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Recent experimental results have shown that the vibration induced by the tire air cavity 

resonance is transmitted into the vehicle cabin and may be responsible for significant 

interior noise. The tire acoustic cavity is excited by the road surface through the contact 

patch on the rotating tire. The effect of the cavity resonance is that results in significant 

forces developed at the vehicle’s spindle, which in turn drives the vehicle’s interior 

acoustic field. This tire-cavity interaction phenomenon is analytically investigated by 

modeling the fully coupled tire-cavity systems. The tire is modeled as an annular shell 

structure in contact with the road surface. The rotating contact patch is used as a forcing 

function in the coupled tire-cavity governing equation of motion. The contact patch is 

defined as a prescribed deformation that in turn is expanded in its Fourier components. 

The response of the tire is then separated into static (i.e. static deformation induced by the 

contact patch) and dynamic components due to inertial effects. The coupled system of 

equations is solved analytically in order to obtain the tire acoustic and structural 

responses. The model provides valuable physical insight into the patch-tire-acoustic 

interaction phenomenon. The influence of the acoustic cavity resonance on the spindles 

forces is shown to be very important. Therefore, the tire cavity resonance effect must be 

reduced in order to control the tire contribution to the vehicle interior.  The analysis and 

modeling of two feasible approaches to control the tire acoustic cavity resonances are 

proposed and investigated. The first approach is the incorporation of secondary acoustic 



 iii 

cavities to detune and damp out the main tire cavity resonance.  The second approach is 

the addition of damping directly into the tire cavity. The techniques presented in this 

dissertation to suppress the adverse effects of the acoustic cavity in the tire response, i.e. 

forces at the spindle, show to be very effective and can be easily applied in practice. 
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CHAPTER 1: INTRODUCTION 
 

n motorized vehicles there are many different noise sources. Vehicle noise can be 

annoying and stressful to drivers and, consequently, consumers continuously 

demand quieter automobiles.  The industry responds to this need with the 

development of new technologies to reduce vehicle noise. Therefore, noise reduction 

methods implemented over the last 30 years had led to a gradual transformation of the 

dominant noise source distribution for a modern vehicle.  

 

Figure 1.1 shows estimated of interior noise levels of the various vehicles’ noise sources 

as they evolved over the last 40 years (Sandberg, 2001). For instance, the exhaust noise 

have been controlled in succession by single, dual, and triple muffler systems leading to a 

rate of noise reduction of about 6 dB per decade.  This figure also indicates that in the 

1970s and early 1980s reduction of vehicles noise had been concentrated on the power 

unit. It is also interesting to note that by the late 80’s the tire has become the main noise 

source as the other sources have been significantly attenuated. Except for a tire profile 

treatment and the use of some compound material, no real technologies have been applied 

to control tire noise.  

 

As shown by the bibliography research performed by Kuijpers (2001), most of the tire 

models were mainly developed to predict external radiation. The reason for this fact is the 

new noise emission limits imposed in several countries including USA, focus on the 

external radiated noise reduction (Kuijpers, 2001). Several reports on the efforts and 

difficulties to meet regulations were recently discussed by Rochat (2002) and Sandberg 

(2001, 2002).  

 

However, the automotive industry continues to strive for interior noise control 

technologies as part of its effort to improve vehicle noise, vibration, and harshness 

characteristics. Controlling interior noise due to the tires has, thus, become a topic of 

great interest to both industry and academia.   

I 
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For a modern vehicle, the interior tire noise generation is divided into two mechanisms: 

the air borne and structure borne paths. The air borne path is the noise generated by the 

tire that propagates trough the exterior medium (air) and excites the vehicle external 

shell, resulting in cabin noise as explained by Sandberg and Ejsmont (2002). The main 

noise source for the air borne path phenomenon is the air displacement induced by the 

tire tread cavities, i.e. air pumping into and out of the tread cavities. This topic was 

investigated in depth by Chai et al. (2002) and Klein (2002).  

 

 

 

Figure 1.1: Evolution of vehicle noise sources and control technologies (Sandberg, 2001). 

 

On the other hand, the structure borne path is the noise due to the tire vibrations 

transmitted to vehicle spindle and then to the body structure of the car, resulting in 

interior noise. The main mechanism responsible for inducing vibrations is the sudden 

displacement of a tread element, in relation to its “rest position” in the rotating tire when 

it impacts the road surface. By “rest position” it is meant the position during that part of 
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the tire rotation which is not deflected by the road surface contact. The tire is also excited 

by the adhesion mechanism of the tread and the pavement where stick/slip and stick/snap 

processes take place. The stick/slip mechanism is due to tangential stresses in the rubber-

road interface. This mechanism causes a tangential vibration called “scrubbing”. The 

stick/snap is due to adhesive bonds between rubber and road which are broken at certain 

levels when rubber is pulled away from the road contact. 

 

As part of the structural borne mechanism, the tire resonances will greatly influence the 

forces at spindle and thus the interior noise. From the spindle, the main route of 

propagation of the vibrations originated by the resonances is believed to be through the 

solid parts of the vehicle, at least for a frequency range below 400 (Pietrzyk, 2001).  

Then, the solid parts of the vehicle excite the panels and surfaces of the vehicle cabin, 

which results in interior noise. It has recently been identified that one such tire 

resonance that shows rather prominently in the interior noise spectrum is due to the 

tire acoustic cavity, i.e. resonance of the air column inside the tire cavity. This newly 

identified effect has created a new challenge for researchers in the vehicle industry and 

the academic world. The challenge involves the modeling, understanding, and controlling 

of this tire cavity effect on interior noise. The effect of the acoustic cavity resonance as a 

new source in the generation of structural born noise is the main concern of this 

dissertation.  

 

 

1.1 LITERATURE REVIEW 

 

As indicated, the acoustic cavity resonance is a phenomenon recently discovered. The 

acoustic cavity inside the tire-wheel assembly was revealed to contribute to tire/road 

noise generation for the first time by Sakata et al. (1990). They performed both vibration 

and noise measurements in a test vehicle. The vertical point accelerance at the spindle 

was measured during a coasting test and it is shown in Figure 1.2. Simultaneously, the 

sound pressure level (SPL) was measured at the driver location. The SPL measurements 

are shown in Figure 1.3. In the point accelerance, three resonance peaks (indicated as A, 
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B, and C) can be seen. From previous studies, the resonance peaks A and C were known 

to correspond to the tire structural resonances (Sakata et al., 1990). However, the 

resonance labeled B was not related to any tire structural mode. To further investigate 

this resonance, the noise results of the coasting test shown in Figure 1.3 were further 

analyzed. It was noted that the resonance peak B had the same frequency as the peak in 

the SPL spectrum. It was suspected that peak B in Figure 1.2  was related to the tire 

acoustic cavity resonance.  

 

An additional road test was performed with the tires filled with polyurethane foam. In 

this manner, the tire acoustic cavity modes were completely damped out. The sharp peak 

observed at the frequency of 250 Hz (peak B) in both the acceleration and noise spectra 

was eliminated by the foam. From the observation of the experimental results, the 

resonance at 250 Hz was attributed to the acoustic cavity resonance. The main 

implication of this study was that the tire acoustic cavity was an important source on 

vehicle interior noise that needs to be understood and controlled. 

  

 

Figure 1.2: Vertical acceleration level at the spindle in a coasting test (Sakata et al. 1990). 

 

Tire cavity 
resonance 
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The effect of the tire deformation resulting from the contact with the ground was also 

investigated in the Sakata et al. (1990) work . Sakata et al. (1990) observed the presence 

of two acoustic modes for the deformed tire in contact with the ground as compared to 

the single mode observed in the non-deformed or free tire system. The two modes on the 

deformed tire occur because of the break in the axis-symmetry due to the contact patch. 

These modes have the same pattern but one is rotated 90° relative to the other as shown 

in Figure 1.4. Therefore, these resonance frequencies were divided into a low and  high 

mode, respectively. The low frequency mode is that for which the contact patch becomes 

the nodal point, while the high frequency mode is the same mode rotated 90°, i.e. anti-

node at the contact patch position. The low frequency mode excites the spindle in the 

horizontal direction, whereas the other mode excites the spindle in the vertical direction. 

Since the excitation forces are inputs from the road surface, the latter mode had a larger 

effect in the interior noise (Sakata et al. 1990).  

 
 

 

Figure 1.3: Effects of filling the tire cavity with polyurethane foam on the sound pressure 

level at the driver place in a coasting test (Sakata et al., 1990). 

 

Tire cavity 
resonance 

EFFECTS 
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                          Low frequency mode                         High frequency mode 

Figure 1.4: Dominating modes of the tire cavity resonance (Yamauchi and Akiyoshi, 
2002). 

 

Five years later, Thompson (1995) modeled the tire acoustic cavity by using simple 

approximate geometrical cavities as shown in Figure 1.5. The models consist of an 

unwrapped torus representation for the free tire in Figure 1.5a and three connected 

cavities for the deformed tire as shown in Figure 1.5b. In the case of the deformed tire, 

the deflected tire acoustic cavity had no longer a constant cross section in the region the 

tire is in contact with the ground. However, this tire sector was modeled as a constant 

cross section. In both models, sound in the tire was treated as consisting of plane waves, 

i.e., low frequency approximation where the wavelength is much greater than the cavity 

cross sectional dimensions. In addition, the periodicity of the system at the end 

boundaries was considered. The acoustic cavity natural frequencies were predicted with 

relatively good accuracy. Thompson (1995) also presented some qualitative information 

about the direction of the forces at the vehicle spindle. 
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Figure 1.5: (a) Un-deformed or Free Tire model, (b) Deflected tire model (Thompson, 

1995). 

 

For the case of structure born noise, the most effective approach to reduce the noise is by 

modification of components in the structural path. Thus, it is common practice to develop 

large detailed computer models of the vehicle components using finite element (FE) 

models as Nakajima et al. (1992). Subsequently, the component models are integrated 

using sub-structuring techniques for analysis of the complete system. The tire model is 

one of such substructures.  

 

Finite element models have been a very common tool used to investigate tire dynamics.  

Olatunbosun and Burke (2002) presented a complete finite element tire model, which 

accounts for hub loading, non-linear effects due to the tire inflation, and tire/road contact 

effects studying the interaction between the tire and the surface of the road. This finite 

element model did not account for the tire acoustic cavity. Another FE based model 

accounting for the forces induced on the tire by road irregularities was introduced for 

Belluzzo et al. (2002). The model was used to study the influence of the different 

pavement textures upon the tire. This model also excludes the tire acoustic cavity which 

is going to have a strong influence for some tire size in the range of frequencies that 

Belluzzo et al. (2002) studied. Darnell and Kestler (2002) presented a finite element 

model to account for the tire-terrain interaction. The model was used to show the tire 

(a) (b) 



Leonardo Molisani Chapter 1. Introduction 8 

footprint characteristics such as deflection, areas (contact patch), and stresses for rigid 

and deformable soil surfaces. Sobhanie (2003) developed a finite element model to study 

the forces in the tire/suspension system when a quarter car model traverses an obstacle 

such as pothole or bump. The model presented by this author was developed by using 

ABAQUS and the tire acoustic cavity was not included in the study. 

 

Clayton and Saint-Cyr (1998) numerically incorporated the dynamics of the tire acoustic 

cavity into an existing 130,000 degree of freedom tire FE model. These researchers 

modeled the tire cavity using FE and used three different formulations to take into 

account the fluid-structure coupling.  The results of this approach are shown in Figure 

1.6. The Dynamic Stiffness in the vertical direction is shown in this figure. The results 

from the tire-cavity FE model are shown together with experimental data. The very large 

peak in the figure corresponds to the tire acoustic cavity resonance. The model 

underpredicts the tire acoustic cavity resonance. This effect was attributed to modal 

truncation errors.  

 

 

Figure 1.6: Dynamic Stiffness comparison (Clayton and Saint-Cyr, 1998). 
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Until 2002, no practical control approach to solve the cavity resonance problem has been 

presented in the open literature. Yamauchi and Akiyoshi (2002) proposed the first and 

only open literature control technique to improve the cavity effect in the driving comfort. 

Yamauchi and Akiyoshi (2002) have used detailed FE models to investigate potential 

noise control solutions to the cavity acoustic resonance problem. Experiments were also 

performed to validate the control approaches.  

 

The technique presented to control the tire acoustic cavity resonances by Yamauchi and 

Akiyoshi (2002) was based in changing the excitation direction. Then, the wheel is no 

longer exited in the vertical direction and the forces at the spindle are diminished and 

consequently the interior noise is improved.  

 

It was speculated that in order to accomplish for the change in the direction of excitation, 

the cavity acoustic system had to be changing with the tire rotation. The changes in the 

tire acoustic system was achieved by using an oval wheel, i.e., change the tire cross 

section along the azimuth direction. The oval wheel was created by attaching two 

identical parts positioned at opposite sides of the rim of the wheel as shown in Figure 1.7. 

The attached components were configured with closed and open ends. The open ends 

case results in a secondary cavity inside the attached part.   
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Figure 1.7: trial wheels (Yamauchi and Akiyoshi, 2002) 

 
 
The control concepts were tested in a standard drum test at 50 km/hr. The results of the 

experiment are shown in Figure 1.8. This figure shows the noise level spectrum for the 

wheel without attachments (in red), the wheel with open edges attachments (in blue), and 

the wheel with closed edges attachments (in green), respectively. The results show that 

only "the close edge oval wheel” reduced the cavity resonance by approximately 6 dB.  

An explanation for the poor performance of the open edge oval wheel case was omitted 

in this work. 

 

Open edge 

Closed edge 

Attached parts 
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Figure 1.8: Approach to control the cavity effects (Yamauchi and Akiyoshi, 2002). 

 

The literature review reveals limited work related to the problem of interior vehicle noise 

due to the tire cavity resonance. It can be summarized that: (i) the open literature offers 

simple models to predict only the natural frequencies of the tire cavity and qualitatively 

predict the direction of the forces at the vehicle spindle, (ii) most of the modeling effort 

to compute the tire dynamics have focused on FE techniques that hampers the 

understanding of the physics involved in the tire-cavity coupling problem, and (iii) the 

lack of well understood and validated control approaches. Therefore, there is a need for 

analytical closed form solutions to help gaining insight into the coupling phenomenon 

and subsequently permit developing practical techniques to control this cavity acoustic 

resonance problem.   
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1.2  OBJECTIVES OF THIS WORK 

 

The tire problem is amenable to be modeled analytically leading to close form solutions. 

The close form solutions can be effectively used to provide valuable insight into the 

physical mechanisms of the effect that the acoustic cavity resonances have on the 

transmitted spindle forces. This knowledge can be difficult to uncover from the 

complexity of numerical solutions such as those provided by Finite Elements or/and 

Boundary Elements models presented by previous researchers. In addition, the 

understanding of the physics will help in the design and analysis of potential 

modifications for the control of this noise source.  

 

The dynamic behavior of the tire acoustic cavity affects the tire response which in turn 

determines the forces at the spindle. In order to incorporate the dynamics of the cavity, 

the tire acoustic-structure coupled problem needs to be solved. Moreover, the tire 

acoustic and structural responses have to be solved simultaneously due to the coupling 

between them, i.e. fully coupled problem.  

 

Therefore, the main objectives are:  

 

1. To develop an analytical model of the tire to account for the effect of the tire cavity 

resonances on the spindle forces. A closed form solution model can be developed 

and be an effective tool, i.e. it can capture in a relative accurate way the physics of the 

problem. 

 

2. To use the tire model to understand the physics of the mechanism of tire-cavity 

coupling. In order to identify an effective noise control solution, it is important to 

understand the physical mechanisms that lead to significant spindle forces due to the 

tire cavity acoustic resonances.  

 

3. To investigate and model potential techniques to control the cavity effects. After, the 

coupling mechanism is revealed several control techniques are investigated and 
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incorporated into the tire model. Therefore, the model is a valuable tool to qualify 

interior vehicle noise reduction due to the proposed control approaches.   

 

 

1.3 FOREMOST ORIGINAL CONTRIBUTIONS OF THIS WORK 

 

This dissertation will result in several new contributions to the body of knowledge in this 

field.  

 

1. Development of the first analytical model of the fully coupled tire structure–

acoustic cavity.  Until now, there are tire models based on very large FE codes or 

simple models incomplete from the point of view of the quantification of the acoustic 

cavity effects in the spindle forces. The model developed here is the first ones that 

model the interaction between the tire structure and acoustic cavity by using close 

form solutions. The model also incorporates feasible techniques to control the tire 

acoustic cavity resonances. 

 

2. Allow to gain physical insights into the coupling phenomenon. The versatility of the 

analytical model permits to investigate the contribution of the acoustic and structural 

parameters in the coupling phenomenon.  

 

3. Analysis of control techniques to reduce the effect of the tire acoustic cavity 

resonances. A general modeling approach is developed to investigate potential 

control techniques that affects the tire cavity resonance using secondary cavities. The 

technique is also demonstrated using numerical simulations.  
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1.4 DISSERTATION ORGANIZATION  

 
This dissertation is organized in five chapters with a number of appendixes. Chapter 1 

provides an introduction and literature review for this effort. The principal contributions 

of this work to the current body of knowledge are highlighted. 

 

In Chapter 2, the equations of motion for the tire structure were obtained and the spectral 

properties computed. The cavity acoustics is not included in this initial formulation. 

Using the structure eigenproperties, the responses for two tire configurations are 

developed: (a) response for a “free tire" or un-deformed tire subjected to a point force 

excitation and (b) the response of the “deformed tire” due to the contact patch induced by 

the tire/road interaction. In this last case, the excitation is due to the effect of the contact 

patch due to the roughness of the road. The tire modal responses are then used to 

compute the forces at the spindle. 

 

Chapter 3 presents the general acoustic problem and the derivation of the acoustic 

pressure for the interior of the tire. The eigemproblem for the tire acoustic cavity was 

solved here. This task provided the eigenvalues and eigenfunctions for the cavity sound 

field. Then, the equations of motion for the coupled system were developed to obtain the 

modal responses, which were again used to compute the forces at the vehicle spindle. 

