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A B S T R A C T   

This paper develops a barometer that indexes water quality in the Chesapeake Bay and summarizes quality over 
spatial regions and temporal periods. The barometer has a basis in risk assessment and hydrology, and is a 
function of three different metrics of water quality relative to numerical criteria: relative frequency of criterion 
attainment; magnitude of deviation from a numerical criterion; and duration of criterion attainment. Metrics 
associated with these features are calculated at the station level, allowing flexibility for simultaneously evalu-
ating multiple stressors, different designated uses, and physical characteristics of the water. The barometer score 
is then created as a geometric mean of the three metrics. The water quality barometer (WQB) station scores may 
be spatially aggregated to report habitat scores across a spectrum of spatial resolutions (e.g., management 
segment, tidal subsystem, or the whole tidal bay). Dissolved oxygen measurements in the Chesapeake Bay 
collected during summer seasons of 1985 to 2020 are used to evaluate water quality. The WQB score and its 
bootstrapped confidence interval are reported at the station, segment, tidal subsystem and whole tidal bay levels. 
Notably, water quality interpreted through application of the WQB with dissolved oxygen concentration data and 
averaged over the 29-year period of record is good (i.e. protects aquatic living resources) in tributaries such as 
the James River, Rappahannock River and others; but is not as good in areas such as the Upper Tributaries and 
the York River. Recent summaries indicate that while the water quality is improving in much of the bay and its 
tidal tributaries, however, there is an indication of decline in quality in the period 20182020, especially in the 
upper regions of the Bay. The barometer is designed around using the time series data produced by the Ches-
apeake Bay Programs annual monitoring strategy; the approach has application to other large water bodies with 
large scale monitoring programs with extended time series or for integrating information from environmental 
sensor systems.   

1. Introduction 

To assess water quality of large aquatic systems, many water quality 
variables (characteristics) such as dissolved oxygen (DO), nutrients, 
chlorophyll-a and water clarity are often monitored. For regulatory 
purposes, many of these characteristics are often assessed relative to 
specific standards or numerical criteria designed to protect living re-
sources, aesthetics, recreational use, or water supplies for human health. 
Water is potentially considered impaired or of lower quality with respect 
to the characteristics when exceeding criteria thresholds that support 
definitions of water quality standards. The standards may be different 

for different habitats based on the protection target as defined through a 
designated use (DU) that may vary over space, time and water charac-
teristics. Different approaches have been used to evaluate and summa-
rize water quality, including: i) indicator organisms such as bacteria 
(Leight, Crump and Hood, 2018), fish (Karr, 1981), macrobenthos 
(Weisberg et al., 1997) and submerged aquatic vegetation (SAV) (Moore 
et al., 2000, Orth et al., 2010), ii) environmental report cards (Williams 
et al., 2010), iii) weighted and un-weighted average of attainment/ 
compliance indicators (Carlson, 1977, Smith et al., 2001; USEPA, 1997, 
USEPA, 2003a, USEPA, 2007; USEPA, 2017; Zhang et al., 2018a; Zhang 
et al., 2018b), iv) principal components and factor analysis (Mustapha 
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et al., 2013), v) fuzzy and machine learning approaches (Kung et al., 
1992; Lu et al., 1999; Mujumdar and Sasidumar, 2002,; Ostad-Ali- 
Askari, Shayannejad, and Ghorbanizadeh-Kharazi, 2017, Langendorf 
et al., 2021) and vi) acceptance sampling by variables (Smith et al., 
2003). 

Many large aquatic systems have long-term fixed-station monitoring 
programs and this leads to the need for summarization of water quality 
and new indices. The Chesapeake Bay (CB), for example, has benefited 
from a long-term tidal water quality monitoring program (Fig. 1) (Tango 
and Batiuk, 2016). Although the program has generated a high-quality 
set of data for evaluating water quality, understanding changes in 
water quality over different spatial scales and how this relates to living 
resources is complicated as the sampling region is divided into multiple 
segments of different surface area (USEPA, 2005). Each segment may 
have different numbers of habitats that may change with season as has 
been reflected in criteria supporting definitions for five designated uses 
(DUs) (USEPA, 2003a). Several water quality indices are available for 
estimating attainment of water quality standards. Hernandez et al. 
(2020) developed a multi-metric indicator of CB water quality, which is 
a segment-by-DU-surface-area-weighted average of segment-by-DU 
combinations estimated to be in attainment. Calculation is done on in-
dividual water quality characteristics, where for each water quality 
characteristic of interest, applicable segment criterion attainment mea-
sures are calculated for each DU separately and then a DU-segment- 
surface-area weighted average of all segments estimated to be in 

attainment over all of these water characteristics with its specified DUs 
is calculated. The authors recognize the need to consider duration and 
magnitude of exposure and build this into the numerical criteria using 
ideas from Batiuk et al. (2009). Using this multi-metric indicator, Zhang 
et al. (2018a) evaluated CB water quality for every three-year-rolling 
window during 1985–2016. They used the cumulative frequency dia-
gram (CFD) approach coupled with applying a rule set to account for 
information gaps with unassessed criteria to estimate attainment status 
for segments and their degree of non-attainment (USEPA, 2003a, 2017; 
STAC, 2006, Batiuk et al., 2009; Zhang et al., 2018a; Hernandez et al., 
2020). This approach estimates compliance over space and time relative 
to expectation. A three-year rolling window is used in the calculation to 
provide an adequate sample size for evaluation of attainment and reduce 
the influence of episodic weather events (Batiuk et al., 2009). 

Although the above approaches are very useful for summarizing bay 
health from a complex set of measurements the methods primarily 
evaluate water quality in terms of relative frequency of compliance or 
estimated attainment of water quality standards. To better protect 
aquatic living resources and reduce risk to their success in survival, 
growth and reproduction, direct consideration of the magnitude of ex-
ceedance and the duration that a habitat is in criterion exceedance may 
be useful. An index that could directly capture these habitat features 
may be of more appeal as it integrates these different aspects of 
compliance. Such an approach has its basis in the toxicology and risk 
assessment literature (Diamond et al., 2005; Brooks et al., 2003). For 

Fig. 1. Chesapeake Bay tidal water-quality monitoring stations. Source: https://www.chesapeakebay.net/images/maps/cbp. Stations in red boxes are the eight 
stations selected to show its WQB-plot in Section 4. 
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example, in exposure assessment, frequency, magnitude and duration of 
exposure to an agent are measured, and are known as exposure factors 
(Diamond et al., 2005; Gray et al., 2009, NRC, 2007). These factors are 
used to calculate exposure estimates such as cumulative risk to growth 
and survival. A related approach is the intensity–duration–frequency 
(IDF) curves used in water resources management (Sun et al., 2019). 
Such an index including these factors might be useful as a summary 

measure of quality as well as an exposure measure or indicator that 
might be useful in evaluating the effect of water quality on living 
resources. 

