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Machine Learning-Based Receiver in Multiple Input Multiple
Output Communications Systems

Zhou Zhou

(ABSTRACT)

Bridging machine learning technologies to multiple-input-multiple-output (MIMO) commu-

nications systems is a primary driving force for next-generation wireless systems. This disser-

tation introduces a variety of neural network structures for symbol detection/equalization

tasks in MIMO systems configured with two different waveforms, orthogonal frequency-

division multiplexing (OFDM) and orthogonal time frequency and space (OTFS). The for-

mer one is the major air interface in current cellular systems. The latter one is developed

to handle high mobility. For the sake of real-time processing, the introduced neural net-

work structures are incorporated with inductive biases of wireless communications signals

and operate in an online training manner. The utilized inductive priors include the shifting

invariant property of quadrature amplitude modulation, the time-frequency relation inherent

in OFDM signals, the multi-mode feature of massive antennas, and the delay-Doppler repre-

sentation of doubly selective channel. In addition, the neural network structures are rooted

in reservoir computing - an efficient neural network computational framework with decent

generalization performance for limited training datasets. Therefore, the resulting neural

network structures can learn beyond observation and offer decent transmission reliability in

the low signal-to-noise ratio (SNR) regime. This dissertation includes comprehensive simu-

lation results to justify the effectiveness of the introduced NN architectures compared with

conventional model-based approaches and alternative neural network structures.



Machine Learning-Based Receiver in Multiple Input Multiple
Output Communications Systems

Zhou Zhou

(GENERAL AUDIENCE ABSTRACT)

An important topic for next-generation wireless systems is the integration of machine learn-

ing technologies with conventional communications systems. This dissertation introduces

several neural network architectures to solve the transmission problems in wireless commu-

nications systems. The discussion focuses on the following major modern communications

technologies: multiple-input-multiple-output (MIMO), orthogonal frequency-division multi-

plexing (OFDM), and orthogonal time frequency space (OTFS). In today’s cellular networks,

MIMO and OFDM are the major air-interface. OTFS is a novel technique that has been

designed to work in a high-mobility setting. The implemented neural network structures

are integrated with inductive biases of wireless communications signals and operate in an

online training mode with limited training datasets. The neural network architectures, in

particular, are based on reservoir computing, which is an efficient neural network compu-

tational system. A learning algorithm’s inductive bias (also known as learning bias) is a

collection of assumptions that the learner makes to infer outputs from unknown inputs.

The dissertation introduces four different inductive priors from four different perspectives

of MIMO communications systems. As a result, the neural network architectures can learn

beyond observation and provide good generalization output in scenarios having model mis-

match issues. The dissertation provides extensive simulation results to support the efficacy

of the implemented NN architectures compared to alternative neural network models and

traditional model-based approaches.
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Chapter 1

Introduction

Multiple-input-multiple-output (MIMO) is an essential radio access technology in current

communications systems, such as 4G/5G cellular networks [2, 5]. A system with MIMO

refers to its transmitter and receiver having multiple antennas. Moreover, MIMO systems

transmit and receive multiple signal streams simultaneously over the same physical radio

channel. By adopting appropriate transmitting and receiving processing techniques, the

system’s achievable rate/reliability can be improved as the number of antennas grows. Ac-

cordingly, operational modes of MIMO systems can be generally categorized as spatial multi-

plexing and spatial diversity coding, where the former scheme refers to transceiving multiple

independent information streams via multiple wireless signal streams. In contrast, the latter

one refers to a coded single information stream transceived by multiple signal streams. [95].

