
Methodology Development for Improving the Performance of
Critical Classification Applications

Sharmin Afrose

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Applications

Danfeng (Daphne) Yao, Chair

T. M. Murali

Na Meng

B. Aditya Prakash

Sharon Xiaolei Huang

December 5, 2022

Blacksburg, Virginia

Keywords: Software Security, Machine Learning Bias

Copyright 2022, Sharmin Afrose

Methodology Development for Improving the Performance of Criti-
cal Classification Applications

Sharmin Afrose

(ABSTRACT)

People interact with different critical applications in day-to-day life. Some examples of crit-

ical applications include computer programs, anonymous vehicles, digital healthcare, smart

homes, etc. There are inherent risks in these critical applications if they fail to perform

properly. In my dissertation, we mainly focus on developing methodologies for performance

improvement for software security and healthcare prognosis. Cryptographic vulnerability

tools are used to detect misuses of Java cryptographic APIs and thus classify secure and

insecure parts of code. These detection tools are critical applications as misuse of crypto-

graphic libraries and APIs causes devastating security and privacy implications. We develop

two benchmarks that help developers to identify secure and insecure code usage as well as

improve their tools. We also perform a comparative analysis of four static analysis tools.

The developed benchmarks enable the first scientific comparison of the accuracy and scala-

bility of cryptographic API misuse detection. Many published detection tools (CryptoGuard,

CrySL, Oracle Parfait) have used our benchmarks to improve their performance in terms

of the detection capability of insecure cases. We also examine the need for performance

improvement for healthcare applications. Numerous prediction applications are developed

to predict patients’ health conditions. These are critical applications where misdiagnosis can

cause serious harm to patients, even death. Due to the imbalanced nature of many clinical

datasets, our work provides empirical evidence showing various prediction deficiencies in a

typical machine learning model. We observe that missed death cases are 3.14 times higher

than missed survival cases for mortality prediction. Also, existing sampling methods and

other techniques are not well-equipped to achieve good performance. We design a double

prioritized (DP) technique to mitigate representational bias or disparities across race and

age groups. we show DP consistently boosts the minority class recall for underrepresented

groups, by up to 38.0%. Our DP method also shows better performance than the existing

methods in terms of reducing relative disparity by up to 88% in terms of minority class re-

call. Incorrect classification in these critical applications can have significant ramifications.

Therefore, it is imperative to improve the performance of critical applications to alleviate

risk and harm to people.

Methodology Development for Improving the Performance of Criti-
cal Classification Applications

Sharmin Afrose

(GENERAL AUDIENCE ABSTRACT)

We interact with many software using our devices in our everyday life. Examples of software

usage include calling transport using Lyft or Uber, doing online shopping using eBay, using

social media via Twitter, check payment status from credit card accounts or bank accounts.

Many of these software use cryptography to secure our personal and financial information.

However, the inappropriate or improper use of cryptography can let the malicious party gain

sensitive information. To capture the inappropriate usage of cryptographic functions, there

are several detection tools are developed. However, to compare the coverage of the tools,

and the depth of detection of these tools, suitable benchmarks are needed. To bridge this

gap, we aim to build two cryptographic benchmarks that are currently used by many tool

developers to improve their performance and compare their tools with the existing tools. In

another aspect, people see physicians and are admitted to hospitals if needed. Physicians

also use different software that assists them in caring the patients. Among this software,

many of them are built using machine learning algorithms to predict patients’ conditions.

The historical medical information or clinical dataset is taken as input to the prediction

models. Clinical datasets contain information about patients of different races and ages.

The number of samples in some groups of patients may be larger than in other groups.

For example, many clinical datasets contain more white patients (i.e., majority group) than

Black patients (i.e., minority group). Prediction models built on these imbalanced clinical

data may provide inaccurate predictions for minority patients. Our work aims to improve

the prediction accuracy for minority patients in important medical applications, such as esti-

mating the likelihood of a patient dying in an emergency room visit or surviving cancer. We

design a new technique that builds customized prediction models for different demographic

groups. Our results reveal that subpopulation-specific models show better performance for

minority groups. Our work contributes to improving the medical care of minority patients

in the age of digital health. Overall, our aim is to improve the performance of critical ap-

plications to help people by decreasing risk. Our developed methods can be applicable to

other critical application domains.

Dedication

To my parents (Mahmuda Khanam and Md. Zowadul Munir), my brother (Saeed Anwar)

& my husband (Majbah Uddin)

vi

Acknowledgments

It was a hard decision for me to leave my parents in my home country and come alone to

a new country to start a five-year journey. Now, I look back and thank Almighty Allah for

following the right decisions. This experience makes me more observant, wiser, proactive,

and stronger.

I would like to express my deepest gratitude to my parents. They respected every decision I

made and encouraged me, talked to me, and motivated me along the way. I am also grateful

to my brother who was always there for me whenever I needed him.

I would like to express my sincere appreciation to my advisor Dr. Danfeng (Daphne) Yao.

After I got admission to Virginia Tech, she reached out to me and encouraged me to pursue

Ph.D. under her supervision. I was amazed by her patience, her soothing attitude as well

as guidance when I started writing my first first-authored research paper. Along the way,

she taught me how to be a good researcher, to see the real-world problem that needs to

be solved, and be proud of the impact I made through my solutions to these problems. I

really admire her contribution in improving the environment for female professionals. She

is a perfect role model for me to follow.

I would like to thank my Committee members, Dr. T. M. Murali, Dr. Na Meng, Dr. B.

Aditya Prakash, and Dr. Sharon Xiaolei Huang. They gave lots of insightful suggestions

that helped me for completing my Ph.D. research. I like to thank all our collaborators and

lab mates for contributing to my research work. Specifically, I am grateful to Dr. Sazzadur

Rahaman, Dr. Ya Xiao, and Miles Frantz for contributing to the work included in Chapter

3. Also, I am grateful to Wenjia Song, Dr. Chang Lu, and Dr. Charles B. Nemeroff for

contributing to the work included in Chapter 4.

vii

I express my gratitude to my dearest friends in Blacksburg including Nazia Munir, Tahmina

Hossain Ahmed, Sadia Ahmed, Rezwana Islam Linda, Afroza Alam, Mahbubur Rahman

Kaisar, Kazi Moshiur Rahman, and many more. I am very grateful for their support, in-

spiration, and friendship. I am so grateful to them for accompanying me through my joyful

and challenging moments.

A very special thank goes to my husband, Majbah Uddin. His calmness, compassion, and

constant support always brought peace to my mind during stressful situations and persuaded

me to keep moving forward.

viii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Problem Definition . 1

1.2 Contributions . 3

1.3 Dissertation Organization . 6

2 Review of Literature 7

2.1 Cryptographic Vulnerability Detection Benchmarks 7

2.2 Bias in Machine Learning . 8

3 Cryptographic API Benchmarks 10

3.1 Introduction . 10

3.2 Background . 13

3.2.1 Java Cryptographic API Misuses . 14

3.2.2 Java Cryptographic API Vulnerability Detection Tools 19

3.3 Design of Benchmarks . 21

ix

3.3.1 Design of CryptoAPI-Bench . 22

3.3.2 Design of ApacheCryptoAPI-Bench 27

3.4 Evaluation and Findings . 29

3.4.1 Experimental Setup . 29

3.4.2 Evaluation Criteria . 30

3.4.3 Evaluation on CryptoAPI-Bench . 31

3.4.4 Evaluation on ApacheCryptoAPI-Bench 35

3.4.5 Verifiability . 38

3.5 Discussion . 38

3.5.1 Tool insights . 38

3.5.2 Case Studies . 39

3.5.3 Limitation of Benchmarks . 40

3.6 Summary . 40

4 Prediction Bias Correction for Underrepresented Patients 42

4.1 Introduction . 42

4.2 Background . 45

4.2.1 Sampling Techniques . 45

4.2.2 Model Reweighting . 47

4.2.3 Constraint in Objective Function . 47

x

4.3 Methodology . 47

4.3.1 Double Prioritized (DP) Bias Correction Method 48

4.3.2 Comparison with Other Bias Correction Techniques 50

4.3.3 Comparison with Reweighting . 51

4.3.4 Comparison with Seldonian . 52

4.3.5 Cross-racial-group and Cross-age-group Experiments 52

4.3.6 Whole-group vs. Subgroup-based Threshold Tuning 52

4.4 Evaluation and Findings . 53

4.4.1 Experimental Setup . 53

4.4.2 Analysis of Imbalanced Clinical Datasets 55

4.4.3 Disparity Among Prediction Classes 57

4.4.4 Disparity Across Demographic Subgroups 58

4.4.5 Disparity Among Performance Metrics 59

4.4.6 DP Method Reduces Disparity . 59

4.4.7 Mitigation Solely Based on Adjusting Thresholds 63

4.4.8 Subpopulation-based vs. Whole-population-based Sampling 64

4.4.9 Cross-group: Prediction Outcome with Specialized ML 67

4.4.10 Feature Importance . 68

4.4.11 Cancer Survivability Prediction Tasks 69

4.5 Discussion . 71

xi

4.5.1 Limitations of Double Prioritized Sampling 73

4.6 Summary . 74

5 Conclusions and Future Work 76

5.1 Conclusion . 76

5.2 Future Work . 77

Bibliography 79

Appendices 99

Appendix A MIMIC Appendix 100

A.1 Supplementary Equations . 100

A.2 Relative Frequency Distribution of features 101

A.3 Kruskal Wallis Test . 103

A.4 Deceptive Metrics of AUC for Imbalanced Data 103

A.5 Variations of Loss functions . 104

xii

List of Figures

4.1 Workflow for improving data balance in machine learning prognosis prediction

using double prioritized (DP) bias correction. 48

4.2 Statistics of dataset for IHM prediction . 55

4.3 Statistics of dataset for Decomp prediction 55

4.4 Relative frequency of several features in the MIMIC dataset for in-hospital mortality

tasks . 56

4.5 Prediction results under the original machine learning models (no bias cor-

rection) using one optimized threshold for all demographic groups. 58

4.6 Performance metrics disparity . 60

4.7 Relative disparity among racial and age groups under various sampling con-

ditions for IHM prediction . 61

4.8 Relative disparity among racial and age groups for In-hospital mortality pre-

diction using logistic regression models . 62

4.9 Difference in performance of the original machine learning models (no bias

correction) using subgroup thresholds (i.e., different optimized thresholds for

different demographic groups) and whole group threshold. 63

4.10 DP and two representative sampling techniques performance comparison over

the original model for IHM Prediction . 64

xiii

4.11 In-hospital mortality (IHM) prediction under various sampling conditions for

black subgroup . 65

4.12 In-hospital mortality (IHM) prediction under various sampling conditions for

age 90+ subgroup . 66

4.13 In-hospital mortality prediction using logistic regression models 66

4.14 Performance of DP and subgroup-threshold-based original model in terms of

minority class recall . 67

4.15 DP’s cross-group performance under various race and age settings for recall

C1 and balanced accuracy for the IHM prediction 68

4.16 SHAP-sum feature importance of different IHM experiments. 69

4.17 Relative disparity and performance comparison over the original model for

BCS prediction task in terms of Recall C1 70

4.18 Relative disparity and performance comparison over the original model for

LCS prediction task in terms of Recall C1 70

4.19 Performance comparison of the original model (without bias correction), stan-

dard reweighting, prioritized reweighting, and DP for Asian patients and [40,

50) patients for BCS prediction task . 71

A.1 Relative frequency of several features in MIMIC dataset for in-hospital mortality

tasks . 102

A.2 Performance metrics performance under imbalanced situation 104

A.3 Performance of different loss functions on the original model of in-hospital

mortality tasks . 105

xiv

A.4 Relative disparity among racial and age groups under various sampling con-

ditions for decomp prediction . 106

A.5 DP’s cross-group performance under various race and age settings for recall C1

and balanced accuracy for the decompensation prediction. In subfigures, each

row corresponds to a DP model trained for a specific subgroup. Each column

represents a subgroup that a model is evaluated on. The values on the diag-

onal are the performance of a matching DP model, i.e., a DP model applied

to the subgroup that it is designed for. The last rows show the group’s per-

formance in the original model. To prevent overfitting, our method chooses

optimal thresholds based on whole group performance, as opposed to the

(small) minority groups in the validation sets. DP cross-group performance

for (a) race subgroups and (b) age subgroups for the decompensation predic-

tion in terms of recall C1. DP cross-group performance for (c) race subgroups

and (d) age subgroups for the decompensation prediction in terms of balanced

accuracy . 107

A.6 In-hospital mortality prediction performance of the original model with (a)

whole group calibration, (b) subgroup calibration, and (c) difference in the

performance between the whole group and subgroup calibration. A positive

value means subgroup calibration improves performance. Rec_C1, Prec_C1,

PR_C1, F1_C1, Rec_C0, Prec_C0, PR_C0, F1_C0, Acc, Bal_Acc, ROC

stand for Recall Class 1, Precision Class 1, Area Under the Precision-Recall

Curve Class 1, F1 score Class 1, Recall Class 0, Precision Class 0, Area Under

the Precision-Recall Curve Class 0, F1 score Class 0, Accuracy, Balanced

Accuracy, Area under the ROC Curve, respectively. 108

xv

A.7 DP and two representative sampling techniques performance comparison over

the original model for decomp prediction . 108

A.8 SHAP-avg feature importance of different IHM experiments. Original stands

for the original machine learning model without any bias correction. DP

stands for our Double Prioritized sampling method. In SHAP-avg, the im-

portance of columns representing the same variable is averaged. 109

xvi

List of Tables

3.1 Secure and insecure use of the mode of operation (12), symmetric cipher (15),

cryptographic hash function (17) . 19

3.2 CryptoAPI-Bench: Summary of unit test cases. There are 181 unit test cases

with 45 basic cases and 136 advanced cases (interprocedural, field sensitive,

combined case, path sensitive, miscellaneous, and multiple class test cases).

Total test cases per group and misuse categories are summarized here. Details

information are presented in Section 3.3.1. 23

3.3 ApacheCryptoAPI-Bench: Summary of unit test cases. Contents (number of

Java files and lines of code) of the considered Apache projects are summarized

here. There is a total number of 121 unit test cases with 82 basic cases and

39 advanced cases. Details information are presented in Section 3.3.2. . . . 29

3.4 Generated alert keywords for each misuse category from cryptographic vulner-

ability detection tools (SpotBugs, CryptoGuard, CrySL, and Tool A). For ex-

ample, for misuse category 17 (i.e., Cryptographic Hash), the generated alert

keywords in tools are WEAK_MESSAGE_DIGEST, broken hash scheme,

ConstraintError, RISKY_CRYPTO, respectively. 30

xvii

3.5 CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and Tool

A on all 18 rules with CryptoAPI-Bench’s 181 test cases. There are 37 secure

API use cases (15 in basic and 22 in advanced), which a tool should not raise

any alerts on. GTP stands for ground truth positive, which is the number of

insecure API use cases in the benchmark. Findings of the table are reported

in Section 3.4.3. 32

3.6 CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and Tool

A on six common misuse categories with CryptoAPI-Bench’s common 21

basic cases. TP, FP, and FN stand for true positive, false positive, and false

negative, respectively. Findings of the table are reported in Section 3.4.3. . . 33

3.7 CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and Tool

A on six common misuse categories with CryptoAPI-Bench’s common 84

advanced cases. TP, FP, and FN stand for true positive, false positive, and

false negative, respectively. Findings of the table are reported in Section 3.4.3. 35

3.8 ApacheCryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and

Tool A on 10 Apache projects. GTP stands for ground truth positive, which

is the number of insecure API use cases in the Apache codes. 37

3.9 Runtime for analyzing Apache projects. Star (*) symbol indicates that the

analysis was unsuccessful. 37

4.1 Learning parameters for four prediction models 54

A.1 P-value of pairwise comparison with DP with other models using Kruskal

Wallis Test in terms of minority class Recall, balanced accuracy, minority

class F1 score, minority class PR curve value. 103

xviii

Chapter 1

Introduction

In this chapter, we define the research problems, describe our contributions, and specify the

dissertation organization.

1.1 Problem Definition

Critical applications are applications that require special attention due to their risk and

magnitude of harm for people if they fail to perform properly [10]. Examples of some critical

applications are anonymous vehicles, healthcare prediction applications, computer programs,

and application smart homes devices. Buggy computer programs can lead to data breaches

as well as data leakage of sensitive information [26, 27, 28, 130]. Erroneous features of

autonomous cars could lead to severe car crashes that can threaten human lives [90, 126].

Misdiagnosis using digital healthcare applications can lead to the death of patients [13, 66,

85, 138]. Hackers can gain unauthorized access to smart devices which can cause privacy

and security issues [34, 52, 129]. In our dissertation, we mainly focus on software security

and healthcare prognosis applications.

For applications in software security, usage of insecure applications can cause sensitive data

leakage yielding privacy and security implications. Many software (Lyft, Airbnb, eBay,

American Express, Dropbox, Twitter, etc.) incorporates Java cryptographic APIs [2]. Of-

tentimes, cryptographic API misuses are introduced in programs due to complex API de-

1

2 CHAPTER 1. INTRODUCTION

signs [35, 111], the lack of cybersecurity training [104], insecure code generation tools [115]

and insecure/misleading suggestions in Stack Overflow [36, 104]. These misuses attributes

to many cyber attacks. To detect cryptographic API misuses, several cryptographic vulner-

ability detection tools are developed [30, 95, 122]. However, a lack of suitable benchmarks

hinders scientific performance evaluation of cryptographic API misuses detection.

To address the aforementioned concerns, we first focus on detecting cryptographic vulner-

abilities that are often misused by developers. First, we identify 18 Java cryptographic

categories. Based on these cryptographic categories, we developed two benchmarks that

facilitate first scientific accuracy and scalability comparison of cryptographic API misuses

detection. These benchmarks contain unit test cases as well as real-world large codes with

interesting program properties. The main challenge of these benchmarks is to include every

possible interesting case. We obtain suggestions from reviewers as well as our benchmark

users and update the benchmark at regular intervals. Our benchmark is currently actively

used for improvement and comparison in Oracle bug checker Parfait, CryptoGuard, and

CrySL.

Healthcare prognosis is another critical application where misdiagnosis can cost lives. Many

hospitals [17, 18] use predictive analytics for monitoring patients’ health status and prevent-

ing emergencies. Clinical datasets are intrinsically imbalanced due to the naturally occurring

frequencies of data [89]. Data imbalance is a major cause of biased prediction results that

may cause serious consequences for some patients [114, 119, 142]. To remove bias, sev-

eral sampling techniques exist [65, 83, 91, 103]. However, they are not designed to address

demographic subgroup biases, as they sample the entire minority class.

The second part of our dissertation focuses on reducing subpopulation-specific bias in health-

care prognosis. We first focus on analyzing clinical predictions from large medical datasets to

show multiple types of disparities, including the metric disparity, and performance disparity

1.2. CONTRIBUTIONS 3

among racial, and age groups. We also present a new technique, double prioritized (DP) bias

correction that focuses on improving the prediction accuracy of specific demographic groups

through sample enrichment. To show the effectiveness of DP, we systematically compare DP

with other existing sampling techniques. The work is to aware researchers to be conscious

of minority subpopulations and lessen life-threatening prediction mistakes.

1.2 Contributions

My dissertation work aims to measure two critical systems, point out the limitations and

propose possible solution directions. To achieve this goal, our completed made contributions

from two critical aspects. 1) the real-world cryptographic benchmarks generation to point

out the limitations of current vulnerability detection tools, 2) bias in subpopulation-specific

machine learning prognosis for underrepresented patients. The shared challenges of the

research works are as follows.

• Interpretation of the output results from critical systems is a challenging task. The

vulnerability detection reports generated from different existing detection tools are in

various formats. Therefore, we had to manually check every single error in every report

to understand whether an error is accurately captured or not. The machine learning

prediction model’s outcome is also challenging to interpret when an exceptional out-

come arises. To solve this, we compute feature importance and other extensive analysis

to interpret a specific outcome.

• Choosing the correct performance metric is another challenging task. We mainly focus

on the rare event of interest (e.g., insecure API usage in code, death event of a patient

in ICU). We compute rare event recall and precision as performance metrics for both

4 CHAPTER 1. INTRODUCTION

critical applications. For healthcare disparity research work, we also focus on sev-

eral other metrics, e.g., MCC (Matthew’s correlation coefficient), F1 score, balanced

accuracy, and precision-recall curve value, to more clearly understand the impact of

prediction outcomes.

• To execute the existing works, we need to create the required environment (e.g., spe-

cific library versions). For codes in Python, we built a separate environment using

Anaconda. If any library is not supported any longer, we fix the code to make it

compatible with the existing library version.

• The MIMIC dataset is huge data containing over forty thousand patients’ information.

To run the prediction model using the MIMIC dataset, we used the CS Research GPU

cluster as we needed more RAM to run the code. Still, the training time is very long.

On average, the training time is around 10 minutes for each epoch to run the original

model of the mortality prediction task.

