
Chapter 3 :   Estimation of Variance

3.A Introduction

A foundational assumption of classical regression is that the model errors have constant
variance. If this assumption is violated, the data are said to be heteroscedastic and the regression
analysis must be adjusted accordingly.  In many data sets, heteroscedasticity is present simply due
to the underlying distribution of the random errors. For example, in dose /  response  data, the
response is a Bernoulli random variable :

y  =  
1    if subject    responds         

    0     if subject    does not respondi
i

i




           (3.A.1)

A typical model for the process mean in such settings would then be the logistic model :

E ( y  ) =  p  =  
1

1 +  e-  (  +    log ( dose  ) )o 1
i i

iβ β            (3.A.2)

where dosei is the dose given to the ith subject.  It follows then, from the definition of a Bernoulli

random variable, that Var ( y  ) =   =  p  ( 1 -  p  ).2
i i i iσ  Thus, the variance of yi changes with the

regressors as a function of the mean.  With the exception of normal random variables, this
“natural heteroscedasticity” is present for all random variables with probability density functions
that are members of the exponential family.  Since the variance depends on the regressors solely
through the mean, variance estimation occurs simultaneously with the estimate of the mean.  For
purposes of this research, we will not concern ourselves with this type of variability but will
instead investigate variance which occurs above and beyond the natural variance.  This type of
variability is often termed overdispersion.

In this research we assume that the random errors follow a normal distribution. In the case

of normal errors, the natural variance is taken to be one with constant overdispersion, σ2 .  In this
research, when we speak of heteroscedasticity, we are referring to variance which is present due
to some phenomenon in our process and not variance which is naturally present due to the
assumed error distribution.

Transformations

 A popular method of accounting for non-constant variance is to transform the data in such
a way as to stabilize the variances.  The analysis is then conducted in the usual sense but on the
set of transformed data.  For details concerning the use of  data transformations for variance
stabilization, see Atkinson (1985) and Myers (1990).  There are two general criticisms of data
transformations.  First, in many cases, no simple transformation exists which adequately stabilizes
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the variances.  Second, and perhaps more importantly, the use of data transformations sheds no
light on the behavior of  the variance as a function of relevant regressor variables.  This has
important implications in the area of quality control where the experimenter is interested in
knowing where process variability is high and which factors influence variance. Thus, when
heteroscedasticity is present, we not only want to account for its presence, but we would also like
to gain some insight regarding its structure.

Replication

When heteroscedasticity is not “swept away” using a data transformation, it is typically
accounted for in a “weighted” analysis where the “weights” are taken to be the reciprocals of the
individual variances.  In practice, however, the variances are rarely known and must be estimated.
A common suggestion is to estimate the variances based on replication, where the experimenter
takes m replicates at each data point and estimates the variances with the corresponding sample
variances. Notice that in computing n different sample variances, the researcher  has some feel for
where the variance is high or low but still has no sense of structure for process variability. The use
of replication for variance estimation is generally regarded as unsatisfactory for a variety of
reasons.  First, in many regression settings, the values of the regressor variables are often
observed and cannot be replicated.  Second, unless the number of replicates m is large ( )m  >  10 ,
the sample variances are quite unstable and their use as estimates for the weights causes more
problems than if heteroscedasticity were ignored all together (Williams,(1975)).  Furthermore,
work by Deaton, Reynolds and Myers (1983) suggests that, unless the heteroscedasticity is

severe, 
s

s  3max
min

>  ( where s  and smin max  are respectively the minimum and maximum

sample standard deviations ), an unweighted regression analysis is preferable to an estimated
weighted analysis.

Variance Modeling

An appealing alternative to replication is to assume that the heteroscedasticity is present
due to some underlying, smooth, variance function. Viewing the process variability in this manner
leads naturally to the concept of using regression techniques to estimate this function.  In
constructing a model for the variance, the building blocks are taken to be the residuals from an
unweighted fit to the means model.  The intuition proceeds as follows.  If we assume

y  =  ( ) +  i i ih x ε , then we know that y  -  ( ) =  i i ih x ε  and y  -  ( ) =   =  ei i i i
$h $x ε . Thus,

assuming the correct model ( h i( )x ) has been fit, any deviations from the fit ( $ iy ) and what is
observed ( yi ), are due to random error and not model misspecification. The random error is
estimated by ei and the variability in the e 'si  represents the variation in the process. Thus,
regression methods for variance estimation involve regressing some function of the residuals on
an “appropriate” variance function.  For example, one popular regression model involves
regressing the squared residuals on an exponential variance function :
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{ }e  =  exp  +  2 '
i iz θθ ηi             (3.A.3)

where zi is ( q x 1 ) and ηi  is the random error term.  In this model, the vector zi  is composed of
variables which influence the variance.  These variables are referred to as “variance regressors”
and may include all, some, or none of the variables which affect the process mean.

