but how do we

know it will ever finish? The temporal formula in Figure 6.4 states that “eventually the

model will finish.”

Liveness
∆
=

3(DMAState = “DONE”)

Figure 6.4: Liveness TLA+ temporal formula

One of the strengths of model checking is the ability to show this is the case. That is,

in any state the model checker reaches, it eventually progresses to completion. There are

no deadlocks or cycles in the algorithm that prevent it from ending and interrupting the

processor.

6.2.4 Implementation

The implementation of the tDMA’s Controller is of interest because the TLA+ description

of the algorithm is model checked, but it is implemented in SystemVerilog. How can we be

confident the implementation has the same behavior as the model? Model checking shows

that the algorithm is well-considered and assists the design process, but we admit there is

no proof that shows the implementation behaves the same. However, there are reasons that

support belief in the correctness of the implementation:

• Both TLA+ and SystemVerilog describe the algorithm as a state machine with sim-

ilar semantics. That is, there are similar ways to express the same meaning in both
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languages in many cases. Thus, the TLA+ description of the algorithm nearly can be

directly translated into SystemVerilog with only syntax changes. For example, com-

pare the code snippets in Figure 6.5 that contain the same part of the algorithm in the

two languages.

if Direction = “FORWARD” then
∧ DstMemPtr ′ = DstMemPtr + 1
∧ if DstBit + 1 < Min(32, DataWordLength − (32 ∗Offset)) then

∧ DstBit ′ = DstBit + 1
∧ unchanged ⟨InternalPtr , DataWordCount , DMAState, Offset ,

InternalMem, BasePtr⟩
else

∧ DstBit ′ = 0
∧ if InternalPtr +WordsUsedPerSlice < BlockSize then

∧ InternalPtr ′ = InternalPtr +WordsUsedPerSlice
∧ unchanged ⟨DataWordCount , DMAState, Offset , InternalMem⟩

(a) TLA+ implementation

if(direction_i == 1’b0) // forward

begin

next_dst_mem_ptr = dst_mem_ptr + 30’d1;

if(dst_bit + 6’d1 < bits_left_in_offset)

begin

next_dst_bit = dst_bit + 6’d1;

end

else

begin

next_dst_bit = 6’d0;

if(internal_ptr + words_per_slice < block_size)

begin

next_internal_ptr = internal_ptr + words_per_slice;

end

(b) SystemVerilog implementation

Figure 6.5: Code snippets of the same part of the stride algorithm in TLA+ and SystemVer-
ilog
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This similarity allows some visual verification of the implementation. Though this

is a weak form of verification, having the semantic similarity lets the designer more

easily implement the algorithm and reason about what is must be different in the

implementation.

• Traditional verification of the tDMA supports its correctness via testing with a variety

of test cases. The tDMA was integrated with a MicroBlaze soft processor core and

Zynq-7000. Some of these tests will be detailed in the next section.

6.3 Implementation Results

This section will go over results from implementing the tDMA, including performance metrics

of its operation. It was implemented for Artix-7 FPGAs in all the cases the section will

discuss. The implementation shows reasonable resource utilization in Table 6.1 for multiple

FIFO depth options. Most of the FF usage comes from the internal register file and the

FIFO while the LUT usage primarily comes from the controller and datapath. The number

of LUTs and FFs can be reduced by reducing the depth of the FIFO at a cost to performance.

A FIFO depth of 32 was used for all performance numbers presented in this work.

Table 6.1: Resource utilization of tDMA with various FIFO depths on an Artix-7 FPGA

FIFO Depth Look-Up Tables (LUTs) Flip-Flops (FFs)

8 1,259 1,866
16 1,402 2,383
32 1,704 3,414

To benchmark the performance of this implementation, the tDMA was integrated with a

MicroBlaze soft processor core on an Arty A7 [59]. The processor was configured for perfor-

mance with instruction and data cache enabled along with a barrel shifter. In this experi-
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mental setup (displayed in Figure 6.6) the processor and tDMA have access to main memory

located in DDR3L and a smaller on-chip Block RAM memory. This smaller memory is where

the .data code segment was configured to be stored.