This dissertation develops receiving techniques for MIMO systems operating in the spatial

multiplexing mode. In conventional processing frameworks of spatial multiplexing, channel

state information (CSI) is often required at the transmitter or receiver to pre-eliminate or

post-cancel out spatial interference, where the interference is caused by concurrent signal

transceiving [76]. Accordingly, pilot symbols are associated with data symbols in the signal

frames for CSI estimation. However, perfect CSI is impossible to acquire due to practical

constraints: For instance, in the presence of nonlinearities in RF components, it is intractable

to model the RF features precisely; with limited transmission power, the channel estima-

tion has to operate under a low signal-to-noise ratio (SNR) regime. A consequence of using

1



2 Chapter 1. Introduction

imperfect CSI is performance deterioration of link-level transmission. In addition, wireless

communications systems are with modulation components converting information symbols

to waveforms. For the sake of developing a more comprehensive receiver, this dissertation

considers the primary air interface in current communications systems, orthogonal frequency

division multiplexing (OFDM)[73] and one of its generalization – orthogonal time frequency

and space (OTFS). More importantly, this dissertation utilizes a supervised-learning-based

framework to train the receiver with compatible pilot overhead to current wireless commu-

nications systems. Signal features of adopted air-interface signals are incorporated into the

neural networks (NNs) as inductive bias. Therefore, the resulting NN structures can offer

desirable link-level performance using limited training datasets. The following sections in

this chapter will discuss the motivations and challenges of using NNs as the receiver in MIMO

systems.

1.1 MIMO Systems with Modulation Techniques

Modulation techniques are defined as converting/reconverting information symbols to carrier

signals in communications systems. This dissertation considers using multi-carrier modula-

tion as the communication air interface. By mounting up multiple antennas at the transceiver

chain, communications systems encounter miscellaneous interference to handle, such as inter-

spatial streams interference, inter-samples interference, and inter-carriers interference. The

receiver is to mitigate the interference and reconstruct the transmitted symbols with low

error probability.
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1.1.1 OFDM

OFDM is a technique that modulates information symbols on multiple closely-spaced or-

thogonal sub-carriers. The spectra between two neighboring sub-carriers are overlapping to

each other to maximize spectral efficiency. By leveraging fast Fourier transformation (FFT)

and adding cyclic prefix (CP), the equalization of OFDM signals can be easily conducted

in the frequency domain with significantly reduced complexity. Regarding MIMO systems

with OFDM modulation, the spatial interference can also be handled via a sub-carrier basis.

However, the interference cancellation at each sub-carrier is a very critical stage to achieve

the link capacity.

The receiving technologies of MIMO systems can be sub-divided into coherent symbol de-

tection and non-coherent symbol detection based on whether using instantaneous CSI. In

the coherent detection, CSI is first obtained through pilot symbols allocated on the fre-

quency domain. In the next step, a MIMO symbol detection stage is conducted by solving

an inverse problem, where the solver relies on estimated CSI as the algorithm parameters.

Conventional approaches are like minimum mean square error (MMSE) and maximum like-

lihood estimation (MLE). In non-coherent detection, an extra coding strategy is required,

resulting in high computational complexity. Therefore, this dissertation considers coherent

symbol detection for the sake of low costs in computation. However, OFDM systems have

the following two disadvantages, which end up with a low receiving SNR environment:

• OFDM is sensitive to channel Doppler effects. When the system operates in a high mo-

bility environment, the resulting Doppler shift deconstructs the orthogonality between

sub-carriers. Thus, received signals are disturbed inter-carrier interference.

• The OFDM signals have a high value of peak to average ratio (PAPR). In practice,

OFDM signals are often transmitted through the linear region of RF circuits to avoid
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waveform distortion. However, ensuring hardware with linear transition features leads

to poor energy efficiency. A trade-off solution is to set a small back-off region to the RF

nonlinear region while handling the distortion using algorithms. In scenarios without

pre-distortion, the received OFDM signals equivalently reside in a low SNR regime

interfered by nonlinear noise.

To address the above issues, this dissertation is motivated to design robust receivers to handle

the imperfectness.