In this paper, we propose a new index: a Water Quality Barometer 
(WQB) that is based on these three metrics, i.e., frequency, magnitude 
and duration. As numerical criteria are available for Chesapeake Bay 
tidal waters to suggest thresholds for effects for living resources (Batiuk 

Fig. 2. Chesapeake Bay segments and tidal systems.  
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et al., 2009, Tango and Batiuk, 2013I), these will be used to form the 
basis of relative measures. This approach is different than a range of 
other approaches by simultaneously stressing three important features 
of habitat exposure impacting living resources versus singular condition 
assessments. The WQB differs from its closest indicator relative, the 
Chesapeake Bay Multimetric Water Quality Indicator (Hernandez et al., 
2020) that emphasizes criterion stressor magnitude, duration, and re-
turn frequency in the numerical criteria using concepts focused on ab-
solute measurements discussed in Batiuk et al. (2009). The new index 
focuses on the three metrics directly, rather than through the criteria, 
and features two properties: i) it is calculated at the station level, level 
one in the measurement hierarchy, and ii) it utilizes the multivariate 
nature of the data across the different DUs, if multiple DUs are consid-
ered. The numerical criteria used in this Chesapeake Bay case study of 
the WQB are considered as thresholds protective of living resource 
survival, growth and reproduction conditions in each habitat (USEPA, 
2003a), hence the barometer may be viewed as a risk exposure indicator 
and complementary to the Hernandez et al. (2020) approach. 

For the period 1985–2020, the proposed barometer is calculated at 
the station level (Fig. 1) for each three-year-rolling window using DO 
concentration measures. Habitats (water units defined through DUs) are 
assigned to observations based on temperature and salinity data used to 
compute pycnocline boundaries when present that separate Open Water 
(OW) from Deep Water (DW) and Deep Channel (DC) DUs. These station 
WQBs can be aggregated to any specific higher aggregation level of in-
terest, e.g., segment, tidal sub-system or the whole bay. 

The paper is structured as follow: Section 2 describes the Chesapeake 
Bay data set and sampling program. The mathematical details of the 
metrics and WQB are presented in Section 3. Section 4 presents the re-
sults of applying the method to the bay data at the station, management 
segment, tidal sub-system and whole bay levels over the period from 
1985 to 2020. There is also a results comparison with the attainment 
deficit method of Zhang et al. (2018). Additional figures and analysis are 
presented in the supplemental material. Some conclusions and further 
ideas are in Section 5. 

2. Data 

The Chesapeake Bay is the largest estuary in the United States and its 
watershed extends to six different states: New York, Pennsylvania, 
Delaware, Maryland, Virginia and West Virginia, as well as Washington, 
D.C. Its tidal waters are divided into 92 tidal segments and 13 tidal 
systems (Fig. 2). The width of the CB ranges between 8 and 48 km (km) 
and its mainstem is about 300 km long. In the open bay, the depth has an 
average of 8.4 m (m) with a maximum depth of 53 m. The CB surface 
area is 11,500 km2 including open bay and the tributaries (Cerco and 
Cole, 1993). 

Since 1984, the EPA Chesapeake Bay Program (CBP) has monitored 
the CB water quality at over 150 fixed-site stations with a common 
protocol of collecting a vertical profile of water quality measurements at 
each station (USEPA, 2010 section 5, Tango and Batiuk, 2016). Obser-
vations of some water quality characteristics, such as DO, chlorophyll-a, 
water clarity, water temperature and salinity are collected at the station 
level (Fig. 1). Such data suppost asessment summarization at the sub- 
baybay or whole bay level. 

Tidal bay segmentation has varied by study and application. For 
examples, IAN-Ecocheck provides annual reports of water quality con-
ditions for 15 bay regions (https://ecoreportcard.org/report-cards/che 
sapeake-bay/bay-health/). Llanso et al. (2003) used 67 segments 
while Llanso et al. (2009) used 85 segments to evaluate bay health based 
on the benthic macroinvertebrate community integrity measures. Lef-
check et al. (2018) divided the bay into 120 subestuaries with 112 
station-units for evaluating SAV trends and factors influencing SAV 
populations. Since 1984, the CBP partnership has used various versions 
of a basic segmentation scheme ranging from 78 to 104 segments to 
organize data collection, analysis and reporting (USEPA, 2004, 2005, 

2008). Segments were developed based on hydrodynamics, chemistry, 
bathymetry and biology. Stations within segments are considered to 
represent the same set of conditions. Currently, the bay is divided into 
92 segments (USEPA, 2008, Fig. 2). Each segment is monitored for 
compliance with the specific characteristic standards based on a set of 
criteria for DO, water clarity/SAV and chlorophyll-a applicable across 
seasons in each DU. Five DUs are identified for the bay: Migratory fish 
Spawning and Nursery (MSN), Open-Water fish and shellfish (OW), 
Deep-Water seasonal fish and shellfish (DW), Deep-Channel seasonal 
refuge (DC), and Shallow Water (SW); (USEPA, 2003b, 2017; Zhang 
et al., 2018a). Each tidal segment has up to five DUs. All stations inside a 
segment have the same maximum number of DUs (Mseg). A table that 
identifies the applicable DUs for each segment can be found in USEPA 
(2017, Appendix F, pp 111–115). 

Water-quality monitoring data for the period of 1985–2020 are 
downloadable from the CBP Data Hub (https://www.chesapeakebay.ne 
t/what/downloads/cbp_water_quality_database_1984_present). The 
data set represents information on DO, temperature and salinity for 
more than the 150 fixed stations, however, there are a considerable 
number of missing values with regard to the time frame of sampling. 
Various decisions were made to try to provide summaries for as many 
stations as possible over the time period. These decisions are discussed 
in section 3.6. 