On this setup we compare the most basic form of the bitsliced transposition (32 words of

32 bits each with D = 1,Rs = 1) in software with the tDMA. The results of this experi-

ment (Table 6.2) show the tDMA outperforming both the näıve and the recursive algorithm

(discussed in Section 3.3). Naturally, the recursive algorithm is much faster than the näıve

approach, but it still outpaced by the single-cycle slice generation of the tDMA. The primary

source of latency of the tDMA is reading and writing memory. In this case, the transposi-

tion itself only takes 32 cycles. The rest of the cycles come from programming the transfer,

memory access, and the MicroBlaze responding to the interrupt at the end. It should be

noted that if the transfer is done only in DDR3L instead of using on-chip memory then

the recursive algorithm using cache is slightly faster. All the implementations have similar

code. The tDMA does not have a smaller .text segment than the rest due to programming

transfers and configuring the interrupt controller.

Figure 6.6: tDMA integrated with a MicroBlaze soft processor core on an Arty A7

The next experiment we will discuss is a more realistic case. We accelerate the transformation
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Table 6.2: 32 × 32-bit matrix transposition for tDMA vs. software on a MicroBlaze soft
processor core (with enabled barrel shifter)

.text Size (bytes) Transposition Cycle Count

Näıve 78,432 14,690
Recursive 83,316 1,478
tDMA 80,208 1,010

of plaintext, key, and ciphertext for the MicroBlaze AES example presented in Chapter 4. In

total there are two 32× 128-bit forward transpositions (plaintext and key) and one reverse

(ciphertext) that are included in the measurement. We compare the tDMA with the recursive

software algorithm. For this experiment, both of the .data and .bss segments were put in

on-chip memory. This produced the best results for both implementations. Table 6.3 shows

the tDMA outperforming the software transposition by a larger margin with similar code

sizes. The overhead for the transposition is reduced by the tDMA to nearly negligible levels.

Table 6.3: Transposition using tDMA vs. software for AES-128 bitsliced code on a MicroB-
laze soft processor core (with enabled barrel shifter)

.text Size Transposition Overhead
(bytes) Cycle Count (% of total cycles)

Recursive 113,416 44,629 3.9%
tDMA 113,600 7,063 0.6%

Relative Change 0.2% −84.2% -

The last experiment shows a limitation of the tDMA when used with processors with a

word width greater than 32 bits. The tDMA was integrated with the ARM Cortex-A9 in a

Zynq-7000 on a Cora Z7 [60] as shown in Figure 6.7 for the GIFTb-128 NEON SIMD PSP

example in Chapter 4. This experiment is like the one for AES transposition in that plaintext,

key, and ciphertext are transposed. However, instead of each of these being 32 × 128-bit

transpositions, each is 128 × 128-bit. The tDMA is compared to a näıve implementation

of the transposition using standard ARM instruction operating on 32-bit words and the
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recursive algorithm implemented using 128-bit NEON SIMD instructions. Once again, the

.data and .bss segments are mapped to on-chip memory. The results shown in Table 6.4

demonstrate that the tDMA is outmatched by the recursive algorithm when the data word

is wider than 32 bits but not wider than the processor’s word, though the näıve algorithm

still performs significantly worse and is included just for context. See the following section

about algorithmic analysis for details. The tDMA is also limited in this experiment due

to operating frequency. The Cortex-A9 was clocked at 650 MHz while the tDMA was at

its maximum operating frequency of 120 MHz. The clock cycles counted in Table 6.4 are

processor cycles. Another source of inefficiency in this experiment is the tDMA’s AXI4-Lite

interfaces. It could benefit through the use of burst transfers, such as those in the full AXI4

standard. AXI4-Lite interfaces were chosen for their extremely low area usage and because

the TLA+ model considers single transfers only.

Table 6.4: GIFTb-128 bitsliced transposition on an ARM Cortex-A9 targeting NEON SIMD
instructions using tDMA vs. software

.text Size Transposition Overhead
(bytes) Cycle Count (% of total cycles)

Näıve 67,296 408,516 70.4%
Recursive 67,760 37,636 18.0%
tDMA 73,964 179,166 51.1%

Figure 6.7: tDMA integrated in a Zynq-7000

Though the tDMA had sub-optimal performance in the last experiment, there are situa-
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tions in which designers might still include it in this setup. One such case is using it for

share generation for masked implementations. In place of accessing another hardware RNG

or generating pseudorandom values in software, the tDMA’s internal PRNG is integrated

with its transposition algorithm. This eliminates any need for preprocessing of data by the

processor.