1.1.2 OTFS

Since OFDM is sensitive to Doppler shift, an alternative waveform, orthogonal time-frequency

space (OTFS), is introduced to tackle the Doppler effects. As a generalization to OFDM,

OTFS utilizes 2-D time-frequency basis functions to spread information symbols in the entire

time-frequency domain. Theoretically, it can offer full diversity gains in the time-frequency

domain. In OTFS modulation, the doubly selective channel is simply approximated as a

constant convolution kernel in the delay-Doppler domain. Thus, the receiving process in

OTFS is to reverse the channel forward convolution. However, the performance of OTFS

modulation exacerbates as well when model mismatch appears. For instance, the ideal

channel kernel is often assumed to be strictly sparse. This hypothesis is leveraged as prior

information to reduce the channel acquisition overhead and conduct low complexity symbol

detection. However, practical systems utilize non-ideal transceiving impulse response filters.

Therefore, the channel is no longer strictly sparse, which inevitably increases the receiver

complexity rendering diminished transmission reliability for sparse prior-based receivers. In

addition, the applications with a large number of sub-carriers and antennas make the prob-

lem further complicated and thereby fail to satisfy latency requirements in communications
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systems. [72, 102].

1.2 Neural Networks Enabled Receiver

Deep neural networks (NNs) have been applied to a wide range of scientific problems and

achieved notable success [53]. Motivated by this driving force, neural network-enabled wire-

less communications systems become an important component for 5G-Advanced systems.

Regarding recent research in AI to wireless communications systems, a wide range of direc-

tions of using AI to boost the design in wireless communications systems has been proposed.

For instance,[12, 13, 22, 70] introduce an auto-encoder based framework to rebuild wireless

communications systems. To this end, the system design is altered as learning the commu-

nications components via an end-to-end manner. In [24], recurrent neural network (RNN)

is employed for a sequence equalization task. In addition, [25] introduces training an end-

to-end communication system up to application layers, where a deep neural network-aided

joint source and channel coding-decoding strategy is applied for the transmission of semantic

information. Recent work in [17, 45, 80, 94] shows the effectiveness of using NNs for symbol

detection with different channel conditions. [67] utilizes a neural network for channel decod-

ing to reduce the complexity significantly. Another example of using deep neural networks

for channel coding is from [48]. It adopts a neural network as an encoder for a Gaussian

noise feedback channel. Furthermore, [87] uses a neural network to learn a power allocation

strategy in interference channels. Other examples of using neural networks to solve wireless

communications problems are presented in [8, 9, 16, 44, 71].

The power of AI is rooted in its generalization ability to perform inference beyond observa-

tion. One way to design a neural network-based symbol detector is unfolding an iteration

algorithm to a deep neural network while adding free parameters to learn, such as a projected
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gradient descent-based neural network structure introduced in [81]. However, this framework

often requires assigning explicit CSI as the neural network coefficients. The resulting neural

network structure yields poor generalization performance when model mismatch appears.

Therefore, it is imperative to find an alternative way to design symbol detection neural net-

works without using explicit CSI. On the other hand, directly applying generic NNs often

results in poor performance due to the lack of training datasets in different transmission

scenarios. Moreover, the convergence of generic neural networks through gradient descent-

based algorithms can be very slow [37]. Therefore, to realize the full potential of NNs for

symbol detection/equalization tasks, the following underfitting and overfitting issues have

to be addressed for the sake of a balanced fitted neural network model:

• Overfitting:Training a symbol detection/equalization NN based on over-the-air feed-

back is prohibitively expensive. The infeasibility is because using gradient-based back-

propagation across the wireless channel violates the control overhead defined in commu-

nications systems. Furthermore, training NNs compatible with physical layer (PHY)

standards has to solve the limited training data issue. For example, the demodulation

reference signals in 5G NR cellular systems with 2× 2 multiplexing operation occupy

approximately 15% of the bandwidth. In addition, cellular systems are anticipated

to adapt the transmission modes on a millisecond basis. Therefore, it is desirable to

have NN-based processing relying on online learning merely. Accordingly, overfitting

is easy to happen due to the lack of an asymptotic large training dataset [92].