 

In Chapter 4, two approaches to control noise are presented. The analytical models 

developed in chapter 2 and 3 are extended to study these control approaches to suppress 

the response of the tire cavity acoustic resonances.  Here, the first noise control technique 

uses secondary cavities to control the main tire cavity resonance. The second approach 

presented is based on adding damping in the interior of the tire main cavity by using 

viscoelastic screens. 
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In Chapter 5, the conclusions and recommendations obtained from the analysis and study 

of this research project are presented. Several topics are suggested for future research in 

the tire noise reduction problem.  

 

It is important to emphasize that the results obtained from the analytical models 

developed in this work were compared against experimental data. This comparison 

allowed to determine the capability of the models to capture the key features of the 

acoustic cavity problem. The experimental results were obtained from the work by 

Yamauchi and Akiyoshi (2002). It was decided to compare appropriate predicted and 

measured results through out the dissertation as the various models are developed. The 

predicted versus measured comparison was performed for a tire size 195/65 R15. 

Appendix A describes the tire size nomenclature. The experimental results are used to 

validate the tire models presented in Chapters 2 and 3 of this effort. 
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CHAPTER 2: STRUCTURAL MODEL  
 

 

he core of this chapter is the development of the model for the in vacuo tire 

structure, i.e., without the acoustic cavity included. The modeling of the tire 

structure includes the formulation for the “un-deformed or free” and 

“deformed” tire cases. In addition, the formulation to compute the forces at the spindle is 

presented. The “free tire” is the model of the unsupported tire. In this model, the external 

excitation is a harmonic point force acting normal to the external surface of the tire. The 

“deformed tire” development includes the modeling of the contact patch area using a 

Fourier’s1 series expansion. A prescribed displacement is imposed on the tire yielding to 

a static displacement field due to the contact patch. Afterward, a harmonic vertical 

motion of the tire is superimposed that results in an effective load acting on the tire and 

the associated dynamic response. A variational method is then used to obtain the resulting 

forces acting at the spindle, which are transmitted to the vehicle body. Lastly, numerical 

results for the tire models are shown. Validation of both the “free tire” and the “deformed 

                                                 
1 Jean Baptiste Joseph Fourier 
Born: March  21, 1768, Auxerre, France. 
Died: May 16 1830 Paris, France. 
 
Fourier studied the mathematical theory of heat conduction. He established the partial differential equation 
governing heat diffusion and solved it by using infinite series of trigonometric functions.  
Fourier trained for the priesthood but did not take his vows. Instead took up mathematics studying (1794) 
and later teaching mathematics at the new École Normale.  
 
In 1798 he joined Napoleon's army in its invasion of Egypt as scientific advisor. He helped establish 
educational facilities in Egypt and carried out archaeological explorations. He returned to France in 1801 
and was appointed prefect of the department of Isere by Napoleon.  
 
He published "Théorie analytique de la chaleur" in 1822 devoted to the mathematical theory of heat 
conduction. He established the partial differential equation governing heat diffusion and solved it by using 
infinite series of trigonometric functions. In this he introduced the representation of a function as a series of 
sines or cosines now known as Fourier series. 
 
Fourier's work provided the impetus for later work on trigonometric series and the theory of functions of 
real variable. 
 
(Source: http://www.sci.hkbu.edu.hk/scilab/math/fourier.html ) 
 

TT 
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tire” model is also included by comparison with experimental results obtained from 

Yamauchi and Akiyoshi (2002).  

 

 

2.1 FREE  TIRE MODEL 

 

For an analytical closed form analysis, the tire was modeled as two shells of revolution 

and two annular plates as shown in Figure 2.1. In this model, the outer shell was assumed 

to be the only elastic component while the inner shell and the two annular side plates are 

considered to be rigid. The outer shell has thickness Shellh , radius a, tire width LT, and the 

inner shell radius is b. The structure connecting the tire to the spindle is also considered 

to be rigid. The boundary conditions for the outer shell were assumed to be simply 

supported, i.e. shear diaphragm edge conditions. The system is also assumed to be 

stationary, i.e. no rotation.  

 

The equations of motion used for the thin circular cylindrical shell follow the Donnell-

Mushtari theory, (Leissa, 1993, Soedel, 1993, and Ventsel et. al., 2001). The first step in 

the model of the tire structure is to solve for the eigenvalue problem of the self-adjoint 

Donnell-Mushtari operator. The displacement vector is defined as {u,v,w}T where (u) is 

the axial, (v) tangential, and (w) radial  components as shown in                              

Figure 2.1. For the simply-supported cylindrical shell of finite length, LT, the harmonic 

displacement vector oscillating a frequency ω  is given as 

  { }
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⎩ ⎭ ⎪ ⎪
+⎪ ⎪

⎪ ⎪⎩ ⎭

 (2.1) 

Note that in this equation the angle γ  is undefined due to the axis-symmetry of the 

problem. This angle is determined by the position of the external load. For the sake of 
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clarity, the angle γ  is set to zero for the rest of the derivation since the external load will 

be acting along the vertical direction. 

 

In equation (2.1), each pair of indices (m,n) define the modal pattern, i.e. m and n define 

the axial and azimuth variation of the mode shape, respectively. The displacement vector 

in (2.1) defines the mode shapes. 

 

 

 

                                               Figure 2.1: Simplified tire model. 

 

To find the natural frequencies, the Donnel-Mushtari-Vlasov operator is applied on the 

displacement vector as 

 

2 2 2 2 2 2 2(1 ) (1 ) (1 )2    2 2 22 2
02 2 2 2 2 2 2 2(1 ) (1 ) (1 )    02 2 22 2
0

2 2 2(1 )41 2

v v a v aa va
E x xx t

u
v a v a v a v

x Ex t w
v ava K

x E t

ρ
θθ

ρ
θ θθ

ρ
θ

⎡ ⎤∂ − ∂ − ∂ + ∂ ∂⎢ ⎥+ −
∂ ∂ ∂⎢ ⎥∂ ∂ ∂

⎢ ⎥ ⎧ ⎫ ⎧ ⎫
⎢ ⎥+ ∂ ∂ − ∂ − ∂ ∂ ⎪ ⎪ ⎪ ⎪+ − ⋅ =⎨ ⎬ ⎨ ⎬⎢ ⎥∂ ∂ ∂∂ ∂ ∂ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎢ ⎥

∂ ∂ − ∂⎢ ⎥+ ∇ +⎢ ⎥∂ ∂ ∂⎣ ⎦

(2.2) 

i tFe ω

 a 

  b 

        z 
 
  y 

     x 

Inner Shell 

 
Annular side   

plate 

Outer shell 

Spindle Force, Fz 

    Spindle 
Moment, My 

Spindle 

    External Force 

  LT   d 

θ 

 w 

u 
 v 

Outer Shell 

Spindle 

 

Inner Shell 



Leonardo Molisani Chapter 2: Structural Model 19 

 

where ρ  is the tire material density, E  is the tire Young’s Modulus, ν  is the Poison 

ratio, and K  is the nondimensional tire thickness parameter given by 
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 (2.3) 

 

Replacing (2.1)  into (2.2)  leads to  

 

2
2 2 2

m

2 2 2

2 2 2 2

(1 ) (1 )   
2 2 0

(1 ) (1 )    0
2

01 ( )

m m

m m

m m

v vn n v
U

v n v n n V
Wv n K n

λ λ λ

λ λ

λ λ

⎡ ⎤− +
− − + Ω⎢ ⎥

⎢ ⎥ ⎧ ⎫ ⎧ ⎫
+ ⎪ ⎪ ⎪ ⎪⎢ ⎥− − + Ω − ⋅ =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎩ ⎭− + + − Ω⎢ ⎥
⎢ ⎥⎣ ⎦

   (2.4) 

 

where Ω  is referred as the normalized frequency, and is defined as 

 

 
( )21

  
v

a
E

ρ
ω

−
Ω =  (2.5) 

 

and
 

 
0

1, 2,3,... limm x
T

m a with m
L δ

πλ
→

=                =  (2.6) 

 

The eigenvalue problem in (2.4) will yield the shell natural frequencies and mode shapes. 

For each pair (m, n) defining a response pattern, the eigenvalue problem results in three 
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natural frequencies which define three modes. In general, these modes are characterized 

by the dominance of one of the displacement vector component, i.e. longitudinally (i.e. 
( )j
mnU > ( )j

mnW  and ( )j
mnU > ( )j

mnV ), tangentially (i.e. ( )j
mnV > ( )j

mnU  and ( )j
mnV > ( )j

mnW ), and radially (i.e. 

( )j
mnW > ( )j

mnU  and ( )j
mnW > ( )j

mnV ) dominated modes. The eigenvalues and eigenvectors are: 
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By replacing the eigenvector given in equation (2.7)  into (2.1)  leads to the 

eigenfunctions (or mode shapes) 
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 (2.8) 

 
Characteristic radial modal patterns for a circular cylindrical shell supported at both ends 

by “shear diaphragms” are shown in Figure 2.2. For instance, the ( )1
11Φ  structural mode 

represents a half sine wave in the longitudinal direction and a complete cosine wave in 

the azimuth direction. The mode shapes with azimuthal index n=0 are referred to as 

“breathing” modes, while for n=1, they are noted as “bending” modes because the shell 

behaves similarly to a beam, i.e. no cross section deformation. 
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                         Figure 2.2: Radial nodal patters for circular cylindrical shells. 

 
For the forced response without considering the tire acoustic cavity coupling, the 

differential equation of motion is now given by 
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where Ω  is the normalized excitation frequency defined in equation (2.5). Here, the 

external load vector { }, , T
u v wf f f  is assumed to be due to a harmonic point force as 

shown in Figure 2.1. Note that uf , vf , and wf  are the axial, azimuthal, and radial 

components of the external load, respectively. The force amplitude is F , and fx  and oθ  

are the position in the axial and azimuth direction, respectively. The external force vector 

is then given by 
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where ( ).δ is the Dirac’s delta function and [ ]cL  is the elastic component of the shell 
operator defined in (2.4) given as 
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The response is now expressed in terms of a linear combination of the modes as              
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where 
( )j
mnA are the modal amplitudes of the (m,n) mode for the jth component and [ ]mnΦ  

is the 3x3 (m,n) modal matrix, i.e.  [ ] ( ){ } ( ){ } ( ){ }1 2 3
mn mn mn mn

⎡ ⎤Φ = Φ Φ Φ
⎣ ⎦

. 

 

To solve for the modal amplitudes, equation (2.12) is replaced in (2.9) pre-multiplied by 

the transpose of the modal matrix, and integrated over the surface of the cylinder. That is: 

 

        [ ] [ ] [ ]( ) [ ]

( )

( )

( )

[ ]

1

2 2
22

1 0 1 00 0 0 03

mn uL LM N M N
T T

rs c mn mn rs v
m n m n

wmn

A f
L I A adxd f adxd

fA

π π

θ θ
= = = =

⎧ ⎫ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪Φ − Ω Φ = Φ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎪ ⎪⎩ ⎭

∑∑ ∑∑∫ ∫ ∫ ∫          (2.13) 

 

Expanding equation (2.13) as follow: 
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A

A

A

f
L ad dx I ad dx f ad dx

f

π π π

θ θ θ
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⎧ ⎫ ⎧ ⎫⎪ ⎪⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦

⎩ ⎭⎪ ⎪⎩ ⎭

Φ Φ −Ω Φ Φ ⋅ = Φ∑∑ ∫ ∫ ∫ ∫ ∫ ∫   (2.14) 

 

Considering the orthogonality properties of the mode shapes leads to the modal mass 

[ ]mnM  and modal stiffness [ ]mnK  matrices as follow  

 

             [ ] [ ][ ] [ ] [ ] [ ]
2

0 0

ˆ
2 2

L
T T

mn mn mn mn mn n mn n
aLI ad dx M aL M

π π πθ ε ε⎡ ⎤Φ Φ = = Φ Φ = ⎣ ⎦∫ ∫                 (2.15) 

and 

                    [ ] [ ][ ] [ ] [ ] { }
2

2

0 0

 
L

T
rs c mn mn mn mnL ad dx K M

π

θΦ Φ = = ⋅ Ω∫ ∫                                        (2.16) 

where 

 

           2 for n 0
1 for n  0nε

=⎧
= ⎨ >⎩

 

 

The right hand side of  (2.14) results in the generalized force vector 
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sin cos
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T f
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f Wf
x

f f f ad dx a W n
a

ff W

π

θ λ θ

⎧ ⎫ ⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎛ ⎞⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = Φ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎜ ⎟
⎝ ⎠⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∫ ∫           (2.17) 

 

Thus, the modal amplitudes are obtained by solving the following uncoupled system of 

algebraic equations  

 

 [ ] [ ]

( )

( )

( )

{ }

1

22

3

0,1,2,...,
1,2,3,...,

mn

mn mn mn mn

mn

A
n N

K M A f
m M

A

⎧ ⎫
⎪ ⎪ =⎪ ⎪⎡ ⎤− Ω =                 ⎨ ⎬⎣ ⎦ =⎪ ⎪
⎪ ⎪⎩ ⎭

 (2.18) 

 
or 
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⎢ ⎥ ⎪ ⎪ ⎪ ⎪− Ω⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 (2.19) 

 

The modal amplitudes obtained in the uncoupled system of equation (2.19) are replaced 

back into equation (2.12) to obtain the displacement field.  The damping in the tire 

structure is incorporated in the equation of motion by using the complex Young’s 

modulus as 

 

 ( )1c ShellE E iη= +   (2.20) 

 
where Shellη  is the structural loss factor and i  is the imaginary unit, i.e. 1i = − . 
 

 

2.2 DEFORMED TIRE MODEL 

 

The aim of this section is to derive the model of the dynamic response of a deformed tire 

in vertical harmonic motion. The general steps in the development of the deformed tire 

model are shown in Figure 2.3. To this end, the deformation of the tire in the region in 

contact with the ground needs to be defined, i.e. contact patch model. In this work, the 

geometry of the contact patch area (footprint) follows the modeling approach used by 

Darnell and Kestler  (2002) and Sobhanie (2003).  The region of the tire deformed due to 

the contact with the ground is assumed to be perfectly defined by the geometry of the 

problem. That is, the tire deforms from a circular sector of curvature 1
a  to a flat surface 

as shown in Figure 2.3a. The contact patch imposes a prescribed deformation of the tire 

that needs to be defined. The size of this region (footprint) is completely defined by the 

static contact patch depth, h . The prescribed deformation function in turn induces a static 

displacement field on the rest of the tire which is shown in Figure 2.3b. This static 
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displacement field is obtained by using the classical equations for the elastic shells.   

After the static displacement field is obtained, a harmonic motion of the contact patch 

( )h t  around the equilibrium position defined by the contact patch depth h  is 

superimposed, i.e. ( )   with i th t h e hωε ε= + . This contact patch harmonic motion 

produces a dynamic displacement field due to the inertia properties of the elastic shell. A 

representation of the dynamic displacement is shown in Figure 2.3c. Thus, the 

formulation of the deformed tire case involves the modeling of the prescribed, static, and 

dynamic displacement fields. They are described in the following sections.  

   

 
Figure 2.3: Schematic of the contact patch modeling.  

 

Prescribed Deformation: The prescribed displacement is assumed symmetric with 

respect to θ π= . The prescribed displacement function ( ),d x θ  is assumed to be 

affecting only the radial direction, i.e. a point on the tire in contact with the ground 

moves along the radial direction. This modeling assumption is critical for the next step in 

finding the static displacement.  
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 Figure 2.4: Contact patch definition at x=LT/2. 

 

The domain of definition for the “contact patch” is given by 

 

 [ ] ( ) ( ){ }/ 0, / ,T p pD x x L h hθ θ θ θ⎡ ⎤= ∈ ∧ ∈ −⎣ ⎦  (2.21) 

 

The following geometrical relations are obtained from Figure 2.4, 

  

 ( ) ( )
cos

,
a h

r x
π θ

θ
−

− =  (2.22) 

and 

                                                     ( )( )cos p
a hh

a
π θ −

− =  (2.23) 

An explicit functional relationship between pθ and ( )h t  can be obtained from expression 

(2.23) as 

 

 1cosp
a h

a
θ π − ⎡ ⎤−

= − ⎢ ⎥
⎣ ⎦

 (2.24) 

 

Note that this is a non linear relation between pθ  and h .  

a

( ),r x θ  

h  

a h−  

pθ  

Ground  

Point moves 
along radial 

direction
( , )d x θ  θ  
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Solving for a h−  in equation (2.22) and substituting into equation (2.23), the value of  

( ),r x θ  yields   

 

 ( )
( )( )

( )
cos

,
cos

p h
r x a

π θ
θ

π θ

−
=

−
 (2.25) 

 

The value of the prescribed displacement is then given by 

 

 ( ) ( ) ( ), 1 ( 0)
cos T

a hd x a H x L H x
a

θ
π θ

⎡ ⎤−
= − − − −⎡ ⎤⎢ ⎥ ⎣ ⎦ −⎣ ⎦

 (2.26) 

or 

 

 ( ) ( ){ } ( ), sec ( 0)Td x h a a H x L H xθ θ⎡ ⎤= −  − − − −⎡ ⎤⎣ ⎦⎣ ⎦  (2.27) 

 
where (.)H  is the Heaviside’s unit step function.  

 

The prescribed deformation function given by equation (2.27) is illustrated in  

Figure 2.5 assuming 0.01h m=  for a tire size 195/65 R15. 
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Figure 2.5: Prescribed deformation function ,2
TLd θ⎛ ⎞ ⎜ ⎟

⎝ ⎠
 for a tire size 195/65 R15 and 

0.01h m= . 

