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Design and Optimization of Temporal 
Encoders Using Integrate-and-Fire and Leaky 

Integrate-and-Fire Neurons 

Abstract 
As Moore’s law nears its limit, a new form of signal processing is needed. Neuromorphic 

computing has used inspiration from biology to produce a new form of signal processing by 

mimicking biological neural networks using electrical components. Neuromorphic computing 

requires less signal preprocessing than digital systems since it can encode signals directly using 

analog temporal encoders from Spiking Neural Networks (SNNs). These encoders receive an 

analog signal as an input and generate a spike or spike trains as their output. The proposed 

temporal encoders use latency and Inter-Spike Interval (ISI) encoding and are expected to 

produce a highly sensitive hardware implementation of time encoding to preprocess signals for 

dynamic neural processors. Two ISI and two latency encoders were designed using Integrate-

and-Fire (IF) and Leaky Integrate-and-Fire (LIF) neurons and optimized to produce low area 

designs.  

The IF and LIF neurons were designed using the Global Foundries 180nm CMOS process 

and achieved an area of 186µm2 and 182µm2, respectively. All four encoders have a sampling 

frequency of 50kHz. The latency encoders achieved an average energy consumption per spike 

of 277nJ and 316pJ for the IF-based and LIF-based latency encoders, respectively. The ISI 

encoders achieved an average energy consumption per spike of 1.07uJ and 901nJ for the IF-

based and LIF-based ISI encoders, respectively. Power consumption is proportional to the 

number of neurons employed in the encoder and the potential to reduce power consumption 

through layout-level simulations is presented. The LIF neuron is able to use a smaller 

membrane capacitance to achieve similar operability as the IF neuron and consumes less area 

despite having more components. This demonstrates that capacitor sizes are the main 

limitations of a small size in spiking neurons for SNNs. An overview of the design and layout 

process of the two presented neurons is discussed with tips for overcoming problems 

encountered. The proposed designs can result in a fast neuromorphic process by employing a 

frequency higher than 10kHz and by providing a hardware implementation that is efficient in 

multiple sectors like machine learning, medical implementations, or security systems since 

hardware is safer from hacks.  
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General Audience Abstract 
As Moore’s law nears its limit, a new form of signal processing is needed. Moore’s law 

anticipated that transistor sizes will decrease exponentially as the years pass but CMOS 

technology is reaching physical limitations which could mean an end to Moore’s prediction. 

Neuromorphic computing has used inspiration from biology to produce a new form of signal 

processing by mimicking biological neural networks using electrical components. Biological 

neural networks communicate through interconnected neurons that transmit signals through 

synapses. Neuromorphic computing uses a subdivision of Artificial Neural Networks (ANNs) 

called Spiking Neural Networks (SNNs) to encode input signals into voltage spikes to mimic 

biological neurons. Neuromorphic computing reduces the preprocessing step needed to 

process data in the digital domain since it can encode signals directly using analog temporal 

encoders from SNNs. These encoders receive an analog signal as an input and generate a spike 

or spike trains as their output. The proposed temporal encoders use latency and Inter-Spike 

Interval (ISI) encoding and are expected to produce a highly sensitive hardware implementation 

of time encoding to preprocess signals for dynamic neural processors. Two ISI and two latency 

encoders were designed using Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) neurons 

and optimized to produce low area designs.  

All four encoders have a sampling frequency of 50kHz. The latency encoders achieved an 

average energy consumption per spike of 277nJ and 316pJ for the IF-based and LIF-based 

latency encoders, respectively. The ISI encoders achieved an average energy consumption per 

spike of 1.07uJ and 901nJ for the IF-based and LIF-based ISI encoders, respectively. Power 

consumption is proportional to the number of neurons employed in the encoder and the 

potential to reduce power consumption through layout-level simulations is presented. The LIF 

neuron is able to use a smaller membrane capacitance to achieve similar operability which 

consumes less area despite having more components than the IF neuron. This demonstrates 

that capacitor sizes are the main limitations of small size in neurons for spiking neural networks. 

An overview of the design and layout process of the two presented neurons is discussed with 

tips for overcoming problems encountered. The proposed designs can result in a fast 

neuromorphic process by employing a frequency higher than 10kHz and by providing a 

hardware implementation that is efficient in multiple sectors like machine learning, medical 

implementations, or security systems since hardware is safer from hacks.  
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Chapter 1: Introduction 
As advances in traditional computer architecture reach the limit of Moore’s law, new 

technologies emerge to become an effective replacement in complex computational processes. 

In the early 1970’s, Moore’s law predicted that the number of transistors per square inch of a 

chip will double every one and a half years. This proved to be true until recent years have 

shown that the physical limitations of CMOS technologies have almost been reached as it 

continues to scale down. It is becoming harder, almost impossible, to continue the trend of 

Moore’s law while keeping low-energy demands. But increasing transistor density in a chip is 

not the only way to make computer architectures more powerful and efficient. This has led to 

the increased research of emerging technologies by improving software algorithms through 

effectively using current transistor densities or using computer architectures that differ from 

the traditional Von Neumann computers and slowing down the downscaling of transistors. A 

desirable emerging computing architecture is neuromorphic computing as it has been 

increasingly researched throughout the last decade due to its ability to overcome traditional 

computer limitations in data-intensive applications. Neuromorphic computing mimics the 

information processing of neurons through artificial neural networks (ANN) and requires signal 

conditioning to process the encoded signal. It was developed from the inspiration of the most 

complex computer known to man, the brain. Scientists still don’t fully understand how the 

human brain functions but advances in the research of biological neural systems inspired 

engineers to mimic biological neurons with mixed-signal circuits. The human brain uses much 

less power to process information when compared to traditional computers. Similarly, 

neuromorphic computing has better power efficiency and can outperform traditional 

computers in complex applications like machine learning and Artificial Intelligence (AI). 

Neuromorphic computing has proved to be very useful in pattern recognition and is made up of 

very large-scale integration (VLSI) systems [1]. Spiking Neural Networks (SNN) are a subsection 

of ANNs often used to condition sensory data using temporal encoders for later processing or 

to decode the processed signal.  

The brain communicates by firing electric pulses with a height of a few millivolts and 

duration of a few hundred microseconds. In digital systems, tens of probes are needed to 

monitor brain activity and use electrodes to sense the series of pulses emanating from the brain 

to produce an analog signal based on the sensory information. This signal now needs to be 

amplified, digitized, and transmitted wirelessly to a digital processor to allow for patient 

mobility. This process must consume low power so a small battery can be employed for days or 

weeks and to minimize heat dissipation in chips and make it harmless for the user [2]. As CMOS 

technologies continue to scale down, these energy demands cannot be met, and alternatives 

are considered. The temporal encoders from SNNs can condition analog sensory inputs directly 

into voltage spikes without the need for signal-conversion circuits like an analog-to-digital 

converter (ADC), reducing area and power consumption significantly. The emerging field of 

neuromorphic computing hasn’t been as extensively researched as the traditional computer 
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architecture and only Virginia Tech has provided analog integrated circuit (IC) implementations 

of the Inter-spike Interval (ISI) temporal encoder. Through the inspiration of biological neurons, 

temporal encoders are investigated for their ability to convert analog signals into voltage 

spikes, as a signal conditioner for neuromorphic computing. Four low-area temporal encoders 

are designed with a sampling frequency of 50 kHz, faster than firing frequency of biological 

neurons, to be able to distinguish small time differences and achieve a fast overall 

neuromorphic process for data-intensive machine learning problems. For the temporal 

encoders, Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) neurons are optimized to 

produce detectable spikes with a width of 10ns or longer, while maintaining the lowest power 

consumption possible. The design area of the encoders is optimized by creating the layout of 

the CMOS components within the passive layers of the capacitor while keeping in mind the 

possible electric field effects. This design prioritizes a small area over lower power consumption 

which differs from the current approach of most artificial neuron designs to contribute further 

to the research knowledge of the emerging field of neuromorphic computing.  

In the proposed encoders, predetermined artificial neurons map an analog input signal into 

an output spike train using the time-dependence of the signals to condition the input signal for 

a dynamic neural processor. The area and power of the neurons are optimized and designed 

using the CMOS GlobalFoundries 180 nm technology. The power of the temporal encoders is 

proportional to the number of neurons used and post-layout simulations show that the IC 

layout of the neurons has the ability to reduce power consumption significantly. The post-

layout simulations of the IF-based latency encoder (one neuron used) showed a power 

consumption of 73.5mW which is proportional to the power consumption of the pre-layout 

simulations of the IF-based ISI encoder (three neurons used) which had a power consumption 

of 214mW. But the post-layout simulation of the LIF-based latency encoder (one neuron used) 

showed a power consumption of 155uW which is not proportional to the power consumption 

of the pre-layout simulations of the LIF-based ISI encoder (three neurons used) which had a 

power consumption of 158mW. The LIF-based encoders consumed less power than the IF-

based encoders and the LIF-based latency encoder achieved the best area and power 

consumption comparable to current encoder designs, further discussion on Chapter 4. The 

layout of the neurons suggests a significant power reduction can be achieved by keeping the 

PMOS transistor of the spike-generating inverter outside of the capacitors’ electric field effects. 

The IF-based encoders achieved longer integration times at the expense of a lower noise 

margin, higher power consumption, and higher area consumption. Overall, the encoders show 

high sensitivity to small input current amplitude changes by providing a varying range of 

integration times as the input current changes.  

1.1 Technology Comparisons: Neuromorphic Computing Overview 
The last decade has seen an increasing interest in AI. AI is the theory and creation of 

computer systems capable of doing tasks that require human intelligence like pattern 

recognition or decision-making [3]. AI benefits greatly from machine learning since it enables 
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autonomy. AI has the potential to facilitate every-day living by using knowledge-representation 

machine learning to make decisions and take actions such as deleting spam emails, predicting 

science experiments, making networking suggestions, and improving healthcare by predicting 

how patients react to drugs. Achieving machine learning through traditional computer 

architectures has shown to be extremely power consuming due to large amounts of dynamic 

data so the benefits and setbacks of neuromorphic computing are explored as a possible 

replacement for traditional computing. Neuromorphic computing uses analog, digital, and 

mixed-signal VLSI to implement ANNs that mimic the information processing of the brain, 

consuming much less power than digital systems [3].  

1.1.1 Why Neuromorphic Computing? 

Traditional chips perform Boolean logic and period operations to reliably make 

calculations for any problem that can be easily broken down into a numerical problem, with 

more complex applications requiring more power. A traditional digital computer with machine 

learning capabilities can consume more than 20MW of power. Increasingly, applications are 

becoming difficult to perform, despite the usage of clusters of powerful traditional computers. 

In contrast, a human brain runs on approximately 20W of power [3]. This huge gap in power 

consumption inspired neuromorphic computing. Taking inspiration from multiple scientific 

areas like biology, physics, and engineering, neuromorphic computing has been able to mimic 

the data processing of biological nervous systems including its low power consumption. 

Neuromorphic computers will most likely replace traditional computers in data-intensive 

applications due to its ability to more realistically model neurons and parallelizable connection 

density [4]. Electronic systems receive signals and processes them to extract information. So, 

most computer problems require extensive data processing and input data usually comes in the 

form of sensory information, natural signals [2]. These input sensory information signals are 

analog and require analog circuits to condition it through sensors, receivers, filters, etc, for later 

processing [3]. Examples are cell phones receiving RF signals and returning voice or data 

information [2]. Traditional computing relies heavily on digital information processing and 

requires the conversion of analog signals into digital ones to be able to use memory units. So, 

as CMOS technology scales down, the Von Neumann architecture bottleneck is evident, energy 

demands are harder to meet. As an example of the architectural limitations of digital 

processors in machine learning, in a Google Corporation attempt to add smart features to their 

technology, they needed 16,000 processors for identifying a cat, which significantly increases 

power consumption when compared to the three processors needed when no smart features 

are present [5]. So, for AI applications, digital computers need a lot more components than 

analog circuits due to the need to preprocess signals by converting them to the digital domain 

using ADCs. This increases both area and power consumption. Additionally, ADCs require a 

sampling frequency lower than what analog circuits use to optimize power. The Nyquist 

criterion for ADCs suggest sampling frequency should be double the frequency of the input 

signal to optimize power. Analog encoders on the other hand, can have a frequency five times 

faster than the input signal yet remain at a lower area and power consumption compared to 
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ADCs due to their ability to encode signals directly without conversion. Analog signals are more 

prone to noise which makes the biggest challenge in neuromorphic computing to be the 

conversion of raw sensory information into a pre-processed version that is represented by 

action potentials or spikes, further discussed in Section 1.3 [4]. 

Traditional Von Neumann computer architecture consists of four functional units: the 

memory, the control processing unit, arithmetic and logic unit, and data paths [5]. The speed of 

the system is limited by the speed of accessing memory [8]. On the other hand, neuromorphic 

computing has interconnected processing and memory units which allows for the quick 

updating of weights (memory) for system adaptability. This overcomes the speed limitation of 

traditional computers. Unlike traditional computers, neuromorphic computing doesn’t require 

extensive code for its operation since it employs “learning” techniques which makes it more 

adaptable than traditional Von Neumann computing, further discussed in Chapter 2. 