• Underfitting: RNNs are primarily designed to process sequential data. Wireless

communications signals are often with structural features that can be analyzed via a

transformation domain. For instance, OFDM signals are interleaved with time and

frequency patterns. Simply applying generic RNNs to communications signals may

face a learning floor of the loss function due to underfitting. Therefore, it requires
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either a more sophisticated NN model or a training dataset with good features to

improve the learning efficiency.

1.3 Contributions and Attribution

This dissertation presents various neural network structures for the symbol detection/e-

qualization tasks to optimize link-level reliability in MIMO systems. The introduced NN

structures utilize reservoir computing (RC), a particular recurrent neural network (RNN),

as the basic building blocks. The motivation of using RC is to exploit the causality inside

the received communications signals presented by a sequential form. Meanwhile, RNNs can

universally approximate dynamic systems [40]. According to the appealing generalization

ability of RC, the following introduced neural network structures can train their coefficients

using limited data. Beyond directly applying RC to the symbol detection task, the disserta-

tion focuses on adding inductive bias of wireless signals to the NN architecture to circumvent

the risks of a large model variance (overfitting). This combination implies the feasibility of

training neural network-based symbol detectors/equalizers via online manners, thus obvi-

ating offline training stages. Accordingly, the NNs can immediately generate modulation

symbols after the one-shot training is completed. Therefore, the aforementioned overfitting

issues from the limited training dataset are addressed.

On the other hand, the underfitting issues are to be addressed by the following approaches:

Employing a good pilot structure (good training data); Increasing the neural network com-

plexity; Improving the convergence of learning algorithms. This dissertation will introduce

the following structures to achieve a good tradeoff between the overfitting and underfit-

ting based on their individual MIMO operation scenarios: (according to the order will be

presented)
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• A symmetric and decomposed neural network architecture is introduced in Chapter 2

for the symbol detection task in a MIMO-OFDM system. The neural network structure

is motivated by the shifting invariant property of quadrature amplitude modulation

(QAM). In detail, an M -ary modulation can be decomposed as a series of M−1 binary

detection neural networks. In addition, the NN structure is integrated with RC to

extract signals’ time-domain features. The evaluation shows the introduced approach

performs closely to the maximum likelihood estimation with imperfect channel state

information (CSI) in the low SNR regime.

• A deep recurrent neural network structure for MIMO-OFDM system detection is pre-

sented in Chapter 3, namely, RCNet. It is incorporated with the time-frequency struc-

ture of OFDM signals. The structure-wise extension to standard RCs includes adding

frequency processing layers after its time-domain output and stacking multiple basic

RC units into deep versions. Experiments show that the added time-frequency induc-

tive bias and deep architecture can provide more robust symbol detection performance

than other NNs in the low SNR regime and PA’s non-linear regime.

• As massive antennas are deployed at BSs, the multi-mode feature of the wireless chan-

nel (such as the elevation, azimuth directions) can be leveraged as an inductive bias

for the neural network design. To this end, a tensorized neural network structure

(multi-mode RC) is introduced in Chapter 4 for the uplink symbol detection task,

where it utilizes tensor as the underlying data format for receiving signal processing.

In addition, a theoretical condition on setting up an under-parameterized multi-mode

RC is provided. The theory can guide the parameter configuration of NNs to avoid

over-fitting issues sufficiently. Evaluation results reveal that the introduced framework

can offer good generalization performance in the uplink transmission in massive MIMO

systems.
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• An RC-based equalization framework for an OTFS system is introduced in Chapter

5, where OTFS is an alternative waveform to OFDM in high mobility environments.

OTFS operates the modulation/demodulation on a two-dimensional plane, the delay-

Doppler domain, which goes beyond the frequency domain-based processing in OFDM.

Along with particularly designed pilot patterns, the training of equalization neural

network is exclusively conducted at each OTFS frame, where the pilot overhead is

consistent with its definition in current cellular systems. The simulation results show

that the introduced approach can offer more robust performance in different veloc-

ity settings. In addition, compared with its OFDM counterpart, OTFS requires less

complexity to achieve the same link transmission reliability.

