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Methodology Development for Improving the Performance of Criti-
cal Classification Applications

Sharmin Afrose

(ABSTRACT)

People interact with different critical applications in day-to-day life. Some examples of crit-
ical applications include computer programs, anonymous vehicles, digital healthcare, smart
homes, etc. There are inherent risks in these critical applications if they fail to perform
properly. In my dissertation, we mainly focus on developing methodologies for performance
improvement for software security and healthcare prognosis. Cryptographic vulnerability
tools are used to detect misuses of Java cryptographic APIs and thus classify secure and
insecure parts of code. These detection tools are critical applications as misuse of crypto-
graphic libraries and APIs causes devastating security and privacy implications. We develop
two benchmarks that help developers to identify secure and insecure code usage as well as
improve their tools. We also perform a comparative analysis of four static analysis tools.
The developed benchmarks enable the first scientific comparison of the accuracy and scala-
bility of cryptographic API misuse detection. Many published detection tools (CryptoGuard,
CrySL, Oracle Parfait) have used our benchmarks to improve their performance in terms
of the detection capability of insecure cases. We also examine the need for performance
improvement for healthcare applications. Numerous prediction applications are developed
to predict patients’ health conditions. These are critical applications where misdiagnosis can
cause serious harm to patients, even death. Due to the imbalanced nature of many clinical
datasets, our work provides empirical evidence showing various prediction deficiencies in a

typical machine learning model. We observe that missed death cases are 3.14 times higher



than missed survival cases for mortality prediction. Also, existing sampling methods and
other techniques are not well-equipped to achieve good performance. We design a double
prioritized (DP) technique to mitigate representational bias or disparities across race and
age groups. we show DP consistently boosts the minority class recall for underrepresented
groups, by up to 38.0%. Our DP method also shows better performance than the existing
methods in terms of reducing relative disparity by up to 88% in terms of minority class re-
call. Incorrect classification in these critical applications can have significant ramifications.
Therefore, it is imperative to improve the performance of critical applications to alleviate

risk and harm to people.



Methodology Development for Improving the Performance of Criti-
cal Classification Applications

Sharmin Afrose

(GENERAL AUDIENCE ABSTRACT)

We interact with many software using our devices in our everyday life. Examples of software
usage include calling transport using Lyft or Uber, doing online shopping using eBay, using
social media via Twitter, check payment status from credit card accounts or bank accounts.
Many of these software use cryptography to secure our personal and financial information.
However, the inappropriate or improper use of cryptography can let the malicious party gain
sensitive information. To capture the inappropriate usage of cryptographic functions, there
are several detection tools are developed. However, to compare the coverage of the tools,
and the depth of detection of these tools, suitable benchmarks are needed. To bridge this
gap, we aim to build two cryptographic benchmarks that are currently used by many tool
developers to improve their performance and compare their tools with the existing tools. In
another aspect, people see physicians and are admitted to hospitals if needed. Physicians
also use different software that assists them in caring the patients. Among this software,
many of them are built using machine learning algorithms to predict patients’ conditions.
The historical medical information or clinical dataset is taken as input to the prediction
models. Clinical datasets contain information about patients of different races and ages.
The number of samples in some groups of patients may be larger than in other groups.
For example, many clinical datasets contain more white patients (i.e., majority group) than
Black patients (i.e., minority group). Prediction models built on these imbalanced clinical

data may provide inaccurate predictions for minority patients. Our work aims to improve



the prediction accuracy for minority patients in important medical applications, such as esti-
mating the likelihood of a patient dying in an emergency room visit or surviving cancer. We
design a new technique that builds customized prediction models for different demographic
groups. Our results reveal that subpopulation-specific models show better performance for
minority groups. Our work contributes to improving the medical care of minority patients
in the age of digital health. Overall, our aim is to improve the performance of critical ap-
plications to help people by decreasing risk. Our developed methods can be applicable to

other critical application domains.
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Chapter 1

Introduction

In this chapter, we define the research problems, describe our contributions, and specify the

dissertation organization.

1.1 Problem Definition

Critical applications are applications that require special attention due to their risk and
magnitude of harm for people if they fail to perform properly [10]. Examples of some critical
applications are anonymous vehicles, healthcare prediction applications, computer programs,
and application smart homes devices. Buggy computer programs can lead to data breaches
as well as data leakage of sensitive information [26, 27, 28, 130]. Erroneous features of
autonomous cars could lead to severe car crashes that can threaten human lives [90, 126].
Misdiagnosis using digital healthcare applications can lead to the death of patients [13, 66,
85, 138]. Hackers can gain unauthorized access to smart devices which can cause privacy
and security issues [34, 52, 129]. In our dissertation, we mainly focus on software security

and healthcare prognosis applications.

For applications in software security, usage of insecure applications can cause sensitive data
leakage yielding privacy and security implications. Many software (Lyft, Airbnb, eBay,
American Express, Dropbox, Twitter, etc.) incorporates Java cryptographic APIs [2]. Of-

tentimes, cryptographic API misuses are introduced in programs due to complex API de-
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signs [35, 111], the lack of cybersecurity training [104], insecure code generation tools [115]
and insecure/misleading suggestions in Stack Overflow [36, 104]. These misuses attributes
to many cyber attacks. To detect cryptographic API misuses, several cryptographic vulner-
ability detection tools are developed [30, 95, 122|. However, a lack of suitable benchmarks

hinders scientific performance evaluation of cryptographic API misuses detection.

To address the aforementioned concerns, we first focus on detecting cryptographic vulner-
abilities that are often misused by developers. First, we identify 18 Java cryptographic
categories. Based on these cryptographic categories, we developed two benchmarks that
facilitate first scientific accuracy and scalability comparison of cryptographic API misuses
detection. These benchmarks contain unit test cases as well as real-world large codes with
interesting program properties. The main challenge of these benchmarks is to include every
possible interesting case. We obtain suggestions from reviewers as well as our benchmark
users and update the benchmark at regular intervals. Our benchmark is currently actively

used for improvement and comparison in Oracle bug checker Parfait, CryptoGuard, and

CrySL.

Healthcare prognosis is another critical application where misdiagnosis can cost lives. Many
hospitals [17, 18] use predictive analytics for monitoring patients’ health status and prevent-
ing emergencies. Clinical datasets are intrinsically imbalanced due to the naturally occurring
frequencies of data [89]. Data imbalance is a major cause of biased prediction results that
may cause serious consequences for some patients [114, 119, 142]. To remove bias, sev-
eral sampling techniques exist [65, 83, 91, 103]. However, they are not designed to address

demographic subgroup biases, as they sample the entire minority class.

The second part of our dissertation focuses on reducing subpopulation-specific bias in health-
care prognosis. We first focus on analyzing clinical predictions from large medical datasets to

show multiple types of disparities, including the metric disparity, and performance disparity
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among racial, and age groups. We also present a new technique, double prioritized (DP) bias
correction that focuses on improving the prediction accuracy of specific demographic groups
through sample enrichment. To show the effectiveness of DP, we systematically compare DP
with other existing sampling techniques. The work is to aware researchers to be conscious

of minority subpopulations and lessen life-threatening prediction mistakes.

1.2 Contributions

My dissertation work aims to measure two critical systems, point out the limitations and
propose possible solution directions. To achieve this goal, our completed made contributions
from two critical aspects. 1) the real-world cryptographic benchmarks generation to point
out the limitations of current vulnerability detection tools, 2) bias in subpopulation-specific
machine learning prognosis for underrepresented patients. The shared challenges of the

research works are as follows.

o Interpretation of the output results from critical systems is a challenging task. The
vulnerability detection reports generated from different existing detection tools are in
various formats. Therefore, we had to manually check every single error in every report
to understand whether an error is accurately captured or not. The machine learning
prediction model’s outcome is also challenging to interpret when an exceptional out-
come arises. To solve this, we compute feature importance and other extensive analysis

to interpret a specific outcome.

e Choosing the correct performance metric is another challenging task. We mainly focus
on the rare event of interest (e.g., insecure API usage in code, death event of a patient

in ICU). We compute rare event recall and precision as performance metrics for both
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critical applications. For healthcare disparity research work, we also focus on sev-
eral other metrics, e.g., MCC (Matthew’s correlation coefficient), F1 score, balanced
accuracy, and precision-recall curve value, to more clearly understand the impact of

prediction outcomes.

« To execute the existing works, we need to create the required environment (e.g., spe-
cific library versions). For codes in Python, we built a separate environment using
Anaconda. If any library is not supported any longer, we fix the code to make it

compatible with the existing library version.

o The MIMIC dataset is huge data containing over forty thousand patients’ information.
To run the prediction model using the MIMIC dataset, we used the CS Research GPU
cluster as we needed more RAM to run the code. Still, the training time is very long.
On average, the training time is around 10 minutes for each epoch to run the original

model of the mortality prediction task.

o For the MIMIC dataset, our model input is time-series clinical data which is 3D data
of a large number of patients. Therefore, it is challenging to use this dataset for several

existing bias correction techniques.

Next, we will discuss our overall contribution. To assist the vulnerability detection tool

developers, our contributions include:

o We provide a benchmark named CryptoAPI-Bench, which consists of 181 test cases
covering 18 types of Cryptographic and SSL/TLS API misuse vulnerabilities. CryptoAPI-
Bench utilized various interesting program properties (e.g., field-, context-, and path
sensitivity) to produce a diverse set of test cases. Our benchmark is open-sourced and

can be found on GitHub [37].
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« We provide another benchmark named ApacheCryptoAPI-Bench for checking the scal-
ability property of the cryptographic vulnerability detection tools. We document 121
test cases covering 12 types of Cryptographic and SSL/TLS API misuse vulnerabilities
from 10 real-world Apache projects. Detailed information regarding ApacheCryptoAPI-
Bench can be found on GitHub [38].

o We evaluate four static analysis tools that are capable of detecting cryptographic mis-
use vulnerabilities. Our experimental evaluation revealed some interesting insights.
For complex cases, specialized tools (e.g., CryptoGuard, CrySL) detect more crypto-
graphic misuses and cover more rules than general-purpose tools (e.g., SpotBugs, Tool

A). Currently, none of these tools supports path-sensitive analysis.

To evaluate disparity and reduce bias in subpopulation-specific machine learning prognosis

for underrepresented patients, our contribution includes:

o We provide empirical evidence showing severe racial and age prediction disparities
using two large medical datasets (MIMIC III and SEER) and the deceptive nature of

common conventional metrics such as overall accuracy and AUC-ROC.

o We evaluate the bias-correction ability of sampling methods (Gamma, ADASYN,
SMOTE, replicated oversampling, Nearmiss-1, Nearmiss-3, Distant, random oversam-
pling, stratified sampling, and sampling using a generative neural network), model

reweighting method, model objective constraint method (Seldonian algorithm).

« We propose a new double prioritized (DP) bias correction technique and an equivalent
prioritized reweighting technique for reducing disparity and increasing fairness among

demographic population groups.
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We discuss our developed methodology, analysis techniques, and insights in detail in the
following chapters. Our developed methodologies can be applied to other critical application

domains.

1.3 Dissertation Organization

The structure of this dissertation is as follows. Chapter 2 is the literature review about
the related studies. Chapter 3 introduces scientific comparisons of the accuracy and scala-
bility of cryptographic API misuse detection using two benchmarks. Chapter 4 focuses on
empirical evidence of severe racial and age prediction bias in healthcare prognosis and the
bias-correction ability of proposed double prioritized (DP) sampling methods compared to
other state-of-the-art sampling methods. Chapter 5 concludes the dissertation and discusses

future works.



Chapter 2

Review of Literature

In this chapter, we discuss existing literature on cryptographic vulnerability detection bench-

marks and machine learning prediction bias.

2.1 Cryptographic Vulnerability Detection Benchmarks

AndroZoo++ [99] is a collection of over eight million Android apps [8] that drives a lot of
security, software engineering, and malware analysis research. However, vulnerabilities in
these apps are not documented, hence not suitable for vulnerability detection benchmarking

purposes.

DroidBench [46], a benchmark containing vulnerable android apps, fills the gap by provid-
ing specific vulnerability locations within the benchmark. To date, DroidBench is one of
the most popular benchmarks to evaluate the performance of vulnerability detection tools
in Android literature. In total, DroidBench has 119 APKs from 13 categories (Commit id
0fe281b). Categories include vulnerabilities that use field and object sensitivity, inter-app
communication, inter-component communication, android life-cycle, reflection, etc. How-
ever, DroidBench i) does not cover cryptographic misuse vulnerabilities and i) does not
have source code. To the best of our knowledge, Ghera [107] is the only Android app bench-
mark that contains app source code. Like DroidBench, most of the vulnerabilities in Ghera

are specific to Android apps and barely contain any cryptographic misuse vulnerabilities.

7
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To be specific, CryptoAPI-Bench and Ghera have only 2 types of vulnerabilities in common.

OWASP benchmark [64] is fundamentally designed to capture eleven cybersecurity vulner-
abilities. However, among the detected vulnerabilities, it builds to address only three Java
cryptographic vulnerabilities, i.e., weak encryption algorithms, weak hash algorithms, and a
weak random number. SonarSource [29] released a set of vulnerability samples that can be
useful to check for coverage of vulnerability categories. A verification tool for five common
audit controls is proposed for ensuring continuous compliance [92]. MASC framework [44]
is designed to evaluate static analysis tools using mutation testing. However, it considers

limited complex cases.

The DaCapo benchmarks [59] are designed to evaluate the performance of various compo-
nents of Java virtual machine (JVM), Garbage collection (GC), Just-in-time (JIT) compiler
itself. BugBench [100] is a benchmark to find C/C++ bugs that contain 17 real-world ap-
plications. BugBench mostly covers various memory, concurrency, and semantic bugs. To
detect bugs in the multi-threaded Java programs, a benchmark and framework have been
proposed [74, 82]. Coding practice and recommendations are provided for 28 enterprise ap-
plications that use Spring security framework [86]. ManyBugs and IntroClass benchmarks
are designed to evaluate various C/C++ code repair techniques [97]. Most of the defects in
ManyBugs and IntroClass do not impact security, e.g., in the ManyBugs benchmark, more

than half of the instances impact correctness, not necessary security.