Neuromorphic computing uses ANNs to employ evolutionary learning and shows great 

adaptability in complex applications with extensive sensory data that require system changes 

during inputs variations and efficiently predict and detect data [3, 4]. Due to the lack of a lot of 

analog circuits, traditional computers have a more straightforward design process than the very 

complex design of the mixed signal circuits of neuromorphic VLSI systems. Although simpler, 

traditional computers are not adaptable to system changes since it requires extensive coding 

for its operability. On the other hand, due to the use of more analog circuits, VLSI mimics the 

adaptability of neurons but requires a more complex design due to the multi-dimensional 

trade-offs of analog circuits. This area also hasn’t been as extensively researched so a lot of 

progress is possible. Computers will help research and understand the brain and the brain will 

help us build more efficient and powerful computers [3]. The following areas would benefit 

from neuromorphic computing: image processing, motion detection, pattern formation and 

recognition, robotics, bioinformatics, and sensor networks [4]. The summary of the comparison 

Figure 1.1 Pros and Cons of Von-Neumann Computing vs. Neuromorphic Computing [4, 6, 7] 
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between traditional Von Neumann computing and neuromorphic computing can be seen in 

Figure 1.1. The biggest advantage of neuromorphic computing is the increased use of mixed 

signal circuits, so why has this improved performance? 

1.1.2 Why mixed signal?  

ICs can be either analog or digital. To simplify distinction, a signal is any detectable value 

of voltage, current, or charge and conveys information about the state of behavior of a physical 

system. An analog signal is defined over a continuous range of time and continuous range of 

amplitudes. A digital signal is defined only at discrete values of amplitude [9]. Digital circuits 

operate using binary stable states which lead to regularity in the system and the possibility of 

defining the circuit functions using algebra. This makes digital circuits less prone to errors and 

allows for a large noise margin. Analog signals use the time-dependence of signals and define 

the circuit functions with nonlinear equations [10]. Mixed signal systems, like VLSI, employ both 

digital and analog circuits to benefit from the advantages of both while using them to mitigate 

each other’s fall backs.  

To design an analog circuit, circuit models and simulations must be done and pose the 

biggest challenge in the design process. Analog design is based on experience and intuition to 

use simulators and is considered more “hands-on”. Whereas digital circuits can enjoy 

Computer-Aided Design (CAD) methods which automate the design of digital circuits given 

certain parameters for a desired behavior [9]. Therefore, the design process of analog circuits is 

more complex than of digital circuits. The main trade-offs used in digital design are power 

consumption, speed of the circuit, and the chip area it requires [3]. In contrast, analog circuit 

design has a multi-dimensionality to its trade-offs. This means that by adjusting one of the 

trade-offs, another one will be sacrificed. The multi-dimensional trade-offs of analog design are 

power consumption, speed of the circuit, gain, precision, and the voltage of the power supply 

[3]. This multi-dimensionality is what leads analog circuits to be prone to error from noise. 

Despite digital signals being more reliable, analog circuits are very essential, relevant, and 

challenging and will continue being so for decades [2]. Analog circuits are mostly used for signal 

processing and rarely stand alone. Raw sensory data requires a high-performing analog circuit 

so input signals like sensor outputs are analog and traditionally require preprocessing using 

filters or ADCs that can perform with strict speed and accuracy for digital processing. For 

example, an antenna receives an RF signal that is digitized by an ADC and processed in the 

digital domain [2]. An ADC consumes a lot of power when digitizing miniscule RF signals while 

preventing noise effects when compared to cell phone receivers. The most important 

considerations for signal processing are the bandwidth of the input signal, cost, and integration 

so digital circuits are less efficient in processing data due to the need for domain conversion 

into digital [9].  

In the past, data processing systems used digital processors and required multiple ICs with 

lots of passive components, but VLSI integrates CMOS technology using more analog circuits 

with digital ones to make a more efficient design [9]. For high data rates, around tens of 
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gigabits per second, it has been proven that it’s better to process data in the analog domain 

using an analog equalizer. For lower data rates, ADCs are traditionally used because they are 

more reliable and data processing is done in the digital domain [2]. Neuromorphic computing 

aims to employ analog circuits for low and high data rates that are much less power consuming 

than traditional preprocessing methods. These circuits are the temporal encoders of SNNs, 

further discussed in Chapter 2. VLSI is widely used in neuromorphic computing because it uses 

the best features of analog and digital to create an optimized mixed-signal system. CMOS 

technology is used for most VLSI systems since it provides density and power savings in the 

digital portions and allows for a mix of components in the analog circuits. In neuromorphic 

computing, it has been shown that replacing digital circuits with analog ones to create a VLSI 

system led to lower power consumption with comparable reliability. 

1.2 Neuromorphic Computing Background 
Neuromorphic computing consists of ANNs which are made up of layers of neuron clusters 

that send signals to each other and other layers. The two most commonly used neural networks 

in neuromorphic computing are the Feedforward Neural Network (FNN) and the Recurrent 

Neural Network (RNN) [7]. The FNN has connections between subsequent layers. The RNN 

builds on this architecture and includes random connections between layers to imitate the 

temporal behavior of biological nervous systems. Due to this characteristic, RNNs benefit from 

the use of SNNs. Some of the emerging applications that employ RNNs and SNNs include an 

energy efficient reservoir computing platform for 5G, a real time Damping Reduction Factor 

(DRF) based false data injection detection in smart grids, and improving animal welfare through 

smart farms [3]. 

Neural networks can be implemented using different technology styles and designs like a 

custom IC design, Field Programmable Gate Array (FPGA), or emerging devices. A custom design 

comes from a long design cycle and mainly involves manual designs like microprocessors, CPUs, 

and analog circuits. These cells are represented by Application Specific Integrated Circuits 

(ASIC). FPGA uses standard cells that come pre-designed and usually require a shorter design 

cycle since CAD software facilitates the design process. FPGA can create a fast automated 

design for a low cost since it is based on pre-designed cells. This allows for easy prototyping and 

reconfiguration of the system postproduction. Emerging devices like memristors and FinFETs 

can be implemented in neural networks by replacing traditional CMOS components for 

increased operability [11]. ASIC and FPGA implementations of neural networks are the most 

common. ASIC requires an extensive design process since it must be designed from the 

behavioral description of the circuit to the physical layout. After the design process, expensive 

and time-consuming manufacturing of the chip is required at a fabrication facility of a 

semiconductor foundry which does not allow for the reconfiguration of the system 

postproduction. On the other hand, FPGA is bought off the shelf and requires a bitstream to 

configure the device but requires no physical layout. It can be easily reconfigured by designer. 

Neuromorphic computing can use these technology implementations alone or can be 
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integrated using multiple technology integrations. For commercial chips, ASICs are more 

desirable but for simulating prototypes using a combination of ASIC and FPGA is preferable.  

Generally, neuromorphic computing aims to improve its brain emulation and sets a basic 

criterion for this goal. It should be able to handle a large number of neurons and synapses and 

have the ability to mimic the spiking behavior of neurons with the aim to increase operability. It 

should be able to distinguish time differences smaller than 1kHz, like at the order of 10kHz [11]. 

Lastly, it aims to have a power efficient platform to eventually be able to use for more than one 

brain the world, perhaps for billions of them to reduce the load of current computer 

architectures. 

1.2.1 Neuromorphic Computing Timeline [5] 

 

1.3 Inspiration from Biology 
To understand the behavior of biological neurons, they can be broken down into four 

parts with different functions: dendrites, soma, axon, and synapse, labeled in Figure 1.2. 

Dendrites are the parts of the neuron that receive data from other cells at synapse connections. 

The dendrite transmits the received information to the soma. The soma is considered the main 

processing unit of the neuron where the nonlinear processing happens. The soma membrane is 

charged when receiving input data until it exceeds a threshold which triggers an output spike, 

this is called the firing stage. When a threshold is not met, the membrane potential leaks out. 

When the output signal is triggered, the axon transmits it to the synapse which then transmits 

1988 First analog silicon retina proposed by Carver Mead, initiating the emerging field of 
physically based computations inspired by neural networks. He pioneered the use of 
VLSI for the brain inspired neural network architecture called neuromorphic 
computing [6]. 

2006 First attempt at neuromorphic computing with Field Programmable Neural Array 
(similar to FPGA) and first neural network implemented in silicon. 

2011 MIT implemented ANN on a chip using 400 transistors. 

2012 Neuron designed with lower power consumption than older designs using 6 
emerging devices called memristors by Purdue University. 
Emerging device called the neuristor developed using memristors to mimic 
biological neurons by HP labs. 

2013 Human Brain Project started and anticipated brain emulation using VLSI for 
neuromorphic systems. Founded by the European Union as a ten-year project, it 
produced the neuromorphic chips BrainScaleS & SpiNNaker. 

2014 IBM made TrueNorth, the closest design to resemble the human brain using 256 
programmable silicon neurons. It successfully overcame the bottleneck limitations 
of Von-Neumann architectures consuming 70mW of power. 

2017 Intel released Loihi chip, Intel’s 5th generation digital neuromorphic chip using 2 
billion transistors and 14nm CMOS process.  
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the output to all connected neurons at that node [6]. In general terms, neurons process and 

generate a signal pattern. Neuromorphic computing aims to replace these biological 

components with ones made up of electrical circuits. As can be seen in Figure 1.2, some 

examples of electrical circuit replacements are using a capacitor or memristor as the soma, a 

hardware high-speed bus as the axon, and a hardware crossbar junction as the synapse to 

create an ANN [11]. 

In a biological neuron, signals get received, processed, and transmitted as a nerve 

impulse, also called an action potential or spike, pictured in Figure 1.3 [6]. During resting 

periods where no input signal is integrated, the output of the neuron will be null. When the 

Figure 1.2 Biological neuron components and examples of hardware 
equivalents inspiring artificial neural networks for neuromorphic computing 

Figure 1.3 Biological neuron action potential 
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spike is triggered, depolarization will begin and the input ion channel Na+ will activate. The 

biological action potential will last a few hundred microseconds and repolarization will begin, 

the input ion channel 𝑁𝑎 +will deactivate and the output ion channel 𝐾 + will activate. The 

output signal will then enter a refractory period where the neuron is not likely to fire again. 

SNNs have been used to encode raw analog input signals into voltage spike trains to mimic the 

communication between biological neurons. SNNs are considered the third generation of 

neural networks and are based on event-driven solutions while using low power consumption 

so they are preferable for encoding signals. Due to the smaller noise margin of analog circuits, 

encoding analog signals into voltage potentials becomes neuromorphic computing’s biggest 

challenge [8]. 

Chapter 2: Spiking Neural Network & Neural Encoders 
As mentioned before, neuromorphic computing requires conditioning of raw input data 

into spike trains for processing. Thus, using temporal encoders and decoders from SNNs is 

desirable since they use the event-driven time dependence of signals to map raw sensory data 

into spike trains [3]. This time-based encoding represents input data with voltage spikes and 

can offer perfect recovery for band-limited stimuli [4]. Temporal encoders can be broken down 

into rate and temporal encoding. An emerging technique is to combine more than one 

temporal encoding method to create a multiplexing encoder. Multiplexing encoding enhances 

accuracy of circuits and can produce similar power consumptions as regular temporal encoders. 

Accuracy is enhanced because multiplexing encoding conveys more information which makes 

voltage spikes less susceptible to noise [1]. Rate encoding has been extensively used in the past 

for its simplicity but it lacks the temporal aspect of input analog signals, further explained in 

Section 2.2. Temporal encoding has overpowered rate encoding in desirability because it uses 

the timing response of signals to map information and embeds the signal’s time dependence 

into the output spike train. Multiplexing techniques haven’t gained as much traction because 

it’s still an emerging technique and has not been researched as much [1]. 

2.1 Why Neural Encoding? 
In traditional computer architectures, ADCs and filters have been used for the 

preprocessing of raw analog signals; ADCs being the most commonly used. ADCs have 

dominated this area of signal processing due to its efficiency and high throughput in low data 

rates. For high data rates, ADCs need a lot more power to produce the same efficiency since 

noise is added during integration and included in the conversion of the analog signal into the 

digital domain. In order to mitigate power consumption in ADCs, a lower supply voltage can be 

used. ADCs are more limited than neural encoders using this power optimization technique 

because a low power supply for an ADC makes the threshold voltage of the transistor similar in 

amplitude to the supply voltage. This forces the input swing for ADCs to be rail to rail to switch 

the transistors [10]. On the other hand, neural encoders use analog circuits to map an input 

into voltage spikes and require less components than ADCs. The requirement of less 

components for neural encoding reduces both power and area consumption making neural 
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encoders desirable for both high and low data rates. The fallback of using neural encoding is the 

use of analog circuits because it makes the design process more complex and susceptible to 

noise due to its multidimensional tradeoffs. On the other hand, ADCs are a simple mixed signal 

structure and only contain two analog components making the design process more 

straightforward. The encoding process of ADC require two steps: quantizing and encoding. 

Neural encoding encodes signals directly which speeds up the process. So, for both high and 

low data rates, neural encoding can provide a low area and low power design that is much 

faster than ADCs with a smaller noise margin. 

