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Machine Learning and Quantum Computing for
Optimization Problems in Power Systems

Sarthak Gupta

(ABSTRACT)

While optimization problems are ubiquitous in all domains of engineering, they are of critical

importance to power systems engineers. A safe and economical operation of the power sys-

tems entails solving many optimization problems such as security-constrained unit commit-

ment, economic dispatch, optimal power flow, and optimal planning. Although traditional

optimization solvers and software have been successful so far in solving these problems, there

is a growing need to accelerate the solution process. This need arises on account of several

aspects of grid modernization, such as distributed energy resources, renewable energy, smart

inverters, batteries, etc, that increase the number of decision variables involved. Moreover,

the technologies entail faster dynamics and unpredictability, further demanding a solution

speedup. Yet another concern is the growing communication overhead that accompanies

this large-scale, high-speed, decision-making process. This thesis explores three different

directions to address such concerns. The first part of the thesis explores the learning-to-

optimize paradigm whereby instead of solving the optimization problems, machine learning

(ML) models such as deep neural networks (DNNs) are trained to predict the minimizers

of these problems. The second part of the thesis also employs deep learning, but in a dif-

ferent manner. DNNs are utilized to model the dynamics of IEEE 1547.8 standard-based

local Volt/VAR control rules, and then leverage efficient deep learning libraries to solve the

resulting optimization problem. The last part of the thesis dives into the evolving field of



quantum computing and develops a general strategy for solving stochastic binary optimiza-

tion problems using variational quantum eigensolvers (VQE).



Machine Learning and Quantum Computing for
Optimization Problems in Power Systems

Sarthak Gupta

(GENERAL AUDIENCE ABSTRACT)

A reliable and economical operation of power systems entails solving large-scale decision-

making mathematical problems, termed as optimization problems. Modern additions to

power systems demand an acceleration of this decision-making process while managing the

accompanying communication overheads efficiently. This thesis explores the application

of two recent advancements in computer science – machine learning (ML) and quantum

computing (QC), to address the above needs. The research presented in this thesis can be

divided into three parts. The first part proposes replacing conventional mathematical solvers

for optimization problems, with ML models that can predict the solutions to these solvers.

Colloquially referred to as learning-to-optimize, this paradigm learns from a historical dataset

of good solutions and extrapolates them to make new decisions in a fast manner, while

requiring potentially limited data. The second part of the thesis also uses ML models, but

differently. ML models are used to represent the underlying physical dynamics, and convert

an originally challenging optimization problem into a simpler one. The new problem can be

solved efficiently using popular ML toolkits. The third and final part of the thesis aims at

accelerating the process of finding optimal binary decisions under constraints, using QC.
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Chapter 1

Introduction

1.1 Dissertation Outline

This dissertation is a compilation of six research works published in (submitted to) peer

review journals and conferences, and can be partitioned into three parts. Part 1 explores the

learning to optimize paradigm for two power systems applications – reactive power compen-

sation using smart inverters, and stochastic optimal power flow for transmission grids. It

innovates by presenting the optimize and learn approach whereby DNNs learn the underly-

ing mapping to optimal decisions without labels, in an unsupervised manner. Moreover, we

handle stochastic constraints on average values, and probabilistic chance constraints, using

the primal-dual updates. Part 2 focuses on the optimal design of local Volt/VAR control

rules, for smart inverters, inspired by the IEEE 1547.8 standard [4]. While also leveraging

DNNs, the utilization is different from the learning to optimize paradigm. DNNs are trained

not to predict the optimal solutions but to model the underlying closed-loop, control dynam-

ics. We show how such modeling can enable solving a challenging mixed integer non-linear

program (MINLP) in a scalable manner using DNN libraries. The last part of the work

focuses on the more general problem of stochastic binary optimization, which is NP-hard to

solve using classical computing algorithms. Focusing on the noisy intermediate-scale quan-

tum (NISQ) era of quantum computing, we develop a constrained VQE solver for stochastic

binary optimizations. The solution strategy is useful in power system optimization problems

1
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that involve discrete variables such as unit commitment, transmission line switching, optimal

transformer tap ratio, and phase shift setting. We next elucidate upon the specific chapters

that make up the three parts, before diving into the individual chapters themselves.

1.2 DNNs for Solving Stochastic OPFs

Part 1 of this thesis aims to predict optimal solutions to stochastic optimization problems

given by the general formulation

min
x

E[f(x, z)] (1.1)

s.to E[g(x, z)] ≤ 0.

where x is the vector optimization variable, z is the vector of random variables, and f and

g are scalar and vector valued functions of x and z, respectively. Under the learning to

optimize paradigm, conventionally one strives to train a machine learning model π(w, z),

such as DNNs, with w as the parameters, and z as the input, that would predict the optimal

solution to the deterministic version of the optimization problem (1.1). This would require a

training dataset of the form {(x∗
i , zi)}Si=1, where x∗

i is the optimal solution to the deterministic

problem, with zi as the random instance. Hence, it assumes the ability to solve a large

number of optimization problems fast to generate the labels x∗
i , or the availability of such

historical datasets. We call this approach optimize then learn, where “then” emphasizes the

two-step process of generating labels and training.

To bypass the above assumptions, we utilize an optimize and learn strategy where we train a

machine learning model π(w, z) in the process of solving a stochastic optimization problem,

and without labels. Here, the “and” signifies a single-step process. The stochastic primal-
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dual gradient updates are employed that explicitly take into account the constraints in the

optimization problem (1.1), hence enabling constrained learning. We test different variations

of this approach across different application domains, in Chapters 2–4.

Chapter 2 was published as a conference paper [37] and addresses the problem of providing

reactive power compensation for voltage regulation on distribution grids. Using the primal-

dual learning approach, the goal is to minimize the Ohmic losses on the grid while keeping the

average voltages within the desirable upper and lower bounds. A communication-cognizant

DNN architecture was proposed that reduces the real-time communications overhead.

Chapter 3 extends the previous chapter to a journal paper [34]. Also focusing on the problem

of optimal reactive power compensation by DERs, many extensions are accommodated –

1) Underlying grid is modeled as an AC network, 3) probabilistic chance constraints are

enforced using convex relaxations, 3) approach is compatible to proxies for the original data

and partial information, and 4) A gradient-free version of the approach is suggested.

Lastly, Chapter 4, which was published as a conference paper [33] and a journal [39], presents

the application of the primal-dual learning approach on transmission grids for solving the

stochastic optimal power flow (SOPF) problem. The goal is to predict the optimal setpoint

for generator buses to meet the load demands while satisfying all the operational constraints

such as voltage limits and flow limits. Operational constraints are imposed via chance

constraints, but instead of convex relaxations, more accurate approximations involving the

logistic function are considered.
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1.3 DNNs as Digital Twins of Volt/VAR Dynamics

The second part of the thesis concerns itself with the optimal design of local Volt/VAR

control rules for smart inverters. Local Volt/VAR control rules are implemented at the

individual smart inverter level, and determine the smart inverter reactive power setpoints

as a function of local voltage measurements. While the goal is again to provide reactive

power compensation, as in Part 1, the setup is vastly different. In the new setup, different

DERs interact with the grid using their individual Volt/VAR control rules. Since voltages

are affected by reactive power setpoints, the above interaction results in close-loop dynamics,

which may or not may not converge to equilibrium. Hence, the main goal under optimal

rule design (ORD) is to design stable rules such that the voltages at equilibrium are closer

to 1, across S given scenarios. This can be represented via the optimization problem

min
z∈Z

1

2S

S∑
s=1

∥v∗
s(z)− 1∥22 (1.2)

where v∗
s(z) is the equilibrium voltage corresponding to the scenarios s, z is the vector of

curve design parameters, and Z represent the feasible space for z. With the insight that

the above optimization problem resembles a DNN training task, we strive to design DNNs

that can model the Volt/VAR dynamics i.e., they accept the uncontrollable grid conditions

as input, and produce v∗
s(z) at the output. If these DNNs are parameterized by z then

the above problem does reduce to a DNN training task. This is more desirable than the

alternatives of solving bilevel optimization problems or MINLPs, as discussed in Chapters 5

and 6, which constitute Part 2. Note that unlike Part 1, the DNNs do not predict the optimal

setpoints, but model the close loop dynamics to output the equilibrium quantities.

Chapters 5 deals with designing non-incremental control rules as those in the IEEE 1547.8

standard [4]. Stability and convergence guarantees are presented for both single and mul-
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tiphase feeders. DNNs modeling the Volt/VAR dynamics are trained using stochastic pro-

jected gradient descent (SPGD) updates. A novel MINLP solver is also used to benchmark

the performance of the DNN-based approach. The work has been submitted to the IEEE

Transactions on Smart Grids [38].

Non-incremental control rules suffer from a stability-performance trade-off, whereby by fo-

cusing on stability one loses on the voltage regulation capabilities of the rules, and vice versa.

Incremental control rules can bypass such a trade-off and obtain better voltage regulation.

Chapter 6, which was submitted to a conference [36], discusses the DNN-based design of

incremental control rules, for both single and multiphase grids.

1.4 Quantum Approach to Stochastic Binary Constrained

Optimization

The third and final part of this thesis deals with constrained binary optimization problems

of the form

min
b∈{0,1}n

f0(b) (1.3)

s.to fm(b) ≤ 0, m = 1 : M.

Such problems appear in power systems operations, wireless communications, and machine

learning. Solving a general version of the above problem is NP-hard. Inspired by the recent

innovations in the NISQ era quantum computing, we design a quantum-classical hybrid solver

to propose solutions to a stochastic version of (1.3). We present a constrained variational

quantum eigensolver (VQE) that solves the above problem using stochastic dual decompo-
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sition updates. In addition to the fact that this third part also puts forth approaches to

handle optimization problems in power systems operations, it possesses other subtle connec-

tions with the previous two parts. VQEs employ parameterized quantum circuits (PQCs),

which are quantum circuits configured by a set of parameters. Employing VQEs to solve

binary optimization entails finding the optimal values for this set of parameters, a task resem-

bling the training of DNNs. Furthermore, the algorithm developed here to handle stochastic

constraints bears similarities in conception, design, and analysis, to the constrained learning

methodology employed earlier in the thesis. Lastly, the experience gained from working with

Python and its ML libraries facilitated the implementation of the proposed algorithm using

Python quantum computing libraries.

This final part of the thesis, as presented in Chapter 7, has been submitted as a conference

paper [35].



Chapter 2

Deep Learning for Reactive Power

Control of Smart Inverters under

Communication Constraints

2.1 Publication Details

S. Gupta, V. Kekatos and M. Jin, ”Deep Learning for Reactive Power Control of Smart

Inverters under Communication Constraints”, In Proc. IEEE Intl. Conf. on Smart Grid

Commun., Tempe, AZ, 2020.

© 2020, IEEE

2.2 Abstract

Aiming for the median solution between cyber-intensive optimal power flow (OPF) solutions

and subpar local control, this work advocates deciding inverter injection setpoints using deep

neural networks (DNNs). Instead of fitting OPF solutions in a black-box manner, inverter

DNNs are naturally integrated with the feeder model and trained to minimize a grid-wide

objective subject to inverter and network constraints enforced on the average over uncertain

7
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grid conditions. Learning occurs in a quasi-stationary fashion and is posed as a stochastic

OPF, handled via stochastic primal-dual updates acting on grid data scenarios. Although

trained as a whole, the proposed DNN is operated in a master-slave architecture. Its master

part is run at the utility to output a condensed control signal broadcast to all inverters.

Its slave parts are implemented by inverters and are driven by the utility signal along with

local inverter readings. This novel DNN structure uniquely addresses the small-big data

conundrum where utilities collect detailed smart meter readings yet on an hourly basis,

while in real time inverters should be driven by local inputs and minimal utility coordination

to save on communication. Numerical tests corroborate the efficacy of this physics-aware

DNN-based inverter solution over an optimal control policy.

2.3 Introduction

Distribution grids are currently challenged by voltage fluctuations due to the proliferation of

distributed energy resources (DERs). The voltages experienced at buses of a feeder depend

heavily on the power injected or withdrawn, while the power generated by a PV under

intermittent cloud coverage may vary by 80% within one-minute intervals [94]. The inverters

interfacing DERs have been suggested as a promising fast-responding mechanism and are

now allowed to provide reactive power support per the amended IEEE 1547 standard. If

properly orchestrated, inverters can regulate nodal voltages and/or reduce ohmic line losses.

Nonetheless, coordinating hundreds of inverters in real-time is a formidable task.

The literature on inverter control can be broadly classified into optimization- and learning-

based approaches. The former class includes approaches where inverter control is posed

as an optimal power flow (OPF) problem. Under a centralized OPF setup [24], [97], the

utility reads the values of solar generation and loads, solves an OPF, and communicates
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the optimal setpoints to inverters. To avoid any cyber overhead, inverter setpoints can be

decided using simple Volt/VAR or Watt/VAR control rules driven by local readings [94].

Nonetheless, the equilibria of such rules do not coincide with the sought OPF solutions and

can be subpar [52], [46].

Learning-based approaches shift the computational effort offline, and perform numerically

less intensive tasks during real-time operation. Learning-based approaches can be further

clustered into the OPF-then-learn and the OPF-and-learn philosophies. According to the

former, one first solves a large number of OPF instances parameterized by their inputs

(solar/load conditions). The pairs of OPF inputs or instances and OPF minimizers are

subsequently used for the ML model to learn the OPF mapping in a supervised manner. In

real time, the ML model approximates OPF decisions on the fly as soon as it is presented

with a new OPF instance. Under this paradigm, references [19] and [50] use kernel–based

regression to learn inverter control rules. DNNs have alternatively been employed to learn

OPF solutions under a linearized [79]; or an exact AC grid model [101], [29], [100], [78].

Rather than fitting OPF minimizers, the OPF-and-learn paradigm trains an ML model

directly through an OPF in a single step. Therefore, it does not require solving multiple

OPFs to generate a labeled training set. Under the OPF-and-learn paradigm, reference [48]

adopts kernel-based learning to design inverter control rules, adjusted to grid conditions

in a quasi-stationary fashion. Although rules can be learned using a convex program, the

kernel functions have to be specified beforehand. In [99], inverter control rules are optimized

along with capacitor status decisions to minimize voltage deviations using a two-timescale

reinforcement learning (RL) approach. Nonetheless, no feeder-level constraints are involved.

Enforcing network constraints is challenging for learning-based OPF methods. One could

heuristically project the ML prediction for the OPF solution [101], [48]. Other approaches

to coping with constraints include penalizing constraint deviations [50], [79], [48], [99]; or
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enforcing constraints in a discounted sense [104]. Reference [104] models inverter policies as

DNNs. It successively linearizes feeder constraints and updates policies continuously through

communication exchanges between interconnected microgrids. A similar safe RL learning

scheme is put forth in [98], but with a centralized implementation.

A key promise of designing policies is to alleviate the cyber burden of inverter control. This

critical aspect has been largely overlooked by the existing literature. In particular, references

[104] and [98], which are most closely related to this work, update policies continuously and

require considerable amounts of data to be communicated in real time. To account for this

aspect, the contributions of this work are in two fronts: First, inverter policies are modeled

as DNNs that are jointly trained in a quasi-stationary fashion, while feeder constraints are

enforced explicitly in a stochastic sense. Second, a carefully designed DNN architecture

accommodates application scenarios where inverter rules are driven by local measurements

as well as a low-bandwidth control signal broadcast by the utility.

Outline: Section 2.4 formulates the task of designing inverter control policies after reviewing

an approximate grid model. Section 2.5 adopts a stochastic primal-dual algorithm to find the

optimal inverter control policies. Section 2.6 puts forth the novel communication-cognizant

DNN-based inverter control architecture. The proposed schemes are evaluated using real-

world solar generation and load data on the IEEE 13-bus feeder in Section 2.7. Conclusions

along with ongoing and future research directions are discussed in Section 2.8.

Notation: lower- (upper-) case boldface letters denote column vectors (matrices), and calli-

graphic symbols are reserved for sets. Symbol ⊤ stands for transposition and ∥x∥2 denotes

the ℓ2-norm of x. Vectors 0 and 1 are respectively the vectors of all zeros and ones of

appropriate dimensions.
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2.4 Grid Modeling and Problem Formulation

Consider a feeder with N + 1 buses, including the substation indexed by 0. Let pn + jqn

be the complex power injection at bus n. Its active power component can be decomposed

as pn = pgn − pcn, where pgn is the solar generation and pcn the inelastic load at bus n. Its

reactive power component can be similarly expressed as qn = qgn − qcn. If vectors (p,q)

collect the power injections at all non-substation buses, they can be decomposed as p =

pg − pc and q = qg − qc. We refer to the values of (re)active loads and active solar

generation at all non-substation buses as grid conditions

z := [(pc)⊤ (qc)⊤ (pg)⊤]⊤. (2.1)

Given z, the task of reactive power control by DERs aims at optimally setting qg to minimize

a feeder-wide objective while complying with network and inverter limitations. Starting with

the latter, the reactive power injected by inverter n is limited by a given q̄gn due to apparent

power limits. Apparent power constraints are local and will be collectively denoted by

qg ∈ Q := {q : |qgn| ≤ q̄gn ∀n} . (2.2)

Regarding feeder constraints, the focus is on confining voltages within the regulation range

of [0.97, 1.03] per unit (pu). Albeit voltages are nonlinearly related to power injections, for

simplicity we adopt a widely used linearized grid model [91]. According to this model, the

vector of voltage magnitudes at all N buses is approximately

v = Rp + Xq + v01 (2.3)

where v0 is the substation voltage, while the symmetric positive semidefinite matrices (R,X)
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depend on the feeder and are assumed to be known. If each voltage vn is to be maintained

within [vn, vn], the reactive power injections qg should satisfy the network constraints

g(qg, z) :=

 Xqg + y − v

−Xqg − y + v

 ≤ 0 (2.4)

where vector y := R(pg − pc) − Xqc + v01 depends on z, and vectors (v,v) contain the

limits (vn, vn) across buses.

According to the same grid model, ohmic losses on lines can be approximated as a convex

quadratic function of power injections as p⊤Rp+ q⊤Rq; see [91] for details. Upon defining

b := 2Rqc, the part of ohmic losses that is dependent on the control variable qg can be

approximated as

ℓ(qg, z) = (qg)⊤Rqg − b⊤qg. (2.5)

We henceforth abuse notation and use q in lieu of qg. This should not cause any confusion

since qc has been included in z. DER reactive setpoints q can be found as the minimizer of

min
q∈Q

ℓ(q, z) (2.6)

s.to g(q, z) ≤ 0.

Under the linearized grid model, the approximate OPF task of (2.6) is a convex quadratic

program (QP). Solving (2.6) can be computationally and communication-wise taxing if z

changes frequently. Moreover, by the time (2.6) is solved and decisions are downloaded to

DERs, grid conditions z may have changed rendering the computed setpoints obsolete.



2.4. GRID MODELING AND PROBLEM FORMULATION 13

To account for the uncertainty in z, one may pursue a stochastic formulation such as [97]

min
q∈Q

E[ℓ(q, z)] (2.7)

s.to E[g(q, z)] ≤ 0

where the expectation E is with respect to z. Nonetheless, the obtained ‘one-size-fits-all’ q

does not adapt to different z’s.

To come up with DER setpoints that are responsive to grid conditions, we resort to control

policies or rules, where the reactive power setpoint for each inverter n is captured by a func-

tion πn(wn;θn) acting upon a control input wn and is parameterized by vector θn. Ideally,

inverter control policies should be driven by the complete z, that is wn = z for all n. Nev-

ertheless, that would entail high communication overhead. If the utility knows the complete

z, it might as well solve (2.6) and communicate the optimal setpoints to inverters. For an

inverter control scheme to be communication-cognizant, the inputs wn should primarily in-

volve local readings of z, such as (pgn, qgn, pgn), and possibly few remote entries. Regarding the

parameter vectors θn’s, these may be unique per inverter or share some entries as detailed

in Section 2.6. To capture the aforementioned scenarios, let us abstractly refer to the vector

of inverter policies πn(wn;θn)’s as

q(w) = π(w;θ) (2.8)

where w is the union of wn’s and θ the union of θn’s.

The control policies for DERs can be found jointly by solving the constrained stochastic
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minimization

P ∗ := min
θ:π(w;θ)∈Q

E[ℓ(π(w;θ), z)] (2.9)

s.to E[g(π(w;θ), z)] ≤ 0

over the parameter vector θ. Problem (2.9) couples policies in two ways. First, for a fixed

z, policies are coupled across inverters through the cost and constraint functions since the

entries of qg appearing in (2.3) and (2.5) are now computed via (2.8). Second, the expecta-

tions in (2.7) and (2.9) couple system’s performance across OPF instances characterized by

z.

Local and linear policies of the form πn(wn;θn) = θ⊤
n wn have been previously studied for

inverter control [46], [59], [6]. Nonetheless, the optimal policies qn(wn) are not necessarily

affine in wn, especially when wn is only a partial observation of z. The grand challenge

towards scalable inverter control is to design nonlinear control curves. In [48], we dealt with

by modeling each qn(wn) as a kernel-based support vector machine (SVM), and designing

all rules jointly under an OPF formulation. The advantage of SVM-based policies is that

they can be trained to optimality using convex optimization. Nonetheless, selecting the ap-

propriate kernel and control inputs wn’s can be challenging. Inspired by their field-changing

performance in various engineering tasks, here we propose modeling inverter rules using

DNNs, and train the parameters θ in a data-driven physics-aware fashion.

2.5 Primal-dual DNN Learning

Solving (2.9) is challenging since it is a constrained stochastic minimization over a DNN. To

train the inverter policy DNN, we adopt the stochastic primal-dual updates of [22], which
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are briefly reviewed next. Consider the Lagrangian function of (2.9)

L(θ;λ) = E[ℓ(π(w;θ), z)] + λ⊤E[g(π(w;θ), z)] (2.10)

where λ is the vector of Lagrange multipliers corresponding to constraint (2.9). The dual

problem can be posed as

D∗ = max
λ≥0

min
θ:π(w;θ)∈Q

L(θ;λ). (2.11)

Standard duality results predicate that D∗ ≤ P ∗. When the primal problem is convex,

the previous inequality typically holds with equality. Problem (2.9) however is non-convex

even if (2.6) is a convex QP, since the DNN mapping π(w;θ) is generally non-convex in θ.

Nonetheless [22] establishes that: i) under relatively mild conditions satisfied by (2.9), and

ii) if the underlying DNN architecture is rich enough, the duality gap P ∗−D∗ is sufficiently

small. This motivates solving (2.9) through the primal-dual updates indexed by k [22]

θk+1 =
[
θk − µθ∇θL(θ

k;λk)
]
Q (2.12a)

λk+1 =
[
λk + µλ∇λL(θ

k+1;λk)
]
+

(2.12b)

where the operator [·]Q projects θk+1 such that π(w;θk+1) ∈ Q for all w; operator [·]+

ensures λ ≥ 0 at all times; and (µθ, µλ) are positive step sizes. Regarding [·]Q, the DNN

output corresponding to qgn can be constrained within [−q̄gn,+q̄gn] by using tanh(·) as the

output activation function and then scaling by the constant qgn.

The updates in (2.12) are complicated by the expectation operator. The pdf of z (and hence

w) may not be known beforehand. Even if it is known, propagating that pdf through nonlin-

ear functions such as π(w;θ), z) is non-trivial. To deal with this, the primal-dual updates of
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(2.12) can be surrogated by their stochastic approximation counterparts. In particular, the

utility is assumed to have a set of scenarios (zk,wk) indexed by k = 1, . . . , K, with which the

ensemble averages of (2.10) are approximated as E[ℓ(π(w;θ), z)] ≃ 1
K

∑K
k=1 ℓ(π(wk;θ), zk).

To simplify the updates of (2.12), the sample averages can be approximated by a single

scenario per iteration to yield the stochastic primal-dual updates [22]

θk+1 =

[
θk − µθ

(
∇θℓ

k − (∇θgk)⊤λk
)]

Q
(2.13a)

λk+1 =
[
λk + µλg

(
π(wk;θk+1), zk

)]
+
. (2.13b)

Here ∇θℓ
k is the gradient of ℓ(π(w;θ), z) and ∇θgk the Jacobian matrix of g(π(w;θ), z),

both with respect to θ and evaluated at (wk,θk, zk). The updates are known to converge to

a stationary point of (2.9) for sufficiently small step sizes.

For the objective and constraint functions of (2.4)–(2.5), the needed sensitivities can be

computed as

∇θℓ
k =

(
∇θπ(wk;θk)

)⊤ (
2Rπ(wk;θk)− bk

)
∇θgk = [X − X]⊤ ∇θπ(wk;θk).

Here bk := 2R(qc)k and∇θπ(wk;θk) is the Jacobian matrix of the DNN output with respect

to its weight parameters. The latter can be evaluated using gradient back-propagation across

the DNN, a standard tool readily available in all DNN-related software. If the number of

available grid scenarios K is relatively small, additional scenarios can be synthesized by

applying small perturbations on the available zk’s. As customary in DNN training, the

updates (2.13) can be iterated over multiple epochs or in mini-batch forms.

It is worth contrasting the DNN input w and the vector of grid conditions z. Despite
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some possible overlap, the two vectors are used differently. The former one feeds the DNN

to compute the setpoints q(w) = π(w;θ). The latter one is involved in the OPF objec-

tive and constraint functions, i.e., it appears in b for computing ∇θℓ and when evaluating

g(π(w;θ), z). While z should be known to the utility during training to perform the updates

of (2.13), it is not needed during real-time operation. This resonates with the small/big data

setup, since a utility has offline access to an extensive smart meter dataset of z’s; yet its

control center and each inverter individually are driven by limited real-time data feeds. The

updates of (2.13) apply for inverters DNNs of arbitrary architecture. We next particularize

the structure of π(w;θ) to comply with communication limitations in inverter control.
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2.6 Communication-Cognizant DNN Architecture

Figure 2.1: Top: DNN π(w;θ) is organized in one utility sub-NN and inverter sub-NNs,
all trained as a single DNN by the utility offline. Bottom: During real-time operation,
the utility sub-NN uses real-time data to compute and broadcast the control signal, while
inverter sub-NNs are run at inverters.