 

Static Displacement: The prescribed deformation function ( ),d x θ  induces a static 

deformation in the elastic shell as shown in Figure 2.3b. In order to find the static 

displacement, the prescribed deformation is approximated by the eigenfunctions of the 

shell. The selection of these functions simplifies the approach because they satisfy the 

shell equations and the simply supported boundary conditions (“shear diaphragms”). That 

is, 

 

 
( ) ( ) ( )3, sin cos      with      1, 2,3,...,

0,1, 2,...,

M N
S

mn
m n T

nw x W x n m M
L

n N

πθ θ
⎛ ⎞

=  =⎜ ⎟
⎝ ⎠

=

∑∑  (2.28) 

Note that the static displacement in (2.28) is written only for the radial component of the 

displacement field. The other two components of the displacement field will be defined 

 

Undeformed Tire 
Shell 

( )p hθ−( )p hθ

h  
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later. The aim now is to solve for the unknown amplitude ( )3
mnW . To this end, the radial 

component of the static displacement is forced to match the prescribed displacement 

(defined only in term of the radial displacement component) over the contact patch 

sector. It is important to remark that this “matching” can be carried out because the 

prescribed displacement was defined as a radial displacement. That is 

 

 ( ) p p( , ) ,             on        0 , -

                                                    

sd x w x x Lθ θ θ θ θ= < <     < <  (2.29) 

Replacing equation (2.28) into equation (2.29), and integrating over the domain defined 

by the contact patch, it gives  
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n sW x n x r ad dx
L L
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θ

θ

πθ θ θ

π πθ θ θ

−

−

⎛ ⎞
   =⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
=     ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫

∑∑∫ ∫
   (2.30) 

 

that represents a linear system of equations as 

 

 ( ) ( ){ } ( ){ }3
nr sn srI h W f h⎡ ⎤ =⎣ ⎦  (2.31) 

 

where the matrices ( )nrI h⎡ ⎤⎣ ⎦  and ( ){ }srf h  are fully populated and can be found in 

Appendix B. The vector ( ){ }3
snW  is obtained by inverting the matrix ( )nrI h⎡ ⎤⎣ ⎦ . 

 

To illustrate the prescribed and static displacement fields several results are shown in 

Figures 2.6 to 2.8. Figure 2.6 shows the radial displacement of the shell center line for the 

static problem induced by the prescribed deformation function ( ),d x θ  for 0.01h m= .  

The contact patch boundary in the azimuth direction for 0.01h m=  is 165.6o
pθ = . 

Several terms are included in the series until the contact patch is well approximated and 
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therefore equation (2.29) is satisfied. The radial component of the displacement field 

matches very well the prescribed deformation domain.  
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           Figure 2.6: Radial displacement due to prescribed deformation at 
2
TLx =  for tire 

size 195/65 R15 and  0.01h m= . 

 

In Figure 2.7 the radial static displacement field Sw  is shown. The upper figure 

represents the complete tire shell. The lower figure shows the contact patch region in 

detail. Therefore, the three-dimensional form of the contact patch modeled in this effort 

can be appreciated. The contact patch boundary in the axial directions is shown as well.  
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Figure 2.7: Radial displacement field Sw [m] for tire size 195/65 R15 with 0.01h m= . 

 

In Figure 2.8, the static displacement predicted by the model is compared with 

experimental data collected by Yamauchi and Akiyoshi (2002) for a tire size 195/65 R15. 

The geometric parameters and material properties of the selected tire are given in 

Appendix A. This figure shows the radial displacement the “deformed tire”, ws, and the 

prescribed displacement function, ( ),d x θ ,  around the tire in the azimuth direction at the 

center line x=LT/2. The radial displacement, ws, matches the contact patch very well. 

However, a very significant oscillation is observed and it is due to the (1,8) mode. In 

order to compare the experimental data, an moving average of the static displacement 

away from the contact patch is also plotted (blue line). The average curve shows similar 

trend as the experiments. This suggests that the model overemphasizes the high order 

mode component not observed experimentally.  Note that this (1,8) mode component 

associated to the oscillation will not contribute to the spindle forces because it does not 
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correspond to a “beam” mode with n=1 as described later in section 2.3. The predicted 

results shown in this figure are in relatively good agreement between the predicted and 

measured results in the contact patch area. 
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Figure 2.8: Radial displacement comparison between model and experimental data for 

tire size 195/65 R15 (Yamauchi and Akiyoshi, 2002). 

 

The formulation up to this point allows to find the radial displacement component, sw . 

That is the radial coefficient of the static displacement field as defined in equation (2.28). 

The other two components, i.e. axial su  and the tangential sv  can now be determined. 

Since the displacement vector { }, ,
Ts s su v w  must satisfy the elasticity equations, it can be 

written that  
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 (2.32) 

 
Once again expressing the displacement vector as a linear combination of the mode 
shapes 
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∑∑      (2.33) 

and replacing into equation (2.32), it gives 
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where the coefficients ( )3

mnW are known from equation (2.31). The system of equations is 
then rearranged to give 
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This system of equations is solved by least squares, i.e. pseudo-inverse, for the 

coefficients ( )3
mnU  and ( )3

mnV . The coefficients ( )3
mnU , ( )3

mnV , and ( )3
mnW  are replaced back into 

equation (2.33) to give the complete deformed static displacement field. 

 

 

Dynamic Displacement: The dynamic motion of the system is assumed to be produced 

by a harmonic vertical motion of the tire as shown in Figure 2.3c. The vertical motion of 

the tire translates into a time variation of the contact patch depth that can be expressed as   

 

 ( ) i th t h e ωε= +    (2.36) 

where ε  is the amplitude of the tire harmonic motion.  

 

Since in this research effort the focus is in developing a general formulation, response 

spectra for a constant amplitude of the vertical motion ε  is determined. The response for 

a realistic vertical motion spectrum, i.e. characterized by the road properties, can then be 

used in conjunction with frequency response functions computed here.   

 

The static displacement induced now by the time dependant contact patch depth, ( )h t ,  

oscillating with frequency ω  induces inertial forces in the tire shell. The inertial effects 

will produce a dynamic response that needs to be superimposed to the static deformation. 

The time-varying static displacement can be easily obtained by replacing h  with ( )h t  in 

(2.31) to gives  

 

( )( ) ( ){ } ( ( ){ }3
nr sn srI h t W f h t⎡ ⎤ =⎣ ⎦                      (2.37) 

 

However, this matrix is time dependent and to find an explicit inverse is practically 

impossible. To solve for the time-dependant vector ( ){ }3
snW , small displacements are 

assumed i.e. hε . Therefore, equation (2.31) is linearized with respect to ( )h t  by 
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using Taylor’s series expansion evaluated around the equilibrium position h . The 

expansion leads to 

 

 ( ){ } ( ) ( ){ } ( )( ) ( )( ){ }{ } ( ) ( )1 1 23 ( )sn nr sr nr sr
h

dW I h f h I h t f h t h t h O h
dh

− −
⎡ ⎤ ⎡ ⎤= + − +⎣ ⎦⎣ ⎦ (2.38) 

 

The derivative term can be computed as 

 

   ( ) ( ){ }( ) ( )( ) ( ){ } ( ) ( ){ }( )11 1
.nr sr nr sr nr sr

d d dI h f h I h f h I h f h
dh dh dh

−− −⎡ ⎤ = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦   (2.39) 

 

where the derivative of the matrix inverse ( )( )( )1

nr
d I h t
dh

−
⎡ ⎤⎣ ⎦  can be obtained from, 

 

 ( )( ) ( )( )( ) [ ]( )1
.nr nr

d dI h t I h t I t
dh dh

−
⎡ ⎤ ⎡ ⎤ =           ∀⎣ ⎦ ⎣ ⎦  (2.40) 

 

yielding 

 

 ( )( )( ) ( )( ) ( )( )( ) ( )( )1 1 1

nr nr nr nr
d dI h t I h t I h t I h t
dh dh

− − −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (2.41) 

 

Substituting equation (2.39) and (2.41) into (2.38), the { }snW  are given by 

 

 ( ){ } ( ) ( ){ } ( ) ( ){ }( )1 13 ( )sn nr sr nrW I h f h I h D h h t h
− −

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦  (2.42) 

 

where 

 

 ( ){ } ( ){ }( ) ( )( ) ( ) ( ){ }1

sr nr nr srh h

d dD h f h I h I h f h
dh dh

−
⎡ ⎤= − ⎡ ⎤⎣ ⎦ ⎣ ⎦  (2.43) 
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Since the contact patch depth has a harmonic motion with amplitude ε , the vector 
( ){ }3

snW  can be written as the sum of a static deformation ( ){ }3
snW  due to h  and an 

oscillating part ( ){ }3
snW  due to the harmonic oscillation around h . That is 

 

 ( ){ } ( ){ } ( ){ } ( ) ( ){ } ( ) ( ){ }1 13 3 3 i t i t
sn sn sn nr sr nrW W W e I h f h I h D h eω ωε

− −
⎡ ⎤ ⎡ ⎤= + = +  ⎣ ⎦ ⎣ ⎦  (2.44) 

 
The axial and tangential displacement components due to the harmonic component of the 

static displacement can again be computed using equation (2.43). Thus, the complete 

static displacement field and the time-dependant part are fully defined, i.e. 

{ } { } { }, , , , , ,
T T Ts s s s s s s s su v w u v w u v w= + .  It is important to note that it was found that 

the axial and tangential displacement components can be neglected since their 

contribution to the response is insignificant.   

 

The dynamic response due to the oscillating component of the static displacement field, 

{ }, ,
Ts s su v w , can now be determined. Applying the shell Donnell-Mushtari operator, 

[ ]D ML − , to the total displacement vector { }tu  yields 

 

 [ ] [ ]( ) { }2 0

t

t
c

t

u
L I v

w

⎧ ⎫
⎪ ⎪

− Ω =⎨ ⎬
⎪ ⎪
⎩ ⎭

 (2.45) 

 

where the total displacement vector is the contribution of the dynamic displacement due 

to the shell inertia and the time-dependant part of the static displacement due to the 

contact patch oscillation around h . That is 
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where 
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 (2.47) 

 

That is the axial su  and tangential sv  displacements are neglected.  

 

 Thus, equation (2.45) can be written as 

 

 [ ] [ ]( ) [ ] [ ]( )2 2

d s
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d s
c c v

d s
w

u u f
L I v L I v f

fw w

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪− Ω = − − Ω =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭ ⎩ ⎭

 (2.48) 

 
where the right hand side of equation (2.48) can be recognized as a loading term due to 

the oscillating static displacement.  

 

The procedure to solve the system of differential equation (2.48) is perform in  the same 

manner than for the case of the “free tire” model in section 2.1. Then, the response of the 

“deformed tire” model is then  used to compute the forces at the spindle. The modeling of 

the forces at the spindle is the topic presented in the next section. 
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2.3 FORCES TRANSMITTED TO THE “SPINDLE” 

 

The objective of this section is to formulate the expression for the forces transmitted to 

the vehicle spindle due to the vibration of the tire system. Then, these forces can be used 

as an input in FE models of the car structure.  

 

The previous sections described the steps to solve for the structural modal amplitudes. 

The approach to compute spindle force and moment is to first separate the elastic outer 

shell from the rest of the system and find the boundary forces per unit length of the outer 

flexible shell; i.e. the normal force Tx and tangential Sx as illustrated in Figure 2.9. 

Finally, the boundary forces are translated from the boundary to the spindle. This process 

results in a vertical force { }Total

Spindle
F  and a horizontal moment { }Total

Spindle
M  as shown in Figure 

2.9. These two forces keep the system in static equilibrium.  

 

Figure 2.9: Spindle force and moment. 

 

To compute the normal Tx and tangential Sx forces on the boundary of the elastic shell, a 

variational approach is used and shown in Appendix C. Then, the expressions of the 

resultants forces at the boundary are easily computed.   
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Using the results obtained in Appendix C, for the case of a circular cylindrical shell as the 

tire is modeled the following parameters must be set 

 

 

x
a

A a B a
R R aα β

α β θ= =

= =
= ∞ =

 (2.49) 

 

Consider a closed circular cylindrical shell of finite length L , which satisfies the 

boundary conditions at 0, Tx L =   given in the Appendix C as follow  

 

 

0 u 0

0

1 0

x

x
x x

x
x x

N
MN S v

a
MQ T w

a

θ
θ

θ

θ

= ⇒ ≠

+ = ⇒ =                                     

∂
+ = ⇒ =

∂

 (2.50) 

 
where Sx represent a tangential force per unit length, and Tx is a normal force per unit 

length. These forces are then translated to the spindle location and integrated over the 

shell boundary, i.e. 0 2θ π≤ ≤ . The final equations for the forces are developed now in the 

next paragraphs using the approximated shell theory given by Donnell-Mushtari -Vlasov. 

 

The strain-displacement relationship using Kirchhoff2 hypothesis in matrix form can be 

written as, Leissa (1993), 

                                                 
2 Gustav Robert Kirchhoff  
Born: 12 March, 1824, Königsberg, East Prussia (now Kaliningrad, Russia)  
Died: 17 Oct 1887 in Berlin, Germany 
 
Kirchhoff was a student of Gauss. He taught at Berlin (an unpaid post) from 1847, then at 
Breslau. In 1854 he was appointed professor of physics at Heidelberg where he collaborated with 
Bunsen.  
He was a physicist who made important contributions to the theory of circuits using topology and 
to elasticity. Kirchhoff's Laws, announced in 1854, allow calculation of currents, voltages and 
resistances of electrical circuits extending the work of Ohm. His work on black body radiation was 
fundamental in the development of quantum theory.  



Leonardo Molisani Chapter 2: Structural Model 40 

  [ ]1

0 0

1 10

1 0

x

x

x u u
v D v

a a
w w

a x

θ

θ

ε
ε

θ
ε

θ

∂⎡ ⎤
⎢ ⎥∂⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎢ ⎥

∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= ⋅ = ⋅⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

          (2.51) 

 

Replacing the displacement in terms of the modal amplitudes (with or without fluid 

loading effects), the strain becomes 

 

{ } [ ] [ ]{ }1
1 0

 
M N

mn mn
m n

D Aε
= =

= Φ∑∑  

 

The resultant forces at the boundary in matrix notation becomes 

 

( ) ( )

( ) ( )
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2 2
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0
1 1

0
1 1

0 0
2 1

x x

x x

Eh Ehv
v v

N
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ε
ε
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− −⎢ ⎥
⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥= ⋅⎨ ⎬ ⎨ ⎬⎢ ⎥− −⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭

⎢ ⎥
⎢ ⎥+⎣ ⎦

                                     (2.52) 

 

Once again in terms of the modal amplitudes is 
 

 [ ] [ ] [ ] [ ] [ ] [ ]{ }1 1 1
1 0

M N

mn
m n

N C C D Aε
= =

= ⋅ = ⋅ Φ∑∑  (2.53) 

 

Using the same approach, the resultant moments at the boundary becomes  

                                                                                                                                                 
His work on spectrum analysis led on to a study of the composition of light from the Sun. 
Kirchhoff was the first to explain the dark lines in the Sun's spectrum as caused by absorbsion of 
particular wavelengths as the light passes through a gas. This started a new era in astronomy.  
In 1875 he was appointed to the chair of mathematical physics at Berlin. Disability meant he had 
to spend much of his life on crutches or in a wheelchair. His best known work is the four volume 
masterpiece Vorlesungen über mathematische Physik (1876-94). 
 
(Source: http://www.acmi.net.au/AIC/KIRCHHOFF_BIO.html ) 
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 (2.54) 

 
 

The change in curvature can be expressed in terms of a linear combination of the modes 

 

 { } [ ] [ ]{ }2
1 0

M N

mn mn
m n

K D A
= =

= Φ∑∑  (2.55) 

 
that results in the resultant moments as 
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                            (2.56) 

 

In matrix notation equation (2.56) can be rewrite: 

 

 { } [ ] { } [ ] [ ] [ ]{ }2 2 2
1 0

M N
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and the  
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thus, 
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1 0

M N
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= ⋅ = ⋅ Φ∑∑  (2.59) 

 

Then, applying the “shear diaphragms” or simply supported boundary conditions  

 
0  at 0,x xw M N v x L= = = = =  

 

the tangential and shearing forces become  
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and in terms of the modal amplitudes results in  
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Therefore, 
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where  

 { } { }, ,0 T
x x xF T S=  (2.63) 

 
Next the boundary forces are projected into the Cartesian coordinates to give 
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or 
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where 

 { } { }, ,0y zF F F=  (2.66) 

 

The next step is to translate the forces per unit length from the shell left and right edges to 

the spindle point, located at the end on the car axis. The approach is represented in Figure 

2.9. 

 

The procedure yields a force 

 

 { } { } { }, 0 ,Spindle Left x Rigth x L
F F F

 =  =
= +  (2.67) 

and a moment 
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= × + ×  (2.68) 
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Finally, the spindle forces and moments due to the right and left boundaries are obtained 

by integrating along the shell edge 

 

                                  { } { } { }{ }
2
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0
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and 
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The final expression for the force at the spindle is 
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and 
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Where 
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2.4 FREE TIRE NUMERICAL SIMULATIONS 

 

In order to illustrate the models developed in this chapter, the 195/65 R15 tire size was 

used for the simulations. The geometric parameters and material properties of the 

selected tire are given in the Appendix A and in Table 2.1. The material properties of the 

tire were provided by Dimitri Tsihlas from Michelin North America (Tsihlas, 2001). 

Table 2.2 shows the natural frequencies for the tire structure over the [0-400Hz] 

frequency range. The dominant displacement component is also indicated in the Table. 

 

                          Table 2.1: Tire’s material and geometrical parameters 

Parameter Description 

LT  =  0.195m (7.68 in) Tire Width 

a = 0.318 m (12.52 in) Outer Radius 

b = 0.191m (7.52 in) Inner Radius 

hShell = 0.015m (0.59 in) Thickness 

d = 0.05m (1.97 in) Spindle length 

E = 75x106N/m2 Young’s Modulus 

ρ = 1350 kg/m3 Material Density 

η =0.03 Loss Factor 

v = 0.4 Poisson ratio 

F = 1 Force magnitude for the “free tire”  

 

 

 

 



Leonardo Molisani Chapter 2: Structural Model 46 

                   Table 2.2: Tire structure natural frequencies between 0 and 400 Hz 

m n frequency  [Hz] Mode Type
1 4 105.9 Radial
1 3 106.9 Radial
1 5 112.8 Radial
1 2 113.4 Radial
1 1 121.0 Radial
1 6 127.4 Radial
1 7 148.6 Radial
1 8 175.3 Radial
1 9 206.9 Radial
2 0 231.2 Radial
2 1 232.3 Radial
2 2 235.7 Radial
2 3 242.0 Radial
1 10 242.9 Radial
2 4 251.5 Radial
2 5 264.9 Radial
2 6 282.5 Radial
1 11 283.0 Radial
2 7 304.4 Radial
1 12 327.1 Radial
2 8 330.8 Radial
1 1 356.2 Tangential
2 9 361.6 Radial
1 13 375.2 Radial
1 2 377.4 Tangential
2 10 396.7 Radial  

 

 

The input harmonic force ( ) ( ). i t
w o ff F x x e ωδ θ θ δ= ⋅ − ⋅ −  is placed at 0oθ =  and 

2
T

f
Lx = . 