• For the MIMIC dataset, our model input is time-series clinical data which is 3D data

of a large number of patients. Therefore, it is challenging to use this dataset for several

existing bias correction techniques.

Next, we will discuss our overall contribution. To assist the vulnerability detection tool

developers, our contributions include:

• We provide a benchmark named CryptoAPI-Bench, which consists of 181 test cases

covering 18 types of Cryptographic and SSL/TLS API misuse vulnerabilities. CryptoAPI-

Bench utilized various interesting program properties (e.g., field-, context-, and path

sensitivity) to produce a diverse set of test cases. Our benchmark is open-sourced and

can be found on GitHub [37].

1.2. CONTRIBUTIONS 5

• We provide another benchmark named ApacheCryptoAPI-Bench for checking the scal-

ability property of the cryptographic vulnerability detection tools. We document 121

test cases covering 12 types of Cryptographic and SSL/TLS API misuse vulnerabilities

from 10 real-world Apache projects. Detailed information regarding ApacheCryptoAPI-

Bench can be found on GitHub [38].

• We evaluate four static analysis tools that are capable of detecting cryptographic mis-

use vulnerabilities. Our experimental evaluation revealed some interesting insights.

For complex cases, specialized tools (e.g., CryptoGuard, CrySL) detect more crypto-

graphic misuses and cover more rules than general-purpose tools (e.g., SpotBugs, Tool

A). Currently, none of these tools supports path-sensitive analysis.

To evaluate disparity and reduce bias in subpopulation-specific machine learning prognosis

for underrepresented patients, our contribution includes:

• We provide empirical evidence showing severe racial and age prediction disparities

using two large medical datasets (MIMIC III and SEER) and the deceptive nature of

common conventional metrics such as overall accuracy and AUC-ROC.

• We evaluate the bias-correction ability of sampling methods (Gamma, ADASYN,

SMOTE, replicated oversampling, Nearmiss-1, Nearmiss-3, Distant, random oversam-

pling, stratified sampling, and sampling using a generative neural network), model

reweighting method, model objective constraint method (Seldonian algorithm).

• We propose a new double prioritized (DP) bias correction technique and an equivalent

prioritized reweighting technique for reducing disparity and increasing fairness among

demographic population groups.

6 CHAPTER 1. INTRODUCTION

We discuss our developed methodology, analysis techniques, and insights in detail in the

following chapters. Our developed methodologies can be applied to other critical application

domains.

1.3 Dissertation Organization

The structure of this dissertation is as follows. Chapter 2 is the literature review about

the related studies. Chapter 3 introduces scientific comparisons of the accuracy and scala-

bility of cryptographic API misuse detection using two benchmarks. Chapter 4 focuses on

empirical evidence of severe racial and age prediction bias in healthcare prognosis and the

bias-correction ability of proposed double prioritized (DP) sampling methods compared to

other state-of-the-art sampling methods. Chapter 5 concludes the dissertation and discusses

future works.

Chapter 2

Review of Literature

In this chapter, we discuss existing literature on cryptographic vulnerability detection bench-

marks and machine learning prediction bias.

2.1 Cryptographic Vulnerability Detection Benchmarks

AndroZoo++ [99] is a collection of over eight million Android apps [8] that drives a lot of

security, software engineering, and malware analysis research. However, vulnerabilities in

these apps are not documented, hence not suitable for vulnerability detection benchmarking

purposes.

DroidBench [46], a benchmark containing vulnerable android apps, fills the gap by provid-

ing specific vulnerability locations within the benchmark. To date, DroidBench is one of

the most popular benchmarks to evaluate the performance of vulnerability detection tools

in Android literature. In total, DroidBench has 119 APKs from 13 categories (Commit id

0fe281b). Categories include vulnerabilities that use field and object sensitivity, inter-app

communication, inter-component communication, android life-cycle, reflection, etc. How-

ever, DroidBench i) does not cover cryptographic misuse vulnerabilities and ii) does not

have source code. To the best of our knowledge, Ghera [107] is the only Android app bench-

mark that contains app source code. Like DroidBench, most of the vulnerabilities in Ghera

are specific to Android apps and barely contain any cryptographic misuse vulnerabilities.

7

8 CHAPTER 2. REVIEW OF LITERATURE

To be specific, CryptoAPI-Bench and Ghera have only 2 types of vulnerabilities in common.

OWASP benchmark [64] is fundamentally designed to capture eleven cybersecurity vulner-

abilities. However, among the detected vulnerabilities, it builds to address only three Java

cryptographic vulnerabilities, i.e., weak encryption algorithms, weak hash algorithms, and a

weak random number. SonarSource [29] released a set of vulnerability samples that can be

useful to check for coverage of vulnerability categories. A verification tool for five common

audit controls is proposed for ensuring continuous compliance [92]. MASC framework [44]

is designed to evaluate static analysis tools using mutation testing. However, it considers

limited complex cases.

The DaCapo benchmarks [59] are designed to evaluate the performance of various compo-

nents of Java virtual machine (JVM), Garbage collection (GC), Just-in-time (JIT) compiler

itself. BugBench [100] is a benchmark to find C/C++ bugs that contain 17 real-world ap-

plications. BugBench mostly covers various memory, concurrency, and semantic bugs. To

detect bugs in the multi-threaded Java programs, a benchmark and framework have been

proposed [74, 82]. Coding practice and recommendations are provided for 28 enterprise ap-

plications that use Spring security framework [86]. ManyBugs and IntroClass benchmarks

are designed to evaluate various C/C++ code repair techniques [97]. Most of the defects in

ManyBugs and IntroClass do not impact security, e.g., in the ManyBugs benchmark, more

than half of the instances impact correctness, not necessary security.

2.2 Bias in Machine Learning

A widely used bias-correction approach to the data imbalance problem is sampling. Over-

sampling, e.g., replicated oversampling (ROS), is to balance a dataset by adding samples of

the minority class; undersampling, e.g., random undersampling (RUS), is to balance a dataset

2.2. BIAS IN MACHINE LEARNING 9

by removing samples of the majority class [137]. An improvement is the K–nearest neigh-

bor (K–NN) classifier–based undersampling technique [103] (e.g., NearMiss1, NearMiss2,

NearMiss3, Distant) that selects samples from the majority class based on distance from

minority class samples. State-of-the-art solutions are all oversampling methods, including

Synthetic Minority Over-sampling Technique (SMOTE) [65], Adaptive Synthetic Sampling

(ADASYN) [83], and Gamma [91]. All three methods generate new minority points based on

existing minority samples, namely using linear interpolation [65], gamma distribution [91], or

at the class border [83]. However, existing sampling techniques are not designed to address

subgroup biases, as they sample the entire minority class. These methods do not differen-

tiate demographic subgroups (e.g., Black patients or young patients under 30). Thus, it is

unclear how well existing sampling solutions reduce accuracy disparity.

Besides sampling, reweighting is another existing method for mitigating the data imbalance

and correcting the prediction bias. Existing studies showed that sampling performance is

more effective than reweighing from both theoretical and experimental perspectives for neural

networks [45, 128].

Ribeiro et al. [124] evaluate the consistency of the question-answer model built on natural

language processing. They generate implications and ask questions differently in order to

see whether the model can answer the implicated question. Ribeiro et al. [125] propose

behavioral testing of the NLP models using different templates. They used different words

using the template and see whether the prediction changes from the expected prediction.

Several works are done on fairness testing [42, 78] where changing sensitive attribute (e.g.,

gender, age, race) information should not change the outcome. These approaches can be

more applicable to specific prediction tasks such as hiring decisions [60], loan approval [109]

prediction, etc. However, in the medical field, sensitive attributes are important in decision-

making.

Chapter 3

Cryptographic API Benchmarks

In this chapter, we specify our developed cryptographic API benchmarks that facilitate

scientific in-depth comparisons among existing tools.

3.1 Introduction

Various studies have shown that a vast majority of Java and Android applications mis-

use cryptographic libraries and APIs, causing devastating security and privacy implications.

The most pervasive cryptographic misuses include exposed secrets (e.g., secret keys and pass-

words), predictable random numbers, use of insecure crypto primitives, vulnerable certificate

verification [73, 75, 79, 104, 121, 122].

Several studies showed that the prominent causes for cryptographic misuses are the deficiency

in understanding of security API usage [35, 104], complex API designs [35, 111], the lack

of cybersecurity training [104], insecure code generation tools [115] and insecure/misleading

suggestions in Stack Overflow [36, 104]. The reality is that most developers, with tight

project deadlines and short product turnaround time, spend little effort on improving their

knowledge or hardening their code for long-term benefits [49]. Recognizing these practical

barriers, automatic cryptographic code generation [96], and misuse detection tools [122] play

a significant role in assisting developers with writing and maintaining secure code.

10

3.1. INTRODUCTION 11

The security community has produced several impressive static (e.g., CryptoLint [73], CrySL [95],

FixDroid [113], MalloDroid [75], CryptoGuard [122]) and dynamic code screening tools (e.g.,

Crylogger [118], SMV-Hunter [131], and AndroSSL [76]) to detect API misuses in Java. The

static analysis does not require a program to execute, rather it is performed on a version of

the code (e.g., source code, intermediate representations or binary). Many abstract security

rules are reducible to concrete program properties that are enforceable via generic static

analysis techniques [47, 122]. Consequently, static analysis tools have the potential to cover

a wide range of security rules. In contrast, dynamic analysis tools require one to execute

a program and spend a significant effort to trigger and detect specific misuse symptoms at

runtime. Hence, dynamic analysis tools may be limited in their coverage. A code screening

tool needs to be scalable with wide coverage. Thus, static analysis-based tools are usually

more favorable than their dynamic counterparts.

However, a major weakness of static analysis tools is their tendency to produce false alerts.

False alerts substantially diminish the value of a tool. To reduce the number of false positives,

most of the static analysis tools offer a trade-off between completeness and scalability [101].

We define completeness as the ability to detect all the misuse instances and scalability as the

ability to induce low computational overhead to analyze large code bases. Designing tools

that would produce fewer false positives and false negatives with smaller computational

overhead help real-world deployment.

To advance and monitor the scientific progress of domains to produce effective tools, a

mechanism for comparative studies is required. Unfortunately, for the automatic detection of

cryptographic API misuses, no suitable mechanism or benchmark exists. Such a benchmark

needs to have several requirements: i) it should cover a wide range of misuse instances. ii)

it should cover interesting program properties (e.g., flow-, context-, field-, path-sensitivity,

etc.) [132, 139]. These are different detection capabilities required for capturing certain

12 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

vulnerabilities. iii) Test cases should be written in easily compilable source codes so that

both source code and binary code analysis tools can be easily evaluated.

None of the existing benchmarks follows these criteria (e.g., DroidBench [46], Ghera [107]).

For example, DroidBench [46] only contains binaries. Ghera [107] has sources of provided

Android apps. However, both DroidBench and Ghera barely cover cryptographic API mis-

uses.

We present two benchmarks for cryptographic API misuses. The first one is CryptoAPI-

Bench, a comprehensive benchmark for comparing the quality of cryptographic vulnerability

detection tools. It consists of 181 unit test cases covering 18 types of cryptographic misuses.

Several test cases include interesting program properties [132, 139]. Flow-sensitive correctly

computes and analyzes the order of statements in a program. Path-sensitivity analysis com-

putes different dataflow analysis information dependent on conditional branch statements.

The field-sensitive analysis distinguishes two fields containing the same object in a class.

A context-sensitive analysis is any interprocedural analysis that analyzes the target of a

function call.

The second one is ApacheCryptoAPI-Bench which is built upon 10 real-world Apache projects.

It contains early versions of activemq-artemis, deltaspike, directory-server, manifoldcf, meecr-

owave, spark, tika, tomee, wicket projects. We identify 121 crypto cases in them, including

82 basic cases and 39 advanced cases.

We run CryptoAPI-Bench and ApacheCryptoAPI-Bench on four static analysis tools (i.e.,

SpotBugs [30], CryptoGuard, CrySL, and Tool A (anonymous) and perform a comparative

analysis of these tools. These tools are i) capable of detecting cryptographic misuse vulnera-

bilities and ii) open-sourced and/or provide free evaluation license. CrySL and CryptoGuard

have open-sourced research prototypes that are actively being maintained to improve their

3.2. BACKGROUND 13

accuracy and coverage. SpotBugs is also an actively maintained open-source project, which

is the successor of FindBugs. Tool A is one of the most popular static analysis platforms for

decades.

Our main technical contributions are summarized as follows.

• We provide a benchmark named CryptoAPI-Bench, which consists of 181 test cases

covering 18 types of Cryptographic and SSL/TLS API misuse vulnerabilities. CryptoAPI-

Bench utilized various interesting program properties (e.g., field-, context-, and path

sensitivity) to produce a diverse set of test cases. Our benchmark is open-sourced and

can be found on GitHub [37].

• We provide another benchmark named ApacheCryptoAPI-Bench for checking the scal-

ability property of the cryptographic vulnerability detection tools. We document 121

test cases covering 12 types of Cryptographic and SSL/TLS API misuse vulnerabilities

from 10 real-world Apache projects. Detailed information regarding ApacheCryptoAPI-

Bench can be found on GitHub [38].

• We evaluate four static analysis tools that are capable of detecting cryptographic mis-

use vulnerabilities. Our experimental evaluation revealed some interesting insights.

For complex cases, specialized tools (e.g., CryptoGuard, CrySL) detect more crypto-

graphic misuses and cover more rules than general-purpose tools (e.g., SpotBugs, Tool

A). Currently, none of these tools supports path-sensitive analysis.

3.2 Background

In this section, we describe Java cryptographic API misuses that are often misused by de-

velopers and existing static vulnerability detection tools.

14 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

3.2.1 Java Cryptographic API Misuses

We consider 18 Java cryptographic API misuse categories for our benchmarks. We got

the insights of these misuse categories from previous literature [95, 113, 122], NIST docu-

ments [19, 53, 54], and other blogs [29]. We describe reasons for vulnerability and possible

secure solutions for these misuse categories.

1) Cryptographic Keys: For encryption, it is expected to use an unpredictable key using

javax.crypto.spec.SecretKeySpec API that takes a byte array as input. If the Byte array

is constant or hardcoded inside the code, the adversary can easily read the cryptographic

key and may obtain sensitive information. Therefore, an unpredictable byte array should be

used as a parameter in SecretKeySpec to generate a secure key.

2) Passwords in Password-based Encryption: Password-based Encryption (PBE) is a

popular technique of generating a strong secret key using javax.crypto.spec.PBEKeySpec

API. It takes three parameters (i.e., password, salt, and iteration count). However, if a

hardcoded or constant password is used in the code, then malicious attackers may obtain

the password and predict the key [73]. Therefore, an unpredictable password should be used

as a parameter in PBEKeySpec.

3) Passwords in KeyStore: Cryptographic keys and certificates are sometimes stored

using java.security.KeyStore API. The KeyStore employs a password to get access to

the stored keys and certificates. However, if a hardcoded or constant password is used for

KeyStore in the code, it poses a security threat of revealing keys and certificates stored in

the KeyStore. Therefore, an unpredictable random password should be used in KeyStore.

4) Credentials in String: Credentials (passwords, secret keys, etc) should not be stored

in the String variable. In Java, String is a final and immutable class stored in the heap. More

3.2. BACKGROUND 15

specifically, it exists in the memory until garbage collection. Therefore, sensitive information

should not be stored in String[25, 31]. Compared with String, it is highly recommended to

use mutable data structures (e.g., byte or char array) for sensitive information and clear it

immediately after use. This reduces the window of opportunity for an adversary. [21].

5) Hostname Verifier: HostnameVerifier in javax.net.ssl.HostnameVerifier API

verifies the hostname by checking the hostname’s authentication and identification. In some

cases, verify() method of HostnameVerifier class is set to return true by default so that the

verification method can quickly get past an exception. However, this arrangement causes

a security threat, where URL spoofing [7] attacks can be possible. URL spoofing makes it

simpler for numerous cyber-attacks (e.g., identity theft, phishing). In Fig. 3.1, Line 3 returns

true without verifying the hostname which is a major source of vulnerability.

1 public boolean verify(String hostname , SSLSession sslSession)

2 {

3 return true

4 }

Listing 3.1: Skipping hostname verification in the verify method of

javax.net.ssl.HostnameVerifier is insecure

6) Certificate Validation: Empty methods are often implemented to connect quickly

and easily with clients while using javax.net.ssl.X509TrustManager interface without

any certificate validation. In that case, the TrustManager accepts and trusts every entity

including the entity that is not signed by a trusted certificate authority. It may cause Man-

in-the-middle (MitM) attacks [3, 75].

7) SSL Sockets: javax.net.ssl.SSLSocket connects a specific host to a specific port.

However, before the connection, the hostname of the server should be verified and authen-

ticated using javax.net.ssl.HostnameVerifier API. However, incorrect implementation

16 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

omits the hostname verification when the socket is created [4, 79].

8) Hypertext Transfer Protocol: HyperText Transfer Protocol (HTTP) sends a request

to a server to retrieve a web page. However, HTTP allows hackers to intercept and read

sensitive information [55]. Therefore, it is recommended to use HyperText Transfer Protocol

Secure (HTTPS) which utilizes a secured socket layer to encrypt sensitive information. In

Listing. 3.2, a code snippet of secure and insecure URL usage using java.net.URL API is

presented.

1 URL urlInsecure = "http://time.com/"

2 URL urlSecure = "https://www.google.com";

Listing 3.2: Use of HTTP URL in java.net.URL API is inherently insecure

9) Pseudorandom Number Generator (PRNG): The generation of a pseudoran-

dom number using java.util.Random is vulnerable as the generated random number is not

completely random, because it uses a definite mathematical algorithm (Knuth’s subtractive

random number generator algorithm [93]) that is proven to be insecure. To solve the prob-

lem, java.security.SecureRandom provides non-deterministic and unpredictable random

numbers.

1 Random r = new Random();

2 SecureRandom sr = new SecureRandom();

3 int insecureSeed = r.nextInt();

4 int secureSeed = sr.nextInt();

5 byte [] bytes = {(byte) 100};

6 sr.setSeed(bytes);

7 int insecureSeed2 = sr.nextInt();

Listing 3.3: Generating seeds using java.util.Random is insecure. Random secure seeds

can be generated using java.security.SecureRandom API

3.2. BACKGROUND 17

10) Seeds in Pseudorandom Number Generator (PRNG) A constant or static

seed in java.security.SecureRandom can cause same outcome on every run. Therefore,

developers should use a non-deterministic random seed.

11) Salts in Password-based encryption: javax.crypto.spec.PBEParameterSpec

API takes salt as one of the parameters for Password-based encryption. Using constant

or static salts increases the possibility of a dictionary attack. The salt should be a ran-

dom number that produces a random and unpredictable key. In Fig. 3.4, Line 2 takes a

static/constant salt that is insecure to be used in PBEParameterSpec.

1 PBEParameterSpec pbeParamSpec = null;

2 byte[] salt = {(byte) 0xa2}

3 int count = 20;

4 pbeParamSpec = new PBEParameterSpec(salt, count);

Listing 3.4: javax.crypto.spec.PBEParameterSpec API usage is insecure if iteration count

is less than 1000 and salt is constant or predictable

12) Mode of Operation: The Electronic Codebook (ECB) mode of operation is insecure

to use in javax.crypto.Cipher as ECB-encrypted ciphertext can leak information about the

plaintext. Instead of ECB, Cipher Block Chaining (CBC) or Galois/Counter Mode (GCM)

is more secure to use. Table 3.1 provides a list of insecure and secure modes of operation.

13) Initialization Vector (IV): The initialization vector (IV) is used during encryp-

tion and decryption with several modes of operation. Static/constant initialization vector

introduces vulnerabilities for CBC mode of operation. Therefore, it is suggested to use

an unpredictable random initialization vector in crypto.spec.IvParameterSpec API. Note

that, for several modes of operation (e.g., CTR, CBC-MAC), unpredictable random IV is

not required.

18 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

14) Iteration Count in Password-based Encryption (PBE): The iteration count is

one of the parameters in javax.crypto.spec.PBEParameterSpec API. In PKCS #5 [108], it

is suggested that the number of iterations should be more than 1000 to provide a reasonable

security level. In Fig. 3.4, Line 3 takes an iteration count of 20 which is insecure to be used

in PBEParameterSpec.

15) Symmetric Ciphers: Symmetric ciphers use the same key for encryption and de-

cryption. There are a couple of vulnerable symmetric cipher algorithms, e.g., DES, Blow-

fish, RC4, RC2, and IDEA. For example, DES is a broken block cipher because it uses an

outdated block size (64 bits) that allows brute-force attack. RC4 is a flawed stream cipher

that produces a biased keystream while a pseudo-random keystream is required for security,

thus leading to several attacks (e.g., bit-flipping attack). To overcome the attacks, develop-

ers need to use a secure alternative AES which can support a block length of 128 bits and

key lengths of 128, 192, and 256 bits [1]. Table 3.1 provides a list of insecure and secure

symmetric ciphers. In Fig. 3.5, Line 1 is an insecure implementation of a symmetric cipher.