To coordinate inverters on a tight communication budget, our proposed inverter policy DNN

π(w;θ) comes with the two-tier architecture shown on Figure 2.1 (top). Its first layers

constitute the utility sub-NN, while the final layers constitute the inverter sub-NNs, one for

each inverter. Figure 2.1 shows only two inverters for simplicity. The utility sub-NN (shown

in purple) is fully connected, is driven by input wu, and outputs control u. Inverter sub-NNs

(in blue and green) are disconnected from each other and both fed with the common control
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u. Each inverter sub-NN is also fed with its own local data wn,ℓ. The n-th inverter sub-NN

predicts the setpoint qn.

Inverter policy n can be expressed as qn(wn) = πn(wn;θn) where wn = [w⊤
u w⊤

n,ℓ]
⊤ and θn

collects the DNN parameters for the shared utility sub-NN and inverter sub-NN n. Vectors

wn,ℓ may carry local load and solar generation available on bus n. Input wu carries informa-

tion available to the utility control center in real time. Such information can be power flow

readings from major distribution lines, transformers, and/or voltage regulators. Vector wu

may also carry the solar generation from a solar farm or any other DER that is telemetered

in real time. Rather than actual grid measurements, vector wu may also include predictions

the utility can make on grid conditions. For example, that could be the case if the utility uses

cameras to monitor cloud coverage as a proxy to solar generation or temperature/humidity

readings to load.

During training and given grid scenario zk, the inputs wk
u and wk

n’s can be: i) found readily

as partial entries of zk (loads and solar generation); ii) inferred from zk (a line flow can be

computed through the power flow equations, or approximated as the sum of all downstream

power injections); or iii) found through historical data (dataset combining cloud coverage

with solar generation). The particular structure of the proposed DNN with individualized

inputs and partially connected layers can be easily implemented by skipping and masking

connections, respectively.

Although trained as a whole, the inverter policy DNN π(w;θ) is implemented in parts;

see bottom panel of Fig. 2.1. After training is completed for the upcoming 30- or 60 min

period, the weights corresponding to inverter NNs are downloaded to inverters. A unique

component of our DNN architecture is the control signal u, which is broadcast from the

utility NN to inverter NNs. To save on downlink (utility to inverters) communications,

signal u is designed to be much shorter than wu. Considering that u is actually designed
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Algorithm 1 Inverter control through DNN-based policies
Training

1: Collect grid scenarios {zk}Kk=1 from smart meter data
2: Collect or calculate DNN inputs {wk}Kk=1

3: Initialize θ0 and λ0

4: for all K scenarios and E epochs do
5: Update θ using (2.13a)
6: Update λ using (2.13b)
7: end for
8: Download θ parameters to inverter sub-NNs

Real-time operation
1: for t = 0, 1, . . . , T, do
2: Utility receives wt

u from real-time telemetry
3: Feed wt

u to utility sub-NN to compute ut

4: Utility broadcasts ut to inverters
5: for each inverter n do
6: Inverter n reads ut and local data wt

n

7: Feed (ut,wt
n) to inverter sub-NN to decide qtn

8: end for
9: end for

along with the operation of inverter sub-NNs through the OPF of (2.9), this signal carries

all the information the utility can provide to coordinate inverters in a condensed form. Its

broadcast nature further contributes to communication savings. The steps involved during

the training and real-time operation of the proposed DNN are summarized in Algorithm 1.

This DNN architecture can cater to a wide range of communication specifications. If no

downlink communication is allowed in real time, the utility sub-NN can be ignored all to-

gether and inverter sub-NNs are driven based on local inputs. If downlink bandwidth is

abundant, inverter sub-NNs can be dropped and inverter setpoints can be decided by the

utility sub-NN in real time. Practical application scenarios are expected to lie somewhere

between these two extremes, whence the hybrid architecture of Fig. 2.1 becomes relevant.
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2.7 Numerical Tests

The proposed DNN-based inverter control was evaluated on a single-phase version of the

IEEE 13-bus feeder. Real-world active load data was extracted for March 1, 2018, on a

one-minute resolution from Pecan Street. Solar generation data was also added to buses

{1, 5, 9, 10, 11, 12}, out of which buses {9, 12} were equipped with inverters. Load time

series were scaled so that monthly peaks were 7.5 times the benchmark values. The same

ratio was used to scale solar. Reactive loads were added with lagging power factors sampled

from a uniform distribution between 0.9 and 1. The utility was assumed to have telemetry

wu for the active line flows feeding buses {2, 3, 7} from their parent buses.

Figure 2.2: The IEEE 13-bus feeder. Numbers in parentheses indicate the house index from
the Pecan Street dataset mapped to each bus.

The utility sub-NN was constructed using an input layer of dimension 3 and an output layer

u of dimension 1. Inverter sub-NNs were made up of one input, hidden, and output layers

of dimensions 5, 6 and 1, respectively. The local readings {pn, qcn} along with u were fed as
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inputs to each inverter sub-NN n. Initial values for DNN parameters were uniformly sampled

from the range [−0.1, 0.1] and updated using Adam with a learning rate of 0.01. The dual

variables were all initialized at 0 and updated with step sizes of 1 that decayed with the

square-root of the iteration index [61]. Our approach was contrasted with an optimal policy

q(w) that directly solves (2.7) without being confined to a DNN parameterization using dual

decomposition [61]. As in (2.7), the optimal policy regulates the average rather than the

instantaneous voltages.

We assumed one-hour long control periods. Training scenarios were obtained from the 60

one-minute data observed over the preceding control period. The original grid scenarios were

augmented by adding zero-mean additive white Gaussian noise to generate a total ofK = 240

scenarios. All scenarions were then randomly shuffled. The variance of the additive noise

was decided on the basis of training samples observed and was set to 10−6 pu for low-solar

and 10−2 pu for high-solar hours. DNN π(w;θ) was trained using Alg. 1 for 30 epochs.

Figure 2.3 shows the average losses obtained during training. The losses under our solution

were found to be only slightly larger than those attained by the optimal policy. During

the low-solar scenario, the base case without any reactive power compensation does not

experience any voltage excursions. Therefore, both the optimal policy and our solution

focus on decreasing the average losses. On the other hand, when solar generation is high,

the basecase experiences high voltage excursions as seen in panel 3. Consequently, the

optimal policy and our solution focus on lowering average voltages by withdrawing reactive

power at the expense of increased ohmic losses. As demonstrated by the third panel, the

proposed scheme attained voltage deviations close to those achieved by the optimal policy.

This near-optimal behavior is also shown in the bottom panel presenting the convergence of

dual variables for the active constraint on bus 11 during 1:00–2:00 pm.

The DNNs trained over 12:00–1:00 am and 1:00–2:00 pm were tested on the subsequent
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hours 1:00–2:00 am and 2:00–3:00 pm, respectively. The results are presented in Fig. 2.4. The

proposed scheme again closely matches the performance of the optimal policy in terms of both

minimizing losses and imposing voltage constraints. This is remarkable especially because

the optimal policy has access to perfect forecasts and incurs a large real-time communication

overhead, while the DNN-based scheme is trained only on historical data and requires only

1 data point to be transmitted in real-time.

2.8 Conclusions and Ongoing Work

This work has introduced nonlinear control policies for inverter setpoints via a novel two-

tier communication-cognizant DNN architecture. The DNN consists of a utility sub-NN

and inverter sub-NNs, all jointly trained at the utility at the beginning of every control

period, while explicitly incorporating average feeder constraints via primal-dual learning.

Upon training, the weights of inverter sub-NNs are downloaded to inverters for real-time

implementation. Inverter sub-NNs are driven by local inputs and a control signal broadcast

by the utility. Depending on communication specifications, the proposed architecture can

accommodate from purely local to centralized and hybrid protocols. Tests on real-world

data validate this methodology is capable of reducing ohmic losses and enforcing feeder

constraints with little communication overhead. Furthermore, the proposed DNN-based

policies perform comparably to stochastic approximation-based optimal policies during both

training and testing.

These promising results set the foundations for relevant generalizations. We are currently

working on the following directions: d1) Model-free primal-dual learning of DNNs that does

not require explicit knowledge of the feeder topology, parameters, and/or precise loading con-

ditions during training; d2) Chance-constraint formulations; d3) Quantify the performance of
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the proposed DNN-based approach when compared to the optimal policy; d4) incorporating

exact AC feeder models; and d5) testing on larger feeders to demonstrate scalability.
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Figure 2.3: Training: Average losses under no solar for 12–1 am (top) and high solar for
1–2 pm (second). Voltage excursions for 1–2 pm (third). Dual variable for active constraint
on bus 11 for 1–2 pm (bottom)

.
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Figure 2.4: Testing. Average losses for 1–2 am (top) and 2–3 pm ((middle)); voltage excur-
sions for 2–3 pm (bottom).
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3.2 Abstract

Coordinating inverters at scale under uncertainty is the desideratum for integrating renew-

ables in distribution grids. Unless load demands and solar generation are telemetered fre-

quently, controlling inverters given approximate grid conditions or proxies thereof becomes

a key specification. Although deep neural networks (DNNs) can learn optimal inverter

27
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schedules, guaranteeing feasibility is largely elusive. Rather than training DNNs to imitate

already computed optimal power flow (OPF) solutions, this work integrates DNN-based

inverter policies into the OPF. The proposed DNNs are trained through two OPF alterna-

tives that confine voltage deviations on the average and as a convex restriction of chance

constraints. The trained DNNs can be driven by partial, noisy, or proxy descriptors of the

current grid conditions. This is important when OPF has to be solved for an unobservable

feeder. DNN weights are trained via back-propagation and upon differentiating the AC

power flow equations. An alternative gradient-free variant is also put forth, which requires

only a power flow solver and avoids computing gradients. Such variant is practically relevant

when calculating gradients becomes cumbersome or prone to errors. Numerical tests com-

pare the DNN-based inverter control schemes with the optimal inverter setpoints in terms

of optimality and feasibility.

3.3 Introduction

The high penetration of DERs (such as rooftop photovoltaics, batteries, and demand re-

sponse devices) introduces additional variability in distribution grid operation. Uncontrolled

variations in power injections can in turn induce abrupt fluctuations in nodal voltages. For-

tunately, the smart inverters interfacing DERs with the grid can propel their integration by

additionally providing reactive power support. The coordinated control of DERs across a

feeder can be formulated as an OPF [24], [97], [30], [31]. If the grid is modelled using the

AC power flow equations, tackling this OPF using conventional optimization-based solvers

becomes formidable as DERs increase in numbers and need to be redispatched frequently

under dynamic conditions. Therefore, operators may not have the time and computational

resources to solve an AC-OPF every few seconds. At the same time, solving an OPF presumes
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all problem inputs (load demands and solar generation) to be precisely known. Nonetheless,

such parameters are oftentimes described stochastically, observed under noise and delays,

or the operator can monitor only few of them in real time. Therefore, even if an operator

can afford solving an AC-OPF every few minutes, it may not know all loads and solar gen-

eration at the level required by the AC-OPF. The need to compute reasonable DER control

decisions in real time and without knowing the current grid conditions in full detail is the

driving motivation of this work.

Alternatively, recent literature advocates the use of machine learning (ML) models to solve

minimization problems under the learning-to-optimize paradigm. Due to the rich modeling

and fast inference capabilities of ML models, learning-to-optimize becomes relevant to sce-

narios where large-scale non-linear optimization tasks have to be solved frequently enough

and/or under uncertain or partially observed inputs. ML-based schemes for tackling the

OPF have already been explored and can be broadly classified into the OPF-then-learn and

OPF-and-learn categories. Methods within the former category involve two steps. They

first generate a labelled training dataset by solving a large number of OPFs. The features

and labels of this dataset consist of the OPF input parameters and outputs (optimal DER

setpoints), respectively. During the second step, an ML model is trained to predict the

dataset labels in the conventional supervised manner. Within the OPF-then-learn category,

kernel–based regression has been employed to learn inverter control rules in [50], physics-

informed stacked extreme learning has been utilized for OPFs [57], while DNNs have been

trained to predict OPF solutions under a linearized [79, 95] and the exact AC grid mod-

els [101], [29], [100], [78].To expedite the first step, the sensitivity-informed learning method

of [86] and [87] trains a DNN to match not only the OPF minimizers, but also their partial

derivatives with respect to the OPF inputs. Despite the data efficiency enhancement offered

by sensitivity-informed learning, the OPF-then-learn strategy lacks feasibility guarantees
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and presumes OPF input parameters are deterministic and known. Furthermore, generating

labels by solving several OPFs incurs a significant computational overhead. Consequently,

the OPF-then-learn strategy is not well suited for scenarios where the optimal policies need

to be re-learned frequently on account of changing underlying data distribution.

Instead of this two-step approach of first generating OPF labels and then training the ML

model to fit these labels in a least-squares (LS) sense, OPF-and-learn approaches learn the

ML model directly while solving the OPF in a single step. This is achieved by altering the

optimization algorithm used for training the ML model. Rather than fitting OPF solutions

in the LS sense, the training algorithm uses the objective or the Lagrangian function of the

OPF at hand. By training the ML model directly using the cost and constraint functions

of a stochastic OPF, we avoid the computationally expensive step of solving numerous OPF

instances beforehand to generate a labeled dataset. Because the ML model is trained now

over several OPF instances, it is particularly suited for stochastic OPF formulations, where

one is interested on the average or probabilistic performance of the learned OPF decisions

or policies over uncertain and/or time-varying conditions. Hence, methods within the OPF-

and-learn category are more appropriate for dynamic applications where ML models need

to be continuously retrained. Under the OPF-and-learn paradigm, reference [48] adopts

support vector machines (SVMs) to design inverter control rules, adjusted to grid conditions

in a quasi-stationary fashion. Albeit SVM-based rules can be learned via a convex program,

kernel functions have to be specified beforehand. In [99], inverter control rules are optimized

along with capacitor status decisions to minimize voltage deviations using a two-timescale

reinforcement learning (RL) approach yet no feeder-level constraints are involved. Enforcing

network constraints is challenging for ML-based OPF methods. One could heuristically

project the ML prediction for the OPF solution [101], [48], or consider penalizing constraint

deviations [50], [79], [99], or include deterministic constraints per training sample and solve
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using dual approximation [95].

An alternative for dealing with constraints in the learning-to-optimize process is through the

discounted return functions used in RL approaches. In this context, reference [104] updates

DNN-based inverter policies continuously by successively linearizing feeder constraints. A

similar safe RL learning scheme is put forth in [98], which focuses on regulating the number of

voltage violations across nodes through a method of multipliers strategy. However, both these

works updated the policy parameters by solving an optimization problem at every update

step that might be computationally intensive, restricting their applicability on dynamic

scenarios. Secondly, both [104] and [98] focus on scenarios where measurements across feeder

nodes are available to policies in real time. Finally, RL-based approaches are in general more

complex in implementation, which can be hindering their adoption by grid operators; e.g.,

the safe RL strategy of [98] involves nine different DNNs.

Primal-dual learning [22], provides a computationally less intensive alternative to RL for

handling feeder constraints. Different from [104] and [98], primal-dual learning involves sim-

pler gradient-based updates of the policy parameters and the related dual variables alike.

Stochastic primal-dual updates were first applied towards learning the optimal control poli-

cies for smart inverters to enforce averaged voltage constraints in the conference precursor

of our work [32].

Contributions: Building on the OPF-and-learn approach of [32], this work trains a DNN

that learns a stochastic inverter control policy to provide near-optimal setpoints in real-time

and without fully knowing the current grid conditions. The contributions over [32] extend

in four fronts. Firstly, the underlying feeder is represented using the exact AC model rather

than the approximate linearized model [93] previously employed in [32]. This extension is

non-trivial as the gradients needed for the stochastic primal-dual updates of the DNN are

now found in an indirect manner using the underlying AC power flow equations and the
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inverse function theorem. Secondly, we illustrate the versatility of stochastic primal-dual

updates as they can cope with probabilistic voltage constraints via convex restrictions [73].

Thirdly, we demonstrate how primal-dual learning can also be used when the DNN has to

be fed with partial information during operation. This adheres to practical setups where

the utility might have real-time telemetry only over a subset of grid locations. Fourthly, we

propose gradient-free counterparts of the primal-dual updates that train the DNN knowing

only the values of voltages and losses, and not their gradients with respect to the control

variables. Such approaches are useful when the feeder model is known but complex (due

to the presence of transformers, capacitors, ZIP loads) and differentiation becomes perplex,

but the utility has access to a power flow solver.

Paper outline: The rest of the paper is organized as follows. Section 3.4 formulates the task

of DNN-based smart inverter control, and puts forth an averaged and a probabilistic scheme.

Section 3.5 elaborates on primal-dual DNN learning for both schemes. Section 3.5 calculates

the gradients needed for the stochastic updates, while the gradient-free implementation is

presented in Section 3.6. The novel DNN-based inverter control strategies are evaluated

using real-world data on the IEEE 37-bus feeder in Section 3.7. Conclusions are drawn in

Section 3.8.

Notation: Lower- (upper-) case boldface letters denote column vectors (matrices), and calli-

graphic symbols are reserved for sets. Symbol ⊤ stands for transposition and ∥x∥2 denotes

the ℓ2-norm of x. Vectors 0 and 1 are respectively the vectors of all zeros and ones of

appropriate dimensions.
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3.4 Problem Formulation

Consider a feeder with N +1 buses. The substation is indexed by 0 and the remaining buses

comprise the set N := {1, . . . , N}. Let pn+ jqn be the complex power injection at bus n. Its

active power component can be decomposed as pn = pgn−pcn, where pgn is the solar generation

and pcn the inelastic load at bus n. Its reactive power component can be similarly expressed

as qn = qgn − qcn. The vectors (p,q) collecting the power injections at all non-substation

buses can be decomposed as p = pg −pc and q = qg −qc. For simplicity, it is assumed that

each bus hosts at most one inverter, and so index n will be henceforth used for buses and

inverters interchangeably.

Let vector parameter θ := {pc,qc,pg} ⊆ R3N collect the loads (active and reactive) and

active solar generation at all non-substation buses. We will henceforth term θ as the vector

of grid conditions. Given θ, the task of reactive power control by DERs aims at optimally

setting qg to minimize a feeder-wide objective while complying with network and inverter

limitations. Starting with the latter, the reactive power injected by inverter n is limited by its

given apparent power limit s̄n. Apparent power constraints are local and will be collectively

denoted by

qg ∈ Qθ :=

{
qg : |qgn| ≤

√
s2n − (pgn)2 ∀n

}
. (3.1)

where the subscript in Qθ denotes that the feasible space changes as the value of solar

generation pg changes.

The task of coordinating inverters can be centrally handled by the utility operator. The oper-

ator finds the reactive power setpoints for DERs by minimizing ohmic losses on distribution

lines while maintaining voltage magnitudes within per-bus bounds [v,v] as

min
q∈Qθ

ℓ(q,θ) (3.2)
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s.to v ≤ v(q,θ) ≤ v.

where v is the vector of bus voltage magnitudes. We will henceforth refer to voltage mag-

nitudes as voltages unless stated otherwise. We slightly abuse notation and use q in lieu

of qg to unclutter notation, as qc is included in θ anyway. Note that expressions ℓ(q,θ)

and v(q,θ) capture the dependence of losses and nodal voltages on the reactive setpoints of

DERs q under the current grid conditions θ. It is assumed that the feeder model and the

participating inverters are known and remain fixed throughout the control period.

Solving (3.2) can be computationally and communication-wise taxing if θ changes frequently.

Moreover, by the time (3.2) is solved and optimal setpoints are downloaded to DERs, grid

conditions θ may have changed rendering the computed setpoints obsolete [51], [97]. To ac-

count for the uncertainty in θ, we propose two stochastic formulations. The first formulation

replaces ℓ(q,θ) and v(q,θ) with their averages:

min
q∈Qθ

E[ℓ(q,θ)] (3.3)

s.to v ≤ E[v(q,θ)] ≤ v

where the expectation E is with respect to θ. We refer to (3.3) as the averaged formulation.

While the averaged formulation takes care of uncertainties in θ, the obtained setpoints may

violate the voltage limits in (3.2) quite frequently. This undesirable behavior results from the

fact that constraining the average value of voltages does not provide strong guarantees on

their per-instance values. Nevertheless, the averaged formulation has an attractive structure

that permits straightforward stochastic gradient descent (SGD)-based steps to arrive at the

optimal setpoints as we will see later.
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A more conservative approach is possible through the probabilistic formulation

min
q∈Qθ

E[ℓ(q,θ)] (3.4a)

s.to Pr [vn ≥ vn(q,θ)] ≤ α, ∀n ∈ N (3.4b)

Pr [vn ≤ vn(q,θ)] ≤ α, ∀n ∈ N (3.4c)

where (3.4b)–(3.4c) ensure each bus voltage remains within the desired limits with a prob-

ability of at least 1 − α on each side. Here α ∈ (0, 1) is a small violation probability. In

contrast to (3.3), the formulation in (3.4) focuses on restricting the frequency of occurrence

of voltage violations. Problem (3.4) can be rewritten as

min
q∈Qθ

E[ℓ(q,θ)] (3.5a)

s.to E [1(vn − vn(q,θ))] ≤ α, ∀n ∈ N (3.5b)

E [1(vn(q,θ)− vn)] ≤ α, ∀n ∈ N (3.5c)

where the indicator function 1(x) is defined as

1(x) =

 1 , x ≥ 0

0 , x < 0
. (3.6)

The probabilistic formulation is difficult to handle since the indicator function is neither

convex nor differentiable. In quest of workable alternatives, Section 3.5 pursues convex

approximations of constraints (3.5b)–(3.5c).

For now, let both formulations be represented by the general stochastic program

min
q∈Qθ

E[ℓ(q,θ)] (3.7)
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s.to E[g(q,θ)] ≤ 0.

Note that solving (3.7) results in a single ‘one-size-fits-all’ q that does not adapt to different

θ’s. To render DER setpoints responsive to grid conditions, we resort to a control policy,

where the reactive setpoints q are captured by a function q = π(θ;w), which is parameterized

by w.

Ideally, the control policy is driven by the vector of grid conditions θ. Nevertheless, during

real-time operation, the operator controlling the DERs may not be able to observe the

complete θ. Instead, it may have to act upon a proxy ϕ of the actual θ. The DER control

policy driven by ϕ can then be found by solving the constrained stochastic minimization

min
w:π(ϕ;w)∈Qθ

E[ℓ(π(ϕ;w),θ)] (3.8)

s.to E[g(π(ϕ;w),θ)] ≤ 0.

The DER control policies found through (3.8) are adaptive to the proxy vector ϕ and the

optimization is over the parameters w. Policies account for the uncertainty over θ, and

correspondingly ϕ. Note that the expectations in (3.8) couple the system’s performance

across OPF instances of θ. The notation ℓ(π(ϕ;w),θ) captures the fact that the control

policy is fed by proxy ϕ to determine q, but of course ohmic losses depend on the actual

grid conditions θ.

The proxy vector ϕ can be chosen to represent the operational setup for which the control

policies are being designed. In the absence of real-time measurements from all nodes, and/or

to save on communication overhead, vector ϕ can consist of active line flows from distribution

lines [32]. Meteorological data such as solar irradiance and ambient temperature, which

serve as surrogates for p, can also be included in ϕ. One can also explore convolutional
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neural networks (CNNs)-based policies that accept sky images in place of solar irradiance

measurements as inputs to be included in ϕ. Similarly, the proxy vector ϕ can also represent

partial, delayed, or noisy data on the grid conditions, or even aggregate versions of them.

In Section 3.7, a more straightforward scenario is explored whereby measurements from a

subset of buses in N are assumed to be available in real-time, resulting in ϕ ⊂ θ.

Previous works have studied linear inverter control policies of the form π(ϕ;w) = w⊤ϕ;

see e.g., [46], [59], [6]. Nonetheless, the optimal policy π(ϕ;w) is not necessarily affine

in ϕ, especially when ϕ is a proxy for θ. The grand challenge towards scalable inverter

control is to design nonlinear control policies. To this end, in [48], we modeled π(ϕ;w)

as a support vector machine (SVM) and designed the policy through an OPF formulation.

The advantage of SVM-based policies is that they can be trained to optimality using convex

optimization. Nonetheless, selecting the appropriate kernel and control input ϕ can be

challenging. Inspired by their field-changing performance in various engineering tasks, here

we propose modeling the DER control policy q = π(ϕ;w) by a DNN. The proxy vector ϕ

of grid conditions θ is fed as an input to the DNN. Vector w carries the weights of the DNN

across all layers. The output of the DNN π(ϕ;w) predicts the sought inverter setpoints q.

Figure 3.2 provides a schematic of the architecture. We propose learning weights w in a

data-driven physics-aware fashion.

Figure 3.1 depicts the real-time operation of the proposed control strategy. The smart

inverters to be controlled are located on buses 2 and 8. The proxy vector ϕ ⊂ θ, consisting

of {pcn, qcn, pgn} measurements from buses 2, 3, 4 and 8, is transmitted to the operator. The

operator feeds ϕ as an input to the DNN-based policy and predicts setpoints q. These

setpoints are then broadcast to DER inverters for implementation. It is worth emphasizing

here that although the operator needs to know pairs of (θ,ϕ) during training, the DNN-based

policy operates solely on ϕ.
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Figure 3.1: Real-time operation of the proposed DER inverter control scheme. Proxy vector
ϕ consisting of measurements from nodes {2, 3, 4, 8} is transmitted to the operator. The
DNN-based policy acts upon ϕ to predict setpoints q, which are then broadcast to the
inverters at buses 2 and 8.