When we view the process variance in the same light as the process mean: a phenomenon
which changes smoothly and systematically as regressors are manipulated, the process is said to
be described in terms of a “dual model”.  Dual modeling is appealing due to the flexibility which is
afforded.  Specifically :

1.  Replication is not required to estimate the variances at the n data points.
2.  The researcher can study variables which affect the process mean as well as variables

which affect the process variance.  This flexibility is extremely useful in quality control
where it is important to have knowledge about variables which affect process variability.
For details concerning applications to quality control see Box and Meyer (1986), Nair
and Pregibon (1988) and Taguchi and Wu  (1980).

Written in its most general form, the dual model is given as follows :

( 1 ) Means Model y  =  (  ) +  ( )1/ 2
i i ih gx z ε i            (3.A.4)

where the εi  are the random errors,
h i(  )x is the process mean function,
and g i(  )z is the process variance function.

( 2 )  Variance Model σi
2  =  g i( )z                   (3.A.5)

In chapters 1 and 2 several approaches to regression function estimation were discussed within
the context of a single model.  That single model represented the process mean and was written
as:

y  =  ( X  X ,   ,  X  ) +  1 2i i i ki ih , L ε i n =  1,  2,  .  .  .  ,  .

If  h exists in a truly parametric form then parametric regression was described to be the method
of choice.  Conversely, if  h  has no (or very little) parametric structure, then a nonparametric
procedure such as local linear regression is often best.  This dilemma, regarding which approach
to implement, is also an issue in dual modeling.  The issue however, is perhaps more complex
within the setting of a dual model due to the fact that often, estimation of the models is
accomplished iteratively.  That is, the mean estimate is used to estimate the variance and the
variance is used to re-estimate the mean.  As a consequence of this interdependency, a poor mean
estimate will in turn cause a poor estimate of variance and vice versa.  Thus, procedural selection
for analysis of the dual model should not be taken lightly. The primary focus of this chapter is to
provide an overview of the common approaches to dual model estimation .
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3.B Dual Model Function Estimation

When describing the process of interest in terms of a dual model, there are four basic
scenarios to consider.  First, if the researcher is confident that the mean and variance functions
can be expressed parametrically, the dual model is analyzed from a purely parametric point of
view.  Secondly, on the opposite side of the coin, situations arise in which neither the mean or
variance functions take on a parametric form.  In this case, the dual model is analyzed from a
strictly nonparametric standpoint.  For processes in which one of the two functions, the mean or
variance, can be expressed parametrically but the other has no closed form, the dual model is
approached using both parametric and nonparametric techniques.  The remainder of this section
will be devoted to discussing approaches to dual modeling within each of these four contexts.

3.B.1 Parametric Dual Modeling

When the user assumes that the mean and variance functions can be expressed adequately
with parametric functions, the dual model can be written:

( 1 ) Means Model y  =  ( ;  ) +  ( ; )1/ 2
i i ih vx zββ θθ εi          (3.B.1.1)

( 2 )  Variance Model ( )T e  =  i v i( ; )z θθ +  ηi .                      (3.B.1.2)

Regarding the notation, ββ  is a (k + 1) vector of means model parameters, θθ  is a (l  + 1) vector of

variance model parameters, ( )T ei is an appropriate function of residuals from the means model

fit, ηi is the random error term in the variance model, and h i( ;  )x ββ denotes the parametric means

model function.  It is assumed that h i i( ;  ) =  'x xββ ββ  throughout this research.  The means model
fit is obtained by estimated weighted least squares and can be written in matrix notation as

$ $y X(ewls) (ewls)
 =  ββ          (3.B.1.3)

 ( )=  ' -1 -1 ' -1X X V X X V y$ $

            =  
(ewls)H y

where

( )H X X V X X V(ewls) ' -1 -1 ' -1 =  $ $ .          (3.B.1.4)
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Regarding notation, $ $ $ nV =  diag ,   ,  1
2 2σ σL  where $ iσ2 is estimated through the analysis of  the

model given in (3.B.1.2).  The ith means model residual is given by

e  =  y  -  y
(ewls) (ewls)
i i i$          (3.B.1.5)

and it is these residuals that serve as the building blocks for the estimation of process variance.
Before discussing the variance estimation procedure, it is important to consider the function

( )T e
(ewls)
i , which represents the ith response in the variance model regression.