The implementations of the above neural networks are respectively presented from Chapter

2 to Chapter 5. Moreover, these Chapters are reproduced from the author’s following papers,

1. Zhou Zhou; Shashank Jere; Lizhong Zheng; et al. “Learning with Knowledge of

Structure: A Neural Network-Based Approach for MIMO-OFDM Detection,” in 2020

IEEE Asilomar Conference on Signals, Systems, and Computers.

2. Zhou Zhou; Shashank Jere; Lizhong Zheng; et al. “Learning for Integer-Constrained

Optimization through Neural Networks with Limited Training,” in NeurIPS 2020 Work-

shop on Learning Meets Combinatorial Algorithms.

3. Zhou Zhou; Lingjia Liu, Vikram Chandrasekhar; et al. “Deep Reservoir Computing

Meets 5G MIMO-OFDM Systems in Symbol Detection,” in AAAI-2020 Thirty-Fourth

AAAI Conference on Artificial Intelligence.

4. Zhou Zhou; Lingjia Liu; Shashank Jere; et al. “RCNet: Incorporating Structural

Information into Deep RNN for Online MIMO-OFDM Symbol Detection with Limited

Training,” in IEEE Transactions on Wireless Communications, 2021.
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5. Zhou Zhou; Lingjia Liu; Jiarui Xu; et al. “Harnessing Tensor Structures – Multi-

Mode Reservoir Computing and Its Application in Massive MIMO,” in arXiv Preprint:

2102.09322.

6. Zhou Zhou; Lingjia Liu; Robert Calderbank; et al. “Learning to Equalize OTFS,” in

arXiv Preprint 2107.08236.

where papers (1) and (2) are with respect to Chapter 2; papers (3) and (4) are reorganized

as Chapter 3; paper (5) is presented in Chapter 4, and paper (6) is for in Chapter 5.



Chapter 2

MIMO-OFDM Symbol Detection via

Shifting-RC

2.1 Introduction

MIMO-OFDM is the primary air interface in modern communication standards such as 4G

(LTE-Advanced) and 5G New Radio (NR) [73]. As opposed to single-input single-output

systems (SISO), MIMO-OFDM systems have symbols interfering in space and time due to

the concurrent reception of signals at the receive antennas and the multipath propagation

feature of wireless channels. In order to achieve the transmission (capacity) gains that MIMO

offers, the choice of the symbol detection strategy plays a critical role. However, the fol-

lowing practical issues are present in conventional model-based symbol detection strategies:

(1) Model Uncertainty - The exact characterization of the true end-to-end link from the

transmitter to the receiver cannot be obtained. Instead, only a linear and static approxi-

mation of the wireless channel and a coarse approximation to the hardware imperfections in

the transceiver are available. For e.g., Non-linearities in radio frequency (RF) circuits such

as the power amplifier (PA) at the transmitter and finite quantization in baseband circuits

such as analog-to-digital converter (ADC) at the receiver are hard to characterize accurately.

Additionally, channel state information (CSI) is not directly accessible and needs to be esti-

mated at the receiver using the received signal. Algorithms can thus only use the estimated

11
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CSI, which yields diminishing detection success rate as the accuracy of the estimated CSI

decreases, particularly in the low signal-to-noise ratio (SNR) regime [11]. (2) Implementa-

tion Complexity - The computational complexity of optimal detection algorithms have an

exponential relationship with the number of variables to be detected. Therefore, applica-

tions with large number of OFDM sub-carriers, high modulation orders and large number

of transmit/receive antennas render the problem non-deterministic polynomial-time hard

(NP-hard), and thus unable to meet latency requirements [72].