3. Methods 

The study focuses on application of the WQB for the summer season 
(June 1-September 30) DO (mg O2/L) conditions in the tidal Chesapeake 
Bay and its tidal tributaries. There are one to three applicable habitats 
relative to summer DO depending on location, stratification, pycnocline 
formation and pycnocline boundaries defined by vertical water column 
density structure (USEPA, 2003a, USEPA, 2008). The designated uses 
(DUs) associated with the habitat layers that may exist for this param-
eter and season are OW, DW and DC. Data are identified by date, loca-
tion, depths and layers in the water column. Hence, any observation is 
defined by its position in a three-dimensional plane defined by a tem-
poral dimension (month, year), a spatial dimension (station, segment, 
tidal subsystem) and a vertical dimension (depth, layer), and has an 
associated DU. Station is viewed as the basic sampling unit and mea-
surements within the station for a given month as subsamples. 

Let yyr,mo,ts,seg,st,la,dp be a characteristic-measurement of interest 
described with respect to these three dimensions; i.e., within a specific 
temporal dimension indexed by year (yr) and month (mo) and spatial 
dimension indexed by tidal subsystem (ts), segment (seg) and station (st) 
measurements are made in a vertical-dimension indexed by layer (la) 
and depth (dp). Summer season DO concentration data are combined for 
3-year continuous periods when producing a habitat status assessment 
consistent with a protocol used by the CBP on the data set (Hernandez 
et al., 2020). In the study period of interest (1985–2020), using an 
annual time step, there are 34 three-year-rolling windows (rw). A station 
sufficiently identifies its tidal subsystem and segment, therefore, for ease 
of notation, the subscripts of these two components (ts and seg) are 
suppressed. The average of the measurements at each combination of 
the three dimensions (vertical, spatial, temporal) is calculated, 
yyr,mo,ts,seg,st,la,dp, call it xyr,mo,st,la,dp. From the data, three metrics are 
developed and scaled to be within (0,1). 

3.1. Magnitude metric 

The magnitude metric is intended to measure how far above or below 
the measurements are from each applicable numerical criterion. We 
define a distance-based magnitude metric(MAG) that compares mea-
surements exceeding the applicable criterion (Bad) with measurements 
not exceeding the applicable criterion (Good) as follows: 
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MAGrw,st =
1 + magn

2
, 0 ≤ MAG ≤ 1 (1) 

The magn function is the ratio of the difference of two distances 
relative to its sum (details for the magn formula are in Appendix A), so 
that it ranges between − 1 and 1. These two distances are in the opposite 
directions; one is in the quality direction (‘good’ distance) and the other 
one is in the impaired direction (‘bad’ distance). If magn ≥ 0, then the 
‘good’ observations that satisfy the criterion (i.e., those with positive 
deviations) are greater than the “bad’ ones that do not satisfy the 
applicable criterion (i.e., those with negative deviations). 

Figs. 3a and 3b illustrates two scenarios of two distances. Fig. 3a 
depicts these two distances for a hypothetical example where the good 
distance dominates the bad one. Here Mseg = 2, L1 = 3, L2 = 3.5,xDU1 ,G

rw,st =

3.9, xDU1 ,B
rw,st = 2.7, xDU2 ,G

rw,st = 4.5 and xDU2 ,B
rw,st = 2.9. The good distance 

(green) is larger than the bad distance (red), hence magn > 0. Fig. 3b 
shows another hypothetical example, where Mseg = 2, L1 = 3, L2 = 3.5, 
xDU1 ,G

rw,st = 3.9, xDU1B
rw,st = 1.7, xDU2 ,G

rw,st = 4.5 and xDU2 ,B
rw,st = 0.7. In this case, the 

bad distance is larger than the good one, resulting in magn < 0. This 
function is a multivariate function that can capture whether the net 
distance is in the desired direction (positive or good) reflecting no 
violation of numerical criterion, or in the undesired direction (negative 
or bad) reflecting violation of numerical criterion across all the station’s 
DUs. The magnitude metric (MAG) scales the magn values to be between 
0 and 1. Hence, values of MAG greater than or equal to 0.5 reflect 
favorable status. 

3.2. Frequency metric 

We define the frequency metric (PROP) as: 

PROPrw,st =

∑Mseg
1 propDUi

wind,st

Mseg
, 0 ≤ PROP ≤ 1 (2)  

where propDUi
rw,st = AVE(pDUi

yr,mo,st) is the three-year rolling-window attain-
ment proportion (compliance proportion) of dissolved oxygen mea-
surements for a specific station for the ith DU during a specific rolling 
window, i.e., the proportion of measurements from the total within a 
period that are meeting or exceeding the critical threshold criterion. 
AVE is average function and pDUi

yr,mo,st is the monthly average of the 
attainment indicator for a measurement x: 

pDUi
yr,mo,st =

∑
IDUi

yr,mo,st,la,dp(x) (3)  

where 

IDUi
yr,mo,st,la,dp(x) =

{ 1 if x ≥ Li

0 otherwise
.

The frequency metric (PROP) is basically the average of the station 
DUs window attainment proportions. Congruently with the raw score 
method, the station is considered not in violation of numerical criterion 
for the ith DU at a specific rolling window (rw) if propDUi

rw,st ≥ 0.9. Note that 
the compliance proportion cutoff point is the complement of the raw 
score cutoff point. However, for the frequency metric (PROP), a value 
greater than or equal to 0.9 does not necessarily imply that the station 
does not exceed the numerical criterion for all its defined DUs. It in-
dicates only that the station does not exceed the numerical criterion for 
at least most of its DUs. Nevertheless, as PROP approaches one, the 
station approaches being in favorable condition for every DU. 

3.3. Duration metric 

By definition, station criterion duration in a certain season is the 
maximum number of consecutive months not exceeding a numerical 
criterion during this season of a specific year. We define the duration 
metric (DUR) as: 

DURrw,st =

∑Mseg
1 durDUi

rw,st

Mseg
, 0 ≤ DUR ≤ 1, (4)  

where durDUi
rw,st =

∑3
j=1

duraDUi
rw,st,j

3*(mseason)
is the relative total attainment duration of a 

specific station for the ith DU during a specific three-year-rolling win-
dow, duraDUi

rw,st,j is the duration in year j of the specified window and 
mseason is the total number of months in the studied season, i.e., if season 
is the whole year then mseason = 12, if season is summer (Jun-Sep) then 
mseason = 4. 

If durDUi
rw,st > 0.5, then the station is not in violation of the numerical 

criterion for most of the months during the specified window, we 
consider this value as a quality boundary. 