For the sake of completeness, the modal amplitude response for the fundamental mode is 

shown in Figure 2.10. 
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         Figure 2.10: Structural Modal Amplitude for mode ( )1
14Φ  with resonance at 105.9 Hz. 

 

The simulation was performed using the 25 modes corresponding to n=0,..,4 and 

m=1,..5, and the spindle forces computed. The spindle vertical force and the horizontal 

moment were normalized by the input force. Figure 2.11 and 2.12 show the vertical force 

and horizontal moment at the spindle, respectively. Though the tire structure is a modally 

rich system, the forces are dominated by the contribution of only two structural modes, 

i.e. the radial and tangential (1,1) modes. From the spindle force computation, it is seen 

that all forces and moments are zero for 1n ≠  (Greenspon, 1958), i.e. only “beam” type 

or n=1 shell modes transmit forces to the spindle. The motion corresponding to the case 

1n ≠  are the so called “lobar” vibrations of the cylinder, and there is not resultant force. 

This means that the centroid of the section moves in the transversal direction y during the 

vibration. The vibration produces a reaction at the support and a resultant bending of the 

entire cylindrical tire. Then, these forces are transmitted by a rigid spindle to the rest of 

the vehicle. 
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Figure 2.11: Vertical force Fz at the spindle.  
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Figure 2.12: Horizontal moment My at the spindle. 
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The radial displacement at the external force location of the tire is computed and shown 

in Figure 2.13. The radial displacement is dominated by the radial modes (1,3) and (1,0). 

 

To validate the model, the predicted point accelerance for the free tire is compared to 

experimental data in Figure 2.14. To compare experimental and analytical results a gain 

was applied upon the analytical results. The gain factor was selected in such a way to 

match the experimental with the analytical acoustic cavity resonance (see section 3.4). 

The same gain value is applied to all the results presented in this dissertation. The 

experimental data corresponds to the point accelerance shown in the work by Yamauchi 

and Akiyoshi (2002) for the tire 195/65 R15.  

 

The experimental data plotted in the figure shows the contribution of the acoustic cavity 

resonance at 238 Hz. The structure resonances at 107 and 142 Hz correspond to the radial 

(1,3) and radial (1,0) modes, respectively. The results in this figure show that the free tire 

model predicts very well the experimental data except around the acoustic cavity 

resonance which was not yet included in the model. Thus, this comparison validates the 

modeling approach. Additional comparisons will be presented later in this research effort 

to further validate the model. 
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Figure 2.13: Radial displacement for the in vacuo free tire model at the external force 

location. 
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Figure 2.14: Point accelerance for the in vacuo free tire at the location of the external  

                               force. Acoustic cavity resonance not included in the model. 
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2.5 DEFORMED TIRE NUMERICAL SIMULATIONS 

 

The deformed tire dynamics is also simulated for a contact patch depth 0.01h m=  and a 

harmonic oscillating 3 510 1 10h m mε − −= × = × . The simulation was performed using 124 

modes corresponding to m=1,..,4 and n=0,..,30. The modal amplitude response for the 

fundamental mode is shown in Figure 2.15. This figure shows a very different response 

above the mode resonance as compared to the un-deformed or free tire model in Figure 

2.10. The response shows a drop around 181 Hz which is due to the vanishing of the 

modal force given by the right side of equation (2.48). Note that in this case the modal 

force is frequency dependent.  
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Figure 2.15: Structural Modal Amplitude for mode ( )1

14Φ  with resonance at 105.9 Hz for 

                                                            the deformed tire model. 
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The vertical force transmitted to the spindle for the deformed tire model is show in Figure 

2.16. The radial (1,1) and tangential (1,1) modes are again the only modes contributing to 

the vertical force.  Comparing to the case of the “free tire” in Figure 2.11, the contact 

patch input yields a different response where both modes are now equally important. 

 

0 50 100 150 200 250 300 350 400
-36

-34

-32

-30

-28

-26

-24

-22

frequency [Hz]

M
ag

. F
or

ce
 [d

B
 - 

re
f. 

1 
N

]

 
Figure 2.16: Vertical Forces Fz at the spindle. 

 

The horizontal moment at the spindle is shown in Figure 2.17. The radial (1,1) and 

tangential (1,1) mode are again  the only ones present in the horizontal moment. 

Comparison with the horizontal moment obtained in the “free tire” model shows that the 

contacts patch excitation gives a response where both modes are equally dominating in 

the frequency range [0-400] Hz.   
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                                 Figure 2.17: Horizontal Moment My at the spindle. 

 

Figure 2.18 shows the radial displacement for the location ( )2, 0x L θ=  =  on the tire. 

The response obtained for the “deformed tire” case is very different form the one 

obtained in the “free tire” case. Figure 2.18 shows that many modes are present in the 

response of the “deformed tire”. The distributed nature of the contact patch excites most 

of the modes. This distributed nature is given by the corresponding components of the 

contact patch expansion.  
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Figure 2.18: Radial displacement for the in vacuo deformed tire model at 

location , 0
2
TLx θ⎛ ⎞=  =⎜ ⎟

⎝ ⎠
. 

 

Figure 2.19 shows a comparison between the point accelerance calculated by the 

deformed tire model (without the acoustic cavity) and measured in an experimental test 

by Yamauchi and Akiyoshi (2002).  From Figure 2.19, the tire model was able to capture 

relatively well the general dynamic behavior of the experiments. There are two main 

differences between the numerical and experimental results. Since the modeling of the 

acoustic cavity is not yet included, the numerical results do not capture the acoustic 

resonance at around 230 Hz. The other difference occur at low frequencies (<100 Hz) 

where the experimental data shows a resonance like behavior not shown by the model. It 

is speculated that the resonance at around 35 Hz doesn’t belong to the tire but is most 

likely associated to the experimental setup mounting and thus not modeled. Note that 

,02
TLw⎛ ⎞⎜ ⎟

⎝ ⎠
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(1,6) Radial 

(1,7) Radial 
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from Table 2.2 the fundamental tire frequency is at 105 Hz. In general, the model predicts 

well the dynamic behavior of the deformed tire thus validating the modeling approach. 
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                  Figure 2.19: Point Accelerance for the in vacuo deformed tire model 

                                                      at location , 0
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CHAPTER 3: COUPLED TIRE MODEL  
 

he tire models developed in Chapter 2 do not include the effect of the tire 

acoustic cavity. To account for the tire acoustic cavity in the structural 

response, an expression for the acoustic pressure produced by the motion of 

the tire has to be obtained. To this end, the acoustic mode shapes and 

natural frequencies of this cavity are computed (Fahy, 2000). The eigenproperties are 

then used to solve for the Green’s functions, which allow to compute the acoustic 

pressure due to the tire motion. In this Chapter, the modeling of the tire acoustic cavity is 

included in the structural models developed in Chapter 2. The “free tire” and “deformed 

tire” models are evaluated numerically and validated by comparison to experimental 

results. 

 

 

3.1 THE INTERIOR ACOUSTIC PROBLEM 
 

The problem here is to obtain an expression for the acoustic pressure ( )p r
�

 induced by the 

tire motion. The acoustic cavity pressure in turn affects the tire response i.e. experimental 

feedback. In Figure 3.1, the problem of finding the acoustic pressure in an enclosure is 

presented.  

 

 

 
 

                                         Figure 3.1: Interior acoustic problem. 

 

TT 

( )w r ∂ℑ�
�  

n
�
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Boundary ∂ℑ  ( )p r
�

 

r
�
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The acoustic cavity is the volume ℑ  defined by the elastic boundary ∂ℑ . The motion of 

the boundary is given by the velocity ( )w r ∂ℑ�
�   in the normal direction n

�
 to the surface 

creates the acoustic pressure ( )p r
�

. 

 

Before addressing the general problem of finding ( )p r
�

, a discussion on the general 

boundary conditions for this type of problem is presented. The boundary conditions on 

the domain surface ∂ℑ , i.e. inside cavity surface, can be expressed as 

 

 ( ) ( ) ( ) ,
p r

p r B r on
n

α β ∂ℑ

∂
+ =       ∂ℑ

∂
�

� �
 (3.1) 

 
where n  is the normal to the boundary ∂ℑ , ( )p r

�
 the acoustic pressure and , , and Bα β    

are given functions evaluated on the region ∂ℑ . The boundary condition relates the 

values of ( )p r
�

 on ∂ℑ  and the flux of ( )p r
�

 through ∂ℑ . The condition of 

0, 0, and onα β α β≥  ≥   + > 0  ∂ℑ  are required (Zauderer, 1989). If  0 and =0α β≠   , the 

boundary condition is called of the first kind or Dirichlet1 condition. If 0 and 0α β=   ≠ , 

the boundary condition is called of the second kind or Neumann2 condition. If 

                                                 
1  Dirichlet, Johan Peter Gastav Lejeune  
(1805-1859) 
 
Dirichlet was a German mathematician who studied at a Jesuit college and then at the Collège de France.  
He became a tutor for the royalty of France and met many famous mathematicians.  Although Dirichlet's 
main interest was in number theory, he also contributed in calculus and physics.   Dirichlet returned to 
Germany in 1826 and taught at the military academy and the University of Berlin.  He was good friends 
with colleague  Carl Jacobi. Dirichlet investigated the solution and equilibrium of systems of differential 
equations and discovered many results on the convergence of series.  In 1855, Dirichlet succeeded Gauss as 
the professor of mathematics at Göttingen. 
 
(Source:http://occawlonline.pearsoned.com/bookbind/pubbooks/thomas_awl/chapter1/medialib/custom3/bi
os/dirichlet.htm ) 
 
2  John von Neumann  
(1903–1957) 
 
Johnny, as it seems everyone called him, was one of those people who are so bright it’s hard to believe they 
were human. (Maybe he wasn’t. There’s an old joke about the Fermi Paradox, a problem which occurred to 
Enrico Fermi one day at Los Alamos: where are They? If there are intelligent aliens out there in the 
universe, why aren’t they here yet? A million years is nothing, as the universe reckons things, but, judging 
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0 and 0α β≠   ≠ , the boundary condition is called of the third kind or mixed kind. When 

B  does not vanish, the boundary conditions are of inhomogeneous type. If  B  and α  

vanish at the boundary the condition is “hard wall”. 

 

Consider now a general differential operator L  and  

 

 ( ) ( ) inLp r F r=       ℑ
� �

 (3.2) 

 
where ( )F r

�
 represent the external influences on the system. The operator L  is not 

assumed to be formally self-adjoint, L L≠ �  in order to keep the richness in the 

development. Therefore, the adjoint operator L�  of L  satisfies the equation (Roach, 1970) 

 

 ( ) ( )o oLG r r r rδ= −  �
� � � �

 (3.3) 

where ( )oG r r
� �

 is the Green’s function. The boundary condition are given by the adjoint 

of the operator ( )B r
�

. 
 
The inner product upon the domain ℑ  is defined as 

 

 ,x y x y d
ℑ

=   ℑ ∫  (3.4) 

                                                                                                                                                 
from our own track-record, a species only that much older than us would have technology which would 
blow our minds, pretty close to limits set by physical laws. Leo Szilard is supposed to have answered 
Fermi: “Maybe they’re already here, and you just call them Hungarians.”) About the only large current of 
the natural sciences in this century which von Neumann’s work has not added to is molecular biology. 
Almost everything else of any significance he touched: mathematical logic; pure math; quantum physics; 
computing (which, as we know it, is largely his invention), cybernetics and automata theory; the Bomb; 
turbulence; game theory (another invention) and so economics, evolutionary biology, and the theory of war 
and conflict; artificial life, cellular automata (a third invention), the theory of self-reproduction (which, 
with molecular biology, finally killed off any last lingering hopes for vitalism) and artificial evolution. 
What many of us like to think of as new and profound changes in the way science works, brought about by 
computer modeling and simulation, were foreseen and called for by von Neumman in the ’40s. If any one 
person can be said to be the intellectual ancestor of complexity and all that travels alongside it, it was 
Johnny. His only real rival for the honor is Norbert Wiener, a better man but a less overwhelming scientist.  
 
( Source: http://cscs.umich.edu/~crshalizi/notebooks/von-neumann.html ) 
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where the over-bar in equation (3.4) denotes complex conjugates (Naylor and Sell, 2000). 

 

Taking the inner product on equation (3.2) with the Green’s function ( )oG r r
� �

, it gives 

 

 ( ) ( ) ( ) ( ), ,o oG r r Lp r G r r F r=   
� � � � � �

 (3.5) 

 
and again the inner product on equation (3.3) by ( )p r

�
, it yields 

 
 
 ( ) ( ) ( ) ( ), ,o op r LG r r p r r rδ= −   �

� � � � � �
 (3.6) 

 
 Subtracting equation (3.6) from(3.5), the following relation holds 
 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,o o o oG r r Lp r p r LG r r G r r F r p r r rδ− = − −   �

� � � � � � � � � � � �
 (3.7) 

 

or 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )o o o oG r r Lp r p r LG r r d G r r F r p r r r dδ
ℑ ℑ

⎡ ⎤ ⎡ ⎤− ℑ = − − ℑ  ⎣ ⎦⎣ ⎦∫ ∫�
� � � � � � � � � � � �

 (3.8) 

 

Using the following properties of the three-dimensional Dirac3 delta  

                                                 
3 Paul Adrien Maurice Dirac   
(August 8 1902 - October 20 1984) 
 
Dirac was born in Bristol, Gloucestershire, England. In 1926 he developed a version of quantum 
mechanics, which included “Matrix Mechanics” and “Wave Mechanics” as special cases.  
 
In 1928, building on Pauli's work on nonrelativistic spin systems, he derived the Dirac equation, a 
relativistic equation describing the electron. This allowed Dirac to formulate the Dirac sea and predict the 
existence of the positron, the electron's anti-particle; the positron was subsequently observed by Anderson 
in 1932. Dirac explained the origin of quantum spin as a relativistic phenomenon. 
 
Dirac's Principles of Quantum Mechanics, published in 1930, pioneered the use of linear operators as a 
generalization of the theories of Heisenberg and Schrödinger. It also introduced the bracket notation, in 
which |ψ> denotes a state vector in the Hilbert space of a system and <ψ| its dual vector. Dirac also 
introduced Dirac's delta function. 
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 ( )

( ), within
1( ) ( ), on
2
0, outside of

o o

o o o

o

p r r

p r r r d p r r

r

δ
ℑ

         ℑ ⎧
⎪⎪ −  ℑ =           ∂ℑ ⎨
⎪

           ℑ⎪⎩

∫
� �

� � � � �

�

 (3.9) 

 

the expression for the acoustic pressure is given by 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )o o o op r G r r F r p r LG r r G r r Lp r dεℑ
ℑ

⎡ ⎤ = + − ℑ  ⎣ ⎦∫ �
� � � � � � � � � �

 (3.10) 

where  

 

 
1, within
2, on

o

o

r
r

εℑ

      ℑ⎧
= ⎨            ∂ℑ⎩

�
�

 (3.11) 

Equation (3.10) becomes 

 

 ( ) ( ) ( ) ( ) ( )o o op r p r LG r r G r r Lp r dεℑ
ℑ

⎡ ⎤ = − ℑ  ⎣ ⎦∫ �
� � � � � � �

 (3.12) 

 

The integrand of equation (3.12) is a divergence expression where L�  is the formally 

adjoint operator of L . Moreover if L L=� , the operator L is formally self-adjoint. The 

boundary condition associated to the given equation and its formal adjoint boundary 

condition play an important roll to determine whether or not the problem is self-adjoint. 

Therefore, it is possible for an operator to be formally self adjoint but for the problem 

                                                                                                                                                 
 
Dirac shared the Nobel Prize for physics in 1933 with Erwin Schrödinger "for the discovery of new 
productive forms of atomic theory". Dirac was Lucasian professor of mathematics at Cambridge from 1932 
to 1969 and an undergraduate at Bristol University. The Dirac Prize is awarded in his honor. 
 
Dirac died in Tallahassee, Florida. 
 
(Source: http://www.brainyencyclopedia.com/encyclopedia/p/pa/paul_dirac.html ) 
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associated with this operator and its adjoint to be nonself-adjoint. But if the operator is 

not self-adjoint the problem cannot be self adjoint.  

 

Equation (3.12) is a general expression for the acoustic pressure. Further development 

requires specifying the character of the operator L  used to model the acoustic problem. 

 

 

3.2 THE TIRE ACOUSTIC CAVITY 
 

The operator for this particular application is given by the linear wave equation, which is 

self-adjoint ( L L=� ).That is  

 

 
2

2
2 2

1 0d pp
c dt

∇ − =  (3.13) 

 
with boundary condition 

 

 ( ) ( )p r w r
with r

n t
ρ

∂ℑ

∂ ∂
= −                          ∈∂ℑ 

∂ ∂
�

� �
�

 (3.14) 

 

where ( )w r�
�

 is the velocity at the boundary and p  is assumed to have the form 

 

 ( ) ( ), , , , , i tp r x t p r x e ωθ θ=  (3.15) 

 

Since the boundary conditions is harmonic, replacing equation (3.15) into (3.13) and 

(3.14), the resultant equations is given by  

 

 ( ) ( )2 2 0       and 
p r

p k p i w r with r
n

ωρ
∂ℑ

∂
∇ + = = −                          ∈∂ℑ 

∂
��
� �

 (3.16) 
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this equation is the so called Helmholtz4 equation, in where k  is the free field acoustic 

wavenumber. Then, using equation (3.12) the acoustic pressure becomes 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2 2 2
o o o op r p r G r r k G r r G r r p r k p r d

with r

εℑ
ℑ

⎡ ⎤ ⎡ ⎤ = ∇ + − ∇ + ℑ  ⎣ ⎦⎣ ⎦

              ∈∂ℑ

∫� � � � � � � � � �

�

 (3.17) 

or 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2 2 2
o o o o op r p r G r r G r r p r p r k G r r G r r k p r d

with r

εℑ
ℑ

⎡ ⎤ ⎡ ⎤ = ∇ − ∇ + − ℑ⎣ ⎦ ⎣ ⎦

             ∈∂ℑ  

∫� � � � � � � � � � � � �

�

 (3.18) 

The second term in the integral of equation (3.18) vanishes. The simplification in the 

inner product given in the integration is due to the self-adjoint property of the Helmholtz 

operator. Therefore, the operator left in equation (3.18) is the Laplace’s5 operator, which 

also is self adjoint (Kreyszig, 1978). Then, it is possible to write 

                                                 
4 Helmholtz, Hermann von (1821-1894) 
 
German physicist who first extended Joule's results to a general principle. He expressed the relationship 
between mechanics, heat,  light,  electricity,  and magnetism  by treating them all as manifestations of a 
single force.  He presented a mathematical proof for his Law of Conservation of Force in Über die 
Erhaltung der Kraft (On the Conservation of Force, 1847). Helmholtz's use of the word "force" corresponds 
to what later became known as energy, so his law actually amounted to a statement of the Law of 
conservation of energy.   
 