2.2 Bias in Machine Learning

A widely used bias-correction approach to the data imbalance problem is sampling. Over-
sampling, e.g., replicated oversampling (ROS), is to balance a dataset by adding samples of

the minority class; undersampling, e.g., random undersampling (RUS), is to balance a dataset
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by removing samples of the majority class [137]. An improvement is the K-nearest neigh-
bor (K-NN) classifier—based undersampling technique [103] (e.g., NearMissl, NearMiss2,
NearMiss3, Distant) that selects samples from the majority class based on distance from
minority class samples. State-of-the-art solutions are all oversampling methods, including
Synthetic Minority Over-sampling Technique (SMOTE) [65], Adaptive Synthetic Sampling
(ADASYN) [83], and Gamma [91]. All three methods generate new minority points based on
existing minority samples, namely using linear interpolation [65], gamma distribution [91], or
at the class border [83]. However, existing sampling techniques are not designed to address
subgroup biases, as they sample the entire minority class. These methods do not differen-
tiate demographic subgroups (e.g., Black patients or young patients under 30). Thus, it is

unclear how well existing sampling solutions reduce accuracy disparity.

Besides sampling, reweighting is another existing method for mitigating the data imbalance
and correcting the prediction bias. Existing studies showed that sampling performance is
more effective than reweighing from both theoretical and experimental perspectives for neural

networks [45, 128].

Ribeiro et al. [124] evaluate the consistency of the question-answer model built on natural
language processing. They generate implications and ask questions differently in order to
see whether the model can answer the implicated question. Ribeiro et al. [125] propose
behavioral testing of the NLP models using different templates. They used different words

using the template and see whether the prediction changes from the expected prediction.

Several works are done on fairness testing [42, 78] where changing sensitive attribute (e.g.,
gender, age, race) information should not change the outcome. These approaches can be
more applicable to specific prediction tasks such as hiring decisions [60], loan approval [109]
prediction, etc. However, in the medical field, sensitive attributes are important in decision-

making.



Chapter 3

Cryptographic API Benchmarks

In this chapter, we specify our developed cryptographic API benchmarks that facilitate

scientific in-depth comparisons among existing tools.

3.1 Introduction

Various studies have shown that a vast majority of Java and Android applications mis-
use cryptographic libraries and APIs, causing devastating security and privacy implications.
The most pervasive cryptographic misuses include exposed secrets (e.g., secret keys and pass-
words), predictable random numbers; use of insecure crypto primitives, vulnerable certificate

verification [73, 75, 79, 104, 121, 122].

Several studies showed that the prominent causes for cryptographic misuses are the deficiency
in understanding of security API usage [35, 104], complex API designs [35, 111], the lack
of cybersecurity training [104], insecure code generation tools [115] and insecure/misleading
suggestions in Stack Overflow [36, 104]. The reality is that most developers, with tight
project deadlines and short product turnaround time, spend little effort on improving their
knowledge or hardening their code for long-term benefits [49]. Recognizing these practical
barriers, automatic cryptographic code generation [96], and misuse detection tools [122] play

a significant role in assisting developers with writing and maintaining secure code.

10
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The security community has produced several impressive static (e.g., CryptoLint [73], CrySL [95],
FixDroid [113], MalloDroid [75], CryptoGuard [122]) and dynamic code screening tools (e.g.,
Crylogger [118], SMV-Hunter [131], and AndroSSL [76]) to detect API misuses in Java. The
static analysis does not require a program to execute, rather it is performed on a version of
the code (e.g., source code, intermediate representations or binary). Many abstract security
rules are reducible to concrete program properties that are enforceable via generic static
analysis techniques [47, 122]. Consequently, static analysis tools have the potential to cover
a wide range of security rules. In contrast, dynamic analysis tools require one to execute
a program and spend a significant effort to trigger and detect specific misuse symptoms at
runtime. Hence, dynamic analysis tools may be limited in their coverage. A code screening
tool needs to be scalable with wide coverage. Thus, static analysis-based tools are usually

more favorable than their dynamic counterparts.

However, a major weakness of static analysis tools is their tendency to produce false alerts.
False alerts substantially diminish the value of a tool. To reduce the number of false positives,
most of the static analysis tools offer a trade-off between completeness and scalability [101].
We define completeness as the ability to detect all the misuse instances and scalability as the
ability to induce low computational overhead to analyze large code bases. Designing tools
that would produce fewer false positives and false negatives with smaller computational

overhead help real-world deployment.

To advance and monitor the scientific progress of domains to produce effective tools, a
mechanism for comparative studies is required. Unfortunately, for the automatic detection of
cryptographic API misuses, no suitable mechanism or benchmark exists. Such a benchmark
needs to have several requirements: i) it should cover a wide range of misuse instances. i)
it should cover interesting program properties (e.g., flow-, context-, field-, path-sensitivity,

etc.) [132, 139]. These are different detection capabilities required for capturing certain
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vulnerabilities. #77) Test cases should be written in easily compilable source codes so that

both source code and binary code analysis tools can be easily evaluated.

None of the existing benchmarks follows these criteria (e.g., DroidBench [46], Ghera [107]).
For example, DroidBench [46] only contains binaries. Ghera [107] has sources of provided
Android apps. However, both DroidBench and Ghera barely cover cryptographic API mis-

uses.

We present two benchmarks for cryptographic API misuses. The first one is CryptoAPI-
Bench, a comprehensive benchmark for comparing the quality of cryptographic vulnerability
detection tools. It consists of 181 unit test cases covering 18 types of cryptographic misuses.
Several test cases include interesting program properties [132, 139]. Flow-sensitive correctly
computes and analyzes the order of statements in a program. Path-sensitivity analysis com-
putes different dataflow analysis information dependent on conditional branch statements.
The field-sensitive analysis distinguishes two fields containing the same object in a class.
A context-sensitive analysis is any interprocedural analysis that analyzes the target of a

function call.

The second one is ApacheCryptoAPI-Bench which is built upon 10 real-world Apache projects.
It contains early versions of activemg-artemis, deltaspike, directory-server, manifoldcf, meecr-
owave, spark, tika, tomee, wicket projects. We identify 121 crypto cases in them, including

82 basic cases and 39 advanced cases.

We run CryptoAPI-Bench and ApacheCryptoAPI-Bench on four static analysis tools (i.e.,
SpotBugs [30], CryptoGuard, CrySL, and Tool A (anonymous) and perform a comparative
analysis of these tools. These tools are i) capable of detecting cryptographic misuse vulnera-
bilities and i) open-sourced and/or provide free evaluation license. CrySL and CryptoGuard

have open-sourced research prototypes that are actively being maintained to improve their
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accuracy and coverage. SpotBugs is also an actively maintained open-source project, which
is the successor of FindBugs. Tool A is one of the most popular static analysis platforms for

decades.

Our main technical contributions are summarized as follows.

o We provide a benchmark named CryptoAPI-Bench, which consists of 181 test cases
covering 18 types of Cryptographic and SSL/TLS API misuse vulnerabilities. CryptoAPI-
Bench utilized various interesting program properties (e.g., field-, context-, and path
sensitivity) to produce a diverse set of test cases. Our benchmark is open-sourced and

can be found on GitHub [37].

o We provide another benchmark named ApacheCryptoAPI-Bench for checking the scal-
ability property of the cryptographic vulnerability detection tools. We document 121
test cases covering 12 types of Cryptographic and SSL/TLS API misuse vulnerabilities
from 10 real-world Apache projects. Detailed information regarding ApacheCryptoAPI-
Bench can be found on GitHub [38].

o We evaluate four static analysis tools that are capable of detecting cryptographic mis-
use vulnerabilities. Our experimental evaluation revealed some interesting insights.
For complex cases, specialized tools (e.g., CryptoGuard, CrySL) detect more crypto-
graphic misuses and cover more rules than general-purpose tools (e.g., SpotBugs, Tool

A). Currently, none of these tools supports path-sensitive analysis.

3.2 Background

In this section, we describe Java cryptographic API misuses that are often misused by de-

velopers and existing static vulnerability detection tools.
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3.2.1 Java Cryptographic API Misuses

We consider 18 Java cryptographic API misuse categories for our benchmarks. We got
the insights of these misuse categories from previous literature [95, 113, 122], NIST docu-
ments [19, 53, 54], and other blogs [29]. We describe reasons for vulnerability and possible

secure solutions for these misuse categories.

1) Cryptographic Keys: For encryption, it is expected to use an unpredictable key using
javax.crypto.spec.SecretKeySpec API that takes a byte array as input. If the Byte array
is constant or hardcoded inside the code, the adversary can easily read the cryptographic
key and may obtain sensitive information. Therefore, an unpredictable byte array should be

used as a parameter in SecretKeySpec to generate a secure key.

2) Passwords in Password-based Encryption: Password-based Encryption (PBE) is a
popular technique of generating a strong secret key using javax.crypto.spec.PBEKeySpec
API. It takes three parameters (i.e., password, salt, and iteration count). However, if a
hardcoded or constant password is used in the code, then malicious attackers may obtain
the password and predict the key [73]. Therefore, an unpredictable password should be used

as a parameter in PBEKeySpec.

3) Passwords in KeyStore: Cryptographic keys and certificates are sometimes stored
using java.security.KeyStore API. The KeyStore employs a password to get access to
the stored keys and certificates. However, if a hardcoded or constant password is used for
KeyStore in the code, it poses a security threat of revealing keys and certificates stored in

the KeyStore. Therefore, an unpredictable random password should be used in KeyStore.

4) Credentials in String: Credentials (passwords, secret keys, etc) should not be stored

in the String variable. In Java, String is a final and immutable class stored in the heap. More
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specifically, it exists in the memory until garbage collection. Therefore, sensitive information
should not be stored in String[25, 31]. Compared with String, it is highly recommended to
use mutable data structures (e.g., byte or char array) for sensitive information and clear it

immediately after use. This reduces the window of opportunity for an adversary. [21].

5) Hostname Verifier: HostnameVerifier in javax.net.ssl.HostnameVerifier API
verifies the hostname by checking the hostname’s authentication and identification. In some
cases, verify() method of HostnameVerifier class is set to return true by default so that the
verification method can quickly get past an exception. However, this arrangement causes
a security threat, where URL spoofing [7] attacks can be possible. URL spoofing makes it
simpler for numerous cyber-attacks (e.g., identity theft, phishing). In Fig. 3.1, Line 3 returns

true without verifying the hostname which is a major source of vulnerability.

public boolean verify(String hostname, SSLSession sslSession)

{

3| WK return true

}

Listing 3.1: Skipping  hostname verification in the verify method of

javax.net.ssl.HostnameVerifier is insecure

6) Certificate Validation: Empty methods are often implemented to connect quickly
and easily with clients while using javax.net.ssl.X509TrustManager interface without
any certificate validation. In that case, the TrustManager accepts and trusts every entity
including the entity that is not signed by a trusted certificate authority. It may cause Man-

in-the-middle (MitM) attacks [3, 75].

7) SSL Sockets: javax.net.ssl.SSLSocket connects a specific host to a specific port.
However, before the connection, the hostname of the server should be verified and authen-

ticated using javax.net.ssl.HostnameVerifier API. However, incorrect implementation
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omits the hostname verification when the socket is created [4, 79].

8) Hypertext Transfer Protocol: HyperText Transfer Protocol (HTTP) sends a request
to a server to retrieve a web page. However, HT'TP allows hackers to intercept and read
sensitive information [55]. Therefore, it is recommended to use HyperText Transfer Protocol
Secure (HTTPS) which utilizes a secured socket layer to encrypt sensitive information. In

Listing. 3.2, a code snippet of secure and insecure URL usage using java.net.URL API is

N

presented.
# URL urlInsecure = "http://time.com/"
URL urlSecure = "https://www.google.com";

Listing 3.2: Use of HTTP URL in java.net.URL API is inherently insecure

9) Pseudorandom Number Generator (PRNG): The generation of a pseudoran-
dom number using java.util.Random is vulnerable as the generated random number is not
completely random, because it uses a definite mathematical algorithm (Knuth’s subtractive
random number generator algorithm [93]) that is proven to be insecure. To solve the prob-
lem, java.security.SecureRandom provides non-deterministic and unpredictable random

numbers.

# Random r = new Random();
SecureRandom sr = new SecureRandom() ;
int insecureSeed = r.nextInt();
int secureSeed = sr.nextInt();
byte [] bytes = {(byte) 100};
i sr.setSeed(bytes);

int insecureSeed2 = sr.nextInt();

Listing 3.3: Generating seeds using java.util.Random is insecure. Random secure seeds

can be generated using java.security.SecureRandom API
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10) Seeds in Pseudorandom Number Generator (PRNG) A constant or static
seed in java.security.SecureRandom can cause same outcome on every run. Therefore,

developers should use a non-deterministic random seed.

11) Salts in Password-based encryption: javax.crypto.spec.PBEParameterSpec
API takes salt as one of the parameters for Password-based encryption. Using constant
or static salts increases the possibility of a dictionary attack. The salt should be a ran-
dom number that produces a random and unpredictable key. In Fig. 3.4, Line 2 takes a

static/constant salt that is insecure to be used in PBEParameterSpec.

PBEParameterSpec pbeParamSpec = null;
# bytel[] salt = {(byte) Oxa2}
A int count = 20;

pbeParamSpec = new PBEParameterSpec(salt, count);

Listing 3.4: javax.crypto.spec.PBEParameterSpec API usage is insecure if iteration count

is less than 1000 and salt is constant or predictable

12) Mode of Operation: The Electronic Codebook (ECB) mode of operation is insecure
to use in javax.crypto.Cipher as ECB-encrypted ciphertext can leak information about the
plaintext. Instead of ECB, Cipher Block Chaining (CBC) or Galois/Counter Mode (GCM)

is more secure to use. Table 3.1 provides a list of insecure and secure modes of operation.

13) Initialization Vector (IV): The initialization vector (IV) is used during encryp-
tion and decryption with several modes of operation. Static/constant initialization vector
introduces vulnerabilities for CBC mode of operation. Therefore, it is suggested to use
an unpredictable random initialization vector in crypto.spec.IvParameterSpec API. Note
that, for several modes of operation (e.g., CTR, CBC-MAC), unpredictable random IV is

not required.
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14) Iteration Count in Password-based Encryption (PBE): The iteration count is
one of the parameters in javax.crypto.spec.PBEParameterSpec API. In PKCS #5 [108], it
is suggested that the number of iterations should be more than 1000 to provide a reasonable
security level. In Fig. 3.4, Line 3 takes an iteration count of 20 which is insecure to be used

in PBEParameterSpec.

15) Symmetric Ciphers: Symmetric ciphers use the same key for encryption and de-
cryption. There are a couple of vulnerable symmetric cipher algorithms, e.g., DES, Blow-
fish, RC4, RC2, and IDEA. For example, DES is a broken block cipher because it uses an
outdated block size (64 bits) that allows brute-force attack. RC4 is a flawed stream cipher
that produces a biased keystream while a pseudo-random keystream is required for security,
thus leading to several attacks (e.g., bit-flipping attack). To overcome the attacks, develop-
ers need to use a secure alternative AES which can support a block length of 128 bits and
key lengths of 128, 192, and 256 bits [1]. Table 3.1 provides a list of insecure and secure

symmetric ciphers. In Fig. 3.5, Line 1 is an insecure implementation of a symmetric cipher.