The duration metric (DUR) is basically the average of the station 
relative duration over its applicable DUs. A value greater than 0.5 for 
this metric does not guarantee that this quality boundary is met in all the 

Fig. 3a. A hypothetical station not in violation of a numerical criterion with two DUs assuming Lower threshold (Li), mapped in three different planes: i) response 
average plane, ii) relative deviation (rdev) plane, iii) magnitu function (magn); where red line is bad distance, green line is good distance and star is criterion-defined 
threshold point (L1, L2). 
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DUs, though. Nevertheless, as DUR approaches one, the station ap-
proaches compliance for every DU in all months in the specified rolling 
window. 

3.4. Water quality barometer 

Similar to the idea of Barnes et al. (2007), we define WQB at the 
station level for every three-year-rolling window as the geometric mean 
of the above three metrics, i.e., 

WQB =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(MAG)(PROP)(DUR)3

√
, 0 ≤ WQB ≤ 1 (5) 

As WQB values increase the station water quality increases. Using the 
quality-boundaries of the three metrics, a quality-boundary for WQB is 
0.61 (=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(0.5)(0.9)(0.5)3

√
), thus “good” habitat will have a value of 

WQB ≥ 0.61. However, a value greater than or equal to 0.61 does not 
necessarily imply that each metric satisfied its quality boundary. 
Nevertheless, as WQB approaches one, at least two indicators satisfy 
their quality boundaries. For example, during rolling window 
2012–2014, station LE2.3 had a WQB value of 0.637, where MAG =
0.752, DUR = 0.555 and PROP = 0.618. Whereas during rolling window 
2016–2018, station WT1.1 had a WQB of 0.897 with PROP = 0.944, 
MAG = 0.918 and DUR = 0.833 (Fig. 4). To further evaluate the 

Fig. 3b. A hypothetical station in violation of a numerical criterion with two DUs assuming lower threshold (Li), mapped in three different planes: i) response 
average plane, ii) relative deviation (rdev) plane, iii) magn function; where red line is bad distance, green line is good distance and star is threshold point (L1, L2). 

Fig. 4. WQB from a representative sample of stations for applicable combined DUs (DU3) with its three metrics: DUR, MAG, PROP. Dotted lines represent 
different thresholds. 
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barometer, confidence intervals for the summaries over the 34 time 
windows are calculated using a time-series based bootstrap method (R 
package meboot, Vinod and López-de-Lacalle, 2009). Lastly, we note 
that although the barometer is developed for multiple DUs, it could be 
created also for just a single DU. 

3.5. Water quality barometer at higher levels of aggregation 

Once the metrics and associated barometer are calculated at each 
station level (level-one unit), the metrics may be evaluated or averaged 
to any higher level of aggregation, such as segment, tidal sub-system or 
the whole bay to create the barometer at the higher level of interest. 
There are several possible approaches to aggregation such as combining 
the station level barometers, combining (averaging) the station level 
metrics or using weighted combinations. Here the approach aggregated 
the station-level metrics using the hierarchy principle (i.e., to get the bay 
level, we aggregate station results first to segment and then to tidal 
subsystem and finally to the tidal bay level). 

3.6. Data decisions 

In this application to CB, the DO data measured during summers of 
1985–2020 are summarized. Three DUs (OW, DW and DC) are consid-
ered. Hence, the number of months is at most 4, the maximum value of 
Mseg is three and there are 34 rolling windows. Data are thus represen-
tative of a monthly summary. 

Numerical criteria used to assess DO differ subject to the DU of in-
terest (Batiuk et al., 2009, USEPA, 2003a; USEPA, 2003b, USEPA, 2017; 
Zhang et al., 2018a; Hernandez et al., 2020). For the above three DUs, 
the umbrella criterion assumption is used to address assessment status 
when multiple criteria are used to define health status. For DW and OW, 
the 30-days standards mean criterion of DO concentrations is used (LOW 
= 5.5 mg/l with 0–0.5 ppt salinity, LOW = 5 mg/l with greater than 0.5 
ppt salinity, LDW = 3 mg/l) to estimate attainment of suitable habitat 
health where multiple criteria are simultaneously applicable to assess 
attainment but data are unavailable to evaluate all criteria; while for DC, 
the instantaneous minimum of DO is used (LDC = 1 mg/l). A measure-
ment below the DO criterion is viewed as representative of potentially 
unhealthy water quality. In this application, WQB is calculated for the 
combined applicable DUs (DU3) and for each individual applicable DU 
(OW, DW, DC). 

Although there are a large number of stations in the database, many 
of these stations do not have complete data. To obtain a more homo-
geneous number of samples, a number of stations were omitted, and 
imputation was used to fill in some of the gaps in the data. At the station 
level, 181 stations have at least one DO measurement in each of the 34 
rolling windows; these stations are located in 73 segments. Six segments 
and 49 stations could be added in the analysis if we consider stations 
which have measurements in at least 27 rolling windows. For the 
remaining 13 segments, there are not enough data measurements to 
adequately represent them without the excessive use of imputation 
techniques. 

In our analysis, we considered the 230 stations that have DO mea-
surements at least in 27 rolling windows, which are located in 79 seg-
ments. Exponentially weighted moving average (EWMA) imputation 
and/or borrowing-from-nearest-station-in-same-segment techniques are 
used to impute the missing windows (Hamzah et al., 2020). Results are 
provided for station, segment, tidal subsystem levels as well as the entire 
bay. All calculations were carried out in SPSS 25 and R version 3.6.3. 

4. Results and discussion 

The CB water-quality monitoring data for the period of 1985–2020 
are used to demonstrate the use of WQB, for individual DU as well as for 
the combined DUs, at every level of the data hierarchy: station, segment, 
tidal subsystem and bay level. The similarities in the WQB across DUs 

are investigated. Percent relative changes in WQB (individual as well as 
the combined barometer) of 2014–2016 and 2018–2020 compared to 
the initial window (1985–1987) are investigated. Finally, results from 
WQB are compared to the attainment deficit (AD) measure published by 
Zhang et al. (2018b). A R-shiny app that displays the WQB and its ele-
ments over time periods is available at https://birchtree.shinyapps. 
io/CBBarometer/ for station level visualization. Additional displays, 
especially for segment and higher levels of aggregation are presented in 
the supplemental material. 