3.5 Primal-Dual DNN Training

The stochastic formulation in (3.8) is challenging to solve on account of the expectation

operator in both the objective and constraints. Computing the needed expectations requires

knowing the probability density functions (pdf) of ϕ and θ. Even if these pdfs are known,

computing the expectations is still non-trivial granted the policies π(ϕ;w) are non-linear

in ϕ. These complications promulgate a stochastic approximation approach towards solving

(3.8). In the conventional machine learning setup, the weights of a DNN are found by

minimizing a data-fitting loss function under no constraints via stochastic gradient descent.

Here, to accommodate constraints, we adopt the stochastic primal-dual updates of [22] as

presented next.



3.5. PRIMAL-DUAL DNN TRAINING 39

Consider the Lagrangian function of the problem in (3.8)

L(w;λ) := E[ℓ(π(ϕ;w),θ)] + λ⊤E[g(π(ϕ;w),θ)] (3.9)

where λ is the vector of Lagrange multipliers corresponding to the constraints in (3.8).

Vector λ concatenates the multipliers λ and λ associated with the lower and upper voltage

limits in (3.3) and (3.5). A stationary point for the related dual problem

D∗ := max
λ≥0

min
w:π(ϕ;w)∈Qθ

L(w;λ) (3.10)

can be obtained iteratively using the primal-dual updates indexed by k (cf. [22]):

wk+1 :=
[
wk − µw∇wL(wk;λk)

]
Qθ

(3.11a)

λk+1 :=
[
λk + µλ∇λL(wk+1;λk)

]
+

(3.11b)

where (µw, µλ) are positive step sizes. Here primal variables are updated through projected

gradient descent steps on the Lagrangian function. Dual variables are updated through

projected gradient ascent steps again on the Lagrangian function. The operator [x]+ =

max{x, 0} is applied entry-wise and ensures λ ≥ 0 at all times.

The operator [·]Qθ
projects wk+1 such that π(ϕ;wk+1) ∈ Qθ for all ϕ. A direct way to

confine the DNN output qgn within ±
√

s2n − (pgn)2 is to use the hyperbolic tangent (tanh)

as the output activation function and then scale the output by
√
s2n − (pgn)2. While the

apparent power limit sn is known a priori, the solar generation pn is available to the DNN as

an input. The required scaling is easily accommodated by minor architectural modifications

to the activation layer of the DNN. Figure 3.2 illustrates this process for a single-output

neuron. Ensuring that π(ϕ;w) ∈ Qθ at all times obviates the need for projecting the weight
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Figure 3.2: The inverter control policy q = π(ϕ;w) ∈ Qθ has been implemented using a
DNN. Vertically stacked nodes represent the nonlinear activation functions of a single layer.
Edges across nodes correspond to weights applied linearly on node output to compute the
inputs to the next layer. The vector of grid conditions θ (or its proxy ϕ) is fed as the input to
the DNN. Vector w collects all weights of the DNN. The DNN output provides the inverter
setpoints q. The activation function of the output layer of the DNN has been modified to
ensure π(ϕ;w) ∈ Qθ for all ϕ. The output neuron feeds into the tanh() activation function
and then scaled by

√
s2n − (pgn)2. The scaling operation involves a skip connection from pgn,

which is one of the inputs to the DNN.

updates henceforth. Note that the gradient ∇λL(w;λ) in the dual variable update in (3.11b)

can be substituted as ∇λL(w;λ) = g(π(ϕ;w),θ).

Following a stochastic approximation approach, the ensemble averages in (3.9) are first

surrogated by sample averages computed over a set of S scenarios {ϕs,θs}Ss=1. The average

ohmic losses for example can be approximated as

E[ℓ(π(ϕ;w),θ)] ≃ 1

S

S∑
s=1

ℓ(π(ϕs;w),θs). (3.12)

Even with the sample approximation in (3.12), computing the gradients needed in (3.11)

remains computationally expensive as one needs to compute gradients for each one of the S
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training examples. Taking ohmic losses for example, we have that

E[∇wℓ(π(ϕ;wk),θ)] ≃ 1

S

S∑
s=1

∇wℓ(π(ϕ
s;wk),θs). (3.13)

Notice the two indices in (3.13): index k indexes primal/dual updates, and index s indexes

data (scenarios). To perform iteration k, one has to cycle across all scenarios s = 1, . . . , S,

and compute the derivatives of losses with respect to the previous update wk for each one

of the scenarios. Stochastic approximation alleviates this burden by approximating the

gradients needed in (3.11) using a single scenario per iteration. In other words, gradients

are approximated not by (3.13), but using a single datum as

E[∇wℓ(π(ϕ;wk),θ)] ≃ ∇wℓ(π(ϕ
s;wk),θs). (3.14)

Therefore, at iteration k, stochastic approximation selects a scenario s to compute all gra-

dients needed in (3.11). Scenarios can be selected at random or sequentially. Either way,

since each iteration k ends up using only a single scenario s, we will henceforth use symbol k

to index both iterations and scenarios. This is without loss of generality as (ϕk,θk) simply

means the scenario picked at iteration k.

Given the aforesaid simplification, the gradients in (3.11) can be approximated using a single

scenario per update as [22]

wk+1 := wk − µw

(
∇wℓ

k +
(
∇wgk

)⊤
λk
)

(3.15a)

λk+1 :=
[
λk + µλg

(
π(ϕk;wk+1),θk

)]
+

(3.15b)

where the shorthand notation ∇wℓ
k denotes the gradient of ℓ and ∇wgk the Jacobian matrix

of g, both with respect to w and both evaluated at (ϕk,wk,θk). The rest of this section
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explains how the gradients appearing in (3.15a) can be computed for the averaged and

probabilistic formulations, while Figure 3.3 summarizes the workflow for the training and

testing (operational) phases for both formulations.

3.5.1 Averaged Formulation

For the averaged formulation, the stochastic primal-dual updates can be obtained by replac-

ing g(π(ϕ;w),θ) with the constraint functions from (3.3) to get

wk+1 := wk − µw

(
∇wℓ

k +
(
∇wvk

)⊤
(λ

k − λk)
)

(3.16a)

λk+1 :=
[
λk + µλ

(
v − v

(
π(ϕk;wk+1),θk

))]
+

(3.16b)

λ
k+1

:=
[
λ

k
+ µλ

(
v
(
π(ϕk;wk+1),θk

)
− v

)]
+
. (3.16c)

To compute the Jacobian matrix ∇wv of voltages with respect to DNN weights, we resort

Figure 3.3: Workflow for the training and testing (operation) phases of the proposed DNN-
based inverter control strategy.

to the power flow equations. Let vector ũ ∈ CN+1 collect the complex voltage phasors at all
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buses and define ū := [Re(ũ)⊤ Im(ũ)⊤]⊤ ∈ R2N+2. Vector u ∈ R2N is obtained by dropping

the first and (N +1)-th entries of ū. These two entries correspond to the substation voltage

ũ0, which is assumed constant. The sought Jacobian matrix can be computed via the chain

rule as

∇wv = ∇qv · ∇wq = ∇uv · ∇qu · ∇wq. (3.17)

We next elaborate on the three Jacobian matrices needed in (3.17). The N × 2N matrix

∇uv can be readily computed by definition of voltage magnitudes. Its (n,m)-th entry is

[∇uv]n,m =


un

vn
, m = n

un+N

vn
, m = n+N

0 , otherwise.

We proceed with finding ∇qu. If p+jq is the vector of complex power injections at all buses

excluding the substation, define s := [p⊤ q⊤]⊤. Per the power flow equations, every entry

i of s can be expressed as a quadratic function of ū, that is si = ū⊤Miū for a symmetric

real-valued matrix Mi derived from the bus admittance matrix of the feeder; see e.g., [54]

for the detailed expressions for Mi’s. Therefore, the i-th row of the Jacobian matrix ∇ūs

is given by 2ū⊤Mi. By dropping the first and (N + 1)-th column of ∇ūs, we obtain ∇us.

Under mild technical conditions, the inverse function theorem predicates that

∇su = (∇us)−1. (3.18)

Matrix ∇qu can be clearly obtained by keeping only the last N rows of ∇su. The third

matrix ∇wq can be readily computed using gradient back-propagation across the DNN.

The gradient vector of ohmic losses with respect to the DNN weights can be computed
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similarly as

(∇wℓ)
⊤ = (∇uℓ)

⊤ · ∇qu · ∇wq. (3.19)

The gradient ∇uℓ can be easily computed by recognizing

ℓ =
N∑

n=0

pn = ū⊤

(
N∑

n=0

Mi

)
ū

where matrix M0 describes the power injection at the substation as p0 = ū⊤M0ū similar to

the remaining injections. It is then obvious that ∇ūℓ = 2
∑N

n=0 Miū. The gradient ∇uℓ of

(3.19) is found by dropping the first and (N + 1)-th entries of vector ∇ūℓ.

3.5.2 Probabilistic Formulation

For the probabilistic formulation of (3.5), the update steps in (3.15) cannot be applied

directly. This is because constraints (3.5b)–(3.5c) involve the indicator function that is not

differentiable, and so the Jacobian matrix ∇wg does not exist. Moreover, these constraints

are non-convex, thus prohibiting stochastic (sub)gradient updates. To circumvent these

complications, we instead turn to the convex CVaR approximations to (3.5) using stochastic

subgradient primal-dual updates.

We first briefly review the CVaR approximation of chance constraints from [73], and then

compute the related subgradients. For some α ∈ (0, 1), consider the chance constraint

Pr[fθ(x) ≥ 0] = Eθ[1(fθ(x))] ≤ α, where function f depends on the optimization variable

x and a random variable θ. Note that 1(fθ(x)) ≤ [1 + fθ(x)/t]+ for all fθ(x) and t > 0.

This is easy to verify by checking the two cases in the definition of the indicator function

in (3.6). Then, if there exists a t > 0 satisfying Eθ [[1 + fθ(x)/t]+] ≤ α, the original chance

constraint Eθ[1(fθ(x))] ≤ α holds too. Since t > 0, the restriction of the chance constraint
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can be alternatively expressed as Eθ [[t+ fθ(x)]+] ≤ αt. In fact, the requirement t > 0 can

be dropped because for all negative t, the constraint Eθ[t+ fθ(x)]+ ≤ αt becomes infeasible.

And for t = 0, the restricted constraint yields Eθ [[fθ(x)]+] ≤ 0 or equivalently fθ(x) < 0 for

all θ, so that the original chance constraint holds trivially. Therefore, imposing the convex

constraint Eθ [[t+ fθ(x)]+] ≤ αt for some t constitutes a restriction of the original chance

constraint Pr[fθ(x) ≥ 0] ≤ α.

By identifying fθ(x) with vn − vn(q,θ) and introducing an auxiliary variable tn per bus n,

we can now restrict the voltage chance constraint in (3.5b) by imposing constraint

E [[tn + vn − vn(q,θ)]+] ≤ αtn, ∀n ∈ N .

The chance constraints of (3.5c) on upper voltage limits can be treated similarly using

variables tn’s. Collecting auxiliary variables {tn, tn}Nn=1 in vectors t and t accordingly, we

can now formulate the convex restriction of (3.5) as

min
q∈Qθ ,t,t

E[ℓ(q,θ)] (3.20a)

s.to E [[t + v − v(q,θ)]+ − αt] ≤ 0 (3.20b)

E
[
[t + v(q,θ)− v]+ − αt

]
≤ 0. (3.20c)

For brevity, let the expressions inside the expectation operator of (3.20b)–(3.20c) be repre-

sented by g (t,v(q,θ)) and g
(
t,v(q,θ)

)
. Similar to (3.8), problem (3.20) can be tackled

using stochastic primal-dual updates upon replacing the ensemble with sample averages

over K scenarios. Different from the averaged formulation however, the constraint functions

g (t,v(q,θ)) and g
(
t,v(q,θ)

)
are non-differentiable with respect to (v, t, t). We use their



46
CHAPTER 3. CONTROLLING SMART INVERTERS USING PROXIES:

A CHANCE-CONSTRAINED DNN-BASED APPROACH

subgradients instead.

wk+1 := wk − µw

(
∇wℓ

k +
(
∂wgk

)⊤
λk +

(
∂wgk

)⊤
λ

k
)

(3.21a)

tk+1 := tk − µt

(
∂tgk

)⊤
λk (3.21b)

tk+1
:= tk − µt

(
∂tgk

)⊤
λ

k (3.21c)

λk+1 :=
[
λk + µλg

(
tk+1,v

(
qk+1,θk

))]
+

(3.21d)

λ
k+1

:=
[
λ

k
+ µλg

(
tk+1

,v
(
qk+1,θk

))]
+
. (3.21e)

To compute the needed subgradients, recall that a subgradient of f(x) = [x]+ can be found

as

∂f(x) =

 0 , x < 0

1 , x ≥ 0
= 1(x).

The subgradients involved in (3.21b)–(3.21c) can be computed using the chain rule as

∂tg = dg (1 (t + v − v))− αIN (3.22a)

∂tg = dg
(
1
(
t + v − v

))
− αIN (3.22b)

where the indicator functions here are applied entrywise and evaluate to vectors. In turn,

the subgradients appearing in (3.21a) can be found as

∂wg = ∂vg · ∇wv (3.23a)

∂wg = ∂vg · ∇wv. (3.23b)

The Jacobian ∇wv has already been computed in (3.17), while the subgradients with respect



3.6. GRADIENT-FREE IMPLEMENTATION 47

to voltage magnitudes are

∂vg = − dg (1 (t + v − v)) (3.24a)

∂vg = dg
(
1
(
t + v − v

))
. (3.24b)

Remark 3.1. During the training phase of the DNN, one may encounter ill-conditioned

samples {ϕk,θk} that, along with the DNN output qk, cause the power flow solver to diverge.

One can reduce the number of such ill-conditioned samples from the training data set by

sampling close to the nominal benchmark values. Nonetheless, if such ill-conditioned samples

do occur, a straightforward recourse functionality could be adopted. First, the sample ϕk is

fed into the DNN to obtain qk. Then, the PF solver is called for θk and qk. If the PF solver

converges within a prescribed number of maximum iterations, we move on with the gradient

calculations. Otherwise, we draw a new sample {ϕk,θk} and repeat the process.

3.6 Gradient-Free Implementation

As discussed earlier, the primal-dual updates of Section 3.5 require computing the (sub)gradients

of losses and voltages with respect to inverter reactive power injections. This section puts

forth a gradient-free implementation of the DNN updates relying on a digital twin of the

feeder. This implementation does not require computing gradients, but only evaluating losses

and voltages. The digital twin can be a power flow solver (GridLAB-D or OpenDSS), or a

hardware emulator of the feeder. Once fed with all power injections (i.e., grid conditions θ

and inverter setpoints q), the digital twin returns the vector of nodal voltages v and ohmic

losses ℓ.

Such gradient-free approach can be practically relevant under two settings. First, when one
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does not want to deal with gradients as calculating them is not straight-forward and can

be prone to errors. Second, when the feeder model is complicated and computing gradients

is quite complex. That could be the case in unbalanced multiphase grids; if grid devices

(regulators, capacitors, transformer banks) are to be included; and/or when loads are rep-

resented by detailed ZIP or exponential models. In such cases, gradient calculations can

be cumbersome. On other hand, reliable power flow modules do exist and can be used to

evaluate the needed functions under either settings.

To arrive at a gradient-free implementation, we cannot compute the partial derivatives ap-

pearing in the left-hand side of (3.17) and (3.19). Nonetheless, we can aim directly for

the Jacobian matrix ∇qv and the gradient vector ∇qℓ, and approximate them through fi-

nite differences. In detail, we resort to zeroth-order approximants (see [74]) of the needed

sensitivities by querying the digital twin twice to obtain two function evaluations as:

∇̂qℓ =
ℓ(q + ϵq̌,θ)− ℓ(q − ϵq̌,θ)

2ϵ
q̌⊤ (3.25a)

∇̂qv =
v(q + ϵq̌,θ)− v(q − ϵq̌, , θ)

2ϵ
q̌⊤ (3.25b)

where ϵ is the scale of perturbation, and q̌ is a perturbation vector Gaussian distributed

with zero-mean and standard deviation σq̌. The quantities ϵ and σq̌ are treated as hyper-

parameters and are set during the training process.. The approximations in (3.25) are carried

out in three steps. First, the DNN is presented with the input ϕ and its output q is recorded.

Second, the digital twin is presented with (q,θ) and computes ℓ(q,θ) and v(q,θ). Third,

the digital twin is presented with (q + ϵq̌,θ) and computes v(q + ϵq̌,θ). Fig 3.4 compares

the steps for obtaining the quantities ∇wℓ and ∇wv for the gradient-based and gradient-free

approaches.

With the finite-difference approximants of (3.25) in place, the gradient-free primal-dual up-
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dates are straightforward to execute by approximating

(∇̂wℓ)
⊤ = (∇̂qℓ)

⊤∇wq

∇̂wv = ∇̂qv · ∇wq

where ∇wq is again calculated gradient back-propagation.

Figure 3.4: Steps for calculating ∇wℓ and ∇wv for the gradient-based (top) and gradient-
free (bottom) approaches. The gradient-based approach requires a solution to the power flow
equations in conjunction with the inverse function theorem (Section 3.5); the gradient-free
obtains the desired quantities by probing the digital twin and applying zero-order approxi-
mations.
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3.7 Numerical Tests

Figure 3.5: The IEEE 37-bus feeder used for the numerical tests. Node numbering follows the
format node number {panel ID}. The inverters at nodes {12, 20, 22, 24, 25} provide reactive
power control, whereas the rest operate at unit power factor.

The performance of the proposed DNN-based control strategy was evaluated using a single-

phase version of the IEEE 37-bus feeder. Real-world one-minute active load and solar gen-

eration data were extracted for April 2, 2011 from the Smart* project [9], [14]. For active

loads, homes with IDs 20-369 were used. Averaged load demands were calculated by con-

sidering 10 homes at a time, and were serially allotted to buses 2-36 of Fig. 3.5. The values

of active loads were scaled so their maximum active load per node matched its benchmark

value. Reactive loads were then added to each of these homes by sampling lagging power

factors uniformly within [0.9, 1.0] and for each time interval. For solar generation, panel IDs
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were matched to the buses as shown in Fig. 3.5. Solar generation values were scaled so the

maximum generation per panel was 2 times the benchmark value. Out of all the nodes with

inverter-interfaced solar generation, those at nodes {12, 20, 22, 24, 25} were also providing

reactive power support. The extracted data points were considered as available forecasts for

4-hour control periods. Appropriate training and testing scenarios were created. Zero-mean

white Gaussian noise was added to the 240 one-minute data points from the forecast to

create a total of 1200 samples. The standard deviation of the Gaussian noise was set to 0.1

times the mean load forecast. Out of the 1200 samples, 960 were used as the training set and

the remaining 240 formed the testing set. The training samples were additionally randomly

shuffled to promote better generalization for the DNNs.

All tests were conducted on a 2.4 GHz 8-Core Intel Core i9 processor laptop computer

with 64 GB RAM. Simulation scripts were written in Python and TensorFlow libraries to

implement and train the DNNs. For the tests presented, four-layered fully connected DNNs

were employed. The grid conditions vector θ := [pg,pc,qc]⊤ consisting of measurements

from the M ≤ N buses equipped with smart meters were fed as inputs to the DNNs.

Therefore, the input layers were chosen to have 3M neurons. The two subsequent hidden

layers were fixed to having 3N and 2N neurons, respectively. Finally, the output layers had

5 neurons corresponding to the 5 inverters. All but the final layers of the DNNs employed

the ReLU (rectified linear unit) activation with the final layers using a scaled tanh activation

to ensure the inverter limits qg ∈ Qt. The weights for the DNN layers were initiated from a

Gaussian distribution with zero mean and a unit standard deviation. The biases for the DNN

layers, the dual variables, and the auxiliary variables were all initialized at zero. Additional

modelling and training details are presented along with the discussions of the results as

follows.
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3.7.1 Averaged Formulation

For the average formulation, the DNN was fed with the complete vector of grid conditions

θ obtained from measurements collected at all buses. DNN weights were updated using

the DNN optimization algorithm Adam with a learning rate of 0.001. Dual variables were

updated using SGD with a learning rate of 10 that decayed with the square-root of the

iteration index [61]. The model was then trained for 15 epochs over the training scenarios.

Figure 3.6: Top: Time-averaged losses during the 12–4 pm training interval attained by the
deterministic optimal control strategy of (3.2); the proposed DNN-based inverter control;
and no reactive power compensation by inverters. Bottom: Box plots showing the first and
third quantiles of the voltage deviations experienced across buses under the three control
strategies. Due to high solar generation, the feeder experiences lower ohmic losses at the
expense of severe over-voltages if there is no reactive power control by inverters. The de-
terministic optimal inverter control strategy regulates voltages by absorbing reactive power,
which increases line currents and consequently losses. The proposed strategy achieves lower
average losses over deterministic optimal inverter control as voltages are not constrained
within ±3% at all times.
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To demonstrate the efficacy of the proposed approach, the results are compared against a no-

compensation scenario, i.e., the scenario where all inverters operate at unit power factor and

provide no reactive power support. The DNN-based approach is also benchmarked against

an deterministic optimal approach that solves the problem in (3.2) per minute. As discussed

previously, such deterministic optimal approach might not be realistic to implement in real

time due to the high computational burden. Fig. 3.6 compares the average losses and bus

voltages under the three scenarios over the training set and during the high solar period of

12–4 pm. Without any reactive power compensation, buses {18, 19, 20, 21, 22, 33, 34} expe-

rience over-voltages. The proposed DNN-based approach behaves as expected by lowering

the average voltages at these buses down to the acceptable range. The deterministic optimal

approach also achieves the same objective but by bringing all instantaneous voltages to the

desired range whenever feasible. Note that both the DNN-based approach and the determin-

istic optimal approach incur higher losses when compared to the no compensation scenario.

This is a result of increase in the magnitude of line currents on account of reactive power

withdrawals. Since the deterministic optimal approach focuses on instantaneous voltage val-

ues rather than their averages, it incurs higher losses when compared to the DNN-based

approach. The trained DNN was then evaluated over unseen scenarios of the testing set. As

can be seen in Fig. 3.7, the proposed approach performed remarkably well in maintaining

voltages within limits and lowering average losses over the testing set.
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Figure 3.7: Results for averaged formulation over testing data during the interval 12–4 pm:
Average losses under the deterministic optimal strategy, the proposed DNN-based approach;
and no reactive power compensation are depicted on the top panel. Voltage deviations across
buses under the three strategies are shown at the bottom panel.

To highlight the computational advantage of the DNN-based approach during operation, we

compared it against the deterministic optimal strategy. The deterministic optimal strategy

entails solving as many OPFs as the number of realization of θ’s, and was simulated by

formulating a second-order conic program (SOCP) that models a convex relaxation of the

original OPF [63]. The SOCP was solved for the 240 samples of the testing dataset for 12−4

pm in MATLAB using the SeDuMi solver. The simulation was found to take 171.24 s to

complete. On the other hand, the DNN-based approach, which requires only a forward pass

through the DNN for each realization of ϕ, took only 0.85 s to compute in Python. This

indicates a significant computational speedup.

Finally, the sample probabilities for voltage violations were calculated for the resulting volt-
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ages from the no compensation case and the proposed DNN-based approaches. For the buses

with non-zero values for these probabilities, radar plots were drawn as shown in Fig. 3.8. The

radial-axis represents the values for sample probabilities for voltage limit violations, whereas

the angular markings correspond to the bus numbers. One can see that without any reactive

power support, the grid faces a high probability of voltage violations over both training and

testing. While the average formulation successfully regulates the average voltages, its effect

on reducing the total number of occurrences of voltage violations is somewhat modest with

buses {19, 20, 21, 22, 23} violating the voltage limits for more than half of the scenarios.

Figure 3.8: Voltage profiles during the 12–4 pm interval for averaged formulation. Results
under no reactive power compensation and under the proposed DNN-based policies have
been compared. Angular markings correspond to bus numbers, whereas radial markings are
sampled probabilities of voltage violations.

3.7.2 Probabilistic Formulation

Employing the DNN architecture from the previous subsection and the full input vector θ,

updates in (3.21) were applied to train the DNN for the probabilistic formulation. The DNN

weights were updated using Adam with a learning rate of 0.001. For the auxiliary variables
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{t, t}, Adam optimizer with a learning rate of 0.001 was deployed, and the dual variables

were updated using SGD with a learning rate of 1 that decayed with the square-root of

the iteration index. The model required a higher number of 20 epochs to converge during

training because of the additional primal variables t. The experiments were conducted for

the same time period of 12–4 pm. The experiments were repeated for three different values

of α = {0.7, 0.5, 0.3} and the radar plots for the resulting sample probabilities of voltage

violations are shown in Fig. 3.9.

Figure 3.9: Results for probabilistic formulations for the 12–4 pm window. Voltage profiles
for different values of α = {0.7, 0.5, 0.3} are depicted. Angular markings correspond to bus
numbers whereas radial markings are sampled probabilities of voltage limits violation.

As desired, when compared to the averaged formulation, the occurrences of voltage violations

under the probabilistic formulation were found to be drastically less for lower values of α.

Since the calculated sample probabilities came out to be less than the selected α, the results

in Fig. 3.9 confirm the conservative nature (being a convex restriction) of (3.20).
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3.7.3 Gradient-Free Implementation

To quantify the accuracy of the gradient approximations in (3.25), the DNNs for the averaged

and probabilistic formulations were trained under the gradient-free fashion. The scale of

perturbation ϵ was set to 0.1, and the perturbations q̌ were sampled from a zero-mean

Gaussian distribution with a unit standard deviation. The gradient-free approaches were

compared to their gradient-based counterparts over the same time periods and the results

shown in Figs. 3.10-3.11.

Figure 3.10: Mean voltage deviations across the buses under gradient-based and gradient-
free approaches for the averaged formulation and during the testing 12–4 pm interval.

Fig. 3.10 shows the mean voltage deviations across all the buses and time under the two

approaches. The gradient-free approach incurs slightly higher voltage violations, but other-

wise matches the performance of the gradient-based approach surprisingly well without any

explicit knowledge of the underlying relationships. Similar results were confirmed for the

probabilistic formulation in Fig. 3.11, where both approaches yield similar sample probabil-
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ities for voltage violations over training and testing, with α = 0.5.