( ) The Choice of  T ei

If one expects to obtain an accurate estimate of the variance through modeling, it is
pertinent that the right data be used to do the modeling.  In normal theory regression, the function
of the means model residuals that is generally agreed to yield an “appropriate” response for

variance modeling is ( )T e
(ewls)
i =  e

2 (ewls)
i .  The rationale is simple and proceeds as follows.  We

have, assuming the correct model has been fit to the mean, that

 e  ~  N 0 ,  ( 1 -  h )  +  h
(ewls) (ewls) 2 2 2 (ewls) 2

  

n
i ii i ij j

j i
σ σ

≠
∑









          (3.B.1.6)

where  h
(ewls)
ij  is the ( i, j ) element of H(ewls) .  Assuming that the h 's

(ewls)
ij  are small (see Cook

and Weisberg (1983) ), we have that

( ) ( )
e

1 -  h
 ~   

2(ewls)

(ewls)
2i

ii
i&2 1

2σ χ .           (3.B.1.7)

Thus, apart from leverage, we have  ( )E e  =  
2(ewls) 2
i i& σ  and thus ( )T e

(ewls)
i =  e

2 (ewls)
i  becomes

an obvious choice for the form of the function T.  It should be noted, however, that the use of
squared residuals as variance model responses sets the variance model up to be very susceptible to
outliers.  If an outlier exists in the data set, then this will show up as a large residual in the means
model fit and a large residual becomes even more “outlying” when it is squared.  This point was
first noted by Cohen et al. (1984).  Davidian and Carroll (1987) suggest the use of

( )T e
(ewls)
i =  e

(ewls)
i  as responses in the variance model when one suspects the presence of

outliers in the data.
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Estimation of  θθ

After choosing the appropriate data with which to estimate the variance, it becomes
necessary to estimate the parameter vector θθ  in the variance model:

( )e  =  ;  +  2
i iv z θθ ηi .          (3.B.1.8)

However, before θθ  can be estimated, it is important to specify the form of the regression function,

( )v iz ;θθ .  The function v can assume a wide variety of forms, the most popular of which are listed

below in Table 3.B.1.1 :

Table 3.B.1.1              Common Variance Functions
__________________________________________________

        Name v h i i ( ( ),   ,  )x z θθ
__________________________________________________

log - linear { }e  =  exp   
2 (ewls) '
i iz θθ

power-of-the-mean e  =   (  )
2 (ewls)

o
1

i ihθ θx

inverse e  =  1 
 

2 (ewls)
'i
iz θθ

expanded power-of-the-mean [ ]e  =   +  ( )2
o 1i ihθ θ

θ
x 2

___________________________________________________

Regarding notation, the variance function in the table heading is written as v h i i ( ( ),   ,   )x z θθ
where h i( )x is the function underlying the process mean.  Also, in the last three models

mentioned in Table 3.B.1.1, one could replace e  with log ( e  )
2 (ewls) 2 (ewls)
i i to insure a positive

valued variance estimate. The appropriate functional form of  v is generally decided upon based
on either prior experience or through construction of a scatter plot. The squared residuals are
plotted against the values of the variance regressors to determine v as a function of zi  and the

squared residuals are plotted against the predicted values ( the $ iy
 (ewls)2

) to determine v as a
function of the mean.