A Cipher cipher = Cipher.getInstance ("DES/ECB/PKCS5Padding");

cipher.init (Cipher.ENCRYPT_MODE, key)

Listing 3.5: Use case of javax.crypto.Cipher API is insecure if DES symmetric cipher and

ECB mode of operation are used

16) Asymmetric Ciphers: In asymmetric cryptography, two keys, i.e., a public key and a
private key are used for encryption and decryption. RSA is considered insecure for 1024-bit
ciphers [54]. For this reason, developers are recommended to use RSA with a key size of

2048 bits or higher.

17) Cryptographic Hash Functions: A cryptographic hash function generates a fixed-

length alphanumeric hash value or message digest which is commonly used in verifying
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Table 3.1: Secure and insecure use of the mode of operation (12), symmetric cipher (15),
cryptographic hash function (17)

Cryptograhic API Secure Insecure

Mode of Operation CBC, GCM ECB

Symmetric Cipher AES DES, Blowfish, RC4, RC2, IDEA
Hash Function SHA-256 SHA1, MD5, MD4, MD2

message integrity, digital signature, and authentication. A cryptographic hash function is
contemplated as broken if a collision can be observed, i.e., the same hash value is generated
for two different inputs. The list of broken hash functions includes SHA1, MD4, MD5, and
MD2. Therefore, developers need to use a strong hash function, e.g., SHA-256. Table 3.1
provides a list of insecure and secure hash functions. In Fig. 3.6, a code snippet of the broken

hash function test case is shown.

i MessageDigest md=MessageDigest.getInstance("MD5");

md . update (message.getBytes ());

Listing 3.6: Use case of java.security.MessageDigest API is insecure if MD5 is used. Hash

function SHA-256 is secure

18) Cryptographic MAC: A MAC algorithm HmacMD5 and HmacSHA1 are considered
insecure as these are susceptible to collision attacks [57]. Therefore, the developers need to

use a strong MAC algorithm, e.g., HmacSHA256.

3.2.2 Java Cryptographic API Vulnerability Detection Tools

We summarize the vulnerability detection tools that we choose to run on CryptoAPI-Bench
and ApacheCryptoAPI-Bench. We consider three criteria while choosing the analysis tools.
(1) Open-sourced tools: The open-sourced vulnerability detection tools, i.e., CrySL [95, 141],

CryptoGuard [122], SpotBugs [30] are convenient to use as we are able to analyze their
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codes and understand the reason for their lack of performance. (2) Static analysis tools:
We choose static analysis tools that can examine and detect vulnerability without executing
the code. SpotBugs, CryptoGuard, CrySL, and Tool A are static analysis tools. (3) Free
cryptographic vulnerability detection services: We consider Tool A as a provider of free
cryptographic vulnerability detection services. Tool A is not open-sourced. However, Tool

A provides online services to detect vulnerabilities.

We also consider GrammaTech [16], QARK [23] and FixDroid [113]. However, GrammaTech
is a commercial tool. We were unable to access its trial version. The online SWAMP [68]
contains GrammaTech tool to use that only supports vulnerability detection for C and C++.
Therefore, we excluded GrammaTech from our list of tools. QARK is a tool that is mainly
designed to capture security vulnerabilities in Android applications. FixDroid is built as a
research prototype that is embedded as a plugin in Android Studio to conduct a usability
study. Our investigation shows that the detection capability of FixDroid and QARK is
limited. Though QARK has been maintained and updated, FixDroid has not been updated
since 2017. Therefore, we mainly focus on four tools, i.e., SpotBugs, CryptoGuard, CrySL,
and Tool A to evaluate on CryptoAPI-Bench. We choose to anonymize Tool A’s name. Tool
A has an educational license that generally does not allow publishing comparison with other

tools.

SpotBugs

SpotBugs is a static analysis tool also for capturing deficiencies in Java code. The tool is
built based on a plugin structure. The tools detect defects by utilizing visitor patterns in
class files or bytecodes of Java, state machine, and flags. We use the SpotBugs tool (version
3.1.12) available online in SWAMP [68]. However, currently, SWAMP is in the transition to

a new host service [33].
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CryptoGuard

CryptoGuard [122] is a static analysis tool that is operated based on program slicing with
novel language-based refinement algorithms. It significantly reduces the false positive rate
which is a typical problem for static analysis. Furthermore, CryptoGuard covers 16 crypto-
graphic rules and achieves high precision. The authors showed screening a large number of
Apache projects and Android apps to present their high precision rate and low false positive

rate. We run the experiment on CryptoGuard (commitID: 97b220) available on GitHub [11].

CrySL

CrySL [95] is a domain-specific language for cryptographic libraries. The static analysis
CogniCryptsast takes the rules provided in the specification language CrySL as input and
performs a static analysis based on the specification of the rules. CrySL is open-sourced and

we run the experiment on CrySL (commit ID: 004cd2) available on GitHub [12].

3.3 Design of Benchmarks

We developed two benchmarks, CryptoAPI-Bench and ApacheCryptoAPI-Bench. In this
section, we explain how we design these benchmarks to help developers to identify vulner-
abilities in their tools. We include 18 cryptographic misuse categories (discussed in the

Background Section) in these benchmarks.
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3.3.1 Design of CryptoAPI-Bench

In CryptoAPI-Bench, we manually generate 181 unit test cases guided by 18 types of misuses
presented in Section 3.2.1. We divide all test cases into two types, i.e., basic cases and
advanced cases. These test cases incorporate the majority of possible variations in the

perspective of program analysis to detect cryptographic vulnerability.

Basic Cases

Basic test cases are simple ones where the probable source of vulnerability for Crypto
API exists within the same method. For example, Listing 1 shows that Cipher API takes
cryptoAlgo as an argument. Note that, cryptoAlgo contains an insecure cipher algorithm
that is defined within the same method (method1). In CryptoAPI-Bench, we create 45 basic
test cases covering all 18 misuse categories. Among these test cases, 30 test cases contain
cryptographic vulnerability (i.e., true positive), and 15 test cases do not contain any cryp-
tographic vulnerability (i.e., true negative). These test cases identify a tool’s capability to
detect a specific misuse category. An example code snippet of a basic test case is presented

in Listing 3.7.

public void methodl ()

{
cryptoAlgo = "DES/ECB/PKCS5Padding"

Cipher cipher = Cipher.getInstance (cryptoAlgo)

Listing 3.7: Example code snippet of a basic test case
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Table 3.2: CryptoAPI-Bench: Summary of unit test cases. There are 181 unit test cases
with 45 basic cases and 136 advanced cases (interprocedural, field sensitive, combined case,
path sensitive, miscellaneous, and multiple class test cases). Total test cases per group and
misuse categories are summarized here. Details information are presented in Section 3.3.1.

Total
No. | Misuse Categories Basic Two- Three- Field | Comb. | Path Mise. Multi. Cases
Cases | Interproc. | Interproc. Sen. Case Sen. Class per
Categ.
1 Cryptographic Key 2 1 1 1 1 1 1 1 9
2 Password in PBE 3 1 1 1 1 1 2 1 11
3 Password in KeyStore 2 1 1 1 1 1 2 1 10
4 Hostname Verifier 2 0 0 0 0 0 0 0 2
5 Certificate Validation 3 0 0 0 0 0 0 0 3
6 SSL Socket 1 0 0 0 0 0 0 0 1
7 HTTP Protocol 2 1 1 1 1 1 0 1 8
8 PRNG 2 0 0 0 0 0 0 0 2
9 Seed in PRNG 3 2 2 2 2 2 2 2 17
10 Salt in PBE 2 1 1 1 1 1 1 1 9
11 Mode of Operation 2 1 1 1 1 1 0 1 8
12 Initialization Vector 2 1 1 1 1 1 2 1 10
13 Iteration in PBE 2 1 1 1 1 1 1 1 9
14 | Symmetric Ciphers 6 5 5 5 5 5 0 5 36
15 Asymmetric Ciphers 1 1 1 0 1 1 0 1 6
16 Cryptographic Hash 5 4 4 4 4 4 0 4 29
17 | Cryptographic MAC 3 0 0 0 0 0 0 0 3
18 Credentials in String 2 1 1 1 1 0 1 1 8
Total Cases per Group 45 21 21 20 21 20 12 21 181

Advanced Cases

The advanced cases are more complex compared to basic cases where the probable source of
vulnerability of a Crypto API appears from other methods, classes, field variables, or con-
ditional statements. In CryptoAPI-Bench, we include 136 advanced cases. The distribution

of advanced cases is presented from the fourth to tenth columns of Table 3.2.

Interprocedural Cases

In interprocedural cases, the probable source of vulnerability in a Crypto API comes from
other methods (i.e., procedures). We create two types of interprocedural cases: two-interprocedural
(i.e., involving two methods) and three-interprocedural (i.e., involving three methods). In
a two-interprocedural test case, the probable source of vulnerability comes from another

method as a parameter. Listing 3.8 shows the code snippet of a two-interprocedural test
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case. In method2, Cipher API takes cryptoAlgo as an argument, and cryptoAlgo is not
defined in method2, rather, it comes from another method method1. The assigned value of

cryptoAlgo in methodl shows that the test case is insecure.

public void methodl ()

{
cryptoAlgo = "DES/ECB/PKCS5Padding"

method2 (cryptoAlgo)

}
public void method2 (String cryptoAlgo)
{

Cipher cipher = Cipher.getInstance (cryptoAlgo)

Listing 3.8: Example code snippet of a two-interprocedural test case

In three-interprocedural test cases, the probable source of vulnerability comes from two
consecutive methods (i.e., source defined in one method, passes to another method, and
then passes again to be used in Cipher API). CryptoAPI-Bench contains a total of 42 in-
terprocedural test cases. Among them, 21 are two-interprocedural test cases, and 21 are
three-interprocedural test cases. The purpose of having the interprocedural test cases is to

check the detection tool’s interprocedural data flow handling capability.

Field Sensitive Cases

In field-sensitive cases, the probable source of cryptographic vulnerabilities can be detected
by the analysis tools if the tools are capable of performing field-sensitive data flow analysis.

Field-sensitive refers to an analysis that is able to differentiate multiple fields or variables
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with the same object [132]. In Listing 3.9, algo is an instance or field variable in the Crypto
class. The constructor Crypto() stores algo with defAlgo object. A class member function
encrypt () uses this algo value in Cipher API. Both algo and defAlgo contain the same
object, i.e., a secure or insecure cipher algorithm. This is a field-sensitive case as the tools
need to trace the field variable algo as the probable source of vulnerability. CryptoAPI-

Bench contains 20 field-sensitive test cases.

class Crypto {
String algo
public Crypto (String defAlgo) {

algo = defAlgo;

}
public void encrypt(... ) {

Cipher cipher = Cipher.getInstance (algo) ;
}

Listing 3.9: Example code snippet of a field sensitive test case

Combined Cases

The combined cases are a bit more complex where both interprocedural and field sensitivity
properties are combined, i.e., both Listing 3.8 and Listing 3.9 are incorporated to generate

complicated test cases. CryptoAPI-Bench has 21 combined test cases.
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Path-Sensitive Cases

In path-sensitive test cases, conditional branch instructions are included in the test cases
containing the definition of the probable source of a vulnerability. In Listing 3.10, an example
code snippet of a path sensitivity case is given. Depending on the choice variable, the Cipher
is getting the instance from a secure or an insecure cryptographic algorithm. There are 20

path-sensitive test cases in CryptoAPI-Bench.

public void methodl (int choice) {

Cipher ch = Cipher.getInstance ("DES/ECB/...") ;
if (choice > 1) {

ch = Cipher.getInstance ("AES/CBC/...") ;
}

ch.init (Cipher.ENCRYPT_MODE, key) ;

Listing 3.10: Example code snippet of a path sensitive test case

Miscellaneous Cases

Miscellaneous test cases evaluate the tool’s abilities to recognize irrelevant constraints and
other interfaces, e.g., Map. In Listing 3.11, the Map interface of Line 3-6 provides a secure
key or insecure key depending on the choice variable. The Map indices (e.g., “a”, “b”)
represent only index values, not security-relevant values. Similarly, in Line 8, the “UTF-8”
represents byte encoding, not any constant or hard-coded value. CryptoAPI-Bench contains

12 miscellaneous test cases.
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public void methodl (String choice) {

Map<String,String> hm = new HashMap<String, String>();

hm.put( “"a", secureKeyString);
hm.put( ~"b", insecureKeyString);

String keyString = hm.get (choice);

byte [l b = secureKeyString.getBytes ("UTF-8");

IvParameterSpec ivSpec = new IvParameterSpec(b);

Listing 3.11: Example code snippet of a miscellaneous test case

Multiple Class Cases

In multiple class test cases, the probable source of vulnerabilities comes from another Java
class. An example code snippet of a multiple class case is presented in Listing 3.12. It
is necessary to detect whether a secure or an insecure algorithm is passed in Line 4 in
MultipleClass1 and used in Line 9 in MultipleClass2. CryptoAPI-Bench has 21 multiple-

class test cases.

3.3.2 Design of ApacheCryptoAPI-Bench

We include the early version of real-world large 10 Apache projects to check the scalability
property of different tools. The second and third columns of Table 3.3 show the number
of Java files and lines of Java Code in Apache projects. The spark project is the largest

among 10 considered projects containing 2,005 Java files with 311,856 lines of code. The
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meecrowave project contains the lowest number of Java files (40 Java files) and deltaspike

contains the lowest number of lines of code (i.e., 5,116 LoC).

public class MultipleClassl {
public void methodl (String passedAlgo) {
MultipleClass2 mc = new MultipleClass2 ();

mc.method2 (passedAlgo);

}
public class MultipleClass2 {
public void method2 (String cryptoAlgo) {

Cipher ¢ = Cipher.getInstance (cryptoAlgo) ;

Listing 3.12: Example code snippet of a multiple class test case

We enlist 121 test cases in our ApacheCryptoAPI-Bench [41]. Among them, 82 test cases are
basic cases, i.e., the vulnerability rise within the same method. There are 39 advanced test
cases where probable source vulnerability comes from other methods (interprocedural cases),
other classes (multiple class cases), class variables (field sensitive cases), etc. We detect 64
cryptographic misuses, i.e., true positive alerts. Regarding true negatives, we consider only
the cases where a tool shows the case as a false alert. With this consideration, we show 57

true negative cases.