Figure 3.11: Comparison of gradient-based and gradient-free approaches for the probabilistic
formulation with α = 0.5 over the testing 12–4 pm window. Voltage profiles for both
approaches are depicted using polar plots.

3.7.4 Partial Inputs

To study the effect of partial DNN inputs on the control performance of the learned DNN

policy, we varied the number of nodes whose data are telemetered in real time for the proba-

bilistic formulation. First, real-time meters were assigned to all nodes with solar generation.

Then, different input scenarios were simulated by expanding the subset of inverter-equipped

nodes with real-time metering moving from nodes 2–11; nodes 2–16; nodes 2–21; and a

full input vector consisting of all nodes. The mean-sampled probabilities of voltage viola-

tions across time and buses were recorded. The value of α was set to 0.5 for all scenarios.

Figures 3.12 and 3.13 show the results recorded respectively during training and testing.
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Figure 3.12: Mean sampled probabilities of voltage violations for the probabilistic formula-
tion with α = 0.5 during training over 12–4 pm. The dimension of the DNN input increases
as the number of nodes monitored in real time increases.

Figure 3.13: Mean sampled probabilities of voltage violations for the probabilistic formula-
tion with α = 0.5 during testing over 12–4 pm. The dimension of the DNN input increases
as the number of nodes monitored in real time increases.

The results confirm the intuition that the performance of the control policies improves as
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more real-time information is provided to the DNN. As the nodes with real-time monitoring

increase, the sampled probabilities of voltage violations decrease.

3.8 Conclusions

This work has presented a DNN-based approach for stochastic optimal inverter control. To

capture uncertainty, the grid conditions have been modeled as random variables and the

associated inverter setpoints by a stochastic policy learned through a DNN. The DNN is

periodically trained offline to minimize the average ohmic losses and maintain either the av-

erage voltages within limits or the probability of voltage deviation occurrences low. Training

is accomplished by adopting existing stochastic primal-dual updates and their gradient-free

counterparts to the AC OPF setup. The proposed scheme not only expedites the computa-

tion of near-optimal inverter setpoints, but also resolves two practical difficulties: d1) How

to solve an OPF using only a power flow solver or a digital twin of the feeder? and d2) How

to deal with an OPF if grid conditions are only partially known?

Numerical tests on the benchmark IEEE 37-bus feeder showcase the salient features of the

novel methodology. The adopted stochastic primal-dual updates train a DNN-based policy

using a modest number of training samples. The DNN is numerically shown to produce an

inverter dispatch that minimizes the OPF cost while satisfying the operating constraints.

Although the averaged formulation succeeds in maintaining the voltage at each node within

limits on the average, violations do occur frequently. To that end, the chance-constrained

formulation may be more relevant. The latter comes at minimal extra complexity over the

averaged formulation. Being a convex restriction the numerical tests corroborate that it

is a conservative yet safe scheme. Our experiments have also shown how the DNN-based

policy can be driven with incomplete grid conditions, and demonstrated the improvement in
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feasibility when more information is presented to the DNN. A final interesting outcome is that

when the DNNs are trained using the gradient-free updates, the degradation in performance

is minimal although the learner has less information about the feeder at its disposal.

Some open questions are to: i) Extend the implementation to a multiphase grid model

with detailed ZIP loads, regulators, and capacitor banks; ii) Consider additional network

constraints and/or alternative objectives; iii) Experiment with the frequency of re-training

the DNN, the size of the training dataset, and the way it has been generated; iv) Utilize

the DNN output only to warm-start an actual OPF solver; and v) Optimally select the grid

proxies to improve inverter control performance under a communication budget.
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4.1 Publication Details
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OPF”, Power Systems Computation Conference, Porto, Portugal, Jun. 2022, (also published

in the Elsevier Journal of Electric Power Systems Research)

4.2 Abstract

A prominent challenge to the safe and optimal operation of the modern power grid arises due

to growing uncertainties in loads and renewables. Stochastic optimal power flow (SOPF)

formulations provide a mechanism to handle these uncertainties by computing dispatch de-

cisions and control policies that maintain feasibility under uncertainty. Most SOPF formu-

lations consider simple control policies such as affine policies that are mathematically simple

and resemble many policies used in current practice. Motivated by the efficacy of machine

learning (ML) algorithms and the potential benefits of general control policies for cost and

constraint enforcement, we put forth a deep neural network (DNN)-based policy that pre-

62
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dicts the generator dispatch decisions in real time in response to uncertainty. The weights

of the DNN are learnt using stochastic primal-dual updates that solve the SOPF without

the need for prior generation of training labels and can explicitly account for the feasibility

constraints in the SOPF. The advantages of the DNN policy over simpler policies and their

efficacy in enforcing safety limits and producing near optimal solutions are demonstrated in

the context of a chance constrained formulation on a number of test cases.

4.3 Introduction

In current intra-day power systems operations, the optimal power flow (OPF) is solved at

a time scale of 5-15 minutes using load forecasts to obtain economic generation dispatch,

whereas affine/linear generation control policies are used within each OPF time period to

account for real-time fluctuations in generation and demand. With growing levels of uncer-

tainty, the design of the real-time control policies have become increasingly important for

secure and economic grid operation. Such control design is the primary focus of this paper.

Motivated by the need for better uncertainty management, the stochastic AC-OPF (SOPF)

[10, 80] problem that accounts for uncertainty, has received significant attention from the

research community. Being a stochastic extension of the non-convex AC-OPF, the stochastic

AC-OPF is highly computationally challenging. Standard stochastic optimization methods

such as stochastic programming using sample average approximation, and scenario-based

approaches quickly grow in size rendering them intractable. Hence, much effort has been

devoted towards obtaining tractable formulations and designing efficient algorithms for ob-

taining fast and reliable solutions to this problem. The design of control polices however is

relatively under-studied and most SOPF formulations consider affine functions to represent

control policies. These linearly parameterized policies are algorithmically easier to handle,
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and serve as reasonable mathematical models for the automatic generation control and local

voltage control employed in current practice. However, affine control polices are restrictive

and possible sub-optimal. As such, more general control policies need to be studied as they

have the potential to handle a much larger class of real-time fluctuations, possibly with

limited information.

Design of general control policies poses significant technical/computational challenges and

the choice of parameterization for their mathematical representation plays a pivotal role in

their design. First, the expressive power of the parameterization dictates how general of a

control policy it can represent. Second, the parameterization chosen must be compatible

with the corresponding SOPF formulation to ensure computational tractability. In what

follows, we provide a broad classification of approaches in the literature to this coupled

control-parameterization and algorithm-design problem:

i) Affine policy. Here the control is restricted to be a linear function typically of the net

system uncertainty, which makes it easy to model within OPF. Such affine policies have

been used for convex SOPF with the DC power flow model [10] as well as for scenario-based

approaches [96], and SOPF with nonlinear AC power flow model [17, 69].

ii) Non-affine policies include non-linear and hence more general policies that can ensure

better feasibility and optimality enforcement over the affine ones. However they are compu-

tationally harder to incorporate within the SOPF. Examples include polynomial chaos based

policies [68, 70], as well as non-liner policies with generator saturation [81].

iii) Nonlinear policies using robust optimization. This approach uses a fully optimized re-

course for each uncertainty realization using a min-max-min formulation [62]. The problem

is highly computationally challenging and approximation and relaxations are employed that

can lead to conservative solutions. Similar robust formulations with affine control have also

been investigated in the literature [56].
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iv) Nonlinear policies using data-driven methods. This approach uses historical data or sim-

ulated OPF solutions to devise efficient non-linear control policies as well as to improve the

computational speed of the SOPF. Examples of such methods include kernel-based control

policies for voltage control [48] and active set learning approaches [18, 75] for OPF. Ow-

ing to the advancements in deep learning over the past decade, DNN-based OPF solution

schemes have also been explored by the power systems community. Taking the conventional

supervised learning route, DNN-based OPF solvers have been trained to match the optimal

labels [15, 102]. However, solving a large number of OPFs to generate optimal labels is itself

a computationally overwhelming task. Sensitivity-informed deep learning [86, 88], which

matches not only OPF minimizers but also partial derivatives with respect to the inputs,

partially alleviates the above concern by improving upon the data efficiency. Nonetheless,

all these DNN-based solvers entail a label generation stage, which contributes significantly

to training overheads.

In this paper, we consider a DNN-based control policy design for SOPF. The DNN pa-

rameterization serves as a generalization to non-linear policies, but also provides backward

compatibility with previous policies since it can easily accommodate communication con-

straints and restricted features (e.g., control based on total/net uncertainty and/or local

control). Different from the aforementioned works, our approach does not involve an offline

data generation phase where a large number of OPF or OPF-like problems are solved. In-

stead, similar to [34, 37], the training phase of the DNN itself serves as the SOPF solver,

which if deployed within current practices will replace the OPF solved at the 5-15 minutes

time scale. Crucially, we also model the stochastic non-linear power system constraints dur-

ing training to ensure feasibility of the control actions. Thus our approach uses a hybrid

model that has the advantages of the NNs such as high representation power and the poten-

tial for parallelization and GPU implementation, without sacrificing feasibility like black-box
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data-driven efforts.

Prior works on constrained unsupervised learning for DNNs focus on deterministic OPFs.

Penalty terms that grow with constraint violations have been added to the training loss

function in [45]. A new set of hyperparameters corresponding to coefficients of the penalty

terms are introduced and need to be pre-tuned for achieving a desirable performance. Alter-

natively, a constraint completion and correction strategy is discussed in [20], which improves

constraint satisfaction via post-processing on DNN predictions. In contrast, our work aims

to design DNN-based solvers for SOPFs where constraint violations are permissible for some

samples. Instead of introducing hyperparameters, a primal-dual learning procedure is imple-

mented which finds the DNN weights and dual variables while solving the stochastic OPFs.

Lastly, during the implementation phase, no post-processing is required and DNN predic-

tions are implemented straightaway. To the best of our knowledge, this is the first approach

to explicitly model stochastic constraints inside a DNN-based OPF formulation.

The rest of the paper is organized as follows. Section 4.4 presents the mathematical formula-

tion for SOPF with system and control constraints. Section 4.5 describes in detail our control

policy design, in particular the modeling and training of our neural network with system

constraints. Section 4.6 includes experimental validation of our approach and comparison

with existing methods on IEEE test cases. Finally, Section 4.7 concludes the paper.

4.4 Problem Formulation

4.4.1 Grid Modeling

Consider a power transmission network modeled as a directed connected graph G = (N , E).

The nodes n ∈ N := {1, . . . , N} of the graph G correspond to network buses, while the
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directed edges enk ∈ E to transmission lines. The complex voltage at bus n is expressed in

polar coordinates as vne
jθn , and the complex power injection at the same bus as pn + jqn.

The power injections at node n are described by the AC power flow equations (AC-PF) as

pn = vn

N∑
k=1

vk (Gnk cos θnk +Bnk sin θnk) (4.1a)

qn = vn

N∑
k=1

vk (Gnk sin θnk − Bnk cos θnk) (4.1b)

where θnk := θn − θk, and Gnk and Bnk are the entries of the real and imaginary parts of

the bus admittance matrix Y = G + jB. Power injections can be decomposed into their

dispatchable (pgn, q
g
n) and inflexible (pdn, q

d
n) parts as

pn = pgn − pdn and qn = qgn − qdn.

The former corresponds to generators and flexible loads; the latter to inelastic loads hosted

per bus n. The buses hosting dispatchable injections form set Ng ⊂ N , and its complement

is defined as Nℓ. Set Ng will be henceforth referred to as the set of generator buses, and

Nℓ as the set of load buses. To simplify the exposition, each generator bus is assumed to

host exactly one dispatchable unit. The bus indexed by n = 1 is designated as the slack and

reference bus with θ1 = 0.

The complex power Pnk + jQnk flowing from bus n to bus k over line enk can be expressed

as

Pnk = vnvk (Gnk cos θnk +Bnk sin θnk)− v2nGnk (4.2a)

Qnk = vnvk (Gnk sin θnk − Bnk cos θnk) + v2n
(
Bnk − Bsh

nk

)
(4.2b)
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where Bsh
nk is the shunt susceptance of line enk. The apparent power flow on the line is

fn,k :=
√
P 2
n,k +Q2

n,k. (4.3)

4.4.2 Optimal Power Flow (OPF)

Let cn(pgn) denote the cost of generation at bus n. Given inflexible loads {pdn, qdn}n∈N , the OPF

problem aims at minimizing the total cost of generation while operating the transmission

network within limits. The OPF is posed as

min
∑
n∈Ng

cn(p
g
n) (4.4a)

over {vn, θn}n∈N , {pgn, qgn}n∈Ng

s.to (4.1), (4.2) ∀n ∈ N , ∀enk ∈ E

pn = pgn − pdn ∀n ∈ Ng (4.4b)

qn = qgn − qdn ∀n ∈ Ng (4.4c)

pn = −pdn ∀n ∈ Nℓ (4.4d)

qn = −qdn ∀n ∈ Nℓ (4.4e)

pg
n
≤ pgn ≤ p̄gn ∀n ∈ Ng (4.4f)

qg
n
≤ qgn ≤ q̄gn ∀n ∈ Ng (4.4g)

vn ≤ vn ≤ v̄n ∀n ∈ N (4.4h)

fn,k ≤ f̄n,k ∀en,k ∈ E (4.4i)

θ1 = 0 (4.4j)



4.4. PROBLEM FORMULATION 69

where (4.1) and (4.4b)–(4.4d) enforce the power flow equations for power injections. Con-

straints (4.4f)-(4.4g) represent generation limits. Constraint (4.4h) confines voltage mag-

nitudes within given limits. Constraints (4.2) and (4.4i) ensure that apparent power flows

remain within line ratings. Lastly, constraint (4.4j) fixes the phase angle at the reference

bus.

Given load demands stored in vector ϕ := {pdn, qdn}n∈N , the system operator solves (4.4) to

find the optimal voltage and active power set-points for generators, which can be collected in

vector x := {{vn}n∈Ng , {pgn}n∈Ng\{1}}. Given (ϕ,x), all other grid quantities involved in the

OPF can be expressed as functions of (ϕ,x) implicitly via the AC-PF equations (4.1) and

(4.2). These quantities include the bus generations, and (pg1, q
1
g) which we collectively repre-

sent using the variable y. The OPF of (4.4) can be abstracted as a parametric optimization

solely over variable x given parameters ϕ:

min
x

∑
n∈Ng

cn (x,ϕ) (4.5a)

s.to x ≤ x ≤ x̄ (4.5b)

y (x,ϕ) ≤ ȳ. (4.5c)

Here (4.5b) captures the constraints on generator setpoints, that is (4.4f) and (4.4h) for

n ∈ Ng, while (4.5c) captures the constraints in (4.4g), (4.4h), and (4.4i).

Heed there is no need to explicitly enforce the constraints on loads as in (4.4b)–(4.4e). This

is because active and reactive load demands have been included in ϕ, and their effect on all

other grid quantities of interest is captured by the power flow equations, which are still taken

into account in (4.5) indirectly through the constraint function y(x,ϕ). Note also that even

though the mapping y(x,ϕ) does not feature an analytical form, we will be able to compute

its partial derivatives with respect to x via the chain rule and the inverse function theorem
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later in Section 4.5.3. For now, let us explain how the OPF in (4.5) can be modified to cope

with uncertainty in ϕ.

4.4.3 Chance-Constrained Optimal Power Flow

Solving the non-convex problem of (4.5) can be computationally taxing if ϕ changes fre-

quently. Also by the time (4.5) is solved and the optimal setpoints are communicated to

generators, demands ϕ may have changed rendering x obsolete. The above concerns can

be accounted for by considering a stochastic version of the OPF [97], [55]. We consider the

chance constrained OPF (CC-OPF), that treats ϕ as a random variable and seeks a control

policy x(ϕ) that reacts to the realization of ϕ to minimize the expected generation cost

while satisfying network constraints with high probability

min
x(ϕ)∈X

E

∑
n∈Ng

cn (x,ϕ)

 (4.6a)

Pr [yi (x,ϕ) ≤ ȳi] ≥ 1− α, i = 1 : M (4.6b)

where the expectation E and the probability Pr are with respect to ϕ; and parameter α ∈

(0, 1) controls the probability of constraint violation. The deterministic constraint (4.5b)

has been abstracted as x ∈ X . Using the indicator function, the chance constraints in (4.6b)

can be recast as

E [1 (yi (x,ϕ)− ȳi)] ≥ 1− α, i = 1 : M (4.7)

where the indicator function 1(x) takes the values of 1 and 0 for x ≤ 0 and x > 0, respectively.

The problem (4.6) is a variational optimization problem over the control policy x(ϕ) and

is generally intractable in its native form. Instead, one can parameterize the control policy
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as x(ϕ) = π (ϕ;w), where π(.) is a chosen function of ϕ determined by the parameters w.

Restricting the policy to take this parameterized form, (4.6) can be written as the constrained

stochastic minimization

min
w:πw∈X

E

∑
n∈Ng

cn (πw,ϕ)

 (4.8a)

s.to E [1 (yi (πw,ϕ)− ȳi)] ≥ 1− α, i = 1 : M

where the optimization is now over the policy parameters w, and the notation has been

slightly abused by simplifying π (ϕ;w) to πw. In general (4.8) is an inner approximation

of (4.6) due to the restriction imposed on the policy.Given their universal approximation

capabilities [44], DNNs constitute great candidates for modeling the policy πw and narrowing

down the gap between (4.6) and (4.8). In the case of DNNs, the parameter vector w collects

the weighs and biases across all layers of the DNN.

We next delineate how a DNN can be trained to solve the CC-OPF in (4.8). Unlike standard

feed-forward DNNs, our approach involves an iterative primal-dual scheme that inherently

satisfies the non-convex stochastic constraints involved in (4.8).

4.5 Finding Optimal Policies

This section approximates the indicator function in (4.8) with a logistic function; adopts a

stochastic primal-dual scheme to learn a DNN to solve the CC-OPF. It explains how the

required gradients can be computed, and provides an overview of the training and operational

phase of the DNN.
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4.5.1 Approximating the Indicator Function

The weights w for a DNN-based policy can be learned by solving (4.8). However, com-

puting the expectations in (4.8) is challenging even if the pdf of ϕ is known, given the

non-linearities in the objective and constraints. Standard DNN training alleviates this issue

by using stochastic gradient descent (SGD) updates over a training dataset generated by

drawing random samples with respect to the distribution of ϕ to learn the DNN weights.

In the presence of constraints, stochastic primal-dual updates (SPD) can be used to yield a

similar training process [22], [34]. Unfortunately, the indicator function 1(x) in (4.8) pre-

vents the application of any gradient-based approach. This is because 1(x) is discontinuous

at x = 0, and its derivative becomes 0 at x ̸= 0. Hence, no useful gradients are obtained

while applying SPD.

Figure 4.1: Logistic function approximation of the indicator function (top), and its derivative
(bottom) for different values of parameter ϵ.
The non-differentiability of 1(x) has been addressed in the literature by substituting it

with a differentiable approximation. Depending on the objective and constraints, the convex
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approximations of 1(x) proposed in [73] may yield overall convex CC-OPF formulations [17].

Nonetheless, the computational advantage gained by introducing convexity is balanced off

by the sub-optimal, conservative nature of these formulations. It is worth stressing that the

problem in (4.8) has sources of non-convexity other than 1(x), namely the policy π (ϕ;w)

and the underlying non-linear power flow equations. Therefore, aiming for a more accurate

and differentiable approximation of 1(x) is pertinent, even if this approximation is non-

convex. Fortunately, the logistic function, which is well known in the ML community, can

serve as a smooth surrogate of 1(x) [13]. The logistic function and its derivative are

1̃ϵ(x) :=
e−x/ϵ

1 + e−x/ϵ
, ∇x1̃ϵ(x) =

−1̃ϵ(x)
(
1− 1̃ϵ(x)

)
ϵ

(4.9)

where parameter ϵ controls the accuracy of the approximation. It is easy to verify that 1̃ϵ(x)

tends to 1ϵ(x) as ϵ → 0+ as demonstrated in Figure 4.1. The same figure points towards

a possible trade-off between approximation error and rate of convergence for SPD: As ϵ

decreases, the range of values of x over which 1̃ϵ(x) has non-diminishing derivative decreases

as well. It is hence anticipated that for smaller values of ϵ, a larger number of SPD updates

may be needed.

4.5.2 Stochastic Primal-Dual Updates

Dualizing (4.8) with 1(x) being replaced by 1̃ϵ(x) provides the Lagrangian function

L(w;λ) := E

∑
n∈Ng

cn (πw,ϕ)


+ λ⊤ [(1− α)1 − E

[
1̃ϵ (y (πw,ϕ)− ȳ)

]]
(4.10)
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where λ is the vector of Lagrange multipliers associated with the constraints in (4.8a).

Observe that 1̃ϵ (y (πw,ϕ)− ȳ) are vector quantities obtained by applying 1̃ϵ(x) element-

wise for all constraints in (4.8a). The corresponding dual problem is

D∗ := max
λ≥0

min
w:πw∈X

.L(w;λ) (4.11)

A stationary point of this min/max problem can be reached via the projected primal-dual

iterations indexed by k

wk+1 :=
[
wk − µ∇wL(wkλk)

]
πw∈X (4.12a)

λk+1 :=
[
λk + ν∇λL(wk;λk)

]
+

(4.12b)

with positive step sizes µ and ν. The primal update (4.12a) involves a projection of πw

into the feasible set X . With πw being modeled by a DNN, projection onto X can be

easily accomplished by using appropriately scaled hyperbolic tangent functions (tanh). Dual

variables are projected on the non-negative orthant via the operator [x]+ := max{x, 0}.

The expectation operator in (4.10) can be handled using stochastic approximation. This en-

tails first surrogating each of the expected values by their sample averages overK uncertainty

realizations {ϕk}Kk=1. For the cost function for example, this approximation yields

E

∑
n∈Ng

cn (πw,ϕ)

 ≃ 1

K

K∑
k=1

∑
n∈Ng

cn
(
πw,ϕ

k
)
.

The stochastic primal-dual (SPD) updates further reduces the computational effort by using

one uncertainty realization per iteration to obtain:

wk+1 :=
[
wk − µ

∑
n∈Ng

∇wc
k
n + µλ⊤

k ∇w1̃ϵ

(
yk − ȳ

) ]
πw∈X (4.13a)
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λk+1 :=
[
λk + ν(1− α)1 − ν1̃ϵ

(
yk − ȳ

) ]
+
, (4.13b)

where ckn := cn
(
πw,ϕ

k
)
and yk := y

(
πw,ϕ

k
)
.

4.5.3 Computing Gradients for Primal Updates

The stochastic dual update simply requires evaluating the indicator approximation 1̃(x) for

the constraint functions yk. The stochastic primal update of (4.13a) however is more involved

as it requires evaluating the gradients {∇wc
k
n} and the Jacobian matrix ∇w1̃ϵ

(
yk − ȳ

)
. We

next explain how these gradients can be computed via the chain rule and the inverse function

theorem.

We commence with gradient ∇wcn of the generation cost functions for all but the generator

at the reference bus:

(∇wcn)
⊤ =

dcn
dpgn

· (∇xp
g
n)

⊤ · ∇wx, ∀n ∈ Ng \ {1}. (4.14)

From the definition of x, the gradient ∇xp
n
g is simply a canonical vector. The Jacobian

matrix ∇wx contains the partial derivatives of the DNN outputs with respect to the DNN

inputs, and can be computed by most deep learning platforms such as TensorFlow using

gradient back-propagation in a computationally efficient manner.

Computing ∇wc1 for the generation cost at the reference bus is less direct, yet still compu-

tationally efficient. It is less direct because pg1 is not part of the setpoints, and hence, the

DNN output x. Nonetheless, it does depend on all other generator setpoints and in turn

x indirectly, through the power flow equations. If we introduce the vector of voltages in

polar coordinates u := [v1 . . . vN θ2 . . . θN ]
⊤ excluding the fixed angle θ1 = 0, the sought



76 CHAPTER 4. DNN-BASED POLICIES FOR STOCHASTIC AC OPF

gradient can be computed as

(∇wc1)
⊤ =

dc1
dpg1

· (∇up
g
1)

⊤ · ∇xu · ∇wx (4.15)

The Jacobian matrix ∇xu required in (4.15) can be found by solving a system of linear

equations. Let vector z collect the active and reactive power demands at all load buses.

Then, using the power flow equations in (4.1), vectors x and z can be abstractly expressed

as functions of u as x

z

 =

g(u)

ℓ(u)

 . (4.16)

Regarding the mapping g(u), recall that x := {{vn}n∈Ng , {pgn}n∈Ng\{1}}. Then, the first |Ng|

entries of g(u) are simply e⊤
n u, where en is the n-th canonical vector. The second |Ng| entries

of g(u) follow from the power flow equations plus any possible load pℓn at the corresponding

bus. Since pg1 is a dependent variable, it has not been included in x or z. Differentiating

either sides of (4.16) with respect to x yields:

I

0

 =

∇ug

∇uℓ

∇xu (4.17)

where I is an identity matrix of dimensions 2|Ng| − 1 and 0 is a matrix of all zeroes of

dimension 2|Nℓ| × (2|Ng| − 1). From (4.17), we can now compute the Jacobian matrix ∇xu

as

∇xu =

∇ug(u)

∇uℓ(u)


−1 I

0

 (4.18)
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where the matrix to be inverted here is (2N − 1)× (2N − 1).

The Jacobian matrix ∇w1̃ϵ (y − ȳ) appearing in the primal update of (4.13a) can be found

in a similar application of the chain rule and the inverse function theorem as

∇w1̃ϵ (y − ȳ) = ∇y1̃ϵ (y − ȳ) · ∇uy · ∇xu · ∇wx. (4.19)

Matrix ∇y1̃ϵ (y − ȳ) is diagonal with diagonal entries provided by (4.9). Matrix ∇uy con-

tains the partial derivatives of all constraint functions of interest with respect to voltage

magnitudes and angles. Such derivatives can be readily computed from (4.1)–(4.3).