1 Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");

2 cipher.init(Cipher.ENCRYPT_MODE , key)

Listing 3.5: Use case of javax.crypto.Cipher API is insecure if DES symmetric cipher and

ECB mode of operation are used

16) Asymmetric Ciphers: In asymmetric cryptography, two keys, i.e., a public key and a

private key are used for encryption and decryption. RSA is considered insecure for 1024-bit

ciphers [54]. For this reason, developers are recommended to use RSA with a key size of

2048 bits or higher.

17) Cryptographic Hash Functions: A cryptographic hash function generates a fixed-

length alphanumeric hash value or message digest which is commonly used in verifying

3.2. BACKGROUND 19

Table 3.1: Secure and insecure use of the mode of operation (12), symmetric cipher (15),
cryptographic hash function (17)

Cryptograhic API Secure Insecure
Mode of Operation CBC, GCM ECB
Symmetric Cipher AES DES, Blowfish, RC4, RC2, IDEA
Hash Function SHA-256 SHA1, MD5, MD4, MD2

message integrity, digital signature, and authentication. A cryptographic hash function is

contemplated as broken if a collision can be observed, i.e., the same hash value is generated

for two different inputs. The list of broken hash functions includes SHA1, MD4, MD5, and

MD2. Therefore, developers need to use a strong hash function, e.g., SHA-256. Table 3.1

provides a list of insecure and secure hash functions. In Fig. 3.6, a code snippet of the broken

hash function test case is shown.

1 MessageDigest md=MessageDigest.getInstance("MD5");

2 md.update(message.getBytes());

Listing 3.6: Use case of java.security.MessageDigest API is insecure if MD5 is used. Hash

function SHA-256 is secure

18) Cryptographic MAC: A MAC algorithm HmacMD5 and HmacSHA1 are considered

insecure as these are susceptible to collision attacks [57]. Therefore, the developers need to

use a strong MAC algorithm, e.g., HmacSHA256.

3.2.2 Java Cryptographic API Vulnerability Detection Tools

We summarize the vulnerability detection tools that we choose to run on CryptoAPI-Bench

and ApacheCryptoAPI-Bench. We consider three criteria while choosing the analysis tools.

(1) Open-sourced tools: The open-sourced vulnerability detection tools, i.e., CrySL [95, 141],

CryptoGuard [122], SpotBugs [30] are convenient to use as we are able to analyze their

20 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

codes and understand the reason for their lack of performance. (2) Static analysis tools:

We choose static analysis tools that can examine and detect vulnerability without executing

the code. SpotBugs, CryptoGuard, CrySL, and Tool A are static analysis tools. (3) Free

cryptographic vulnerability detection services: We consider Tool A as a provider of free

cryptographic vulnerability detection services. Tool A is not open-sourced. However, Tool

A provides online services to detect vulnerabilities.

We also consider GrammaTech [16], QARK [23] and FixDroid [113]. However, GrammaTech

is a commercial tool. We were unable to access its trial version. The online SWAMP [68]

contains GrammaTech tool to use that only supports vulnerability detection for C and C++.

Therefore, we excluded GrammaTech from our list of tools. QARK is a tool that is mainly

designed to capture security vulnerabilities in Android applications. FixDroid is built as a

research prototype that is embedded as a plugin in Android Studio to conduct a usability

study. Our investigation shows that the detection capability of FixDroid and QARK is

limited. Though QARK has been maintained and updated, FixDroid has not been updated

since 2017. Therefore, we mainly focus on four tools, i.e., SpotBugs, CryptoGuard, CrySL,

and Tool A to evaluate on CryptoAPI-Bench. We choose to anonymize Tool A’s name. Tool

A has an educational license that generally does not allow publishing comparison with other

tools.

SpotBugs

SpotBugs is a static analysis tool also for capturing deficiencies in Java code. The tool is

built based on a plugin structure. The tools detect defects by utilizing visitor patterns in

class files or bytecodes of Java, state machine, and flags. We use the SpotBugs tool (version

3.1.12) available online in SWAMP [68]. However, currently, SWAMP is in the transition to

a new host service [33].

3.3. DESIGN OF BENCHMARKS 21

CryptoGuard

CryptoGuard [122] is a static analysis tool that is operated based on program slicing with

novel language-based refinement algorithms. It significantly reduces the false positive rate

which is a typical problem for static analysis. Furthermore, CryptoGuard covers 16 crypto-

graphic rules and achieves high precision. The authors showed screening a large number of

Apache projects and Android apps to present their high precision rate and low false positive

rate. We run the experiment on CryptoGuard (commitID: 97b220) available on GitHub [11].

CrySL

CrySL [95] is a domain-specific language for cryptographic libraries. The static analysis

CogniCryptSAST takes the rules provided in the specification language CrySL as input and

performs a static analysis based on the specification of the rules. CrySL is open-sourced and

we run the experiment on CrySL (commit ID: 004cd2) available on GitHub [12].

3.3 Design of Benchmarks

We developed two benchmarks, CryptoAPI-Bench and ApacheCryptoAPI-Bench. In this

section, we explain how we design these benchmarks to help developers to identify vulner-

abilities in their tools. We include 18 cryptographic misuse categories (discussed in the

Background Section) in these benchmarks.

22 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

3.3.1 Design of CryptoAPI-Bench

In CryptoAPI-Bench, we manually generate 181 unit test cases guided by 18 types of misuses

presented in Section 3.2.1. We divide all test cases into two types, i.e., basic cases and

advanced cases. These test cases incorporate the majority of possible variations in the

perspective of program analysis to detect cryptographic vulnerability.

Basic Cases

Basic test cases are simple ones where the probable source of vulnerability for Crypto

API exists within the same method. For example, Listing 1 shows that Cipher API takes

cryptoAlgo as an argument. Note that, cryptoAlgo contains an insecure cipher algorithm

that is defined within the same method (method1). In CryptoAPI-Bench, we create 45 basic

test cases covering all 18 misuse categories. Among these test cases, 30 test cases contain

cryptographic vulnerability (i.e., true positive), and 15 test cases do not contain any cryp-

tographic vulnerability (i.e., true negative). These test cases identify a tool’s capability to

detect a specific misuse category. An example code snippet of a basic test case is presented

in Listing 3.7.

1 public void method1 ()

2 { ...

3 cryptoAlgo = "DES/ECB/PKCS5Padding"

4 Cipher cipher = Cipher.getInstance(cryptoAlgo)

5 ...

6 }

Listing 3.7: Example code snippet of a basic test case

3.3. DESIGN OF BENCHMARKS 23

Table 3.2: CryptoAPI-Bench: Summary of unit test cases. There are 181 unit test cases
with 45 basic cases and 136 advanced cases (interprocedural, field sensitive, combined case,
path sensitive, miscellaneous, and multiple class test cases). Total test cases per group and
misuse categories are summarized here. Details information are presented in Section 3.3.1.

No. Misuse Categories Basic
Cases

Two-
Interproc.

Three-
Interproc.

Field
Sen.

Comb.
Case

Path
Sen. Misc. Multi.

Class

Total
Cases

per
Categ.

1 Cryptographic Key 2 1 1 1 1 1 1 1 9
2 Password in PBE 3 1 1 1 1 1 2 1 11
3 Password in KeyStore 2 1 1 1 1 1 2 1 10
4 Hostname Verifier 2 0 0 0 0 0 0 0 2
5 Certificate Validation 3 0 0 0 0 0 0 0 3
6 SSL Socket 1 0 0 0 0 0 0 0 1
7 HTTP Protocol 2 1 1 1 1 1 0 1 8
8 PRNG 2 0 0 0 0 0 0 0 2
9 Seed in PRNG 3 2 2 2 2 2 2 2 17
10 Salt in PBE 2 1 1 1 1 1 1 1 9
11 Mode of Operation 2 1 1 1 1 1 0 1 8
12 Initialization Vector 2 1 1 1 1 1 2 1 10
13 Iteration in PBE 2 1 1 1 1 1 1 1 9
14 Symmetric Ciphers 6 5 5 5 5 5 0 5 36
15 Asymmetric Ciphers 1 1 1 0 1 1 0 1 6
16 Cryptographic Hash 5 4 4 4 4 4 0 4 29
17 Cryptographic MAC 3 0 0 0 0 0 0 0 3
18 Credentials in String 2 1 1 1 1 0 1 1 8
Total Cases per Group 45 21 21 20 21 20 12 21 181

Advanced Cases

The advanced cases are more complex compared to basic cases where the probable source of

vulnerability of a Crypto API appears from other methods, classes, field variables, or con-

ditional statements. In CryptoAPI-Bench, we include 136 advanced cases. The distribution

of advanced cases is presented from the fourth to tenth columns of Table 3.2.

Interprocedural Cases

In interprocedural cases, the probable source of vulnerability in a Crypto API comes from

other methods (i.e., procedures). We create two types of interprocedural cases: two-interprocedural

(i.e., involving two methods) and three-interprocedural (i.e., involving three methods). In

a two-interprocedural test case, the probable source of vulnerability comes from another

method as a parameter. Listing 3.8 shows the code snippet of a two-interprocedural test

24 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

case. In method2, Cipher API takes cryptoAlgo as an argument, and cryptoAlgo is not

defined in method2, rather, it comes from another method method1. The assigned value of

cryptoAlgo in method1 shows that the test case is insecure.

1 public void method1 ()

2 { ...

3 cryptoAlgo = "DES/ECB/PKCS5Padding"

4 method2(cryptoAlgo)

5 ...

6 }

7 public void method2 (String cryptoAlgo)

8 { ...

9 Cipher cipher = Cipher.getInstance(cryptoAlgo)

10 ...

11 }

Listing 3.8: Example code snippet of a two-interprocedural test case

In three-interprocedural test cases, the probable source of vulnerability comes from two

consecutive methods (i.e., source defined in one method, passes to another method, and

then passes again to be used in Cipher API). CryptoAPI-Bench contains a total of 42 in-

terprocedural test cases. Among them, 21 are two-interprocedural test cases, and 21 are

three-interprocedural test cases. The purpose of having the interprocedural test cases is to

check the detection tool’s interprocedural data flow handling capability.

Field Sensitive Cases

In field-sensitive cases, the probable source of cryptographic vulnerabilities can be detected

by the analysis tools if the tools are capable of performing field-sensitive data flow analysis.

Field-sensitive refers to an analysis that is able to differentiate multiple fields or variables

3.3. DESIGN OF BENCHMARKS 25

with the same object [132]. In Listing 3.9, algo is an instance or field variable in the Crypto

class. The constructor Crypto() stores algo with defAlgo object. A class member function

encrypt() uses this algo value in Cipher API. Both algo and defAlgo contain the same

object, i.e., a secure or insecure cipher algorithm. This is a field-sensitive case as the tools

need to trace the field variable algo as the probable source of vulnerability. CryptoAPI-

Bench contains 20 field-sensitive test cases.

1 class Crypto {

2 String algo

3 public Crypto (String defAlgo) {

4 algo = defAlgo;

5 }

6 public void encrypt(...) {

7 ...

8 Cipher cipher = Cipher.getInstance(algo);

9 ...

10 }

11 }

Listing 3.9: Example code snippet of a field sensitive test case

Combined Cases

The combined cases are a bit more complex where both interprocedural and field sensitivity

properties are combined, i.e., both Listing 3.8 and Listing 3.9 are incorporated to generate

complicated test cases. CryptoAPI-Bench has 21 combined test cases.

26 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

Path-Sensitive Cases

In path-sensitive test cases, conditional branch instructions are included in the test cases

containing the definition of the probable source of a vulnerability. In Listing 3.10, an example

code snippet of a path sensitivity case is given. Depending on the choice variable, the Cipher

is getting the instance from a secure or an insecure cryptographic algorithm. There are 20

path-sensitive test cases in CryptoAPI-Bench.

1 public void method1 (int choice) {

2 ...

3 Cipher ch = Cipher.getInstance ("DES/ECB/...") ;

4 if (choice > 1) {

5 ch = Cipher.getInstance ("AES/CBC/...") ;

6 }

7 ch.init (Cipher.ENCRYPT_MODE , key) ;

8 ...

9 }

Listing 3.10: Example code snippet of a path sensitive test case

Miscellaneous Cases

Miscellaneous test cases evaluate the tool’s abilities to recognize irrelevant constraints and

other interfaces, e.g., Map. In Listing 3.11, the Map interface of Line 3-6 provides a secure

key or insecure key depending on the choice variable. The Map indices (e.g., “a”, “b”)

represent only index values, not security-relevant values. Similarly, in Line 8, the “UTF-8”

represents byte encoding, not any constant or hard-coded value. CryptoAPI-Bench contains

12 miscellaneous test cases.

3.3. DESIGN OF BENCHMARKS 27

1 public void method1 (String choice) {

2 ...

3 Map<String ,String > hm = new HashMap <String , String >();

4 hm.put(``a", secureKeyString);

5 hm.put(``b", insecureKeyString);

6 String keyString = hm.get(choice);

7

8 byte [] b = secureKeyString.getBytes("UTF-8");

9 IvParameterSpec ivSpec = new IvParameterSpec(b);

10 ...

11 }

Listing 3.11: Example code snippet of a miscellaneous test case

Multiple Class Cases

In multiple class test cases, the probable source of vulnerabilities comes from another Java

class. An example code snippet of a multiple class case is presented in Listing 3.12. It

is necessary to detect whether a secure or an insecure algorithm is passed in Line 4 in

MultipleClass1 and used in Line 9 in MultipleClass2. CryptoAPI-Bench has 21 multiple-

class test cases.

3.3.2 Design of ApacheCryptoAPI-Bench

We include the early version of real-world large 10 Apache projects to check the scalability

property of different tools. The second and third columns of Table 3.3 show the number

of Java files and lines of Java Code in Apache projects. The spark project is the largest

among 10 considered projects containing 2,005 Java files with 311,856 lines of code. The

28 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

meecrowave project contains the lowest number of Java files (40 Java files) and deltaspike

contains the lowest number of lines of code (i.e., 5,116 LoC).

1 public class MultipleClass1 {

2 public void method1 (String passedAlgo) {

3 MultipleClass2 mc = new MultipleClass2 ();

4 mc.method2 (passedAlgo);

5 }

6 }

7 public class MultipleClass2 {

8 public void method2 (String cryptoAlgo) {

9 Cipher c = Cipher.getInstance (cryptoAlgo);

10 }

11 }

Listing 3.12: Example code snippet of a multiple class test case

We enlist 121 test cases in our ApacheCryptoAPI-Bench [41]. Among them, 82 test cases are

basic cases, i.e., the vulnerability rise within the same method. There are 39 advanced test

cases where probable source vulnerability comes from other methods (interprocedural cases),

other classes (multiple class cases), class variables (field sensitive cases), etc. We detect 64

cryptographic misuses, i.e., true positive alerts. Regarding true negatives, we consider only

the cases where a tool shows the case as a false alert. With this consideration, we show 57

true negative cases.

We look into the Apache projects in the Benchmark and made detailed documentation. The

documentation consists of cryptographic vulnerabilities the project contains, an explanation

of the error, and the location (file name, method name, line number) of the vulnerabilities.

The documentation and corresponding ApacheCryptoAPI-Bench benchmark are available in

the GitHub repository [38].

3.4. EVALUATION AND FINDINGS 29

Table 3.3: ApacheCryptoAPI-Bench: Summary of unit test cases. Contents (number of
Java files and lines of code) of the considered Apache projects are summarized here. There
is a total number of 121 unit test cases with 82 basic cases and 39 advanced cases. Details
information are presented in Section 3.3.2.

Test Cases
Apache
Project

Number of
Java Files

Lines of
Code Total Case Basic Case Advanced Cases TP TN

deltaspike 87 5116 8 5 3 2 6
directory-server 468 20780 36 15 21 19 17
incubator-taverna-workbench 45 9919 8 5 3 8 0
manifoldcf 126 16998 7 4 3 3 4
meecrowave 40 5646 3 3 0 3 0
spark 2005 311856 26 25 1 12 14
tika 225 16558 2 1 1 0 2
tomee 1029 118661 9 7 2 7 2
wicket 204 13442 9 7 2 7 2
artemis-commons 126 8915 15 12 3 7 8

Total 121 82 39 64 57

3.4 Evaluation and Findings

In this section, we evaluate the results for four cryptographic misuse detection tools, i.e.,

SpotBugs, CryptoGuard, CrySL, and Tool A. We show the experimental setup, evaluation

criteria, and analysis results of both CryptoAPI-Bench and ApacheCryptoAPI-Bench.

3.4.1 Experimental Setup

We evaluate mainly four cryptographic analysis tools, i.e., SpotBugs [30], CryptoGuard [122],

CrySL [95], Tool A on both Benchmarks. We follow the instructions from GitHub to set

up the environment of CryptoGuard and CrySL in our machine to perform the analysis.

We upload JAR files from CryptoAPI-Bench and Apache projects into the SpotBugs tool

available in SWAMP. Tool A is an online tool that takes GitHub links and compressed code

files in order to start analysis.

30 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

Table 3.4: Generated alert keywords for each misuse category from cryptographic vulner-
ability detection tools (SpotBugs, CryptoGuard, CrySL, and Tool A). For example, for
misuse category 17 (i.e., Cryptographic Hash), the generated alert keywords in tools are
WEAK_MESSAGE_DIGEST, broken hash scheme, ConstraintError, RISKY_CRYPTO,
respectively.

No. SpotBugs CryptoGuard CrySL Tool A
1 HARD_CODE_PASSWORD Constant keys RequiredPredicateError HARDCODED_CREDENTIALS
2 HARD_CODE_PASSWORD Constant keys HardCodedError HARDCODED_CREDENTIALS
3 HARD_CODE_PASSWORD Predictable password HardCodedError HARDCODED_CREDENTIALS
4 — — RequiredPredicateError —
5 WEAK_HOSTNAME_VERIFIER Manually verify hostname — BAD_CERT_VERIFICATION
6 WEAK_TRUST_MANAGER Untrusted TrustManager — BAD_CERT_VERIFICATION
7 – Does not manually verify socket — RESOURCE_LEAK
8 — HTTP protocol — —
9 PREDICTABLE_RANDOM Untrusted PRNG — —

10 — Predictable Seed RequiredPredicateError PREDICTABLE_RANDOM_SEED
11 — Constant Salt RequiredPredicateError —
12 CIPHER_INTEGRITY Broken crypto scheme ConstraintError RISKY_CRYPTO
13 STATIC_IV Constant IV RequiredPredicateError —
14 — <1000 iteration ConstraintError —
15 CIPHER_INTEGRITY Broken crypto scheme ConstraintError RISKY_CRYPTO
16 — Export grade public key ConstraintError —
17 WEAK_MESSAGE_DIGEST Broken hash scheme ConstraintError RISKY_CRYPTO
18 — — ConstraintError —

3.4.2 Evaluation Criteria

We evaluate the vulnerability detection tools by running these tools on our benchmarks.

After performing the analysis, we capture true positives, false positives, and false negatives

from the corresponding tool’s result log. As our purpose is to detect cryptographic vul-

nerability detection, we consider only cryptographic misuse alerts and discard others. In

Table 3.4, we present the alert keywords that detection tools use while showing a specific

cryptographic misuse. This can assist developers to understand which keyword they should

search in the result log to find a specific type of vulnerability. In the following, we provide

a brief description of our process of identification of true positive, false positive, and false

negative alerts.

• True positive (TP): If a tool generates an alert due to the correct reason while

screening any specific vulnerable unit test case in CryptoAPI-Bench, then the event is

considered a true positive.

• False positive (FP): The false positive alert can be captured from two different

scenarios. If an alert raised by a tool is unexpected (i.e., does not exist in a specific

3.4. EVALUATION AND FINDINGS 31

unit test case), then the alert is a false positive. In addition, if a tool gives an inaccurate

reason for an expected alert, then it is also considered a false positive.

• False negative (FN): A vulnerable test case may not be detected by the evaluation

tools. This missed detection is characterized as a false negative.

After analyzing the results by determining the true positive (TP), false positive (FP), and

false negative (FN) values, we compute the recall and precision to determine the performance

of the tools.

3.4.3 Evaluation on CryptoAPI-Bench

In this section, we describe CryptoAPI-Bench evaluation findings on each detection tool

based on the result log and performance analysis. Table 3.5 presents the number of true

positive and false positive vulnerability threat detection captured by the tools for 18 cryp-

tographic misuse categories. There are only 6 common cryptographic misuse categories

detected by all tools. To ensure fairness in comparison, we consider only these 6 common

cryptographic misuses while finding the comparative analysis results of tools based on the

basic and advanced benchmark in Table 3.6 and Table 3.7, respectively. The analysis results

are presented in terms of false positive rate (FPR), false negative rate (FNR), recall, and

precision.