4.1. Station level 

The frequency, magnitude, and duration metrics underpinning the 
WQB indicator are first calculated at the station level for summer season 
DO concentration data in continuous 3-year blocks (e.g., 1985, 1986, 
1987) using annual time steps (e.g., 1985–87, 1986–88, etc.). Because 
there are a large number of stations, a representative subset is graphi-
cally displayed in Fig. 4. For each station, a plot that represents the WQB 
and its three metrics during the 34 rolling windows is produced (WQB- 
plot). Each plot has three reference lines: i) 0.9, the frequency metric 
boundary for achievement, ii) 0.5, the magnitude and duration metric 
quality-boundary, and iii) 0.61, the WQB quality-boundary. 

To illustrate some of the patterns in the data, the WQB values were 
rank ordered, then grouped into eight classes and a representative 
pattern from each group graphed. Fig. 4 shows the WQB-plot for eight 
stations chosen according to the values of WQB of the combined appli-
cable DUs (DU3), where the average rank of the 230-station WQB values 
over the 34 rolling windows is calculated (rank 1 being the best). Then 
these 230 average ranks are arranged into eight classes; each with 
approximately 29 stations. From each class, one station is chosen. The 
eight selected stations are marked in Fig. 1 with a red box. These eight 
stations are ordered in Fig. 4 (row wise), such that the first panel shows 
the selected station from the first class (the best 29 stations on average) 
while the last panel shows the selected station from the last class (the 
worst 29 stations on average). The stations are selected from these 
classes, such that they vary in the number of applicable DUs. 

During all three-year rolling windows, stations from the first four 
rank-classes feature high WQB values (>0.8) as well as high values in all 
its metrics, where none of the metrics violates its quality boundary 
(CB7.4N, CB5.4W, WT1.1 and RET3.2). DUR is the most volatile metric 
in these classes. Stations EE3.1 and LE1.3 (from the 5th and 6th rank 
classes) still feature good WQB (>0.61; its quality boundary), with the 
exception of the last window of LE1.3. The three metrics exhibit fluc-
tuations, where in some windows PROP violates its quality boundary 
(0.9). For LE2.3, which represents the seventh class, violations of the 
quality boundary of the frequency metric are more prominent, leading 
WQB to violate its 0.61 quality-boundary in some windows. The other 
two metrics (DUR & MAG) generally do not violate their 0.5 quality- 
boundary. In the last rank-class (the worst stations), DUR and MAG 
begin to fall below their quality boundary, and hence WQB begins to fall 
below its quality boundary in all windows (station CB4.1C). The number 
of applicable DUs in the station does not appear to affect WQB. There are 
stations with three DUs that have high WQB (CB5.4W and RET3.2), 
while there are others of the same number of DUs with very low WQB 
(CB4.1C). 

Station CB4.1C, located in the mid-bay region of the bay’s mainstem, 
is the worst performer among these chosen stations. This region is 
known for its chronic annual hypoxia conditions (Hagy et al., 2004, 
Testa et al., 2017) where summertime hypoxia has been documented for 
over 80 years (Testa et al., 2017, CBP, 1991). 

For these eight stations, the WQB is created for each applicable DU 
separately. Fig. 5 shows these individual WQBs as well as the WQB of the 
combined applicable DUs (DU3).WQ for DU3 is an integration of the 
individual DU WQB. Note that for stations with only one applicable DU, 
its WQB for DU3 is just the WQB for that DU. 

Apart from station RET3.2 (Fig. 5), the relationships among these 
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four WQBs satisfy the following: WQB for DC ≤ WQB for DW ≤ WQB for 
DU3 ≤ WQB for OW. 

The distributions of WQB for DU3 and each individual DU during the 
study period are shown in Fig. 6. 

Fig. 7 depicts the WQB for DU3 with its 95% confidence intervals. 
Here the maximum entropy bootstrap method (R package meboot with 
B = 1000) is used to create confidence intervals for WQB during the 34 
rolling windows in the period of study. 

4.2. Segment level 

Evaluation of the WQB at the segment level is important as segments 
are useful in TMDL analysis and management. Over the last 34 rolling 
windows from 1985 to 1987 to 2018–2020, WQB at the segment level 
for DU3 is indicative of good quality (WQB > 0.61) with the exception of 
main bay segment CB4MH. As measured by the barometer, water quality 
for segments in the middle part of the mainstem (CB4MH, CB5MH_MD, 
CB5MH_VA) is worse than water quality of the segments in its northern 
and southern regions. Among the tidal tributary systems, the James, 
Rappahannock, Chester and Choptank segments are of high quality 
(WQB > 0.7), while most of the York segments are of lesser quality (0.4 
< WQB < 0.5) (Fig. 8). 

Fig. 9 shows the relative change in the WQB at the segment level for 
each DU separately as well as for DU3 in three different windows: 
Zhang’s et al. (2018b) last window (2014–2016) and the most recent 
two windows (2017–2019 and 2018–2020) compared to the initial 
window (1985–1987). In terms of WQB of DU3 and OW, most segments 
in window 2014–2016 are better off than in the initial windows. In 
window 2018–2020, most segments are worse relative to the initial 
window. This pattern remains the same for DW and DC: most segments 
with applicable DW or DC are better off in 2014–2016 compared to the 
initial window; by 2018–2020, most DW and DC segments are worse 
than they were in the initial window (Fig. 9). 

In terms of WQB for DU3 in 2014–2016, 53 segments improved 

compared to the initial window, with 41 segments having percent 
relative change of at most 25%, nine segments increasing by 25% to 75% 
and three increasing by more than 100%. WBEMH is the most improved 
with a percent relative change of 136%. 22 of the 26 degraded segments 
indicated further degradation, i.e., had negative relative change, of at 
most 25% relative to the initial value. POCTF is the worst performer 
with a percent relative change of − 100%. In 2018–2020, 41 segments 
improved compared to the initial window, with 33 segments improving 
by at most 25%, seven segments improving by 25% to 75%, with only 
one segment (SBEMH) improving by 77%. 27 of the 38 degraded seg-
ments degraded by at most 25% of the initial value. POCTF is again the 
worst performer with a percent relative change of − 100% (see supple-
mental material for graphical displays). 