6.4 Algorithmic Analysis

The computational complexity of the stride algorithm (and the tDMA in general) deserves

some analysis. On one hand the stride algorithm has the property that each memory location

in the source and destination buffers is only accessed a single time. On the other, we saw

in the last section how it was outperformed by the recursive algorithm in software. As

mentioned in Section 3.3, the recursive algorithm has a O(n log n) time complexity for an

n × n-bit matrix transposition. This result, however, is predicated upon the availability of

operations on n-bit (or wider) registers. Assume, however, we are executing this algorithm

on an m-bit processor and that n > m. We are no longer interested in the n × n-bit matrix

transposition, but rather the m × n-bit case since we can only execute m PSP “threads” at

a time. Each pass through the matrix until all m ×m matrices are transposed now includes

a factor of n/m since the processor can only work on m bits of each row at a time. The time

complexity of this part of the algorithm is thus

O
( n

m
m logm

)
= O(n logm).

The remaining passes of the algorithm no longer use bitwise instructions and shifts to trans-

pose sub-matrices. Instead, the processor must swap m-bit words. It is clear upon review of

the algorithm that one half of the bits are swapped each pass, meaning one half of the m-bit
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words are swapped in these passes. Each requires

1

2

⌈ n

m

⌉
m = O(n)

swaps. Each pass, whether in the first group of log2(m) passes or the second, requires

O(n) operations. Because there are log2(⌈n/m⌉) in the second group of passes, in total the

recursive algorithm has O(n log n) complexity for the m × n-bit transposition on an m-bit

processor. If, once all m×m sub-matrices were transposed, the m-bit words could be directly

reordered in a single O(n) pass—which is what the stride algorithm does—the complexity

becomes O(n logm).

Turning now to the same problem using the tDMA with the stride algorithm, assume an

m-bit tDMA. That is, instead of a set 32-bit design, extend the tDMA to be based on an

m-bit word. The tDMA’s transposer allows the transposition of any matrix of size m×m in

O(m) operations. An m × n matrix requires ⌈n/m⌉ applications of the transposer. Hence,

an m-bit tDMA completes the transposition in

O
( n

m
m
)
= O(n)

time. There are no additional passes after the m ×m transposition due to the stride algo-

rithm. This is the true purpose of the stride algorithm: to process m×m sub-matrices in the

order that produces a fully transposed matrix after the first pass. For larger n×n matrices,

it transposes in groups of m rows of the matrix (“blocks” in Subsection 6.2.1), which is a

more convenient format for an m-bit processor to use than the regular n × n transposed

matrix.

This complexity result is supported by measurements of the tDMA in Figure 6.8 showing a

linear asymptotic behavior. Note the steps in the function occurring every 32 bits. These
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are caused by the need for another application of the transposer, which requires loading 32

additional 32-bit words.

Length of Word (bits)

Tr
an

sp
os

iti
on

 C
yc

le
s

0

2500

5000

7500

10000

0 32 64 96 128 160 192 224 256

WordCount = 32, D = 1, R_s = 1, Direction = Forward

Figure 6.8: Transposition cycles vs. word length for 32 words in the forward direction

We have not yet discussed the performance of the tDMA when D ̸= 1 or Rs ̸= 1 in this

section. Changing these parameters does not change the single pass behavior of the tDMA.

It only changes how many 32-bit words are written to memory (in the forward transposition)

or read from memory (in the reverse transposition). Specifically, define the constant security

factor SF as the product SF = D · Rs . For the m × n-bit transposition discussed above,

the tDMA writes m words of m-bits to memory each application of the transposer. In the

more general case this becomes SF · m words since each of these only contains m/SF bits

from the original matrix. Reading/writing SF · m words is still a O(m) operation so the

tDMA, in total, has a O(n) time complexity for a constant SF . If this is the case, we might

expect to see a O(1) factor when comparing the same transposition with different values
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of SF . Indeed, Figure 6.9 shows this behavior for each of the possible values of SF . Note

that transposing (as in this case of this figure) 256 words is equivalent to transposing eight

32× n-bit blocks for the stride algorithm.
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Figure 6.9: Security factor impact vs. word length for 256 words in the forward direction
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Conclusion