Analysis Overview: Table 3.5 shows that among the 18 specified high-impact crypto-

graphic misuse categories in Section 3.2.1, the cryptographic vulnerability detection tools

are able to detect a subset of rules.

• SpotBugs, CryptoGuard, CrySL, and Tool A cover 9, 16, 14, and 10 cryptographic

misuse categories, respectively.

32 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

Table 3.5: CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and Tool A
on all 18 rules with CryptoAPI-Bench’s 181 test cases. There are 37 secure API use cases
(15 in basic and 22 in advanced), which a tool should not raise any alerts on. GTP stands
for ground truth positive, which is the number of insecure API use cases in the benchmark.
Findings of the table are reported in Section 3.4.3.

No. Misuse Categories GTP SpotBugs CryptoGuard CrySL Tool A
TP FP TP FP TP FP TP FP

1 Cryptographic Key 7 0 3 5 1 0 8 5 1
2 Password in PBE 8 2 0 7 1 0 10 7 1
3 Password in KeyStore 7 1 1 7 1 0 10 5 1
4 Credentials in String 7 – – – – 0 8 – –
5 Hostname Verifier 1 – – 1 0 – – 1 0
6 Certificate Validation 3 3 0 3 0 – – 3 0
7 SSL Socket 1 – – 1 0 – – 1 0
8 HTTP Protocol 6 – – 6 1 – – – –
9 PRNG 1 1 0 1 0 – – – –
10 Seed in PRNG 14 – – 11 2 0 15 1 2
11 Salt in PBE 7 – – 6 1 6 1 – –
12 Mode of Operation 6 1 3 6 1 5 1 1 1
13 Initialization Vector 8 3 6 7 1 7 1 – –
14 Iteration Count in PBE 7 – – 5 1 5 3 – –
15 Symmetric Cipher 30 5 11 30 5 25 5 4 4
16 Asymmetric Ciphers 5 – – 4 1 5 1 – –
17 Cryptographic Hash 24 4 8 24 4 20 4 4 4
18 MAC Algorithm 2 – – – – 2 0 – –

Total 144 20 32 124 20 75 67 32 14

• In total, the benchmark contains 144 vulnerable test cases and among these true pos-

itive cases, SpotBugs, CryptoGuard, CrySL, and Tool A detect 20, 124, 75, and 32

cases, respectively.

• In addition, SpotBugs, CryptoGuard, CrySL, and Tool A also generate 32, 20, 67, and

14 false alarms, respectively that are included as false positive cases.

Analysis on Basic Benchmark

Table 3.6 shows the performance analysis result of four detection tools on six common crypto-

graphic misuse categories based on the basic benchmark. We capture the following findings:

• SpotBugs shows 3 false positive errors. It detects all cases except one. SpotBugs is not

3.4. EVALUATION AND FINDINGS 33

Table 3.6: CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and Tool A
on six common misuse categories with CryptoAPI-Bench’s common 21 basic cases. TP, FP,
and FN stand for true positive, false positive, and false negative, respectively. Findings of
the table are reported in Section 3.4.3.

SpotBugs CryptoGuard CrySL Tool A
Basic Test Cases TP

Count
TN

Count TP FP FN TP FP FN TP FP FN TP FP FN

IntraProcedural 14 6 13 3 1 14 0 0 10 7 4 13 0 1
Recall (%) 92.86 100.00 71.43 92.86

Result Precision (%) 81.25 100.00 58.82 100.00

designed to capture threats in the basic case of vulnerable cryptographic key misuse.

• CrySL produces 7 false positive errors due to maintaining strict rules in Crypto APIs

of the cryptographic key, password in PBE, and password in KeyStore.

• Tool A does not generate any false positive errors. It can successfully detect every

vulnerability except one. Tool A is not designed to capture IDEA as a vulnerable

cryptographic algorithm.

• For insecure uses of pseudo-random number generators, SpotBugs and CryptoGuard

flag all uses of java.util.Random. However, CrySL flags the insecure random variable

when used in crypto contexts.

In summary, for all basic cases, CryptoGuard and Tool A generate a precision of 100%.

SpotBugs and CrySL produce some false positives and hence generate a precision of 81.25%,

and 58.82% respectively.

Analysis on Advanced Benchmark

Table 3.7 shows the performance analysis result of four detection tools on six common cryp-

tographic misuse categories based on the advanced benchmark. We capture the following

findings:

34 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

• In the prospect of path sensitivity, it is obvious that none of the cryptographic vulner-

ability detection tools is path-sensitive in their static analysis. The tools generate 10,

13, 13, and 12 false positive alerts for path-sensitive cases, respectively. The possible

reason for the false positive alert is that for the concerned variable, a container is de-

fined to store all values of the concerned variable. There is no ordered list that shows

the latest assignment. Therefore, alerts will be raised if the container contains any

vulnerable value that is intended to be used in the Crypto API. A significant reason

for having a high false positive rate is because of the tools being path insensitive.

• SpotBugs is not designed to capture vulnerability threats in advanced cases. Therefore,

it shows 0% precision and recall.

• SpotBugs produces 12 false positives for combined cases. In combined cases, SpotBugs

failed to detect the source of vulnerability using both interprocedural and field-sensitive

analysis. For example, in Symmetric Cipher cases, instead of showing the correct “CI-

PHER_INTEGRITY” alert, it produces an incorrect “HARD_CODE_PASSWORD”

alert.

• CryptoGuard performs better than other tools in terms of both precision and recall.

The reasons behind this include 1) Cryptoguard performs dataflow analysis based on

forward slicing and backward slicing that efficiently handles the advanced cases, 2)

CryptoGuard follows several refinement insights that systematically remove irrelevant

constants, hence reducing false positives. However, as being a static analysis tool,

CryptoGuard cannot handle path-sensitive cases. In addition, CryptoGuard missed 3

vulnerabilities due to clipping orthogonal method invocation (i.e., limiting the depth

to visit the callee method).

• CrySL produces incorrect “RequiredPredicateError” alerts for the cryptographic key,

3.4. EVALUATION AND FINDINGS 35

Table 3.7: CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and Tool A
on six common misuse categories with CryptoAPI-Bench’s common 84 advanced cases. TP,
FP, and FN stand for true positive, false positive, and false negative, respectively. Findings
of the table are reported in Section 3.4.3.

SpotBugs CryptoGuard CrySL Tool A
Advanced
Test Cases

TP
Count

TN
Count TP FP FN TP FP FN TP FP FN TP FP FN

Two-Interprocedural 13 0 0 0 13 12 0 1 10 3 3 3 0 10
Three-Interprocedural 13 0 0 0 13 12 0 1 10 3 3 3 0 10
Field Sensitive 13 0 0 0 13 13 0 0 10 2 3 1 0 12
Combined Case 13 0 0 12 13 12 0 1 0 2 13 3 0 10
Path Sensitive 0 13 0 10 0 0 13 0 0 13 0 0 12 0
Miscellaneous Cases 3 2 0 0 3 3 0 0 0 5 3 0 0 3
Multiple Class methods 13 0 0 0 13 13 0 0 10 3 3 3 0 10

Recall (%) 0.00 95.59 58.82 19.12
Results Precision (%) 0.00 83.33 56.34 52.00

password in PBE, and password in KeyStore misuse test cases that contribute to

generating a high false positive rate. The reason is that the cryptographic APIs used in

these cases follow strict rules in CrySL. Therefore, even if we use a secure unpredictable

byte array as an argument for crypto APIs, it still generates incorrect alerts.

• Tool A is not designed to detect vulnerable ciphers and cryptographic hash functions in

advanced cases. That is the reason for having high false negative values and generating

high FNR in Tool A. Tool A is a close-sourced detection tool. Therefore, we are unable

to confirm the reason for the incorrect detection cases.

In summary, for all of the advanced cases, SpotBugs is not designed to identify the advanced

vulnerability threats correctly. Therefore, the precision rate is 0%. CryptoGuard detects

fairly well (missed only 3 cases) among all detection tools with a precision of 83.33%. CrySL

produces a precision of 56.34%. Tool A generates a precision of 52.00%.

3.4.4 Evaluation on ApacheCryptoAPI-Bench

Table 3.8 presents the number of true positive and false positive vulnerability threats detected

by the tools. CrySL fails to analyze spark and artemis-commons projects. Tool A fails to

36 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

analyze artemis-commons project. SpotBugs and CryptoGuard successfully analyze all 10

projects. Overall, we capture the following findings.

• Tool A has a low false positive value. However, SpotBugs and CryptoGuard have high

false positive values of 26, and 29, respectively. The main reason is that CryptoGuard

and SpotBugs consider all usages of Java.util.Random as vulnerable whereas the ma-

jority of the random is used in a non-security context. We have discussed the reason

for generating high false positives for CrySL in Section 6.3.2.

• SpotBugs, CryptoGuard, CrySL, and Tool A can accurately detect 35, 37, 40, and 21

alerts respectively from 64 alerts. The main reason for missed alarms is that no tool

can detect all 18 types of vulnerabilities as shown in Table 3.4. For example, SpotBugs

and CryptoGuard cannot capture vulnerable crypto algorithm usage in SecretKeySpec

API. Among the successfully compiled programs (i.e., from 8 Apache projects), CrySL

captures 40 out of 45.

• After analyzing ten Apache projects, we find that there are 82 basic cases, whereas,

the number of advanced cases is only 39. Therefore, in real-world codes, the number of

basic cases is much higher than advanced cases. Vulnerability detection tools should

consider expanding their coverage to detect more categories of vulnerabilities.

• From Table 3.8, we observe that CrySL fails to analyze two Apache projects: spark

and artemis-commons. CrySL throws StackOverFlowError (i.e., memory error) dur-

ing analyzing objects for spark. The probable reason is the larger number of files

and lines of code Spark contains for analysis. For artemis-commons, CrySL throws

NullPointerErrorException during analysis due to the reference variable not pointing

to any object. Tool A fails to analyze only the artemis-commons project. Tool A is

a closed-source tool, therefore, we are unable to confirm the reason for this failure.

3.4. EVALUATION AND FINDINGS 37

Table 3.8: ApacheCryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL, and
Tool A on 10 Apache projects. GTP stands for ground truth positive, which is the number
of insecure API use cases in the Apache codes.

SpotBugs CryptoGuard CrySL Tool A
Apache Project GTP TP FP FN TP FP FN TP FP FN TP FP FN
deltaspike 2 2 0 0 2 0 0 2 3 0 2 0 0
directory-server 19 11 0 8 5 0 14 18 6 1 5 0 14
incubator-traverna-workbench 8 2 0 6 4 0 4 7 0 1 3 0 5
manifoldcf 3 0 3 3 0 3 3 3 2 0 2 1 1
meecrowave 3 3 0 0 2 0 1 2 0 1 2 0 1
spark 12 9 12 3 12 14 0 – – – 4 0 8
tika 0 0 0 0 0 0 0 0 2 0 0 0 0
tomee 7 3 1 4 4 2 3 6 0 1 3 1 4
wicket 3 0 2 3 3 2 0 2 2 1 0 0 3
artemis-commons 7 5 8 2 5 8 2 – – – – – –

Total 64 35 26 29 37 29 27 40 15 5 21 2 36

Table 3.9 shows the runtime on Apache projects for only CryptoGuard and CrySL.

For Tool A and SpotBugs, we use the web version that takes all scan requests for users

and reports results after complete scanning. Therefore, we cannot calculate their orig-

inal runtime for comparison. Among the 8 successfully analyzed projects, we observe

average runtime for CrySL is 14.64 seconds and CryptoGuard is 11.46 seconds. For

the largest Apache project Spark (LoC: 311,856), CryptoGuard successfully analyzes

in 88.68 seconds and CrySL produces an incomplete analysis report after running for

46.84 seconds. Overall, SpotBugs and CryptoGuard successfully analyze all 10 Apache

projects. Therefore, SpotBugs and CryptoGuard are scalable for large projects.

Table 3.9: Runtime for analyzing Apache projects. Star (*) symbol indicates that the analysis
was unsuccessful.

Runtime (sec)
Apache Projects LoC CryptoGuard CrySL
deltaspike 5.1K 4.31 6.95
directory-server 20.8K 8.96 23.03
incubator-taverna-workbench 9.9K 12.69 7.94
manifoldcf 17K 7.07 8.20
meecrowave 5.6K 4.67 7.24
spark 311.9K 88.68 46.84*
tika 16.6K 7.46 8.15
tomee 118.7K 40.52 34.81
wicket 13.4K 5.99 20.83
artemis-commons 8.9K 5.63 19.82*

38 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

3.4.5 Verifiability

Our benchmarks are open-sourced and are available on GitHub [37, 38]. It contains the Java

cryptographic API test cases. Detailed documentation and explanation are provided there.

3.5 Discussion

In this section, we discuss the insights of the tools, case studies, and limitations of our

developed benchmarks.

3.5.1 Tool insights

No tool can cover all categories of vulnerabilities (Table 3.5). However, their methodologies

can be extended to cover most of these vulnerabilities. For example, the technique that Tool

A uses to detect constant cryptographic keys can be transferred to detect static IVs or fewer

iteration counts.

The main differences among different tools are within their approach to trade-offs between

false positives and false negatives. Our experimental evaluation reveals that all of these tools

produce a number of false positives and false negatives. CryptoGuard performs on-demand

inter-procedural dataflow analysis. Its backward data flow analysis starts from the slicing

criteria and explores upward (↑) and orthogonally (→) on-demand. Orthogonal method

invocation chains always return to the call sites. By leveraging this insight, CryptoGuard

offers a performance vs scalability tradeoff by limiting the depth of the orthogonal invocations

(which is “clipping of orthogonal method invocations”). In the current implementation, the

depth is set to 1. That means CryptoGuard will skip deeper orthogonal callee methods,

which may result in false negatives. However, the advantage of the orthogonal method

3.5. DISCUSSION 39

invocation technique is that it helps to improve precision.

The main focus of CrySL is to provide a language to specify a class of cryptographic misuse

vulnerabilities that can be detected using a generic detection engine. For the version that

we tested, CrySL would raise an alert if a cryptographic key is not generated using a key

generator. However, one can legitimately reuse a previously generated key, which CrySL

would mistakenly detect as a vulnerability. An impressive aspect of CrySL is that it is

constantly being maintained and updated to improve its accuracy. The methodology of

SpotBugs is inherently limited to detecting advanced cases as they use patterns to detect

most of the vulnerabilities.

None of these tools are path-sensitive, i.e., all raise false alerts in path-sensitive cases. A

possible reason for this failure is that the existing path-sensitive analysis techniques are

usually costly, i.e., high runtime complexity.

CryptoAPI-Bench cannot be used to evaluate scalability property. All of our test cases

are lightweight by design. The primary focus is to produce easily readable test cases that

demand minimal code to express complex program properties. On the other hand, all of the

projects in are complex programs including a lot of files and lines of code. The primary

focus is to test the vulnerability detection tool’s scalability property and extrapolation to

applications on real-world code.

3.5.2 Case Studies

Table 3.5 shows that many misuse cases are still uncovered by tools (e.g., CryptoGuard, Spot-

Bugs, Tool A cannot handle MAC misuses) that should be addressed to expand coverage.

Among the covered rules, there are also some deficiencies. For example, CryptoGuard and

SpotBugs can capture RC4 as a vulnerable cipher but not ARCFOUR cipher algorithm as

40 CHAPTER 3. CRYPTOGRAPHIC API BENCHMARKS

the static code does not specify ARCFOUR as a vulnerable cipher. Static or predictable ini-

tialization vector defined in another method, class, file, or field variable (i.e., advanced cases)

cannot be captured using SpotBugs and Tool A. In another advanced case, a java file in mani-

foldcf contains SecretKeySpec key = new SecretKeySpec(secretKey.getEncoded(), "AES").

This secretKey parameter is initialized as a field variable with a static string value of “Now-

IsTheTime” and passed through three procedures. This complex case cannot be captured

by SpotBugs, CryptoGuard, or Tool A.

3.5.3 Limitation of Benchmarks

Currently, our benchmark does not contain cryptographic cases, e.g., digital signature, CBC-

MAC misuses in MAC, or other modes of operations (e.g., CTR). We plan to include test

cases based on these cryptographic vulnerabilities in our CryptoAPI-Bench benchmark. Fur-

thermore, our benchmark does not have any cases that involve Java reflection APIs. The

primary reason is that the use of Java reflection during cryptographic coding is highly un-

likely. Consequently, none of the existing open-sourced tools is designed to detect such

cases. However, we plan to include new cases that leverage Java reflection APIs to induce

cryptographic misuse vulnerabilities.

3.6 Summary

We believe that for scientific, in-depth, and reproducible comparisons benchmarking is an

important component. In this chapter, we present CryptoAPI-Bench and ApacheCryptoAPI-

Bench to evaluate the detection accuracy, scalability, and security guarantees of various

cryptographic misuse detection tools. Our benchmarks are open-sourced and are available on

3.6. SUMMARY 41

GitHub. We evaluated four static analysis tools that are capable of detecting cryptographic

misuses. Our evaluation revealed some interesting insights, i.e., i) tools that are specialized

to detect cryptographic misuses (e.g., CryptoGuard, CrySL) cover more rules and higher

recall than general-purpose tools (e.g., SpotBugs, Tool A), ii) none of the existing tools is

path-sensitive.

Chapter 4

Prediction Bias Correction for

Underrepresented Patients

In this chapter, we present our developed bias correction technique for the underrepresented

population subgroups and the advantage of our developed sampling technique over other

existing sampling techniques.

4.1 Introduction

Researchers have trained machine learning models to predict many diseases and conditions,

including Alzheimer’s disease [116], heart disease [102], risk of developing diabetic retinopa-

thy [61], cancer risk [135] and survivability [84], genetic testing for diseases [134], hyper-

trophic cardiomyopathy diagnosis [50], psychosis [123], PTSD [77], and COVID–19 [120].

Neural network-powered automatic image analysis has also been shown useful for fast dis-

ease detection, e.g., breast cancer [56] and lung cancer [110]. A study showed that deep

learning algorithms diagnose breast cancer more accurately (AUC=0.994) than 11 patholo-

gists [56]. Hospitals (e.g., Cleveland Clinic’s partnership with Microsoft [18], John Hopkins

hospital partnership with GE) [17] are reported to use predictive analytics for monitoring

patients’ health status and preventing emergencies [15, 51, 81, 88].

However, clinical datasets are intrinsically imbalanced due to the naturally occurring fre-

42

4.1. INTRODUCTION 43

quencies of data [89]. The data is not evenly distributed across prediction classes (e.g.,

disease class vs. healthy class), race, age, or other subgroups. Data imbalance is a major

cause of biased prediction results [89]. Biased prediction results may have serious conse-

quences for some patients. For example, a recent study showed that automatic enrollment

of high–risk patients into the health program favors white patients, although black patients

had 26.3% more chronic health conditions than equally ranked white patients [114]. Sim-

ilarly, algorithmic osteoarthritis pain prediction shows 43% racial disparities [119]. The

design of widely used case-control studies are shown to have temporal bias reducing predic-

tive accuracy [142]. For non–medical applications, researchers also identified serious biases

in high–profile machine learning applications, e.g., a widely deployed recidivism prediction

tool [9, 22, 69], online advertisement system [133], Amazon’s recruiting engine [24], and face

recognition system [63]. The lack of external validation and overclaiming causal effect in

machine learning also raise concerns [140].

We present two categories of contributions to machine learning prognosis for underrepre-

sented patients. One contribution is empirical evidence showing severe racial and age pre-

diction disparities and the deceptive nature of common metrics. Another contribution is in

evaluating the bias-correction ability of sampling methods, including a new double prioritized

(DP) bias correction technique.

In our first contribution, we use two large medical datasets (MIMIC III and SEER) to

show multiple types of prediction disparities, including the metric disparity. Poor prediction

performance in minority samples is not reflected in widely used metrics. For imbalanced

datasets, conventional metrics such as overall accuracy and AUC–ROC are largely influ-

enced by the performance of the majority of samples, which machine learning models aim

to fit. Unfortunately, this serious deficiency is not well discussed or reported by medical

literature. For example, a study showed 66.7% of the 33 medical-related machine learning

44 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

papers used AUC–ROC to evaluate models trained on imbalanced datasets [127]. We report

racial, age, and metric disparities in machine learning models trained on clinical prediction

benchmark [81] on MIMIC III and cancer survival prediction [84] on SEER cancer dataset.

Both training datasets are imbalanced, in terms of gender, race, or age distribution. For

example, for the in-hospital mortality (IHM) prediction with MIMIC III, 70.6% of data rep-

resents White patients, whereas only 9.6% represents Black patients. MIMIC III and SEER

also have data imbalance problems among the two class labels (e.g., death vs. survival). For

the IHM prediction, only 13.5% of the data belongs to the patient who died in the hospital.