In 2014–2016, 54 segments improved compared to the initial win-
dow with respect to WQB of OW. Among them, 43 improved by at most 
25%, nine segments with percent relative change between 25% and 
75%, and two segments with more than 75% relative change percent. 
WBEMH shows the largest improvement with a percent relative change 
of 136%. 22 of the 25 degraded segments have percent relative change 
of at most − 25%. POCTF is the worst performer with a percent relative 
change of − 100%. In 2018–2020, only 42 segments show improvement 
compared to the initial window, with 32 of them improving by at most 
25%, nine segments show percent relative change between 25% and 
75%, and one segment improved by more than 75%. This segment is 
SBEMH with a percent relative change of 85%. 28 of the 37 degraded 
segments have percent relative change of at most − 25%. The worst 
segment is still POCTF. 

In terms of WQB for DW, ten segments show improvement in 
2014–2016 relative to the initial window. PATMH shows the largest 
improvement in window 2014–2016 with a percent relative change of 
more than 150%, while EASMH is the worst segment with − 44% relative 
change. In window 2018–2020, only four segments show improvement. 
PATMH is still the best performer but with a lower percent relative 
change of 100%, while SEVMH is the worst segment with − 55% relative 

Fig. 5. WQB at the station level for combined applicable DUs (DU3) and individual DU: open water (OW), deep water (DW), and deep channel (DC) in 
selected stations. 
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change. 
With regard to the WQB for DC, five segments show improvement in 

window 2014–2016 compared to the initial window. CB5MH_VA shows 

the greatest improvement with a percent relative change of almost 19%, 
while CHSMH shows the largest degradation with a percent relative 
change (decrease) of 20%. In 2018–2020, only two segments improved 

Fig. 6. Distribution of WQB at the station level for applicable combined DUs (DU3) individual DU: open water (OW), deep water (DW), and deep channel (DC) in 
selected stations during the 34 rolling windows in 1985–2020. 

Fig. 7. Sample set of DU3-WQBs at the station level with different designated uses with bootstrapped 95% confidence interval. (LCL = Lower confidence limit, UCL 
= Upper confidence limit). 
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compared to the initial window: CB5MH_VA and POTMH_MD; where 
CB5MH_VA still being the best segment with a percent relative change of 
9%, while PATMH shows the largest degradation with a percent relative 
change of − 48%. 

To relatively order segments in terms of water quality during the 
study period, segments are ranked according to its WQB value in each 
window separately; then a 95% confidence interval for the average of 
segment ranks across all windows is calculated. This process is done for 
the combined version of WQB (DU3), as well as WQB for the individual 
DUs (OW, DW, DC). Among the DC segments, RPPMH of the Rappa-
hannock River is the best segment on average, while PATMH of the 
Upper Tributaries is the worst. Among the DW segments, CB7PH is the 
best segment on average, while SOUMH of the Upper Tributaries is the 
worst. Among the OW segments, C&DOH_MD of the Upper Tributaries is 
the best one, while POCTF of the Pocomoke is the worst although this is 
not unexpected as the Pocomoke is a natural blackwater system with 
historically low DO. These segments remain the best and worst ones in 
terms of the ranked WQB for DU3, however note that the second worst 
segment is changed to PMKOH of the York. 

4.3. Tidal subsystem level 

To evaluate quality at the tidal subsystem level, the WQB for the 
three designated uses and the combined barometer (OW, DW, DC and 
DU3) are aggregated to the tidal subsystem level and boxplots are used 
to display the 34 rolling windows in Fig. 10. Note that not all systems 
have all four designations. For tidal systems with DW applicable seg-
ments, Chester is the best on average across all the 34 rolling windows, 
while the Upper Tributaries is the worst on average. For tidal systems 

with DC applicable segments, Rappahannock is the best, and the Upper 
Tributaries remains the worst one. In terms of WQB for DU3 and for OW, 
James is the best, while the York is the worst (Fig. 10). 

In 2014–2016, 9 tidal systems improved compared to the initial 
window with respect to WQB of DU3, among them 7 improved by at 
most 20%. Elizabeth is the most improved tidal system (almost 60%). 
Pocomoke is the worst performer with a percent relative change of 
almost − 10% followed by York with a percent relative change of − 9.5%. 
In 2018–2020, only 5 tidal systems show improvement compared to the 
initial window, with only one tidal system (Elizabeth River) improving 
by more than 40%. York and Pocomoke tidal system remain the worst 
with percent relative changes of − 16% and − 15%, respectively. This 
performance/degradation status of the tidal systems remains the same in 
terms of WQB of OW. 

For tidal systems with DW applicable DU, four tidal systems show 
improvement in 2014–2016 relative to the initial window. Elizabeth 
shows again the largest improvement with a percent relative change of 
almost 95%, while Chester is the worst with a degradation of 20%. In 
window 2018–2020, only Elizabeth is still showing the largest 
improvement of 70%, while Chester remains the worst performer with a 
degradation of 48%. 

For tidal systems with DC applicable DU, three tidal systems show 
improvement in window 2014–2016 compared to the initial window, 
where the mainstem is the best performer with a percent relative change 
of 10%, while Chester is again the worst performer with a percent 
relative change of − 16%. In window 2018–2020, all tidal systems show 
degradation with Potomac having the least degradation and the Upper 
Tributary having the largest degradation, of 0.31% and 39%, 
respectively. 

Fig. 8. WQB for Chesapeake Bay aggregated at the segment level during all three-year-rolling windows in 1985–2003. WQB for Chesapeake Bay aggregated at the 
segment level during all three-year-rolling windows in 2002–2020. 
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4.4. Bay level 

During 1985–2020, water quality of the whole bay is generally high 
(WQB for DU3 ≥ 0.74). The lowest values of the barometer were during 
rolling windows 1989–1991 (WQB = 0.742), 2003–2005 (WQB =
0.752), 2011–2013 (WQB = 0.759) and 2018–2020 (WQB = 0.743). 
Those periods (windows) align with major weather events affecting bay 
water quality. For example, major storm events that delivered signifi-
cant precipitation and subsequent high flows enriched with nutrient and 
sediment occurred in 2003 (Hurricane Isabel), 2004 (Hurricane Ivan) 
and 2011 (Hurricane Irene and Tropical Storm Lee) (Zhang et al, 2018a). 
WQB of DU3 records its highest value (≅ 0.83) in window 1992–1994 
(Fig. 11). 

A decreasing behavior is noticeable in the WQB in the period after 
2015–2017 for DC, while it begins even earlier (2012–2014) in WQB for 
DW. WQB for OW does not violate the 0.61 quality boundary in any 
window, while WQB for DW violates it in five windows (1997–1999 and 
the most recent four windows). In contrast, the DC WQB could not reach 
this boundary in any window except 1987–1989, where it barely ex-
ceeds the 0.61 boundary (Fig. 12). 