Helmholtz sought to synthesize Maxwell's electromagnetic theory of light with the central force theorem. 
To accomplish this, he formulated an electrodynamic theory of action at a distance in which electric and 
magnetic forces were propagated instantaneously. He attempted to demonstrate that body heat and 
muscular action of animals could be produced by the oxidation of foodstuffs. 
 
(Source: http://scienceworld.wolfram.com/biography/Helmholtz.html ) 
 
5 Pierre-Simon Laplace  
(March 23, 1749 - March 5, 1827) was a French mathematician, the discoverer of the Laplace transform 
and Laplace's equation. He was a believer in causal determinism.  
One curious formula for the probability that the sun would rise was given by Laplace. He claimed that this 
probability was (d + 1) / (d + 2)-, where d is the number of days that the sun has risen in the past. Laplace 
claimed that this formula, known as (Laplace) Rule of Succession, applied in all cases where we knew 
nothing, or where what we did know was swamped by what we didn't. It is still used as an estimator for the 
probability of an event if we know the event space, but only have a small number of samples.  
Laplace strongly believed in causal determinism, which is expressed in the following citation:  
"We may regard the present state of the universe as the effect of its past and the cause of its future. An 
intellect which at any given moment knew all of the forces that animate nature and the mutual positions of 
the beings that compose it, if this intellect were vast enough to submit the data to analysis, could condense 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
o o o

o o

p r p r G r r G r r p r d

p r G r r G r r p r d

with r

ε

ε

ℑ
ℑ

ℑ
ℑ

⎡ ⎤ = ∇ − ∇ ℑ⎣ ⎦

⎡ ⎤          = ∇ ∇ − ∇ ℑ⎣ ⎦

            ∈∂ℑ  

∫

∫
� � � � � � �

i
� � � � � �

�

 (3.19) 

 

Applying Gauss’s second identity on (3.19) (Griffel, 1985), it gives 

 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

o o o

o o

o
o

p r p r G r r G r r p r d

n p r G r r G r r p r d

G r r p r
p r G r r d

n n

with r

ε

ε

ε

ℑ
ℑ

ℑ
∂ℑ

ℑ
∂ℑ

⎡ ⎤ = ∇ ∇ − ∇ ℑ ⎣ ⎦

⎡ ⎤          = ∇ − ∇ ∂ℑ⎣ ⎦

⎡ ⎤∂ ∂
          = − ∂ℑ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
              ∈∂ℑ

∫

∫

∫

i
� � � � � � �

i
� � � � � ��

� � �
� � �

�

 (3.20) 

 

A Green’s function satisfying the “rigid wall” (Wu, 2000) condition implies that 

 

 
( )oG r r

on r
n

∂
= 0        ∈∂ℑ

∂
� �

�
 (3.21) 

 
Replacing the boundary condition given by equation (3.14) and the condition (3.21), the 

acoustic pressure produced by the motion of the boundary is given by 

 

                                                                                                                                                 
into a single formula the movement of the greatest bodies of the universe and that of the lightest atom; for 
such an intellect nothing could be uncertain and the future just like the past would be present before its 
eyes." 
This intellect is often referred to as Laplace's demon (cf. Maxwell's demon). The discoveries of modern 
physics, especially quantum physics and uncertainty principle proved that the existence of such an intellect 
is not possible even in principle.  
 
(Source: http://en.wikipedia.org/wiki/Laplace ) 
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( ) ( ) ( ) ( )o op r i w r G r r d

with r

ε ωρℑ
∂ℑ

 = ∂ℑ

              ∈∂ℑ

∫ �
� � � �

�

 (3.22) 

 
To find the acoustic pressure and thus the dynamics of the tire acoustic the hard wall 

Green’s function are needed. To this end, the eigenvalue problem associated to the 

operator for the hard wall boundary condition need to be solved. The eigenproperties are 

then used to construct the Green’s functions. Then, the Green’s function is used to 

compute the pressure inside the tire acoustic cavity due to the motion of the flexible shell 

using (3.22). The tire acoustic cavity is modeled as a cylindrical cavity with annular 

section as shown in  Figure 3.2. 

 

 

                             Figure 3.2: Finite cylindrical cavity. 

 
Due to the geometry of the tire acoustic cavity, the Helmholtz equation is expressed in 

cylindrical coordinates as follow 

 

 
2 2 2

2
2 2 2 2

1 1 0p p p p k p
r rr r xθ

∂ ∂ ∂
+ + + + =

∂∂ ∂ ∂
 (3.23) 

 

The rigid wall boundary conditions are of the first kind or Dirichlet conditions defined as 

 

z 
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x 

LT

a 

 b 
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0

0
Tx x L r a r b

p p p p
x x r r= = = =

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (3.24) 

 

The acoustic pressure p  is assumed to be the solution of equation (3.23) in the form 

 

 ( ) ( ) ˆ, , , , , ( , , )qpl qpl

qpl

i t i t
qplp r x t p r x e A r x eω ω

θ θ θ= = Ψ  (3.25) 

 
 

where ( , , )qpl r xθΨ  is the acoustic pressure mode shape corresponding to the natural 

angular frequency qplω  and ˆ
qpl

A  is the acoustic modal amplitude. The three indexes 

used in the acoustic pressure mode shapes have the following meaning: 

•  q  is the mode index on the axial direction.  

• p  index is the acoustic mode order on the azimuth direction, which also couples 

with the radial direction for the cylindrical cavity . 

• l  index represents the mode order in the radial direction.  

 

The details of the procedure used to solve the problem can be seen in the Appendix C. 

Replacing equation (3.25) into (3.23), the solution of equation (3.23) under the boundary 

conditions (3.24) is  

 

 ( ) ( ) ( ) ( )' '( , , ) cos( )cos( )  

wi th , , 0,1,2,...
qpl p pl p pl p pl p pl xqr x Y k a J k r J k a Y k r p k x

q p l

θ θ

                                           

⎡ ⎤Ψ = −⎣ ⎦
      =

 (3.26) 

 

where pJ  and pY  are the Bessel’s functions of First and Second Kind, respectively;   plk  

is the radial wavenumber which couples with the azimuth direction, and xqk  is the 

wavenumber associated to the axial direction. The details of the eigensolution can be 

found in Appendix D. 
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The eigen-wavenumber of the Helmholtz operator is given by 

 

 
22 2

2 22 2 qpl qpl
qpl xq pl

T

f l p qk k k
c c a b a b L

ω π π π⎛ ⎞⎛ ⎞ ⎛ ⎞= = ≅ + = + + ⎜ ⎟⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (3.27) 

 

The eigenfunction ( , , )qpl r xθΨ  satisfies the following orthogonality property 

 

 
2

0 0

( , , ) ( , , )
TL a

qpl rso qpl qr ps lo
b

x r x r rdrdxd
π

θ θ θ δ δ δΨ Ψ = Λ∫ ∫ ∫  (3.28) 

 

where qplΛ  is the mode normalization factor.   

 

Figure 3.3 shows the  010Ψ  acoustic mode shape. This acoustic mode shape is highlighted 

because it is the one that couples with the structure in the low frequency range of interest. 

Only this acoustic mode is analyzed in this dissertation because it is the culprit of the 

vertical excitation of the wheel. Moreover, the harmonic point force and the contact patch 

as inputs are capable only to excite this acoustic mode due to the symmetry of the 

problem.  

 

 The mode shape 010Ψ  has variation along the azimuth direction θ  ( cos( )pθ ), while the 

values in the radial direction are “almost constant”, i.e. only a 2.5% of variation in the 

pressure from  to .r a r b= =  Therefore, the radial sections can be assumed constant 

without much loss of generality.  
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                          Figure 3.3: Acoustic Mode Shape 010Ψ  at 010 232f Hz= . 

 

 

The next step is to use the spectral properties to find the Green’s functions G required in 

equation (3.22). The Green’s function is the solution of  

 

 ( ) ( ) ( )2 2, , , , , , , , , ,o o o o o o o oo
G x r x r k G x r x r x x r rθ θ θ θ δ θ θ∇ + = − − − −  (3.29) 

 

with rigid boundary conditions. Note that the dimension of the Dirac delta 

( ), ,o o ox x r rδ θ θ− − −  is 3m− .  

 

The eigenfunctions ( ), ,qpl x rθΨ  satisfy the boundary condition of “rigid wall” given by 

equation (3.24). Therefore, these functions are candidates to expand the Green’s function 

x  

θ  

r  

y  

z  
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in the domain because the “rigid wall” condition is also required in G . Then, it is 

possible to write, 

  

                                         
0 0 0

( , , , , ) ( , , )
Q P L

o o o qpl qpl
q p l

G x r x r B x rθ θ θ
= = =

= Ψ∑∑∑ �  (3.30) 

 

Replacing equation (3.30) into (3.29) yields (See Appendix C) 

   

( )2 2

0 0 0 0 0 0
( , , ) ( , , ) , ,

Q QP L P L

qpl qpl qpl qpl qpl o o o
q p l q p l

B k r x k B x r x x r rθ θ θ θ
= = = = = =

−  Ψ + Ψ = −∂ − − −∑∑∑ ∑∑∑� �  (3.31) 

 

The next step is to solve for qplB�  by using the orthogonality condition of the acoustic 

modes shapes qplΨ  as follow 
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2 2
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θ θ θ θ

θ θ θ θ

= = = = = =
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⎣ ⎦

= − Ψ  ∂ − − −

∑∑∑ ∑∑∑∫ ∫ ∫

∫ ∫ ∫

� �

 (3.32) 

 

which results in the following expression  

  

 ( )2 2 1( , , )qpl qpl qpl qpl o o oB k k x rθ
εℑ

Λ − = −Ψ  �  (3.33) 

 
and 
 
 

 
( )2 2

( , , ) 1qpl o o o
qpl

qpl qpl

x r
B

k k
θ

εℑ

Ψ
=

Λ −
�  (3.34) 

 



Leonardo Molisani Chapter 3: Coupled Tire Model 69 

Therefore, the Green’s function given by equation (3.30) becomes 

 

 
( )2 2

0 0 0

( , , ) ( , , ) 1( , , , , )
Q P L

qpl o o o qpl
o o o

q p l qpl qpl

x r x r
G x r x r

k k

θ θ
θ θ

ε= = = ℑ

Ψ Ψ
=

Λ −
∑∑∑  (3.35) 

 

This Green’s function is symmetric or reciprocal, i.e.  

( , , , , ) ( , , , , )o o o o o oG x r x r G x r x rθ θ θ θ=  due to the self-adjoint character of the Helmholtz 

operator and the “rigid wall” boundary condition. Equation (3.35) is used into (3.22) to 

obtain the acoustic pressure due to the boundary motion, ( ) withw r r   ∈∂ℑ�
� �

. 

 

 

3.3 COUPLED STRUCTURAL-ACOUSTIC PROBLEM 
 

The cavity-structure interaction problem is now solved. Figure 3.4 illustrates the problem 

of a structure and the interior acoustic pressure. It is important to remark that the 

description of the cavity-structural problem is quite complex due to the six indices 

required to describe the structural and acoustic modes. Here a brief description of the 

coupled problem will be presented for a general understanding of the solution approach. 

 

 
                                Figure 3.4: Structure radiating into an enclosed volume. 

External Loading 

( ', ', ')p r x θn
�

( , , )sr x aθG

Fluid Loading 

Radial velocity 
component ( , )w x θ�   
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The approach to solve the coupled problem is to include in the equation of motion of the 

tire the force due to the interior pressure i.e. fluid loading. However, the fluid forces 

depend on the velocity response of the structure which leads to the fluid feedback 

problem depicted in Figure 3.5. 

 

 

 

 

 

 

 

                       Figure 3.5: Dynamic interaction between the structure and the fluid. 

 

The equation of motion of the system including the fluid loading is written as 

 

 [ ] [ ]( )2
0
0

( , , )

u

c v

w

fu
L I v f

p x aw f θ

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪− Ω = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭ ⎩ ⎭

 (3.36) 

 

The forcing function { }, , T
u v wf f f  in equation  (3.36) is the external force either for the 

harmonic point force in the “free tire” model or the contact patch forcing function in the 

model of the “deformed tire”. The last vector in (3.36) represents the acoustic pressure 

acting on the tire. The acoustic pressure, ( , , )p x aθ , on the tire structure is given by 

equation (3.22) with G defined in (3.35) 

 

 
2

0 0

( , , ) ( , ) ( , , , , )  d   
TL

o o o o o op x a i w x G x a x a a dx
π

θ ε ωρ θ θ θ θℑ= ∫ ∫ �  (3.37) 
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where ( , )o ow x θ�  is the radial component of the shell velocity response and 

( , , , , )o oG x r x aθ θ  is  the Green’s function obtained in (3.35). 

 

The solution of the coupled problem is again obtained by expanding the structural 

response in term of the modes as: 

 

 [ ]

( )

( )

( )

1

2

1 0 3
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M N

mn mn
m n

mn

Au
v A
w A

= =

⎧ ⎫⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪= Φ ⋅⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪⎩ ⎭

∑∑  (3.38) 

 

where ( )j
mnA  are the structural modal amplitudes including the fluid loading. Then, 

replacing (3.38) into (3.36), it gives 
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⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭⎪ ⎪⎩ ⎭

∑∑  (3.39) 

 

Once again this equation is pre-multiplied by the transpose of the modal matrix and 

integrated over the surface of the structure as 
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∑∑∫ ∫ ∫ ∫ (3.40) 

 

The acoustic pressure acting on the surface of the structure ( , , )p x aθ  is obtained from 

(3.37) where the radial velocity component is replaced in terms of the structural modes 

and the modal amplitudes as follow 
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Then, 
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 (3.42) 

 

Since only the radial velocity component of the structural response couples with the 

cavity, the cavity pressure will affect in turn mainly the radial structural modes. 

Replacing (3.42) into (3.40) and solving the integrals explicitly in terms of the unknown 

modal amplitudes of the radial modes, the following coupled system of equations results 

  

 [ ] [ ] { } { } { }2 2

0 0 0

Q P L

sr sr sr sr mnsrqpl sr
q p l

K M A f Aα
= = =

⎡ ⎤ ⎡ ⎤− Ω ⋅ = − Ω ⋅⎣ ⎦⎣ ⎦ ∑∑∑  (3.43) 

 

where [ ]srK  and [ ]srM  are diagonal matrices and their elements represents the modal 

stiffness and mass of the radial modes; { }srA  is the vector of modal amplitudes; { }mnf  is 

the vector of modal forces; and 
0 0 0

Q P L

srmnqpl
q p l

α
= = =

⎡ ⎤⎣ ⎦∑∑∑  is the fluid coupling matrix, which 

requires the manipulation of six indexes as shown in Appendix E.  The second term in the 

right hand side of equation (3.43) is moved to the other side and the coupled system of 

equation is solved for the unknown modal amplitudes{ }srA .  
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The coefficients srmnα  corresponding to the radial component of the matrix 

0 0 0

Q P L

srmnqpl
q p l

α
= = =

⎡ ⎤⎣ ⎦∑∑∑  are given by the product of the surface integrals as 

 

 

2 2

0 0 0 0
2 2

( , ) ( , , ) ( , ) ( , , )

( )

T TL L

sr qpl mn o o qpl o o o o

srmn
qpl qpl

x a x ad dx x a x ad dx

k k

π π

θ θ θ θ θ θ
α

Φ Ψ Φ Ψ

=
Λ −

∫ ∫ ∫ ∫
 (3.44) 

 

The coefficient in (3.44) represents the effect of the (q,p,l) acoustic mode on the (m,n) 

structural radial mode and reciprocally. One of the advantage of the model developed 

here is that the interaction of the acoustic and structural modes can be easily determine by 

inspection of the coefficients in (3.44). For example, if the coefficient  srmnα  vanishes 

implies that the (q,p,l) acoustic does not affect the (m,n) structural mode. It can be 

observed that the coupling coefficient in (3.44) is the results of two independent 

integrations, i.e. in the axial and azimuth directions. Thus, inspection of these integrations 

can be performed independently. Tables 3.1 and 3.2 shows the results of the coupling 

analysis for the (0,1,0) acoustic mode with several structural modes in the radial and 

azimuth directions, respectively. In Table 3.1, the axial pressure variation of the (0,1,0) 

mode on the shell (r=a) and the axial variation of the structural modes are illustrated. 

From inspection, it is trivial to find that the inner product of these axial variations show 

that the (0,1,0) acoustic mode will couple with only the (1,1) and (1,3) structural modes. 

Table 3.2 shows the coupling results on the azimuth direction for the (0,1,0) acoustic 

mode and the (1,1), (1,2), and (1,3) structural modes. Simple inspection of this table 

shows that the (0,1,0) mode couples with only the (1,1) structural mode in the azimuth 

direction. It is easy to find that acoustic and structural modes that have the same azimuth 

variation will be coupled. Thus, the acoustic mode (0,1,0) can couple with the (1,1), (3,1), 

(5,1) and so forth.  
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Table 3.1: Description of the effect of axial variation on the coupling between structural  

                                        and acoustic modes of same azimuth variation. 

 Structural (m(x), n(θ)) 

Acoustic  

(q(x), p(θ), l(r)) 

   

 (1,1) (2,1) (3,1) 

(0,1,0) 
 

Coupling 
 α1111010≠0 

No coupling 
α1212010=0 

Coupling 
α1313010≠0 

 

 

Table 3.2: Description of the effect of in the circumferential direction on the coupling 

between structural and acoustic modes.  