This thesis has presented two contributions that support designers and programmers wish-

ing to use bitsliced and PSP software. Bitsliced software continues to be a field with active

research, and these contributions make the technique more accessible. We have shown how

programmers can describe their programs in Verilog and create well-performing PSP func-

tions in C using the PSPCG. This includes hierarchical synthesis of some sequential logic

designs. This code generation tool’s value was demonstrated by its use in the creation of

efficient block cipher implementations and a software matrix-vector multiplication scheme

for reduced-precision operands fit for embedded devices. For the latter, we provide an anal-

ysis of the overhead created during compilation of the PSP functions. In addition to the

code generation problem, the thesis addresses slice generation by introducing the tDMA to

accelerate the transposition of bit-matrices. It also includes support for the formats of slices

used for side-channel and fault attack resistance in the SKIVA architecture [8]. With the

correctness of hardware being critical, the core parts of the control algorithm were described

in TLA+ and verified using model checking. The benefits of this hardware accelerator over

software methods were shown in concrete examples and algorithmic analysis.

The results in this thesis give some promise that the techniques and tools described herein are

worthy of further study. In the future, we intend to explore the following research directions:

• Inclusion of the tDMA in a RISC-V based system. Firstly, this would integrate the

57
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tDMA with the matrix-vector multiplication work from Chapter 5. Secondly, the

argument for the inclusion of a hardware accelerator for a specific type of processing

into a system is more convincing when the architecture itself is open and flexible, like

RISC-V.

• Use of the PSPCG and PSP techniques for other applications. There are many appli-

cations, such as those with some form of internal parallelism or work well with reduced-

precision operands, that are suitable for PSP implementation. Among these include

new algorithms for information security in the fields of post-quantum and lightweight

cryptography.
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Appendix A

TLA+ Specification

This TLA+ specification describes the algorithm the tDMA uses to generate slices, including

where it reads from and writes to memory.

module tDMA
extends Naturals

constants DataWordLengths , DataWordCounts

variables InitialDataWordCount , DataWordCount , DataWordLength, SecurityFactor ,
SrcMemReadCount , DstMem, DMAState, InternalMem,
InternalPtr , SrcMemPtr , DstMemPtr , BasePtr , Offset ,
DstBit , Direction

constantvars
∆
= ⟨InitialDataWordCount , DataWordLength, SecurityFactor , Direction⟩

loadvars
∆
= ⟨SrcMemReadCount , SrcMemPtr⟩

unloadvars
∆
= ⟨DataWordCount , DstMemPtr , DstMem, DstBit , Offset⟩

vars
∆
= ⟨DMAState, InternalMem, InternalPtr , BasePtr ,

constantvars , loadvars , unloadvars⟩

NextMultipleOf (i , j )
∆
=

if i%j = 0 then i
else i + j − (i%j )

Ceil(i , j )
∆
=

NextMultipleOf (i , j )÷ j

WordsUsedPerSlice
∆
= 32÷ SecurityFactor

Stride
∆
=

Ceil(DataWordLength, 32)

SrcMemSize
∆
=

if Direction = “FORWARD” then
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Stride ∗ InitialDataWordCount
else
DataWordLength ∗ Ceil(InitialDataWordCount , WordsUsedPerSlice)

DstMemSize
∆
=

if Direction = “FORWARD” then
DataWordLength ∗ Ceil(InitialDataWordCount , WordsUsedPerSlice)

else
Stride ∗ InitialDataWordCount

TypeOK
∆
=

∧ InitialDataWordCount ∈ DataWordCounts
∧ DataWordCount ∈ (0 . . InitialDataWordCount)
∧ DataWordLength ∈ DataWordLengths
∧ SecurityFactor ∈ {1, 2, 4, 8, 16}
∧ Direction ∈ {“FORWARD”, “REVERSE”}
∧ SrcMemReadCount ∈ [(0 . . SrcMemSize − 1) → Nat ]
∧ DstMem ∈ [(0 . . DstMemSize − 1) → subset Nat ]
∧ DMAState ∈ {“LOAD”, “UNLOAD”, “DONE”}
∧ InternalMem ∈ [(0 . . 31) → (0 . . SrcMemSize)]
∧ InternalPtr ∈ (0 . . 31)
∧ SrcMemPtr ∈ (0 . . SrcMemSize)
∧ DstMemPtr ∈ (0 . . DstMemSize)
∧ BasePtr ∈ Nat
∧ Offset ∈ Nat
∧ DstBit ∈ (0 . . 31)