Once the form of the regression function has been decided upon, attention is focused on
the estimation of the parameters.  There are a number of methods that can be used to estimate θθ .
One method is the “maximum likelihood type” of an approach that utilizes the fact that

( )
e

 ~  
2 (ewls)

2 1
2i

i
&

σ
χ .  The terminology “maximum likelihood type” is used because the
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distribution of 
e

2 (ewls)

2
i

iσ
 is only approximately Chi-Square.  Using a variable transformation, it

is easy to show that the approximate distribution of the ith squared means model residual is given
by

( ) ( )f ln lni i i
i

i
e   exp - e  -   -  

e
2

2 (ewls) (ewls)
2 (ewls)

2≈











σ

σ
         (3.B.1.9)

and the log-likelihood of the squared means model residuals is approximately

( ) ( )lnL ln lnn i
i

n
i

i

n
i

ii

n
e ,   ,  e - e  -   -  

e
21

2 (ewls) 2 (ewls) (ewls)

=1 =1

2 (ewls)

2
=1

L ≈ ∑ ∑ ∑σ
σ

.   (3.B.1.10)

Assuming that σi
2  =  ( )v iz ;θθ , and differentiating the likelihood expression given in (3.B.1.10)

with respect to θθ ,  the following score equations result:

( )[ ] ( ) ( )
e  -  ; ;

;
 =  

2 (ewls)

=1
i i

i

n
i

iv v
v

z z
z

0θθ θθ
∂∂ θθ

∂θ∂θ∑ −2 ,        (3.B.1.11)

where 0 is a vector of zeros. It is interesting to note that these are the same score equations which
result from approaching the estimation of θθ  through weighted least squares :

             

( )( )
( )min   

e  -  ;

;
 

2 (ewls) 2

 = 1θθ

θθ

θθ
i i

ii

n v

v

z

z2∑ .        (3.B.1.12)

 Often, the score equations given in (3.B.1.11) are nonlinear in θθ , requiring a nonlinear algorithm
such as the Gauss-Newton procedure to determine a solution.

Another popular approach to variance estimation is the pseudo-likelihood procedure.  The
pseudo-likelihood estimates of θθ  are obtained by maximizing the normal log-likelihood, l( , )ββ θθ
with respect to θθ , where :

l( , )ββ θθ = -
2

 ln (2 ) -  ln ( ( ; ))  -  
1

2
 ( y  -   ) ( ; ) 

 =  1

'

 =  1

2n
v vi

i

n
i i

i

n
iππ θθ ββ θθz x z∑ ∑ −1     (3.B.1.13)

and ββ  is assumed to be known.  It is easy to show that when v does not depend on the mean, the
pseudo-likelihood estimate of θθ  is asymptotically equivalent to WLS and maximum likelihood
estimates ( based on squared residuals ) of θθ  ( Davidian and Carroll (1987) ).  Pseudo-likelihood
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is appealing because it provides a method of estimation in the dual model which is based on a
single objective function, l( , )ββ θθ .  This approach was studied by Aitkin (1987), who showed that,
when the variance does not depend on the mean, the values of  ββ  and θθ  which simultaneously
maximize (3.B.1.13) are asymptotically equivalent to individual WLS estimates of ββ  and θθ .
However, when the variance does depend on the mean, Jobson and Fuller (1980) suggested using
individual WLS techniques for ββ  and θθ .

The Parametric Generalized Least Squares (GLS) Algorithm

Estimation of parameters in the parametric dual model takes place within the context of a
generalized least squares (GLS) algorithm. The GLS algorithm is given as follows :

1.  Let ( )$ $ $ $ nV =  diag ,  ,   ,  1
2

2
2 2σ σ σL  where $ iσ2  =  1.

2.  Using estimated weighted least squares, obtain estimates of the parameters in the

means model : ( )$ $ $ββo
(ewls) ' -1 ' -1 =  X  V  X X  V

−1
y

3.  From the estimates found in step 2, form the squared residuals, given as :

( )e  =  y  -  y   where  y  =  .
2 (ewls) (ewls) (ewls) '

o
(ewls)

i i i i i$ $ $
2

x ββ

4.  Take the squared residuals from step 3 and use them as responses in a given variance

model : ( )e  =  ;  +  
2 (ewls)
i iv z θθ ηi

5.  From the regression model in step 4, obtain the estimates of the variance model
parameters, θθ , using an appropriate estimation technique.

6.  Return to step 2 with $ iσ2 .
7.  Cycle through steps 2-6 until convergence of the means model parameters, at which

time $ $ββ ββ(ewls) (wls)
 =  .