The recent advent of neural networks (NNs) has led to the application of learning-based

approaches to a wide array of scientific problems [53]. Specifically, the concept of artificial

intelligence (AI)-enabled cellular networks has been introduced [85]. Such successful NN-

based approaches motivate us to integrate NN strategies in symbol detection algorithms in

order to mitigate the aforementioned issues from model-based approaches. However, this

seemingly simple rationale is in fact extremely challenging due to the inherent constraints

of wireless systems.

• Data Deficit: For the purpose of training, we can only access a limited training

dataset sent over-the-air in the physical layer (PHY). For instance, in 3GPP LTE/LTE-

Advanced and 5G systems the demodulation reference signals in a 2×2 MIMO-OFDM

system occupy approximately 10% of the system resources in terms of resource elements

(REs), whereas the remaining 90% of REs are occupied by data symbols. Accordingly,

the variance-bias tradeoff is insufficient to be guaranteed without an asymptotic large

training dataset [92].

• Learning Deficit: Generic NNs are often slow to configure due to the large number of

hyper-parameters that need to be optimized. Gradient descent-based learning can be

slow to converge or may converge towards a solution with poor generalization perfor-
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mance [37].

To address the challenges of applying neural networks to symbol detection tasks (as discussed

in the introduction chapter), we consider incorporating inductive bias, i.e., prior knowledge,

into the NN architecture by leveraging the structural properties of the MIMO-OFDM signal.

This helps the network make inferences that go beyond the observed data, thus potentially

solving the fundamental data deficit issue. The introduced NN structure leverages the fol-

lowing structural information of the MIMO-OFDM signal:

• Constellation of the digital modulation scheme.

• Time-domain convolution and superposition operation by the wireless channel.

• The presence of different frequencies inherent in the OFDM signal.

In the introduced NN, the constellation structure is reflected through a process which can

generalize a binary detector to a multiple-class detector. The time-domain knowledge is

captured through the dynamics of reservoir computing (RC), a special category of recurrent

neural networks (RNNs) [63, 100, 101]. The frequency information is inherent in the weight

initialization of the output layer of RC. Our evaluation results show that the introduced

method performs close to maximum likelihood (ML) estimation in the low SNR regime

while using imperfect (estimated) CSI.

The organization of this paper is as follows. In Sec. 2.2, we give an overview of the MIMO-

OFDM symbol detection problem. In Sec. 2.3, we describe the technical details of our

introduced method. Sec. 2.4 evaluates the performance of our approach in comparison to

conventional symbol detection methods as well as less other general neural network struc-

tures. Finally, we conclude the paper in Sec. 5.6.
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Figure 2.1: MIMO OFDM System

2.2 Problem Statement

2.2.1 MIMO-OFDM System

Let Nt and Nr represent the number of transmit and receive antennas respectively; let Nc

represent the number of sub-carriers. Without loss of generality, we assume that the modu-

lation scheme used is 16-QAM which is denoted by its alphabet as A = {−3,−1,+1,+3} ×

{−3j,−1j,+1j,+3j}. Let X ∈ ANt×Nc be the transmitted MIMO-OFDM symbol in the

space-frequency domain, the received signal becomes

Y =
L−1∑
ℓ=0

H [ℓ]XFJ ℓ +N (2.1)

where F ∈ CNc×Nc is the inverse discrete Fourier transform (IDFT) matrix, J ℓ ∈ CNc×Nc

is a cyclic permutation matrix with ℓ, N is the matrix of additive white Gaussian noise

(AWGN), L is the number of multipath components of the wireless channel. For ease of

discussion, the Cyclic Prefix (CP) is removed in the model.
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Figure 2.2: Pilot and data structure

2.2.2 Symbol Detection

The symbol detection task is to design an inverse map which infers X from the observation

Y . For simplicity, we consider using the real-valued version of Y and X in the inference

task, which are respectively defined as

Ỹ :=

Re(Y )

Im(Y )

 and, X̃ :=

Re(X)