 Structural (m(x), n(θ)) 
Acoustic 

(q(x),p(θ),l(r))  

 
(1,1) (1,2) (1,3) 

(0,1,0) Coupling 
α1111010≠0 

No Coupling 
α1212010=0 

No Coupling 
α1313010=0 

 

 

 

The modal amplitudes for the radial modes are obtained from equation (3.43), and the 

structural response is then obtained from (3.38) and then the acoustic response is 

computed using (3.37). 

 

Equation (3.43) represents the following coupled matrix equation 
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(3.45) 

 

where in the last equation 

 [ ] [ ] [ ]2
sr sr srH K M⎡ ⎤= − Ω⎣ ⎦  (3.46) 

 
 

3.4 FREE TIRE NUMERICAL SIMULATIONS 
 

In this section, a numerical simulation for the coupled tire model will be presented. The 

analytical tire model will also be validated with experimental results. The material 

properties of the tire are again given by Table 2.1 in Chapter 2 and the tire size is 195/65 

R15.  
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Table 3.3 shows the acoustic cavity resonance frequencies for a range between 0 to 1000 

Hz. The acoustic natural frequency for the mode 010Ψ  is highlighted in the table because 

is the only acoustic mode in the frequency range of interest that couples with the structure 

dynamics. From Table 2.2, this acoustic mode will couple with only the (1,1) radial 

mode. 

 

Table 3.3: Tire acoustic cavity natural frequencies for tire 195/65 R15 between [0-1000] 

                                                                             Hz 

q p l frequency [Hz]
0 0 0 0.0
0 1 0 232.6
0 2 0 465.1
0 3 0 697.6
1 0 0 879.5
1 1 0 909.7
0 4 0 930.2
1 2 0 994.9  

 

The in vacuo and coupled responses were computed and compared over the frequency 

range of 0-400 Hz. The analysis included 25 structural modes and 5 acoustic modes. 

Figure 3.6 and 3.7 show the modal amplitudes for the ( )1
11Φ  and ( )1

31Φ  radial structural 

modes with and without acoustic coupling, respectively. The tire radial mode ( )1
11Φ , and 

the acoustic mode 010Ψ  are coupled as shown in these figures. It is clear that the effect of 

the tire acoustic cavity mode in the structural response is significant even though the 

acoustic resonance is not very close to the structural resonance, i.e. not tuned. Since the 

acoustic system is modeled without acoustic damping, the “slight” damping in the 

acoustic resonance is coming from the tire structure due to the coupling process.  It can 

be observed that this small amount of damping do not help enough to control the adverse 

effect of the acoustic cavity in the modal amplitude response, i.e., Figure 3.6 and 3.7. 
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 Figure 3.6: Radial Modal Amplitude for mode ( )1

11Φ .  
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Figure 3.7: Radial Modal Amplitude for mode ( )1

31Φ . 
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It is interesting to note that the relatively high damping of the tire structure does not damp 

out the energy in the acoustic resonance. Figure 3.7 also reveals the coupling of the 

structural modes ( )1
11Φ  and ( )1

31Φ   by the acoustic mode. 

 

The resultant force and moment at the spindle were also computed. Figure 3.8 and Figure 

3.9 show the spindle force and moment with and without the acoustic cavity effect, 

respectively. Again they show that the internal acoustic cavity resonance effects are 

important and thus they should be accounted for in the prediction of vehicle interior 

noise.  
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   Figure 3.8: Vertical force Fz at the spindle. 
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   Figure 3.9: Horizontal moment My at the spindle. 

 

Figure 3.10 shows the radial displacement at the external force location with and without 

acoustic coupling. The cavity resonance effect is present for the coupled case at 232 Hz 

due to the influence of the acoustic mode 010Ψ . 

 

Figure 3.11 includes three curves corresponding to the in vacuo model in red dotted line, 

the coupled model in blue solid line, and results from a test measurement performed by 

Yamauchi and Akiyoshi (2002) in a green dash-dotted line. The gain factor to match the 

acoustic cavity resonances is 0.1775. The results from this simple analytical model show 

qualitatively similar trends as the experimental observation, i.e. blue line for coupled and 

green line for experimental results. The green line corresponding to the experimental data 

shows also the presence of the rigid body motion, which is not accounted for the model. 

The dynamic of the tire structure is clearly represented and the effect of the tire acoustic 

cavity is very well predicted. 
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These results provide a validation of the close model approach undertaken here as a valid 

tool to capture the behavior of the tire dynamics including the acoustic cavity. 
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Figure 3.10: Radial displacement for the free tire model at the external force location.  

 

0 50 100 150 200 250 300 350 400
-100

-80

-60

-40

-20

0

20

frequency [Hz]

M
ag

. P
oi

nt
 A

cc
el

er
an

ce
 [d

B 
- r

ef
. 1

 m
/se

c2 /N
]

 

Figure 3.11: Point accelerance for the free tire model at the external force location. 
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3.5 DEFORMED TIRE NUMERICAL SIMULATIONS 
 

In this section the results for the case of the deformed tire are presented. The contact 

patch depth was assumed to be 0.01h m=  and the harmonic oscillating amplitude 

is 51 10 mε −= × .  The tire material properties are given in the Table 2.1 and the tire size is 

195/65 R15. The model is also validated with experimental results provided by Yamauchi 

and Akiyoshi (2002). 

 

Figure 3.12 and 3.13 illustrate the resulting radial modal amplitudes for the modes ( )1
11Φ  

and ( )1
31Φ  respectively. The acoustic cavity resonance is present in the coupled tire 

response. In the “deformed tire” model, the resonance of the acoustic cavity is larger than 

the structural resonance, i.e. Figure 3.12 and 3.13. Note that in the case of the “free tire”, 

the structural resonance is larger than the acoustic resonance, i.e. Figure 3.6 and 3.7. 
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                                       Figure 3.12: Radial Modal Amplitude for mode ( )1
11Φ . 
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                                   Figure 3.13: Radial Modal Amplitude for mode ( )1
13Φ . 

 

The force and moment at the spindle for the deformed model are shown in Figure 3.14 

and 3.15, respectively. The cavity resonance effect relative to the structural resonance is 

much significant in the “deformed tire” forces than in the “free tire”, i.e. from 

comparison of Figure 3.8 and 3.9 to Figure 3.14 and 3.15, respectively. 
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                    Figure 3.14: Vertical force Fz at the spindle.  
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                Figure 3.15: Horizontal moment My at the spindle. 
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The radial displacement at , 0
2
TLx θ⎛ ⎞=  =⎜ ⎟

⎝ ⎠
 can be seen in Figure 3.16. From comparison 

of  Figure 3.16 to Figure 3.10, it can be observed that the acoustic resonance in the 

“deformed tire” has a much larger effect on the tire response in contrast to the “free tire”. 
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Figure 3.16: Radial displacement for the deformed tire model at location , 0
2
TLx θ⎛ ⎞=  =⎜ ⎟

⎝ ⎠
.  

 

Figure 3.17 shows the point accelerance given for the “deformed tire” model. The gain 

factor used in this case is 0.0041 in order to match the acoustic cavity resonances. In this 

figure the results for the in vacuo and coupled cases are shown. For the coupled case, the 

experimental result obtained by Yamauchi and Akiyoshi (2002) is also included.  It can 

again be observed that the coupled “deformed tire” model predicts the effect of the tire 
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acoustic cavity very well and thus validate the proposed model. 
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Figure 3.17: Point accelerance for the deformed tire model at location , 0
2
TLx θ⎛ ⎞=  =⎜ ⎟

⎝ ⎠
.  

 
As a concluding remark for this chapter, the results presented by the models allow to 

clearly identifying the coupling mechanisms between the structural and acoustic modes. 

In addition, the results show that the acoustic cavity resonances have a significant effect 

on the response of the system, i.e. the cavity resonances results in important forces and 

moments at the spindle, which are the source of noise in the vehicle interior. 
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CHAPTER 4: CONTROL OF THE TIRE 
                              ACOUSTIC CAVITY 
                              RESONANCE  
 

 

 n the previous chapter, the influence of the acoustic cavity resonance on the 

spindles forces was shown to be very important. The acoustic cavity dynamics 

results in a sharp increase of the spindle forces around the tire cavity resonance. 

These forces are transmitted to the rest of the car structure and contribute 

adversely to the vehicle interior noise. Therefore, the tire cavity resonance effect must be 

reduced in order to control the tire contribution to the structural born noise.    

 

In this chapter, the analysis and modeling of two feasible approaches to control the tire 

acoustic cavity resonances are proposed and investigated. The approaches are analytically 

modeled and included into both the “free” and “deformed” tire formulations.  

 

The first approach is the incorporation of secondary acoustic cavities to detune and damp 

out the main tire cavity resonance.  The second approach is the addition of damping 

directly into the tire cavity. The damping is achieved by placing viscoelastic screens into 

the tire acoustic cavity. The use of viscoelastic screens is a novel technique to control the 

acoustic resonance.  

 

The control concepts are explained in more detail in the next sections. The modeling of 

the secondary cavities technique is developed in section 4.2. The numerical simulations 

related to this technique are shown in section 4.3. Then, in section 4.4 the viscoelastic 

screen approach is presented.  

 

 

 

 

II 
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4.1 SECONDARY CAVITIES CONTROL APPROACH 
 

The secondary cavity control approach is similar to the concept of Dynamic Vibration 

Absorber (DVA) approach used in structures. In the DVA, a secondary dynamic (mass, 

spring, damper) system is used to reduce the vibration level of a primary system (Rao, 

1990 and Meirovitch, 2001).  The DVA concept schematic is shown in Figure 4.1. The 

vibration level reduction is achieved by detuning, i.e. shifting of the resonance, and 

adding damping to the primary system. Figure 4.1 shows that the main resonance of the 

primary system “splits” in two when the secondary system is added and tuned to that 

resonance frequency. The frequency range in Figure 4.1 is normalized with respect to the 

resonance frequency of the primary system. The resonance shift is governed by the mass 

of the secondary system, i.a. DVA mass. The amplitude of the resonances of the new 

coupled system is controlled by the amount of damping incorporated in the absorber.   

 

 

Figure 4.1: Dynamic Vibration Absorber. 

 

The DVA concept is applied to detune the tire acoustic cavity (primary system) by using 

secondary cavities as illustrated in Figure 4.2. The DVA concept to the cavity acoustic 

problem is ideal because there is a need to control a single cavity mode, i.e. the (0,1,0) 
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acoustic mode. In practice, the secondary cavities can be added to the wheel of the tire as 

shown in Figure 4.2a, i.e. attached and conformal to the wheel. The best location for the 

cavity is at the anti-node of the acoustic mode shape. Since this is not feasible due to the 

rolling of the tire, more than a single cavity is needed.  Therefore, the effect of the 

rotation of the tire is accounted by using two secondary cavities placed 90o  apart from 

each other in the azimuth direction. This amount of angular separation is selected because 

the acoustic mode shape that need to be controlled has an azimuth variation of cos( )θ , 

i.e. p=1. Thus, as the tire rotates there is at least one cavity that is effective in controlling 

the cavity resonance, i.e. as one of the secondary cavity is located at a node the other is at 

an antinode and able to detune the main tire cavity resonance. The tire main and 

secondary cavities are interconnected by openings which are referred here as the 

“coupling interfaces”. To introduce damping in the system, sound absorptive screens 

such as wiremesh, perforate plates, and so forth can be implemented at these interfaces. 

In addition to the damping, the absorptive screens will also introduce a masslike 

impedance, i.e. mass.  The resistance of the screens will introduce damping of the 

acoustic resonances and consequently reduce their magnitude.  

 

The formulation of the tire cavity coupled to secondary cavities is now presented. The 

modeling of the tire main cavity coupled to the secondary cavities can be accomplished 

using two approaches. The first option is to find the new eigenproperties for the coupled 

tire-secondary cavity as single system assuming rigid boundary conditions. The new 

eigenproperties can then be used to construct the Green’s function which in turn can be 

directly used in the same formulation presented in chapter 3. The difficulty with this 

approach is that the modeling of the screen at the coupling interfaces is not 

straightforward. Modeling of the complex impedance at the coupling interfaces would 

lead to complex eigenproperties. 
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Figure 4.2: Tire and secondary cavities acoustic modeling. 

 

The second method is illustrated in Figure 4.3 and involves first separating the secondary 

cavities from the tire cavity. Then, the effect of the secondary cavities on the tire cavity is 

considered or modeled as an additional moving boundary in the formulation, i.e. in 

addition to the elastic shell motion. This approach has two main advantages. Firstly, the 

same acoustic eigenproperties used in the previous chapters can be used to compute the 

Green’s function needed to predict the pressure, i.e. same tire cavity system. Secondly, 

the screen effect at the coupling interfaces can be easily accounted for in the formulation. 

This second approach is implemented in this work to model the control technique. 
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For simplicity and without loss of generality, the secondary cavities are modeled as a 

constant cross section straight waveguide (tube) as shown in Figures 4.2 and 4.3. The size 

of the tube cross section is assumed much smaller than the acoustic wavelength. Since for 

typical tires the acoustic resonance (0,1,0) is at few hundred Hertz, this assumption is 

valid and implies that the motion of the boundary at the coupling interfaces can be 

modeled as a piston sources with unknown normal velocity with  1,2jz j = . 

  

The couple response of the tire structure and acoustic cavity (tire and secondary cavities) 

is again the solution of the system  

 

 [ ] [ ]( )2
0
0

( , , )

u

c v

w

fu
L I v f

p x aw f θ

⎧ ⎫⎧ ⎫ ⎧ ⎫
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⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭ ⎩ ⎭

 (4.1) 

 

where the expression for the pressure ( , , )p x aθ  has to now include the effect of the 

secondary cavities, i.e. piston sources. To this end, the acoustic pressure in the tire main 

cavity is given as 
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1 0 0
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j o o
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i z G x a x b r r d

π

γ

θ ωρ θ θ θ θ

ωρ θ θ γ
=

=

                  −

∫ ∫
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 (4.2) 

 
It can be observed that the first term in this equation is the pressure produced by the 

elastic shell motion while the second term accounts for the effect of the motion of the 

piston sources at the coupling interfaces.  
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Figure 4.3: Schematic of the acoustic model and coupling interface. 
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From the assumption of the acoustic wavelength much larger than the size of the 

secondary cavity cross section, equation (4.2) becomes 

 

 
( ) ( )

2

0 0
2

1

( , , ) ( , ) ( , , , , )  d   

( , , , , )

TL

o o o o o o

j j
j o o j

j

p x a i w x G x a x a a dx

S G x a x b i z

π

θ ωρ θ θ θ θ

θ θ ωρ
=

=

                  −

∫ ∫

∑
 (4.3) 

 

where jS  is the cross sectional area of the jth  secondary cavities. The Green’s function 

( ) ( )( , , , , )j j
o oG x r x bθ θ  is the same one obtained in Chapter 3, i.e. for the uniform torus tire 

cavity, where the source is at the center of the coupling interface with 

coordinate ( ) ( )( , , )j j
o ox bθ . 

 

On the other hand, the acoustic pressure in the secondary cavity can also be expressed in 

terms of the piston motion as 

  

     ( ) ( )0  j j j jp G i z Sη η ωρ=        (4.4) 

 
where the Green’s function for the waveguide secondary cavity is easily obtained as 

(Kinsler et. al., 2000)  

 

 ( )
( )( ) ( )( )

( )( )( )0 2 20

cos cosj j
NA i i o

j
ji

i j j i

k k
G

S L k k

η η
η η

ε=

=
−

∑  (4.5) 

 

where jL  is the cavity length, ( )j
i jk l Lπ=  is the axial waveguide wavenumber, and η  is  

the local coordinate system in the secondary cavity as shown in Figure 4.3.  
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In order to find the piston velocity jz , the continuity of acoustic pressure at the coupling 

interface must be satisfied as illustrated in Figure 4.3. Note that continuity of particle 

velocity is automatically satisfied since the same piston velocity is used in both cavities, 

i.e. equations (4.3) and (4.4). The continuity of pressure is defined as Hallez et. al. (2000) 

 
 ( ) ( )( ) ( ) ( ), , 0 1,2,...j j j

o o j S jp x b p Z z jθ = +  =  (4.6) 

 
where ( )j

SZ  is accounting for the acoustic impedance of the screen installed at the 

coupling interface. An example of the screen impedance for a perforated plate is 

presented in Appendix F. 

    

 

For the case of the two secondary cavities considered here, replacing equations (4.4) and 

(4.3) into the system of equation given by (4.6), the equations for the piston velocities 1z  

and 2z  becomes 
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where 
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 (4.8) 

 
The unknown piston velocities 1z  and 2z  are solve explicitly as  
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and 
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Replacing equations (4.9) and (4.10) into equation (4.2), the acoustic pressure in the tire 

main cavity becomes, 
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 (4.12) 

 
represents the “modified” Green’s function accounting for the effect of the secondary 

cavities on the tire cavity.   

 

Equation (4.11) is then substituted into the equation of motion (4.1) to account for the 

acoustic pressure loading. Following the same steps as in chapter 3, the modal amplitudes 

of the tire (fully coupled to tire and secondary cavities) can be written as 
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[ ] [ ] ( ) ( ) { } { }1 22
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q p l q p l q p l

K M A fα α α
= = = = = = = = =

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤− Ω − − − =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦
∑∑∑ ∑∑∑ ∑∑∑  (4.13) 

 
Equation (4.13) is a coupled algebraic system of equations that must be solved 

simultaneously to obtain the unknown modal amplitudes. These modal amplitudes can 

then be used to compute the force and moment at the spindle. The computation of 

0 0 0

Q P L

srmnqpl
q p l

α
= = =

⎡ ⎤⎣ ⎦∑∑∑ , ( )1

0 0 0

Q P L

srmnqpl
q p l

α
= = =

⎡ ⎤
⎣ ⎦∑∑∑ , and ( )2

0 0 0

Q P L

srmnqpl
q p l

α
= = =

⎡ ⎤
⎣ ⎦∑∑∑  is given in Appendix G. 

 

The approach presented in this section can be easily extended to any arbitrary shaped 

added second cavity geometry. The procedure requires only knowing the spectral 

properties of the secondary cavity.  