We look into the Apache projects in the Benchmark and made detailed documentation. The
documentation consists of cryptographic vulnerabilities the project contains, an explanation
of the error, and the location (file name, method name, line number) of the vulnerabilities.
The documentation and corresponding ApacheCryptoAPI-Bench benchmark are available in

the GitHub repository [38].
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Table 3.3: ApacheCryptoAPI-Bench: Summary of unit test cases. Contents (number of
Java files and lines of code) of the considered Apache projects are summarized here. There
is a total number of 121 unit test cases with 82 basic cases and 39 advanced cases. Details
information are presented in Section 3.3.2.

Test Cases

Apa'che Numbe'r of | Lines of Total Case | Basic Case | Advanced Cases | TP | TN
Project Java Files Code
deltaspike 87 5116 8 5 3 2 6
directory-server 468 20780 36 15 21 19 17
incubator-taverna-workbench 45 9919 8 5 3 8 0
manifoldcf 126 16998 7 4 3 3 4
meecrowave 40 5646 3 3 0 3 0
spark 2005 311856 26 25 1 12 14
tika 225 16558 2 1 1 0 2
tomee 1029 118661 9 7 2 7 2
wicket 204 13442 9 7 2 7 2
artemis-commons 126 8915 15 12 3 7 8

Total 121 82 39 64 57

3.4 Evaluation and Findings

In this section, we evaluate the results for four cryptographic misuse detection tools, i.e.,
SpotBugs, CryptoGuard, CrySL, and Tool A. We show the experimental setup, evaluation

criteria, and analysis results of both CryptoAPI-Bench and ApacheCryptoAPI-Bench.

3.4.1 Experimental Setup

We evaluate mainly four cryptographic analysis tools, i.e., SpotBugs [30], CryptoGuard [122],
CrySL [95], Tool A on both Benchmarks. We follow the instructions from GitHub to set
up the environment of CryptoGuard and CrySL in our machine to perform the analysis.
We upload JAR files from CryptoAPI-Bench and Apache projects into the SpotBugs tool
available in SWAMP. Tool A is an online tool that takes GitHub links and compressed code

files in order to start analysis.
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Table 3.4: Generated alert keywords for each misuse category from cryptographic vulner-
ability detection tools (SpotBugs, CryptoGuard, CrySL, and Tool A). For example, for
misuse category 17 (i.e., Cryptographic Hash), the generated alert keywords in tools are
WEAK MESSAGE_DIGEST, broken hash scheme, ConstraintError, RISKY_CRYPTO,

respectively.
No. SpotBugs CryptoGuard CrySL Tool A

1 HARD_ CODE_PASSWORD Constant keys RequiredPredicateError HARDCODED_CREDENTIALS
2 HARD__CODE_ PASSWORD Constant keys HardCodedError HARDCODED__CREDENTIALS
3 HARD__CODE_ PASSWORD Predictable password HardCodedError HARDCODED__CREDENTIALS
4 — — RequiredPredicateError —

5 WEAK_HOSTNAME_ VERIFIER Manually verify hostname — BAD__CERT__VERIFICATION
6 WEAK_TRUST_MANAGER Untrusted TrustManager — BAD_CERT__VERIFICATION
7 — Does not manually verify socket — RESOURCE__LEAK

8 — HTTP protocol — —

9 PREDICTABLE_RANDOM Untrusted PRNG — —

Predictable Seed

RequiredPredicateError

PREDICTABLE_RANDOM_SEED

11 — Constant Salt RequiredPredicateError —

12 CIPHER__INTEGRITY Broken crypto scheme ConstraintError RISKY__CRYPTO
13 STATIC_1IV Constant IV RequiredPredicateError —

14 — <1000 iteration ConstraintError —

15 CIPHER__INTEGRITY Broken crypto scheme ConstraintError RISKY__CRYPTO
16 Export grade public key ConstraintError

17 WEAK_MESSAGE_DIGEST Broken hash scheme ConstraintError RISKY__CRYPTO

18 — — ConstraintError —

3.4.2 Evaluation Criteria

We evaluate the vulnerability detection tools by running these tools on our benchmarks.
After performing the analysis, we capture true positives, false positives, and false negatives
from the corresponding tool’s result log. As our purpose is to detect cryptographic vul-
nerability detection, we consider only cryptographic misuse alerts and discard others. In
Table 3.4, we present the alert keywords that detection tools use while showing a specific
cryptographic misuse. This can assist developers to understand which keyword they should
search in the result log to find a specific type of vulnerability. In the following, we provide
a brief description of our process of identification of true positive, false positive, and false

negative alerts.

« True positive (TP): If a tool generates an alert due to the correct reason while
screening any specific vulnerable unit test case in CryptoAPI-Bench, then the event is

considered a true positive.

» False positive (FP): The false positive alert can be captured from two different

scenarios. If an alert raised by a tool is unexpected (i.e., does not exist in a specific
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unit test case), then the alert is a false positive. In addition, if a tool gives an inaccurate

reason for an expected alert, then it is also considered a false positive.

 False negative (FIN): A vulnerable test case may not be detected by the evaluation

tools. This missed detection is characterized as a false negative.

After analyzing the results by determining the true positive (TP), false positive (FP), and
false negative (FN) values, we compute the recall and precision to determine the performance

of the tools.

3.4.3 Evaluation on CryptoAPI-Bench

In this section, we describe CryptoAPI-Bench evaluation findings on each detection tool
based on the result log and performance analysis. Table 3.5 presents the number of true
positive and false positive vulnerability threat detection captured by the tools for 18 cryp-
tographic misuse categories. There are only 6 common cryptographic misuse categories
detected by all tools. To ensure fairness in comparison, we consider only these 6 common
cryptographic misuses while finding the comparative analysis results of tools based on the
basic and advanced benchmark in Table 3.6 and Table 3.7, respectively. The analysis results
are presented in terms of false positive rate (FPR), false negative rate (FNR), recall, and

precision.

Analysis Overview: Table 3.5 shows that among the 18 specified high-impact crypto-
graphic misuse categories in Section 3.2.1, the cryptographic vulnerability detection tools

are able to detect a subset of rules.

o SpotBugs, CryptoGuard, CrySL, and Tool A cover 9, 16, 14, and 10 cryptographic

misuse categories, respectively.
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Table 3.5: CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and Tool A
on all 18 rules with CryptoAPI-Bench’s 181 test cases. There are 37 secure API use cases
(15 in basic and 22 in advanced), which a tool should not raise any alerts on. GTP stands
for ground truth positive, which is the number of insecure API use cases in the benchmark.
Findings of the table are reported in Section 3.4.3.

No. Misuse Categories GTP | SpotBugs | CryptoGuard CrySL Tool A
TP FP | TP FP TP FP | TP FP
1 Cryptographic Key 7 0 3 5 1 0 8 5 1
2 Password in PBE 8 2 0 7 1 0 10 7 1
3 | Password in KeyStore 7 1 1 7 1 0 10 5 1
4 | Credentials in String 7 - - - - 0 8 - -
5 | Hostname Verifier 1 - - 1 0 - - 1 0
6 Certificate Validation 3 3 0 3 0 - - 3 0
7 | SSL Socket 1 - - 1 0 - - 1 0
8 HTTP Protocol 6 - - 6 1 - - - -
9 PRNG 1 1 0 1 0 - — — —
10 | Seed in PRNG 14 - - 11 2 0 15 1 2
11 | Salt in PBE 7 - - 6 1 6 1 -
12 | Mode of Operation 6 1 3 6 1 5 1 1 1
13 | Initialization Vector 8 3 6 7 1 7 1 -
14 | Tteration Count in PBE 7 — - 5 1 5 3 - -
15 | Symmetric Cipher 30 5 11 30 5 25 5 4 4
16 | Asymmetric Ciphers 5 - - 4 1 5 1 - -
17 | Cryptographic Hash 24 4 8 24 4 20 4 4 4
18 | MAC Algorithm 2 - - - 2 0 -
Total 144 20 32 124 20 75 67 32 14

o In total, the benchmark contains 144 vulnerable test cases and among these true pos-
itive cases, SpotBugs, CryptoGuard, CrySL, and Tool A detect 20, 124, 75, and 32

cases, respectively.

o In addition, SpotBugs, CryptoGuard, CrySL, and Tool A also generate 32, 20, 67, and

14 false alarms, respectively that are included as false positive cases.

Analysis on Basic Benchmark

Table 3.6 shows the performance analysis result of four detection tools on six common crypto-

graphic misuse categories based on the basic benchmark. We capture the following findings:

o SpotBugs shows 3 false positive errors. It detects all cases except one. SpotBugs is not
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Table 3.6: CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and Tool A
on six common misuse categories with CryptoAPI-Bench’s common 21 basic cases. TP, FP,
and FN stand for true positive, false positive, and false negative, respectively. Findings of
the table are reported in Section 3.4.3.

SpotBugs CryptoGuard CrySL Tool A
Basic Test Cases TP TN TP | FP | FN | TP | FP | FN | TP | FP | FN | TP | FP | FN
Count | Count
IntraProcedural 14 6 13 3 1 14 0 0 10 7 4 13 0 1
Recall (%) 92.86 100.00 71.43 92.86
Result Precision (%) 81.25 100.00 58.82 100.00

designed to capture threats in the basic case of vulnerable cryptographic key misuse.

o CrySL produces 7 false positive errors due to maintaining strict rules in Crypto APIs

of the cryptographic key, password in PBE, and password in KeyStore.

e Tool A does not generate any false positive errors. It can successfully detect every
vulnerability except one. Tool A is not designed to capture IDEA as a vulnerable

cryptographic algorithm.

» For insecure uses of pseudo-random number generators, SpotBugs and CryptoGuard
flag all uses of java.util. Random. However, CrySL flags the insecure random variable

when used in crypto contexts.

In summary, for all basic cases, CryptoGuard and Tool A generate a precision of 100%.
SpotBugs and CrySL produce some false positives and hence generate a precision of 81.25%,

and 58.82% respectively.

Analysis on Advanced Benchmark

Table 3.7 shows the performance analysis result of four detection tools on six common cryp-
tographic misuse categories based on the advanced benchmark. We capture the following

findings:
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o In the prospect of path sensitivity, it is obvious that none of the cryptographic vulner-
ability detection tools is path-sensitive in their static analysis. The tools generate 10,
13, 13, and 12 false positive alerts for path-sensitive cases, respectively. The possible
reason for the false positive alert is that for the concerned variable, a container is de-
fined to store all values of the concerned variable. There is no ordered list that shows
the latest assignment. Therefore, alerts will be raised if the container contains any
vulnerable value that is intended to be used in the Crypto APIL. A significant reason

for having a high false positive rate is because of the tools being path insensitive.

o SpotBugs is not designed to capture vulnerability threats in advanced cases. Therefore,

it shows 0% precision and recall.

» SpotBugs produces 12 false positives for combined cases. In combined cases, SpotBugs
failed to detect the source of vulnerability using both interprocedural and field-sensitive
analysis. For example, in Symmetric Cipher cases, instead of showing the correct “CI-

PHER INTEGRITY” alert, it produces an incorrect “HARD CODE_PASSWORD”

alert.

e CryptoGuard performs better than other tools in terms of both precision and recall.
The reasons behind this include 1) Cryptoguard performs dataflow analysis based on
forward slicing and backward slicing that efficiently handles the advanced cases, 2)
CryptoGuard follows several refinement insights that systematically remove irrelevant
constants, hence reducing false positives. However, as being a static analysis tool,
CryptoGuard cannot handle path-sensitive cases. In addition, CryptoGuard missed 3
vulnerabilities due to clipping orthogonal method invocation (i.e., limiting the depth

to visit the callee method).

e CrySL produces incorrect “RequiredPredicateError” alerts for the cryptographic key,
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Table 3.7: CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and Tool A
on six common misuse categories with CryptoAPI-Bench’s common 84 advanced cases. TP,
FP, and FN stand for true positive, false positive, and false negative, respectively. Findings
of the table are reported in Section 3.4.3.

SpotBugs CryptoGuard CrySL Tool A
Advanced TP TN
Test Cases Count | Count TP | FP | FN | TP | FP | FN | TP | FP | FN | TP | FP | FN
Two-Interprocedural 13 0 0 0 13 12 0 1 10 3 3 3 0 10
Three-Interprocedural 13 0 0 0 13 12 0 1 10 3 3 3 0 10
Field Sensitive 13 0 0 0 13 13 0 0 10 2 3 1 0 12
Combined Case 13 0 0 12 13 12 0 1 0 2 13 3 0 10
Path Sensitive 0 13 0 10 0 0 13 0 0 13 0 0 12 0
Miscellaneous Cases 3 2 0 0 3 3 0 0 0 5 3 0 0 3
Multiple Class methods 13 0 0 0 13 13 0 0 10 3 3 3 0 10
Recall (%) 0.00 95.59 58.82 19.12
Results Precision (%) 0.00 83.33 56.34 52.00

password in PBE, and password in KeyStore misuse test cases that contribute to
generating a high false positive rate. The reason is that the cryptographic APIs used in
these cases follow strict rules in CrySL. Therefore, even if we use a secure unpredictable

byte array as an argument for crypto APIs, it still generates incorrect alerts.

o Tool A is not designed to detect vulnerable ciphers and cryptographic hash functions in
advanced cases. That is the reason for having high false negative values and generating
high FNR in Tool A. Tool A is a close-sourced detection tool. Therefore, we are unable

to confirm the reason for the incorrect detection cases.

In summary, for all of the advanced cases, SpotBugs is not designed to identify the advanced
vulnerability threats correctly. Therefore, the precision rate is 0%. CryptoGuard detects
fairly well (missed only 3 cases) among all detection tools with a precision of 83.33%. CrySL

produces a precision of 56.34%. Tool A generates a precision of 52.00%.

3.4.4 Evaluation on ApacheCryptoAPI-Bench

Table 3.8 presents the number of true positive and false positive vulnerability threats detected

by the tools. CrySL fails to analyze spark and artemis-commons projects. Tool A fails to
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analyze artemis-commons project. SpotBugs and CryptoGuard successfully analyze all 10

projects. Overall, we capture the following findings.

« Tool A has a low false positive value. However, SpotBugs and CryptoGuard have high
false positive values of 26, and 29, respectively. The main reason is that CryptoGuard
and SpotBugs consider all usages of Java.util. Random as vulnerable whereas the ma-
jority of the random is used in a non-security context. We have discussed the reason

for generating high false positives for CrySL in Section 6.3.2.