Figure 4.2: Overview of the training phase for the DNN-based policy.

Remark 4.1. In a typical OPF formulation, one would select complex voltages in rectan-

gular or polar coordinates u as the optimization variables and then express each quantity in

cost or constraints (injections, line flows, voltage magnitudes) as an analytic function (e.g.,

quadratic) of complex voltages. In the proposed formulation on the other hand, the opti-

mization variables are the generator PV setpoints stored in x; the PQ setpoints are known

problem parameters collected in z. Cost and constraints can be expressed as functions of the

PV/PQ point (x, z). Although such functions may be implicit (no analytic form), one can
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still compute their values and derivatives with respect to x at some (x, z). This is possible

upon solving the power flow (PF) equations at (x, z) and using the inverse function theorem

as detailed between (4.16)–(4.19), and under the tacit assumption that the PF equations are

solvable at (x, z). The proposed method does not explicitly ensure PF solvability for the

entire sequence of iterates xk = π(z;wk) and across all scenarios. It is anticipated that if

the iterates are initialized at a solvable PV/PQ point (x, z) and the step size µ is sufficiently

small, it would be unlikely for the iterates in (4.13) to land at a PV/PQ point with no PF

solution. This is intuitively justified by the continuity of the PF equations and the fact that

when a PF trajectory is approaching insolvability, the PF solutions would become infeasible

(e.g., voltages being well outside the desirable range). Practically, it should be noted that

during our numerical tests, we did not encounter any scenario where a PV/PQ point would

have no PF solution during an iteration.

4.5.4 Deployment Workflow

Deploying the DNN-based strategy consists of two phases; (i) solving the SOPF, which is

achieved by the training phase of the DNN, and (ii) real time computation of control actions,

which is done by simply evaluating the trained DNN and is similar to the testing phase of

DNNs. For the training phase, the system operator samples K grid conditions {ϕk}Kk=1 that

reflect the real-time conditions to which the policy will be applied. The training samples

could be sourced from historically recorded loads, simulations, or predictions. Depending

on the generators that have been committed for the upcoming time-period, the operator

identifies generator and load buses in sets Ng and Nℓ, respectively, and defines vectors x and

y. The input and output layers of the DNN match the dimensions of ϕ and x, accordingly.

The dimensions and the number of hidden layers are hyper-parameters to be determined

for the specific CC-OPF setting. The DNN is then trained using SPD as per Section 4.5.
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This entails: i) Sampling a ϕk; ii) Performing a forward pass through the DNN to obtain

xk; iii) Obtaining yk and uk from a power flow solver; iv) Using {θk,xk,yk,uk} to calculate

the gradients (4.14), (4.15), and (4.19); and v) Performing updates (4.13a)–(4.13b). These

steps are repeated over the training samples for multiple epochs. Figure 4.2 depicts a block

diagram of the training process. In real-time, the operator simply feeds the DNN with the

real-time realizations of the uncertainty ϕ to obtain the dispatch x at the output.

4.6 Numerical Tests

4.6.1 Experimental Setup

The performance of the proposed DNN-based policy is evaluated using transmission networks

of varying sizes. The simulation scripts are written in Python and run on a 2.4 GHz 8-Core

Intel Core i9 processor laptop computer with 64 GB RAM. Compatibility with the commonly

used MATPOWER [110] models is achieved by interfacing the Python script with the open-

source Octave engine [21]. The communication between the two platforms is enabled via

the Oct2py library [2], which allows seamless calling of M-files and Octave functions from

Python. Leveraging upon this functionality, in-built MATPOWER functions are called to

read the networks, solve the power flow equations, and calculate the derivatives needed for

the primal updates. The implementation advantages of such synergy come at the cost of the

communication overhead between the two platforms. For the networks tested, this overhead

is within 0.02− 0.03 seconds per iteration. Because these delays can be avoided by porting

the required MATPOWER functions to Python, they have been eliminated from the training

times reported here.

TensorFlow libraries are employed to model and train the DNN. For each of the experiments,
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a five-layer DNN is considered. The five layers are: 1) input layer matching the dimensions

of ϕ; 2) two hidden layers, each with half the dimensions of the input layer; 3) output

layer with the same dimensions as x; and 4) custom designed activation layer based on tanh

ensuring x ∈ X . All DNN weights are initialized by randomly drawing from a standard

normal distribution. DNN biases and dual variables are initialized at zero. The primal

updates are performed using the Adam optimizer and the dual variables are updated using

SGD. The primal step size µ decays exponentially at the rate of 0.5 per epoch, whereas

the dual step size ν decays with the square-root of the iteration index [61]. The values for

hyper-parameters {ϵ, E, µ0, ν0} are identified for each network via cross-validation, and are

reported with results from the experiment.

For training and testing the DNN, we generated 1, 000 samples of ϕ by adding zero-mean

uniformly distributed noise to the nominal loads of the MATPOWER models. Recall that

training corresponds to solving the SOPF formulation in (4.8) and testing corresponds to

using the computed policy for real time prediction of control actions in response to uncer-

tainty. To ensure that the problem in (4.8) is feasible, the generated demands were truncated

within a range of [−R,R] around the nominal point, where R was selected per network to

ensure that the corresponding deterministic formulation of the OPF in (4.5) is feasible. The

1, 000 generated samples were then randomly grouped into training and testing sets of 800

and 200 examples, respectively. Training was conducted over E epochs of the training set.

The performance of the DNN-based policy was bench-marked against the OPF-policy that

solves the OPF in (4.5) deterministically per ϕk.
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4.6.2 Accuracy of the Logistic Function Approximation

We investigate the accuracy and performance of the logistic function approximation using

1̃ϵ(x) to the chance constraints in (4.7) using the 14-bus “pglib_opf_case14_ieee” network.

For α ∈ {0.05, 0.10, 0.15, 0.20} and {ϵ, E, µ0, R} = {0.01, 5, 10−3, 0.1}, Table 4.1 shows the

values of the remaining hyperparameters and the training time. The performance of the

DNN-based policy on unseen test samples is also divulged via three metrics: maximum

sampled probability of constraint violations (abbreviated in Table 4.1 as maximum violation

[%]), test time, and the average cost.

Table 4.1 demonstrates the advantages of the DNN policy. First, the evaluated violation

probabilities closely follows the prescribed α showing that the approximation 1̃ϵ(x) is suffi-

ciently accurate while facilitating use of the efficient SPD algorithm. This is an improvement

over the conservative convex approximation of the indicator function in [34], where the ob-

served violation probabilities were considerably less than α. Second, during the real-time

evaluation of the policy, the DNN-based policy is able to predict the dispatch for the 200 test

samples in around 0.3 seconds. Comparing this to the OPF-policy, which has an evaluation

time of 31.3 seconds and cost of $2180.16, the DNN policy is approximately 100 times faster

without sacrificing optimality.

Table 4.1: Training and testing details for the 14-bus system for different values of α.

α ν0
Train

time (sec)
Maximum

violation [%]
Test

time (sec)
Average
cost [$]

0.05 3 · 10−4 97.4 3.5 0.30 2180.53
0.10 1.5 · 10−4 98.5 8.5 0.33 2180.48
0.15 1 · 10−4 100.6 16.5 0.34 2180.45
0.20 1.8 · 10−4 100.6 17.0 0.34 2180.44
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4.6.3 Enforcing Communication and Complexity Constraints

While our presentation thus far has been focused on the unconstrained DNN policy where

all controllable variables are allowed to respond to uncertainty realizations, the framework

also allows for seamless encoding of communication constraints where only part of ϕ’s is

observed and communicated, and complexity constraints where only a subset of the control

variables respond to uncertainty. This flexibility allows us to account for any limitations of

the available infrastructure.

As an example, we consider an automatic generation control (AGC) type policy, where only

the active power generation of the participating generators responds to the total active load

deviation in the system. This policy closely resembles the usual affine policy model in terms

of input-output dependencies but allows for more general non-linear functions. This policy

can be implemented within the DNN framework by modifying the input layer to have only

1 neuron that receives the signal
∑

n∈N pdn, and making the neurons for {vgn}n∈N g insensitive

to the input by setting the corresponding weights to 0. Note that the modified DNN still

produces the average nominal values for {vgn}n∈N g at the output, because the biases in the

output layer are learnt during training.

The AGC-type policy along with the full policy are evaluated on the 14 bus system for

α = 0.1 and two values of R = {0.1, 0.2} corresponding to a moderate case with smaller

uncertainty and a stressed case with larger uncertainty respectively. The results are presented

in Table 4.2. For the moderate case, both policies are able to enforce the chance constraints

with the full policy marginally out-performing the AGC-type policy in terms of cost. For

the stressed case however, the AGC-type policy could not converge to anywhere near the

desired α = 0.10 even after 20 epochs and saturated at a constraint violation probability

of around 26.5%. The full policy on the other hand was able to decrease the probability of
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constraint violations to 10.5%. As a baseline comparison, the OPF policy was evaluated and

found to attain an average cost of $ 2183.14. The stressed case demonstrates that general

control policies can significantly improve cost of control actions and their ability to enforce

constraints in real time.

Table 4.2: Test results comparing the full policy with an AGC-type policy for α = 0.10,
and E = 20.

Policy Maximum violation [%] Average cost [$]
R = 0.1 R = 0.2 R = 0.1 R = 0.2

Full 8.5 10.5 2180.45 2184.67
AGC-type 9.0 26.5 2185.52 2189.23

4.6.4 Scalability

We test the DNN framework on a number of test networks of varying sizes. The values for

hyper-parameters, load variation parameter R, and the training times of these networks are

compiled in Table 4.3 and Table 4.4 reports the performance of the trained DNNs. The

testing times and the average costs attained by the proposed strategy are compared against

the OPF policy. For all networks, the DNN policy is consistently able to enforce the chance

constraints with the specified α with the costs remaining close to that of the OPF policy

indicating that the DNN policy is near-optimal. The training times in Table 4.3 show a

moderate increase with size of the test networks indicating that the proposed approach

is highly scalable. We remark that the exact training times reported are less indicative

than the trend. The exact times are highly dependent on implementation details where

parallelized implementations and GPU deployment can drastically improve these numbers.

The evaluation times in Table 4.4 are orders of magnitude faster than the OPF policy, making

them highly suitable for real-time computation of control actions.



84 CHAPTER 4. DNN-BASED POLICIES FOR STOCHASTIC AC OPF

Table 4.3: The values for hyper-parameters {ϵ, E, µ0, ν0}, setting R, and the training times
for different networks for α = 0.05

Network ϵ E µ0 ν0 R
Train

time (sec)
case6ww 0.005 5 10−3 4 · 10−2 0.05 73.45
case69 0.01 5 10−3 10−2 0.1 79.85
case118 0.07 5 10−3 1 0.01 308.4
case141 0.01 5 10−3 10−3 0.1 104.25

Table 4.4: Test results for the full DNN-based policy (full) and OPF policy (OPF) for
different networks for α = 0.05.

Network Maximum
violation [%]

Time (sec) Average cost [$]
Prop. Opt. Prop. Opt.

case6ww 5 0.22 24.09 3.17 · 103 3.15 · 103
case69 0 0.25 26.35 80.58 80.58
case118 0.5 0.39 61.10 1.30 · 105 1.30 · 105
case141 0.0 0.28 40.34 251.89 251.89

4.7 Conclusions

We presented a DNN-based approach for solving the SOPF, where DNNs are used to param-

eterize the control policies required for real-time power balancing in response to uncertainty.

Our approach does not require previously generated training labels and instead used the

training phase to solve the SOPF. Stochastic primal-dual updates are employed to learn the

DNN weights such that generation costs are minimized while respecting the power system

constraints. Numerical tests on a variety of benchmark networks confirm that the general-

ized policy is able to provide high quality feasible solutions to chance constrained AC-OPF

problem over a range of operating conditions, with significant improvements over an AGC-

type policy in terms of cost and constraint enforcement. Comparison with the OPF policy

where an OPF is solved in response to each uncertainty realization shows that the DNN pol-

icy is able to attain similar levels of feasibility and optimality, while facilitating near-instant

computation of real-time control actions. In future, we plan to extend our approach to joint

chance-constrained OPF problems and research scenario selection policies to aid in faster
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DNN training.
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5.2 Abstract

Given their intermittency, distributed energy resources (DERs) have been commissioned

with regulating voltages at fast timescales. Although the IEEE 1547 standard specifies the

shape of Volt/VAR control rules, it is not clear how to optimally customize them per DER.

Optimal rule design (ORD) is a challenging problem as Volt/VAR rules introduce nonlinear

dynamics, require bilinear optimization models, and lurk trade-offs between stability and

steady-state performance. To tackle ORD, we develop a deep neural network (DNN) that

86
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serves as a digital twin of Volt/VAR dynamics. The DNN takes grid conditions as inputs,

uses rule parameters as weights, and computes equilibrium voltages as outputs. Thanks to

this genuine design, ORD is reformulated as a deep learning task using grid scenarios as

training data and aiming at driving the predicted variables being the equilibrium voltages

close to unity. The learning task is solved by modifying efficient deep-learning routines to

enforce constraints on rule parameters. In the course of DNN-based ORD, we also review and

expand on stability conditions and convergence rates for Volt/VAR rules on single-/multi-

phase feeders. To benchmark the optimality and runtime of DNN-based ORD, we also devise

a novel mixed-integer nonlinear program formulation. Numerical tests showcase the merits

of DNN-based ORD.

5.3 Introduction

DERs such as solar photovoltaics, are being advocated as a means to battle climate change,

shave peak demand, and improve reliability. Despite the obvious benefits, voltage fluctua-

tions arising from uncertainties in DERs may hinder their large-scale adoption. Fortunately,

optimal control strategies for inverter-interfaced DERs to provide voltage regulation can

alleviate the previous concern. Under centralized voltage regulation, a supervisory entity

consolidates load and generation measurements across the grid and solves an optimal power

flow (OPF) to determine setpoints for DERs [24, 66, 105]. Albeit easier to conceive, cen-

tralized schemes suffer from considerable communication and computational overhead and

privacy issues, and presume a detailed feeder model is available.

On the other hand, local voltage regulation schemes for DERs entail calculating control

setpoints solely on the basis of data locally accessible by the DERs, such as load, solar

generation, and voltage measurements at the grid interface. The IEEE 1547.8 Standard
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prescribes a local control scheme whereby DER setpoints are produced by control rules

taking the form of piecewise linear functions of local measurements [3]. Local rules however

are known to produce sub-optimal setpoints [12, 65]. Nevertheless, autonomy and simplicity

are lucrative features of local schemes for real-time DER control. Focusing on Volt/VAR

control, this work delves into the study and optimal design of local rules.

Volt/VAR rules compute reactive power setpoints for inverters based on the local devia-

tion from the nominal voltage. Since voltages are affected by reactive setpoints, Volt/VAR

rules give rise to closed-loop dynamics, which can become unstable under steep control rule

slopes [26, 107, 108]. While the aforementioned works study the convergence and stability

of Volt/VAR control rules, they do not address how to design such rules, i.e., select their

exact shape, in the first place. Prior efforts on designing DER rules either resort to heuris-

tics [11, 83, 90], deal with non-dynamic Watt/VAR rules [47], or restrict themselves to affine

Volt/VAR rules [7, 84]. Different from above, our recent work in [71] formulates a bilevel

optimization to design the slopes, deadband, saturation, and reference voltages for the Volt/-

VAR rules as prescribed by the IEEE 1547.8 Standard. The bilevel optimization considers

a number of possible grid scenarios, and upon leveraging the properties of the system at

equilibrium, it finds stationary points using projected gradient descent iterates.

Our present work extends [71], and improves upon the previously cited literature in four

directions: c1) Most of the existing works focus on simplified single-phase models of distri-

bution feeders and do not capture inter-phase coupling. We extend the analysis in [108] to

provide a polytopic restriction on the slope of control curves, which guarantees the stabil-

ity of Volt/VAR rules per the IEEE 1547 Standard to multiphase feeders; c2) We design a

digital twin of Volt/VAR dynamics using a DNN. The digital twin accepts grid conditions

as the input, the control rule parameters as weights, and computes approximate equilibrium

voltages at its output. Based on the rate of convergence of Volt/VAR dynamics, we deter-
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mine the minimum depth for the DNNs to simulate such dynamics up to the desired level

of accuracy; c3) We cast the problem of optimal design of Volt/VAR rules as training the

DNN-based digital twin. The training process involves stochastic projected gradient updates

(SPGD) that leverage efficient, off-the-shelf Python libraries to train the DNNs; c4) Exploit-

ing the bilevel structure, we also formulate ORD as a novel mixed-integer nonlinear program

(MINLP). Although the MINLP-based approach does not scale well with the number of

DERs and grid scenarios, it serves as a benchmark for the optimality and computational

speed of DNN-based ORD.

We next expound upon how our work differs from prior works utilizing machine learning

for smart inverter control. DNNs have been extensively employed before for optimal DER

control under OPF formulations, with the objective of minimizing energy losses and energy

costs; see e.g., [34, 86, 98, 104]. Support vector machines and Gaussian processes have

also been suggested for reactive power control using smart inverters [48, 49]. However,

none of the above references aim at modeling the IEEE 1547-type piecewise linear, local,

Volt/VAR rules. Furthermore, the existing problem formulations preclude the presence of

closed-loop dynamics and are not nuanced by stability concerns as in the present work. In

terms of using a DNN to model piecewise linear Volt/VAR control rules, our work bears

some similarities with [16]. Reference [16] models piecewise linear control rules, using a

NN with a single hidden layer. However, the DNN-based approach is not extended to

capture Volt/VAR dynamics end-to-end and model equilibrium voltages, primarily because

its focus is on optimal control of transient dynamics. In contrast, the aim of the present

work is to design control rules that produce equilibrium voltages close to unity across many

scenarios. Moreover, reference [16] does not discuss other topics covered in this work such

as the IEEE 1547-type Volt/VAR rules, their convergence speed, and the implications of

Volt/VAR control in multiphase feeders.
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This paper is organized as follows. Section 5.4 presents the feeder model. Section 5.5

discusses the equilibrium and convergence of Volt/VAR rules on single-phase feeders. Sec-

tion 5.6 casts the problem of ORD in single-phase feeders as a deep learning task. Section 5.7

formulates the benchmark MINLP that also solves ORD for single-phase feeders. Section 5.8

extends DNN-based ORD to multiphase feeders, while providing the necessary stability and

convergence claims. Section 5.9 presents numerical tests confirming the efficacy of the pro-

posed DNN-based ORD on single- and multi-phase feeders. Conclusions and future directions

are drawn in Section 5.10.

5.4 Feeder Modeling Preliminaries

Consider a feeder rooted at the substation. Although the feeder can be single-phase or

multiphase, it features a tree structure in terms of buses. For multiphase feeders, a bus

may be serving one to three phases; a valid pair of bus and phase will be referred to as a

node. For single-phase feeders, the terms bus and node will be used interchangeably. The

substation is indexed by 0 and is considered balanced; all remaining nodes are indexed by

n ∈ N := {1, . . . , N}. All DERs are assumed to be single-phase and be able to provide

reactive power control. For simplicity, each node is assumed to host a DER; we briefly

discuss the minor modifications to deal with the more practical setting where not all nodes

host DERs. Our numerical tests evaluate the latter setting.

To study the effect of power injections on voltage magnitudes, we use an approximate lin-

earized grid model. Let the active/reactive power injections and voltage magnitudes (hence-

forth simply voltages) at the non-substation nodes be collected into the N -length vectors p,
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q, and v, respectively. The linearized grid model relates these quantities as [92]

v ≃ Rp + Xq + v01 (5.1)

where v0 is the substation voltage, and real-valued matrices R and X depend on line

impedances and feeder topology.

If pg and pℓ denote the active power generated by DERs and that consumed by the loads

accordingly, then p = pg − pℓ. Reactive power injections can be decomposed similarly as

q = qg − qℓ. Supposing p and qℓ are uncontrolled and vary with time, reactive power

compensation entails adjusting qg to maintain v around one per unit (pu). To isolate the

effect of DER reactive injections on voltages, rearrange (6.1) as

v = Xqg + ṽ = Xq + ṽ (5.2)

where the notation is slightly abused by denoting qg as q for simplicity. The uncontrolled

quantities are captured in vector ṽ := R(pg −pℓ)−Xqℓ+ v01, where ṽ models voltages had

it not been for reactive power compensation. Vector ṽ will be henceforth termed the vector

of grid conditions.

Given its importance in Volt/VAR control, let us summarize some properties of the sen-

sitivity matrix X appearing in (5.2). For single-phase feeders, matrix X is known to be

symmetric, positive definite, and with positive entries; see e.g., [8], [27]. For multiphase

feeders however, matrix X is non-symmetric and has positive as well as negative entries [53].

Nonetheless, under conditions typically met in practice [53], matrix X remains positive def-

inite for multiphase feeders in the sense z⊤Xz > 0 for all z ̸= 0. These nuances of X call for

relatively different treatments of Volt/VAR control between single- (Sections 5.5–5.6) and

multi-phase feeders (Section 5.8).
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Figure 5.1: The piecewise linear Volt/VAR control rule f(v) provisioned by the IEEE 1547
standard [3]. The x-axis corresponds to the local voltage magnitude and the y-axis to the
inverter setpoint for reactive power injection.

5.5 Control Rules for Single-Phase Feeders

The IEEE 1547.8 standard provisions four modes of reactive power control [3]: constant

power, constant power factor, Watt/VAR, and Volt/VAR. We focus on the last one as being

the most grid-adaptive. This mode enables the inverters to respond to local voltage devia-

tions via a piecewise linear control curve f(v), like the one depicted in Fig. 5.1. The curve

consists of a deadband of length 2δ centered around v̄; two affine regions; and two regions

wherein reactive injections saturate at ±q̄. The standard constraints curve parameters as

0.95 ≤ v̄ ≤ 1.05 (5.3a)

0 ≤ δ ≤ 0.03 (5.3b)

δ + 0.02 ≤ σ ≤ 0.18 (5.3c)

0 ≤ q ≤ q̂. (5.3d)

Per (5.3d), the saturation value q̄ can be equal to the reactive power capability q̂ of the

inverter, but also smaller than that.

The rule of Fig. 5.1 is parameterized by (v̄, δ, σ, q̄), which can be customized per bus n as
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(v̄n, δn, σn, q̄n). The rule can be alternatively parameterized by (v̄n, αn, δn, q̄n), where αn is

the negative slope of the affine segment and is defined as

αn =
qn

σn − δn
> 0. (5.4)

Let vectors (v̄,α, δ, q̄) collect (v̄n, αn, δn, q̄n) for all n ∈ N ; and stack such vectors together

in vector z := (v̄,α, δ, q̄).

The interaction of Volt/VAR-controlled DERs with the grid results in the non-linear discrete-

time dynamics

vt = Xqt + ṽ (5.5a)

qt+1 = fz(vt) (5.5b)

where vector function fz(vt) represents the action of Volt/VAR rules across all nodes and

is parameterized by z. If stable, the dynamics in (5.5) enjoy an equilibrium under any grid

condition ṽ [27]. In fact, the inverter setpoints at equilibrium coincide with the unique

minimizer of the convex program [27]

q∗(z, ṽ) = arg min
−q̄≤q

F (q) := V (q) + C(q). (5.6)

The two components of the objective F (q) are defined as

V (q) := 1

2
q⊤Xq + q⊤(ṽ − v̄) (5.7a)

C(q) :=
∑
n∈N

(
1

2αn

q2n + δn|qn|
)
. (5.7b)



94
CHAPTER 5. DEEP LEARNING FOR OPTIMAL VOLT/VAR CONTROL USING DISTRIBUTED ENERGY

RESOURCES

Component V (q) can be equivalently expressed as [27]

V (q) = 1

2
(v − v̄)⊤X−1(v − v̄) + constants. (5.8)

Because X ≻ 0, function V (q) is an ℓ2-norm of (v − v̄). Hence, minimizing V (q) aims at

bringing voltages close to reference voltages. Nonetheless, problem (5.7) involves also C(q)

in its cost. Based on (5.6) and to best regulate voltages, one would try setting α to infinity

and δ to zero so C(q) = 0 and the equilibrium setpoints minimize only V (q). This course

of action has a dynamic stability implication as detailed next.

Reference [108] guarantees that Volt/VAR dynamics are stable if ∥ dg(α)X∥2 < 1, where

dg(α) is a diagonal matrix having α on its diagonal. To be satisfied as a strict inequality,

the condition can be strengthened as ∥ dg(α)X∥2 ≤ 1− ϵ for some ϵ ∈ (0, 1).

Definition 5.1. Volt/VAR rules satisfying ∥ dg(α)X∥2 ≤ 1− ϵ for ϵ ∈ (0, 1) will be hence-

forth termed ϵ-stable.

To avoid the spectral norm condition ∥ dg(α)X∥2 ≤ 1 − ϵ, we have previously proposed a

polytopic restriction [71]:

Xα ≤ (1− ϵ)1 (5.9a)

αn ≤ 1− ϵ∑
m∈N Xnm

, ∀n ∈ N . (5.9b)

The next section develops methods for selecting the Volt/VAR rule parameters z so that a

voltage regulation objective is minimized for a set of grid scenarios. For single-phase feeders,

Section 5.6 reformulates (ORD) as the problem of training a neural network, while Section 5.7

tackles ORD as a mixed-integer nonlinear program. For multiphase feeders, solving ORD is

dealt with in Section 5.8.
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5.6 ORD for 1ϕ Feeders via Deep Learning

Because Volt/VAR rules are used so inverters can operate autonomously, it is reasonable to

assume that rule parameters z are updated infrequently, say every 2 hours. Then, rules z

should be optimized while considering the possibly diverse loading conditions the feeder may

experience over those 2 hours. To account for such conditions, suppose we are given a set

of S load/solar scenarios {(pg
s,pℓ

s,qℓ
s)}Ss=1. Each scenario is related to grid condition vector

[see (5.1)]

ṽs := R(pg
s − pℓ

s)− Xqℓ
s.