Init
∆
=

∧ InitialDataWordCount ∈ DataWordCounts
∧ DataWordCount = InitialDataWordCount
∧ DataWordLength ∈ DataWordLengths
∧ SecurityFactor ∈ {1, 2, 4, 8, 16}
∧ Direction ∈ {“FORWARD”, “REVERSE”}
∧ SrcMemReadCount = [i ∈ (0 . . SrcMemSize − 1) 7→ 0]
∧ DstMem = [i ∈ (0 . . DstMemSize − 1) 7→ {}]
∧ DMAState = “LOAD”
∧ InternalMem = [i ∈ (0 . . 31) 7→ SrcMemSize]
∧ InternalPtr = 0
∧ SrcMemPtr = 0
∧ DstMemPtr = 0
∧ BasePtr = 0
∧Offset = 0
∧ DstBit = 0
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ReadMem(addr)
∆
=

SrcMemReadCount ′ = [SrcMemReadCount
except ! [addr ] = SrcMemReadCount [addr ] + 1]

LoadInternalMem(memAddr)
∆
=

InternalMem ′ = [InternalMem except ! [InternalPtr ] = memAddr ]

BlockSize
∆
=

if DataWordCount ≥ 32 then 32
else DataWordCount

Min(a, b)
∆
=

if a < b then a
else b

UpdateLoadState
∆
=

if Direction = “FORWARD” then
if InternalPtr + 1 < BlockSize then

∧ InternalPtr ′ = InternalPtr + 1
∧ SrcMemPtr ′ = SrcMemPtr + Stride
∧ unchanged ⟨DMAState, BasePtr⟩

else
∧ InternalPtr ′ = 0
∧ DMAState ′ = “UNLOAD”
∧ if Offset + 1 < Stride then

∧ SrcMemPtr ′ = BasePtr +Offset + 1
∧ unchanged ⟨BasePtr⟩
else
∧ SrcMemPtr ′ = SrcMemPtr + 1
∧ BasePtr ′ = SrcMemPtr + 1

else Direction = “REVERSE”

∧ SrcMemPtr ′ = SrcMemPtr + 1
∧ if InternalPtr + 1 < Min(32, DataWordLength − (32 ∗Offset)) then

∧ InternalPtr ′ = InternalPtr + 1
∧ unchanged ⟨DMAState, BasePtr⟩

else
∧ InternalPtr ′ = 0
∧ DMAState ′ = “UNLOAD”
∧ unchanged BasePtr

Load
∆
=

∧ DMAState = “LOAD”
∧ ReadMem(SrcMemPtr)
∧ LoadInternalMem(SrcMemPtr)
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∧ UpdateLoadState
∧ unchanged ⟨unloadvars⟩

WriteSlice(addr)
∆
=

DstMem ′ = [DstMem except ! [addr ] =
{InternalMem[i ] :

i ∈ (InternalPtr . .
Min(InternalPtr +WordsUsedPerSlice − 1, 31))}]

WriteRegular(addr)
∆
=

DstMem ′ = [DstMem except ! [addr ] =
{InternalMem[i ] : i ∈ (0 . . 31)}]

ClearInternalMem
∆
=

InternalMem ′ = [i ∈ (0 . . 31) 7→ SrcMemSize]

UpdateUnloadState
∆
=

if Direction = “FORWARD” then
∧ DstMemPtr ′ = DstMemPtr + 1
∧ if DstBit + 1 < Min(32, DataWordLength − (32 ∗Offset)) then

∧ DstBit ′ = DstBit + 1
∧ unchanged ⟨InternalPtr , DataWordCount , DMAState, Offset ,

InternalMem, BasePtr⟩
else

∧ DstBit ′ = 0
∧ if InternalPtr +WordsUsedPerSlice < BlockSize then

∧ InternalPtr ′ = InternalPtr +WordsUsedPerSlice
∧ unchanged ⟨DataWordCount , DMAState, Offset , InternalMem⟩

else
∧ InternalPtr ′ = 0
∧ ClearInternalMem
∧ if Offset + 1 < Stride then

∧Offset ′ = Offset + 1
∧ DMAState ′ = “LOAD”
∧ unchanged DataWordCount

else
∧Offset ′ = 0
∧ DataWordCount ′ = DataWordCount − BlockSize
∧ if DataWordCount − BlockSize = 0 then