These data imbalances result in serious prediction biases. A typical neural network-based

machine learning model14 that we tested correctly predicts 87.6% of non-death cases, but

only 60.9% of death cases. Meanwhile, overall accuracy (computed over all patients) is

relatively high (0.85), and AUC–ROC is 0.86, as a result of the good performance in the

majority class. These high scores are misleading. Our study also reveals that accuracy dis-

parity among age or race subgroups can be severe. For example, the mortality prediction

precision (i.e., the fraction of actual deaths among predicted deaths) of young patients under

30 is 0.09, substantially lower than the whole population (0.40). Recognizing these accuracy

disparities will help advance AI-based technologies to better serve underrepresented patients.

In our second contribution, we present a new technique, double prioritized (DP) bias correc-

tion, that aims to improve the prediction accuracy of specific demographic groups through

sample enrichment. DP trains customized prediction models for specific subpopulations, a

departure from the existing one-model-predicts-all-demographics paradigm. DP prioritizes

specific underrepresented groups, as opposed to sampling across the entire patient popula-

tion. Our results show that DP is effective in reducing disparity among age and race groups.

For the in-hospital mortality (IHM) and 5-year breast cancer survivability (BCS) predic-

tions, DP shows 8.6% to 23.8% improvement over the original model and 5.6% to 86.8%

4.2. BACKGROUND 45

improvement over eight existing sampling techniques, in terms of minority class recall. Our

cross-race and cross-age-group results also suggest the need for training specialized machine

learning models for different demographic subgroups. All sampling techniques (including

DP) are not designed to address biases caused by under diagnosis, measurement, or any

other sources of disparity besides data representation. In what follows, DP assumes that the

noise is the same across all demographic subgroups and that the only source of bias that it

aims to correct is representational.

4.2 Background

In this section, we explain several existing data imbalance correction methods, clinical

datasets, and prediction tasks we studied.

4.2.1 Sampling Techniques

A widely used bias-correction approach to the data imbalance problem is sampling. We

briefly describe several existing undersampling and oversampling techniques.

Undersampling

Random Undersampling (RUS) balances a dataset by randomly selecting samples of the

majority class [137]. Several K–nearest neighbor (K–NN) classifier–based undersampling

techniques [103] (e.g., NearMiss1, NearMiss3, Distant) exist. Nearmiss1 balances a dataset

by selecting the majority class samples whose average distance to the three closest minority

class samples are smallest. NearMiss3 balances a dataset by selecting the majority class

samples whose distance is closest to each minority class sample. The Distant method balances

46 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

a dataset by selecting the majority class samples whose average distance to the three closest

minority class samples is the farthest.

Oversampling

Replicated oversampling balances a dataset by replicating samples of the minority class.

State-of-the-art solutions are all oversampling methods, including Synthetic Minority Over-

sampling Technique (SMOTE) [65], Adaptive Synthetic Sampling (ADASYN) [83], and

Gamma [91]. SMOTE generates new minority points between existing neighboring minority

samples by linear interpolation. ADASYN generates new minority points between existing

neighboring minority samples with more emphasis on the class border. The Gamma tech-

nique generates new minority points between existing neighboring minority samples using

Gamma distribution. Another approach is augmenting synthetic minority class data using

generative adversarial network (GAN) [80].

Stratified Sampling

Stratified random sampling [117] involves dividing the population (e.g., race, age, survived

patient) into groups called strata. Random samples (i.e., patients) are then selected from

each stratum so that selected samples are balanced or maintain the demographic ratio. The

difference between simple random sampling and stratified sampling is that simple random

sampling treats all members to have an equal likelihood of being sampled whereas stratified

sampling samples are selected among groups or strata rather than the whole population.

4.3. METHODOLOGY 47

4.2.2 Model Reweighting

Reweighting is an alternative bias correction approach to sampling [45, 106]. The reweighting

approach assigns different importance to samples in the training data, in order for some

minority class samples to impact more on training outcomes. Standard reweighting aims

to make the weights of the two prediction classes balanced. In the standard reweighting

approach, new weights are applied to the entire class population as follows. Reweight all

samples so that each majority sample weights less than 1 and each minority sample weights

more than 1, while satisfying the constraint that the total weight of each prediction class is

equal.

4.2.3 Constraint in Objective Function

The seldonian algorithm [136] is designed to prevent undesirable behavior of machine learning

models. It adds constraints to the objective function so that the prediction error can be

bouned within a certain threshold among subgroups (for example, male and female). Also,

a safety test is included in the seldonian algorithm to check whether the model is confident

that for the applied constraints, it returns a solution.

4.3 Methodology

In this section, we present the double prioritized (DP) bias correction methodology and

several other evaluation methodologies.

48 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

4.3.1 Double Prioritized (DP) Bias Correction Method

DP prioritizes a specific demographic subgroup (e.g., Black patients) that suffers from data

imbalance by replicating minority prediction class (C1) cases from this group (e.g., Black

in-hospital deaths). DP incrementally increases the number of duplicated units and chooses

the optimal unit number based on the resulting models’ performance. Figure 4.1 shows the

machine learning workflow with DP bias correction. The main steps are described next.

Sample enrichment replicates minority class C1 samples in the training dataset for a target

demographic group g up to n times. Each time, duplicated samples are merged with the

original training dataset, which forms a new training dataset. Thus, we obtain n+1 sets of

training datasets, including the original one. Our experiment sets n to 19. The value n can

be empirically determined based on prediction performance.

Figure 4.1: Workflow for improving data balance in machine learning prognosis prediction
using double prioritized (DP) bias correction.

4.3. METHODOLOGY 49

Candidate training is to generate a set of candidate machine learning models. Each of the

n+ 1 datasets is used to train and generate a candidate machine learning model.

Model selection is to identify the optimal machine learning model among the n+1 candidate

models. We choose a final machine learning model M* after evaluating all candidate models’

performance as follows. For each model, we first calibrate the predicted probabilities on the

validation set. Calibration is to adjust the distribution of probabilities before mapping

probabilities into labels. We calibrate the output probabilities using the Isotonic Regression

technique. We then perform threshold tuning to find the optimal threshold based on balanced

accuracy and the F1_C1 score. Specifically, we first identify the top three thresholds that

give the highest F1_C1 scores and then further select the optimal threshold that gives

the highest balanced accuracy for the entire samples. For some subgroups, there are only

a couple of hundreds of samples in the validation set. Selecting the threshold based on

subgroup data may cause overfitting to the validation set. Therefore, we choose thresholds

based on the whole group’s performances. Given a threshold, we then identify the top three

machine learning models with the highest balanced accuracy (i.e., average recall of both C0

and C1 classes, Equation A.6) values and select the model that gives the highest PR_C1

(the area under the curve (AUC) of minority class C1’s precision-recall curve, denoted by

AUC-PR_C1 or PR_C1) for demographic group g. In this step, no enrichment is applied

to the validation dataset. When deciding thresholds, AUC-PR cannot be used, as it is a

threshold-free metric. Thus, we use balanced accuracy and F1_C1.

Prediction applies model M* to new patients’ records of minority group g’ and obtains a

binary class label. At deployment, the demographic group g of duplicated samples during

Sample enrichment and test group g’ should be the same, e.g., the DP model trained with

duplicated Black samples is used to predict new Black patients. Evaluation metrics include

accuracy, balanced accuracy, AUC–ROC score, precision, recall, AUC–PR, and F1 score of

50 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

minority and majority prediction classes, the whole population, and various demographic

subgroups, including gender (male, female), race (White, Black, Hispanic, Asian), and 8 age

groups. Minority class C1 precision and C1 recall are the two most used metrics in our

work. C1 precision calculates the fraction of actual minority C1 class cases among predicted

ones. C1 recall calculates the fraction of C1 cases that are predicted by a machine learning

model. We use the relative disparity metric to capture the disparity among race groups or

age groups. Equation 4.1 shows the equation for the relative disparity. All other metrics are

defined in Appendix A.1.

RelativeDisparity =
R1

R2

(4.1)

where R1 is the highest and R2 is the lowest evaluation metrics value within groups. Similar

to other studies [72, 91], our workflow does not sample the test dataset, because the ground

truth (i.e., new patient’s disease or health label) is unknown in the real world.

Model specialization needs to rely on the whole group samples. Training a model solely

based on particular subgroup samples (e.g., Black patients) gives poor results, worse than

the original model on almost all metrics, due to small sample sizes.

4.3.2 Comparison with Other Bias Correction Techniques

The existing sampling approaches being compared include four undersampling techniques

(namely, random undersampling, NearMiss1, NearMiss3, Distant method, stratified ran-

dom undersampling), and four oversampling techniques (namely, replicated oversampling,

SMOTE, ADASYN, Gamma, stratified random oversampling). Undersampling balances the

distribution of the two prediction classes by selecting only a subset of the majority class cases.

4.3. METHODOLOGY 51

Oversampling balances the dataset by populating the minority class. For decompensation

prediction, we apply the two most commonly used sampling techniques, random undersam-

pling (RUS) and replicated oversampling (ROS). For balancing the dataset using GAN, we

use tabular generative adversarial network [48] to create synthetic minority samples that

follow the existing minority dataset distribution. We have to exclude other sampling tech-

niques as their pairwise quadratic distance computation is expensive for 2,377,768 patients’

time series training dataset.

We also consider enriching the minority class (class 1) by creating synthetic datasets using

generative models to balance the imbalanced healthcare dataset. For in-hospital mortality

prediction tasks, the training dataset contains survival cases (Class 0) and mortality cases

(class 1). As we know, there are only 13.5% of the data belong to class 1 (i.e., minority

class). Therefore, we generate additional 9,935 class 1 synthetic data and add it with the

existing 1,987 class 1 data so that both classes can be balanced. For generating the synthetic

dataset, we use the TabGan [32] library which is used for generating tabular data with similar

distributions to the existing mortality data.

4.3.3 Comparison with Reweighting

Following our DP design, we also invent a new prioritized reweighting approach. Priori-

tized reweighting selectively reweights specific subgroup minority samples, as opposed to

reweighting all minority class C1 samples as in the standard reweighting. In the new pri-

oritized reweighting method, we dynamically reweight minority class samples of selected

demographic subgroups and choose the optimal machine learning model using the same

metrics and procedure as in DP. Specifically, in each round of prioritized reweighting ex-

periments, we multiply the selected samples’ default weight by a unit number n, where n

52 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

ranges from 1 to 20. The weights of samples in other subgroups and majority class samples

in the selected subgroup remain the default value, i.e., 1. These weights are used to train a

machine learning model. Once the n machine learning models are trained, we follow DP’s

model selection operation for calibration and threshold selection.

4.3.4 Comparison with Seldonian

For the Seldonian algorithm, the demographic group information is needed to apply the

constraint. Therefore, we train two seldonian models by adding age and race information

respectively. We set the constraint for the seldonian algorithm so that the expected prediction

error among the groups will be within ϵ=0.005 based on the Recall metric. The seldonian

models passed the safety test which indicates that the model has sufficient confidence that

it returns a solution given the constraints.

4.3.5 Cross-racial-group and Cross-age-group Experiments

We also perform a series of cross-group experiments, where enriched samples and test samples

are from different demographic groups, i.e., group g used for Sample enrichment and test

group g’ are different. The purpose is to assess the impact of different machine learning

models on prediction outcomes.

4.3.6 Whole-group vs. Subgroup-based Threshold Tuning

When analyzing the performance of the original model without bias correction, we evaluate

two different settings. The first setting is to select an optimal threshold based on all samples

in the validation set. We refer to the selected threshold as the whole group threshold. The

4.4. EVALUATION AND FINDINGS 53

second setting is to select an optimal threshold for each demographic subgroup based on that

specific subgroup’s performance in the validation set. We refer to the selected thresholds as

the subgroup thresholds. In both settings, we calibrate the prediction on all samples (i.e.,

whole group) and select the thresholds with the top 3 highest F1 C1 scores and choose the

one with the best-balanced accuracy.

4.4 Evaluation and Findings

In this section, we present an empirical study of disparity in biased prediction and the impact

of DP over other sampling techniques.

4.4.1 Experimental Setup

Prediction and data analysis code are in Python programming language. The hospital record

prediction tasks were executed on a virtual machine with Ubuntu 18.04 operating system,

x86-64 architecture, 8 cores, 40 GB RAM, and 1 GPU. Cancer survivability prediction tasks

were performed using a Ubuntu 21.04 operating system, x86-64 architecture, 16 cores, 40

GB RAM, and 1 GPU.

Dataset

We use MIMIC III (Medical Information Mart for Intensive Care) [81, 87] and SEER (Surveil-

lance, Epidemiology, and End Results) cancer datasets [6], both collected in the US.

54 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

Table 4.1: Learning parameters for four prediction models

Learning Parameter BCS Prediction IHM Prediction LCS Prediction Decomp Prediction
Hidden layers (20, 20) (16, 16) (20, 20) (128)
ANN MLP LSTM MLP LSTM
Learning Rate 0.001 0.001 0.001 0.001
Optimizer adam adam adam adam
Dropout 0.1 0.3 0.1 0

Machine Learning Models

We test existing machine learning models in a clinical prediction benchmark [81] for MIMIC

III and reproducible cancer survival prediction [84] for SEER. We study a total of four binary

classification tasks, in–hospital mortality (IHM) prediction and decompensation prediction

from the clinical prediction benchmark, 5-year breast cancer survivability (BCS) predic-

tion, and 5-year lung cancer survivability (LCS) prediction. In what follows, we denote

the minority prediction class as Class 1 (or C1) and the majority class as Class 0 (or C0).

For decompensation prediction on the MIMIC III dataset, the minority class C1 represents

patients whose health condition.

Two types of neural networks are used, the long short-term memory (LSTM) model and the

multilayer perceptron (MLP) model. Following Harutyunyan et al [81], for the hospital record

prediction tasks, patients’ data is preprocessed into time-series records and fed into an LSTM

model. Cancer survivability prediction utilizes an MLP model, following Hegselmann et

al. [84]. Model parameters remain constant in different bias correction techniques (Table 4.1).

While comparing with the seldonian algorithm, we use logistic regression classifiers with L2

regularization with regularization strength 1000 (i.e., C = 0.001).

4.4. EVALUATION AND FINDINGS 55

Figure 4.2: Statistics of dataset for IHM prediction

4.4.2 Analysis of Imbalanced Clinical Datasets

Figure 4.2 shows the composition of IHM training data, which contains 14,681 time-series

samples from MIMIC III. The majority of the records (86.5%) belong to Class 0 (i.e., patients

who do not die in the hospital). The rest (13.5%) belong to Class 1 (i.e., the patients who die

in the hospital). The percentage of Class 1 samples within each subgroup slightly varies but

is consistently low. 70.6% of the patients are White and 76% belong to the age range [50, 90).

45.1% of the patients are females and 54.9% are males. The training set contains insufficient

data for the young adult population. Distributions of the decompensation training dataset

(of size 2,377,768) are similar (Figure 4.3).

Figure 4.3: Statistics of dataset for Decomp prediction

Frequency distributions of features for MIMIC training data used for IHM prediction are

56 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

Figure 4.4: Relative frequency of several features in the MIMIC dataset for in-hospital mortality
tasks

4.4. EVALUATION AND FINDINGS 57

shown in Figure 4.4. We show the distribution in terms of relative frequency in two classes

(C1 and C0). The remaining feature’s relative frequency is also shown in Appendix (Fig-

ure A.1). There are in total 17 clinical features of patients used in IHM and decomp predic-

tion tasks. These are systolic blood pressure, diastolic blood pressure, pH, heart rate, GCS

eye scale, GCS motor scale, GCS verbal scale, GCS total, glucose, capillary refill rate, frac-

tion inspired oxygen, height, weight, oxygen saturation, mean blood pressure, temperature

and respiratory rate.

4.4.3 Disparity Among Prediction Classes

Without any bias correction, the original machine learning model demonstrates a substantial

accuracy disparity between the majority prediction class C0 and the minority prediction class

C1. For IHM, the Recall value (0.61) for the minority class C1 is 31% lower than the Recall

of the majority class (0.88). For Decomp, the Recall_C0 (0.99) is three times higher than the

Recall_C1 (0.32). This disparity is consistently observed for various demographic groups,

with a few exceptions of senior patients for BCS prediction. We further show detailed IHM

predictions with the MIMIC III dataset for various subpopulations under 12 metrics in a

heatmap in Figure 4.5a. 12.4% of non-death cases (class C0) in IHM prediction are wrong,

whereas the missed mortality prediction (class C1) rate is much higher at 39%. For Black

patients, while recall, precision, F1, and AUC-PR are all above or equal to 0.89 for class C0,

the recall of class C1 is only 0.50, i.e., for every 100 Black patients who die in hospital, the

model would mispredict 50 of them. A similar trend is observed for the Decomp prediction

results (Figure 4.5b).

58 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

(a) IHM prediction results (b) Decomp prediction results

Figure 4.5: Prediction results under the original machine learning models (no bias correction)
using one optimized threshold for all demographic groups.

4.4.4 Disparity Across Demographic Subgroups

Besides disparity between prediction classes, the original model also shows disparity across

demographic subgroups. For the IHM prediction (Figure 4.5a), Black patients have the lowest

minority class C1 recall (0.50), lower than the whole group (0.61) and Hispanic patients

(0.83). The disparity among C1 recalls of various age subgroups is lower, all in the range of

[0.51, 0.72]. Most subgroups have somewhat similar C1 precision values, except the age <30

group. Young patients under 30 have a low C1 precision of 0.09, substantially lower than

the whole population (0.40). Young patients under 30 accounts for only around 4% MIMIC

III datasets (Figure 4.2), respectively. Their predictions are consistently poor. Despite the

large disparity in minority class C1 performance, majority class C0 precisions and recalls are

consistently high for all subgroups, with most values above 0.85. Despite small sample sizes,

some demographic groups (e.g., Hispanic groups in IHM prediction) have high prediction

4.4. EVALUATION AND FINDINGS 59

accuracies even without sampling. For decomp prediction (Figure 4.5b), prediction accuracy

also differs across demographic subgroups, e.g., C1 precision is 0.46 for age 90+ patients and

0.13 for age <30 patients.

4.4.5 Disparity Among Performance Metrics

For imbalanced datasets, commonly used metrics such as AUC-ROC and accuracy are de-

ceptive and do not reflect minority class performance. These metrics may show misleadingly

higher values, even when the performance of the minority class is poor. Figure 4.6 shows

that the overall accuracy and AUC-ROC values are consistently high (> 0.80 in most cases)

across different subgroups, even when minority class C1’s performance is dismal, e.g., the

F1-score is only 0.39 for Black patients in IHM prediction. Accuracy and AUC-ROC values

are dominated by the overwhelmingly high precision and recall (> 0.85 in most cases) of the

majority prediction class C0. Thus, these commonly used metrics in prediction do not reflect

the minority class performance under data imbalance. In biased datasets, AUC-ROC is no

longer sufficient, as it covers both classes with one dominating class. This deficiency is well

established in the machine learning literature [67, 70, 71], where multiple previous studies

pointed out that AUC-ROC gives an overly optimistic view of imbalanced classification. Our

work points out the severity of the metrics issue in digital health applications.

4.4.6 DP Method Reduces Disparity

We use relative disparity (defined in Equation 4.1) as a metric to quantify accuracy gaps

across demographic subgroups under various machine learning conditions, including the orig-

inal model (without any bias correction), DP bias correction, and existing sampling methods.

Relative disparity measurement below 1.25 is considered fair, following the 80% rule for as-

60 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

(a) Black subgroup performance for IHM
task

(b) Age 90+ subgroup performance for IHM
task

(c) Black subgroup performance for Decomp
task

(d) Age 90+ subgroup performance for De-
comp task

Figure 4.6: Performance metrics disparity

4.4. EVALUATION AND FINDINGS 61

sessing disparate impact [14]. Our results show that machine learning models trained with

our DP bias correction method exhibit the smallest racial and age disparities (Figure 4.7).

For balanced accuracy, C1 recall and MCC of both IHM and Decomp task, most of DP’s

relative disparity values are in the fair range (1.25 and lower), substantially reducing the

disparity in the original model. Specifically, DP has a 14.8% to 23.9% improvement over the

original model in terms of C1 recall disparity. We observe a similar reduction in balanced

accuracy disparity and MCC disparity.

Figure 4.7: Relative disparity among racial and age groups under various sampling conditions
for IHM prediction

In contrast, all three state-of-the-art sampling methods (namely, Gamma, Adasyn, and

SMOTE) fail to reduce the racial and age disparities in the IHM task, with some models

(e.g., Gamma) slightly exacerbating disparity. Undersampling methods (especially Distant)

perform even worse than these oversampling methods. When compared to the eleven ex-

isting methods, DP reduces racial disparity by 10.2% (ADASYN) to 64.3% (Distant). The

62 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

Figure 4.8: Relative disparity among racial and age groups for In-hospital mortality predic-
tion using logistic regression models

age disparity is higher than 5.6%, in terms of the minority C1 recall for IHM prediction.

(Figure 4.7). Balanced accuracy and MCC results follow a similar trend.