» SpotBugs, CryptoGuard, CrySL, and Tool A can accurately detect 35, 37, 40, and 21
alerts respectively from 64 alerts. The main reason for missed alarms is that no tool
can detect all 18 types of vulnerabilities as shown in Table 3.4. For example, SpotBugs
and CryptoGuard cannot capture vulnerable crypto algorithm usage in SecretKeySpec
API. Among the successfully compiled programs (i.e., from 8 Apache projects), CrySL

captures 40 out of 45.

o After analyzing ten Apache projects, we find that there are 82 basic cases, whereas,
the number of advanced cases is only 39. Therefore, in real-world codes, the number of
basic cases is much higher than advanced cases. Vulnerability detection tools should

consider expanding their coverage to detect more categories of vulnerabilities.

o From Table 3.8, we observe that CrySL fails to analyze two Apache projects: spark
and artemis-commons. CrySL throws StackOverFlowError (i.e., memory error) dur-
ing analyzing objects for spark. The probable reason is the larger number of files
and lines of code Spark contains for analysis. For artemis-commons, CrySL throws
NullPointerErrorException during analysis due to the reference variable not pointing
to any object. Tool A fails to analyze only the artemis-commons project. Tool A is

a closed-source tool, therefore, we are unable to confirm the reason for this failure.
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Table 3.8: ApacheCryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and
Tool A on 10 Apache projects. GTP stands for ground truth positive, which is the number
of insecure API use cases in the Apache codes.

SpotBugs CryptoGuard CrySL Tool A

Apache Project GTP | TP | FP | FN | TP | FP | FN | TP | FP | FN | TP | FP | FN
deltaspike 2 2 0 0 2 0 0 2 3 0 2 0 0
directory-server 19 11 0 8 5 0 14 18 6 1 5 0 14
incubator-traverna-workbench 8 2 0 6 4 0 4 7 0 1 3 0 5
manifoldcf 3 0 3 3 0 3 3 3 2 0 2 1 1
meecrowave 3 3 0 0 2 0 1 2 0 1 2 0 1
spark 12 9 12 3 12 14 0 - — - 4 0 8
tika 0 0 0 0 0 0 0 0 2 0 0 0 0
tomee 7 3 1 4 4 2 3 6 0 1 3 1 4
wicket 3 0 2 3 3 2 0 2 2 1 0 0 3
artemis-commons 7 5 8 2 5 8 2 - - - - - -

Total 64 35 26 29 37 29 27 40 15 5 21 2 36

Table 3.9 shows the runtime on Apache projects for only CryptoGuard and CrySL.
For Tool A and SpotBugs, we use the web version that takes all scan requests for users
and reports results after complete scanning. Therefore, we cannot calculate their orig-
inal runtime for comparison. Among the 8 successfully analyzed projects, we observe
average runtime for CrySL is 14.64 seconds and CryptoGuard is 11.46 seconds. For
the largest Apache project Spark (LoC: 311,856), CryptoGuard successfully analyzes
in 88.68 seconds and CrySL produces an incomplete analysis report after running for
46.84 seconds. Overall, SpotBugs and CryptoGuard successfully analyze all 10 Apache

projects. Therefore, SpotBugs and CryptoGuard are scalable for large projects.

Table 3.9: Runtime for analyzing Apache projects. Star (*) symbol indicates that the analysis
was unsuccessful.

Runtime (sec)
Apache Projects LoC | CryptoGuard | CrySL
deltaspike 5.1K 4.31 6.95
directory-server 20.8K 8.96 23.03
incubator-taverna-workbench | 9.9K 12.69 7.94
manifoldcf 17K 7.07 8.20
meecrowave 5.6K 4.67 7.24
spark 311.9K 88.68 46.84*
tika 16.6K 7.46 8.15
tomee 118.7K 40.52 34.81
wicket 13.4K 5.99 20.83
artemis-commons 8.9K 5.63 19.82%*




38 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

3.4.5 Verifiability

Our benchmarks are open-sourced and are available on GitHub [37, 38]. It contains the Java

cryptographic API test cases. Detailed documentation and explanation are provided there.

3.5 Discussion

In this section, we discuss the insights of the tools, case studies, and limitations of our

developed benchmarks.

3.5.1 Tool insights

No tool can cover all categories of vulnerabilities (Table 3.5). However, their methodologies
can be extended to cover most of these vulnerabilities. For example, the technique that Tool
A uses to detect constant cryptographic keys can be transferred to detect static IVs or fewer

iteration counts.

The main differences among different tools are within their approach to trade-offs between
false positives and false negatives. Our experimental evaluation reveals that all of these tools
produce a number of false positives and false negatives. CryptoGuard performs on-demand
inter-procedural dataflow analysis. Its backward data flow analysis starts from the slicing
criteria and explores upward (1) and orthogonally (—) on-demand. Orthogonal method
invocation chains always return to the call sites. By leveraging this insight, CryptoGuard
offers a performance vs scalability tradeoff by limiting the depth of the orthogonal invocations
(which is “clipping of orthogonal method invocations”). In the current implementation, the
depth is set to 1. That means CryptoGuard will skip deeper orthogonal callee methods,

which may result in false negatives. However, the advantage of the orthogonal method
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invocation technique is that it helps to improve precision.

The main focus of CrySL is to provide a language to specify a class of cryptographic misuse
vulnerabilities that can be detected using a generic detection engine. For the version that
we tested, CrySL would raise an alert if a cryptographic key is not generated using a key
generator. However, one can legitimately reuse a previously generated key, which CrySL
would mistakenly detect as a vulnerability. An impressive aspect of CrySL is that it is
constantly being maintained and updated to improve its accuracy. The methodology of
SpotBugs is inherently limited to detecting advanced cases as they use patterns to detect

most of the vulnerabilities.

None of these tools are path-sensitive, i.e., all raise false alerts in path-sensitive cases. A
possible reason for this failure is that the existing path-sensitive analysis techniques are

usually costly, i.e., high runtime complexity.

CryptoAPI-Bench cannot be used to evaluate scalability property. All of our test cases
are lightweight by design. The primary focus is to produce easily readable test cases that
demand minimal code to express complex program properties. On the other hand, all of the
projects in are complex programs including a lot of files and lines of code. The primary
focus is to test the vulnerability detection tool’s scalability property and extrapolation to

applications on real-world code.

3.5.2 Case Studies

Table 3.5 shows that many misuse cases are still uncovered by tools (e.g., CryptoGuard, Spot-
Bugs, Tool A cannot handle MAC misuses) that should be addressed to expand coverage.
Among the covered rules, there are also some deficiencies. For example, CryptoGuard and

SpotBugs can capture RC4 as a vulnerable cipher but not ARCFOUR cipher algorithm as
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the static code does not specify ARCFOUR as a vulnerable cipher. Static or predictable ini-
tialization vector defined in another method, class, file, or field variable (i.e., advanced cases)
cannot be captured using SpotBugs and Tool A. In another advanced case, a java file in mani-
foldcf contains SecretKeySpec key = new SecretKeySpec(secretKey.getEncoded(), "AES").
This secretKey parameter is initialized as a field variable with a static string value of “Now-
[sTheTime” and passed through three procedures. This complex case cannot be captured

by SpotBugs, CryptoGuard, or Tool A.

3.5.3 Limitation of Benchmarks

Currently, our benchmark does not contain cryptographic cases, e.g., digital signature, CBC-
MAC misuses in MAC, or other modes of operations (e.g., CTR). We plan to include test
cases based on these cryptographic vulnerabilities in our CryptoAPI-Bench benchmark. Fur-
thermore, our benchmark does not have any cases that involve Java reflection APIs. The
primary reason is that the use of Java reflection during cryptographic coding is highly un-
likely. Consequently, none of the existing open-sourced tools is designed to detect such
cases. However, we plan to include new cases that leverage Java reflection APIs to induce

cryptographic misuse vulnerabilities.

3.6 Summary

We believe that for scientific, in-depth, and reproducible comparisons benchmarking is an
important component. In this chapter, we present CryptoAPI-Bench and ApacheCryptoAPI-
Bench to evaluate the detection accuracy, scalability, and security guarantees of various

cryptographic misuse detection tools. Our benchmarks are open-sourced and are available on



3.6. SUMMARY 41

GitHub. We evaluated four static analysis tools that are capable of detecting cryptographic
misuses. Our evaluation revealed some interesting insights, i.e., ¢) tools that are specialized
to detect cryptographic misuses (e.g., CryptoGuard, CrySL) cover more rules and higher
recall than general-purpose tools (e.g., SpotBugs, Tool A), ii) none of the existing tools is

path-sensitive.



Chapter 4

Prediction Bias Correction for

Underrepresented Patients

In this chapter, we present our developed bias correction technique for the underrepresented
population subgroups and the advantage of our developed sampling technique over other

existing sampling techniques.

4.1 Introduction

Researchers have trained machine learning models to predict many diseases and conditions,
including Alzheimer’s disease [116], heart disease [102], risk of developing diabetic retinopa-
thy [61], cancer risk [135] and survivability [84], genetic testing for diseases [134], hyper-
trophic cardiomyopathy diagnosis [50], psychosis [123], PTSD [77], and COVID-19 [120].
Neural network-powered automatic image analysis has also been shown useful for fast dis-
ease detection, e.g., breast cancer [56] and lung cancer [110]. A study showed that deep
learning algorithms diagnose breast cancer more accurately (AUC=0.994) than 11 patholo-
gists [56]. Hospitals (e.g., Cleveland Clinic’s partnership with Microsoft [18], John Hopkins
hospital partnership with GE) [17] are reported to use predictive analytics for monitoring

patients’ health status and preventing emergencies [15, 51, 81, 88].

However, clinical datasets are intrinsically imbalanced due to the naturally occurring fre-

42
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quencies of data [89]. The data is not evenly distributed across prediction classes (e.g.,
disease class vs. healthy class), race, age, or other subgroups. Data imbalance is a major
cause of biased prediction results [89]. Biased prediction results may have serious conse-
quences for some patients. For example, a recent study showed that automatic enrollment
of high-risk patients into the health program favors white patients, although black patients
had 26.3% more chronic health conditions than equally ranked white patients [114]. Sim-
ilarly, algorithmic osteoarthritis pain prediction shows 43% racial disparities [119]. The
design of widely used case-control studies are shown to have temporal bias reducing predic-
tive accuracy [142]. For non—medical applications, researchers also identified serious biases
in high—profile machine learning applications, e.g., a widely deployed recidivism prediction
tool [9, 22, 69], online advertisement system [133], Amazon’s recruiting engine [24], and face
recognition system [63]. The lack of external validation and overclaiming causal effect in

machine learning also raise concerns [140].

We present two categories of contributions to machine learning prognosis for underrepre-
sented patients. One contribution is empirical evidence showing severe racial and age pre-
diction disparities and the deceptive nature of common metrics. Another contribution is in
evaluating the bias-correction ability of sampling methods, including a new double prioritized

(DP) bias correction technique.

In our first contribution, we use two large medical datasets (MIMIC III and SEER) to
show multiple types of prediction disparities, including the metric disparity. Poor prediction
performance in minority samples is not reflected in widely used metrics. For imbalanced
datasets, conventional metrics such as overall accuracy and AUC-ROC are largely influ-
enced by the performance of the majority of samples, which machine learning models aim
to fit. Unfortunately, this serious deficiency is not well discussed or reported by medical

literature. For example, a study showed 66.7% of the 33 medical-related machine learning
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papers used AUC-ROC to evaluate models trained on imbalanced datasets [127]. We report
racial, age, and metric disparities in machine learning models trained on clinical prediction
benchmark [81] on MIMIC III and cancer survival prediction [84] on SEER cancer dataset.
Both training datasets are imbalanced, in terms of gender, race, or age distribution. For
example, for the in-hospital mortality (IHM) prediction with MIMIC III, 70.6% of data rep-
resents White patients, whereas only 9.6% represents Black patients. MIMIC III and SEER
also have data imbalance problems among the two class labels (e.g., death vs. survival). For
the IHM prediction, only 13.5% of the data belongs to the patient who died in the hospital.
These data imbalances result in serious prediction biases. A typical neural network-based
machine learning modell4 that we tested correctly predicts 87.6% of non-death cases, but
only 60.9% of death cases. Meanwhile, overall accuracy (computed over all patients) is
relatively high (0.85), and AUC-ROC is 0.86, as a result of the good performance in the
majority class. These high scores are misleading. Our study also reveals that accuracy dis-
parity among age or race subgroups can be severe. For example, the mortality prediction
precision (i.e., the fraction of actual deaths among predicted deaths) of young patients under
30 is 0.09, substantially lower than the whole population (0.40). Recognizing these accuracy

disparities will help advance Al-based technologies to better serve underrepresented patients.

In our second contribution, we present a new technique, double prioritized (DP) bias correc-
tion, that aims to improve the prediction accuracy of specific demographic groups through
sample enrichment. DP trains customized prediction models for specific subpopulations, a
departure from the existing one-model-predicts-all-demographics paradigm. DP prioritizes
specific underrepresented groups, as opposed to sampling across the entire patient popula-
tion. Our results show that DP is effective in reducing disparity among age and race groups.
For the in-hospital mortality (IHM) and 5-year breast cancer survivability (BCS) predic-

tions, DP shows 8.6% to 23.8% improvement over the original model and 5.6% to 86.8%
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improvement over eight existing sampling techniques, in terms of minority class recall. Our
cross-race and cross-age-group results also suggest the need for training specialized machine
learning models for different demographic subgroups. All sampling techniques (including
DP) are not designed to address biases caused by under diagnosis, measurement, or any
other sources of disparity besides data representation. In what follows, DP assumes that the
noise is the same across all demographic subgroups and that the only source of bias that it

aims to correct is representational.

4.2 Background

In this section, we explain several existing data imbalance correction methods, clinical

datasets, and prediction tasks we studied.

4.2.1 Sampling Techniques

A widely used bias-correction approach to the data imbalance problem is sampling. We

briefly describe several existing undersampling and oversampling techniques.

Undersampling

Random Undersampling (RUS) balances a dataset by randomly selecting samples of the
majority class [137]. Several K-nearest neighbor (K-NN) classifier—based undersampling
techniques [103] (e.g., NearMiss1, NearMiss3, Distant) exist. Nearmissl balances a dataset
by selecting the majority class samples whose average distance to the three closest minority
class samples are smallest. NearMiss3 balances a dataset by selecting the majority class

samples whose distance is closest to each minority class sample. The Distant method balances
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a dataset by selecting the majority class samples whose average distance to the three closest

minority class samples is the farthest.