2.2 Neural Encoding Overview 
Under SNNs, most common encoders are temporal encoding and rate encoding. 

Temporal encoders have two subgroups that are most commonly used: latency (also called 

Time-to-Fist-Spike) and ISI encoding. Rate, latency, and ISI encoding can be seen in Figure 2.1. 

Rate encoding uses the number of spikes (firing frequency) during the encoding period to map 

the analog signal. The amplitude of the input signal will change the firing frequency. Although 

extensively used in the past, it has been replaced by temporal encoding because rate encoding 

lacks the consideration of the timing between spikes and becomes ambiguous in changing 

environments [4]. Temporal encoding uses the time between spikes to map input signals into 

voltage spikes. Latency encoding uses the distance between the clock signal that triggers a spike 

and the time of the first spike to be generated. In other words, it uses the latency of the 

generated spike to map the amplitude of analog signals. As can be seen in Figure 2.1, the 

latency of the generated spike changes based on different stimuli. ISI encoding uses the relative 

timing between the generated spikes within one encoding signal to map the input signal into 

voltage spikes. Figure 2.1 shows that for different stimuli, the distance between the three 

generated spikes vary. This encoder doesn’t need the external reference of the clock signal for 

its encoding. Using the time differences of successive spikes makes temporal encoding more 

efficient in changing environments when compared to rate encoding since the latter can’t 

explain the correlation between spikes. In comparison, latency encoding responds to the 

absolute time relative to the clock trigger while ISI responds to the relative time between 

Figure 2.1 Neural encoding schemes (voltage vs time) 
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spikes. In this regard, ISI has the functionality of being able to rely on internal reference frames 

as consecutive spikes carry the information of the previous spikes. Thus, each spike acts as a 

reference for the next spike and allows ISI encoding to carry more information per sampling 

period autonomously [4]. ISI encoding requires more than one neuron to integrate at least two 

spikes per sampling period making the power consumption proportional to the number of 

neurons used. Latency encoding only requires one neuron and has a larger noise margin than 

ISI encoding because of the integration of less components for the encoding scheme at the 

expense of less information conveyed per sampling period.  

Chapter 3: Spiking Neurons 
There are two types of artificial neuron models: electrical input-output membrane 

voltage models and natural stimulus models. The first one predicts the output membrane 

voltage as a function of an electrical stimulus given an input current or voltage. It predicts the 

moment that the spike will occur at. The natural stimulus model represents the probability of a 

spike event happening and the stimulus is in the form of natural signals or chemical reactions. 

There are a lot of types of neuron models. At the most detailed model there is the Hodgkin-

Huxley model which describes the membrane voltage as function of the input current and the 

activation of ion channels. This detailed model describes the relationship between the flow of 

ionic currents across the cell membrane and the corresponding membrane voltage of the cell. 

This model consists of a set of nonlinear differential equations that describe the behavior of ion 

channels and may include additional ionic currents with added modules like the inward 

currents Ca2+ & Na+ and the outward currents 𝐾 + & leakage current, mimicking the action 

potential of biological neurons more closely. The end result of this model needs at least 20 

parameters to accurately estimate or measure, so it becomes a very complex system of neurons 

[14]. The numerical integration of all the necessary equations becomes computationally 

expensive so mathematically simpler models are more desirable. The mathematically simpler 

models describe the membrane voltage as a function of input current and predict the timing of 

spikes without the description of the biophysical processes that create the biological action 

potentials. These models include IF and LIF neurons and have the possibility to add on circuit 

modules that would mimic biological components better despite not describing the biophysical 

current effects. These models contain less nonlinear equations since it uses some linear 

integration properties that simplify the neuron design and implementation. Lastly, there are 

abstract neuron models that only predict the output spikes as a function of the stimulus 

without describing the membrane voltage. The stimulus can be in the form of sensory input or 

induced pharmacologically. Due to the lack of the membrane voltage description these abstract 

models become less accurate and less desirable [4]. There are a lot of neuron models because 

there’s different possible experimental settings and it’s difficult to separate intrinsic properties 

of single neurons from measurement effects and the interaction between many cells in full 

neuron networks [14]. The mathematically simpler neuron models are the most used due to 
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their usefulness in artificial neuron networks by mimicking biological neurons while maintaining 

a low area and power consumption.  

3.1 Integrate-and-Fire & Leaky Integrate-and-Fire Neurons Overview 
The IF and LIF neuron models are the most used in artificial neural networks. The IF 

neuron is the simplest with the basic behavior of firing a spike based on the input stimulus. The 

IF neuron circuit could be simplified to a capacitor being charged by an input analog signal until 

it reaches the threshold voltage of its output resistance triggering an output spike with the 

illusion of current flow. Thus, the charging of the capacitor is dependent on the capacitance and 

the neuron’s threshold voltage and described using 𝐼𝑚(𝑡)  = 𝐶𝑚(
𝑑𝑉𝑚(𝑡) 

𝑑𝑡
) where 𝐼𝑚(𝑡) is the 

time-dependent current illusion of the membrane capacitor, Cm is the membrane capacitance, 

and 𝑉𝑚(𝑡) is the time-dependent membrane voltage of the neuron [14]. The increase of 𝑉𝑚(𝑡) 

is limited by the neuron’s threshold voltage and will trigger a spike when the threshold is met. 

After the spike is generated, the capacitor is discharged. This model lacks the ability to mimic 

the diffusion of ions when an equilibrium is not reached so during resting periods, where a 

spike will not happen, noise will affect the membrane voltage and it will be retained until the 

next sampling period is triggered. This increases power consumption and reduces the noise 

margin. Thus, the IF neuron can produce voltage spikes from an analog input and mimic the 

refractory periods exhibited in biological neuron behavior but is susceptible to noise and 

misfiring during the refractory period. The LIF neuron adds on to the IF neuron model where it 

operates the same but has an additional leakage current module. This module allows any 

accumulated membrane voltage during resting periods to leak and mimic the refractory period 

of biological neurons more closely. This is because the LIF neuron model doesn’t assume that 

the membrane is a perfect insulator and includes the membrane resistance in the time-

dependent current illusion of the capacitor described by 𝐼𝑚(𝑡) = 𝐶𝑚 (
𝑑𝑉𝑚(𝑡)

𝑑𝑡
) +

𝑉𝑚(𝑡)

𝑅𝑚
 where 𝑅𝑚 

is the membrane resistance [14]. This increases the noise margin during resting periods and 

reduces power consumption significantly. Although IF neurons don’t have the leakage module 

that the LIF neuron does, it can still produce the basic function of transforming analog signals 

into voltage spikes. When compared to the IF neuron, the LIF neuron is more complex which 

theoretically will result in a bigger size and power consumption but based on the four designed 

temporal encoders, the added functionality modules of LIF neurons allow for a smaller size and 

less power consumption when compared to the IF neuron. From the basic operation of these 

two neurons, it can be observed that the LIF neuron operation is more complex than the 

latency neuron. Designing the LIF neuron requires more complex circuit analysis and 

adjustments to have similar operations as the latency neuron but with enhanced properties.  

Chapter 4: Experimental Results 
Three main design parameters were considered for the temporal encoders and neurons 

designed. The first consideration was to have a small area while optimizing the circuit to 

achieve detectable spikes wider than 10 nanoseconds. A peak detector needs a spike width of 
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at least 10ns for its voltage level to reach the threshold for detection before the spike 

disappears [1]. The low area was prioritized as the most important parameter by making the 

layout of the CMOS components within the layers of the capacitors and reducing the 

membrane capacitance as much as possible since it was used as the basis of the layout 

boundaries of the devices. This is risky for circuits that require precise capacitor values because 

the current flow through the devices will disrupt the electric field created by the capacitor 

layers and change the value of capacitance. But my circuit employed neurons that used 

capacitance to mimic a membrane and small capacitance changes from the electric field didn’t 

affect it much. Since the area is dominated by the capacitor size, small devices are not 

necessary for the area reduction. Small devices have fast short-circuit currents which lead to 

faster switching delays reducing the width of the voltage spikes at the output. Since the IF 

neuron didn’t contain a circuit module that increased its spike width, size modulation was used 

to increase the switching delays of some transistors in the IF neuron to achieve a minimum 

spike width of 10ns. The LIF neuron contained the spike width controller module, so it relied 

less on increasing switching delays. The spike width controller module uses a capacitor to delay 

the spike repolarization so in order to keep the area small, a minimum sized capacitor was used 

from the Global Foundries 180nm CMOS process. The minimum sized capacitor allowed the LIF 

neuron to rely less on switching delays to achieve a detectable spike but still didn’t allow for the 

full minimization of switching delays which would significantly reduce power consumption. 

Bigger transistor widths for inverters helped to increase switching delays and to reduce the 

effects to the transistors of the electric field from the capacitor layers. After optimizing area for 

detectable spikes, the integration time it takes for the spike to be generated was increased as 

much as possible to produce a bigger range of integration times to theoretically increase 

accuracy; this property was not tested with a processor but a varying range of integration times 

was achieved. A low power consumption is considered after optimizing the previously 

mentioned parameters because increasing the integration time, switching delay, and transistor 

sizes increases the power consumption of the circuit as well. The techniques used to optimize 

power consumption without affecting the integration time and area too much was to reduce 

the current drawn from some devices by increasing the length and minimizing switching delays 

when the spike generation wasn’t affected [1]. Analog circuit design has multi-dimensional 

trade-offs as mentioned in Section 1.1.2 so the best area, spike width, integration time, and 

power consumption will not be possible in a single design. Therefore, the focus of this design is 

on minimizing area while producing detectable spikes and maximizing integration time over 

power consumption. 

4.1 IF Neuron Design & layout 
The IF neuron consists of 11 CMOS devices and one passive capacitor. It requires three 

inputs: the input excitation current, a voltage source for the reference voltage (𝑉𝑟𝑒𝑓), and a 

clock signal. The circuit can be further simplified to basic CMOS circuits and function modules. 

Figure 4.1 shows the circuit schematic of the IF neuron and in the figure, basic CMOS circuits 

are enclosed in blue boxes and the function modules are enclosed in red boxes. With some 
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circuit components, both blue and red boxes are used to portray their functionality. Starting 

from the left of Figure 4.1, the first basic CMOS component is the membrane capacitor which 

serves as the function module of the circuit that mimics a neurons membrane by charging the 

membrane capacitor through an input current until the neuron’s threshold voltage is met. This 

sets the maximum possible voltage that the capacitor will charge to, which then triggers the 

output voltage spike generation and simultaneously the discharge of the capacitor until the 

next sampling period. The basic CMOS circuit next to the capacitor is the source follower with 

an active load. This source follower increases the linear integration range of the membrane 

capacitor by the input current. The voltage bias of the source follower’s active load creates the 

threshold controller function module where the neuron’s threshold voltage is controlled by the 

amplitude of the bias voltage. Following the source follower is Inverter 1 and subsequently 

Inverter 2 and Inverter 3 in parallel. Inverter 1 is a basic CMOS inverter serving to trigger the 

generation of a spike and simultaneously discharge the membrane voltage. Inverter 2 has two 

added CMOS transistors where one is a diode connected PMOS M5 serving as a voltage drop to 

lower power consumption and the other is a load NMOS M8 whose voltage bias is a clock signal 

that creates the refractory period controller by adjusting the width of the clock pulse and the 

period of no CLK signal. The period between clock pulses is the sampling period where the spike 

will happen, and the clock pulse is the sampling period trigger at which the capacitor will start 

to charge. The amplitude of the clock signal may have effects on the circuit operations but in 

this case a rail-to-rail clock was used to impose a vdd voltage at each pulse. M8 sets the slew 

rate since it’s responsible for the speed of the feedback discharge. Inverter 3 serves as a fast-

switching digital inverter to produce the output voltage spikes when Inverter 1 triggers a 

switch. Inverter 3 becomes the spike generator, and the width and length of these transistors 

Figure 4.1 IF neuron circuit schematic 
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affected the spike width of the output spikes more significantly. The last circuit component in 

the IF neuron is the minimum sized reset transistor that provides negative feedback to the 

membrane capacitor during spike generation to discharge the accumulated membrane voltage 

to get the circuit ready for the next sampling period. This negative feedback module is what 

starts the refractory period by discharging the membrane capacitor. 

IF Threshold Modulation Overview  

When a sampling period is triggered by the clock signal, black in Figure 4.2, the 

membrane voltage 𝑉𝑚𝑒𝑚 begins to increase through the linear integration of the membrane 

capacitor by the input current. As can be seen by the green signal in Figure 4.2, the linear 

integration happens when the clock signal is triggered after an off (refractory) period in the 

circuit operation. As 𝑉𝑚𝑒𝑚 increases towards the neuron’s threshold voltage, 𝑉1 also increases 

and starts to reach the threshold voltage of M4. When this threshold voltage is met, 𝑉2 to start 

to decrease as previously  𝑉𝑖𝑛 was too low to signal an inverter switch. As the membrane 

capacitor charges, the source-follower produces a signal described by 𝑉1 = 𝑘(𝑉𝑚𝑒𝑚 − 𝑉𝑟𝑒𝑓), 

where Vref is the reference voltage used to bias the active load of the source-follower and k is 

the slope coefficient of the signal [15]. So, the neuron’s threshold voltage can be adjusted by 

changing the amplitude of 𝑉𝑟𝑒𝑓 and the source follower becomes the neuron’s threshold 

controller. The neuron’s threshold voltage will linearly increase as 𝑉𝑟𝑒𝑓 increases. This property 

models the long-term adaptation of cortical cells that allow neurons to change shape and thus, 

electrical properties. 