Regarding fairness for the decompensation task, the relative disparity of DP is lower than

or comparable to other sampling approaches for most cases (Figure A.4) which is consistent

with the trend observed in Figure 4.5a. We examine an exceptional case for race groups in

terms of recall, where the high Hispanic group performance (0.76) increases the disparity

value.

we also compute in-hospital mortality prediction tasks using ML regression models. We

compare our proposed DP technique with the seldonian algorithm that constrains behavior

to maintain fairness.

Figure 4.8 shows the relative disparity values in terms of Recall C1, Balanced Accuracy, and

MCC metric. From Recall C1 disparity, we find that the disparity significantly decreases

using our proposed DP technique. However, the seldonian models increase disparity than

the original models. A similar trend is observed for balanced accuracy. However, in terms

of the MCC metric, the seldonian shows significantly lower disparity values. We find that

the seldonian algorithm significantly decreases subgroup performance in terms of precision

and MCC.

4.4. EVALUATION AND FINDINGS 63

(a) Difference in IHM prediction results (b) Difference in Decomp prediction results

Figure 4.9: Difference in performance of the original machine learning models (no bias correc-
tion) using subgroup thresholds (i.e., different optimized thresholds for different demographic
groups) and whole group threshold.

4.4.7 Mitigation Solely Based on Adjusting Thresholds

We also test whether or not threshold tuning alone can boost the performance of demographic

subgroups and reduce disparity. Specifically, we compare the prediction performance under

the whole group threshold and subgroup thresholds, which are described in the Methods

section. Prediction results under the original machine learning models (no bias correction)

using different optimized thresholds for different demographic groups are shown in Figure 4.9.

For the IHM task, the performance differences between using the whole-group threshold and

subgroup threshold are small (< 0.1), in terms of C1 precision and recall, for subgroups

with relatively large sizes (e.g. middle-aged patients). However, for other smaller subgroups

(e.g. young patients with age<30), the performance decreases. A likely reason is overfitting,

i.e., the threshold selected based on a small sample size in the validation set is not optimal

on the test set, due to the small sample sizes. Decomp results follow similar patterns.

64 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

(a) Difference in Recall C1 (b) Difference in Balanced Accuracy

Figure 4.10: DP and two representative sampling techniques performance comparison over
the original model for IHM Prediction

Thus, threshold adjustment alone is clearly insufficient for the data imbalance and disparity

problems.

4.4.8 Subpopulation-based vs. Whole-population-based Sampling

Existing sampling solutions do not differentiate subpopulations. We found such whole-

population-based sampling methods decrease the performance of some underrepresented

groups. In Figure 6, we compare DP with two common sampling techniques (i.e., ran-

dom undersampling and SMOTE) with four demographic groups (namely, Black, Asian, age

< 30, 90+ for the IHM task, and Hispanic, Asian, age <30, 90+ for the BCS task). These

groups are chosen because of their low performances under the original machine learning

model. Figure A.7 shows that DP consistently boosts the performance of most underrepre-

sented demographic groups. In contrast, this consistent improvement is not observed in the

other two methods. For example, for the IHM task, although the undersampling technique

boosts the balanced accuracy for Asian patients, the performance of Black and age 90+

subgroups slightly decreases (Figure 4.10b). The complete comparison results with the 11

existing sampling methods are shown in Figure 4.11 for the black subgroup and Figure 4.12

4.4. EVALUATION AND FINDINGS 65

for the age 90+ subgroup.

Figure 4.11: In-hospital mortality (IHM) prediction under various sampling conditions for
black subgroup

We perform the Kruskal Wallis Test [5] on the results of sampling techniques. Kruskal Wallis

test is a non-parametric method that we use to compare two different sampling techniques

with DP shown in Figure 4.11. We find that the p-value in terms of minority class Recall and

balanced accuracy is between 0.046 and 0.0495 which is less than 0.05. Therefore, we reject

the null hypothesis, meaning the sampling techniques do not perform equally as DP. DP

achieves better performance in terms of minority class recall and balanced accuracy. In terms

of the minority class F1 score, we see the p-value higher than 0.05 for the original model,

Smote, replicated oversampling technique. Therefore, we can not reject the null hypothesis

for these cases. Hence, we do not have sufficient proof to claim that there are statistically

significant differences among these models. For the other nine sampling technique, the p-

value is less than 0.05. Therefore, DP shows significant performance improvement over than

nine sampling techniques in terms of minority class F1 value. In terms of minority class PR

curve value, we only see the p-value higher than 0.05 for the original model, Adasyn, Smote,

Replicated oversampling, stratified undersampling, and Tabular GAN-based sampling For

the other 6 sampling techniques, the p-value is lower than 0.05. The detailed p-values are

66 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

shown in Table A.1.

Figure 4.12: In-hospital mortality (IHM) prediction under various sampling conditions for
age 90+ subgroup

From the original regression model, we observe that the Hispanic and Age 90+ population

shows the worst performance among the racial and age population group respectively. We

show these population group performances using DP and the seldonian algorithm in Fig-

ure 4.13. DP shows better performance than the original and the seldonian algorithm in

terms of Recall_C1, F1_C1, Balanced Accuracy, and MCC.

(a) Hispnaic (b) Age 90+

Figure 4.13: In-hospital mortality prediction using logistic regression models

For subgroups with lower original performance, DP brings stronger C1 recall improvements.

We show this trend in Figure 4.14, where we compare the minority class recall between the

original model with the subgroup threshold and the DP model trained for each subgroup. For

4.4. EVALUATION AND FINDINGS 67

the IHM task, DP improves the C1 recall by 200.4%, 163.4%, and 75.2%, respectively, for the

age <30, Black, and Asian patients (Figure 4.14a). For the decomp task, DP shows similar

performance in Figure 4.14b. However, we see some exceptions (e.g., Hispanic subgroup).

(a) IHM prediction (b) Decomp prediction

Figure 4.14: Performance of DP and subgroup-threshold-based original model in terms of
minority class recall

4.4.9 Cross-group: Prediction Outcome with Specialized ML

In our cross-group experiments, we use the DP model trained for demographic group A (e.g.,

Black) to predict group B (e.g., Hispanic). The aim is to evaluate the impact of different

machine learning models on prediction outcomes. We perform both cross-race and cross-age-

group experiments for IHM prediction (Figure 4.15), which involve three underrepresented

races and three underrepresented age groups For IHM prediction, DP models’ advantage

is observed in three out of the six groups (for Black, <30, and 90+ groups), which is less

pronounced than BCS prediction. In the cross-age-group experiment, both DP <30 and

90+ models demonstrate advantages. For Hispanic and Asian patients, the DP Black model

gives the best recall C1, higher than DP Hispanic and DP Asian models. Figure A.5 shows

68 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

Figure 4.15: DP’s cross-group performance under various race and age settings for recall C1
and balanced accuracy for the IHM prediction

that matching DP models show some degree of advantage in four out of six settings for the

decompensation task.

4.4.10 Feature Importance

We compute feature importance using SHAP-sum where the importance of columns repre-

senting the same variable is summed up. For the IHM prediction task under SHAP-sum,

the top features of the DP models and the original models are similar, slightly differing in

their feature ordering (Figure 4.16). For example, for IHM prediction DP age 90+ model

4.4. EVALUATION AND FINDINGS 69

ranks weight at the fourth position, slightly higher than its ranking in the DP Black and

the original models (both at the seventh position). This observation may suggest that being

overweight in older patients is more likely to cause serious consequences. Following the exist-

ing benchmark17, our IHM and decompensation predictions only use 17 clinical features and

exclude race and age information in MIMIC III. We found that SHAP-sum identifies very

different top features from SHAP-avg, highlighting categorical features due to their multiple

one-hot encoding representations for machine learning. We also show the SHAP-avg feature

ranking of IHM prediction in Figure A.8.

(a) Original Model (b) DP model for Black (c) DP model for Age 90+

Figure 4.16: SHAP-sum feature importance of different IHM experiments.

4.4.11 Cancer Survivability Prediction Tasks

We repeat the experiments for the other two tasks, 5-year breast cancer survivability (BCS),

and lung cancer survivability (LCS) prediction on the SEER dataset, and observe similar

patterns.

The advantage of DP is still consistently observed for BCS prediction. Overall, DP shows

14.3% (Random Undersampling) to 37.7% (Distant) improvement among racial groups and

70 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

(a) Relative Disparity (b) Performance comparison

Figure 4.17: Relative disparity and performance comparison over the original model for BCS
prediction task in terms of Recall C1

23.3% (NearMiss1) to 88.0% (Distant) improvement for age groups in terms of C1 recall

(Figure 4.17a) compared to existing sampling methods. SMOTE slightly decreases the C1

recall for the Hispanic, Asian, and age [40,50) groups (Figure 4.17b)

Similar advantages for DP are also present in LCS prediction (Figure 4.18). One exception

is that NearMiss1 undersampling shows the lowest relative disparity for age groups in terms

of C1 recall (Supplementary Figures 4.18a). While NearMiss1 brings C1 Recall of all age

groups to a relatively good range of [0.63, 1.00], its C1 precision ([0.03, 0.54]) and C1 AUC-

PR ([0.02, 0.86]) are poor, resulting in high disparity.

(a) Relative Disparity (b) Performance comparison

Figure 4.18: Relative disparity and performance comparison over the original model for LCS
prediction task in terms of Recall C1

4.5. DISCUSSION 71

Figure 4.19: Performance comparison of the original model (without bias correction), stan-
dard reweighting, prioritized reweighting, and DP for Asian patients and [40, 50) patients
for BCS prediction task

We compare DP with two methods, the standard reweighting method and a new prioritized

reweighting method. The standard reweighting models, where reweighting does not differ-

entiate subpopulations, perform almost identically to the original model when applied to

Asian and age [40, 50) patient groups (Figure 4.19). In contrast, prioritized reweighting,

where new weights are optimally placed on a specific group of patients, boosts C1 recall in

BCS prediction for Asian patients from 0.617 to 0.802 and from 0.577 to 0.763 for age [40,

50) patients. This boost is comparable to DP’s performance. DP and prioritized reweight-

ing also exhibit comparable performances under other metrics. In our standard reweighting

experiment, the minority class has a weight of 3.94 and the majority class has a weight of

0.57 for BCS prediction.

4.5 Discussion

Our findings empirically demonstrate multiple deficiencies of typical machine learning prog-

nosis procedures when they are applied to imbalanced medical datasets. One deficiency

72 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

is that the weak performance of underrepresented patients may be eclipsed by the whole

population’s performance and not accurately reported. Underrepresentation is twofold: (i)

demographic subgroups and (ii) the minority prediction class. The low accuracy problem

is particularly severe when a patient belongs to both categories. For example, for the IHM

prediction, Black patients’ C1 recall (0.50) is 18% lower than the whole group (0.61) (Fig-

ure 4.5). Low recalls in the disease group can lead to underestimation of risks, missed

treatment opportunities, or potentially life-threatening wrong prognoses. In addition, racial

and age disparities in machine learning-based prognoses are also observed.

A key contribution of our work is to systematically compare the conventional one-model-fits-

all approach with a new double prioritized (DP) bias correction approach, where specialized

prognosis models are trained for minority prediction class patients of a certain race or age.

Conceivably, it is challenging to train a single machine learning model that optimizes for

all demographic groups. In contrast, the DP bias correction technique allows one to train

models for specific demographic groups, not having to use the same model for the entire

patient population. The key enabler of DP is demographic-specific sampling, i.e., selectively

enriching the number of samples in the minority prediction class (C1). Training a specific

machine learning model for some patient groups is necessary. For example, the oldest-old

age group (typically defined as 85+)[98] is a growing population in the US [20]. However,

our study shows that 90+ patients’ recall C1 value (0.51) in the mortality prediction is 16%

lower than the whole group (0.61) in the original model. Prioritized bias correction is highly

effective for improving C1 recalls of demographic subgroups who are underrepresented in the

training data, e.g., DP’s recall C1 is 0.66 (29.4% improvement) for 90+ patients in mortality

prediction.

Our results show that DP can mitigate racial and age disparities introduced by data un-

derrepresentation in training machine learning models, better than the existing 11 sampling

4.5. DISCUSSION 73

methods being compared. However, data imbalance is only one source of disparity. For

example, the diagnosis and treatment conditions may vary across different demographic

subgroups and affect data quality. These variations may also contribute to the disparity

observed across groups. Eliminating such more fundamental and systemic medical biases is

beyond the scope of technical solutions.

As underrepresentation is prevalent in clinical medicine, our findings likely have broad im-

plications beyond the specific datasets and demographic groups studied. Fully recognizing

accuracy disparities associated with imbalanced data will help reduce life-threatening predic-

tion mistakes. Future directions of this work can be developing more demographic-specific

sample enrichment techniques, as well as exploring how data underrepresentation impacts

the quality of medical image analysis and mutation-based evolutionary computation.

4.5.1 Limitations of Double Prioritized Sampling

For double prioritized sampling, we create separate models (e.g., dp black model, dp age<30

model) for minority demographic groups that take more time to train and more space to

store these models. Moreover, during the training phase of each demographic model, we train

(n + 1) models before choosing a final optimal candidate model that also takes more time

and space. However, these training processes can be done in parallel if enough computing

resources are available. Parallel training can be reduced the total training time to a single

model training time.

Approaches toward separate models can be observed for precision medicine [94] that maxi-

mizes the quality of health care by individualizing the healthcare procedure to the uniquely

evolving health status of each patient. Therefore, the precision medicine concept also sup-

ports the multi-model setup.

74 CHAPTER 4. PREDICTION BIAS CORRECTION FOR UNDERREPRESENTED PATIENTS

Our current workflow (Figure 4.1) improves overall performance, especially minority class

recall performance. However, if a prediction application requires improvement in terms

of other metrics (e.g., precision), other performance metrics can be considered as model

selection metrics and threshold selection metrics.

4.6 Summary

Many clinical datasets are intrinsically imbalanced and dominated by overwhelming majority

groups. Off-the-shelf machine learning models that optimize the prognosis of majority patient

types (e.g., healthy class) may cause substantial errors in the minority prediction class (e.g.,

disease class) and demographic subgroups (e.g., Black or young patients). In the typical one-

machine-learning-model-fits-all paradigm, racial and age disparities are likely to exist but

unreported. In addition, some widely used whole-population metrics give misleading results.

We design a double prioritized (DP) bias correction technique to mitigate representational

biases in machine learning-based prognosis. Our method trains customized machine learning

models for specific ethnicity or age groups, a substantial departure from the one-model-

predicts-all convention. We compare with other sampling and reweighting techniques in

mortality and cancer survivability prediction tasks. We first provide empirical evidence

showing various prediction deficiencies in a typical machine learning setting without bias

correction. For example, missed death cases are 3.14 times higher than missed survival cases

for mortality prediction. Then, we show DP consistently boosts the minority class recall

for underrepresented groups, by up to 38.0%. DP also reduces relative disparities across

race and age groups, e.g., up to 88.0% better than the 8 existing sampling solutions in

terms of the relative disparity of minority class recall. The cross-race and cross-age-group

evaluation also suggests the need for subpopulation-specific machine learning models. Biases

4.6. SUMMARY 75

exist in the widely accepted one-machine-learning-model-fits-all-population approach. We

invent a bias correction method that produces specialized machine learning prognostication

models for underrepresented racial and age groups. This technique may reduce potentially

life-threatening prediction mistakes for minority populations.

Chapter 5

Conclusions and Future Work

In this chapter, we will conclude and provide future directions for researchers.

5.1 Conclusion

This dissertation describes several methodologies for improving the performance of classi-

fication tasks in critical applications. We consider two critical application domains. One

is software security and another is healthcare. In software security, we described our ef-

fort of developing a benchmark named CryptoAPI-Bench [39, 122] and ApacheCryptoAPI-

Bench [41]. These benchmarks include 18 common crypto misuse categories that we find

from NIST documents, previous research papers, and different blogs. The objectives of these

benchmarks are to identify the limitations of Java cryptographic vulnerability detection

tools and improve their tools. These benchmarks can also educate novice developers as the

benchmark contains both cryptographically secure and insecure cryptographic API usage.

We also evaluated and compared four state-of-the-art cryptographic vulnerability detection

tools (CryptoGuard, CrySL, SpotBugs, and Anonymous tool) and showed their limitation

and coverage. Many tools including CryptoGuard, CrySL, and Parfait (crypto vulnerability

detection tool by Oracle) used our benchmark to improve the performance of their tools.

In healthcare prognosis, as underrepresentation is prevalent in clinical medicine, our findings

likely have broad implications beyond the specific datasets and demographic groups studied.

76

5.2. FUTURE WORK 77

Fully recognizing accuracy disparities associated with imbalanced data will help reduce po-

tentially life-threatening prediction mistakes. Vast accuracy gaps exist between minority C1

and majority C0 classes and across some demographic subgroups. When training and testing

machine learning models, using multiple metrics is crucial, including balanced accuracy and

separate metrics for the two prediction classes. Commonly used metrics, namely AUC-ROC

and accuracy, are heavily influenced by the majority class and may fail to reflect the minor-

ity class performance when the dataset is imbalanced. Existing sampling techniques (e.g.,

SMOTE, ADASYN, Gamma, Random Oversampling, Random Undersampling, NearMiss1,

NearMiss3, Distant, stratified sampling, GAN-based sampling) and other techniques (model

reweighting and loss function constraint) are not well equipped to reduce bias among demo-

graphic subpopulations. So, we proposed a double prioritized (DP) [40] sampling technique

that incrementally increases the minority subgroups in the minority class so which helps to

reduce bias. We compare our proposed DP technique with sampling techniques and show

that the DP technique indeed reduces disparity than other sampling methods. DP bias

correction is applicable to medical datasets, where data imbalance may be a source of accu-

racy disparity. The method is not designed to address non-representational disparities, e.g.,

underdiagnosis and measurement bias.

5.2 Future Work

In software security, an interesting future research direction can be motivating the research

of cryptographic misuse detection tools for other platforms, we plan to extend CryptoAPI-

Bench to cover other popular languages, e.g., Python. Also, the addition of other interesting

cases can extend the benchmark, for example, other non-cryptographic API misuses (e.g.,

Android APIs to access sensitive information (location, IMEI, passwords, etc.) [62, 112],

78 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

fingerprint protection [58], cloud service APIs for information storage [143]) are also proven

to cause catastrophic security consequences.

In healthcare prognosis using machine learning models, some future directions include further

enhancing the interpretability of machine learning prognosis models, as well as exploring how

data underrepresentation impacts the quality of medical image analysis and mutation-based

evolutionary computation [105]. Also, testing or monitoring machine learning models to test

their performance on the corner cases using domain knowledge and visualizing the failure

cases is another interesting research direction. Another research direction can be obtaining

more informed prediction analysis with multimodal models with different types of inputs.

For example, more informative multimodal model disparity analysis can be done using chest

X-rays and time-series ICU data of patients using MIMIC-CXR [43].

Bibliography

[1] AES Encryption. https://aesencryption.net/. Online; Last accessed: Dec 3, 2020.

[2] Top 10 Apache Projects in 2021, from Superset, to Nuttx and Pulsar.

https://thestack.technology/top-apache-projects-in-2021-from-superset-to-nuttx/.

Online; Last accessed: April 4, 2020.

[3] Find Security Bugs. https://find-sec-bugs.github.io/. Online; Last accessed:

Dec 3, 2020.

[4] Hostname Verification to SSL Socket. https://www.the-codingforums.com/

threads/adding-hostname-verification-to-sslsocket.958287/. Online; Last

accessed: Dec 3, 2020.

[5] Kruskal–Wallis One-way Analysis of Variance. https://en.wikipedia.org/wiki/Kruskal

%E2%80%93Wallis_one-way_analysis_of_variance. Online; Last accessed: Dec 8,

2022.

[6] Seer Incidence Data. https://seer.cancer.gov/data/. Online; Last accessed: March 7,

2022.

[7] URL Spoofing. http://www.securitysupervisor.com/security-q-a/

network-security/262-what-is-url-spoofing.html. Online; Last accessed:

Dec 3, 2020.

[8] AndroZoo. https://androzoo.uni.lu/. Online; Last accessed: Dec 3, 2020.

79

https://aesencryption.net/
https://find-sec-bugs.github.io/
https://www.the-codingforums.com/threads/adding-hostname-verification-to-sslsocket.958287/
https://www.the-codingforums.com/threads/adding-hostname-verification-to-sslsocket.958287/
http://www.securitysupervisor.com/security-q-a/network-security/262-what-is-url-spoofing.html
http://www.securitysupervisor.com/security-q-a/network-security/262-what-is-url-spoofing.html

80 BIBLIOGRAPHY

[9] A Popular Algorithm Is No Better at Predicting Crimes Than Random Peo-

ple. https://www.theatlantic.com/technology/archive/2018/01/equivant-compas-

algorithm/550646/. Online; Last accessed: March 7, 2022.

[10] Critical Application Definition. https://www.lawinsider.com/dictionary/critical-

application. Online; Last accessed: November 27, 2022.