Fig. 12 shows the WQB distributions for DU3 and each one of the 
individual DUs during the 34 rolling windows. Consistent with the re-
sults above, bay level WQB for DC is the poorest while bay level WQB for 
OW is the best. 

The 95% bootstrapped confidence intervals for WQB for DU3 and 
each one of the individual DUs during the 34 rolling windows are pre-
sented in Fig. 13. 

4.5. Comparing WQB to attainment deficit of individual DUs 

The attainment deficit (AD) metric for CB is an alternative measure 

of habitat status introduced by Zhang et al. (2018b) for the CB that fo-
cuses on frequency of attainment for DO. It is useful to compare results 
based on this frequency approach to the WQB approach. Zhang et al. 
(2018b) analyzed CB-summer data for DO with three designated uses 
(OW, DW, DC). The AD is created at the segment level and then is 
aggregated to higher levels. In their analysis they compared the last 
window in their analysis (2014–2016) to the initial window 
(1985–1987) for four aggregation levels, namely, the whole bay (total), 
different DUs (OW, DW, DC), different salinity zones (tidal freshwater or 
TF, polyhaline or PH, mesohaline or MH, oligohaline or OH) and tidal 
subsystems. We consider the same levels and the two window compar-
ison to compare results for the WQB to the AD indicators of water quality 
condition For three aggregation levels (total bay, salinity zones and tidal 
subsystems), the combined WQB (DU3) is used, while the WQB at the 
individual DUs is used for the DU level. 

The status of segments with DC in window 2014–2016 is slightly 
worse than it was in the initial window. For the other DUs and the whole 
bay level, water quality conditions are slightly better in window 
2014–2016 than they were in the initial window. This is consistent with 
the AD results, except for DC, where its AD was better in 2014–2016 
than it was in the initial. In addition, the WQB ranks them as: OW > total 
bay > DW > DC, while AD ranks them as: OW > DW > total bay > DC. 
The WQB tends to group the OW and total bay together and different 
from the DW and DC while the AD groups OW, DW and total bay 
together. 

With regard to the salinity zones, the WQB and AD results are similar; 
as both reveal that conditions for each zone are better in 2014–2016 
than they were in the initial window. However, the WQB indicates a bit 
more variation in the zones and orders the zones in 2014–2016 as PH >
OH > TF > MH, while AD orders them as: PH > TF > OH > MH. For the 
tidal systems, five tidal systems: Chester, Choptank, Rappahannock, 

Fig. 8. (continued). 
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Pocomoke and York are showing degradation associated with DO based 
on the WQB. In terms of AD, however, only three tidal systems are 
viewed as degrading: York, Tangier, and Pocomoke. While AD and WQB 
criteria coincide in their evaluation for most of the tidal systems, they 
contradict on a few of them, e.g., Tangier, Chester, Choptank, and 
Rappahannock. In general, while the two measures indicate some sim-
ilarity, the WQB values are more variable than the AD values and pro-
vide different rank ordering for water quality of the segments and tidal 

subsystems (graphical displays are in the supplemental material). 

5. Conclusions, implications and applicability 

This paper proposes a new water quality barometer that combines 
the frequency, duration and magnitude of one or more water quality 
parameters relative to critical threshold criteria into a single measure. 
These three metrics measure aspects of water quality important to 

Fig. 9. Relative change in the WQB for different designated uses (DU3, OW, DW, DC) aggregated to the segment level compared to the initial window 1985–1987. 
Upper panels are for 2014–2016; lower panels are for 2018–2020. Note the ranges are different for the deep channel. 
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survival, growth and reproductive life history functions in living re-
sources and represent risk factors expressed by habitat health. Defini-
tions of these metrics are presented mathematically in the context of 
data associated with the CB long-term water quality monitoring pro-
gram. The barometer is an indicator developed as the geometric mean of 
frequency, duration and magnitude and is calculated at the station level. 
Besides value as a summary measure, the barometer may be useful in the 
analysis of aquatic living resources and their relationship with cumu-
lative conditions and specific features of habitats and their water 
quality. 

When applied to CB dissolved oxygen measurements, the metrics and 

resulting WQB indicator capture water quality variability across the 
spectrum of bay health conditions from high stress low oxygen condi-
tions to low stress well oxygenated waters. Assessments were made 
across all the defined designated uses applicable for stations, the 
smallest spatial unit of measurement. Once the three metrics and 
resulting WQB are calculated, they can be aggregated to higher levels of 
interest such as segment, river, tidal subsystem or the whole bay to 
provide scale-specific insights on habitat quality. Comparing the WQB 
behavior to another indicator, the AD indicator, shows that there is 
generally agreement however there are some notable differences. 
Although, the WQB is not an EPA approved indicator, the work provided 

Fig. 10. Distribution of WQB at tidal system level for combined applicable DUs (DU3) and individual DU: open water (OW), deep water (DW), and deep channel (DC) 
during the 34 rolling windows in 1985–2020. Boxplots represent medians, quartiles and extreme values. 

Fig. 11. WQB at CB level for the applicable combined DUs (DU3) with its three metrics: DUR, MAG, PROP.  
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here demonstrates its value and utility to provide complementary in-
formation regarding the status and trends of DO habitat conditions in CB 
at diverse scales of interest for time and space. This information is 
critical to the Chesapeake Bay Program partnership for understanding 
the dynamics of the bay ecosystem and for assessing the effectiveness of 
management initiatives aimed toward CB restoration. More broadly, the 
WQB can be easily applied to other large water bodies with large scale 
monitoring programs or for integrating information from environmental 
sensor systems. Our application of this barometer to CB provides an 
example where long-term water quality monitoring data and a science- 
based index approach can be combined to evaluate complex ecosystems. 

The geometric mean was selected as a way to combine the three 
metrics. Other approaches are possible such as the arithmetic mean 
however, we note that the geometric mean is better than the arithmetic 
mean in cases where large variations/fluctuations among the compo-
nents occur or components are not independent of each other. Also, the 
geometric mean is much less sensitive to outliers (Hirzel and Arlettaz, 
2003). In developing the WQB, the same weight was given to each 

metric in the formula of the geometric mean however, different weights 
could be utilized as well if desired (Barnes et al., 2007). In addition, we 
used cutoffs of 0.5 for the magnitude and duration metrics and 0.9 for 
the frequency metric. While these cutoffs have some justification as 
thresholds between good and poor water quality conditions, other cut-
offs could be developed based on empirical and theoretical evidence. 