IF Power Consumption Overview 

The most power consuming parts of the IF neuron circuit were Inverter 1 and 3. This 

comes from the short-circuit currents through the inverters at switching times, especially 

because inverter delays were not minimized to produce output spikes wider than 10 

Figure 4.2 Transient simulation of IF neuron for one sampling period. In black, input clock 
signal triggers sampling period. In red, output Vspike is the generated voltage spike. In 
green, the membrane voltage charging/discharging. In blue, input analog current.   
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nanoseconds. The short-circuit currents of Inverter 2 consume less power than the other two 

inverters because of the diode connected PMOS M5 acting as a small resistor. When there is no 

input current or a sampling period hasn’t been triggered by the clock signal, the neuron is in an 

off state, as can be seen in Figure 4.2. The off period comes after the reset transistor drains 

𝑉𝑚𝑒𝑚 post spike-generation to prepare for the next sampling period. Ideally, 𝑉𝑚𝑒𝑚 will remain 

zero during this time making the power consumption null. But power simulations showed that 

when integrated into more complex circuits, noise affects the off period of this neuron and will 

increase the power consumption.  

During the on state of the circuit where the linear integration and spike generation 

happens, the main multi-dimensional trade-offs affecting power consumption for the IF neuron 

are the input current offset, the firing rate, and the integration time set by 𝑉𝑟𝑒𝑓. While keeping 

𝑉𝑟𝑒𝑓 and the vdd the same, increasing input current increases the current flowing through Vdd 

as the neuron’s fire rate increases by increasing the switching speed of the transistors which 

also decreases the integration time. Since the integration time was prioritized over power 

consumption, the reduction of the input current to save power was limited. The sizes of the 

transistors using Vdd were optimized by reducing their drain current to reduce the power 

consumption, further explained in Section 4.1: IF Circuit Sizing. The power dissipation also 

depends on 𝑉𝑟𝑒𝑓 because increasing 𝑉𝑟𝑒𝑓 increases integration time and this in turn increases 

power consumption since current is drawn for longer. This is a problem because the IF neuron 

needed to not minimize the inverter delays fully which led to an even bigger power 

consumption increase. But shorter integration times increases a neuron’s firing rate which 

increases power consumption as well. In typical applications, the refractory period is used to 

limit the neuron’s maximum firing rate. The firing rate of the designed neurons was high 

because they are made up of very small transistors, but the clock signal is made small enough 

for the voltage spike to occur outside of it. This triggers the reset transistor to drain 𝑉𝑚𝑒𝑚 and 

limits the spike generation to only one spike per neuron, reducing power consumption [15]. 

Smaller 𝑉𝑟𝑒𝑓 values can lead to a smaller power consumption as well because it reduces 

integration time but for very small 𝑉𝑟𝑒𝑓 values, power consumption increases again because the 

source follower acts as a low-pass filter on the falling edge of the spike and the switching time 

of inverter 1 is increased, increasing power consumption. 

4.1.1 IF Circuit Sizing 

Since area consumption was the number one priority for this design, the membrane 

capacitance became the leading circuit parameter since it needed to be small to reduce the 

chip area. By reducing the capacitor size, other parameters that increase power consumption 

had to be increased as well like 𝑉𝑟𝑒𝑓 and input current offset to keep a consistent operation. 

The input parameters of the circuit will be discussed during the implementation of the temporal 

encoders in Section 4.4 and 4.5. Components were minimum sized when possible but to 

optimize the circuit the size of some components had to be increased. To make sure the area 

would remain small during the size modulation process, the size increases were limited to a 
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small number of transistors so all CMOS components would fit within the capacitor layers 

during layout. To start the designing of the IF neuron, the basic CMOS circuits were sized 

individually and continuously adjusted based on simulation results of the neuron, starting with 

the three inverters.  

Basic CMOS inverters are the main structure of this IF neuron and have the operability 

of inverting an input signal and its operation can be explained using the corresponding pull-up 

and pull-down current network that can be seen in Figure 4.3. On the left, the basic CMOS 

inverter schematic is made up of a PMOS and NMOS inverter with connected gates and drains. 

This circuit connection produces a simple circuit of operation of two cases. In case 1, IN 

provides a high signal and triggers the pull-down network (PDN) with a high-to-low time delay 

called 𝑡𝑝𝐻𝐿. In this case, MP1 turns off and the output voltage OUT discharges through MN1 to 

zero, as can be seen in Case 1 of Figure 4.3. The load capacitance, CL of this circuit can include 

intrinsic capacitances and external loads. As can be seen in the chart at the top right corner of 

case 1 in Figure 4.3, 𝑡𝑝𝐻𝐿 is the time it takes for the current to fully discharge through MN1 and 

can be described by 𝑡𝑝𝐻𝐿 = 𝑅𝑜𝑛𝑛 ∗ 𝐶𝐿 where Ron𝑛is the on resistance of MN1. In case 2, IN 

provides a low signal and triggers the pull-up network (PUP) with a low-to-high time delay 

called 𝑡𝑝𝐿𝐻. In this case, MN1 turns off, MN1 turns on, and the active load capacitance gains 

charge from Vdd since the path between MP1 and OUT has low resistance, as seen in case 2 of 

Figure 4.3 [16]. As can be seen in the chart at the top right corner of case 2 in Figure 4.3, 𝑡𝑝𝐻𝐿 is 

the time it takes for the current to fully charge to Vdd through MP1 and can be describes by 

𝑡𝑝𝐿𝐻 = 𝑅𝑜𝑛𝑝 ∗ 𝐶𝐿 where Ron𝑝 is the on resistance of MP1. To minimize 𝑡𝑝𝐻𝐿 and 𝑡𝑝𝐿𝐻, the 

lower mobility of holes in PMOS transistors must be compensated by making its width needs to 

be at least 1.5-3 times bigger than that of the NMOS transistor. Generally, static CMOS logic 

style circuits are considered robust against technology scaling and can perform reliably at low 

Figure 4.3 CMOS inverter on left. On right, Case 1 represents a pull down (PDN) network, Case 2 represents a pull up (PUP) 
network. [16] 
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voltages and arbitrary transistor sizes since the parallelization of the PUP & PDN networks 

creates a ratioless logic where there is no dependence between the output voltage and 

transistor sizes [16]. But minimizing the delay through circuit sizing is still important because 

longer delays consume more power, and the inverter will be limited to the speed of the slowest 

delay.  

The IF neuron has the limitation of needing delays longer than minimum because it 

needs to provide output spikes with a minimum width of 10 nanoseconds for them to be 

detectable. Since I aimed for small devices, the transistors have very small internal capacitances 

which reduces the switching delays 𝑡𝑝𝐻𝐿 and 𝑡𝑝𝐿𝐻. To guide the start of the transistor sizing of 

the three inverters, I minimized the switching delays by making the PMOS width bigger and 

leaving the length at a minimum. Since inverter 2 contains two extra transistors, I started with 

minimum sized transistor and adjusted based on simulation results. I used the delay equations 

to guide the size adjustments of the inverters during simulations to optimize the circuit. Table 

4.1 shows the final transistor sizes of the IF neuron.  

Inverter 1 is made up of PMOS M3 and NMOS M4 and inverter 3 is made up of PMOS 

M9 and NMOS M10. I noticed these inverters required the most power consumption and 

subsequently the biggest area. Inverters 1 and 3 are supposed to act as simple and ideally fast 

logic switches, but the small component sizes predict a spike width less than 10ns, so the 

switching delays are increased through size adjustments. The switching delay equations show 

that it depends on the on resistance (Ron) and load capacitance of the inverter. Ron can be 

described by 𝑅𝑜𝑛 =
1

𝑔𝑑𝑠
= 𝑘′ (

𝑊

𝐿
) 𝑉𝑜𝑣 which shows its proportionality to the ratio of the width 

and length, also called the aspect ratio, of the transistors where k’ is the product of µ ∗ 𝐶𝑜𝑥 of 

either PMOS or NMOS based on which pull up or pull down network is active. So, in order to 

increase the delay of the transistors, Ron can be increased. To increase Ron, W can be 

increased, or L can be decreased. Another way to increase the delay of the transistor switching 

is to increase the load capacitance. The load capacitance will be dominated by Cgs since it is the 

highest internal capacitance for each transistor. Cgs can be described by 𝐶𝑔𝑠 = (
2

3
) 𝐶𝑜𝑥𝑊𝐿 and 

can be increased by increasing W and L.  

So, to increase both Ron and 𝐶𝑙𝑜𝑎𝑑, W can be increased but the effects of modulating L 

are contradictory for these two variables and this effect becomes less reliable. To increase the 

delay of inverter 1 and 3, the W of PMOS M3 and M9 were increased. Inverter 3 had negative 

effects from channel length modulation, so inverter 3’s M9-M10 L was kept at a minimum. For 

inverter 3, it was important to match the PMOS and NMOS transistors’ lengths. The width of 

NMOS M10 was reduced to minimum to draw more current through inverter 3 as output loses 

were noticed in simulations (voltage values less than vdd). In inverter 1, the length of PMOS M3 

was used for power optimization and will be discussed in Section 4.1.1 IF Power Saving 

Techniques. Since the first prioritized design parameter was optimized by reducing area while 

increasing switching delays to provide detectable spikes, inverter 1’s NMOS M4 is used to 
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increase the integration time of the neuron based on its operability. A wide range of integration 

time was the second prioritized design parameter to provide varying integration times for small 

current amplitudes. Inverter 1 increased the integration time of the neuron by increasing the 

width and length of M4 since this changed the threshold voltage that V1 had to reach to trigger 

M3 to start drawing current and switch the inverter, as mentioned in Section 4.1. 

Inverter 2 didn’t require as much current drawn from the source due to its diode-

connected minimum-sized PMOS M5. The focus of inverter 2 design is in increasing the delay of 

the load NMOS M8 since it sets the speed of the feedback discharge to minimize inverter area. 

Thus, the NMOS M7 is minimum sized and the PMOS M6 increases the width to increase the 

inverter delay. For M5-M7, it’s important to match the lengths of these devices to reduce 

mismatch errors. The load NMOS M8 of inverter 2 can lower the speed of the discharge by 

increasing its width and decreasing its length but it required a minimum length increase to fully 

discharge the capacitor. MN8 sets the refractory period and for longer periods, L must increase 

to get neuron functionality for the longest integration time at the minimum input current 

amplitude. The reset transistor, M11, that provides the negative feedback is minimum sized. 

The source follower is the third most power consuming component and the current required 

resulted in an increase in the width of NMOS M1. The length of the NMOS M1 was used for 

power optimization and will be discussed in Section 4.1.1 IF Power Saving Techniques. The size 

of the active load, M2, in the source follower was kept at a minimum but it’s effects on power 

will be discussed in Section 4.1.1 IF Power Saving Techniques. It should be noted that the size 

modulations of the source follower affected spike width and spike frequency. It could be used 

to optimize these parameters.  

IF Power Saving Techniques  

The first and second design parameters prioritized for optimization were considered in 

the previous section. The third prioritized design optimization parameter was power 

Figure 4.4 Operation regions of CMOS transistors [23] 



20  
 

consumption and will be optimized without affecting the previously optimized design 

parameters. The optimization strategy I used to reduce power consumption is to use the drain 

current equation of the transistors to guide size modulations. Almost half of the circuit 

components operate under subthreshold techniques, and this helps to reduce the overall 

power consumption as well.  

CMOS transistors can operate under the linear triode region and the active saturation 

region. Transistors operate in the triode region when 𝑉𝑑𝑠 < 𝑉𝑔𝑠 − 𝑉𝑇, where 𝑉𝑑𝑠 is the drain-to-

source voltage, 𝑉𝑔𝑠 is the gate-to-source voltage, and VT is the transistor’s thermal voltage. To 

simplify, triode region operation occurs when 𝑉𝑔𝑑 > 𝑉𝑇 and saturation region occurs when 

𝑉𝑔𝑑 < 𝑉𝑇, as can be seen in Figure 4.4. Based on the CMOS drain current equations for both the 

triode and saturation regions, the drain current is proportional to the aspect ratio in both. So, 

for any CMOS device that is on, where 𝑉𝑔𝑠 > 𝑉𝑇, the drain current will decrease by decreasing 

the width and increasing the length. The width of most transistors was set to optimize the 

switching delays but the width of the NMOS M10 was reduced to the minimum because 

channel length modulation for inverter 3 did not work well. Inverters 1 and 3 were the most 

power consuming circuit components. For inverter 3, there weren’t many techniques that could 

be used to decrease power consumption except for the width reduction of the NMOS M10. The 

length of the PMOS M3 in inverter 1 was increased to reduce power because this decreased the 

firing rate of the neuron. The only other possible power optimization technique for circuit sizing 

was increasing the length of the source follower M1 to be as close to its width as possible.  