DMAState ′ = “DONE”
else
DMAState ′ = “LOAD”

∧ unchanged BasePtr
else Direction = “REVERSE”
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if DstBit + InternalPtr + 1 < BlockSize then
∧ DstMemPtr ′ = DstMemPtr + Stride
∧ if InternalPtr + 1 < WordsUsedPerSlice then

∧ InternalPtr ′ = InternalPtr + 1
∧ unchanged ⟨DstBit , DMAState, InternalMem⟩

else
∧ InternalPtr ′ = 0
∧ DstBit ′ = DstBit +WordsUsedPerSlice
∧ DMAState ′ = “LOAD”
∧ ClearInternalMem

∧ unchanged ⟨DataWordCount , Offset , BasePtr⟩
else

∧ InternalPtr ′ = 0
∧ DstBit ′ = 0
∧ ClearInternalMem
∧ if Offset + 1 < Stride then

∧Offset ′ = Offset + 1
∧ DstMemPtr ′ = BasePtr +Offset + 1
∧ DMAState ′ = “LOAD”
∧ unchanged ⟨DataWordCount , BasePtr⟩

else
∧Offset ′ = 0
∧ DstMemPtr ′ = DstMemPtr + 1
∧ DataWordCount ′ = DataWordCount − BlockSize
∧ if DataWordCount − BlockSize = 0 then

∧ DMAState ′ = “DONE”
∧ unchanged BasePtr

else
∧ DMAState ′ = “LOAD”
∧ BasePtr ′ = DstMemPtr + 1

Unload
∆
=

∧ DMAState = “UNLOAD”
∧ if Direction = “FORWARD” then

WriteSlice(DstMemPtr)
else Direction = “REVERSE”

WriteRegular(DstMemPtr)
∧ UpdateUnloadState
∧ unchanged ⟨loadvars⟩

Next
∆
=

∧ ∨ Load
∨ Unload
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∧ unchanged constantvars

Fairness
∆
=

WFvars(Next)

Spec
∆
= Init ∧2[Next ]vars ∧ Fairness

SizeOfFullBlock
∆
=

SecurityFactor ∗ DataWordLength

SizeOfRegularOffset(block)
∆
=

let blockWordCount
∆
= Min(32, InitialDataWordCount − block ∗ 32)in

32 ∗ Ceil(blockWordCount , WordsUsedPerSlice)

DataWordAddr(addr)
∆
=

addr ÷ Stride

WordAddrInBlock(addr)
∆
=

DataWordAddr(addr)%32

SlicesPerWord(offset)
∆
=

if offset = Stride − 1 then
if DataWordLength%32 = 0 then

32
else
DataWordLength%32

else
32

StartDstAddress(addr)
∆
=

let offset
∆
= addr%Stridein

let blockAddr
∆
= addr ÷ (32 ∗ Stride)in

blockAddr ∗ SizeOfFullBlock +
offset ∗ SizeOfRegularOffset(blockAddr) +
(WordAddrInBlock(addr)÷WordsUsedPerSlice)

∗ SlicesPerWord(offset)

MappedDstAddrs(addr)
∆
=

(StartDstAddress(addr)
. . StartDstAddress(addr) + SlicesPerWord(addr%Stride)− 1)

Correctness
∆
=

DMAState = “DONE” =⇒
∧ ∀ addr ∈ domain SrcMemReadCount :

SrcMemReadCount [addr ] = 1
∧ ∀ addr ∈ domain DstMem :

DstMem[addr ] ̸= {}
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∧ if Direction = “FORWARD” then
∀ addr ∈ domain SrcMemReadCount :

∧ ∀ dstaddr ∈ MappedDstAddrs(addr) :
addr ∈ DstMem[dstaddr ]

∧ ∀ dstaddr ∈ domain DstMem \MappedDstAddrs(addr) :
addr /∈ DstMem[dstaddr ]

else Direction = “REVERSE”

∀ addr ∈ domain DstMem :
∧ ∀ dstaddr ∈ MappedDstAddrs(addr) :

dstaddr ∈ DstMem[addr ]
∧ ∀ dstaddr ∈ domain SrcMemReadCount \MappedDstAddrs(addr) :

dstaddr /∈ DstMem[addr ]

Liveness
∆
=

3(DMAState = “DONE”)
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