This algorithm is appealing for a couple of reasons.  First, it allows for simultaneous estimation of
the parameters in both the mean and variance models.  Second, the estimates obtained for the
parameters in ββ  are asymptotically equivalent to the estimates of  ββ  if the true variances were

known ( i.e. at convergence, $ $ββ ββ(wls) (gls)
 =  ).  It is important to note that the parametric dual

modeling procedure’s success hinges largely on the ability of the user to specify the correct mean
and variance functions.  Since the mean and variance are estimated simultaneously through the
generalized least squares algorithm, if either the mean or variance models are misspecified over
part of the data, parameter estimates and inferences on those estimates could be effected
drastically.
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3.B.2 Parametric Mean / Nonparametric Variance

In many situations, the researcher may be confident that the underlying structure of the
mean  can be described parametrically but the researcher may not know what kind of structure
exists for the variance function.  In this case the dual model is analyzed using both parametric and
nonparametric procedures.  This scenario was first considered by Carroll (1982) who assumed a
one-regressor, linear model for the mean.  The mean function is estimated parametrically through
estimated weighted least squares but the variance is estimated nonparametrically.  Since no
parametric form is specified for the variance, Carroll suggests fitting the squared residuals from
the means fit using kernel regression.  The dual model is then estimated using the following GLS
algorithm :

1.  Let ( )$ $ $ $ nV =  diag ,  ,   ,  1
2

2
2 2σ σ σL where $ iσ2  =  1.

2.  Using estimated weighted least squares, obtain estimates of the parameters in

the means model : ( )$ $ $ββ (ewls) ' -1 ' -1 =  X  V  X X  V
−1

y

3.  From the estimates found in step 2, form the squared residuals, given as:

( )e  =  y  -  y   where  y  =  .
2 (ewls) (ewls) (ewls) ' (ewls)
i i i i i$ $ $

2
x ββ

4.  Estimate the underlying variance function by finding a kernel fit to the squared

residuals, obtaining ( )$ $gi iσ2 (ker)
 =  z , where ( )$g iz  is the kernel fit at the ith

value of the variance regressor.
5.  Repeat Step 2, using the estimates from Step 4.

Carroll and Ruppert (1988) suggested that the algorithm be iterated until convergence is met for
the parameters in the means model.

The GLS algorithms presented in the previous two sections rely heavily on the assumption
that we have fit the correct model for the process mean.  If the means model specified is
insufficient, the residuals no longer contain information solely pertaining to process variance.
These residuals are now “contaminated with lack of fit” (an expression to be explained fully in
Chapter 4 ) and their use in variance modeling creates substantial bias problems when estimating
the variance function. This problem was studied by Gasser, Sroka and Jennen-Steimetz ( 1987)
who considered variance estimation in modeling human height growth from birth to adulthood.  It
is well known that parametric models are insufficient in this problem due to the presence of a
growth spurt around seven years of age.  This “spurt” causes a “wiggle” in the data that a
parametric models cannot capture.  The bias in the means fit produces biased residuals and
consequently, a biased estimate of variance.  Thus, Gasser, Sroka and Jennen-Steinmetz
motivated the need for an estimate of variance which does not require an estimate of the process
mean.  This idea leads us to the next two dual model settings.
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3.B.3 Nonparametric Dual Modeling

When the researcher is unable to express the mean or variance functions in a closed form,
the two functions must be estimated nonparametrically.  The nonparametric dual model is
expressed as

( ) ( )

( )

Means Model :          y  =   +   

Variance Model :       =  .2

i i
/

i i

i i

h g

g

x z

z

1 2 ε

σ
         (3.B.3.1)

The means model is generally estimated using one of the nonparametric techniques discussed in
Chapter 2.  Nonparametric variance estimation can be approached in a variety of ways.  As
mentioned in the last section, Gasser, Sroka and Jennen-Steinmetz proposed a method for
nonparametric variance estimation that is independent of the fit to the means model.

The method of Gasser, Sroka and Jennen-Steinmetz is based on the concept of  “pseudo-
residuals”, denoted as ~

ie .  Pseudo-residuals are obtained by taking continuous triples of design
points, x  x ,  and x , -  1  +  1i i i,  joining the outer two observations by a straight line and then
computing the difference between the straight line and the middle observation,            yi .  For
example, the pseudo-residual at xi  is given as :

~
i

i i

i i
i

i i

i i
i i

i i i i i

ε  =  
x  -  x

x  -  x
 Y  +  

x  -  x

x  -  x
 Y  -  Y

    =   a Y  +  b Y  -  Y .