When transistors operate under the triode region, this is called subthreshold operation. 

From Table 4.1, it shows that five out of the 11 CMOS devices operate under subthreshold 

techniques based on the gm/id parameter based on the ratio of the transconductance gm and 

the quiescent current id. This parameter was gathered from the DC operating point simulation 

of each transistor. Looking at Figure 4.5, we can see that subthreshold techniques fall under 

weak inversion where 𝑉𝑔𝑠 < 𝑉𝑇 and overlaps in the moderate inversion region where the 

strong-inversion equation creates a threshold barrier between the triode and saturation 

regions. The moderate inversion region also overlaps the active saturation region on the right 

and continues on to strong inversion once steady state is reached in the saturation region. 

Table 4.1. IF neuron CMOS sizes 
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Inversion regions are looked at for a specific 𝑉𝑑𝑠. Using the gm/id parameter, inversion regions 

can be analyzed because the operation will fall under weak inversion approximately when 
𝑔𝑚

𝑖𝑑
>

20 and under strong inversion when 
𝑔𝑚

𝑖𝑑
< 10. Under weak inversion, the gain bandwidth of the 

circuit is reduced when compared to strong inversion. But due to the ability of small transistors 

to switch fast, a high sampling frequency can still be achieved under weak inversion.  

From the IF neuron’s inversion region summary in Figure 4.6, we can notice that most 

pull-up network transistors fall in weak inversion whereas all pull-down network transistors fall 

in strong inversion. M3 was the only pull-up transistor that fell in strong inversion and the only 

transistor that increased its length to reduce power consumption. Inverter 1 falls fully under 

strong inversion which makes it understandable for it to be the second most power consuming 

circuit component. Subthreshold operation has the benefit of a much lower power 

consumption with comparable reliability to operation under the saturation region at the 

expense of stability. Making the 
𝑔𝑚

𝑖𝑑
 ratio bigger can be done by increasing the width of 

transistors; which is why most pull-up transistors fall under weak inversion. The stability issue 

Figure 4.5 Inversion regions of CMOS operation [24] 

Figure 4.6 IF neuron inversion region summary based on 
𝐺𝑚

𝐼𝑑
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with big 
𝑔𝑚

𝑖𝑑
 ratios is that in weak inversion, the neuron’s thermal voltage VT is not well 

controlled and noise susceptibility is more noticeable. This is because at such small transistor 

sizes, a lower stability causes an increase in irregularities within the fabrication materials due to 

imperfections. This disadvantage can be overcome by using bigger transistor sizes to allow for a 

bigger noise margin. Because the layout of this device is done so that the transistors will fall 

within the capacitor layers, bigger transistor sizes won’t increase the area by much. The active 

load of the source follower did not use subthreshold techniques since 𝑉𝑟𝑒𝑓 > 𝑉𝑡ℎ𝑁 due to its 

small size. This means that for M2, 𝑉𝑔𝑠 > 𝑉𝑡ℎ𝑁, where 𝑉𝑡ℎ𝑁 is the NMOS M2 transistor’s 

threshold voltage and the operation can’t fall within the subthreshold region. Inversion regions 

were looked at after the sizing of the circuit was optimized but further improvement can be 

achieved by increasing the use of subthreshold techniques to more components.   

The first prioritized design parameter was a small area, so the circuit sizing was led by 

increasing the delay of the transistors, so a smaller membrane capacitor was able to be used 

while still maintaining a varying integration range for a sinusoid input current. Since the layout 

of the CMOS transistors are made within the capacitor layers, increasing the size of the 

transistors to increase the switching delay did not affect the overall neuron area. The overall 

switching delay of this neuron was distributed amongst the three inverters and the source 

follower by increasing their widths based on circuit simulations. The integration time was 

increased as well, and lastly power consumption was optimized without affecting the first 

prioritized design parameters by only adjusting a couple circuit components and the input 

parameters during encoder integration. Cadence Virtuoso was used for the circuit simulations 

and layout of the design and a transient analysis was used to predict the time-dependence of 

spikes. To optimize the circuit performance, the voltage at each node and the current drawn 

from vdd were the most important signals to analyze. By analyzing each voltage node, the 

circuit weaknesses were evident and size adjustments were made to overcome these 

weaknesses. An example of this process is having semi-working voltage spikes but not for the 

entire input current range, so voltage nodes are analyzed to see which part of the circuit 

requires more current. The circuit simulations pointed out that circuit matching issues lead to 

varying outputs. When the mismatch is caused by 𝑉𝑇, it is desirable to have devices that are 

longer than minimum to reduce material irregularity issues, especially when working under 

subthreshold techniques. Longer than minimum transistors are also helpful when working 

within the capacitor layers due to its electric field effects. Bigger transistors are less susceptible 

to electric field effects, and it was noticeable that inverter 3 required the biggest width and 

aspect ratio to conduct the circuit operation effectively. Overall, this neuron possesses the 

ability to encode an analog input signal into voltage spikes and will be implemented into 

temporal encoders in Section 4.4 and 4.5.  

4.1.2 IF Neuron Layout 

The proposed IF neuron design is designed using the Global Foundries 180nm standard 

CMOS process and the Cadence Virtuoso layout. Figure 4.7 shows the final layout of the 
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transistor sizes within the blue Place and Rout (PR) boundary. The capacitor layers are 

separated next to the final circuit layout for visual simplicity but in the final circuit layout they 

fall within the PR boundary enclosing most of the CMOS transistors. This layout achieved a final 

area of 14.9um by 12.5um for a total of 186.25u𝑚2 with 12 circuit components. To start the 

layout of the neuron, it is clearly evident by Figure 4.7 that the membrane capacitor was used 

to guide the PR boundary area plus a few micrometers. Following this step, the supply voltage 

vdd and ground (gnd) nodes were placed at the top and bottom of the circuit to reduce path 

lengths and reduce parasitic path resistances. PMOS transistors were placed at the top of the 

layout close to the vdd node and NMOS transistors were placed at the bottom of the layout 

close the gnd node unless otherwise inconvenient. This proved to be effective and resulted in a 

small power consumption drop of 60nW at post-layout simulations. Apart from this path 

optimization, no other paths were optimized but there is an opportunity to reduce power by 

studying the effects of the capacitor’s electric field on the circuit components and optimize the 

paths further based on these effects. 

Table 4.1 shows that the use of fingers was employed for transistors with big widths to 

reduce the area of the transistors. On Figure 4.7, it can be seen that there is a lot of empty 

space within the capacitor layers that is not used by any transistor which makes it possible to 

improve the design by increasing transistor sizes, if necessary, at the expense of power 

consumption. Bigger transistor sizes can reduce the membrane capacitance while keeping 

similar functionality. Adding fingers can be helpful when components won’t fit in a desired spot 

and a change in the component’s shape is necessary. Adding fingers means adding the contacts 

per diffusion in a CMOS transistor and is referred to with the letter N. When fingers are added 

the shape of the transistor changes by 
𝑊

𝑁
 and reshapes it to taller components. Usually, analog 

designs prefer to keep N=2 because adding fingers changes the load capacitance and can often 

mess with circuit operations when N>2. 

Figure 4.7 IF neuron layout 
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To start my layout, the circuit sizes had to be optimized first. During circuit sizing, the 

capacitance was reduced as much as possible and the area of the capacitor was checked 

continuously to ensure a small overall area. When circuit sizing was finished the circuit 

components were generated into the layout. The PR boundary was set based on the capacitor 

area and added 1.5um to its width to compensate for the design rule of the metal via needed to 

connect to the capacitors outer layer called TOP metal. The capacitor layers consist of TOP 

metal for the input node and metal 5 for the gnd node. The via needed to connect the input 

node to the capacitor requires a path between metal 1 to the TOP metal which means it has to 

pass through metal 1-5 and then to the TOP metal. Since I aimed at a small area, to reduce 

area, I strictly followed design rules. The metal via had a metal 5 width of 0.3um and the design 

rule limitation needed a distance of 1.2um between the metal 5 via layer and the capacitor’s 

metal 5 layer. This is what lead to the PR boundary area selection. The following step is to add 

detached substrates to all transistors. The more substrates possible the better but adding 

substrates for small lengths can be tricky. When the substrate is added to the shortest side, it is 

generated with a smaller n+/p+ and active area than the minimum specified in the design rules. 

Figure 4.8 shows an example of this challenge, on the left of the picture is the IF PMOS M10 

(transistor A) and on the right if the LIF PMOS M10 (transistor B). Both of these transistors have 

similar widths and lengths, but transistor A resulted in a design rule error because the substrate 

didn’t meet the minimum area for n+ and active boundaries. The n+ boundary can be seen as 

the green boxes located at the bottom of transistor A and on top of transistor B. The white 

boxes are the active boundaries, and the red are the p+ boundaries. There are two possible 

fixes to this situation. The first fix is utilized for transistor A where a new p+ and active 

boundaries are drawn to meet the area requirements. This is a tricky fix because there are a lot 

of design rules that must be met. Transistor A shows the best possible way to draw these layer 

boundaries. The second fix is utilized for transistor B where the substrate is generated along the 

width of the transistor. This latter solution is the simplest but requires more area consumption 

which led to difficulties during the layout of the LIF neuron, further discussed in Section 4.2.  

Figure 4.8 Layout of PMOS transistors A and B 
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After components were generated and substrates were added to them, the layout 

placement of the components can begin. This requires a game of Tetris with the circuit 

components while trying to optimize the vdd and gnd paths by keeping PMOS transistors at the 

top of the circuit and NMOS transistors at the bottom. It is useful to begin with the TOP metal 

via needed for the capacitors input node or to leave a space for it to be added later. The 

number of fingers used for transistors was adjusted at this step and Table 1 shows that all three 

inverters employed one use of fingers. It was evident that finger sizes bigger than 2-3 were not 

necessary and required more work than they were worth. For this step of Tetris, it was very 

important to keep in mind the design rules that required minimum spacing between transistors. 

The spacing between transistors was dominated by the n+ and p+ design rules for NMOS and 

PMOS transistors accordingly. The PMOS transistors required the most spacing between each 

other but for this layout it was not much of a problem since there was plenty of empty space 

within the capacitor layers. The design rules that were important to keep in mind during 

component Tetris were: spacing between n+ layers needs to be 0.4um, spacing between n+ and 

p+ layers needs to be 0.6um, and spacing between p+ layers needs to be 1.4um. While playing 

Tetris with the transistors keeping in mind design rules, it is useful to run the Design Rule Check 

(DRC) layout simulation to adjust component placement based on overlooked design rules. 

Important layout design rules to keep in mind to simplify the layout process are in Table 4.2. 

Once all transistors and the TOP metal via were placed within the PR boundary and the DRC 

simulation resulted in no errors, the paths to vdd and gnd were created while continuously 

running the DRC simulation to adjust paths breaking design rules. These paths were created 

using metal 1. Metal 1 was used for the rest of paths that didn’t overlap the vdd and gnd paths. 

Once metal 1 can’t be used without overlapping itself on other paths, other metals can be used 

with the employment of vias. Vias can be used within the capacitor layers for path connections 

as long as the vias don’t pass through the capacitor layers. Metal 1-3 were used for the circuit 

paths of this neuron, metal 5 was used for the capacitor gnd, and TOP metal was used for the 

capacitor input node. The next step is to run the Layout Versus Schematic simulation and fix 

any inconsistencies between the schematic and layout. In this step, I found most of my errors 

came from either inconsistent node labels or most often forgotten connections of some 

transistor path. To avoid the first, avoid changing node names once the components are 

generated in a layout. These were the hardest errors to fix because of the confusing error 

messages in the LVS results. It was useful to visualize the errors by redirecting the layout and 

schematic view to the mentioned coordinates in the error summaries and see which parts of 

the circuit were the problem. Most often, one fix to an error lead to many other errors being 

fixed on this step. The last step is to run the Parasitic Extraction (PEX) simulation that gathers a 

netlist from the layout that includes the parasitic resistances and capacitances and correlates 

them to nets on the schematic. This allows for the post-layout simulations of the circuit with 

included parasitic components.  
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                             Table 4.2 Important layout design rules to keep in mind during layout process 

From To Minimum 
distance 

p+ p+ 1.4um 

p+ n+ 0.6um 

n+ n+ 0.4um 

Metal 5 Metal 5 1.2um 

TOP metal  TOP metal 1.5um 

Poly-layer Active 
layer 

0.1um 

 

When using Cadence virtuoso for the layout of a circuit, especially when running it 

through a Linux computer, it is important to keep in mind that it is prone to errors and should 

be reset when display issues arise to avoid design complications. Some reasons to reset 

Cadence can be when layers are not able to be selected or display issues are evident like 

“invisible” circuit components, vias, or PR boundary. In these scenarios it is best to close 

everything and reset Cadence before making new changes. The last weird error I encountered 

that is worth mentioning is that sometimes errors arise when connecting NMOS substrates to 

gnd. When incorrect path connections are made, for example two paths using the same metal 

overlapping each other, a colored X (in my case yellow) appeared on the incorrect overlap. The 

weird error occurred when I connected some NMOS substrates to gnd and the yellow X 

appeared. Based on circuit knowledge I knew my connection was right; NMOS substrates go to 

gnd and PMOS substrates go to vdd. This error wasn’t common but happened at least twice. 