 

 

4.2 NUMERICAL SIMULATIONS OF SECONDARY CAVITIES 

CONTROL APPROACH 

 

A numerical evaluation for the free and deformed tire models with the proposed 

secondary cavities control approach is presented in this section. The tire size used in the 

analysis is again the 195/65 R15 with the same material properties used in Chapter 2. The 

main goal of this section is to determine the effectiveness of this approach to control the 

tire cavity resonance problem. Another goal is to investigate the effect of the secondary 

cavity properties such as length, cross sectional area, and screen impedance on the 

performance.   

 

In order to define the length of the secondary cavities, the waveguide cavity axial 

resonance must be tuned to the tire cavity resonance at 232.6 Hz (see Table 3.3). The 

tuning of the cavity leads to the length of the secondary cavities to be a quarter of the 

wavelength associated to the tire main cavity resonance, Beranek and Vér (1992). The 

wavelength of the tire main cavity for the tire size 195/65 R15 is 1.475 m, i.e. 
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approximately the tire centerline circumference. The secondary cavity resonances can be 

estimated assuming “close-open” boundary conditions, i.e. quarter wave tube. That is  

 

 ( )2 1
0,1,2,...

4i
j

icf i
L
 +

=               =  (4.14) 

 
where jL  is the length of the secondary cavity. Simulations for different secondary cavity 

length are shown in Figures 4.4 and 4.5 for the spindle vertical force and the horizontal 

moment for the free tire model. In these simulation, the radius of the secondary cavity 

cross section was assumed to be 0.02 m and as an initial value to set the length of the 

secondary cavity, the screen impedance was assumed purely resistive (only damping) 

with a value of 0.02 ρc. Later in the analysis to study the effect of the acoustic damping, a 

realistic model of the frequency dependant acoustic screen impedance for a perforated 

plate screen is used at the coupling interface (See Appendix F). From the results in these 

figures, it can be observed that the concept is very effective at suppressing the acoustic 

cavity resonance. The optimum secondary cavity length corresponds to a value of 

Lj=0.368 m.  
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Figure 4.4: Magnitude of the vertical force at the spindle for different secondary cavity 

length for the free tire model.  
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Figure 4.5: Magnitude of the horizontal moment at the spindle for different secondary 

cavity length for the free tire model. 

 

 

The cross sectional area of the secondary cavities is the second parameter to be 

determined in this study. To this end, Figures 4.6 and 4.7 show the resultant force and 

moment at the spindle for different cross section radii. The increasing in the radius of the 

section the larger is the split of the main cavity resonance. The effect in the split is 

analogue to the effect when more mass is added in the secondary mass of the DVA. The 

results indicate that even a small cross sectional area will be effective at attenuating the 

cavity problem.  
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Figure 4.6: Magnitude of the vertical force at the spindle for different secondary cavity 

radius for the free tire model. 
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Figure 4.7: Magnitude of the horizontal moment at the spindle for different secondary 

cavity radius for the free tire model. 
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The next study is the sensitivity study of the screen’s impedance by using the model of a 

perforated plate presented in the Appendix F. The model of the impedance [units: 3

sN
m

] 

is mainly a function of the thickness of the perforated screen, the radius of the orifices at 

the screen, and the percentage of open area (POA) due to the screen porosity. The fixed 

screen parameters were the screen thickness (0.00075m) and the orifices radius 

(0.00075m). The screen POA was investigated for the cases 15%, 20%, and 25%. The 

length and cross section radius of the secondary cavities were also fixed at the values of 

0.368 m and 0.02 m, respectively. Figures 4.8 and 4.9 show the resultant force and 

moment at the spindle for the different POA values. The results show that the attenuation 

is basically insensitive for the range of POAs evaluated. From the analysis, a screen 

resistance of 20% of POA is selected.   

 

0 50 100 150 200 250 300 350 400
-35

-30

-25

-20

-15

-10

-5

0

5

10

frequency [Hz]

M
ag

ni
tu

de
 o

f F
z [d

B 
- r

ef
. 1

N
]

 

Figure 4.8: Magnitude of the vertical force at the spindle for different screen impedance 

for the free tire model. 
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Figure 4.9: Magnitude of the horizontal moment at the spindle for different screen 

impedance for the free tire model. 
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For the sake of completeness, the predicted magnitude of the point accelerance is shown 

in Figure 4.10 for the in vacuo model (red dotted line), the coupled model with the 

secondary cavities (solid blue line), and the measurement (green line from Yamauchi and 

Akiyoshi, 2002). The secondary cavities with the selected parameters successfully 

achieve the resonance control as seen in the figure.  
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Figure 4.10: Magnitude of the point accelerance for the free tire model.  

 

The numerical simulation studies performed above assumed that one of the secondary 

cavities was positioned at ( )1 0o
oθ = , i.e. at the anti-node of the (0,1,0) mode. That is this 

secondary cavity was at the optimum position. Since the tire is rotating, the position of 

the secondary cavities with respect to the (0,1,0) mode will be varying. The worst 

positing would be when neither secondary cavity is at the acoustic mode anti-node, i.e.  
( )1 45o
oθ =  and ( )2 135o

oθ = . Note also that the vehicle traveling to a 55 mph with tire size 

195/65 R15 produce an angular variation of around 7 Hz while the secondary cavities 
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resonate at 232.6 Hz. Therefore, the rolling of the tire can be considered as a quasi-static 

effect. That is the rotation can be neglected and the analysis performed at fixed angular 

positions of the tire. 

 

To quantify the performance of the control approach as the tire rotates, simulations were 

performed for the two cavities positioned at ( )1 45o
oθ =  and ( )2 135o

oθ = .  The resultant 

force and moment at the spindle for the secondary cavity parameters Lj=0.368 m and 

rj=0.02m are shown in Figures 4.11 and 4.12, respectively. Comparing these results to the 

case in Figures 4.8 and 4.9 show that even in this most adverse position, the secondary 

cavities control approach is very effective. 
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Figure 4.11: Magnitude of the vertical force at the spindle for different secondary cavity 

azimuth position for the free tire model. 
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Figure 4.12: Magnitude of the horizontal moment at the spindle for different secondary 

cavity azimuth position for the free tire model. 

 

In the case of the deformed tire, the length of the secondary cavities that achieved best 

results once again is 0.386jL m=   as shown in Figures 4.13 and 4.14 for the vertical 

force and horizontal moment at the spindle.  
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Figure 4.13: Magnitude of the vertical force at the spindle for the deformed tire model. 
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Figure 4.14: Magnitude of the horizontal moment at the spindle for the deformed tire 

model. 

 
 
The cross section of the secondary cavities is also evaluated for the deformed tire. The 

radius of 0.02 m is chosen for the cross section. The effect of added mass can be seen in 

the Figures 4.15 and 4.16 for the main tire resonance split as the section becomes larger 

the split in frequency increases.  
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Figure 4.15: Magnitude of the vertical force at the spindle for the deformed tire model. 
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Figure 4.16: Magnitude of the horizontal moment at the spindle for the deformed tire 

model. 

 
 
The resistance of screen impedance is evaluated for different cases for the force and 

moment. The results can be seen in Figures 4.17 and 4.18 respectively. A value of  20% 

of POA is selected for the design of the acoustic system. 
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Figure 4.17: Magnitude of the vertical force at the spindle for the deformed tire model. 
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Figure 4.18: Magnitude of the horizontal moment at the spindle for the deformed tire 

model. 

 

Figure 4.19 shows a comparison between the point accelerance for the in vacuo and 

coupled deformed tire model, and experimental measurement. In the figure, the tire 

cavity resonance shows no effect in the accelerance of the tire. 
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Figure 4.19: Magnitude of the point accelerance.  

 

 

The result of moving the both secondary cavities in the azimuth direction an amount of 

45o is shown in Figures 4.20 and 4.21. The parameters of the secondary cavities are the 

ones selected in the previous study. The secondary cavities are shown to be working 

efficiently even in this adverse condition. 
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Figure 4.20: Magnitude of the vertical force at the spindle for different secondary cavity 

azimuth position. 
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Figure 4.21: Magnitude of the horizontal moment at the spindle for different secondary 

cavity azimuth position. 
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4.3 DAMPING APPROACH USING VISCOELASTIC SCREENS 
 

The second control approach proposed in this study is based on introducing damping into 

the acoustic cavity resonance directly without changing its resonance frequency. This is a 

new experimental concept proposed in order to reduce the tire resonance. The noise 

levels produced for the tire acoustic cavity resonance can be attenuated by using 

“viscoelastic screens” placed inside the tire. Figure 4.22 shows the device, which consists 

of an elastic “ring” that is mounted in the inside of the wheel. Multiple screens are 

attached to the elastic ring in a circumferential pattern. The screen can be of different 

shapes such as strings, perforated membrane, and so forth.  The screens and the elastic 

ring can be made of a viscoelastic material, capable of dissipating vibrational energy, i.e. 

high loss factor.  

 

 

 

Figure 4.22: Hold and viscoelastic screens arranged in the tangential direction. 

 

The working principle of this innovative approach is described here with the help of 

Figures 4.23 and 4.24. The “ring” can be easily mounted on the inside surface of the 

wheel. As the wheel rotates, the “ring” will rotate with the wheel, i.e. no slip between 

device and wheel. As the vehicle moves and the wheel rotate, a centrifugal force is 
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developed in the screens. This centrifugal force unfolds the viscoelastic screens, i.e. the 

screens span in the radial direction. Figure 4.23 shows a side view of the device mounted 

in the tire-wheel assembly. Figure 4.24 shows a cut on a tire where the unfolded screen 

can be seen. The tire cavity acoustic resonances are the result of waves propagating in the 

circumferential direction (both clock and anti-clock wise). Thus, the “radial screens” are 

normal to the wave propagation direction and are easily excited. Therefore, the vibration 

of the viscoelastic screens dissipates the acoustic energy in the tire cavity.   

  

The implementation of this device has the clear advantage that it does not affect in 

anyway the tire structure, i.e. the device can be applied to old and new tire systems. 

 

 

 

 

Figure 4.23: Device placed into the tire cavity. 

 

 

Screen
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Figure 4.24: Tire with acoustic treatment. 

 

A simple experiment was performed in order to show the potential noise level reduction 

of the concept in an acoustic cavity with screens. A picture of the experiment set up is 

shown in  Figure 4.26. It consists of a long square cross section duct closed at both ends. 

 

This setup represents or is equivalent to an unwrap tire cavity. This is an approximation 

of the true tire cavity problem. Eight screens were mounted along the duct. These screens 

were made of thin (~ 1 mm thickness) rubber sheet as seen in Figure 4.25. The screens 

were cut into multiple identical slices.   

 

The acoustic field inside of the cavity was exited by a speaker mounted at one end of the 

duct as seen in  Figure 4.26. An array of microphones was mounted along the duct to 

monitor the sound field. The speaker was driven with white-noise over [0-800] Hz 

frequency band and the microphone spectra recorded. As an example, Figure 4.27 shows 

the spectra with and without screens. This figure shows that screens are a very effective 

concept to absorb the cavity acoustic energy. From these plots, the acoustic loss factor (or 

damping) at resonance was estimated using the half-power method, Ewins (1985) and 

Screen 
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Maia and Silva (1997). The reduction of the spectral peaks can be used as an estimate of 

potential sound level reduction at resonance. However, the increase in the loss factor can 

also be used to estimate potential noise level reduction.  

 

 [ ]
( )

( )10
i

r
i

r

E dB Log η
η

⎛ ⎞
= × ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.15) 

where 

 

( )i
rη : Loss factor of the rth acoustic mode measured on the ith microphone on the 

different configurations. 

 
( )i
rη : Loss factor of the rth acoustic mode measured on the ith microphone on the 

reference configuration. 

 

 

The results from the experiments are summarized in Table 4.1 only for the second 

resonance frequency. This table shows the loss factor and estimated noise level 

reductions for several configurations. In addition, the shift in the resonance frequency 

produced by the screens is indicated in parenthesis in the 2nd row. The “Ref. column” 

corresponds to the case without screens, i.e. reference configuration. The “No slices” 

column corresponds to the cavity with screens but without cuts. The other columns 

present a study of the screens with increasing number of slices. The results show that (a) 

Increasing the number of slices on the screen decrease the attenuation of noise and (b) the 

noise reduction increases with the number of screens.  
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Table 4.1: Acoustic damping at 2nd resonance and expected noise reduction levels. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: View of the viscoelastic screens inside of the main cavity. 
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 Figure 4.26: Experiment to validate the concept of the viscoelastic screens. 
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Figure 4.27:  FRF Magnitudes with 8 Screens – 24 Slices (blue line) and without screens 

(red line) at Microphone 3.  
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4.4 VISCOELASTIC SCREENS CONTROL APPROACH  

 
The idea of the use of the viscoelastic screens concept is modeled easily by adding viscous 

damping into the tire acoustic cavity. The acoustic damping was introduced into the model by 

using the “complex speed” of sound, which is defined as   

 

  ( )ˆ 1  Ac c i ς= +                                                      (4.16) 

 

where, 

 

Aς :  is the acoustic loss factor  

i: is the imaginary unit. 

 

The effect of the viscoelastic screens in the free and deformed model were investigated 

for an acoustic loss factor of 1%, and 3% in the [0-400] Hz frequency range.  

 

Figures 4.28 and 4.29 show the force and moment at the spindle for the free tire model, 

respectively. The addition of acoustic damping helps to damp out the energy of the 

acoustic cavity resonance i.e. : 3%Aζ . Therefore, the viscoelastic screens are an effective 

method to control the tire cavity resonance effect in the forces at the spindle.  
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Figure 4.28: Magnitude of the vertical force at the spindle. 

 

 

Figure 4.29: Magnitude of the horizontal moment at the spindle. 
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Figure 4.30 and 4.31 show the forces at the vehicle spindle for the deformed tire model. 

Also, in this case an important force reduction at the cavity resonance is observed.  

 

 

Figure 4.30: Magnitude of the vertical force at the spindle. 
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Figure 4.31: Magnitude of the horizontal moment at the spindle. 

 
The viscoelastic screen approach is a simple and practical approach. The results in both 

the free and deformed tire model show the capability of the viscoelastic screens to control 

the dominant tire acoustic cavity resonance. In the free tire model the level of reduction 

achieved permit to eliminate the effect of the cavity resonance. In the deformed tire case 

where the cavity resonance showed to have a larger effect relative to the structural 

resonances than in the free tire case, the cavity effect is controlled to have a magnitude 

smaller than the structural resonances. The techniques presented in this chapter show to 

be very effective to control the tire acoustic cavity resonance. 
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CHAPTER 5:  SYNOPSIS, CONCLUSIONS, 
                         AND RECOMMENDATIONS 
                              FOR FUTURE WORK  
 

eview of the open literature revealed very limited work in the problem of 

interior vehicle noise due to the tire acoustic cavity resonance. This cavity 

resonance problem has only recently been discovered and it is not yet well 

understood. The open literature offers simple models to predict only the natural 

frequencies of the tire cavity and qualitatively predict the direction of the forces at the 

vehicle spindle. Most of the modeling efforts to compute the tire dynamics have focused 

on FE techniques that hamper the understanding of the physics of the tire-cavity coupling 

problem. There is also a lack of well understood and validated control approaches. 

Therefore, this dissertation presents analytical closed form solutions to help gaining 

insight into the coupling phenomenon and subsequently permits the investigation and 

development of practical techniques to control the problem. 

 

The modeling of the tire structure includes the formulation for the “un-deformed or free” 

and “deformed” tire cases. A critical component of the model is the formulation to 

compute the forces at the spindle from the structural modal responses. The “free tire” is 

the model of the unsupported tire. In this model, the external excitation is a harmonic 

point force acting normal to the external surface of the tire. The “deformed tire” 

development includes the modeling of the contact patch deformation. Afterward, a 

harmonic vertical motion of the tire is superimposed that results in an effective load 

acting on the tire and the associated dynamic response. Lastly, numerical results for the 

tire models are shown. Validation of both “free” and “deformed” structural tire models is 

also included by comparison with experimental results obtained from the experimental 

work done by Yamauchi and Akiyoshi (2002). 

 

 

RR 
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To account for the tire acoustic cavity in the structural response, an expression for the 

acoustic pressure produced by the motion of the tire is derived in this effort. To this end, 

the acoustic mode shapes and natural frequencies of the tire cavity are computed. The 

eigenproperties are then used to solve for the Green’s functions, which allows to compute 

the acoustic pressure due to the tire motion. The modeling of the tire acoustic cavity is 

included in the structural models developed previously. The “free tire” and “deformed 

tire” models are evaluated numerically and validated by comparison to experimental 

results from the open literature. 

 

It is shown in this work that the tire acoustic cavity dynamics effect results in a sharp 

increase of the spindle forces around the tyre cavity resonance. These forces transmitted 

to the rest of the car structure contribute adversely to the vehicle interior noise. Therefore, 

the tyre cavity resonance effect must be reduced in order to control the tire contribution 

to the structural born noise. The analysis and modeling of two feasible approaches to 

control the tyre acoustic cavity resonances are proposed and investigated in this effort. 

The approaches are analytically modeled and included into both the “free” and 

“deformed” tire formulations. 

 

The first approach is the incorporation of secondary acoustic cavities to detune and damp 

out the main tire cavity resonance energy.  The second approach is the addition of 

damping directly into the tire cavity. It is achieved by placing viscoelastic screens into 

the tire acoustic cavity. The damping is modeled by including the complex speed of 

sound in the tire models.  The use of viscoelastic screens is a novel technique to control 

the tire acoustic resonances.  
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5.1 CONCLUSIONS  
 

The most significant contributions obtained during this research effort are presented in 

this section. The analysis of the results permits to establish the following foremost 

conclusions: 

 

 Closed form solution models of the acoustic cavity problem were developed. The 

models capture the physics of the problem as validated by comparisons against 

experimental results. The models allowed to gain insight into the physics of the 

problem as attested by the follow up conclusions. 

 

 Though the tire model is a modally rich structure, the so called shell “bending 

modes”, i.e. n=1, are the only ones capable to transmit forces to the spindle. In fact, 

there are only two modes, i.e. radial (1,1) and tangential (1,1), that results in spindle 

forces in the low frequency range of [0-400] Hz 

 

 In the free tire model driven by a point force, the forces at the spindle are dominated 

by a single mode. i.e. radial (1,1). On the other hand, the deformed tire model shows 

that both the radial (1,1) and tangential (1,1) modes contributed nearly the same to the 

spindle forces.  