+1

+1 -1
-1

-1

+1 -1
+1

-1 +1

         (3.B.3.2)

Variance estimation based on these ~
iε  is often referred to as a “difference-based” scheme since

the pseudo-residual is computed by taking the difference between the point yi and the straight line
connected by the two adjacent observations, y  and y-1 +1i i .  They state that

c   ,  where  c  =  a  +  b  +1 ,2 2 2 2 2
i i i i i

~ε is an asymptotically unbiased point estimate of σi
2 .

However, the variability of this point estimate is described as “untolerably” high and in order to
reduce the variability, they suggest smoothing the individual point estimates.

Muller and Stadtmuller (1987)&& && extend the ideas of Gasser, Sroka and Jennen-Steinmetz

and estimate the local variances by considering continuous neighborhoods of m points ( )m   3≥ .
Their difference-based scheme involves defining a set of weights

( )ω ω ω ω ω− −m m1 1 0 1,   ,   ,   ,   ,   ,  
2

L L , where m m m1 2 +   +  1 =  , for a given set of non-

negative integers m m1 2 and  satisfying : ω j
j m

m
 =  0    

 =  - 1

2
∑ and  ω j

j m

m
2

 =  -
 =  1.    

1

2
∑  Initial

local variance estimates, which are described as highly variable, are given as :
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$ i j i j
j m

m
σ ϖ2

+
=-

 =  Y
1

2
∑











2

.  To reduce the variability, these initial estimates are smoothed using

kernel regression.
Perhaps the most significant contribution of Muller and Stadtmuller&& &&  is their suggestion of

how to incorporate the variance estimates into the dual model.  We have already discussed in
Chapter 2 that when the process mean cannot be written in closed form, the typical estimation
procedure is local linear regression. In our discussion, the kernel weights used in local linear
regression were based on a global bandwidth ( i.e. the same bandwidth is used for all data points).
Muller and Stadtmuller&& &&  suggest that the local linear procedure can be improved by using a local
smoothing parameter which is constructed in such a way as to take into account the heterogeneity
of variance.  The idea is to smooth more (larger bandwidth) for regions of high variance and to
smooth less (smaller bandwidth) where the data is less variable.

Estimation of the nonparametric dual model can occur in the following two steps :

1.  Estimate σi
2  using a difference based method as proposed by Gasser, Sroka

and Jennen-Steinmetz or Muller and Stadtmuller&& && .

2.  Using $ iσ2  from Step 1, obtain the local linear fit for the mean, given as:

( )( ) ( )$ i i i i iy  =  
(llr) ' ' (llr) -1 ' (llr)x X W x X X W x y

                             where  ( )W x(llr)

1
(ker)

2
(ker)

(ker)

 =  i

i

i

in

h

h

h

0

0

O





















,

and h
b

b

ij

i j

i

i j

ij

n

(ker)

=1

 =  

K
x - x

K
x - x



















∑

 where bi is the bandwidth used for        data

point xi  and is a function of $ iσ2 .

It should be noted that the X matrix used in writing the local linear hat matrix is not the same X
matrix used in the parametric model since the ith row of X in the parametric model is given by

( )xi i i i
' 2 d=  1 x  x   xL , whereas the ith row of X in the nonparametric model is given by

( )xi i
' =  1 x .
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The use of local bandwidths as a means for accounting for variance heterogeneity in
nonparametric regression is a fairly new concept.  Although the use of local bandwidths in the
presence of heteroscedasticity has been shown to provide asymptotically superior results to local
linear estimates using a global bandwidth, small sample comparisons is an area that needs more
consideration.  For more discussion on the use of local bandwidths, see Fan and Gijbels (1992 and
1995) and Ruppert (1996).

A note worth mentioning is that the difference based variance estimates are also useful in
estimated weighted least squares when a parametric means model is proposed.  However, if the
parametric means model is valid, variance estimation done by regressing the squared residuals on
a set of variance regressors is the best route for estimation.  The reason is that purely
nonparametric estimates of variance, which ignore information about the mean ( i.e. difference
based methods ), are more biased and have larger variance than their parametric counterparts.
However, when the means model is misspecified, the difference-based methods of variance
estimation are more appealing.