The error went away by taking away the substrate by applying “none” substrates, saving the 

modified layout, and then adding the substrate again.  

4.2 LIF Neuron Design and Layout 
The IF neuron consists of 16 CMOS devices and two passive capacitors. It requires four? 

inputs: the first three inputs are the same as the IF neuron with the extension of a voltage 

source bias for the leakage current module. The circuit can be further simplified to the same 

basic CMOS circuits and function modules as the IF neuron but includes additional ones. Figure 

4.9 shows the circuit schematic of the LIF neuron and same color coding as the IF circuit 

schematic is used for this figure. Starting from the left we can see that it contains the same 

membrane capacitor as the IF neuron and possess the same operability for this module with the 

added functionality of being controlled by feedback current (𝐼𝑓𝑏). This changes the linear 

integration of the membrane capacitor to an exponential form briefly as 𝑉𝑚𝑒𝑚 approaches the 

neuron’s threshold voltage. Moving on to the next circuit component, its noticeable that it also 

contains the same type of source follower for the linear integration of the membrane capacitor 

by the input current. This module has the same functionality as the IF neuron but the two 

additional connections at the input of the source follower increase its operability. Thus, a 
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different approach was used during circuit sizing than the one for the IF neuron’s source 

follower. Next to the source follower, its noticeable that the circuit is made up of mainly three 

CMOS inverters similar to the IF neuron. The only inverter that is the same as the IF neuron is 

inverter 3 due to the use a current mirror to provide power to inverter 1 and 2 in the LIF neuron 

circuit but it does have one additional node connection at its input. Inverter 1-3 in the LIF 

neuron have the same functional abilities described in the IF circuit overview but contain 

additional components that add on to their functionality. The PMOS transistors of inverters 1 

and 2 are in series with a current mirror generated by the diode connected PMOS M14. The use 

of this current mirror led to a lower power consumption when compared to the IF neuron 

despite having more components in the LIF neuron because it reduces the switching delays of 

the neuron. Inverter 2 also contains the additional function block of the spike width controller 

where a common-drain (CD) amplifier is used to trigger the integration of the spike-width 

capacitor until it charges enough to switch the minimum-sized reset transistor M11. Although 

inverter 3 is the same for both IF and LIF neurons, the input node has two connections instead 

of just one. The IF neuron connected the input node of inverter 3 solely to node V2 but the LIF 

neuron adds the additional connection of the gate of the CS amplifier M13 to node V2 to trigger 

a positive feedback increase as 𝑉𝑚𝑒𝑚 reaches the neuron’s threshold voltage exponentially 

increasing 𝑉𝑚𝑒𝑚, discussed in Section 4.2 LIF Threshold Modulation & Positive Feedback 

Overview. The last additional function module that the LIF neuron has is the leakage current 

generator that uses a CS amplifier with a constant voltage bias to discharge any accumulated 

membrane potential during the neuron’s off periods. When the input current is at rest or a 

spike has been generated within one sampling period and the membrane voltage has been 

discharged, this is considered an off period. During this time, the membrane potential can 

Figure 4.9 LIF neuron circuit schematic 
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accumulate voltage through noise and the leakage current module discharges any voltage 

accumulation and rests the membrane potential.  

LIF Threshold Modulation & Positive Feedback Overview 

The LIF neuron linearly integrates the input current when charging 𝐶𝑚𝑒𝑚 the same as 

the IF neuron, mentioned in Section 4.1, but as Vin approaches the threshold voltage of M4, the 

current through M15* starts to rise more rapidly as can be seen on the top right graph of Case 

2 where the red voltage signal begins to change into a steeper slope at approximately 
𝑣𝑑𝑑

2
. At 

this point, the positive feedback current starts to increase 𝑉𝑚𝑒𝑚, and consequently 𝑉1, 

exponentially faster, as can be seen circled in Figure 4.10. Once the M4 threshold voltage is 

reached by 𝑉1, inverter 1 changes into a pull-down network and 𝑉2 decreases. Because I kept 

the diode-connected transistor M14 small to reduce device area, the positive feedback is not 

strong in my design because 𝐼𝑓𝑏 is not strong as an effect; a small power consumption is 

achieved regardless. The feedback could be stronger by employing a bigger M14 transistor to 

increase the feedback current. This would further reduce power consumption further since it 

would decrease the area under the integration curve by promoting an exponentially faster 

charge as 𝑉𝑚𝑒𝑚 approaches the neuron’s threshold voltage. The positive feedback has the 

effect of making inverters 1 and 2 switch very rapidly, which reduces their power consumption 

significantly. The threshold modulation of the LIF neuron has the same ability as the IF neuron 

to change the neuron’s threshold voltage by changing 𝑉𝑟𝑒𝑓 [15]. After 𝑉2 is discharged, 𝑉3 

switches to vdd. This means that M5 is conducting current and M16 switches and the current 

flow begins to charge the spike-width capacitor until it reaches the threshold voltage of the 

reset transistor M11.  

Figure 4.10 Transient simulation of LIF neuron for one sampling period. In black, input clock signal 
triggers sampling period. In red, output Vspike is the generated voltage spike. In green, the membrane 
voltage charging/discharging. In blue, input analog current.   

*M3 in the case of IF neuron 
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LIF Power Consumption Overview 

The main power consumption comes from the short-circuit currents of inverter 3 during 

switching time and in the DC current flowing through the source-follower during membrane 

integration. This is because inverters 1 and 2 have a significant power reduction from the 

employment of the current mirrors. During off periods, the LIF neuron behaves similarly to the 

IF neuron but in this case, the leakage current module discharges any accumulated potential 

reducing noise effects. When 𝑉𝑟𝑒𝑓 is low, power consumption is dominated by short-circuit 

currents and depends mainly on the neurons firing rate. Typically, the refractory period is used 

to limit the neuron’s maximum firing rate. Additionally, the current mirrors providing current to 

inverters 1 and 2, make them switch very fast and this reduces power consumption further. The 

same design considerations were used for the LIF neuron as for the IF neuron. Therefore, power 

consumption is not reduced as much as possible to achieve varying integration times for small 

current amplitudes to theoretically improve accuracy. Although power reduction was not the 

first prioritized design parameter, this neuron achieved a lower power consumption than the IF 

neuron during post-layout simulations, further discussed in Section 4.6.  

4.2.1 IF Circuit Sizing 

The same design considerations used for the IF neuron as relevant in the circuit sizing of 

the LIF neuron. The LIF neuron does have more flexibility in minimizing switching delays since it 

contains the spike-width module. The membrane capacitor was aimed to be reduced as much 

as possible to reduce area. It is noticeable that because of the added circuit components of the 

LIF neuron, a capacitance half the size of the one for the IF neuron can be used. This smaller 

capacitance still results in varying integration times for small current amplitudes. Although a 

smaller membrane capacitor was able to be used, the spike-width capacitor added to the area 

consumption. To reduce area, the minimum capacitance possible for Global Foundries 180nm 

CMOS technology was used. The input parameters of the circuit will be discussed during the 

implementation of the temporal encoders in Section 4.4 and 4.5. Components were minimum 

sized when possible, but the LIF neuron still needed some delay increases to produce 

detectable spikes since a minimum sized spike-width capacitor was used. To start the design of 

the LIF neuron, the basic CMOS circuits were sized individually and continuously adjusted based 

on simulation results. Table 4.3 shows the final transistor sizes of the IF neuron. 

The LIF neuron has the same basic CMOS circuits as the IF neuron where it is mostly 

made up of three inverters but additionally, a current mirror is used in the LIF neuron. Since the 

LIF neuron is an extension of the IF neuron, the circuit sizing of the components found in both 

the IF and LIF neuron has the same process. The only difference in size modulation was the 

effects caused by the additional node connections at the input node, node V2, node V3, and at 

the power supply of inverters 1 and 2. For size modulations that increased switching delays, the 

LIF neuron didn’t need as wide of a channel width as the IF neuron components. The lengths of 

inverter 3 were used for power optimization unlike in the design of the IF neuron and will be 

discussed in Section 4.2 LIF Power Saving Techniques. The design of the current mirror module 
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consists of matching the sizes of the PMOS transistors in series with inverters 1 and 2 to their 

corresponding inverter PMOS. Inverter 1 is made up of PMOS M15 & M3 and NMOS M4 and 

inverter 2 is made up of PMOS M5-M6 and NMOS M7-M8. PMOS M15 and M5 are part of the 

current mirror produced by the diode connected PMOS M14. The size of M15 was matched to 

the size of M3 and the size of M5 was matched to the size of M6. This matching minimizes 

delay and circuit-mismatch issues. The diode connected PMOS M14 was kept at a minimum 

size, but this resulted in a weak positive feedback current. Although it did reduce power 

consumption, it can be reduced further by increasing the size of M14. Making the current 

mirror transistors M15 and M5 be bigger than the diode connected one allowed for a stronger 

current flow in the inverters while still keeping positive feedback at the input. 

The two additional connections at the input from the positive feedback module and the 

leakage current module caused a different design approach to be used for the source follower. 

The source follower M1 transistor increased W to increase the current drawn from the power 

supply but channel-length modulation reduced operability, so it was kept at a minimum. 

Therefore, M2 L was used to optimize power and will be discussed in Section 4.2 LIF Power 

Saving Techniques. The width of M2 was used to change the current speed of the source 

follower and increase integration time. The sizing of the positive feedback transistor M13 was 

guided by the need for a stronger current. So, to increase drain current, the W increased, and 

the length was kept at a minimum to match the current mirror transistor M14. The last 

additional connection at the input is the leakage current module. The leakage current generator 

transistor M12 is kept at a minimum size and its bias voltage, Vleak, is modulated based on 

simulation results. It’s important to keep Vleak in mind at changes in circuit operation due to 

size modulation because it needs to be fine-tuned for each change in the neuron’s threshold 

voltage, even minor ones. An example of Vleak modulation is in Section 4.4.2. The additional 

connection at node V3 creates the spike-width module and its operability depends on the 

transistor M16. M16 sets the refractory period by setting the maximum length of time that 

spike generation is allowed. The spike-width NMOS M16 has a big area to allow spikes to occur 

at the longest integration time that the neuron produces. M16 controls the refractory period 

during OFF clock periods and can be set to limit how far within the sampling period a spike can 

occur. It controls how long the refractory period is by increasing W & L to increase the time 

period in which a spike can occur within the sampling period. 

LIF Power saving techniques 

Since detectable spikes are generated after the area optimization and integration time 

optimization, circuit components that don’t affect the neuron’s operability are modulated to 

optimize power. For the same reasons as the IF neuron, the LIF neuron has limited options to 

optimize power consumption due to the prioritization of area, spike width, and integration 

time. The inverter 3 and source follower are the most power consuming circuit components 

and consequently M2 and M9 are the biggest transistors due to needing a strong current. This 

is different from the power consumption of the IF neuron because the current mirror utilized by 
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inverter 1, allows for the fast switching of the inverters and reduces its power consumption. 

Inverter 3’s input is connected to the gate of the positive feedback transistor M13, and this 

reduced the channel-length modulation limitation of the inverter 3 used in the IF neuron. The 

lengths of inverter 3 were able to be increased by 1/3 of the minimum to reduce power 

consumption. The technique used to reduce the power consumption of the source follower was 

to modulate the length of M2. Due to the additional circuit component, M1 was not able to 

increase its length without jeopardizing functionality so the L of M2 was increased instead. This 

modulation was not as effective as increasing the L of M1, but it did reduce the power by some.  

More subthreshold techniques were used in the LIF neuron to control power 

consumption compared to the IF neuron. From Table 4.3, it shows that 12 out of the 16 CMOS 

devices of the LIF neuron operate under subthreshold techniques based on their gm/id 

parameter gathered from their DC operating point. Figure 4.11 shows a summary of the 

inversion regions that the transistors operate in. Most of the pull-up and pull-down transistors’ 

operation fell under the weak inversion region with the exception of M3 and M10. M3 operated 

in weak inversion in the IF neuron. The only difference was the length of the transistor. The 

Table 4.3 LIF neuron CMOS sizes 

Figure 4.11 LIF neuron inversion region summary based on 
𝐺𝑚

𝐼𝑑
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only two other transistors that fell under strong inversion operation were the source-followers 

active load M2, similar to the IF neuron operation, and the reset transistor M11. Under the 

same size modulations, M11 operated differently based on which neuron was using it. The 

active load of the source follower did not use subthreshold techniques because, 𝑉𝑟𝑒𝑓 > 𝑉𝑡ℎ𝑁. 

Vref was higher than VthN because of the priority of increasing the integration time. The 

operation region of M2 is easily changeable since it will operate in the subthreshold region 

when 𝑉𝑟𝑒𝑓 < 𝑉𝑡ℎ𝑁 and this size modulation has the effect of significantly reducing power 

consumption since it was the second most power consuming circuit component in the LIF 

neuron.   