[11] CryptoGuard. https://github.com/CryptoGuardOSS/cryptoguard, . Online; Last ac-

cessed: Dec 3, 2020.

[12] Cognicrypt_SAST: CrySLtoStatic Analysis Compiler.

https://github.com/CROSSINGTUD/CryptoAnalysis, . Online; Last accessed:

Dec 3, 2020.

[13] The Third-Leading Cause of Death in US Most Doctors Don’t Want You to

Know About. https://www.cnbc.com/2018/02/22/medical-errors-third-leading-cause-

of-death-in-america.html. Online; Last accessed: November 27, 2022.

[14] Disparate Impact. https://en.wikipedia.org/wiki/Disparate_impact. Online; Last ac-

cessed: April 7, 2022.

[15] How America’s 5 Top Hospitals are Using Machine Learning Today.

https://emerj.com/ai-sector-overviews/top-5-hospitals-using-machine-learning/.

Online; Last accessed: March 7, 2022.

[16] GRAMMATECH. https://www.grammatech.com/. Online; Last accessed: Dec 3,

2020.

[17] Command Center to Improve Patient Flow. https://www.hopkinsmedicine.org/news/

articles/command-center-to-improve-patient-flow. Online; Last accessed: March 7,

2022.

BIBLIOGRAPHY 81

[18] Cleveland Clinic to Identify At-Risk Patients in ICU using Cortana Intelli-

gence. https://docs.microsoft.com/en-us/archive/blogs/machinelearning/cleveland-

clinic-to-identify-at-risk-patients-in-icu-using-cortana-intelligence-suite. Online; Last

accessed: March 7, 2022.

[19] NIST Computer Security Resource Center. https://csrc-.nist.gov/projects. On-

line; Last accessed: Sep 3, 2021.

[20] 2017 Profile of Older Americans. https://acl.gov/sites/default/files/Aging%20and%20

Disability%20in%20America/2017OlderAmericansProfile.pdf. Online; Last accessed:

November 11, 2022.

[21] Secure Coding Guidelines for Java SE. https://www.oracle.com/java/

technologies/javase/seccodeguide.html. Online; Last accessed: Sep 3, 2021.

[22] Machine Bias: Theres Software Used Across the Country to Predict Future Criminals

and Its Biased Against Blacks. https://www.propublica.org/article/machine-bias-risk-

assessments-in-criminal-sentencing. Online; Last accessed: March 7, 2022.

[23] Quick Android Review Kit (QARK). https://github-.com/linkedin/qark. Online; Last

accessed: Dec 3, 2020.

[24] Amazon Scraps Secret AI Recruiting Tool That Showed Bias Against Women.

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-

scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G.

Online; Last accessed: March 7, 2022.

[25] Secure Code Review: 8 Security Code Review Best Practices. https://snyk.io/

blog/secure-code-review/, . Online; Last accessed: Sep 3, 2021.

https://csrc-.nist.gov/projects
https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://snyk.io/blog/secure-code-review/
https://snyk.io/blog/secure-code-review/

82 BIBLIOGRAPHY

[26] Colonial Pipeline Paid Roughly $5 Million in Ransom to Hackers.

https://www.nytimes.com/2021/05/13/us/politics/biden-colonial-pipeline-

ransomware.html, . Online; Last accessed: November 27, 2022.

[27] Log4j Flaw: Attackers Are Making Thousands of Attempts to Exploit this Se-

vere Vulnerability. https://www.zdnet.com/article/log4j-flaw-attackers-are-making-

thousands-of-attempts-to-exploit-this-severe-vulnerability/, . Online; Last accessed:

November 27, 2022.

[28] All of JBS’s U.S. Beef Plants Were Forced Shut by Cyberattack.

https://www.bloomberg.com/news/articles/2021-05-31/meat-is-latest-cyber-victim-

as-hackers-hit-top-supplier-jbs, . Online; Last accessed: November 27, 2022.

[29] SonarSource Static Code Analysis. https://rules.sonarsource.com/. Online; Last

accessed: Dec 3, 2020.

[30] SpotBugs: Find Bugs in Java Programs. https://spotbugs-.github.io/. Online; Last

accessed: Dec 3, 2020.

[31] Oracle. https://docs.oracle.com/javase/8/docs/api/java/secur-ity/

Permission.html. Online; Last accessed: Sep 3, 2021.

[32] GANs for Tabular Data. https://pypi.org/project/tabgan/. Online; Last accessed:

Oct 25, 2022.

[33] Transition of SWAMP software. https://continuousassurance-.org/blog/. Online; Last

accessed: Dec 3, 2020.

[34] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Miettinen,

Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac. Peek-a-boo:

I See Your Smart Home Activities, Even Encrypted! In Proceedings of the 13th ACM

https://rules.sonarsource. com/
https://docs.oracle.com/javase/8/docs/api/java/secur-ity/Permission.html
https://docs.oracle.com/javase/8/docs/api/java/secur-ity/Permission.html

BIBLIOGRAPHY 83

Conference on Security and Privacy in Wireless and Mobile Networks, pages 207–218,

2020.

[35] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky.

Comparing the Usability of Cryptographic APIs. In IEEE Symposium on Security and

Privacy, SP’17, San Jose, CA, USA, May 22-26, pages 154–171, 2017.

[36] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L. Mazurek, and

Christian Stransky. You Get Where You’re Looking for: The Impact of Information

Sources on Code Security. In IEEE Symposium on Security and Privacy, SP’16, San

Jose, CA, USA, May 23-25, pages 289–305, 2016.

[37] S. Afrose. CryptoAPI-Bench. https://github.com/CryptoAPI-Bench/

CryptoAPI-Bench, 2019.

[38] S. Afrose. ApacheCryptoAPI-Bench. https://github.com/CryptoAPI-Bench/

ApacheCryptoAPI-Bench, 2020.

[39] Sharmin Afrose, Sazzadur Rahaman, and Danfeng Yao. CryptoAPI-Bench: A Compre-

hensive Benchmark on Java Cryptographic API Misuses. In 2019 IEEE Cybersecurity

Development (SecDev), pages 49–61. IEEE, 2019.

[40] Sharmin Afrose, Wenjia Song, Charles B Nemeroff, Chang Lu, and Danfeng Daphne

Yao. Subpopulation-specific Machine Learning Prognosis for Underrepresented Pa-

tients with Double Prioritized Bias Correction. Communications Medicine, 2(1):1–14,

2022.

[41] Sharmin Afrose, Ya Xiao, Sazzadur Rahaman, Barton Miller, and Danfeng Daphne

Yao. Evaluation of Static Vulnerability Detection Tools with Java Cryptographic API

Benchmarks. IEEE Transactions on Software Engineering, 2022.

https://github.com/CryptoAPI-Bench/CryptoAPI-Bench
https://github.com/CryptoAPI-Bench/CryptoAPI-Bench
https://github.com/CryptoAPI-Bench/ApacheCryptoAPI-Bench
https://github.com/CryptoAPI-Bench/ApacheCryptoAPI-Bench

84 BIBLIOGRAPHY

[42] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.

Black Box Fairness Testing of Machine Learning Models. In Proceedings of the 2019

27th ACM Joint Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, pages 625–635, 2019.

[43] Roger Mark Seth Berkowitz Alistair Johnson, Tom Pollard and Steven Horng. MIMIC-

CXR database. In PhysioNet, 2019. doi: https://doi.org/10.13026/C2JT1Q.

[44] Amit Seal Ami, Nathan Cooper, Kaushal Kafle, Kevin Moran, Denys Poshyvanyk, and

Adwait Nadkarni. Why Crypto-detectors Fail: A Systematic Evaluation of Crypto-

graphic Misuse Detection Techniques. arXiv preprint arXiv:2107.07065, 2021.

[45] Jing An, Lexing Ying, and Yuhua Zhu. Why Resampling Outperforms Reweighting

for Correcting Sampling Bias with Stochastic Gradients. International Conference on

Learning Representations, 2021.

[46] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. FlowDroid:

Precise Context, Flow, Field, Object-Sensitive and Lifecycle-aware Taint Analysis for

Android Apps. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI’14, pages 259–269, 2014.

[47] Ken Ashcraft and Dawson R. Engler. Using Programmer-Written Compiler Extensions

to Catch Security Holes. In IEEE Symposium on Security and Privacy, (SP’02), pages

143–159, 2002.

[48] Insaf Ashrapov. Tabular GANs for Uneven Distribution. arXiv preprint

arXiv:2010.00638, 2020.

[49] Hala Assal and Sonia Chiasson. Security in the Software Development Lifecycle. In

BIBLIOGRAPHY 85

Fourteenth Symposium on Usable Privacy and Security, SOUPS’18, pages 281–296,

2018.

[50] João B Augusto, Rhodri H Davies, Anish N Bhuva, Kristopher D Knott, Andreas

Seraphim, Mashael Alfarih, Clement Lau, Rebecca K Hughes, Luís R Lopes, Hunain

Shiwani, et al. Diagnosis and Risk Stratification in Hypertrophic Cardiomyopathy

using Machine Learning Wall Thickness Measurement: A Comparison with Human

Test-retest Performance. The Lancet Digital Health, 3(1):e20–e28, 2021.

[51] Aya Awad, Mohamed Bader-El-Den, James McNicholas, and Jim Briggs. Early Hospi-

tal Mortality Prediction of Intensive Care Unit Patients Using an Ensemble Learning

Approach. International Journal of Medical Informatics, 108:185–195, 2017.

[52] Leonardo Babun, Kyle Denney, Z Berkay Celik, Patrick McDaniel, and A Selcuk Ulua-

gac. A Survey on IoT Platforms: Communication, Security, and Privacy Perspectives.

Computer Networks, 192:108040, 2021.

[53] Elaine Barker and Allen Roginsky. Transitioning the Use of Cryptographic Algo-

rithms and Key Lengths. In Special Publication (NIST SP), National Institute of

Standards and Technology, Gaithersburg, MD, 2019. doi: https://doi.org/10.6028/

NIST.SP.800-131Ar2.

[54] Elaine Barker, Lidong Chen, Allen Roginsky, Richard Davis, and Scott Simon. Recom-

mendation for Pair-wise Key Establishment Using Integer Factorization Cryptography.

In Special Publication (NIST SP), National Institute of Standards and Technology,

Gaithersburg, MD, 2019. doi: https://doi.org/10.6028/NIST.SP.800-56Br2.

[55] Christopher Andrew Barton, Graham Andrew Clarke, and Simon Crowe. Transferring

Data via a Secure Network Connection, 2006. US Patent 7,093,121.

86 BIBLIOGRAPHY

[56] Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Gin-

neken, Nico Karssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen,

Quirine F Manson, Maschenka Balkenhol, et al. Diagnostic Assessment of Deep Learn-

ing Algorithms for Detection of Lymph Node Metastases in Women With Breast Can-

cer. Jama, 318(22):2199–2210, 2017.

[57] Mihir Bellare. New Proofs for NMAC and HMAC: Security Without Collision Resis-

tance. Journal of Cryptology, 28(4):844–878, 2015.

[58] Antonio Bianchi, Yanick Fratantonio, Aravind Machiry, Christopher Kruegel, Giovanni

Vigna, Simon Pak Ho Chung, and Wenke Lee. Broken Fingers: On the Usage of the

Fingerprint API in Android. In 25th Annual Network and Distributed System Security

Symposium, NDSS’18, 2018.

[59] Stephen M. Blackburn et al. The DaCapo Benchmarks: Java Benchmarking Develop-

ment and Analysis. In Proceedings of the 21th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA’06,

Portland, Oregon, USA, pages 169–190, 2006.

[60] Miranda Bogen and Aaron Rieke. Help Wanted: An Examination of Hiring Algorithms,

Equity, and Bias. 2018.

[61] Ashish Bora, Siva Balasubramanian, Boris Babenko, Sunny Virmani, Subhashini Venu-

gopalan, Akinori Mitani, Guilherme de Oliveira Marinho, Jorge Cuadros, Paisan Ru-

amviboonsuk, Greg S Corrado, et al. Predicting the Risk of Developing Diabetic

Retinopathy using Deep Learning. The Lancet Digital Health, 3(1):e10–e19, 2021.

[62] Amiangshu Bosu, Fang Liu, Danfeng(Daphne) Yao, and Gang Wang. Collusive Data

Leak and More: Large-Scale Threat Analysis of Inter-app Communications. In ACM

BIBLIOGRAPHY 87

ASIA Conference on Computer and Communications Security, AsiaCCS’17, pages

71–85, 2017.

[63] Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Dispar-

ities in Commercial Gender Classification. In Conference on Fairness, Accountability

and Transparency, pages 77–91. PMLR, 2018.

[64] Elisa Burato, Pietro Ferrara, and Fausto Spoto. Security Analysis of the OWASP

Benchmark with Julia. The Italian Conference on CyberSecurity (ITASEC), 17, 2017.

[65] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelli-

gence Research, 16:321–357, 2002.

[66] Cancan Chen, Shan Zheng, Lei Guo, Xuebing Yang, Yan Song, Zhuo Li, Yanwu Zhu,

Xiaoqi Liu, Qingzhuang Li, Huijuan Zhang, et al. Identification of Misdiagnosis by

Deep Neural Networks on a Histopathologic Review of Breast Cancer Lymph Node

Metastases. Scientific reports, 12(1):1–10, 2022.

[67] Jesse Davis and Mark Goadrich. The Relationship Between Precision-Recall and ROC

Curves. In Proceedings of the 23rd International Conference on Machine Learning,

pages 233–240, 2006.

[68] DHS SWAMP. Welcome to the SWAMP. https://continuousassurance.org, 2018.

[69] Julia Dressel and Hany Farid. The Accuracy, Fairness, and Limits of Predicting Re-

cidivism. Science advances, 4(1):eaao5580, 2018.

[70] Chris Drummond and Robert C Holte. Explicitly Representing Expected Cost: An

Alternative to ROC Representation. In Proceedings of the sixth ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages 198–207, 2000.

https://continuousassurance.org

88 BIBLIOGRAPHY

[71] Chris Drummond and Robert C Holte. What ROC Curves Can’t Do (and Cost Curves

Can). In ROCAI, pages 19–26. Citeseer, 2004.

[72] Rashmi Dubey, Jiayu Zhou, Yalin Wang, Paul M Thompson, Jieping Ye, Alzheimer’s

Disease Neuroimaging Initiative, et al. Analysis of Sampling Techniques for Imbalanced

Data: An n= 648 ADNI Study. NeuroImage, 87:220–241, 2014.

[73] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An

Empirical Study of Cryptographic Misuse in Android Applications. In ACM Conference

on Computer and Communications Security, CCS’13, pages 73–84, 2013.

[74] Yaniv Eytani, Klaus Havelund, Scott D Stoller, and Shmuel Ur. Towards a Framework

and a Benchmark for Testing Tools for Multi-Threaded Programs. Concurrency and

Computation: Practice and Experience, 19(3):267–279, 2007.

[75] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, Lars Baumgärtner,

and Bernd Freisleben. Why Eve and Mallory Love Android: An Analysis of Android

SSL (in) Security. In the ACM Conference on Computer and Communications Security,

CCS’12, pages 50–61, 2012.

[76] François Gagnon, Marc-Antoine Ferland, Marc-Antoine Fortier, Simon Desloges,

Jonathan Ouellet, and Catherine Boileau. AndroSSL: A Platform to Test Android

Applications Connection Security. In International Symposium on Foundations and

Practice of Security, FPS’15, pages 294–302, 2015.

[77] Isaac R Galatzer-Levy, Karen-Inge Karstoft, Alexander Statnikov, and Arieh Y Shalev.

Quantitative Forecasting of PTSD from Early Trauma Responses: A Machine Learning

Application. Journal of psychiatric research, 59:68–76, 2014.

BIBLIOGRAPHY 89

[78] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness Testing: Testing Soft-

ware for Discrimination. In Proceedings of the 2017 11th Joint meeting on foundations

of software engineering, pages 498–510, 2017.

[79] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vi-

taly Shmatikov. The Most Dangerous Code in the World: Validating SSL Certificates

in Non-Browser Software. In the ACM Conference on Computer and Communications

Security, CCS’12, pages 38–49, 2012.

[80] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks.

Communications of the ACM, 63(11):139–144, 2020.

[81] Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg, and Aram

Galstyan. Multitask Learning and Benchmarking with Clinical Time Series Data.

Scientific data, 6(1):1–18, 2019.

[82] Klaus Havelund, Scott D Stoller, and Shmuel Ur. Benchmark and Framework for

Encouraging Research on Multi-Threaded Testing Tools. In Proceedings International

Parallel and Distributed Processing Symposium, IPDPS’03, page 286. IEEE, 2003.

[83] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. ADASYN: Adaptive Syn-

thetic Sampling Approach for Imbalanced Learning. In 2008 IEEE International Joint

Conference on Neural Networks (IEEE world congress on computational intelligence),

pages 1322–1328. IEEE, 2008.

[84] Stefan Hegselmann, Leonard Gruelich, Julian Varghese, and Martin Dugas. Repro-

ducible Survival Prediction with SEER Cancer Data. In Machine Learning for Health-

care Conference, pages 49–66. PMLR, 2018.

90 BIBLIOGRAPHY

[85] Catherine Hercus and Abdul-Rahman Hudaib. Delirium Misdiagnosis Risk in Psy-

chiatry: A Machine Learning-Logistic Regression Predictive Algorithm. BMC health

services research, 20(1):1–7, 2020.

[86] Mazharul Islam, Sazzadur Rahaman, Na Meng, Behnaz Hassanshahi, Padmanab-

han Krishnan, and Danfeng Daphne Yao. Coding Practices and Recommendations

of Spring Security for Enterprise Applications. In 2020 IEEE Secure Development

(SecDev), pages 49–57. IEEE, 2020.

[87] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mo-

hammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G

Mark. MIMIC-III, A Freely Accessible Critical Care Database. Scientific data, 3(1):

1–9, 2016.

[88] Alistair EW Johnson, Tom J Pollard, and Roger G Mark. Reproducibility in Crit-

ical Care: A Mortality Prediction Case Study. In Machine Learning for Healthcare

Conference, pages 361–376. PMLR, 2017.

[89] Justin M Johnson and Taghi M Khoshgoftaar. Survey on Deep Learning with Class

Imbalance. Journal of Big Data, 6(1):1–54, 2019.

[90] Nidhi Kalra and Susan M Paddock. Driving to Safety: How Many Miles of Driv-

ing Would it Take to Demonstrate Autonomous Vehicle Reliability? Transportation

Research Part A: Policy and Practice, 94:182–193, 2016.

[91] Firuz Kamalov and Dmitry Denisov. Gamma Distribution-based Sampling for Imbal-

anced Data. Knowledge-Based Systems, 207:106368, 2020.

[92] Martin Kellogg, Martin Schäf, Serdar Tasirans, and Michael D. Ernst. Continuous

BIBLIOGRAPHY 91

Compliance. In 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 511–523, 2020.

[93] Donald E Knuth. Art of Computer Programming, volume 2: Seminumerical Algo-

rithms. Addison-Wesley Professional, 2014.

[94] Michael R Kosorok and Eric B Laber. Precision medicine. Annual review of statistics

and its application, 6:263–286, 2019.

[95] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. CrySL:

An Extensible Approach to Validating the Correct Usage of Cryptographic APIs. In

European Conference on Object-Oriented Programming, ECOOP’18, pages 10:1–10:27,

2018.

[96] Stefan Krüger et al. CogniCrypt: Supporting Developers in using Cryptography. In

IEEE/ACM International Conference on Automated Software Engineering, ASE’17,

pages 931–936, 2017.

[97] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar T.

Devanbu, Stephanie Forrest, and Westley Weimer. The ManyBugs and IntroClass

Benchmarks for Automated Repair of C Programs. IEEE Transactions on Software

Engineering, 41(12):1236–1256, 2015.

[98] Sang Bum Lee, Jae Hun Oh, Jeong Ho Park, Seung Pill Choi, and Jung Hee Wee. Dif-

ferences in Youngest-old, Middle-old, and Oldest-old Patients who Visit the Emergency

Department. Clinical and Experimental Emergency Medicine, 5(4):249, 2018.

[99] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F. Bissyandé, Alexan-

dre Bartel, Jacques Klein, and Yves Le Traon. AndroZoo++: Collecting Millions

92 BIBLIOGRAPHY

of Android Apps and Their Metadata for the Research Community. arXiv preprint

arXiv:1709.05281, 2017.

[100] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. BugBench:

Benchmarks for Evaluating Bug Detection Tools. In Workshop on the Evaluation of

Software Defect Detection Tools, volume 5, 2005.

[101] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher Kruegel,

and Giovanni Vigna. DR. CHECKER: A Soundy Analysis for Linux Kernel Drivers.

In 26th USENIX Security Symposium, USENIX Security’17, Vancouver, BC, Canada,

pages 1007–1024, 2017.