One other approach to the nonparametric dual model was considered by Hall and Carroll
(1988).  Hall and Carroll fall back on the traditional means of variance estimation in which
estimation occurs once the location effect is removed.  They propose to estimate the variance
function by smoothing the squared residuals from the nonparametric fit.  Thus, their approach to
dual model estimation can be summarized in the following three steps :

1.  Using local linear regression, estimate the process mean function as: 
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3.  Obtain $σ i
2  by performing a local linear fit to the squared residuals from Step 2

: $ iσ2  =



29

( )( ) ( )z Z W z Z Z W z ei i i
' ' (llr ) -1 ' (llr ) 2(llr)e e  ,  where           

( )W z(llr )

1
(ker )

2
(ker )

(ker )

e

e

e

e

 =  i

i

i

in

h

h

h

0

0

O





















 is the 

ith row of the Kernel Hat matrix used for fitting the n squared

residuals, given in vector notation as  e2 (llr)

1
2 (llr)

2
2 (llr)

2 (llr)

 =  

e

e

e

M

n





















, and

h
b

b

ij

i j

i j

j

n

(ker ) e

e=1

e  =  

K
z - z

K
z - z

.



















∑

It is interesting to note that Hall and Carroll, unlike Muller and Stadtmuller&& && , do not suggest using
the variance estimates to obtain local bandwidths for re-estimation of the process mean.

3.B.4 Nonparametric Mean / Parametric Variance

The only dual model scenario that has not been discussed is the situation in which the
researcher has no inclination about the structure of the mean but is confident in a parametric
structure for the variance.  Little, if any, literature discusses this type of situation.  Traditionally,
variance estimation occurs after the location effect has been removed and thus, if the researcher is
not confident in a parametric model for the mean, it is doubtful that confidence will be expressed
in a parametric form for the variance.  If this scenario were to arise in practice, the logical method
for estimation would involve a nonparametric estimate of the mean, such as local linear
regression, and then the squared local linear residuals would be regressed in the specified variance
model.  Conceivably, the variance estimates could then be taken back to re-estimate the process
mean, using local bandwidths as suggested by Muller and Stadtmuller (1987).&& &&

3.C Which Dual Modeling Method Is Best ?

In this chapter, we have presented four general approaches to estimating the mean and
variance functions of a dual model.  When the user knows the parametric forms of the underlying
mean function, h , and variance function, g , a purely parametric procedure should be used. If the
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user is only confident in the parametric form of one of the dual model functions, the dual model
should be approached as discussed in Sections 3.C.2 and 3.C.4.  When the researcher has no
inclination regarding the underlying structures of either the mean or variance functions, a strictly
nonparametric approach, such as the ones discussed in Section 3.C.3, should be employed.
Selecting a procedure for function estimation in the dual model only becomes a dilemma when the
researcher has some ideal about the parametric form(s) of  h  and/or g , but the form(s) are not
adequate across the entire span of the data.

This research will consider the case in which the user specifies parametric forms for both
the mean and variance but these forms are only appropriate for part of the data.  If the specified
parametric forms for  h  and g are appropriate across the entire data set, the GLS algorithm
provided in Section 3.C.1 yields optimal (UMVU) parameter estimates.  However, this
algorithm’s success hinges on the assumption that  h  and g are valid across the entire range of the
data.  For instance, if the means model is insufficient for portions of the data ( i.e. bias problems ),
the squared residuals used for variance estimation no longer contain information solely pertaining
to the process variance.  The squared residuals are now contaminated with “lack of fit” and the
bias in the means fit directly translates to a biased variance estimate.  If the variance model is
inappropriate, the wrong weights will be used in the weighted least squares analysis of the means
model.  These two scenarios lead to the consideration of nonparametric procedures.  Specifically,
if the means model is inappropriate, a nonparametric means fit would be able to capture the
deviations in the data.  However, the nonparametric fit to the mean is often too variable and fits
the data to closely, consequently the means model residuals are often too meager to contain
enough information for an accurate estimate of variance.  A nonparametric approach to variance
estimation in which the location effect is totally disregarded ( i.e. difference based estimates of
variance ), generally results in a fit which is more biased and more variable than what is necessary.

The proposed research confronts this dilemma by offering a “middle-ground” alternative.
A model robust GLS algorithm is developed which combines parametric and nonparametric
procedures for estimation of the mean and variance. These semi-parametric methods of mean and
variance estimation are designed to utilize any parametric information the user provides about the
process models and to detect deviations from these models.  The dual model robust procedure is
described in detail in the next two chapters.