The same design parameter prioritization used for the IF neuron design was used for the 

LIF neuron design. Since this neuron had more components than the IF neuron, the size 

increases of transistors were limited more to achieve a small area while still achieving 

comparable functionality. It was noticeable that inverter 3 required the biggest width and 

aspect ratio to conduct the circuit operation effectively, similar to the IF neuron functionality. 

Overall, this neuron possesses the ability to encode an analog input signal into voltage spikes 

and will be implemented into temporal encoders in Section 4.4 and 4.5. 

4.2.2 LIF Layout 

The proposed IF neuron design is designed using the Global Foundries 180nm standard CMOS 

process and the Cadence Virtuoso layout. Figure 4.12 shows the final layout of the transistor 

sizes within the PR boundary. The capacitor layers are separated next to the final circuit layout 

for visual simplicity but in the final circuit layout they fall within the PR boundary enclosing 

most of the CMOS transistors. This layout achieved a final area of 14um by 13um for a total of 

182u𝑚2 with 18 circuit components. Although there are more components in the LIF neuron, it 

achieved a smaller area than the IF neuron. The layout process for this neuron was the exact 

Figure 4.12 LIF neuron layout 
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same as the IF neuron with a couple exceptions. For the LIF neuron, the PR boundary was 

guided by the two capacitor areas and added the minimum distance required for metal 5 to be 

next to each other. The TOP metal via wasn’t a challenge for this neuron because of the lack of 

capacitor layers at the top right corner of the neuron. The Tetris portion of the design process 

was the most difficult because in order to fit all CMOS devices within the PR boundary set, 

design rules had to be strictly followed and most transistors employed the minimum distance 

required between objects. In Figure 4.12, the red box encloses transistor M9. This transistor is 

part of inverter 3 and had one of the biggest area consumptions and the biggest power 

consumption. Post-layout simulations showed a power consumption drop of three decimal 

points which suggests that M9 benefits greatly from being placed away from the effects of the 

electric fields generated by the capacitor layers. The layout of the LIF neuron did require a small 

change in Vleak for correct operability in post-layout simulations. 

4.3 Temporal Encoding 
Temporal encoders are desirable because they reduce the preprocessing of analog 

signals by encoding signals directly through a one step process which results in a much faster 

topology than the typical two-step process of ADCs for the digital domain. Encoding signals in 

the analog domain is preferable because raw sensory data requires a high-performing analog 

circuit which eases the implementation of analog encoders and allows the preprocessing of 

signals to become a one step process since signals are encoded directly without the need of 

domain changes. In high data rates, digital signal processing struggles to keep a low power 

design since it requires significantly more processors for additional “smart” applications. The 

use of temporal encoders for preprocessing signals for neuromorphic computing signal 

processing produces a low area and low power design when compared to the digital domain 

since it requires less steps and thus, less components. For latency encoding, the input signal’s 

amplitude is encoded within the integration time that it takes for a spike to happen. As can be 

seen by the latency encoder example in Figure 4.13. At the clock trigger, a sampling period 

begins and the time that it takes for the capacitor to charge enough to produce a spike is the 

integration time. The integration time of the first spike to appear in a sampling period is used 

for latency encoding. On the other hand, ISI encoding uses the relative time between spikes to 

encode the analog input’s amplitude. As can be seen in Figure 4.13, the distance between 

spikes varies for two different stimuli. The distance between spikes can be found by using the 

integration times of the spikes and using them to produce the formulas on the left of the ISI 

encoder in Figure 4.13.  

All four encoders have a sampling frequency of 50kHz. The latency encoders achieved an 

average energy consumption per spike of 277nJ and 316pJ for the IF-based and LIF-based 

latency encoders accordingly. The ISI encoders achieved an average energy consumption per 

spike of 1.07uJ and 901nJ for the IF-based and LIF-based ISI encoders accordingly. The energy 

consumption is simulated by integrating the current drawn from the power supply per every 

spike and multiplying it by Vdd. Since the spike widths vary based on the delay of generation, 



34  
 

the average energy per spike was calculated. The IF-based encoders achieved wider ranges of 

integration times and the LIF-based encoders achieved wider detectable spikes and smaller 

neuron areas. The input parameters of all four encoders were kept relatively the same for 

easier comparison. The neuron sizing of the IF and LIF neuron served mainly to produce 

detectable spikes by increasing the delay and integration times of the produced spikes. 

Therefore, the input parameters can be used solely to decrease power consumption while 

keeping the already optimized design parameters relatively the same. Changes to the neuron 

operation will change based on input parameter changes but these can be minimal changes to 

not affect the neuron operability while reducing power consumption.  

4.4 Latency Encoding Results  
The latency encoder only requires one neuron. The input parameters of the IF-based and LIF-

based latency encoders can be seen in Table 4.4. Highlighted in red are the design parameters 

most useful to reduce power consumption. Because power is proportional to integration time, 

these highlighted parameters will also affect integration time. To increase integration time, 𝑉𝑟𝑒𝑓 

was kept high but if power optimization was prioritized, 𝑉𝑟𝑒𝑓 would decrease power 

consumption by having a smaller amplitude. But for very low 𝑉𝑟𝑒𝑓values, the power 

consumption increases because it makes the source follower act as a low-pass filter as 

mentioned in Section 4.1 IF Power Consumption Overview. Since 𝑉𝑟𝑒𝑓 was limited to optimize 

Figure 4.13 Temporal encoding using the integration time of spikes 

Table 4.4 Latency encoders input parameters 
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integration time, the input current and the clock signal was used to reduce power. Decreasing 

input current increases integration time significantly because of the small membrane capacitor 

which increases power consumption. Therefore, my design decreased the input current offset 

by tens of nanometers so that the integration time increased slightly while benefitting from a 

reduction in power consumption from the smaller input current. Since the amplitude of the 

current signal is small, these neurons are sensitive to small input changes making them better 

able to distinguish small signal changes at the input.  

The last highlight input parameter is the clock pulse width. The clock pulse width can be 

used to lower power consumption because while the clock pulse is on and triggering the 

sampling period, the remaining duration of the pulse forces 𝑉2 to discharge more quickly and 

thus, the capacitor charges slightly faster. To optimize power by using the clock pulse, the width 

of the clock pulse was increased to slightly less than the shortest integration time that occurred 

during spike generation. Typically, the clock pulse width is approximately 10-20% of the 

integration time but for this design it’s 25% to overlap with the integration times as much as 

possible without allowing more than one spike to occur. When the neuron fires during the clock 

pulse, it will keep firing until the clock pulse discharges and the refractory period is triggered. 

So, the increase of the clock pulse is limited to the integration time of the fastest generated 

spike. The LIF neuron requires the modulation of Vleak at every input parameter change so it’s 

advisable to change the input parameters of the LIF-based encoders by very small increments 

so that the neuron will keep some operability and Vleak can be adjusted accordingly. The 

neurons used for the two proposed latency encoders were simulated post-layout. 

4.4.1 IF-based Latency Encoder 

Figure 4.14 shows the simulation result of the IF-based latency encoder. The integration 

time of each spike varies as the input current amplitude changes. By looking at the red Vspike 

signal and the blue input current signal, we notice there is a shorter charging period at the 

highest current amplitude and the longest charging period at the lowest current amplitude. This 

proves true the ability of the latency encoder to map analog signals into the delay of each spike. 

The black clock signal serves as a trigger to start the integration process and when there’s no 

clock pulse 𝑉𝑚𝑒𝑚 discharges after a spike is generated. As can be seen from the figure, the 

spikes are generated quickly but have a minimum width of 16.6ns which is greater than the 

spike detector required minimum of 10ns. The integration times varied between 2.36us to 

5.63us for a small input current amplitude which makes it sensitive to small signal changes. 

Post-layout simulations showed an energy consumption of 277nJ per spike and needed no 

alterations to produce good results. Power simulations showed that this encoder is prone to 

noise effects.  

Internally, the IF neuron doesn’t have spike width modulation so to overcome this 

challenge the neuron switching delays can be increased or an additional circuit module is 

necessary. [1]’s solution to this problem was to use a spike expander circuit. The spike expander 

required a capacitor and two inverters. Based on the use of an extra capacitor and the size of 
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the minimum capacitor size possible to be used in the technology used, the size of the neuron 

will increase significantly. Because of this, the switching delays were increased instead at the 

expense of power consumption. It should be noted that at higher input current amplitudes the 

power consumption is reduced but it was kept at an offset of 120nA for easier comparison with 

the LIF-based encoders. Because the IF neuron is better at producing longer integration times, 

the current can be increased to lower integration time and achieve similar results to the LIF-

based encoder with a smaller noise margin.  

4.4.2 LIF-based Latency Encoder 

This latency encoder also uses only one neuron, and the external point of reference is 

the clock signal as well. Figure 4.15 shows the simulation result of the LIF-based latency 

encoder. The spike’s integration time changes based on the input current amplitude which 

fulfils the encoding functionality of this implementation. It’s noticeable in Figure 4.15 that the 

spikes are generated slower and have a minimum width of 19.35ns which fulfills the spike 

detectors requirement and is greater than the spike widths achieved by the IF-based latency 

encoder. The integration times varied between 1.1us to 3.64us for a small input current 

Figure 4.14 Transient simulation of IF-based Latency encoder for a full wave period. In black, input clock signal. In red, output 
spike train of latency encoder. In blue, input analog current. 

Figure 4.15 Transient simulation of LIF-based Latency encoder for a full wave period. In black, input clock signal. In red, output 
spike train of ISI encoder. In blue, input analog current. 



37  
 

amplitude which is smaller than the integration time range achieved by the IF-based latency 

encoder but still makes it sensitive to small signal changes. This is due to the spike-width 

modulation function block in the LIF neuron circuit. Post-layout simulations showed an energy 

consumption of 316pJ per spike which is three decimal points smaller than the energy 

consumption of the IF-based latency encoder. During post-layout simulations, the LIF-based 

encoder needed a 5mV decrease of its Vleak as can be seen in Table 4.4. This is due to the 

layout of the circuit changing the capacitance value of the membrane capacitor due to the 

current flows of the devices within the capacitor. This changed the neuron’s threshold voltage 

slightly. Power simulations showed that this encoder is less prone to noise effects than the IF-

based latency encoder.   

This encoder was more complex to design because of the added leakage current 

component. The leakage current is specifically set for each change in the neuron’s threshold 

voltage and should be kept as a low voltage source. During the design process, Vleak never 

went below 340mV or above 380mV. To understand Vleak modulation better, a design example 

is presented. When changing 𝑉𝑟𝑒𝑓, the neuron’s threshold voltage changes and therefore, 𝑉𝑙𝑒𝑎𝑘 

must be adjusted. The LIF neuron design for the latency encoders used a 𝑉𝑟𝑒𝑓 of 0.9V and 

during pre-layout simulations used a 𝑉𝑙𝑒𝑎𝑘 of 0.335V. Two cases will be presented to provide an 

example of pre-layout input parameter changes that’s also useful for post-layout input 

parameter adjustments. In case 1, 𝑉𝑟𝑒𝑓 reduces to 0.7V. In case 2, 𝑉𝑟𝑒𝑓 increases to 1.2V. In 

case 1, to start adjusting Vleak it was increased by 20mV to 0.355V. This resulted in a circuit 

operation similar to the one in Figure 4.16. The highlighted signal is the membrane voltage of a 

neuron. The rest of the signals are not relevant and can be ignored except for the square wave 

resulting from the clock signal. It’s noticeable that the membrane voltage beings charging at the 

trigger of the clock pulse but does not trigger a spike generation once it reaches the neurons 

threshold voltage and doesn’t discharge until after the next clock pulse triggers a new sampling 

period. To fix this operation fault, since 𝑉𝑟𝑒𝑓 was decreased, 𝑉𝑙𝑒𝑎𝑘 was decreased to 0.340mV. 

This resulted in correct spiking at all sampling period but did decrease the integration which 

allowed for the fastest generated spike to fall within the clock pulse and fire a second spike. 

Figure 4.16 Case 1 Vleak adjustment: Purple signal represents overcharged membrane voltage without 
triggering a spike; needs Vleak adjustment. 
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Case 1 would need further adjustments to reduce power consumption by only allowing one 

spike to generate.  

In case 2, the same procedure was applied and the original Vleak was increased by 20mA to 

0.370V, since 𝑉𝑟𝑒𝑓 was increased. This had the same result as case 1 and the membrane voltage 

behaved similar to the one in Figure 4.16. To fix this, Vleak was increased further to 0.375mV 

and this resulted in the best possible spiking functionality based on the parameters used, 

shown in Figure 4.17. The blue signal is the membrane voltage functionality that resulted in the 

latest 𝑉𝑙𝑒𝑎𝑘 adjustment, and the red signals are the spikes generated from this voltage signal. 

The rest of the signals are not relevant and can be ignored. Case 2 could not be enhanced 

further using solely 𝑉𝑙𝑒𝑎𝑘 modulation, so the integration time was increased while modulating 

𝑉𝑙𝑒𝑎𝑘. This can be done by increasing the membrane capacitance or reducing the input current 

followed by a small reduction in 𝑉𝑙𝑒𝑎𝑘. Since the membrane capacitance was fixed for this 

design, the input current was changed. To be able to make informed 𝑉𝑙𝑒𝑎𝑘 modulations, the 

input current offset was reduced by 10nA at a time and Vleak was adjusted at each offset 

reduction. 10nA of current reduction requires a reduction of around 3mV to Vleak. So, to fix the 

functionality in Figure 4.17, the input current offset was reduced by 10nA and 𝑉𝑙𝑒𝑎𝑘 was 

Figure 4.17 Case 2 Vleak adjustment 1: Blue signal represents overcharged membrane voltage. Red 
signal represents respective output voltage spikes. Vleak adjustments needed. 