Im(X)


where X̃ and Ỹ now represent 4-PAM symbols, the definition of the real-valued equivalent

receive signal model to (2.1) can be found in the Appendix. The pilot and data structure of

an OFDM subframe is shown in Fig. 2.2. In the receive processing, reference signals/pilots

are used to train the NN of the RC for the learning-based symbol detection strategy while

the remaining data symbols will go through the trained NN for symbol detection.
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2.3 Introduced Approach

By casting the symbol detection problem in a Bayesian framework, it can be formulated as

the following maximum likelihood estimation problem,

arg max
X̃

P (X̃|Ỹ ). (2.2)

where P (·|·) represents the joint posterior distribution. The joint posterior distribution can

then be approximated via the naive Bayesian principle, i.e.,

P (X̃|Ỹ ) ∼
∏

nt∈2Nt,nc∈Nc

Pnt,nc(x̃nt,nc|Ỹ ) (2.3)

where Pnt,nc(·|Ỹ ) stands for the marginal distribution of the (nt, nc)
th entry of X̃. Accord-

ingly, we train NNs to approximate Pnt,nc(·|Ỹ ), i.e.,

fnt,nc(x̃nt,nc ; Ỹ ) = P (x̃nt,nc |Ỹ ) (2.4)

where fnt,nc(x̃nt,nc ; Ỹ ) denotes the NN with x̃ ∈ {−3,−1,+1,+3} as the output and Ỹ as

the input. In the final step, the transmitted symbols can be estimated by choosing the

maximum a posterior estimation,

arg max
x̃nt,nc

fnt,nc(x̃nt,nc ; Ỹ ). (2.5)

Therefore, the symbol estimation task is completed by collecting the NN outputs correspond-

ing to all the entries of X̃.
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2.3.1 Detection on a Binary Set

 

Activation Function
Input Weight Matrix with RC
Recurrent Weight Matrix with RC
State vector for RC

Figure 2.3: Binary detector fnt,nc(x̃nt,nc ; Ỹ )

For simplicity, we first consider the training of a binary decision NN for x̃nt,nc , i.e., the NN

only has two outputs. The underlying binary detector can be seen more clearly in Fig. 2.3.

To be specific, the output ratio of this NN is an estimation of the marginal likelihood ratio

of

P (x̃nt,nc = +1|Ỹ )

P (x̃nt,nc = −1|Ỹ )
=

fnt,nc(x̃nt,nc = +1; Ỹ )

fnt,nc(x̃nt,nc = −1; Ỹ )

For ease of discussion, we introduce L+− as a notation of the likelihood ratio, i.e.,

L+−(Ỹ ) :=
fnt,nc(x̃nt,nc = +1; Ỹ )

fnt,nc(x̃nt,nc = −1; Ỹ )
(2.6)

To capture the time domain features of MIMO-OFDM signals, we design the NN as

fnt,nc(x̃nt,nc ; Ỹ ) := MW 2(RW 1(Ỹ )) (2.7)

where M is a single-layer perceptron (feedforward NN) with a soft-max output, the coeffi-
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Binary Detector

Binary Detector

Binary Detector

Figure 2.4: Multiple-class detector generated by binary detector.

cients to learn are denoted as W 2 := [w
(−1)
2 ,w

(+1)
2 ], in which w

(+1)
2 , w(−1)

2 are the coefficients

corresponding to the positive output and the negative output respectively. R represents a

RNN. We fix the weights of the input layer and state transition layer of R, and only train

the output layer W 1. This particular RNN structure follows the framework of reservoir

computing (RC). The input and output dimension of the RNN is the exactly Nr. In general,

RC is characterized by a state equation and an output equation [57]. In this paper, we

choose the state equation as a first order Markov process, where the state are involved by in-

put stimulus and initial states. The output equation is a linear mapping which readouts the

internal states. Furthermore, we add a hyperbolic tangent (Tanh) function as the activation

function between R and M.