Let q∗(z, ṽs) or simply q∗
s(z) denote the equilibrium setpoints reached by stable Volt/VAR

rules parameterized by z under grid conditions ṽs. Unfortunately, setpoints q∗
s(z) cannot

be expressed as in closed form. They can be computed by either iterating (5.5), or as the

minimizer of (5.6). The related equilibrium voltage is v∗
s(z) := Xq∗

s(z) + ṽs from (5.1).

We pose the ORD task as a minimization problem over z:

min
z

1

2S

S∑
s=1

∥Xq∗
s(z) + ṽs − 1∥22 (5.10)

s.to (5.3), (5.9)

to minimize the Euclidean distance of equilibrium voltages from unity, averaged across sce-

narios. Constraints (5.3) and (5.9) ensure rules are stable and compliant with the IEEE

1547.

One may wonder why are we not satisfied with the fact that any stable rule z settles at

the minimizer of (5.6), which is seemingly a meaningful equilibrium. Such equilibrium may

be insufficient due to three reasons: i) The term V (q) is a rotated ℓ2-norm of (v − v̄), so

that voltage deviations are weighted unequally across buses; ii) If DERs are sited only on a
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subset G ⊂ N of nodes, the cost V (q) gets modified as VG(qG) =
1
2
(vG − v̄G)

⊤X−1
GG(vG − v̄G),

where subscript G denotes the subvectors/submatrix obtained by keeping the rows/columns

corresponding to G; see [71]. Such cost may not be representative of ∥v − v̄∥22; and iii) As

discussed earlier, stability limitations do not allow us to set α to infinity although it seems

desirable from a voltage regulation standpoint. The aforesaid reasons motivate the need to

optimally design z so the induced equilibrium voltages v∗
s(z) are better regulated.

Albeit simply stated, problem (5.10) is computationally challenging as q∗
s(z) is the solution

of the inner minimization problem (5.6), which is parameterized by z. Thereby, the ORD

task is a bilevel optimization over z: The outer problem (5.10) depends on S inner problems

of the form (5.6), one per scenario.

Our first strategy towards tackling (5.10) is to replace the inner problem with a DNN that

simulates the Volt/VAR dynamics. This DNN has z as weights, accepts ṽs as input, and

outputs the equilibrium voltages v∗
s(z). Let the DNN output be denoted by Φ(ṽs; z). The key

idea is that if Φ(ṽs; z) are the equilibrium voltages for rule z over scenario s, then problem

(5.10) becomes the supervised training task:

min
z

L(z) := 1

2S

S∑
s=1

∥Φ (ṽs; z)− 1∥22 (5.11)

s.to (5.3), (5.9).

To draw a useful analogy, scenarios ṽs are analogous to feature vectors in regression problems;

equilibrium voltages v∗
s = Φ(ṽs; z) are the predictions for feature vectors; and 1 is the

(constant) target label for the prediction. Formulating (5.10) as (5.11) allows us to leverage

efficient DNN libraries for optimizing z. With this motivation in mind, we next design the

DNN, and then describe the steps to train it.
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Figure 5.2: Volt/VAR rule f(v) expressed as a sum of ReLUs.

5.6.1 Designing a Digital Twin of Volt/VAR Dynamics

The Volt/VAR curve of Fig. 5.1 can be interpreted as a superposition of four piecewise-

linear functions, each with a single breakpoint, as shown in Fig. 5.2. These functions can be

thought of as the outputs of rectified linear units (ReLU) ρ(x), which return x for x > 0;

and 0 otherwise. To get the different breakpoints and slopes as in Figure 5.2, the ReLU

units need the appropriate inputs and scaling. The required mathematical operations can

be implemented through the DNN of Fig. 5.3, which takes vtn as input and computes the

setpoint qt+1
n at its output. The input and output layers have one neuron each. The hidden

layer consists of four neurons. The weights of the hidden layer are fixed to [1, 1,−1,−1]⊤,

but its bias vector is trainable and given by [−(v̄ + δ),−(v̄ + σ), v̄ − δ, v̄ − σ]⊤. Each of

the four neurons in the hidden layer is equipped with a ReLU unit. The output layer has a

trainable weight vector [−α, α, α,−α]⊤ and the bias is fixed at 0.

Heed that the NN of Fig. 5.3 implements the Volt/VAR curve for a single inverter and a
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Figure 5.3: Volt/VAR rule f(v) model using a DNN with 1 hidden layer.

single time step as qt+1
n = fn(v

t
n). To simulate the entire Volt/VAR network dynamics of

(5.5), we will treat the NN of Fig. 5.3 as a building block and replicate it across inverters and

time. Let VCn represent the NN module running one time step for inverter n. This module

is parameterized by (v̄n, αn, σn, δn). With a slight abuse of terminology, let the collection of

VCn’s for all inverters be labeled as a single ch5:layer. These modules are stacked vertically

as shown in Fig. 5.4. Each one of these layers implements (5.5b) by receiving vt as input, and

Figure 5.4: DNN-based digital twin for the Volt/VAR dynamics of (5.5). The DNN is
structured so that T time steps are arranged horizontally. The modules VCn’s implementing
the Volt/VAR curves for each one of the N inverters are stacked vertically. Skip connections
propagate the input vector (grid scenario) ṽ to each time instant to implement vt+1 =
Xqt+1 + ṽ.
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Figure 5.5: Recurrent representation (RNN) of the digital twin of Fig. 5.4.

producing setpoints qt+1 as outputs for a single time t. The setpoints qt+1 in turn produce

voltages vt+1 = Xqt+1 + ṽ per the grid model (5.5a). To simulate the dynamics over time,

the new voltages vt+1 are passed to the next layer, and the process is repeated for T steps.

Structurally, these interactions result in a larger DNN with T repeating layers, one layer

per iteration of (5.5), as shown in Figure 5.4. The simulation of dynamics over T iterations

is then simply equivalent to performing a forward pass through the larger DNN with ṽ as

the input. To implement (5.5a), the input ṽ (grid scenario vector) is also propagated to the

inner layers via so termed skip connections.

It is worth stressing that each module VCn is replicated horizontally across the T times. This

implies significant weight sharing across the T layers. Therefore, the number of trainable

parameters ẑ := (v̄,α, δ,σ) remains fixed at 4N , irrespective of the DNN depth T . This

weight-sharing aspect results in computational and memory-related efficiencies for DNN

storing, prediction, and training, and has been instrumental in the success of architectures

such as recurrent (RNN), convolutional (CNN), or graph (GNN) neural networks. In fact,

it is possible to obtain a recurrent ‘rolled’ representation of the larger DNN of Fig. 5.4, as

shown in Fig. 5.5, allowing one to utilize RNN-specific functionalities in DNN libraries.
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In a nutshell, the DNN of Fig. 5.4 simulates Volt/VAR dynamics across T times. In other

words, once fed with a grid condition vector ṽs, its output will approximate the equilibrium

voltages v∗
s reached by Volt/VAR dynamics under rule z. As a result, optimizing over z by

training the DNN so that equilibrium voltages {v∗
s(z)}Ss=1 come close to one pu, serves the

purposes of ORD. Surrogating Volt/VAR dynamics by the DNN is effective only if the DNN

depth T is sufficiently large. How deep should the DNN be so that its output Φ (ṽs; ẑ) is close

to v∗
s? Because a DNN of depth T simulates exactly the Volt/VAR dynamics up to time

T , the answer for selecting T is apparently the settling time of the Volt/VAR dynamics as

detailed next and shown in the appendix.

Proposition 5.2. Suppose ϵ-stable Volt/VAR rules are described by z. The depth T of the

DNN in Fig. 5.4 required to ensure ∥Φ (ṽ; z)− v∗(z)∥2 ≤ ϵ1 for all grid conditions ṽ is

T ≥
log 2∥X∥2∥q̂∥2

ϵ1

log(1− ϵ)−1
.

The result implies that the minimum depth T grows logarithmically with the desired accuracy

ϵ1 and the stability margin ϵ. Plugging in the typical values ϵ1 = 10−4, ∥X∥2 = 4.63 ·10−1 for

IEEE 37-bus feeder, ∥q̂∥2 = 0.1, and ϵ = 0.3, the bound yields a comfortably small number

of T ≥ 20 layers. For ϵ1 = 10−6, the number of layers T increases to 32, demonstrating the

scalability of the approach.

5.6.2 DNN Training

With rule parameters ẑ embedded as DNN weights and biases, the optimal Volt/VAR curves

are obtained by training Φ (ṽs; ẑ). Conventional DNN training uses stochastic gradient

descent (SGD) to update the DNN parameters and eventually minimize the loss function

in (5.11). However, parameters ẑ should satisfy constraints (5.3) and (5.9). Plain SGD may
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fail to return a feasible z. This can be circumvented by using projected stochastic gradient

(PSGD) updates. PSGD updates first compute an intermediate quantity x̂i+1 via gradient

descent

x̂i+1 = ẑi − µ

2B
∇ẑi

(∑
s∈Bi

∥Φ(ṽs; ẑ)− 1∥22

)
(5.12)

where µ > 0 is the step size; set Bi is a batch of B scenarios (a subset of the original S

scenarios); and∇ẑi(·) is the gradient of the loss function with respect to ẑ evaluated at ẑ = ẑi.

The gradient term in (5.12) is calculated efficiently thanks to gradient back-propagation.

The second step for PSGD updates entails projecting x̂i+1 into the feasible space defined

by (5.3) and (5.9). To this end, we first transform x̂i+1 from parameter space (v̄,α, δ,σ)

to space (v̄, c, δ,σ), where vector c has entries cn := 1/αn. Variable x̂i+1 transformed in

the new space is called x̃i+1. The transformation is a one-to-one mapping between the two

spaces, and is used so that the feasibility set induced by (5.3) and (5.9) is convex, and so

it is easy to project onto it. We proposed this transformation in [71]. We review it here for

completeness. Using (5.4), constraint (5.3d) is expressed as

0 ≤ σ − δ ≤ c ⊙ q̂ (5.13)

where ⊙ means element-wise multiplication. Constraints (5.9) can be expressed in terms of

c instead of α as [71]

c ≥ 1

1− ϵ
X1 (5.14a)

Xa ≤ (1− ϵ) · 1 (5.14b)

a ⊙ c ≥ 1, ∀ n ∈ N (5.14c)
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where a is an auxiliary variable. Constraint (5.14c) can be rewritten as a second-order cone.

In [71], we show how (5.14) is equivalent to (5.9). The quantity x̃i+1 can now be projected

onto the feasible space via the convex minimization

z̃i+1 = argmin
z

∥x̃i+1 − z∥22 (5.15)

s.to (5.3a)− (5.3c), (5.13), (5.14).

The PSGD update is completed by transforming z̃i+1 from space (v̄, c, δ,σ) back to space

(v̄,α, δ,σ) to get ẑi+1.

The proposed DNN training can be implemented in Python using DNN libraries such as

PyTorch [1]. Step (5.12) is the standard SGD update pertaining to the loss function of (5.11)

over the batch of training labels {ṽs, 1}Bi
. As with standard DNN training, adaptive moment-

based algorithms such as Adam can be used to enable fast convergence and avoid saddle

points. The DNN weights and biases are transformed between the parameter spaces, and

then passed to a convex optimization module to implement the projection step of (5.15). In

the last step, DNN weights and biases are updated with the new projected parameters, upon

transformation to the original space. The steps are repeated for several epochs.

5.7 ORD for 1ϕ Feeders as an MINLP

A second approach towards solving the bilevel program in (5.10) is to replace each inner

problem by its first-order optimality conditions and append these conditions as constraints to

the outer problem. To capture complementary slackness, we will introduce binary variables

and use the so-termed big-M trick to eventually express the outer problem as a mixed-

integer nonlinear program (MINLP). The process is delineated next. Although this MINLP
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approach does not scale gracefully with the number of DERs and/or scenarios, it serves as

a benchmark for the DNN-based ORD.

We first transform (5.6) to a differentiable form as

min
q,w

1

2
q⊤ (X + dg(c))q + q⊤(ṽs − v̄) + δ⊤w (5.16a)

s.to − w ≤ q ≤ w : (λ,λ) (5.16b)

− q̄ ≤ q ≤ q̄ : (µ,µ) (5.16c)

where vector c has entries cn := 1/αn, and variable w has been introduced to deal with the

non-differentiable terms |qn| in (5.6). Slightly abusing notation, denote the optimal primal/-

dual variables of (5.16) by (q,w;λ,λ,µ,µ). Although the variables vary per scenario, we

suppress subscript s for simplicity. These variables satisfy the optimality conditions

(X + dg(c))q + ṽs − v̄ − λ+ λ− µ+ µ = 0 (5.17a)

δ − λ− λ = 0 (5.17b)

−w ≤ q ≤ w (5.17c)

−q̄ ≤ q ≤ q̄ (5.17d)

λ,λ,µ,µ ≥ 0 (5.17e)

λ⊙ (q − w) = 0 (5.17f)

λ⊙ (−q − w) = 0 (5.17g)

µ⊙ (q − q̄) = 0 (5.17h)

µ⊙ (−q − q̄) = 0. (5.17i)

Equalities (5.17a)–(5.17b) follow from Lagrangian optimality; and inequalities (5.17c)–(5.17e)

from primal/dual feasibility. Inequalities (5.17f)–(5.17i) are complementary slackness con-
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ditions.

The bilevel problem in (5.10) can be now reduced to a single-level formulation upon append-

ing conditions (5.17) as constraints to (5.10) per scenario s. Such constraints essentially

ensure that q∗
s(z) is indeed the minimizer of (5.6). Nonetheless, constraint (5.17a) and the

complementary conditions introduce bilinear terms. Bilinearity can be partially addressed

by handling complementary slackness conditions through the big-M trick. For example,

condition (5.17f) can be expressed as

0 ≤ λ ≤ M1b (5.18a)

0 ≤ q − w ≤ M2(1 − b) (5.18b)

where b is an N -dimensional binary variable, and (M1,M2) are large positive constants. The

latter can be selected as M2 = 2q̄, while the former can be set to a numerically estimated

upper bound of the corresponding dual variables λ.

Since (5.17)–(5.18) contain c and q̄, the constraints (5.3) and (5.9) need to be rewritten in

terms of c and q̄ as well. To this end, we chose the parameterization z̃ := (v̄, c, δ, q̄). In this

new parameterization, constraint (5.3c) is replaced by

0.02 · 1 ≤ c ⊙ q̄ ≤ 0.18 · 1 − δ (5.19)

which introduces bilinear terms too. Stability constraints (5.9) have already been trans-

formed from α to c in (5.14).

Putting everything together, the bilevel ORD problem of (5.10) can be solved as the MINLP:
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z̃∗ = argmin
z̃

1

2S

S∑
s=1

∥Xqs + ṽs − 1∥22 (5.20a)

over z̃ := (v̄, c, δ, q̄) (5.20b)

s.to (5.3a), (5.3b), (5.3d), (5.14), (5.19) (5.20c)

(5.17a)− (5.17e) ∀ s (5.20d)

(5.17f)− (5.17i) as in (5.18) ∀ s. (5.20e)

The bilinear terms in (5.17a) and (5.19), and the binary variables in (5.20e) increase with

the number of inverters and scenarios.

Remark 5.3. The Volt/VAR curve of Fig. 5.1 has four degrees of freedom that control the

center, deadband, slope, and saturation of the curve. These degrees of freedom are amenable

to different equivalent parameterizations, such as (v̄,α, δ,σ) and (v̄, c, δ,σ) that we used in

Sec. 5.6; (v̄,α, δ, q̄); or (v̄, c, δ, q̄). We used the last one in (5.20b) as it yielded significantly

shorter solution times during our tests.

Although the MINLP approach can solve the ORD task to near-global optimality (mod-

ulo the bilinear terms left to be handled internally by the solver), it was found to scale

unfavorably with the number of DERs and/or scenarios of Section 5.9.

5.8 ORD for 3ϕ Feeders via Deep Learning

Under transposed lines and balanced injections, one could deal with ORD using the single-

phase formulations discussed earlier. Under imbalance conditions however, a linearized mul-

tiphase feeder model would be a better approximation. DERs would still implement local
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Volt/VAR rules, yet sensitivity matrix X now has different properties as discussed in (5.1).

For the multiphase case, we were not able to come up with an optimization problem whose

minimizer coincides with the equilibrium setpoints q∗ similar to (5.6). Nonetheless, we show

in the appendix that the Volt/VAR rules of Fig. 5.1 do converge to a unique equilibrium

under the following polytopic conditions, which form a restriction of ∥ dg(α)X∥2 ≤ 1− ϵ.

Proposition 5.4. Consider the Volt/VAR dynamics of (5.5) operating over a multiphase

feeder modeled by (5.1). If the Volt/VAR slope vector α satisfies

|X|⊤α ≤ (1− ϵ) · 1 (5.21a)

αn ≤ 1− ϵ∑
m∈N |Xnm|

, ∀n ∈ N . (5.21b)

for ϵ ∈ (0, 1), the dynamics in (5.5) exhibit a unique equilibrium q∗ to which they converge

exponentially fast as

∥qt − q∗∥2 ≤ 2∥q̂∥2 · (1− ϵ)t. (5.21c)

The absolute value |X| applies entry-wise. The result generalizes (5.9) and [108, Th. 3] to

multiphase feeders, wherein X is non-symmetric and with some of its entries being negative.

It provides linear constraints on α to ensure stability.

The ORD task for multiphase feeders can be formulated as in (5.6) with the appropriate

modification of the sensitivity matrix X. Since equilibrium setpoints cannot be expressed

as the minimizer of an inner optimization, the MINLP approach of Section 5.7 cannot be

adopted here. Alternatively, one may pursue an MINLP formulation along the lines of [89],

though scalability is still expected to be an issue. Fortunately, the DNN-based approach

for ORD remains applicable with the next minor modifications: i) Sensitivity matrices are
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modified accordingly; ii) Every layer now consists of 3N building modules corresponding to

bus/phase (node) combinations; and iii) Use the stability constraints of (5.21) instead of

(5.9).

Proposition 5.2 on minimum depth T of DNNs for Volt/VAR rules in single-phase feeders

carries over to multiphase feeders. This is easily confirmed by applying the steps from the

proof of Proposition 5.2 to the results from Proposition 5.4.

5.9 Numerical Tests

The proposed ORD methods were evaluated on single- and multi-phase feeders. Real-world

data of active load and solar generation at one-minute frequency was sourced from the Smart*

project on April 2, 2011 [14]. The set consists of active loads from 444 homes and generation

from 43 solar panels. Loads from multiple homes were averaged to better simulate loads at

buses of the primary distribution network. Each averaged load was normalized so its peak

value during the day coincided with the nominal active power load of its hosting node. For

each time interval, reactive loads were added by randomly sampling lagging power factors

within [0.9, 1]. Similarly to loads, each solar generation signal was normalized so its peak

value was twice that of the nominal active load of the hosting bus. Apparent power limits

for inverters were set to 1.1 times the peak active generation.

The control rules were designed and evaluated in Python on a 2.4 GHz 8-Core Intel Core

i9 processor laptop computer with 64 GB RAM. Pytorch was selected as the library to

design and train DNNs, as it implements computation graphs dynamically [1]. That is

quite important for our purposes, as dynamic computation graphs imply that the number

of layers T does not need to be fixed beforehand. It is rather decided on the fly based

on the convergence of rules for the given ṽt. This flexibility enables limiting the DNN to
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lower depths. Convergence was determined based on the change in objective value with the

addition of a layer. Specifically, the rules were assumed to have converged if the objective

changed by less than 1 · 10−7 within consecutive layers. All DNNs were trained using the

Adam optimizer.

The projection step (5.15) was performed by solving a SOCP using the CVXPY library in

Python with GUROBI as the solver. The MINLP (5.20) was implemented in MATLAB

using YALMIP [60] with GUROBI, and used to benchmark the results for optimality and

running time. Other specific details such as learning rates for DNN training, initialization of

design parameters, load and solar panel assignments, and time period for scenario sampling

are presented along with the corresponding results.

5.9.1 Tests on Single-Phase Feeder

The first set of tests was conducted on the single-phase equivalent of the IEEE 37-bus feeder.

Homes with IDs 20-369 were averaged 10 at a time and successively added as active loads to

buses 2−26 as shown in Fig. 5.6. Active generation from solar panels was also added, as per

the mapping in Fig. 5.6. Additionally, buses {6, 9, 11, 12, 15, 16, 20, 22, 24, 25} were equipped

with DERs capable of reactive power control.

The DNN-based rules were optimized using 80 grid scenarios sampled from the high-solar

period 3 : 00− 3 : 20 pm, and were trained with the learning rate of 0.003 over 200 epochs.

The design parameters z := (v̄, δ,σ,α) were initialized at the feasible point (v̄n, δn, σn, αn) =

(0.95, 0.1, 0.3, 1.5) for all n. Figure 5.7 shows the convergence of Volt/VAR rule parameters

for DERs at nodes {12, 22, 29}, for ϵ = 0.5, during training. To accommodate different

ranges of magnitudes, all plots are normalized with respect to their initial values.

Figure 5.8 highlights the efficacy of the optimized Volt/VAR rules in improving the voltage
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Figure 5.6: The IEEE 37-bus feeder used for the tests. Node numbering follows the format
node number {panel ID}. DERs at nodes {6, 9, 11, 12, 15, 16, 20, 22, 24, 25} provide reactive
power control; the rest operate at unit power factor.
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Figure 5.7: Convergence of PGD iterations (5.12)–(5.15) for Volt/VAR rules with ϵ = 0.5.
Values of the rule parameters for DERs 12, 22, and 29 are plotted against training epochs.
Plots have been normalized with respect to their initial values.

profile across the feeder. Voltages across buses are plotted under three setups: voltages

without DER reactive power support, voltages under the default settings (v̄n, δn, σ, qn) =

(1, 0.02, 0.08, q̂n) from IEEE 1547.8 [3]; and voltages under control rules with optimal z. For

each bus, voltages for all S = 80 scenarios have been marked. The default control rules were

found to only marginally improve voltage profiles. On the other hand, optimally designed

control rules were successful in significantly lowering voltages and bringing them close to

unity at all buses.

We next studied the impact of the stability margin ϵ on the optimal cost L(z) of (5.11) under

Volt/VAR rules. Recall that ϵ determines the feasible space of design parameters via (5.9).

The larger the ϵ, the more restricted problem (5.10) is. Table 5.1 confirms this by presenting

the objectives during training for a range of ϵ values. Table 5.1 also lists the chosen initial
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Figure 5.8: Voltages across the buses of the IEEE 37-bus feeder for 80 scenarios. Voltages
are highest without reactive power compensation. While the control rules with the default
settings only marginally lower voltages closer to 1, they are significantly outmatched by
control rules with optimal design parameters.

value for α, represent by αinit, that renders the initial z feasible for the corresponding value

of ϵ. The objective converged to the highest value for ϵ = 0.9 and the lowest for ϵ = 0.5.

Note that for the studied scenarios, reducing ϵ below 0.5 did not impact the optimal value

of the objective, which indicates that the feasible space for ϵ = 0.5 contains the optimizers

for all ϵ ≤ 0.5 as well. Consequently, the value of ϵ has been fixed at 0.5 for the subsequent

results on the 37-bus feeder.

To verify the optimality and scalability of DNN-based ORD, we benchmarked them against

the MINLP formulation of (5.20). The MINLP was allowed to run until completion or till 300

seconds, whichever happened earlier. Scaling with respect to both the number of scenarios

as well as DERs was studied. Table 5.2 reports the results for the case when the number
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Table 5.1: Test results capturing the effect of ϵ on the optimal objective value for Volt/VAR
control rules. The smaller the ϵ, the larger the feasible region for rule parameters is, and so
lower voltage regulation values can be attained.

ϵ αinit Objective (p.u.)
0.9 0.4 2.22 · 10−3

0.8 0.5 1.37 · 10−3

0.7 1 1.06 · 10−3

0.6 1.5 9.73 · 10−4

0.5 1.5 8.50 · 10−4

Table 5.2: Tests comparing the MINLP with the DNN-based ORD for different numbers of
scenarios S, with NG = 5 smart DERs.

S
MINLP DNN

Solved Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)
10 Yes 2.45 9.82 · 10−4 18.16 9.82 · 10−4

20 Yes 3.64 1.57 · 10−3 20.08 1.58 · 10−3

40 Yes 123.32 2.78 · 10−3 20.63 2.78 · 10−3

80 No 300 2.68 · 10−3 22.17 2.62 · 10−3

of smart DERs was fixed to NG = 5 and scenarios were increased from S = 10 to 80. As

evident from Table 5.2, the DNN-based ORD scaled much better than the MINLP for larger

S, as expected. Furthermore, the DNN-based ORD was able to achieve the same objective

as the MINLP across all tested values of S, which is remarkable since SGD for non-convex

problems can only guarantee convergence to stationary points. Similar conclusions can be

drawn from Table 5.3 where we fixed S = 80 and varied NG from 2 to 10. The MINLP was

faster than the DNN-based approach for NG = 2, but could not be solved within 300 seconds

if more inverters were added. On the other hand, the DNN-based ORD scaled gracefully

with the NG and achieved lower objectives for all NG ≥ 4.

The scalability of the DNN-based control rules was also confirmed by implementing them

for the larger IEEE 123-bus feeder of Fig. 5.9. Active load data was generated by averaging

homes with IDs 20-386, three at a time, and were serially assigned them to buses 2-123.

Solar generation from 10 panels with IDs {106, 116, 119, 296, 372, 650, 734, 841, 933, 1574}



5.9. NUMERICAL TESTS 113

Table 5.3: Comparing MINLP with the DNN-based approach
for different NG and S = 80.