[102] Amita Malav, Kalyani Kadam, and Pooja Kamat. Prediction of Heart Disease using

K-means and Artificial Neural Network as Hybrid Approach to Improve Accuracy.

International Journal of Engineering and Technology, 9(4):3081–3085, 2017.

[103] Inderjeet Mani and I Zhang. kNN Approach to Unbalanced Data Distributions: A Case

Study Involving Information Extraction. In Proceedings of Workshop on Learning from

Imbalanced Datasets, volume 126, pages 1–7. ICML, 2003.

[104] Na Meng, Stefan Nagy, Daphne Yao, Wenjie Zhuang, and Gustavo Arango Argoty.

Secure Coding Practices in Java: Challenges and Vulnerabilities. In International

Conference on Software Engineering, ICSE’18, May 2018.

[105] Risto Miikkulainen and Stephanie Forrest. A biological Perspective on Evolutionary

Computation. Nature Machine Intelligence, 3(1):9–15, 2021.

[106] Margaret Mitchell, SimoneWu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben

Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model Cards

BIBLIOGRAPHY 93

for Model Reporting. In Proceedings of the conference on fairness, accountability, and

transparency, pages 220–229, 2019.

[107] Joydeep Mitra and Venkatesh-Prasad Ranganath. Ghera: A Repository of Android

App Vulnerability Benchmarks. In Proceedings of the 13th International Conference on

Predictive Models and Data Analytics in Software Engineering, PROMISE’17, Toronto,

Canada, pages 43–52, 2017.

[108] Kathleen Moriarty, Burt Kaliski, and Andreas Rusch. PKCS #5: Password-Based

Cryptography Specification Version 2.1. 2017.

[109] Amitabha Mukerjee, Rita Biswas, Kalyanmoy Deb, and Amrit P Mathur. Multi-

objective Evolutionary Algorithms for the Risk-Return Trade-off in Bank Loan Man-

agement. International Transactions in operational research, 9(5):583–597, 2002.

[110] Pritam Mukherjee, Mu Zhou, Edward Lee, Anne Schicht, Yoganand Balagurunathan,

Sandy Napel, Robert Gillies, Simon Wong, Alexander Thieme, Ann Leung, et al. A

Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in

Multi-institutional Computed Tomography Image Datasets. Nature machine intelli-

gence, 2(5):274–282, 2020.

[111] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping Through Hoops:

Why Do Java Developers Struggle with Cryptography APIs? In International Con-

ference on Software Engineering, ICSE’16, pages 935–946, 2016.

[112] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai Zhu, and Min Yang.

Finding Clues for Your Secrets: Semantics-Driven, Learning-Based Privacy Discovery

in Mobile Apps. In 25th Annual Network and Distributed System Security Symposium,

NDSS’18, 2018.

94 BIBLIOGRAPHY

[113] Duc Cuong Nguyen et al. A Stitch in Time: Supporting Android Developers in Writ-

ing Secure Code. In ACM Conference on Computer and Communications Security,

CCS’17, pages 1065–1077, 2017.

[114] Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting

Racial Bias in an Algorithm Used to Manage the Health of Populations. Science, 366

(6464):447–453, 2019.

[115] Marten Oltrogge, Erik Derr, Christian Stransky, Yasemin Acar, Sascha Fahl, Christian

Rossow, Giancarlo Pellegrino, Sven Bugiel, and Michael Backes. The Rise of the

Citizen Developer: Assessing the Security Impact of Online App Generators. In IEEE

Symposium on Security and Privacy, SP’18, pages 634–647, 2018.

[116] Sarah Parisot, Sofia Ira Ktena, Enzo Ferrante, Matthew Lee, Ricardo Guerrero, Ben

Glocker, and Daniel Rueckert. Disease Prediction using Graph Convolutional Net-

works: Application to Autism Spectrum Disorder and Alzheimer’s Disease. Medical

image analysis, 48:117–130, 2018.

[117] Van L Parsons. Stratified Sampling. Wiley StatsRef: Statistics Reference Online, pages

1–11, 2014.

[118] Luca Piccolboni, Giuseppe Di Guglielmo, Luca P Carloni, and Simha Sethumadhavan.

Crylogger: Detecting Crypto Misuses Dynamically. arXiv preprint arXiv:2007.01061,

2020.

[119] Emma Pierson, David M Cutler, Jure Leskovec, Sendhil Mullainathan, and Ziad Ober-

meyer. An Algorithmic Approach to Reducing Unexplained Pain Disparities in Un-

derserved Populations. Nature Medicine, 27(1):136–140, 2021.

BIBLIOGRAPHY 95

[120] Giulia Pullano, Eugenio Valdano, Nicola Scarpa, Stefania Rubrichi, and Vittoria Col-

izza. Evaluating the Effect of Demographic Factors, Socioeconomic Factors, and Risk

Aversion on Mobility During the COVID-19 Epidemic in France Under Lockdown: a

Population-based Study. The Lancet Digital Health, 2(12):e638–e649, 2020.

[121] Sazzadur Rahaman and Danfeng Yao. Program Analysis of Cryptographic Imple-

mentations for Security. In IEEE Cybersecurity Development, SecDev’17, Cam-

bridge, MA, USA, pages 61–68, 2017. doi: 10.1109/SecDev.2017.23. URL https:

//doi.org/10.1109/SecDev.2017.23.

[122] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,

Murat Kantarcioglu, and Danfeng(Daphne) Yao. CryptoGuard: High Precision De-

tection of Cryptographic Vulnerabilities in Massive-sized Java Projects. In ACM Con-

ference on Computer and communications security, CCS’19, pages 2455–2472, Nov.

2019.

[123] Lars Lau Raket, Jörn Jaskolowski, Bruce J Kinon, Jens Christian Brasen, Linus Jöns-

son, Allan Wehnert, and Paolo Fusar-Poli. Dynamic Electronic Health Record Detec-

tion (DETECT) of Individuals at Risk of a First Episode of Psychosis: a Case-Control

Development and Validation Study. The Lancet Digital Health, 2(5):e229–e239, 2020.

[124] Marco Tulio Ribeiro, Carlos Guestrin, and Sameer Singh. Are Red Roses Red? Eval-

uating Consistency of Question-Answering Models. In Proceedings of the 57th An-

nual Meeting of the Association for Computational Linguistics, pages 6174–6184, Flo-

rence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/

P19-1621. URL https://aclanthology.org/P19-1621.

[125] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Be-

https://doi.org/10.1109/SecDev.2017.23
https://doi.org/10.1109/SecDev.2017.23
https://aclanthology.org/P19-1621

96 BIBLIOGRAPHY

yond Accuracy: Behavioral Testing of NLP Models with Checklist. arXiv preprint

arXiv:2005.04118, 2020.

[126] David Rojas-Rueda, Mark J Nieuwenhuijsen, Haneen Khreis, and Howard Frumkin.

Autonomous Vehicles and Public Health. Annual review of public health, 41(1):329–345,

2020.

[127] Takaya Saito and Marc Rehmsmeier. The Precision-Recall Plot Is More Informative

Than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PloS

One, 10(3):e0118432, 2015.

[128] Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Re-

sampling or Reweighting: A Comparison of Boosting Implementations. In 2008 20th

IEEE International Conference on Tools with Artificial Intelligence, volume 1, pages

445–451. IEEE, 2008.

[129] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu, and A Selcuk Uluagac. Aegis:

A Context-aware Security Framework for Smart Home Systems. In Proceedings of the

35th Annual Computer Security Applications Conference, pages 28–41, 2019.

[130] Daniel J Solove and Woodrow Hartzog. Breached!: Why Data Security Law Fails and

How to Improve it. Oxford University Press, 2022.

[131] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin, and Latifur Khan.

SMV-Hunter: Large Scale, Automated Detection of SSL/TLS Man-in-the-Middle Vul-

nerabilities in Android Apps. In The Network and Distributed System Security Sym-

posium, NDSS’14, 2014.

[132] Johannes Späth, Karim Ali, and Eric Bodden. Context-, Flow-, and Field-sensitive

Data-flow Analysis Using Synchronized Pushdown Systems. Proc. ACM Program.

BIBLIOGRAPHY 97

Lang., 3(POPL), January 2019. doi: 10.1145/3290361. URL https://doi.org/10.

1145/3290361.

[133] Latanya Sweeney. Discrimination in Online Ad Delivery. Communications of the ACM,

56(5):44–54, 2013.

[134] Stephany Tandy-Connor, Jenna Guiltinan, Kate Krempely, Holly LaDuca, Patrick

Reineke, Stephanie Gutierrez, Phillip Gray, and Brigette Tippin Davis. False-positive

Results Released by Direct-to-Consumer Genetic Tests Highlight the Importance of

Clinical Confirmation Testing for Appropriate Patient Care. Genetics in Medicine, 20

(12):1515–1521, 2018.

[135] Kevin Ten Haaf, Jihyoun Jeon, Martin C Tammemägi, Summer S Han, Chung Yin

Kong, Sylvia K Plevritis, Eric J Feuer, Harry J de Koning, Ewout W Steyerberg,

and Rafael Meza. Risk Prediction Models for Selection of Lung Cancer Screening

Candidates: A Retrospective Validation Study. PLoS medicine, 14(4):e1002277, 2017.

[136] Philip S Thomas, Bruno Castro da Silva, Andrew G Barto, Stephen Giguere, Yuriy

Brun, and Emma Brunskill. Preventing Undesirable Behavior of Intelligent Machines.

Science, 366(6468):999–1004, 2019.

[137] Jason Van Hulse, Taghi M Khoshgoftaar, and Amri Napolitano. Experimental Per-

spectives on Learning from Imbalanced Data. In Proceedings of the 24th international

conference on Machine learning, pages 935–942, 2007.

[138] Nicholas J White, James A Watson, Sophie Uyoga, Thomas N Williams, and

Kathryn M Maitland. Substantial Misdiagnosis of Severe Malaria in African Chil-

dren. The Lancet, 400(10355):807, 2022.

[139] Wikipedia contributors. Data-flow Analysis — Wikipedia, The Free Encyclopedia.

https://doi.org/10.1145/3290361
https://doi.org/10.1145/3290361

98 BIBLIOGRAPHY

URL https://en.wikipedia.org/wiki/Data-flow_analysis. Last accessed: Sep

9, 2021.

[140] Jack Wilkinson, Kellyn F Arnold, Eleanor J Murray, Maarten van Smeden, Kareem

Carr, Rachel Sippy, Marc de Kamps, Andrew Beam, Stefan Konigorski, Christoph

Lippert, et al. Time to Reality Check the Promises of Machine Learning-powered

Precision Medicine. The Lancet Digital Health, 2(12):e677–e680, 2020.

[141] Danfeng Daphne Yao, Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Miles Frantz,

Ke Tian, Na Meng, Cristina Cifuentes, Yang Zhao, Nicholas Allen, et al. Being the

Developers’ Friend: Our Experience Developing a High-Precision Tool for Secure Cod-

ing. IEEE Security & Privacy, (01):2–11, 2022.

[142] William Yuan, Brett K Beaulieu-Jones, Kun-Hsing Yu, Scott L Lipnick, Nathan

Palmer, Joseph Loscalzo, Tianxi Cai, and Isaac S Kohane. Temporal Bias in Case-

control Design: Preventing Reliable Predictions of the Future. Nature communications,

12(1):1–10, 2021.

[143] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why Does Your Data Leak? Uncov-

ering the Data Leakage in Cloud from Mobile Apps. In IEEE Symposium on Security

and Privacy, (SP’19), London, UK, 2019.

https://en.wikipedia.org/wiki/Data-flow_analysis

Appendices

99

Appendix A

MIMIC Appendix

A.1 Supplementary Equations

• BCS Class 1: Patient does not survive more than 5 years after breast cancer diagnosis

• IHM Class 1: Based on the first 48 hours of ICU information, the patient dies in ICU

• LCS Class 1: Patient survives more than 5 years after lung cancer diagnosis

• Decomp Class 1: Patient’s health deteriorates after 24 hours

Recall C1 or Sensitivity =
#Predicted True Class 1

True Class 1
(A.1)

Recall C0 or Specificity =
#Predicted True Class 0

True Class 0
(A.2)

Precision C1 or Positive Predictive V alue =
#Predicted True Class 1

Predicted Class 1
(A.3)

Precision C0 or Negative Predictive V alue =
#Predicted True Class 0

Predicted Class 0
(A.4)

100

A.2. RELATIVE FREQUENCY DISTRIBUTION OF FEATURES 101

Accuracy =
#Predicted True Class 1 + #Predicted True Class 0

True Class 1 + # True Class 0
(A.5)

Balanced Accuracy =
Recall C1 + Recall C0

2
(A.6)

F1− Score C1 = 2× Precision C1 × Recall C1

Precision C1 + Recall C1
(A.7)

F1− Score C0 = 2× Precision C0 × Recall C0

Precision C0 + Recall C0
(A.8)

MCC=#Predicted True Class 1 × #Predicted True Class 0−#Predicted False Class 1 × #Predicted False Class 0√
#Predicted Class 1 × #True Class 1 × #Predicted Class 0 × #True Class 0

(A.9)

A.2 Relative Frequency Distribution of features

There are 17 clinical features used for in-hospital mortality prediction task. We analyse

the relative frequency distribution of each features in two classes (i.e., majority class C0

and minority class C1). Figure 4.4 and Figure A.1 shows all 17 features distribution using

relative frequency metric.

102 APPENDIX A. MIMIC APPENDIX

Figure A.1: Relative frequency of several features in MIMIC dataset for in-hospital mortality tasks

A.3. KRUSKAL WALLIS TEST 103

A.3 Kruskal Wallis Test

In Table A.1, We p-value where we compare DP with other models based on black subgroup

performances on in-hospital mortality prediction task using the Kruskal Wallis test.

Table A.1: P-value of pairwise comparison with DP with other models using Kruskal Wallis
Test in terms of minority class Recall, balanced accuracy, minority class F1 score, minority
class PR curve value.

DP Comparison with Other Models Recall_C1 Bal_Acc F1_C1 PR_C1
Original 0.049535 0.049534613 0.12663 0.246315
Gamma 0.049535 0.049535 0.046302 0.043114
Adasyn 0.049535 0.049535 0.049535 0.824778
Smote 0.046302 0.049535 0.12663 0.121183
Replicated Oversampling 0.046302 0.049535 0.275234 0.121183
Random Oversampling 0.046302 0.049535 0.049535 0.046302
NearMiss1 0.049535 0.049535 0.049535 0.046302
NearMiss3 0.049535 0.049535 0.049535 0.046302
Distant 0.049535 0.049535 0.046302 0.043114
Stratified RUS 0.046302 0.049535 0.049535 0.121183
Stratified ROS 0.046302 0.046302 0.046302 0.043114
Tabular GAN 0.049535 0.049535 0.049535 0.121183

A.4 Deceptive Metrics of AUC for Imbalanced Data

The ROC curve access overall classification performance. The ROC curve plot the false

positive rate vs. the true positive rate. If the dataset is skewed, FPR = FP/(FP + TN)

will be very small due to a higher TN value. Therefore, the effect of a false positive value

will not impact much on the overall performance. In the precision-recall curve (PR) value,

the precision metric is used instead of FPR. Precision = TP/(TP +FP) directly influenced

by class imblanced situation. Therefore, while evaluating a model built on the imbalanced

situation, precision-recall Curve (PR) metrics are better than the ROC curve value.

A random classifier output with an imbalanced dataset (30 samples from Class 1 and 30,000

104 APPENDIX A. MIMIC APPENDIX

samples from Class 0) is shown in Figure A.2. The AUC value is 0.89 whereas the PR_C1

value is 0.27. Therefore, the PR_C1 metrics correctly indicate that the classifier model is

not a good one.

(a) AUC (b) PRC

Figure A.2: Performance metrics performance under imbalanced situation

A.5 Variations of Loss functions

We applied different loss functions including binary cross-entropy loss, Poisson loss, log-cosh

loss, KL divergence loss, and hinge loss. However, the hinge loss and KL divergence loss

function can not classify class 1 and class 0 properly. More specifically, they fail to classify

class 0 and predict every sample as class 1. The binary cross-entropy loss, Poisson loss, and

log-cosh loss show comparable performance as shown in Figure A.3. The equations of binary

cross-entropy loss, log-cosh loss, and Poisson loss are shown in Equation A.10, A.11 and A.12

respectively. We use binary cross-entropy loss for all other experiments.

Binary Cross-Entropy Loss = − 1

n

n∑
i=1

yi . log ŷi + (1− yi) . log (1− ŷi) (A.10)

A.5. VARIATIONS OF LOSS FUNCTIONS 105

Figure A.3: Performance of different loss functions on the original model of in-hospital
mortality tasks

Log-Cosh Loss =
n∑

i=1

log(cosh(ŷi − yi)) (A.11)

Poisson Loss =
1

n

n∑
i=1

(ŷi − yi . log ŷi) (A.12)

106 APPENDIX A. MIMIC APPENDIX

Figure A.4: Relative disparity among racial and age groups under various sampling condi-
tions for decomp prediction

A.5. VARIATIONS OF LOSS FUNCTIONS 107

Figure A.5: DP’s cross-group performance under various race and age settings for recall C1
and balanced accuracy for the decompensation prediction. In subfigures, each row corre-
sponds to a DP model trained for a specific subgroup. Each column represents a subgroup
that a model is evaluated on. The values on the diagonal are the performance of a matching
DP model, i.e., a DP model applied to the subgroup that it is designed for. The last rows
show the group’s performance in the original model. To prevent overfitting, our method
chooses optimal thresholds based on whole group performance, as opposed to the (small)
minority groups in the validation sets. DP cross-group performance for (a) race subgroups
and (b) age subgroups for the decompensation prediction in terms of recall C1. DP cross-
group performance for (c) race subgroups and (d) age subgroups for the decompensation
prediction in terms of balanced accuracy

108 APPENDIX A. MIMIC APPENDIX

Figure A.6: In-hospital mortality prediction performance of the original model with (a) whole
group calibration, (b) subgroup calibration, and (c) difference in the performance between
the whole group and subgroup calibration. A positive value means subgroup calibration
improves performance. Rec_C1, Prec_C1, PR_C1, F1_C1, Rec_C0, Prec_C0, PR_C0,
F1_C0, Acc, Bal_Acc, ROC stand for Recall Class 1, Precision Class 1, Area Under the
Precision-Recall Curve Class 1, F1 score Class 1, Recall Class 0, Precision Class 0, Area
Under the Precision-Recall Curve Class 0, F1 score Class 0, Accuracy, Balanced Accuracy,
Area under the ROC Curve, respectively.

(a) Difference in Recall C1 (b) Difference in Balanced Accuracy

Figure A.7: DP and two representative sampling techniques performance comparison over
the original model for decomp prediction

A.5. VARIATIONS OF LOSS FUNCTIONS 109

(a) Original Model (b) DP model for Black (c) DP model for Age 90+

Figure A.8: SHAP-avg feature importance of different IHM experiments. Original stands for
the original machine learning model without any bias correction. DP stands for our Double
Prioritized sampling method. In SHAP-avg, the importance of columns representing the
same variable is averaged.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Definition
	Contributions
	Dissertation Organization

	Review of Literature
	Cryptographic Vulnerability Detection Benchmarks
	Bias in Machine Learning

	Cryptographic API Benchmarks
	Introduction
	Background
	Java Cryptographic API Misuses
	Java Cryptographic API Vulnerability Detection Tools

	Design of Benchmarks
	Design of CryptoAPI-Bench
	Design of ApacheCryptoAPI-Bench

	Evaluation and Findings
	Experimental Setup
	Evaluation Criteria
	Evaluation on CryptoAPI-Bench
	Evaluation on ApacheCryptoAPI-Bench
	Verifiability

	Discussion
	Tool insights
	Case Studies
	Limitation of Benchmarks

	Summary

	Prediction Bias Correction for Underrepresented Patients
	Introduction
	Background
	Sampling Techniques
	Model Reweighting
	Constraint in Objective Function

	Methodology
	Double Prioritized (DP) Bias Correction Method
	Comparison with Other Bias Correction Techniques
	Comparison with Reweighting
	Comparison with Seldonian
	Cross-racial-group and Cross-age-group Experiments
	Whole-group vs. Subgroup-based Threshold Tuning

	Evaluation and Findings
	Experimental Setup
	Analysis of Imbalanced Clinical Datasets
	Disparity Among Prediction Classes
	Disparity Across Demographic Subgroups
	Disparity Among Performance Metrics
	DP Method Reduces Disparity
	Mitigation Solely Based on Adjusting Thresholds
	Subpopulation-based vs. Whole-population-based Sampling
	Cross-group: Prediction Outcome with Specialized ML
	Feature Importance
	Cancer Survivability Prediction Tasks

	Discussion
	Limitations of Double Prioritized Sampling

	Summary

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	Appendix MIMIC Appendix
	Supplementary Equations
	Relative Frequency Distribution of features
	Kruskal Wallis Test
	Deceptive Metrics of AUC for Imbalanced Data
	Variations of Loss functions