Oversampling

Replicated oversampling balances a dataset by replicating samples of the minority class.
State-of-the-art solutions are all oversampling methods, including Synthetic Minority Over-
sampling Technique (SMOTE) [65], Adaptive Synthetic Sampling (ADASYN) [83], and
Gamma [91]. SMOTE generates new minority points between existing neighboring minority
samples by linear interpolation. ADASYN generates new minority points between existing
neighboring minority samples with more emphasis on the class border. The Gamma tech-
nique generates new minority points between existing neighboring minority samples using
Gamma distribution. Another approach is augmenting synthetic minority class data using

generative adversarial network (GAN) [80].

Stratified Sampling

Stratified random sampling [117] involves dividing the population (e.g., race, age, survived
patient) into groups called strata. Random samples (i.e., patients) are then selected from
each stratum so that selected samples are balanced or maintain the demographic ratio. The
difference between simple random sampling and stratified sampling is that simple random
sampling treats all members to have an equal likelihood of being sampled whereas stratified

sampling samples are selected among groups or strata rather than the whole population.
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4.2.2 Model Reweighting

Reweighting is an alternative bias correction approach to sampling [45, 106]. The reweighting
approach assigns different importance to samples in the training data, in order for some
minority class samples to impact more on training outcomes. Standard reweighting aims
to make the weights of the two prediction classes balanced. In the standard reweighting
approach, new weights are applied to the entire class population as follows. Reweight all
samples so that each majority sample weights less than 1 and each minority sample weights
more than 1, while satisfying the constraint that the total weight of each prediction class is

equal.

4.2.3 Constraint in Objective Function

The seldonian algorithm [136] is designed to prevent undesirable behavior of machine learning
models. It adds constraints to the objective function so that the prediction error can be
bouned within a certain threshold among subgroups (for example, male and female). Also,
a safety test is included in the seldonian algorithm to check whether the model is confident

that for the applied constraints, it returns a solution.

4.3 Methodology

In this section, we present the double prioritized (DP) bias correction methodology and

several other evaluation methodologies.
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4.3.1 Double Prioritized (DP) Bias Correction Method

DP prioritizes a specific demographic subgroup (e.g., Black patients) that suffers from data
imbalance by replicating minority prediction class (C1) cases from this group (e.g., Black
in-hospital deaths). DP incrementally increases the number of duplicated units and chooses
the optimal unit number based on the resulting models’ performance. Figure 4.1 shows the
machine learning workflow with DP bias correction. The main steps are described next.
Sample enrichment replicates minority class C1 samples in the training dataset for a target
demographic group g up to n times. Each time, duplicated samples are merged with the
original training dataset, which forms a new training dataset. Thus, we obtain n+1 sets of
training datasets, including the original one. Our experiment sets n to 19. The value n can

be empirically determined based on prediction performance.

1 Sample Enrichment 2 Candidate Training 3 Prediction
and Model Selection
> Training — Threshf)ld §election Metrics: Datla of new
Patient 5 1. F1 Minority Class pa_t|ent_s of
Training 2. Balanced Accuracy minority group g
Dataset — ML Model,
G TP
D < Calibrate predicted \
D+ . probabilities P on
9 whole group
— ML Model, ! ML Model M*
Identify different < Select threshold T
subgroups (g) based for each model on l
on gender, race, age, D+2g whole group
and prediction class — ML Model, P—— Predicted Probability P
< Select model M*
with best subgroup
D+3g performance
~_
Incrementally ° ML Model, Calibrated Probability P*
duplicate g's hd
sample size s
ML Model M*
@) Model Selection Metrics: Class 1
ML Model, 1. Balanced Accuracy No
] 2. AUC PR Minority Class
Enriched  Candidate — Yes
Datasets ML Models (On the validation set) Class 0

Figure 4.1: Workflow for improving data balance in machine learning prognosis prediction
using double prioritized (DP) bias correction.
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Candidate training is to generate a set of candidate machine learning models. Each of the

n + 1 datasets is used to train and generate a candidate machine learning model.

Model selection is to identify the optimal machine learning model among the n+1 candidate
models. We choose a final machine learning model M* after evaluating all candidate models’
performance as follows. For each model, we first calibrate the predicted probabilities on the
validation set. Calibration is to adjust the distribution of probabilities before mapping
probabilities into labels. We calibrate the output probabilities using the Isotonic Regression
technique. We then perform threshold tuning to find the optimal threshold based on balanced
accuracy and the F1 C1 score. Specifically, we first identify the top three thresholds that
give the highest F1 C1 scores and then further select the optimal threshold that gives
the highest balanced accuracy for the entire samples. For some subgroups, there are only
a couple of hundreds of samples in the validation set. Selecting the threshold based on
subgroup data may cause overfitting to the validation set. Therefore, we choose thresholds
based on the whole group’s performances. Given a threshold, we then identify the top three
machine learning models with the highest balanced accuracy (i.e., average recall of both C0
and C1 classes, Equation A.6) values and select the model that gives the highest PR_C1
(the area under the curve (AUC) of minority class C1’s precision-recall curve, denoted by
AUC-PR_C1 or PR_C1) for demographic group g. In this step, no enrichment is applied
to the validation dataset. When deciding thresholds, AUC-PR cannot be used, as it is a

threshold-free metric. Thus, we use balanced accuracy and F1_CI1.

Prediction applies model M* to new patients’ records of minority group g’ and obtains a
binary class label. At deployment, the demographic group g of duplicated samples during
Sample enrichment and test group g’ should be the same, e.g., the DP model trained with
duplicated Black samples is used to predict new Black patients. Evaluation metrics include

accuracy, balanced accuracy, AUC-ROC score, precision, recall, AUC-PR, and F1 score of
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minority and majority prediction classes, the whole population, and various demographic
subgroups, including gender (male, female), race (White, Black, Hispanic, Asian), and 8 age
groups. Minority class C1 precision and C1 recall are the two most used metrics in our
work. C1 precision calculates the fraction of actual minority C1 class cases among predicted
ones. C1 recall calculates the fraction of C1 cases that are predicted by a machine learning
model. We use the relative disparity metric to capture the disparity among race groups or
age groups. Equation 4.1 shows the equation for the relative disparity. All other metrics are

defined in Appendix A.1.

R
RelativeDisparity = R_l (4.1)
2

where R; is the highest and Rs is the lowest evaluation metrics value within groups. Similar
to other studies [72, 91], our workflow does not sample the test dataset, because the ground

truth (i.e., new patient’s disease or health label) is unknown in the real world.

Model specialization needs to rely on the whole group samples. Training a model solely
based on particular subgroup samples (e.g., Black patients) gives poor results, worse than

the original model on almost all metrics, due to small sample sizes.

4.3.2 Comparison with Other Bias Correction Techniques

The existing sampling approaches being compared include four undersampling techniques
(namely, random undersampling, NearMissl, NearMiss3, Distant method, stratified ran-
dom undersampling), and four oversampling techniques (namely, replicated oversampling,
SMOTE, ADASYN, Gamma, stratified random oversampling). Undersampling balances the

distribution of the two prediction classes by selecting only a subset of the majority class cases.
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Oversampling balances the dataset by populating the minority class. For decompensation
prediction, we apply the two most commonly used sampling techniques, random undersam-
pling (RUS) and replicated oversampling (ROS). For balancing the dataset using GAN, we
use tabular generative adversarial network [48] to create synthetic minority samples that
follow the existing minority dataset distribution. We have to exclude other sampling tech-
niques as their pairwise quadratic distance computation is expensive for 2,377,768 patients’

time series training dataset.

We also consider enriching the minority class (class 1) by creating synthetic datasets using
generative models to balance the imbalanced healthcare dataset. For in-hospital mortality
prediction tasks, the training dataset contains survival cases (Class 0) and mortality cases
(class 1). As we know, there are only 13.5% of the data belong to class 1 (i.e., minority
class). Therefore, we generate additional 9,935 class 1 synthetic data and add it with the
existing 1,987 class 1 data so that both classes can be balanced. For generating the synthetic
dataset, we use the TabGan [32] library which is used for generating tabular data with similar

distributions to the existing mortality data.

4.3.3 Comparison with Reweighting

Following our DP design, we also invent a new prioritized reweighting approach. Priori-
tized reweighting selectively reweights specific subgroup minority samples, as opposed to
reweighting all minority class C1 samples as in the standard reweighting. In the new pri-
oritized reweighting method, we dynamically reweight minority class samples of selected
demographic subgroups and choose the optimal machine learning model using the same
metrics and procedure as in DP. Specifically, in each round of prioritized reweighting ex-

periments, we multiply the selected samples’ default weight by a unit number n, where n
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ranges from 1 to 20. The weights of samples in other subgroups and majority class samples
in the selected subgroup remain the default value, i.e., 1. These weights are used to train a
machine learning model. Once the n machine learning models are trained, we follow DP’s

model selection operation for calibration and threshold selection.

4.3.4 Comparison with Seldonian

For the Seldonian algorithm, the demographic group information is needed to apply the
constraint. Therefore, we train two seldonian models by adding age and race information
respectively. We set the constraint for the seldonian algorithm so that the expected prediction
error among the groups will be within €=0.005 based on the Recall metric. The seldonian
models passed the safety test which indicates that the model has sufficient confidence that

it returns a solution given the constraints.

4.3.5 Cross-racial-group and Cross-age-group Experiments

We also perform a series of cross-group experiments, where enriched samples and test samples
are from different demographic groups, i.e., group g used for Sample enrichment and test
group g’ are different. The purpose is to assess the impact of different machine learning

models on prediction outcomes.

4.3.6 Whole-group vs. Subgroup-based Threshold Tuning

When analyzing the performance of the original model without bias correction, we evaluate
two different settings. The first setting is to select an optimal threshold based on all samples

in the validation set. We refer to the selected threshold as the whole group threshold. The
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second setting is to select an optimal threshold for each demographic subgroup based on that
specific subgroup’s performance in the validation set. We refer to the selected thresholds as
the subgroup thresholds. In both settings, we calibrate the prediction on all samples (i.e.,
whole group) and select the thresholds with the top 3 highest F1 C1 scores and choose the

one with the best-balanced accuracy.

4.4 Evaluation and Findings

In this section, we present an empirical study of disparity in biased prediction and the impact

of DP over other sampling techniques.

4.4.1 Experimental Setup

Prediction and data analysis code are in Python programming language. The hospital record
prediction tasks were executed on a virtual machine with Ubuntu 18.04 operating system,
x86-64 architecture, 8 cores, 40 GB RAM, and 1 GPU. Cancer survivability prediction tasks
were performed using a Ubuntu 21.04 operating system, x86-64 architecture, 16 cores, 40

GB RAM, and 1 GPU.

Dataset

We use MIMIC III (Medical Information Mart for Intensive Care) [81, 87] and SEER (Surveil-

lance, Epidemiology, and End Results) cancer datasets [6], both collected in the US.
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Table 4.1: Learning parameters for four prediction models

Learning Parameter | BCS Prediction | IHM Prediction | LCS Prediction | Decomp Prediction
Hidden layers (20, 20) (16, 16) (20, 20) (128)

ANN MLP LSTM MLP LSTM

Learning Rate 0.001 0.001 0.001 0.001

Optimizer adam adam adam adam

Dropout 0.1 0.3 0.1 0

Machine Learning Models

We test existing machine learning models in a clinical prediction benchmark [81] for MIMIC
IIT and reproducible cancer survival prediction [84] for SEER. We study a total of four binary
classification tasks, in—hospital mortality (IHM) prediction and decompensation prediction
from the clinical prediction benchmark, 5-year breast cancer survivability (BCS) predic-
tion, and 5-year lung cancer survivability (LCS) prediction. In what follows, we denote
the minority prediction class as Class 1 (or C1) and the majority class as Class 0 (or CO0).
For decompensation prediction on the MIMIC III dataset, the minority class C1 represents

patients whose health condition.

Two types of neural networks are used, the long short-term memory (LSTM) model and the
multilayer perceptron (MLP) model. Following Harutyunyan et al [81], for the hospital record
prediction tasks, patients’ data is preprocessed into time-series records and fed into an LSTM
Cancer survivability prediction utilizes an MLP model, following Hegselmann et

model.

al. [84]. Model parameters remain constant in different bias correction techniques (Table 4.1).

While comparing with the seldonian algorithm, we use logistic regression classifiers with L2

regularization with regularization strength 1000 (i.e., C = 0.001).
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Figure 4.2: Statistics of dataset for IHM prediction

4.4.2 Analysis of Imbalanced Clinical Datasets

95

Figure 4.2 shows the composition of IHM training data, which contains 14,681 time-series

samples from MIMIC ITI. The majority of the records (86.5%) belong to Class 0 (i.e., patients

who do not die in the hospital). The rest (13.5%) belong to Class 1 (i.e., the patients who die

in the hospital). The percentage of Class 1 samples within each subgroup slightly varies but

is consistently low. 70.6% of the patients are White and 76% belong to the age range [50, 90).

45.1% of the patients are females and 54.9% are males. The training set contains insufficient

data for the young adult population. Distributions of the decompensation training dataset

(of size 2,377,768) are similar (Figure 4.3).
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Figure 4.3: Statistics of dataset for Decomp prediction

Frequency distributions of features for MIMIC training data used for IHM prediction are
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shown in Figure 4.4. We show the distribution in terms of relative frequency in two classes
(C1 and CO0). The remaining feature’s relative frequency is also shown in Appendix (Fig-
ure A.1). There are in total 17 clinical features of patients used in IHM and decomp predic-
tion tasks. These are systolic blood pressure, diastolic blood pressure, pH, heart rate, GCS
eye scale, GCS motor scale, GCS verbal scale, GCS total, glucose, capillary refill rate, frac-
tion inspired oxygen, height, weight, oxygen saturation, mean blood pressure, temperature

and respiratory rate.

4.4.3 Disparity Among Prediction Classes

Without any bias correction, the original machine learning model demonstrates a substantial
accuracy disparity between the majority prediction class CO and the minority prediction class
C1. For IHM, the Recall value (0.61) for the minority class C1 is 31% lower than the Recall
of the majority class (0.88). For Decomp, the Recall CO0 (0.99) is three times higher than the
Recall _C1 (0.32). This disparity is consistently observed for various demographic groups,
with a few exceptions of senior patients for BCS prediction. We further show detailed THM
predictions with the MIMIC III dataset for various subpopulations under 12 metrics in a
heatmap in Figure 4.5a. 12.4% of non-death cases (class C0) in IHM prediction are wrong,
whereas the missed mortality prediction (class C1) rate is much higher at 39%. For Black
patients, while recall, precision, F1, and AUC-PR are all above or equal to 0.89 for class C0,
the recall of class C1 is only 0.50, i.e., for every 100 Black patients who die in hospital, the
model would mispredict 50 of them. A similar trend is observed for the Decomp prediction

results (Figure 4.5b).
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Figure 4.5: Prediction results under the original machine learning models (no bias correction)
using one optimized threshold for all demographic groups.