NG
MINLP DNN

Solved Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)
2 Yes 3.90 3.62 · 10−3 14.12 3.62 · 10−3

4 No 300 3.22 · 10−3 17.96 3.18 · 10−3

6 No 300 2.77 · 10−3 21.95 2.35 · 10−3

8 No 300 1.40 · 10−3 33.42 1.16 · 10−3

10 No 300 1.20 · 10−3 39.76 8.50 · 10−4

Table 5.4: Test results comparing the MINLP with the DNN-based ORD approach for
the single-phase IEEE 123-bus feeder, across different time periods for NG = 10 DERs and
S = 80 scenarios.

Time MINLP DNN
Solved Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

1 pm No 500 9.26 · 10−4 28.6 8.95 · 10−4

2 pm No 500 6.69 · 10−4 30.18 6.40 · 10−4

3 pm No 500 4.17 · 10−4 27.55 3.92 · 10−4

4 pm No 500 2.17 · 10−4 29.83 2.09 · 10−4

5 pm No 500 2.98 · 10−3 27.53 2.87 · 10−4

was added to buses {17, 29, 32, 39, 50, 71, 78, 96, 100, 114}, respectively. All buses with solar

were equipped with smart DERs for reactive power support. The DNNs for Volt/VAR

rules were trained with the learning rate of 0.01, with ϵ set to 0.5. The design parameters

z := (v̄, δ,σ,α) were initialized at the feasible point (1.05, 0.1, 0.3, 1.5). With NG and S

fixed at 10 and 80, respectively, the DNN-based ORD was compared to the MINLP one.

For this larger network, the MINLP solver was allowed to run until 500 seconds. To ensure

repeatability, the results were repeated across several time periods between 1 − 6 PM, and

have been compiled in Table 5.4. For all time periods, the DNN-based solver scaled well in

terms of the DNN training time. The MINLP solver could not converge within 500 seconds

and was outperformed by the DNN-based solver in terms of final objective values across all

setups.
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Figure 5.9: Inverter siting on the IEEE 123-bus distribution feeder.

5.9.2 Tests on a Multiphase Feeder

The DNN-based control rules were also tested on the multiphase IEEE 13-bus feeder. Active

loads from homes with IDs 20-379 were averaged ten homes at a time. The resulting 36

averaged loads were added to buses 1-12, allocating all three phases for a bus before moving

on to the next one. Solar generation was added to nodes as per the panel assignments shown

in Fig. 5.10. Values in red, green, and blue correspond to panel IDs assigned to Phases

A, B, and C, respectively. Reactive power compensation was provided by nine inverters

added across phases, and bus indices, as shown in Fig 5.10, with the colors indicating the

corresponding phase.

The learning rate for DNN-based control rules was set to 0.1, with the design parameters
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Figure 5.10: The three-phase IEEE 13-bus distribution feeder system.

z := (v̄, δ,σ,α) initialized to feasible values (0.95, 0.01, 0.3, 1.5). In the absence of an

MINLP solver, the optimized DNN-based control rules were benchmarked against control

rules with the default settings from the IEEE 1547.8 standard. Table 5.5 collects the values

for the objective (5.10) for S = 80 scenarios, across different windows of time from 1−5 pm,

under three control schemes– no reactive power compensation, optimized control rules, and

default control rules. The default control rules did not manage to significantly reduce the

objective (5.10), as the grid conditions ṽ were observed to frequently fall in the deadband

of the default control rules. In contrast, the optimized control rules took the grid conditions

ṽ into consideration while designing the deadband, and hence improved voltage profiles

considerably.
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Table 5.5: Test results on the multiphase IEEE 13-bus feeder for NG = 9 inverters and
S = 80 scenarios. Comparing the objective (5.10) under three scenarios: no reactive power
compensation, optimized control rules, and the default rules per IEEE 1547.

Time q = 0 Optimized Default
1 pm 2.51 · 10−3 1.15 · 10−3 2.31 · 10−3

2 pm 1.48 · 10−3 6.89 · 10−4 1.42 · 10−4

3 pm 6.89 · 10−4 4.94 · 10−4 6.89 · 10−4

4 pm 8.03 · 10−4 5.26 · 10−4 8.03 · 10−4

5 pm 5.51 · 10−4 4.11 · 10−4 5.51 · 10−4

5.10 Conclusions

This work has genuinely reformulated the ORD problem to the task of training a DNN using

grid scenarios as training data, unit voltages as desired targets for equilibrium voltages, and

Volt/VAR rule parameters as weights. The proposed DNN-based ORD framework is general

enough to accommodate Volt/VAR rules on single- and multi-phase feeders. We have also

reviewed and extended results on the stability and convergence rates of Volt/VAR control

rules. For benchmarking purposes, we have also developed an MINLP approach to ORD.

The suggested approaches have been validated using real-world data on IEEE test feeders.

The tests show that DNN-based ORD seems to outperform the MINLP approach in terms of

optimality under time budgets and that optimized ORD curves outperform the default values.

Our findings form the foundations for exciting research directions, such as: d1) Can the DNN-

based ORD framework be extended to designing incremental Volt/VAR control rules with

favorable stability characteristics? d2) What are the appropriate Volt/VAR control rules

for three-phase (probably large-scale utility-owned) DERs? d3) How can ORD be jointly

performed with topology reconfiguration or with optimally setting regulator and capacitor

settings? d4) Could other voltage regulation or OPF formulations be combined with the

DNN-based methodology? d5) Can more detailed grid models be incorporated in ORD?
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5.11 Appendix

Proof of Proposition 5.2: By a contraction mapping argument, reference [108] proves that as

long as stable, the Volt/VAR dynamics qt enjoy exponential convergence to the equilibrium

q∗. That means that if ∥ dg(α)X∥2 < 1, then

∥qt − q∗∥2 ≤ ∥ dg(α)X∥2 · ∥qt−1 − q∗∥2.

Propagating the previous claim across time and for ϵ-stable rules ∥ dg(α)X∥2 ≤ 1 − ϵ, we

get that

∥qt − q∗∥2 ≤ ∥q0 − q∗∥2 · (1− ϵ)t ≤ 2∥q̂∥2 · (1− ϵ)t

since the initial distance to the equilibrium can be upper bounded by ∥q0 − q∗∥2 ≤ 2∥q̂∥2.

Because v = Xq + ṽ, translate injection distances to voltage distances

∥vt − v∗∥2 ≤ 2∥X∥2∥q̂∥2(1− ϵ)t.

To ensure the voltage approximation error at time T is smaller than ϵ1, or ∥vT − v∗∥2 ≤

2∥X∥2∥q̂∥2(1− ϵ)T ≤ ϵ1, it suffices to select T as

T log(1− ϵ) ≤ log ϵ1
2∥X∥2∥q̂∥2

.

The claim follows by noticing that log(1− ϵ) < 0.

Proof of Proposition 5.4: Reference [108, Th. 3] shows that the Volt/VAR rules of f(·) are

Lipschitz continuous in q with ∥ dg(α)X∥2 as the Lipschitz constant, that is

∥f(q)− f(q′)∥2 ≤ ∥ dg(α)X∥2 · ∥q − q′∥2 (5.22)
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for any q and q′ obeying (5.3d). From Hölder’s inequality for matrix norms, it holds that

∥ dg(α)X∥22 ≤ ∥ dg(α)X∥1 · ∥ dg(α)X∥∞

= ∥ dg(α)|X|∥1 · ∥ dg(α)|X|∥∞

where ∥ ·∥1 and ∥ ·∥∞ are defined as the maximum absolute sums column-wise and row-wise,

respectively. The equality holds because α has positive entries. It is easy to check that

∥ dg(α)|X|∥1 is the maximum entry of vector |X|⊤α, and ∥ dg(α)|X|∥∞ is the maximum

entry of vector dg(|X|1)α. Consequently, enforcing (5.21) results in ∥ dg(α)X∥2 ≤ (1 − ϵ).

Substituting ∥ dg(α)X∥2 < (1− ϵ) in (5.22) yields

∥f(q)− f(q′)∥2 ≤ (1− ϵ)∥q − q′∥2 (5.23)

Since ϵ ∈ (0, 1), the above relation is a contraction mapping over the space q ∈ [−q̄, q̄]

with respect to the ℓ2-norm. The latter establishes the existence and uniqueness of the

equilibrium, as well as the exponential convergence of Volt/VAR dynamics. To explicitly

derive the convergence result (5.21c), note that qt = f (qt−1) and q∗ = f (q∗). From (5.23),

we get

∥qt − q∗∥2 ≤ (1− ϵ)∥qt−1 − q∗∥2 ≤ (1− ϵ)t∥q0 − q∗∥2.

The claim follows as ∥q0 − q∗∥2 ≤ 2∥q̂∥2.
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6.2 Abstract

Incremental Volt/VAR control rules offer an opportunity to provide decentralized voltage

regulation by distributed energy resources (DERs). Unlike their non-incremental counter-

parts, incremental rules do not suffer from a trade-off between stability and steady-state

performance. Despite this desirable characteristic, there is a gap in the literature on the

optimal rule design (ORD) of incremental rules. We address this gap by first designing

digital twins that mimic the Volt/VAR dynamics of incremental rules, and then utilizing

119
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these digital twins for a deep learning-based ORD. The proposed approach is shown to be

effective for both single and multiphase feeders, and stability and convergence analysis is

provided for both cases. The attractiveness of incremental rules is confirmed with numerical

tests, whereby they achieve lower voltage regulation objectives than their non-incremental

counterparts.

6.3 Introduction

Local Volt/VAR control facilitates voltage regulation on distribution grids by providing

reactive power compensation from DERs equipped with smart inverters. Different from cen-

tralized control schemes which incur large computational and communication burden [24, 66],

decide inverter setpoints based on local measurements. Local Volt/VAR control rules can

be categorized into non-incremental and incremental ones. The former compute reactive

setpoints based on local voltage readings. IEEE 1547.8 standard prescribes one such non-

incremental control rule, whereby the DER setpoints are expressed as piecewise linear func-

tions of voltages [3]. On the other hand, incremental Volt/VAR rules compute the change

in reactive setpoints as a function of local voltage [25, 53, 58, 103, 106, 109].

The existing literature on designing Volt/VAR control rules can be classified into stability-

and optimality-centric works. Stability-centric works study the effect of Volt/VAR rules as

a closed-loop dynamical system, which may be rendered unstable under steep slopes of non-

incremental rules [26, 108]. In fact, to ensure stability, non-incremental rules may have to

compromise on the quality of the steady-state voltage profile they can attain [53]. On the

other hand, incremental rules do not experience stability limitations and can thus, achieve

improved voltage profiles compared to the non-incremental rules perhaps at the expense of

longer settling time of the associated Volt/VAR dynamics [108].
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Optimality-centric works focus on designing stable control rules to minimize a voltage reg-

ulation objective. To this end, optimization-based strategies have been employed to design

affine non-incremental rules using heuristics [11, 83, 90]. Recently, reference [16] has ad-

dressed the optimal design of general incremental rules. It uses DNNs with a single hidden

layer to model piecewise-linear functions (potentially with infinite breakpoints) and formu-

lates ORD as a reinforcement learning task. For non-incremental rules, two of our recent

works in [72] and [38] have addressed the problem of optimally designing the slope, deadband,

saturation, and reference voltage. Reference [72] performs ORD via a bilevel optimization

applicable to single-phase feeders. Reference [38] proposes DNN-based digital twins that

emulate Volt/VAR dynamics and reformulates ORD as a DNN training task for single- and

multiphase feeders alike.

This work extends [38] to incremental rules. While [16] also utilizes DNNs for incremental

rule design, we delineate from it in several ways. Reference [16] focuses on voltage control

during transient dynamics, whereas this work aims at ORD to drive steady-state voltages

closer to unity and over different grid loading scenarios. Reference [16] utilized a DNN to

merely model the piecewise-linear mapping of the rule. In contrast, this work develops a

DNN-based digital twin that emulates end-to-end Volt/VAR dynamics. Lastly, we provide

stability and convergence analysis for single- and multiphase feeders, whereas [16] applies

only to single-phase feeders.

6.4 Volt/VAR Control Rules

This section presents some grid modeling preliminaries and contrasts incremental to non-

incremental Volt/VAR rules. Consider a radial feeder serving N buses equipped with DERs,

indexed by n. Let (qℓ,q) collect reactive loads and generations at all nodes. In single-phase
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Figure 6.1: Volt/VAR control rule provisioned by the IEEE 1547 Standard [3].

feeders, a node corresponds to a bus. In multiphase feeders, a node corresponds to bus/phase

pairs. Vectors p and v collect the net active power injections and voltage magnitudes at

all nodes. The impact of q on v can be approximately captured using the linearized grid

model [38]

v ≃ Xq + ṽ (6.1)

where ṽ := Rp−Xqℓ + v01 models the underlying grid conditions, and v0 is the substation

voltage. Vector ṽ represents the impact of non-controlled quantities (p,qℓ) on voltages.

Matrices (R,X) depend on the feeder topology. For single-phase feeders, they are symmetric

positive definite with positive entries [92]. For multiphase feeders, they are non-symmetric

and have and negative entries too [38, 53].

Vector q in (6.1) carries the reactive injections by DERs we would like to control. Per

the non-incremental rules of the IEEE 1547 Standard [3], DER setpoints are decided based

on the Volt/VAR curve of Fig. 6.1. The standard further specifies that z should belong

to a prespecified polytope P ; see [3, 72]. The negative slope of the linear segment can be

expressed as α := q̄/(σ − δ). The interaction of Volt/VAR rules with the feeder gives rise

to nonlinear dynamics. Volt/VAR dynamics are stable if ∥ dg(α)X∥2 < 1, where dg(α) is a

diagonal matrix carrying the rule slopes across all buses on its diagonal [27]. If stable, the
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equilibrium of Volt/VAR dynamics cannot be expressed in closed form. Interestingly, the

equilibrium reactive setpoints coincide with the minimizer of convex problem [27]:

min
−q̄≤q≤q̄

1

2
q⊤Xq + q⊤(ṽ − v̄) + 1

2
q⊤ dg−1(α)q + δ⊤|q| (6.2)

where |q| applies the absolute value on q entrywise. Problem (6.2) depends on rule param-

eters (v̄, δ, σ, α) collected across all buses on the 4N -long vector z := (v̄, δ,σ,α). Let qz(ṽ)

denote the equilibrium injections, and

vz(ṽ) := Xqz(ṽ) + ṽ

the associated equilibrium voltages reached by Volt/VAR rules parameterized by z under

grid conditions ṽ.

Optimal rule design (ORD) could be broadly defined as the task of selecting z to attain

desirable voltage profiles at equilibrium. In particular, the operator could sample S repre-

sentative grid loading scenarios {ṽs}Ss=1 and find z to minimize the distance of equilibrium

voltages from unity, that is 1
S

∑S
s=1 ∥vz(ṽs)−1∥22. When ORD is solved for non-incremental

rules, vector z is confined to satisfy the IEEE 1547 polytopic constraints on z as well as

stability constraints specifically on α.

This trade-off between stability and steady-state voltage regulation performance can be sur-

passed with incremental control rules [53, 108]. Incremental rules express the change rather

than the actual value in q-setpoints as a function of voltage. One option for incremental

rules is to implement a proximal gradient descent (PGD) algorithm to solve the QP in (6.2)

as suggested in [53]. The PGD iterations yield the rule

ytn := α̃n ·
(
qtn − µ(vtn − v̄n)

)
(6.3a)
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qt+1
n := gn

(
ytn
)

(6.3b)

where α̃n := 1
1+µ/αn

and µ > 0 is a step-size. Further, the function gn(yn) is the proximal

operator given by

gn(yn) :=



+q̄n , yn > qn + µδ̃n

yn − µδ̃n , µδ̃n < yn ≤ qn + µδ̃n

0 , − µδ̃n ≤ yn ≤ µδ̃n

yn + µδ̃n , − qn − µδ̃n ≤ yn < −µδ̃n

−qn , yn < −qn − µδ̃n.

(6.4)

where δ̃n := δn
1+µ/αn

. As with the non-incremental rules of Figure 6.1, the rules in (6.4) are

local as they are driven by local data. However, now qt+1
n depends on both (vtn, q

t
n), and not

only vtn as in Figure 6.1.

The PGD iterations solve (6.2), but in a different way compared to non-incremental rules.

Hence, incremental and non-incremental rules converge to the same equilibrium. The ad-

vantage is that as long as µ < 2/λmax(X), incremental rules converge to this equilibrium

without any restriction on α [53]. Parameter α appears as slopes of non-incremental rules,

but as memory-related terms of incremental rules. Either way, they are the same parameters

appearing in (6.2).

Accelerated incremental control rules. Although the rules of (6.3) cope with the stability-

performance trade-off, their settling time can be long. Thanks to the convergence rate of

PGD, we know that the incremental rules attain an ε-optimal cost of (6.2) within−2 log ε
log 2

κ (X)

iterations. Here κ(X) = λmax(X)/λmin(X) is the condition number of X. Because κ(X) can

be large (e.g., 10−4 for benchmark feeders), references [53] put forth accelerated incremental
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rules based on Nesterov’s accelerated PGD (APGD). The accelerated incremental control

rules take −2 log ε
log 2

√
κ (X) iterations to attain an ε-optimal cost for (6.2). They are given as

ỹtn := (1 + βt) y
t
n − βty

t−1
n (6.5a)

qt+1
n := gn

(
ỹtn
)

(6.5b)

where βt :=
t−1
t+2

, while ytn and gn(yn) are as defined in (6.3a) and (6.4). Updates (6.5) remain

local, but introduce additional memory as qt+1
n depends on (vtn, q

t
n) and (vt−1

n , qt−1
n ).

6.5 ORD for Incremental Rules for 1ϕ Feeders

We utilize the ORD approach from [38] to design incremental rules. Consider a setup where

the Volt/VAR rules are to be designed to provide voltage regulation over a given set of S

load/solar scenarios {(pg
s,pℓ

s,qℓ
s)}Ss=1. Such a setup allows the Volt/VAR rules to be updated

periodically, while operating autonomously between those time periods. Working with an

alternate parameterization z̃ = (v̄, α̃, δ̃, q̄), for reasons that will become evident shortly,

let Z̃ represent the feasible space of parameters defined by constraints z̃ ≥ 0, q̄ ≤ q̂, and

α̃ ≤ 1. Together these constraints ensure that the original curve parameters (v̄, δ,σ, q̄)

remain non-negative. Next, consider a DNN-based digital twin Φ(ṽs; z̃) that simulates the

incremental Volt/VAR dynamics (6.3) (or accelerated dynamics (6.5)) across all the DERs.

The digital-twin Φ(ṽs; z̃) accepts the grid conditions vector ṽs as the input and produces

the equilibrium voltage v∗
s as the output. If the curve parameters z̃ also parameterize the

DNN Φ(ṽs; z̃), by appearing in its weights and biases, then ORD can be formulated as the
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DNN training task [38]

min
z̃∈Z̃

L(z̃) := 1

2S

S∑
s=1

∥Φ (ṽs; z̃)− 1∥22 (6.6)

Since the problem (6.6) contains simple box constraints, one can leverage efficient deep

learning toolkits, such as Pytorch, to perform the above DNN training task. Now the

question remains whether a DNN Φ(ṽs; z̃), that has the above listed properties, can even be

created.

Fortunately, the answer to this question is a yes. We focus on the accelerated incremental

rules (6.5) as they require a DNN of smaller depth T , thanks to their faster convergence.

The key observation is that the operator g(y) in (6.4) is a piecewise linear function with

four breakpoints [53], and is expressible as a superposition of the four single-breakpoint

piecewise linear curves drawn in Fig. 6.2. Therefore, the incremental rule (6.5) for one

inverter can be modeled by the DNN of Fig. 6.3 with four hidden layers parameterized by

(v̄n, α̃n, δ̃n, qn). The DNN has two outputs: the intermediate quantity ytn that is required for

the next iteration (6.5a), and the setpoint qt+1
n . The plain incremental rule can be obtained

by simply removing the third hidden layer (setting βt = 0) and ignoring output ytn.

We will use the DNN of Fig. 6.3 as a building block and call it ICn. To simulate dynamics

with the control rule (6.5), block ICn has to be implemented across inverters and time steps.

Let the collection of all ICn’s be termed a layer. At each time step t, a layer of ICn’s receives

inputs qt, vt, and yt−1, and produces the new setpoint qt+1 as well as the intermediate

quantity yt as outputs. The inverters implement the qt+1 to obtain the new voltage vt+1 by

(6.1), and the process is repeated over T time steps. These interactions result in a larger

DNN parameterized by z̃ := (v̄, α̃, δ̃, q̄), whose recurrent representation is shown in Fig. 6.4.

Since the DNN of Fig. 6.4 replicates the same ICns across all T layers, it enables weight
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Figure 6.2: Operator g(y) used in incremental rules as a sum or ReLUs.

sharing and the number of trainable parameters of the DNN remain fixed at only 4N .

The output of the DNN of Fig. 6.4 simulates well the accelerated control rule only if T is

sufficiently large. Recall that each DNN layer corresponds to a (A)PGD iteration. How

many such iterations T are needed for the simulated dynamic voltages vT to get sufficiently

close to equilibrium voltages?

Proposition 6.1. Let the DNN in Fig. 6.4 implement the plain incremental rules (6.3). Let

κ := λmax(X)/λmin(X). The DNN depth T required to ensure ∥Φ (ṽ; z)−v∗(z)∥2 ≤ ϵ1 ∀ ṽ is

T ≥
(
κ− 1

2

)
log 2∥X∥2∥q̂∥2

ϵ1
(6.7)

Plugging the values ∥X∥2 = 4.63 ·10−1 and κ = 8.48 ·102 for the IEEE 37-bus feeder, ∥q̂∥2 =
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Figure 6.3: Accelerated incremental control rules (6.5) modeled using a DNN with 4 hidden
layers. Plain incremental rules can be obtained by dropping the second layer (setting βt = 0)
and ignoring output ytn.

0.1, and ϵ1 = 10−5 in (6.7), yields T ≥ 2892, which is significantly large. A key contributor

to this large T is the O(κ) term in (6.7). This promulgates the adoption of accelerated

incremental rules (6.5), which are known to have O(
√
κ) dependence. Interestingly, during

implementation, one need not fix T to the above worst-case bounds.Leveraging dynamic

computational graphs offered by Python libraries such as Pytorch, one may determine T on

the fly depending on the convergence of vs.

The DNN of Fig. 6.4 can be trained using projected stochastic gradient descent iterations

(SPGD) [38]

z̃i+1 =

[
z̃i − µ

2B
∇z̃i

(∑
s∈Bi

∥Φ(ṽs; z̃)− 1∥22

)]
Z̃

(6.8)

where µ > 0 is the step size; set Bi is a batch of B scenarios; and [·]Z̃ represents the

projection into the feasible space Z̃. Since Z̃ is formed by box-constraints, the operation [·]Z̃
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Figure 6.4: Recurrent DNN implementation for accelerated incremental rules.

is executed by simply clipping the values to lie within the allowed box. Lastly, the quantity

∇z̃i(·) represents the gradient with respect to z̃ evaluated at z̃ = z̃i, and is calculated

efficiently thanks to gradient back-propagation.

Because incremental rules enforce fewer constraints on Φ than non-incremental rules (c.f. [38,

Sec. IV]), they can attain lower objective values in (6.6) and therefore better voltage profiles.

This advantage is verified during our numerical tests.

6.6 ORD for 3ϕ Feeders via Deep Learning

For 3ϕ Feeders, the sensitivity matrix X is non-symmetric and has negative entries. There-

fore, the rule design process and analysis from previous sections needs to be modified. Recall

that for single-phase rules, incremental rules were obtained as the PGD iterations solving

problem (6.2). Lacking an equivalent optimization problem for multiphase feeders precludes

a similar approach for multiphase feeders. Nonetheless, the incremental rules of (6.3) can be



130
CHAPTER 6. SCALABLE OPTIMAL DESIGN OF INCREMENTAL VOLT/VAR CONTROL USING DEEP

NEURAL NETWORKS

shown to be stable and converging for multiphase feeders. The ensuing proposition follows

from the proof of Proposition 6.1 and [53, Prop. 6].

Proposition 6.2. Let U�U⊤ be the eigendecomposition of matrix XX⊤. The incremental

rules of (6.3) are stable and converging for the multiphase feeder for µ ∈
(
0, λmin

(
�−1/2U⊤ (X + X⊤)U�−1/2

))
.

For proof, from reference [53, Prop. 6], the quantity ∥I − µX∥2 < 1 when µ is selected as

above. Consequently, from the proof of Prop. 6.1 [c.f. (6.9)], the incremental rules (6.3) are

stable and converging to the equilibrium q∗.

Similar to the single-phase case, incremental rules in multiphase feeders allow us to bypass

the stability/performance trade-off. It is worth stressing that different from the single-phase

case, incremental and non-incremental rules on multiphase feeders are not guaranteed to

converge to the same equilibrium, as confirmed by the numerical tests.

The ORD task for multiphase feeders can be formulated as deep learning task, as in (6.6),

with appropriate modifications. Firstly, the sensitivity matrices R and X need to appropri-

ately modified for the multiphase feeders. Secondly, the DNNs for multiphase feeders have

12N trainable parameters, since each layer consists of 3N building modules corresponding to

bus/phase (node) combinations. Lastly, the step size has to be selected per Proposition 6.2.

The DNN depth needed for incremental rules in multiphase feeders is derived next.

Proposition 6.3. Let the DNN of Fig. 6.4 implement incremental rules (6.3) for multiphase

feeders. Let µ be selected as per Prop. 6.2. The DNN depth T ensuring ∥Φ (ṽ; z)−v∗(z)∥2 ≤

ϵ1 is

T ≥
log ϵ1

2∥X∥2∥q̂∥2
log ∥I − µX∥2

.

where proof simply follows from the proof of Prop. 6.1.
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Table 6.1: Comparing non-incremental and incremental rules for the single-phase IEEE
37-bus feeder.