There are also potential opportunities for variations of the WQB as a 
summarization metric of risk exposure. The numerical criteria based on 
designated uses leads to the cutoff criteria for our application. Other 
criteria might be useful for ecological applications. For example, if in-
terest is in a specific fish species, one might consider DO concentration 
cutoffs based on behavioral response to habitat conditions, growth rate 
impairment or mortality rates if these cutoffs are available. For adult 
striped bass (Morone saxatilis), for example, a range of 3–4 mg/l might be 
used for avoidance behavior and <2 mg/l for mortality (Lipton and 
Hicks, 2003); a different barometer cutoff might be used for juvenile or 
young-of-the-year. The resulting indicators might be useful not just for 
summarization but also in computer modeling or regression analysis of 

Fig. 12. WQB at the bay level for combined applicable DUs (DU3) and individual DU: open watefr (OW), deep water (DW), and deep channel (DC); a) time plot 
representation b) boxplot representation with jittered points.wj] 
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living resources as an alternative to approaches that predict the effects of 
exposure. The function used for calculating magnitude assumes a linear 
effect; this can be adjusted, for example, one might consider an “S” 
shaped curve for cases where there are lower and upper limits to effects. 
Another variation that might be useful is to change the numerical 
criteria based on other environmental factors. For example, temperature 
might affect habitat suitability for endangered Atlantic sturgeon and a 
barometer could easily be developed to visualize potential thermal stress 
associated with winter mortality (Markin and Secor, 2020). This 
approach would be consistent with the use of temperature in the setting 
of the numerical criterion. With shortnose sturgeon, for example, EPA 
(2003) specifies “at temperatures stressful to shortnose sturgeon 
(>29 ◦C), a 4.3 mg liter− 1 instantaneous minimum criteria should 
apply”. There are potential limitations to the WQB as well as other 
summarizations of CB water quality. Although there are a relatively 
large number of stations that provide DO data, the number of samples 
within a year for a station is not large. A three-year moving window was 
used to increase sample size and remove the effects of episodic weather 
events. Near continuous measurements using sensor systems would in-
crease the number of annual measurements (and hence temporal vari-
ability). Segment information requires sampling over space and is also 
possibly limited. Also, while the sampling program for the bay is well- 
supported and effective, it is based on fixed locations rather than 
random locations and hence is oriented towards trend assessments 
rather than status (compliance) assessment. Despite possible limitations, 
the barometer should give researchers a different view of water quality 
that may be used to help understand, quantify and explain estuarine 

habitat dynamics, and identify important relationships between water 
quality and the health of bay aquatic living resources. 
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Appendix A. Details for magn function of the MAG indicator 
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Fig. 13. WQB at CB level with bootstrapped 95% Confidence interval for all uses (DU3, OW, DW and DC).  
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i ¼ 1,2,…., Mseg, 

Mseg is the number of DUs applicable for the segment. 

RdevB
i =

x
DUi ,B
rw,st − Li

Li
= devi

Li
, measures the average bad-deviation from DUi lower standards for a particular site/station during a specific window rw, 

xDUi ,B
rw,st =

∑n
DUi ,B
rw,st

1 xDUi ,B
yr,mo,st

nDUi ,B
rw,st

, is the window average of bad measurements with respect to DUi for a particular station or spatial unit, 

xDUi ,B
yr,mo,st =

∑n
DUi ,B
st,yr,mo

1 xDUi ,B
yr,mo,st,la,dp

nDUi ,B
yr,mo,st

for xDUi
yr,mo,st,la,dp < Li, is the monthly average1 of bad measurements with respect to DUi for a particular station in a 

specific year, 

RdevG
i =

x
DUi ,G
rw,st − Li

Li
= devi

Li
, measures the window average good-deviation from DUi lower criterion for a particular site during a specific window rw, 

xDUi ,G
rw,st =

∑n
DUi ,G
rw,st

1 xDUi ,G
yr,mo,st

nDUi ,G
rw,st

, is the average of good measurements with respect to DUi for a particular station or spatial unit, 

xDUi ,G
yr,mo,st =

∑
la,dp

xDUi
yr,mo,st,la,dp

nDUi ,G
yr,mo,st

for xDUi
yr,mo,st,la,dp ≥ Li, is the monthly average of good measurements with respect to DUi for a particular station in a specific 

year, 
Li = (lower) numerical criteria for DUi, 
B: bad, and G: good, 
nDUi ,B

yr,mo,st = number of observations in month mo of year yr satisfying xDUi
yr,mo,st,la,dp < Li (i.e., the number of the station’s bad observations in a specific 

month and year) associated with DUi, 
nDUi ,B

rw,st = number of bad observations in a particular station during the specific rolling window, 
nDUi ,G

yr,mo,st = number of observations in month mo of year yr satisfying xDUi
yr,mo,st,la,dp ≥ Li (i.e., the number of station’ good observations in a specific 

month and year) associated with DUi, 
nDUi ,G

rw,st = number of good observations in a particular station during the specific rolling window. 
In case of upper numerical criteria (Ui), the relative deviations are defined as following: 

RdevG
i =

Ui − xDUi ,G
rw,st

Ui
=

devi

Ui
,

xDUi ,G
rw,st =

∑nDUi ,G
rw,st

1 xDUi ,G
yr,mo,st

nDUi ,G
rw,st

,

xDUi ,G
yr,mo,st =

∑nDUi ,G
st,yr,mo

la,dp xDUi
yr,mo,st,la,dp

nDUi ,G
yr,mo,st

for xDUi
yr,mo,st,la,dp ≤ Ui  

RdevB
i =

Ui − xDUi ,B
rw,st

Ui
=

devi

Ui
,

xDUi ,B
rw,st =

∑n
DUi ,B
rw,st

1 xDUi ,B
yr,mo,st

nDUi ,B
rw,st

, and. 

xDUi ,B
yr,mo,st =

∑nDUi ,B
st,yr,mo

la,dp xDUi ,B
yr,mo,st,la,dp

nDUi ,B
yr,mo,st

for xDUi
yr,mo,st,la,dp > Ui 

Scaling the deviation, devi, by the respective criterion makes it scale free and unifies the measuring unit across all DUs standards. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecolind.2022.109022. 
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