Figure 4.18 Case 2 Vleak adjustment 2: Purple signal represents overcharged membrane voltage. 
Green signal represents a three-neuron ISI spike train output. Vleak adjustments needed since purple 
signal doesn’t trigger spikes at low input current amplitudes. 
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reduced by 3mV. This resulted in a circuit functionality similar to Figure 4.18. On this figure, the 

pink signal is the membrane voltage of this case, and the green signal can be ignored as they 

are the spikes generated by an ISI encoder. After this 𝑉𝑙𝑒𝑎𝑘 modulation, 𝑉𝑙𝑒𝑎𝑘 was reduced by 

1mV until full functionality was achieved. The first 1mV reduction resulted in a circuit 

functionality similar to Figure 4.19 showing it was closer to full circuit functionality. On this 

figure, the blue signal is the membrane voltage for this case and the red spikes are the 

corresponding spikes generated by this neuron.   

4.5   ISI Encoder results 
The ISI encoder requires three spiking neurons integrated together through a NOR gate and 

subsequently a final inverter to produce a spike train of three spikes per sampling period. A 

spike train is a series of spikes with differing intervals as shown in Figure 4.13. As mentioned in 

Section 4.3, the intervals are calculated using the integration times of the spikes within one 

sampling period. The integration time of each neuron is a function of their capacitance and 

Figure 4.19 Case 2 Vleak adjustment 3: Blue signal represents overcharged membrane voltage. Red signal 
represents respective output voltage spikes. 

Table 4.5 ISI encoders input parameters 
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threshold voltage. All three neurons need their own input current and would require a current 

mirror at the input in hardware implementations. The input parameters of the IF-based and LIF-

based ISI encoders can be seen in Table 4.5. Highlighted in red are the design parameters most 

useful to reduce power consumption. Input parameter modulation for ISI encoders have the 

same design considerations and effects mentioned in Section 4.4. As can be seen in Table 4.5, 

the three neurons in both the IF-based and LIF-based ISI encoder have differing capacitances 

and 𝑉𝑟𝑒𝑓’s to result in differing integration times to create better interval ranges as input 

current changes. This is important because if the spikes overlap each other at the same time, 

the NOR gate only outputs 1 spike instead of two or three. Different clock pulse widths were 

used for each neuron as well to decrease power consumption by increasing the pulse width to 

the integration time of the fastest generated spike of each neuron, as mentioned in Section 4.4. 

Since each neuron employs differing capacitances and 𝑉𝑟𝑒𝑓’s, the LIF-based ISI encoder needed 

differing 𝑉𝑙𝑒𝑎𝑘’s as well.   

4.5.1 IF-based ISI encoder 

Figure 4.20 shows the circuit schematic of the ISI encoder. As can be seen it is made up 

of three spiking IF neurons, a NOR gate, and an inverter. Figure 4.21 shows the simulation 

results of the IF-based ISI encoder. We can see that the spikes are generated quickly and that 

the largest intervals occur when the current is at the lowest amplitude, similar to the IF-based 

latency encoder spikes. This proves true the ability of the ISI encoder to map the amplitude of 

an analog input current to the intervals between a spike train. The spikes generated within one 

sampling period from this neuron are proportional to the number of neurons used. The spikes 

are generated quickly and the closest they are to the clock pulse the narrower they become. 

Because of this, most spikes had a minimum width above the spike detector’s requirement of 

10ns but the fastest generated spike by neuron 1 had a width of 9.1ns. This means that neuron 

Figure 4.20 IF-based ISI encoder circuit schematic 
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1 requires a slight change in input parameters or membrane capacitance to produce wider 

spikes by increasing its integration time to occur further away from the clock trigger. Only one 

spike out of the entire spike trains produces by each sampling period had this challenge so 

overall, the IF-neuron is capable of making an ISI encoder with detectable spikes. The interval 

times, D1 and D2, varied between 0.88us to 2.34us and 1.14us to 1.65us for a small input 

current amplitude which makes it sensitive to small signal changes. D1 varied a lot more than 

D2 and this is evident in Figure 4.21. D1 varied more than D2 when the current amplitude was 

the highest and D1 varied less than D2 when the current amplitude was the lowest. Post-layout 

simulations showed an energy consumption of 1.07uJ per spike train and needed no alterations 

to produce good results. This is proportional to the energy consumption of the IF-based latency 

encoder and proves that power is proportional to the number of neurons used. Power 

simulations showed that this encoder is prone to noise effects, a lot more than the latency 

encoder. Ideally, the same neuron would be used but only the 𝑉𝑟𝑒𝑓 values would get changed 

so that no extra designing or layout is needed. But based on the need to change capacitor 

values, each neuron would need to be designed separately and integrated together during 

layout.  

4.5.2 LIF-based ISI encoder  

The LIF-based ISI encoder has the same circuit schematic as the IF-based ISI encoder 

schematic shown in Figure 4.20 but uses LIF neurons instead of IF neurons. Figure 4.22 shows 

Figure 4.21 Transient simulation of IF-based ISI encoder for a full wave period. In black, input clock signal. In red, output spike 
train of ISI encoder. In blue, input analog current.  

Figure 4.22 Transient simulation of LIF-based ISI encoder for a full wave period. In black, input clock signal. In red, output spike 
train of ISI encoder. In blue, input analog current. 
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the simulation results of the LIF-based ISI encoder. Similar to the LIF-based latency encoder, in 

this simulation it is visually evident that the spike widths are bigger than 10ns. The generated 

spikes have a minimum width of 11.69ns which fulfill the ability to encode analog signals into 

the intervals between spikes with detectable spikes. The interval times, D1 and D2, varied 

between 0.33us to 1.53us and 1.74us to 2.75us for a small input current amplitude which 

makes it sensitive to small signal changes. The variation times are pretty similar but when 

looking at Figure 4.22, it is evident that at the highest current amplitudes, the intervals are 

similar in range but when the input current is at the lowest amplitude, D2 begins to vary more 

than D1. Post-layout simulations showed an energy consumption of 901nJ per spike train which 

is similar to the energy consumption of the IF-based ISI encoder but not proportional to the 

energy consumption of the LIF-based latency encoder. Since encoder energy consumption is 

proportional to the number of neurons used the expected energy consumption of the LIF-based 

ISI encoder that uses three neuron is much lower than the energy-consumption achieved. The 

simulation results for this encoder didn’t use neuron layouts and suggest that the LIF neuron 

layout has the ability to reduce power consumption significantly. Power consumption 

simulations also showed that the LIF-based ISI encoder is much more prone to noise that the 

latency encoders but less prone than the IF-based ISI encoder. As mentioned in 4.4, the biggest 

challenge with using LIF neurons is needing to adjust leakage current at every change in the 

neuron’s threshold voltage.  

4.6 Comparisons 
For easier comparison, the input parameters of all four designed encoders were kept 

relatively the same. For the latency encoders, the input parameters are the same for both 

except that the LIF-based encoder allowed for a smaller membrane capacitor and had two extra 

components, the spike-width capacitor and the 𝑉𝑙𝑒𝑎𝑘 voltage source. The ISI encoders’ input 

parameters varied more because they had to integrate three neurons with differing spiking 

times to create a three-spike spike train. Since the amplitude of the current signal is small, 

these neurons are sensitive to small input changes making them better able to distinguish small 

signal changes at the input. Neuron sizing was mainly to increase delay and input parameters 

can be used to increase integration time and reduce power consumption. The encoder best 

suited to handle a larger noise margin is the LIF-based latency encoder. The most prone to 

noise was the IF-based ISI encoder. In general, the LIF neuron was better suited to minimize 

noise effects and the latency encoder was the least affected scheme. The proposed encoders 

are designed with the Global Foundries 180nm standard CMOS process. Table 4.6 shows design 

comparisons with similar designs for differing and similar CMOS technologies used.   

During spike generation the power dissipation becomes a function of the firing rate, 𝑉𝑟𝑒𝑓, 

and vdd. So, power consumption will vary based on the CMOS technology used. The smaller the 

CMOS technology used, the smaller the power consumption will be. As can be noticed from 

Table 4.6, the lowest power consumption was achieved by the LIF-based latency encoder and is 
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higher than most of the designs compared in the figure. The only higher power consumption 

was produced by the rate encoder in [17] since rate encoding requires a lot more spikes to be 

generated. In order to produce detectable spikes while keeping a small area, the switching 

delays of transistors were increased which increased power consumption significantly. A range 

of variation between integration times was prioritized as well for this design to be able encode 

small input amplitude changes so this increased power consumption further. The LIF-based 

latency encoder had the best results using post-layout simulations. It was noticeable that 

creating the layout of M9 away from the capacitors’ layers had an effect in dropping the power 

consumption post-layout. Although the power consumption was high, the proposed neurons 

achieved the smallest area in the 180nm CMOS technology. The only comparable size is 

achieved by the proposed IF neuron in [17] using 130nm CMOS technology, achieving a very 

low area consumption for the single neuron. Although this neuron is comparable in size, it 

consumes much less power. This is due to having a faster sampling frequency and much smaller 

integration times per spike. The IF neuron in [17] also produces spikes much smaller than the 

ones in the proposed designs; meaning that it would need additional circuit components to 

produce detectable spikes.  

Table 4.6 Design comparisons 
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The IF neuron was better at producing a bigger range of integration times for small current 

amplitudes. It was better at creating a longer integration time variation in the latency encoder 

implementation with a maximum variation of 3.27us whereas the LIF neuron had a one 

microsecond of difference at 2.54us. For the ISI encoder, the IF-based encoder achieved the 

bigger integration time variation for interval D1, but the LIF-based encoder achieved a bigger 

interval D2, as can be seen in Table 4.7. Overall, all encoders achieved the functionality of 

encoding a current amplitude into the timing of generated spikes. The IF neuron achieved 

longer integration times but required more switching delay increases to produce detectable 

spikes, increasing power consumption. The LIF neuron achieved detectable spikes with less 

dependence on switching delay which achieved significantly lower power consumption at post-

layout simulations.  

Chapter 5: Conclusion and Future Work 

5.1 Conclusion 
Through the inspiration of biological neurons, four temporal encoders were designed and 

achieved high sensitivity to small current amplitudes producing a very low area design at 

comparable power consumption. The sampling frequency of the temporal encoders is 50kHz for 

a speed reduction of the overall neuromorphic computing system. The neurons were optimized 

to produce detectable spikes (width>10ns) using transistor size modulations for the IF neuron 

and additional circuit components (spike-width module) for the LIF neuron. The LIF-based 

latency encoder produced the lowest power consumption comparable to current designs with 

very low area usage at post-layout simulations. Suggestion that the layout of this design 

reduced power consumption. The low design area was achieved by making the layout of active 

devices within the outer capacitor layers and the power consumption reduction of the LIF-

based latency encoder was achieved by creating the layout of M9 away from the effects of the 

capacitor layers. The parameters that could be changed to improve power consumption are the 

excitation current, sampling period, threshold voltage, or internal transistor sizes. High 

sensitivity to small current amplitude changes would produce more accurate encoders and the 

fast frequency allows to increase the speed of the overall process. This functionality could 

Table 4.7 Latency encoder integration times for a full wave period & ISI encoder intervals D1 and D2 for 
a full wave period 
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improve the traditional preprocessing of signals and implement neuromorphic computing in 

designs like machine learning to provide a more efficient signal processing system.   

5.2 Future Work  

In future applications, a lower power consumption should be prioritized more during 

neuron sizing since input parameters can increase integration times. The proposed encoders 

should be tested with a processor to check whether the longer integration times for small 

amplitude changes leads to an increase in accuracy. Post-layout simulations showed a power 

consumption drop of three decimal points which suggests that M9 benefits greatly from being 

placed away from the effects of the electric fields generated by the capacitor layers. To further 

reduce power consumption, the layout of the neurons should be recreated to have the vdd 

path fall outside of the capacitor layers to reduce the effects of the capacitor layers’ electric 

field on power consumption. Outside of layout techniques, power consumption can be further 

reduced by employing more subthreshold techniques. The LIF neuron used more threshold 

techniques, and its power consumption was significantly reduced at post-layout simulations. 

The positive feedback module of the LIF neuron could be stronger by employing a bigger M14 

transistor to increase the feedback current. The diode connected PMOS M14 was kept at a 

minimum sized, but this resulted in a weak positive feedback current for the LIF neuron. 

Although it did reduce power consumption, it can be reduced further by increasing the size of 

M14. As 3D integration of neuromorphic IC’s become more popular, the area of neurons can be 

bigger to reduce power consumption since 3D integration can reduce overall chip area by 

stacking circuits and using vias to connect them. This would provide high system speed, high 

density, low power consumption, and a small footprint, improving neuromorphic computing 

significantly.  
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