4.4.4 Disparity Across Demographic Subgroups

Besides disparity between prediction classes, the original model also shows disparity across
demographic subgroups. For the THM prediction (Figure 4.5a), Black patients have the lowest
minority class C1 recall (0.50), lower than the whole group (0.61) and Hispanic patients
(0.83). The disparity among C1 recalls of various age subgroups is lower, all in the range of
[0.51, 0.72]. Most subgroups have somewhat similar C1 precision values, except the age <30
group. Young patients under 30 have a low C1 precision of 0.09, substantially lower than
the whole population (0.40). Young patients under 30 accounts for only around 4% MIMIC
IIT datasets (Figure 4.2), respectively. Their predictions are consistently poor. Despite the
large disparity in minority class C1 performance, majority class CO precisions and recalls are
consistently high for all subgroups, with most values above 0.85. Despite small sample sizes,

some demographic groups (e.g., Hispanic groups in IHM prediction) have high prediction
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accuracies even without sampling. For decomp prediction (Figure 4.5b), prediction accuracy
also differs across demographic subgroups, e.g., C1 precision is 0.46 for age 90+ patients and

0.13 for age <30 patients.

4.4.5 Disparity Among Performance Metrics

For imbalanced datasets, commonly used metrics such as AUC-ROC and accuracy are de-
ceptive and do not reflect minority class performance. These metrics may show misleadingly
higher values, even when the performance of the minority class is poor. Figure 4.6 shows
that the overall accuracy and AUC-ROC values are consistently high (> 0.80 in most cases)
across different subgroups, even when minority class C1’s performance is dismal, e.g., the
F'1-score is only 0.39 for Black patients in IHM prediction. Accuracy and AUC-ROC values
are dominated by the overwhelmingly high precision and recall (> 0.85 in most cases) of the
majority prediction class C0. Thus, these commonly used metrics in prediction do not reflect
the minority class performance under data imbalance. In biased datasets, AUC-ROC is no
longer sufficient, as it covers both classes with one dominating class. This deficiency is well
established in the machine learning literature [67, 70, 71], where multiple previous studies
pointed out that AUC-ROC gives an overly optimistic view of imbalanced classification. Our

work points out the severity of the metrics issue in digital health applications.

4.4.6 DP Method Reduces Disparity

We use relative disparity (defined in Equation 4.1) as a metric to quantify accuracy gaps
across demographic subgroups under various machine learning conditions, including the orig-
inal model (without any bias correction), DP bias correction, and existing sampling methods.

Relative disparity measurement below 1.25 is considered fair, following the 80% rule for as-
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sessing disparate impact [14]. Our results show that machine learning models trained with
our DP bias correction method exhibit the smallest racial and age disparities (Figure 4.7).
For balanced accuracy, C1 recall and MCC of both IHM and Decomp task, most of DP’s
relative disparity values are in the fair range (1.25 and lower), substantially reducing the
disparity in the original model. Specifically, DP has a 14.8% to 23.9% improvement over the
original model in terms of C1 recall disparity. We observe a similar reduction in balanced

accuracy disparity and MCC disparity.
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Figure 4.7: Relative disparity among racial and age groups under various sampling conditions
for IHM prediction

In contrast, all three state-of-the-art sampling methods (namely, Gamma, Adasyn, and
SMOTE) fail to reduce the racial and age disparities in the IHM task, with some models
(e.g., Gamma) slightly exacerbating disparity. Undersampling methods (especially Distant)
perform even worse than these oversampling methods. When compared to the eleven ex-

isting methods, DP reduces racial disparity by 10.2% (ADASYN) to 64.3% (Distant). The
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Figure 4.8: Relative disparity among racial and age groups for In-hospital mortality predic-
tion using logistic regression models

age disparity is higher than 5.6%, in terms of the minority C1 recall for IHM prediction.

(Figure 4.7). Balanced accuracy and MCC results follow a similar trend.

Regarding fairness for the decompensation task, the relative disparity of DP is lower than
or comparable to other sampling approaches for most cases (Figure A.4) which is consistent
with the trend observed in Figure 4.5a. We examine an exceptional case for race groups in
terms of recall, where the high Hispanic group performance (0.76) increases the disparity

value.

we also compute in-hospital mortality prediction tasks using ML regression models. We
compare our proposed DP technique with the seldonian algorithm that constrains behavior

to maintain fairness.

Figure 4.8 shows the relative disparity values in terms of Recall C1, Balanced Accuracy, and
MCC metric. From Recall C1 disparity, we find that the disparity significantly decreases
using our proposed DP technique. However, the seldonian models increase disparity than
the original models. A similar trend is observed for balanced accuracy. However, in terms
of the MCC metric, the seldonian shows significantly lower disparity values. We find that
the seldonian algorithm significantly decreases subgroup performance in terms of precision

and MCC.
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Figure 4.9: Difference in performance of the original machine learning models (no bias correc-
tion) using subgroup thresholds (i.e., different optimized thresholds for different demographic
groups) and whole group threshold.

4.4.7 Mitigation Solely Based on Adjusting Thresholds

We also test whether or not threshold tuning alone can boost the performance of demographic
subgroups and reduce disparity. Specifically, we compare the prediction performance under
the whole group threshold and subgroup thresholds, which are described in the Methods
section. Prediction results under the original machine learning models (no bias correction)
using different optimized thresholds for different demographic groups are shown in Figure 4.9.
For the IHM task, the performance differences between using the whole-group threshold and
subgroup threshold are small (< 0.1), in terms of C1 precision and recall, for subgroups
with relatively large sizes (e.g. middle-aged patients). However, for other smaller subgroups
(e.g. young patients with age<30), the performance decreases. A likely reason is overfitting,
i.e., the threshold selected based on a small sample size in the validation set is not optimal

on the test set, due to the small sample sizes. Decomp results follow similar patterns.
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Figure 4.10: DP and two representative sampling techniques performance comparison over
the original model for IHM Prediction

Thus, threshold adjustment alone is clearly insufficient for the data imbalance and disparity

problems.

4.4.8 Subpopulation-based vs. Whole-population-based Sampling

Existing sampling solutions do not differentiate subpopulations. We found such whole-
population-based sampling methods decrease the performance of some underrepresented
groups. In Figure 6, we compare DP with two common sampling techniques (i.e., ran-
dom undersampling and SMOTE) with four demographic groups (namely, Black, Asian, age
< 30, 90+ for the THM task, and Hispanic, Asian, age <30, 90+ for the BCS task). These
groups are chosen because of their low performances under the original machine learning
model. Figure A.7 shows that DP consistently boosts the performance of most underrepre-
sented demographic groups. In contrast, this consistent improvement is not observed in the
other two methods. For example, for the IHM task, although the undersampling technique
boosts the balanced accuracy for Asian patients, the performance of Black and age 90+
subgroups slightly decreases (Figure 4.10b). The complete comparison results with the 11

existing sampling methods are shown in Figure 4.11 for the black subgroup and Figure 4.12
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for the age 90+ subgroup.

m Original DP (Ours) = Gamma

Adasyn E Smote Replicated Oversampling
m Random Undersampling Nearmiss 1 m Nearmiss 3
m Distant m Stratified RUS m Stratified ROS

m Tabular_GAN

Metric Values

Recall_C1 Prec_C1 F1_C1 PR _C1 Bal_Acc MCC

Figure 4.11: In-hospital mortality (IHM) prediction under various sampling conditions for
black subgroup

We perform the Kruskal Wallis Test [5] on the results of sampling techniques. Kruskal Wallis
test is a non-parametric method that we use to compare two different sampling techniques
with DP shown in Figure 4.11. We find that the p-value in terms of minority class Recall and
balanced accuracy is between 0.046 and 0.0495 which is less than 0.05. Therefore, we reject
the null hypothesis, meaning the sampling techniques do not perform equally as DP. DP
achieves better performance in terms of minority class recall and balanced accuracy. In terms
of the minority class F1 score, we see the p-value higher than 0.05 for the original model,
Smote, replicated oversampling technique. Therefore, we can not reject the null hypothesis
for these cases. Hence, we do not have sufficient proof to claim that there are statistically
significant differences among these models. For the other nine sampling technique, the p-
value is less than 0.05. Therefore, DP shows significant performance improvement over than
nine sampling techniques in terms of minority class F1 value. In terms of minority class PR
curve value, we only see the p-value higher than 0.05 for the original model, Adasyn, Smote,
Replicated oversampling, stratified undersampling, and Tabular GAN-based sampling For

the other 6 sampling techniques, the p-value is lower than 0.05. The detailed p-values are
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shown in Table A.1.
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Figure 4.12: In-hospital mortality (IHM) prediction under various sampling conditions for

age 904 subgroup

From the original regression model, we observe that the Hispanic and Age 90+ population
shows the worst performance among the racial and age population group respectively. We
show these population group performances using DP and the seldonian algorithm in Fig-
ure 4.13. DP shows better performance than the original and the seldonian algorithm in

terms of Recall C1, F1_C1, Balanced Accuracy, and MCC.
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1 1
o 0.75 @ 075
[} [}
3 05 3 05
s - S
e ol M Mmi L
[5) [0}
= o0 = o0
Recall_C1 Prec_C1 F1_C1 Bal_Acc Recall_C1 Prec_C1 F1_C1 Bal_Acc
-0.25 -0.25
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Figure 4.13: In-hospital mortality prediction using logistic regression models

For subgroups with lower original performance, DP brings stronger C1 recall improvements.
We show this trend in Figure 4.14, where we compare the minority class recall between the

original model with the subgroup threshold and the DP model trained for each subgroup. For
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the THM task, DP improves the C1 recall by 200.4%, 163.4%, and 75.2%, respectively, for the
age <30, Black, and Asian patients (Figure 4.14a). For the decomp task, DP shows similar

performance in Figure 4.14b. However, we see some exceptions (e.g., Hispanic subgroup).
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(a) IHM prediction (b) Decomp prediction

Figure 4.14: Performance of DP and subgroup-threshold-based original model in terms of
minority class recall

4.4.9 Cross-group: Prediction Outcome with Specialized ML

In our cross-group experiments, we use the DP model trained for demographic group A (e.g.,
Black) to predict group B (e.g., Hispanic). The aim is to evaluate the impact of different
machine learning models on prediction outcomes. We perform both cross-race and cross-age-
group experiments for IHM prediction (Figure 4.15), which involve three underrepresented
races and three underrepresented age groups For IHM prediction, DP models’ advantage
is observed in three out of the six groups (for Black, <30, and 90+ groups), which is less
pronounced than BCS prediction. In the cross-age-group experiment, both DP <30 and
90+ models demonstrate advantages. For Hispanic and Asian patients, the DP Black model

gives the best recall C1, higher than DP Hispanic and DP Asian models. Figure A.5 shows
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Figure 4.15: DP’s cross-group performance under various race and age settings for recall C1
and balanced accuracy for the IHM prediction

that matching DP models show some degree of advantage in four out of six settings for the

decompensation task.

4.4.10 Feature Importance

We compute feature importance using SHAP-sum where the importance of columns repre-
senting the same variable is summed up. For the IHM prediction task under SHAP-sum,
the top features of the DP models and the original models are similar, slightly differing in

their feature ordering (Figure 4.16). For example, for IHM prediction DP age 90+ model
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ranks weight at the fourth position, slightly higher than its ranking in the DP Black and
the original models (both at the seventh position). This observation may suggest that being
overweight in older patients is more likely to cause serious consequences. Following the exist-
ing benchmark17, our IHM and decompensation predictions only use 17 clinical features and
exclude race and age information in MIMIC III. We found that SHAP-sum identifies very
different top features from SHAP-avg, highlighting categorical features due to their multiple
one-hot encoding representations for machine learning. We also show the SHAP-avg feature

ranking of IHM prediction in Figure A.8.
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Figure 4.16: SHAP-sum feature importance of different IHM experiments.

4.4.11 Cancer Survivability Prediction Tasks

We repeat the experiments for the other two tasks, 5-year breast cancer survivability (BCS),
and lung cancer survivability (LCS) prediction on the SEER dataset, and observe similar

patterns.

The advantage of DP is still consistently observed for BCS prediction. Overall, DP shows

14.3% (Random Undersampling) to 37.7% (Distant) improvement among racial groups and
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Figure 4.17: Relative disparity and performance comparison over the original model for BCS
prediction task in terms of Recall C1

23.3% (NearMissl) to 88.0% (Distant) improvement for age groups in terms of C1 recall
(Figure 4.17a) compared to existing sampling methods. SMOTE slightly decreases the C1

recall for the Hispanic, Asian, and age [40,50) groups (Figure 4.17b)

Similar advantages for DP are also present in LCS prediction (Figure 4.18). One exception
is that NearMiss1 undersampling shows the lowest relative disparity for age groups in terms
of C1 recall (Supplementary Figures 4.18a). While NearMissl brings C1 Recall of all age
groups to a relatively good range of [0.63, 1.00], its C1 precision ([0.03, 0.54]) and C1 AUC-

PR ([0.02, 0.86]) are poor, resulting in high disparity.
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Figure 4.18: Relative disparity and performance comparison over the original model for LCS
prediction task in terms of Recall C1
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Figure 4.19: Performance comparison of the original model (without bias correction), stan-
dard reweighting, prioritized reweighting, and DP for Asian patients and [40, 50) patients
for BCS prediction task

We compare DP with two methods, the standard reweighting method and a new prioritized
reweighting method. The standard reweighting models, where reweighting does not differ-
entiate subpopulations, perform almost identically to the original model when applied to
Asian and age [40, 50) patient groups (Figure 4.19). In contrast, prioritized reweighting,
where new weights are optimally placed on a specific group of patients, boosts C1 recall in
BCS prediction for Asian patients from 0.617 to 0.802 and from 0.577 to 0.763 for age [40,
50) patients. This boost is comparable to DP’s performance. DP and prioritized reweight-
ing also exhibit comparable performances under other metrics. In our standard reweighting
experiment, the minority class has a weight of 3.94 and the majority class has a weight of

0.57 for BCS prediction.