Time q = 0 Non-incremental Incremental
Obj. (p.u.) Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

1 pm 3.01 · 10−3 37.98 3.68 · 10−4 39.39 3.66 · 10−4

2 pm 3.13 · 10−3 42.93 4.26 · 10−4 37.91 4.25 · 10−4

3 pm 4.24 · 10−3 45.02 8.59 · 10−4 34.97 8.50 · 10−4

4 pm 2.12 · 10−3 48.30 1.47 · 10−4 38.52 1.48 · 10−4

5 pm 8.53 · 10−4 47.37 9.70 · 10−5 374.01 6.90 · 10−5

6.7 Numerical Tests

We benchmark the performance of DNN-based incremental rules against that of non-incremental

rules from reference [38] for both single and multiphase feeders. Real-world data was sourced

from the Smart* project on April 2, 2011 [14], as explained in [38] . The DNNs were imple-

mented and trained using Pytorch.

We first compare the non-incremental and incremental rules, both designed by the DNN-

based approach, for the single-phase IEEE 37-bus feeder of Figure 6.5. Homes with IDs

20−369 were averaged 10 at a time and successively added as active loads to buses 2−26 as

shown in Fig. 6. Active generation from solar panels was also added, as per the mapping in

Fig. 6. Buses {6, 9, 11, 12, 15, 16, 20, 22, 24, 25} were assumed to host DERs with Volt/VAR

control. Incremental rules were simulated in their accelerated version. Both sets of rules were

trained over S = 80 scenarios and 200 epochs, with a learning rate of 0.001, using the Adam

optimizer. The step size µ for the incremental rules was fixed at 1. To ensure repeatability,

the results were repeated across several time periods between 1 − 6 PM, and have been

compiled in Table 6.1. Across all time periods, incremental rules obtained marginally lower

objectives than non-incremental ones, with a somewhat significant difference for the 5 pm

time window. This behavior is explained because z has a larger feasible space to lie in with

incremental rules.
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Figure 6.5: The IEEE 37-bus feeder used for the numerical tests. Node numbering follows the
format node number {panel ID}. The inverters at nodes {6, 9, 11, 12, 15, 16, 20, 22, 24, 25}
provide reactive power control; the rest operate at unit power factor.
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Figure 6.6: The three-phase IEEE 13-bus distribution feeder system.

The DNN-based incremental control rules were also benchmarked against the non-incremental

counterpart on the multiphase IEEE 13-bus feeder, using the testing setup from [38]. Active

loads were sampled 10 at a time from homes with IDs 20-379 and added to all three phases

for the buses 1-12. Figure 6.6 also shows the solar panel assignments shown in Fig 6.6 for so-

lar generation. Lastly, nine DERs with inverters were added across phases, and bus indices,

as shown in Fig 6.6. The learning rates for non-incremental and incremental DNNs were

set as 0.1 and 0.001, respectively, with the design parameters z := (v̄, δ,σ,α) initialized to

feasible values (0.95, 0.01, 0.3, 1.5). Table 6.2 compares the performance of two categories of

rules over multiple periods, for S = 80 and 300 epochs. While incremental rules took longer

times to train, they were successful in lowering the objective (6.6) by more than 50%, thus

yielding improved voltage profiles across all time periods.
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Table 6.2: Test results comparing non-incremental and incremental rules for the multiphase
IEEE 13-bus feeder for samples from 5 PM.

Time q = 0 Non-incremental Incremental
Obj. (p.u.) Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

1 pm 2.51 · 10−3 64.65 1.15 · 10−3 199.24 4.11 · 10−4

2 pm 1.48 · 10−3 66.60 6.89 · 10−4 209.92 3.03 · 10−4

3 pm 6.89 · 10−4 74.68 4.94 · 10−4 263.37 2.16 · 10−4

4 pm 8.03 · 10−4 68.32 5.26 · 10−4 126.81 2.47 · 10−4

5 pm 5.51 · 10−4 62.58 4.11 · 10−4 129.71 1.95 · 10−4

6.8 Conclusions

This work extends the deep learning-based ORD from [38] to implement incremental Volt/-

VAR control rules. A DNN-based digital twin is proposed that simulates the Volt/VAR

dynamics of the incremental control rules. Results on step size selection and convergence

rates, were presented for both single-phase and multiphase grids. These results were used

to determine the minimum depths of the DNN implementing the digital twins. Numerical

tests showed that optimal incremental control rules were able to achieve better objectives,

and hence better voltage profiles, when compared to optimal non-incremental control rules,

especially for 3ϕ feeders. These observations motivate further research in the direction of

characterizing the equilibria non-incremental and incremental control rules for multiphase

feeders.

6.9 Appendix

Proposition 6.1: From the rule (6.3b), we get

∥qt − q∗∥2 = ∥g
(
yt
)
− g (y∗) ∥2

≤ ∥yt − y∗∥2
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= ∥ dg(α̃)(I − µX)
(
qt−1 − q∗) ∥2

≤ ∥ dg(α̃)∥2 · ∥I − µX∥2 · ∥qt−1 − q∗∥2

≤ ∥I − µX∥2 · ∥qt−1 − q∗∥2. (6.9)

The first inequality stems from the non-expansive property of the proximal operator g.

The next equality follows from (6.3a). The second inequality from the sub-multiplicative

property of the spectral norm. The last inequality follows by the definition of spectral norm

and because α̃n ≤ 1 for all n.

If ∥I − µX∥2 < 1, the inequality (6.9) yields (6.3) as a non-expansive mapping, establishing

the stability of incremental rules and their convergence to q∗. The inequality ∥I−µX∥2 < 1

holds true when µ < 2/λmax(X). Furthermore, the norm ∥I − µX∥2 achieves its minimum

value of
(
1− 2

κ+1

)
when µ = 2

λmax(X)+λmin(X)
. Plugging this value for µ in (6.9) and unfolding

the dynamics over t provides

∥qt − q∗∥2 ≤
(
1− 2

κ+1

)t ∥q0 − q∗∥2 ≤ 2
(
1− 2

κ+1

)t ∥q̂∥2

To ensure that the voltage approximation error at time T is smaller than ϵ1, we need

∥vT − v∗∥2 ≤ 2∥X∥2 · ∥q̂∥2 ·
(
1− 2

κ+ 1

)T

≤ ϵ1.

This can be achieved by selecting T such that

T · log
(
1− 2

κ+ 1

)
≤ log ϵ1

2∥X∥2∥q̂∥2
.
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multiplying both sides of the inequality by −1 gives

T ≥
log 2∥X∥2∥q̂∥2

ϵ1

log
(
1 + 2

κ−1

) ≥
(
κ− 1

2

)
log 2∥X∥2∥q̂∥2

ϵ1

where the last inequality follows from log(1 + x) ≤ x.
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7.1 Publication Details
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tion”, IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, Rhodes, Greece, Jun.

2023, (submitted Oct. 2022).

7.2 Abstract

Analytical and practical evidence indicates the advantage of quantum computing solutions

over classical alternatives. Quantum-based heuristics relying on the variational quantum

eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA) have

been shown numerically to generate high-quality solutions to hard combinatorial problems,

yet incorporating constraints to such problems has been elusive. To this end, this work puts

forth a quantum heuristic to cope with stochastic binary quadratically constrained quadratic

programs (QCQP). Identifying the strength of quantum circuits to efficiently generate sam-

ples from probability distributions that are otherwise hard to sample from, the variational

137
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quantum circuit is trained to generate binary-valued vectors to approximately solve the afore-

said stochastic program. The method builds upon dual decomposition and entails solving a

sequence of judiciously modified standard VQE tasks. Tests on several synthetic problem

instances using a quantum simulator corroborate the near-optimality and feasibility of the

method, and its potential to generate feasible solutions for the deterministic QCQP too.

7.3 Introduction

Quantum computers exhibit an innate ability to handle exponentially large computations in

a parallel fashion yet with a strong probabilistic flavor. Quantum algorithms such as Shor’s

integer factorization, Grover’s search, and the linear system solver of Harrow-Hassidim-Lloyd

(HHL) can attain polynomial or even exponential speedups over the best known algorithms

on classical computers [76]. Nonetheless, some of these quantum algorithms presume a large

number of qubits on fault-tolerant quantum computers. In the near-term intermediate scale

(NISQ) era, quantum computers are noisy and thus oftentimes limited in terms of number

of gates and/or qubits. With such limitations in mind, variational quantum algorithms have

been suggested as promising tools to practically showcase quantum advantage in the NISQ

setup [85].

Variational quantum computers involve a sequence of parameterized gates. Their param-

eters are updated externally by a classical computer in a closed-loop fashion to steer the

quantum state towards a desirable direction. The variational quantum eigensolver (VQE)

used to provide high-quality solutions to combinatorial problems is a representative example.

The Quantum Approximate Optimization Algorithm (QAOA) [23] is a special instance of

VQE. In QAOA, not only the parameters but also the architecture of the quantum circuit

become problem-dependent. The quantum circuit trained by QAOA operates as a sampler
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to efficiently generate near-optimal solutions of binary quadratic problems (e.g., MAXCUT);

see [41] for a summary of claims on QAOA.

While most VQE/QAOA schemes target unconstrained problems, dealing with constraints

is crucial to several applications in machine learning, wireless communications, and financial

(stock trading) optimization. Adding constraints to QAOA or adiabetic quantum comput-

ing [67] (the QAOA counterpart for non-gate-based quantum computers) has been pursued in

two ways. One approach has been to convert the constrained problem into an unconstrained

minimization of a Lagrangian-like function [64, 77]. However, the weights for constraint

penalties can be safely selected only if constraints are expressed as Boolean functions or lin-

ear equalities. An alternative approach modifies the architecture of the quantum circuit (via

the mixer Hamiltonian of QAOA) to confine quantum states on the subspace spanned by con-

straints [40, 41, 42, 43]. Nonetheless, constructing such ‘driver’ mixer Hamiltonians is again

highly problem-dependent and often limited to equality constraints. Reference [82] develops

a quantum adiabetic approach to tackle binary linearly-constrained quadratic programs. It

targets the dual problem and interfaces the quantum computer with a branch-and-bound

scheme ran classically. Reference [28] treats mixed-binary quadratic-plus-convex problems

using the alternating direction method of multipliers (ADMM) to split binary and continu-

ous variables into separate minimizations, solved by QAOA and classical convex optimizers

respectively per ADMM iteration.

Relation to prior work. Addressing binary QCQPs by quantum heuristics has been largely

unexplored to the authors’ knowledge. We put forth a quantum-based heuristic to solve a

stochastic binary QCQP. Harnessing the power of quantum circuits to sample from probabil-

ity mass functions (PMF) that are hard to sample classically, we devise a dual decomposition

technique that solves a sequence of standard VQE tasks to systematically adjust Lagrangian

multipliers. Numerical tests using quantum computer simulators provided by IBM evaluate
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this technique on randomly generated stochastic and deterministic binary QCQPs.

7.4 Quantum Computing Preliminaries

A quantum system consisting of n quantum bits (qubits) is described by an exponentially

large state vector |x⟩ ∈ CN with N = 2n assuming the system is in a pure state. The Dirac

notation |x⟩ named ket emphasizes that vector x is unit-norm or
∑N−1

k=0 |xk|2 = 1. If ek

is the k-th canonical vector of length N , we can write |x⟩ =
∑N−1

k=0 xk |ek⟩. The vector ek

is oftentimes alternatively expressed as |ek⟩ = |k⟩, where k is the binary representation of

index k. For example, a system with n = 2 qubits has a state in C4, which is spanned

by canonical vectors {ek}3k=0 and e0 = [1 0 0 0]⊤ = |00⟩. Vector |x⟩ provides a statistical

characterization for the quantum state: If we measure the quantum system output, its qubits

will be in configuration |k⟩ with probability |xk|2 for all k. Symbol ⟨x| termed bra denotes

the conjugate transpose of |x⟩, while the braket ⟨x|y⟩ denotes the inner product between

states.

The fundamental operations we can perform on a quantum system is evolution and mea-

surement. The former can be described by the application of a unitary U on state |x⟩ to

produce state |y⟩ = U |x⟩. Although U is exponentially large, it is usually implemented

efficiently using quantum gates. Among various types of measurements, we focus on projec-

tive measurements. A projective measurement is associated with a Hermitian matrix (named

observable) and its eigenvalue decomposition H =
∑M

m=1 λmvmvH
m. If such measurement is

performed on |x⟩, outcomem is observed with probability pm := | ⟨x|vm⟩ |2. Define a random

variable taking value λm when outcome m is observed. The expected value of this variable

is ⟨x|H|x⟩ =
∑M

m=1 pmλm. If H is diagonal, the measurement is on the computational basis.

This is practically important because now vm = em, outcome m relates to |m⟩, and each
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qubit can be measured individually.

If quantum system i has been prepared in state |xi⟩ for i = 1, 2, their joint state would be

|x1⟩ ⊗ |x2⟩, where ⊗ is the Kronecker product. This is oftentimes represented as |x1⟩ |x2⟩

or |x1,x2⟩. The Kronecker product rule generalizes to the composition of n systems. For

example, |1⟩ |1⟩ |0⟩ = e1 ⊗ e1 ⊗ e0 = e6 = |110⟩, where the canonical vectors shown in the

middle are in R2 and those at the end are in R8.

7.5 Variational Quantum Eigensolver (VQE)

VQE is a heuristic approach to find near-optimal solutions for combinatorial problems of the

general form

min
b∈{0,1}n

f(b). (7.1)

A particular example of interest is the quadratic unconstrained binary optimization (QUBO)

problem with

f(b) = b⊤Ab + b⊤c + d (7.2)

which is known to be NP-hard. For later developments, it is convenient to reformulate

QUBO in terms of the spin {±1} variables through the transformation

si = 1− 2bi = (−1)bi for i = 0, . . . , n− 1. (7.3)

Collecting the spin variables in vector s = 1−2b, the quadratic objective can be equivalently

expressed as

f(b) = f̄(s) = s⊤Ās + s⊤c̄ + d̄ (7.4)
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where Ā := 1
4
A; c̄ := −1

2
(A1+ c); and d̄ := 1

4
1⊤A1+ 1

2
1⊤c+ d. We next explain how VQE

samples high-quality solutions of (7.1) by solving an eigenvalue minimization task.

The VQE method falls under the family of variational quantum algorithms. The term

variational pertains to the fact that the quantum circuit is not fixed, but parameterized

by relatively few parameters collected in vector θ ∈ RP . These parameters are iteratively

adjusted by classical computer in a closed-loop fashion so that the quantum system eventually

reaches a desirable state. The process resembles the training of a neural network whose

weights are updated by an optimization algorithm. Similarly to neural networks where the

learner has to select an architecture (e.g., network depth/width and type of activations),

the parameterized form (also termed ansatz) of the variational quantum circuit is specified

a priori. We will be using a 2-local ansatz where single-qubit RY gates are applied to all

qubits, followed by a full entanglement circuit, all repeated for 3 layers (iterations) [85].

Given θ and driven by input |0⟩n, the quantum circuit produces at its output the quantum

state |x(θ)⟩ = U(θ) |0⟩n for a unitary N × N matrix U(θ). To simplify notation, we will

oftentimes write |x⟩ in lieu of |x(θ)⟩. Albeit |x⟩ ∈ CN is exponentially long, it can be easily

generated by the quantum circuit though it cannot be read out of the circuit as a vector in a

computationally efficient manner. Instead, it is relatively easy to sample from it. Every time

we run the quantum circuit driven by |0⟩n, we will be observing one of the binary outputs

|k⟩ = |ek⟩ with probability pk := |xk|2 for k = 0, . . . , N − 1. The quantum circuit thus

serves as an efficient sampler from the exponentially large probability mass function (PMF)

{pk}N−1
k=0 .

To exploit this sampling property, we next relate the cost f(b) with a so-termed Hamiltonian

matrix H so that

H |ek⟩ = f(|k⟩) |ek⟩ for all k. (7.5)



7.5. VARIATIONAL QUANTUM EIGENSOLVER (VQE) 143

Matrix H is apparently diagonal and carries all N function evaluations f(ek) on its diagonal.

Moreover, the canonical vectors ek constitute the eigenvectors of H, each with corresponding

eigenvalue f(|k⟩). Therefore, the minimization in (7.1) can be reformulated as the problem

of finding the eigenvector corresponding to the minimum eigenvalue of H

min
|x⟩

⟨x|H |x⟩ . (7.6)

As long as |x⟩ is allowed to take any of the values {ek}N−1
k=0 , the minimizer of (7.6) corresponds

to the minimizer of (7.1). For example, if a quantum system has n = 3 qubits, its state would

be |x⟩ ∈ C8. Here ek’s are the columns of the identity matrix I8. If the minimizer of (7.6)

is |e5⟩ = |b1b2b3⟩ = |101⟩, then the minimizer of (7.1) is b = [1 0 1]⊤; and vice versa.

Although H is exponentially large, it can be implemented using only O(n2) quantum gates

since it can be expressed as

H =
n−1∑
i=0

n−1∑
j=0

ĀijZiZj +
n−1∑
i=0

c̄iZi + d̄IN (7.7)

where the N ×N Hermitian matrix Zi is defined as

Zi = I2 ⊗ · · · ⊗ Z ⊗ · · · ⊗ I2 with Z =

 1 0

0 −1

 .

This is a Kronecker product involving (n − 1) identity matrices I2 and one Pauli-Z op-

erator Z applied to the i-th qubit. Matrix H as defined in (7.7) is obviously diagonal.

To establish (7.5), note first that Z |0⟩ = |0⟩ and Z |1⟩ = − |1⟩, or more compactly,

Z |b⟩ = (−1)b |b⟩. Consequently, when Zi is applied to a state |b⟩ = |b1b2 · · · bn⟩, the effect

is Zi |b⟩ = (−1)bi |b⟩ = si |b⟩ from (7.3). Similarly, it also holds that ZiZj |b⟩ = sisj |b⟩.

Property (7.5) now follows immediately by postmultiplying (7.7) by any |ek⟩ and using
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f(b) = f̄(s).

If |x⟩ in (7.6) is restricted to set E := {ek}N−1
k=0 , problem (7.6) is as hard as (7.1). VQE

relaxes (7.6) to the set of all quantum states |x(θ)⟩ that can be parameterized by the chosen

ansatz and via θ. Problem (7.6) is then solved over θ rather than |x⟩

min
θ

F (θ) := ⟨x(θ)|H|x(θ)⟩ . (7.8)

From the eigenvalue property (7.5), it follows ⟨en|H |ek⟩ = f(|k⟩) for all k. How about

⟨x|H |x⟩ for a general state |x⟩? Because |x⟩ =
∑N−1

k=0 xk |ek⟩, it is easy to show that

⟨x|H|x⟩ =
N−1∑
k=0

|xk|2f(|k⟩) =
N−1∑
k=0

pkf(|k⟩). (7.9)

In other words, function F (θ) is the average of f under the PMF defined by |x⟩. For instance,

the random outcome |k⟩ = |101⟩ occurring with probability |x5|2 is assigned to the random

variable f taking the value f([1 0 1]⊤). Hence, function F (θ) is really an expectation (an

observable in the quantum computation parlance) of function f(b) when b is drawn from

the PMF {|xk(θ)|2}N−1
k=0 . Ideally, the global minimizer θ of (7.8) defines a PMF via |x(θ)⟩

that samples with non-zero probability only the canonical vectors |ek⟩ associated with the

smallest eigenvalue of H.

Problem (7.8) is solved in a hybrid fashion: The quantum computer samples from |x(θ)⟩

and estimates F (θ) and possibly its gradient ∇θF . A classical computer uses the previous

information and iteratively updates θ based on a zero- or first-order optimization algorithm,

such as gradient descent or Bayesian optimization. As with training neural networks, F (θ)

is nonconvex due to the form of the ansatz. Moreover, the ensemble statistic F (θ) cannot

be computed exactly, but estimated as the sample average F̂ (θ) :=
∑R

r=1 f(br)/R over R
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runs, where br is the quantum output after run r.

7.6 Constrained VQE

As discussed earlier, VQE provides a successful heuristic for solving QUBO through the

variational formulation of (7.8). Can VQE be generalized to deal with a binary QCQP of

the ensuing form?

min
b∈{0,1}n

f0(b) (7.10)

s.to fm(b) ≤ 0, m = 1 : M.

Here fm(b) := b⊤Amb+b⊤cm+dm for m = 0, . . . ,M . Solving such problems is also known

to be NP-hard. Providing a quantum heuristic to directly deal with (7.10) seems to be

challenging. To this end, we relax expectations and aim at designing a quantum state |x⟩

from which we can draw binary-valued b that solve the stochastic binary QCQP:

min
|x⟩

Ex[f0(b)] (7.11)

s.to Ex[fm(b)] ≤ 0, m = 1 : M.

As in the unconstrained setup, rather than minimizing over |x⟩, we propose optimizing over

a PMF parameterized by θ and captured by quantum state |x(θ)⟩. Specifically, we suggest

solving the constrained minimization

min
θ

F0(θ) (7.12)

s.to Fm(θ) ≤ 0 : λm, m = 1 : M
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where each observable Fm(θ) := ⟨x(θ)|Hm|x(θ)⟩ depends on the Hamiltonian Hm defined

similar to H in (7.7) for all m. Heed that problem (7.12) can be reformulated and solved as

a linear program (LP) over the PMF of b. Nonetheless, that requires evaluating {fm(b)}Mm=0

for all 2n values of b. Moreover, the optimization variable of this LP is the vector of PMF

values that is exponentially large too. That is also the case with standard VQE/QAOA.

Contrary to (7.10), problem (7.12) is over the continuous variable θ, and thus, we can

associate a dual variable λm for each constraint and define its Lagrangian function

L(θ;λ) := F0(θ) +
M∑

m=1

λmFm(θ) (7.13)

where λ ∈ RM collects all dual variables. Problem (7.12) could be solved via dual decom-

position, according to which λ is updated iteratively via a subgradient ascent step on L

as

λt+1
m := max

{
λt
m + µtFm(θ

t), 0
}
, m = 1 : M (7.14)

for a positive step size µt = µ0/(t+ α) with α > 0, and θt is a minimizer of the Lagrangian

L(θ;λt) evaluated at λt:

θt ∈ argmin
θ

⟨x(θ)|H0 +
M∑

m=1

λt
mHm|x(θ)⟩ . (7.15)

Problem (7.15) takes the QUBO form of (7.8), and is therefore amenable to standard VQE

or even the celebrated QAOA approach. Under the latter, the ansatz takes a particular form

that depends on the problem Hamiltonian H0 +
∑M

m=1 λ
t
mHm. Here, we used a problem-

independent ansatz under the general VQE framework and leave QAOA for future work.
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Table 7.1: Comparing the exact solution of (7.12) obtained via a linear program and the
proposed quantum-based approach.

# Found PMF Dual
Quantum LP Quantum LP

1 [0.44, 0, 0.56, 0] [0.44, 0, 0.56, 0] 0.854 0.851
2 [0.71, 0, 0.29, 0] [0.70, 0, 0.30, 0] 0.337 0.337
3 [0, 0.80, 0, 0.20] [0, 0.80, 0, 0.20] 0.459 0.459
4 [0, 0, 0.61, 0.39] [0, 0, 0.60, 0.40] 0.566 0.566

7.7 Numerical Tests

The novel solver for (7.12) was implemented in Python using the Qiskit library [5]. The VQE

class in Qiskit was used to solve the minimization for the primal update (7.15). In addition

to providing the ansatz described in Section 7.5, the VQE class was configured with the

‘SLSQP’ optimizer. The maximum number of iterations was set to 1, 000, and we used the

aer_simulator_statevector quantum simulation backend. For the dual update in (7.14),

constraint violations were measured over the observables Hm using the minimum eigenstate

returned by VQE. The stopping criteria ∥λt−λt−1∥2 ≤ 1 · 10−5 was utilized to ascertain the

convergence of the dual updates (7.14).

To illustrate the application of the proposed strategy to solving the stochastic binary QCQP

in (7.11), several 2-bit problem instances were sampled randomly by drawing the entries

of {A0, c0,d0} and {A1, c1,d1} from the standard normal distribution, while ensuring the

resulting problem was feasible. The VQE approach was compared against a linear program

that finds a PMF solving (7.12); this was possible due to the small value of 2n. For the

two approaches, the obtained PMFs along with the associated dual variables are reported in

Table 1 for 4 randomly sampled problem instances.

To study the scalability of the approach and to verify the compatibility of the solutions with
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Figure 7.1: Convergence of dual variables under dual updates (7.14) for a stochastic binary
QCQP with M = 3 constraints.

the deterministic QCQP in (7.10), we also sampled 30 feasible 5-bit problem instances with

three constraints each. The quadratic cost and constraint functions were generated as in

the previous test. To avoid instances with non-binding constraints, the constants dm in the

constraint functions were manually adjusted so that at least one of the constraints was active

and yielded a non-zero dual variable. From the sampled problems, it was found that the

dual decomposition involving VQE was able to produce the optimal solutions for 28 out of

the 30 problem instances tested, whereas infeasible binary candidates were obtained for the

remaining 2 instances. Figure 7.1 illustrates the convergence of the dual variables for one of

the problem instances, where all three constraints were found to be active.
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7.8 Conclusions

A novel generalization of VQE to address the need for dealing with stochastic binary QCQPs

has been developed. Leveraging dual decomposition, the approach entails solving a sequence

of judiciously modified VQE tasks. Numerical tests demonstrate that upon convergence of

the constrained VQE algorithm, the variational quantum circuit is able to sample from a

stochastic policy to generate binary-valued vectors that minimize the binary QCQP and

satisfy its constraints in expectation. Some of these samples seem to be feasible for the

deterministic binary QCQP too. This novel heuristic sets the foundation for further de-

velopments towards constrained discrete optimization. We are currently exploring several

exciting directions: i) Coupling this approach with QAOA rather than VQE; ii) skipping the

nested optimization in (7.15) through a primal-dual decomposition alternative as in [33, 34];

and iii) dealing with mixed-binary setups.
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