 

 The acoustic cavity resonance was shown to have a very dominant effect in the 

response of the tire models. The spindle forces obtained from simulation of the “free 

tire” model shows that the cavity resonance is as important as the structural tire 

resonances. For the “deformed tire”, the tire acoustic cavity resonance is the most 

dominant component of the spindle forces and significantly higher than the structural 

resonance contributions.   

 

 The model also revealed that the high structural damping of tire rubber compound 

does not have any effect in the tire acoustic cavity resonance. Therefore, the structural 

damping does not help to damp out energy at the tire acoustic resonance. 
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 The techniques proposed in this dissertation to suppress the adverse effects of the 

acoustic cavity in the tire response, i.e. forces at the spindle, show to be very effective 

and can be easily implemented in practice. The secondary cavity approach requires 

little damping to attenuate the spindle forces due to the tire acoustic resonance.  The 

viscoelastic screen concept was also shown theoretically and throughout a simple 

experiment to be a very effective method to absorb the cavity acoustic energy.  

 

 

5.2 RECOMMENDATIONS FOR FUTURE WORK 
 

Though the models developed here are very useful tools to predict the response, 

understand the dynamics, and investigate control options for the acoustic cavity problem, 

there are additional research issues or endeavors worthy of further studies. They are: 

 

 The experimental implementation of tire acoustic resonance control techniques is an 

immediate research issue. The control concepts could be first tested in a controlled 

laboratory setup and later evaluated in an actual vehicle road test. 

 

 The model is amenable to incorporate more control techniques. A control option that 

could be interesting to investigate is the use of the Bragg phenomenon. This 

phenomenon is based in destructive interference that can be achieved by a cavity with 

wavy walls. For the case of a tyre, this technique could be realized by using evenly 

distributed flaps mounted in the vehicle wheel.  

 

 The rigid component of the tire model could be modified to account for flexibilities, 

i.e. tire side plates and spindle. Therefore, the model of the forces will account for the 

new dynamic of these flexible parts. 

 

 The tire model does not predict the split of resonance frequency when the tire is 

deformed. In fact, in this dissertation only the acoustic mode excited by the vertical 

motion of the tire is included in the model. The accuracy of the model can be 
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improved by incorporating the effect of the frequency split of the tire cavity 

resonance. 
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APPENDIX A: TIRE SIZE NOMENCLATURE 
 

 

In this appendix an explanation of the tire dimensions nomenclature is presented. The 

schematics for a tire dimensions is shown in Figure A.1. The tire width in millimeters is 

represented by B in the figure. The tire section height is called H, the Rim diameter is d, 

and the tire outer diameter is D. 

 

 

                                         Figure A.1: Schematic tire dimension. 

 

Aspect ratio 
H/B 
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In most of the cases, the tire size is given by 3 numbers and a letter. The definitions in the 

tire nomenclature are shown in Figure A.2. 

 

 

                                  Figure A.2: Tire nomenclature definitions. 

 

The tire 195/65 R15 is used in the simulation on this work to validate the model with 

experimental data. From the tire size specification the following parameters are solved to 

input the code. 

 

The tire with LT 

 

 1 0.19595T B m mmL = = =  (A.1) 

 

The tire inner radius 

 

 
15 7.5 0.19

2
1

2
d in i mnb = = = =  (A.2) 

The tire outer radius 

 

 0.65 0.191 0. 0.318127b H B mb ma m= + = + = + =  (A.3) 

 

 

 

195 / 65 R 15 
Rim diameter, d, (inches) 

Radial tyre construction, R 

Tyre aspect ratio (65 series), H/B 

Tyre section Width, B, (mm) 
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The material properties of the tire for the numerical simulations were provided by Dimitri 

Tsihlas from Michelin North America (Tsihlas, 2001). They are: 

 

 

                          Table A.1: Tire’s material and geometrical parameters 

Parameter Description 

LT  =  0.195m (7.68 in) Tire Width 

a = 0.318 m (12.52 in) Outer Radius 

b = 0.191m (7.52 in) Inner Radius 

hShell = 0.015m (0.59 in) Thickness 

d = 0.05m (1.97 in) Spindle length 

E = 75x106N/m2 Young’s Modulus 

ρ = 1350 kg/m3 Material Density 

η =0.03 Loss Factor 

v = 0.4 Poisson ratio 
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APPENDIX B: SOLVING THE CONTACT 
                            PATCH EQUATIONS 
 
This appendix shows the calculation of the integral of equation (2.30) in Chapter 2. 

Equation (2.37) is repeated here in order to continue with the computation of the contact 

patch 
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Replacing in equation (B.1) the value of ( ),d x θ  and integrating in the axial direction, 

last equation becomes 
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The integrals are solved in close form.  Therefore, 
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which is 
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Then, 
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and finally 
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Therefore, the equation for the unknown coefficients snW  becomes  
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Equation (B.8) becomes 
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Or in matrix notation 

 

 ( ) ( ){ } ( ){ }3
nr sn srI h W f h⎡ ⎤ =⎣ ⎦  (B.11) 

 
Equation (B.11) is repeated in Chapter 2 as equation (2.31) in order to continue the 
analytical development. 
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APPENDIX C: GENERAL BOUNDARY 
                             FORCES FOR A SHELL 
 
 

This appendix present the calculation of the boundary forces for a general elastic shell. 

The forces derived in this appendix were then used in the solving of the transmitted 

forces to the vehicle spindle.  

 

The stress field in a differential piece of shell material is shown in Figure C.1. They are 

 

Figure C.1: Stresses in shell coordinates (Leissa, 1993). 
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The coefficients αε , βε , and αβγ  are the total strain according to the Donnel-Mushtari-

Vlasov  operator(Leissa, 1993). The resulting forces per unit length in the face 

perpendicular to α - axis are given by 
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and similarly the force resultants on the face perpendicular to the β - axis are given by 
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The positive direction of the force resultant forces are shown in Figure C.2. 
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Figure C.2: Force resultants in shell coordinates (Leissa, 1993). 

 

 

The moment of the infinitesimal force ( ) zds dzα βσ  about the β -line is given by 

( )  zz ds dzα βσ . This moment has the unit of moment per unit length 
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and 
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On the other face the resultant moments are given 
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and 
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2
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h

h
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Rβα βα

α

σ
−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫  (C.13) 

 

The positive direction of the moment is shown in Figure C.3. Note that although the 

stress tensor in the three-dimensional space is symmetric αβ βασ σ= , is clear from 

equations (C.5), (C.8), (C.11), and (C.13) that N Nαβ βα≠  and M Mαβ βα≠  unless 

R Rα β= . 

 
 Figure C.3: Moment resultants in shell coordinates (Leissa, 1993). 

 

Assuming that the boundaries lie along the coordinate curves, i.e. Figure C.1, the virtual 

work done by the reaction forces at the boundary is zero. 
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α α
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β

β
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= ⋅ + ⋅Ω   =∫  (C.14) 

 

along the boundary 2α α=  and 
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2 0W F u M A d
α

β β
β β

α

α
=

= ⋅ + ⋅Ω   =∫  (C.15) 
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along the boundary 2β β= . The forces Fα , Fβ  and the moments Mα , M β  are given by 

the equations  
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( )
( )
( )

n

n

n
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F N i N i Q i B d
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M M i M i B d
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α αβ α α β

β β α βα β

β
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β

β

= + +  

= + +  

= − +  

= − +  

                                         (C.16) 

and  
 

                                             
nu ui vi wi

i i
α β

β α α βθ θ

= + +

Ω = − +
                                                                     (C.17) 

 
where 

 

                                              

1

1

u w
R A
v w

R B

α
α

β
β

θ
α

θ
β

∂
= −

∂
∂

= −
∂

                                                                       (C.18) 

 

Note that andA B   are de length of the tangent vectors to the andα β   curves 

respectively, and 1 1and
R Rα β

  are the curvatures of the  andα β   curves. These parameters 

satisfying the so-called Gauss1-Mainardi-Codazzi relations determine the shell surface 

uniquely, except to position and orientation in space, Leissa (1993).  

                                                 
1 Carl Friedrich Gauss 
Born: April 30, 1777, Brunswick, Germany. 
Died: February 23, 1855, Göttingen, Germany. 
 
From the outside, Gauss' life was very simple. Having brought up in an austere childhood in a poor and 
uneducated family he showed extraordinary precocity. He received a stipend from the duke of Brunswick 
starting at the age of 14 which allowed him to devote his time to his studies for 16 years. Before his 25th 
birthday, he was already famous for his work in mathematics and astronomy. When he became 30 he went 
to Göttingen to become director of the observatory. He rarely left the city except on scientific business. 
From there, he worked for 47 years until his death at almost 78. In contrast to his external simplicity, 
Gauss' personal life was tragic and complicated. Due to the French Revolution, Napoleonic period and the 
democratic revolutions in Germany, he suffered from political turmoil and financial insecurity. He found 
no fellow mathematical collaborators and worked alone for most of his life. An unsympathetic father, the 
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Replacing equations (C.17) and (C.16) into (C.14) and (C.15), it gives 

 

                        ( )
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θ θ β
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= + + + +   =∫                    (C.19) 

 
and 

                        ( )
2

2
1

2 0W N u N v Q w M M A d
α

αβ β β β β βα α β β
α

θ θ α
=

= + + + +   =∫                   (C.20) 

 
by using equation (C.18), equations (C.19) and (C.20) becomes 
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and 
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Integrating by parts the following equations, it gives 
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1 MwM B d M w w d
B

β β
β αβ

αβ αβ β
β β

β β
β β
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and 
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1 MwM A d M w w d
A

α β
α βα

βα βα α
α β

α α
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∂∂
  = −   

∂ ∂∫ ∫                    (C.24) 

 
Substituting equations (C.23) and (C.24) into (C.21) and (C.22) respectively, it yields  
                                                                                                                                                 
early death of his first wife, the poor health of his second wife, and terrible relations with his sons denied 
him a family sanctuary until late in life. 
 
Even with all of these troubles, Gauss kept an amazingly rich scientific activity. An early passion for 
numbers and calculations extended first to the theory of numbers, to algebra, analysis, geometry, 
probability, and the theory of errors. At the same time, he carried on intensive empirical and theoretical 
research in many branches of science, including observational astronomy, celestial mechanics, surveying, 
geodesy, capillarity, geomagnetism, electromagnetism, mechanism optics, actuarial science. His 
publications, abundant correspondence, notes, and manuscripts show him to have been one of the greatest 
scientific virtuosos of all time. 
 
(Source: http://www.geocities.com/RainForest/Vines/2977/gauss/english.html ) 
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and 
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       (C.26) 

 
Equations (C.25) and (C.26) are satisfied if the integrand and the second parts of the 

equation are set equal to zero. The boundary conditions for the shell where constantα =  

are 
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and on the edge where constantβ =  
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APPENDIX D: SOLVING THE SPECTRAL 
                        PROPERTIES OF THE 
                        HELMHOLTZ OPERATOR 
 

 

The Helmholtz equation is given by 

 
2 2 0k∇ Ψ + Ψ =       (D.1) 

 

that in cylindrical coordinates is given as, 

 
2 2 2

2
2 2 2 2

1 1 0d d d d k p
r drdr r d dxθ

Ψ Ψ Ψ Ψ
+ + + + =                  (D.2) 

 

The rigid wall boundary conditions are defined as follow 

 

                                       
0

0
Tx x L r a r b

d d d d
dx dx dr dr= = = =

Ψ Ψ Ψ Ψ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                       

(D.3) 

 

The solution is assumed to have the form 

 

                                            ( ) ( ) ( ) ( ), ,x r R r X xθ θΨ = Θ                                 (D.4) 

 

Due to the assumed form of the solution, the separation of variables technique is applied. 

This technique leads to a set of three differential systems. The first system shown in the 

equation (D.5) is related to the axial direction.  
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T

d X x
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dX dXand L
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=
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                                         (D.5) 

 

For the differential system given by (D.5) related to the axial direction the spectral 

properties are given by 
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2 2
2

2

T

with 0,1, ...,

cos with 0 < x < L

xq
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q
T

qk q Q
L

and

qX x A x
L

π

π

=  ;    =   

⎛ ⎞
=   ,       ⎜ ⎟

⎝ ⎠

                             

(D.6) 

 

The value 0A ≠  included in the Real domain is not defined in the eigenfunction 

( )qX x . The reason is that there is an infinite set of eigenfunction ( )qX x defined for 

each value of A . Each eigenfunction ( )qX x  satisfies the system given by equation 

(D.5) therefore for simplicity the value 1A =  is assumed.  

 

 

The second system given by (D.7) is related to the azimuthal direction 
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                                            (D.7) 
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The condition ( ) ( )2θ θ πΘ = Θ +  implies a periodic solution of the differential equation in 

the domain 0 2θ π≤ < . The third and last system is related to the radial direction of the 

acoustic cavity.  The spectral properties are given by 

 

                                                      

( ) ( )

0,1, ...,

cosp

p P
and

B pθ θ φ

 =    

Θ = +

                                               (D.8) 

 

 

The value of B  in the eigenfunction ( )p θΘ  is assumed to be 1 due to the same 

justification than in (D.7). The “orientation” or phase angle of ( )p θΘ  is given by φ , 

which is not defined by the system (D.7). The value of φ  is defined by the external 

forcing function acting upon the system.  Finally, the third system associated to the radial 

direction is given by  

 

 

( ) ( ) ( )( )

( ) ( )

2
2 2 2 2

2 0

0

pl

d R r dR r
r r R r r k p

dr dr
with
dR a dR b

dr dr

+ + − =

= =

                                (D.9) 

The equation given by (D.9) has the form of the Bessel equation, whose general solution 

is known. The general solution is given in term of Bessel functions as follow 

 

 ( ) ( ) ( )p p pl p p plR r A J k r B Y k r= +                                    (D.10) 

 

where ( )pJ ⋅  is the Bessel’s function of first kind and ( )pY ⋅  is the Bessel’s function of 

second kind. Replacing equation (D.10) into (D.9), the algebra leads to the characteristic 

equation 

 

( ) ( ) ( ) ( ) 0p pl p pl p pl p plJ k a Y k b Y k a J k b′ ′ ′ ′− =         (D.11) 
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The roots of this equation plk  must be obtained numerically. However, for the case of 

0.5b a>  the characteristic equation was solved approximately by Blevins (1995) with the 

following result 

 

                                                
2 22  
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l pk

a b a b
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                                           (D.12) 

 

The values of pA  and pB  are given by 

 

                                  ( ) ( )' '
p p pl p p plA Y k a and B J k a=   = −                               (D.13) 

 

Therefore, the spectral properties of the acoustic cavity are obtained by combining 

equations (D.6), (D.8), (D.12), and (D.10).The eigenvalue is then  
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and the mode shape is  
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Orthogonality condition of the acoustic modes leads to 
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APPENDIX E: THE COUPLING MATRIX 
 
 

Especial attention will be given to the obtaining of the coupling matrix
0 0 0

Q P L

srmnqpl
q p l

α
= = =

⎡ ⎤⎣ ⎦∑∑∑ . 

The coupling matrix is obtained from the following integration scheme  
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recall that s
T

s a
L
πλ = . Then, equation (E.1) becomes, 
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Performing the integration, equation (E.5) becomes 
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Equation (E.6) can be written as 
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In matrix notation equation (E.8) becomes 
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APPENDIX F: SCREEN ACOUSTIC  
                            IMPEDANCE MODEL 
 
 

In this appendix the model of the acoustic impedance ( )j
SZ  of the screen placed at the 

coupling interface is presented. The model presented here is based on the work by Ingard 

and Ising (1967).  

 

The normalized linear impedance  ( )j
SZ  is given by 

 

 
( ) 8 81

3

j
AS

A A

Z t i dt
c c d c

µρ ω ω
ρ ρ σ σ π

⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (F.1) 

 

The parameters of the perforate screen (facesheet) are as follows: 

 

t =  thickness of the perforate screen (facesheet) [m] 

r = radius of orifices 

d = diameter of orifices (d = 2r) 

σ = screen (facesheet) porosity  or percentage open area (POA) 

 

while the properties of the fluid are given by 

 

 c = speed of sound ( 343 m/s) 

 ρA = density of air (~ 1.21 NS2/m4 at 20 °C ) 

 µ = viscosity of air (~ 18×10-6 NS/m at 20 °C ) 

 

The screen normalized acoustic impedance is evaluated numerically for a thickness of the 

perforated  screen t= 0.00075m, radius of the orifices r= 0.00075m, and a screen porosity 

σ = 0.05 (POA 5%).  
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The resistive part of the normalized linear impedance  ( )j
SZ is shown in Figure F.1 and the 

reactive part in Figure F.2. The reactive component of the acoustic impedance shows a 

nonlinear behavior at low frequency (< 130Hz). For higher frequencies (>130 Hz) the 

resistivity can be considered  linear. The reactive component is linear in the complete 

frequency range. 

 

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Frequency [Hz]

R
ea

l[ 
Z(j) s

/ ρ
c]

 
Figure F.1: Facesheet Normalized Impedance - Resistive Component. 
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Figure F.2: Facesheet Normalized Impedance - Reactive Component 
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APPENDIX G: SOLVING THE COUPLING      
                               MATRICES 
 

The acoustic pressure it written as: 
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Replacing (G.1) in the last equation, it yields then 
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Combining the terms, it yields 
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The integrals are given by 
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Therefore, the coupling matrices are given by  

 

 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
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2 2
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a
k k
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βρα
ρ
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= = = = = =

⎡ ⎤ = −⎣ ⎦ Λ −

⎡ ⎤
⎢ ⎥

                            ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑∑ ∑∑∑

              (G.5) 
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and 
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The symmetry by pairs is an important property of these matrices. This property is used 

to solve the coupled linear system of equation for the unknown modal amplitudes 

presented in Chapter 4. The symmetry by pairs is given by 

  

 ( ) ( )

( ) ( )

0 0 0 0 0 0

1 1

0 0 0 0 0 0

2 2

0 0 0 0 0 0
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⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
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