4.5 Discussion

Our findings empirically demonstrate multiple deficiencies of typical machine learning prog-

nosis procedures when they are applied to imbalanced medical datasets. One deficiency
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is that the weak performance of underrepresented patients may be eclipsed by the whole
population’s performance and not accurately reported. Underrepresentation is twofold: (i)
demographic subgroups and (ii) the minority prediction class. The low accuracy problem
is particularly severe when a patient belongs to both categories. For example, for the IHM
prediction, Black patients’ C1 recall (0.50) is 18% lower than the whole group (0.61) (Fig-
ure 4.5). Low recalls in the disease group can lead to underestimation of risks, missed
treatment opportunities, or potentially life-threatening wrong prognoses. In addition, racial

and age disparities in machine learning-based prognoses are also observed.

A key contribution of our work is to systematically compare the conventional one-model-fits-
all approach with a new double prioritized (DP) bias correction approach, where specialized
prognosis models are trained for minority prediction class patients of a certain race or age.
Conceivably, it is challenging to train a single machine learning model that optimizes for
all demographic groups. In contrast, the DP bias correction technique allows one to train
models for specific demographic groups, not having to use the same model for the entire
patient population. The key enabler of DP is demographic-specific sampling, i.e., selectively
enriching the number of samples in the minority prediction class (C1). Training a specific
machine learning model for some patient groups is necessary. For example, the oldest-old
age group (typically defined as 85+)[98] is a growing population in the US [20]. However,
our study shows that 90+ patients’ recall C1 value (0.51) in the mortality prediction is 16%
lower than the whole group (0.61) in the original model. Prioritized bias correction is highly
effective for improving C1 recalls of demographic subgroups who are underrepresented in the
training data, e.g., DP’s recall C1 is 0.66 (29.4% improvement) for 90+ patients in mortality

prediction.

Our results show that DP can mitigate racial and age disparities introduced by data un-

derrepresentation in training machine learning models, better than the existing 11 sampling
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methods being compared. However, data imbalance is only one source of disparity. For
example, the diagnosis and treatment conditions may vary across different demographic
subgroups and affect data quality. These variations may also contribute to the disparity
observed across groups. Eliminating such more fundamental and systemic medical biases is

beyond the scope of technical solutions.

As underrepresentation is prevalent in clinical medicine, our findings likely have broad im-
plications beyond the specific datasets and demographic groups studied. Fully recognizing
accuracy disparities associated with imbalanced data will help reduce life-threatening predic-
tion mistakes. Future directions of this work can be developing more demographic-specific
sample enrichment techniques, as well as exploring how data underrepresentation impacts

the quality of medical image analysis and mutation-based evolutionary computation.

4.5.1 Limitations of Double Prioritized Sampling

For double prioritized sampling, we create separate models (e.g., dp black model, dp age<30
model) for minority demographic groups that take more time to train and more space to
store these models. Moreover, during the training phase of each demographic model, we train
(n + 1) models before choosing a final optimal candidate model that also takes more time
and space. However, these training processes can be done in parallel if enough computing
resources are available. Parallel training can be reduced the total training time to a single

model training time.

Approaches toward separate models can be observed for precision medicine [94] that maxi-
mizes the quality of health care by individualizing the healthcare procedure to the uniquely
evolving health status of each patient. Therefore, the precision medicine concept also sup-

ports the multi-model setup.
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Our current workflow (Figure 4.1) improves overall performance, especially minority class
recall performance. However, if a prediction application requires improvement in terms
of other metrics (e.g., precision), other performance metrics can be considered as model

selection metrics and threshold selection metrics.

4.6 Summary

Many clinical datasets are intrinsically imbalanced and dominated by overwhelming majority
groups. Off-the-shelf machine learning models that optimize the prognosis of majority patient
types (e.g., healthy class) may cause substantial errors in the minority prediction class (e.g.,
disease class) and demographic subgroups (e.g., Black or young patients). In the typical one-
machine-learning-model-fits-all paradigm, racial and age disparities are likely to exist but
unreported. In addition, some widely used whole-population metrics give misleading results.
We design a double prioritized (DP) bias correction technique to mitigate representational
biases in machine learning-based prognosis. Our method trains customized machine learning
models for specific ethnicity or age groups, a substantial departure from the one-model-
predicts-all convention. We compare with other sampling and reweighting techniques in
mortality and cancer survivability prediction tasks. We first provide empirical evidence
showing various prediction deficiencies in a typical machine learning setting without bias
correction. For example, missed death cases are 3.14 times higher than missed survival cases
for mortality prediction. Then, we show DP consistently boosts the minority class recall
for underrepresented groups, by up to 38.0%. DP also reduces relative disparities across
race and age groups, e.g., up to 88.0% better than the 8 existing sampling solutions in
terms of the relative disparity of minority class recall. The cross-race and cross-age-group

evaluation also suggests the need for subpopulation-specific machine learning models. Biases
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exist in the widely accepted one-machine-learning-model-fits-all-population approach. We
invent a bias correction method that produces specialized machine learning prognostication
models for underrepresented racial and age groups. This technique may reduce potentially

life-threatening prediction mistakes for minority populations.



Chapter 5

Conclusions and Future Work

In this chapter, we will conclude and provide future directions for researchers.

5.1 Conclusion

This dissertation describes several methodologies for improving the performance of classi-
fication tasks in critical applications. We consider two critical application domains. One
is software security and another is healthcare. In software security, we described our ef-
fort of developing a benchmark named CryptoAPI-Bench [39, 122] and ApacheCryptoAPI-
Bench [41]. These benchmarks include 18 common crypto misuse categories that we find
from NIST documents, previous research papers, and different blogs. The objectives of these
benchmarks are to identify the limitations of Java cryptographic vulnerability detection
tools and improve their tools. These benchmarks can also educate novice developers as the
benchmark contains both cryptographically secure and insecure cryptographic API usage.
We also evaluated and compared four state-of-the-art cryptographic vulnerability detection
tools (CryptoGuard, CrySL, SpotBugs, and Anonymous tool) and showed their limitation
and coverage. Many tools including CryptoGuard, CrySL, and Parfait (crypto vulnerability

detection tool by Oracle) used our benchmark to improve the performance of their tools.

In healthcare prognosis, as underrepresentation is prevalent in clinical medicine, our findings

likely have broad implications beyond the specific datasets and demographic groups studied.

76
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Fully recognizing accuracy disparities associated with imbalanced data will help reduce po-
tentially life-threatening prediction mistakes. Vast accuracy gaps exist between minority C1
and majority CO classes and across some demographic subgroups. When training and testing
machine learning models, using multiple metrics is crucial, including balanced accuracy and
separate metrics for the two prediction classes. Commonly used metrics, namely AUC-ROC
and accuracy, are heavily influenced by the majority class and may fail to reflect the minor-
ity class performance when the dataset is imbalanced. Existing sampling techniques (e.g.,
SMOTE, ADASYN, Gamma, Random Oversampling, Random Undersampling, NearMissl,
NearMiss3, Distant, stratified sampling, GAN-based sampling) and other techniques (model
reweighting and loss function constraint) are not well equipped to reduce bias among demo-
graphic subpopulations. So, we proposed a double prioritized (DP) [40] sampling technique
that incrementally increases the minority subgroups in the minority class so which helps to
reduce bias. We compare our proposed DP technique with sampling techniques and show
that the DP technique indeed reduces disparity than other sampling methods. DP bias
correction is applicable to medical datasets, where data imbalance may be a source of accu-
racy disparity. The method is not designed to address non-representational disparities, e.g.,

underdiagnosis and measurement bias.

5.2 Future Work

In software security, an interesting future research direction can be motivating the research
of cryptographic misuse detection tools for other platforms, we plan to extend CryptoAPI-
Bench to cover other popular languages, e.g., Python. Also, the addition of other interesting
cases can extend the benchmark, for example, other non-cryptographic API misuses (e.g.,

Android APIs to access sensitive information (location, IMEI, passwords, etc.) [62, 112],
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fingerprint protection [58], cloud service APIs for information storage [143]) are also proven

to cause catastrophic security consequences.

In healthcare prognosis using machine learning models, some future directions include further
enhancing the interpretability of machine learning prognosis models, as well as exploring how
data underrepresentation impacts the quality of medical image analysis and mutation-based
evolutionary computation [105]. Also, testing or monitoring machine learning models to test
their performance on the corner cases using domain knowledge and visualizing the failure
cases is another interesting research direction. Another research direction can be obtaining
more informed prediction analysis with multimodal models with different types of inputs.
For example, more informative multimodal model disparity analysis can be done using chest

X-rays and time-series ICU data of patients using MIMIC-CXR [43].
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Appendix A

MIMIC Appendix

A.1 Supplementary Equations

BCS Class 1: Patient does not survive more than 5 years after breast cancer diagnosis

IHM Class 1: Based on the first 48 hours of ICU information, the patient dies in ICU

LCS Class 1: Patient survives more than 5 years after lung cancer diagnosis

Decomp Class 1: Patient’s health deteriorates after 24 hours

# Predicted True Class 1

Recall C1 or Sensitivity =

# True Class 1

# Predicted True Class 0

Recall CO or Speci ficity =

Precision C1 or Positive Predictive Value =

Precision CO or Negative Predictive Value =

100

# True Class 0

# Predicted True Class 1

# Predicted Class 1

# Predicted True Class 0

# Predicted Class 0

(A.1)

(A.2)

(A.3)

(A.4)
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# Predicted True Class 1 + # Predicted True Class 0
# True Class 1 + # True Class 0

Accuracy =

Recall C1 + Recall CO
2

Balanced Accuracy = (A.6)

Precision C1 x Recall C1
F1— 1=2 A.
Score ¢ % Precision C1 + Recall C1 (A7)

Precision C0 x Recall CO
F1— =2 A.
Score CO % Precision CO + Recall CO (A-8)

MCC= # Predicted True Class 1 X #Predicted True Class 0—# Predicted False Class 1 X #Predicted False Class 0 (A 9)
- # Predicted Class 1 X #True Class 1 X #Predicted Class 0 X #True Class 0 .

A.2 Relative Frequency Distribution of features

There are 17 clinical features used for in-hospital mortality prediction task. We analyse
the relative frequency distribution of each features in two classes (i.e., majority class CO
and minority class C1). Figure 4.4 and Figure A.1 shows all 17 features distribution using

relative frequency metric.
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A.3 Kruskal Wallis Test

In Table A.1, We p-value where we compare DP with other models based on black subgroup

performances on in-hospital mortality prediction task using the Kruskal Wallis test.

Table A.1: P-value of pairwise comparison with DP with other models using Kruskal Wallis
Test in terms of minority class Recall, balanced accuracy, minority class F1 score, minority

class PR curve value.

DP Comparison with Other Models | Recall__C1 Bal Acc F1_Ci1 PR _C1
Original 0.049535 | 0.049534613 | 0.12663 0.246315
Gamma 0.049535 0.049535 0.046302 | 0.043114
Adasyn 0.049535 0.049535 0.049535 | 0.824778
Smote 0.046302 0.049535 0.12663 0.121183
Replicated Oversampling 0.046302 0.049535 0.275234 | 0.121183
Random Oversampling 0.046302 0.049535 0.049535 | 0.046302
NearMiss1 0.049535 0.049535 0.049535 | 0.046302
NearMiss3 0.049535 0.049535 0.049535 | 0.046302
Distant 0.049535 0.049535 0.046302 | 0.043114
Stratified RUS 0.046302 0.049535 0.049535 | 0.121183
Stratified ROS 0.046302 0.046302 0.046302 | 0.043114
Tabular GAN 0.049535 0.049535 0.049535 | 0.121183

A.4 Deceptive Metrics of AUC for Imbalanced Data

The ROC curve access overall classification performance. The ROC curve plot the false
positive rate vs. the true positive rate. If the dataset is skewed, FPR = FP/(FP + TN)
will be very small due to a higher TN value. Therefore, the effect of a false positive value
will not impact much on the overall performance. In the precision-recall curve (PR) value,
the precision metric is used instead of FPR. Precision = TP /(T P+ F P) directly influenced
by class imblanced situation. Therefore, while evaluating a model built on the imbalanced

situation, precision-recall Curve (PR) metrics are better than the ROC curve value.

A random classifier output with an imbalanced dataset (30 samples from Class 1 and 30,000
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samples from Class 0) is shown in Figure A.2. The AUC value is 0.89 whereas the PR_ C1

value is 0.27. Therefore, the PR_ C1 metrics correctly indicate that the classifier model is

not a good one.
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Figure A.2: Performance metrics performance under imbalanced situation

A.5 Variations of Loss functions

We applied different loss functions including binary cross-entropy loss, Poisson loss, log-cosh
loss, KL divergence loss, and hinge loss. However, the hinge loss and KL divergence loss
function can not classify class 1 and class 0 properly. More specifically, they fail to classify
class 0 and predict every sample as class 1. The binary cross-entropy loss, Poisson loss, and
log-cosh loss show comparable performance as shown in Figure A.3. The equations of binary
cross-entropy loss, log-cosh loss, and Poisson loss are shown in Equation A.10, A.11 and A.12

respectively. We use binary cross-entropy loss for all other experiments.

1 n
Binary Cross-Entropy Loss = —— E yi - log yi + (1 —y;) . log (1 — y;) (A.10)
n
i=1
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w Binary Cross-Entropy Loss Log-Cosh Loss = Poisson Loss
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0
L F1_C1 —
=
)
=
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e _
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o
MCC —
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Performance Values

Figure A.3: Performance of different loss functions on the original model of in-hospital
mortality tasks

Log-Cosh Loss = Z log(cosh(y; — v:)) (A.11)
i=1
1 n
Poi Loss = — Ji — Yi - log y; A12
oisson Loss = — Z(y yi - log U;) ( )

=1
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Figure A.5: DP’s cross-group performance under various race and age settings for recall C1
and balanced accuracy for the decompensation prediction. In subfigures, each row corre-
sponds to a DP model trained for a specific subgroup. Each column represents a subgroup
that a model is evaluated on. The values on the diagonal are the performance of a matching
DP model, i.e., a DP model applied to the subgroup that it is designed for. The last rows
show the group’s performance in the original model. To prevent overfitting, our method
chooses optimal thresholds based on whole group performance, as opposed to the (small)
minority groups in the validation sets. DP cross-group performance for (a) race subgroups
and (b) age subgroups for the decompensation prediction in terms of recall C1. DP cross-
group performance for (c) race subgroups and (d) age subgroups for the decompensation
prediction in terms of balanced accuracy
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Figure A.6: In-hospital mortality prediction performance of the original model with (a) whole
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Precision-Recall Curve Class 1, F1 score Class 1, Recall Class 0, Precision Class 0, Area
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Area under the ROC Curve, respectively.
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the original machine learning model without any bias correction. DP stands for our Double
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same variable is averaged.
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