2.3. Introduced Approach 19

2.3.2 Detection on a Non-Binary Set

To conduct symbol detection on a non-binary set (e.g., {−3,−1,+1,+3}), we utilize the

following shifting process to construct element-wise likelihood ratios introduced in [96],

P (x̃nt,nc = −1|Ỹ )

P (x̃nt,nc = −3|Ỹ )
= L+−(Ỹ + 2S̃nt,nc)

P (x̃nt,nc = +3|Ỹ )

P (x̃nt,nc = +1|Ỹ )
= L+−(Ỹ − 2S̃nt,nc)

where

S̃nt,nc :=

Re(Snt,nc)

Im(Snt,nc)



Snt,nc :=



L−1∑
ℓ=0

Hnt,:[ℓ](FJ ℓ):,nc , if x̃nt,nc = Re(xnt,nc)

L−1∑
ℓ=0

jHnt,:[ℓ](FJ ℓ):,nc , if x̃nt,nc = Im(xnt,nc)

Note that the received signal Ỹ corresponds to transmitted symbols modulated using the

general QAM constellation. Therefore, the posterior estimation can be obtained by solving

the equation below:

∑
a={−3,−1,+1,+3}

P (x̃nt,nc = a|Ỹ ) = 1

P (x̃nt,nc = −1|Ỹ ) = P (x̃nt,nc = −3|Ỹ )L+−(Ỹ + 2Sij)

P (x̃nt,nc = +1|Ỹ ) = P (x̃nt,nc = −1|Ỹ )L+−(Ỹ )

P (x̃nt,nc = +3|Ỹ ) = P (x̃nt,nc = +1|Ỹ )L+−(Ỹ +−2Sij)

Therefore, the complete NN for multi-class detection can be constructed as in Fig. 2.4.
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2.3.3 Training Set

As outlined in the previous discussion, the symbol detection NN for a general QAM constel-

lation can be constructed by shifting individual binary detection NNs. Therefore, training

the NN in Fig. 2.4 is equivalent to training the binary decision neural network (2.7). Assume

we have Q training samples,

{
(X̃1, Ỹ 1), (X̃2, Ỹ 2), · · · , (X̃Q, Ỹ Q)

}
(2.8)

where entries of X̃q come from a general QAM constellation, the corresponding binary

training sets for (nt, nc) can be created according to:

(
+1, Ỹ k − x̃nt,ncS̃nt,nc + S̃nt,nc

)
(
−1, Ỹ k − x̃nt,ncS̃nt,nc − S̃nt,nc

) (2.9)

through (X̃k, Ỹ k). For wireless systems where the training set is limited, we set Q = Nt

to be compatible with the standard orthogonal pilot structures adopted in modern cellular

standards such as 3GPP LTE-Advanced and 5G.

2.3.4 Learning Tricks

To mitigate the issues of over-fitting and slow training convergence, the following specific

techniques are employed in our experiments:

• The weight W 1 is shared across all sub-carriers in the frequency domain.

• The weight W 2 is initialized according to w
(+1)
2 = w

(−1)
2 = (INt ⊗ F )nc+ntNc,:. This

particular initialization essentially follows from the Fourier transformation embedded
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in the generation of OFDM signals.

• The binary detector fnt,nc can be trained by utilizing the training sets from the neigh-

boring sub-carriers. This exploits the channel correlation between neighboring sub-

carriers in frequency-selective fading channels.

2.4 Performance Evaluation

In this section, we provide performance evaluations of the introduced symbol detection ap-

proach. The modulation scheme used to generate X is 16-QAM. The underlying MIMO

channel is assumed to be block fading. To be specific, the channel coefficients of the MIMO-

OFDM system are generated using parameter configurations in the urban outdoor-to-indoor

NLOS scenario of the WINNER II channel model [60] and are assumed to stay invariant in

a block of Q +Nd OFDM symbols. Uniform Linear Array (ULA) antennas are used at the

transmitter and receiver with a half-wavelength spacing. The simulation parameters in the

performance evaluation are set as follows: L = 12, Nr = 2, Nt = 2, Nc = 256, Ncp = 25,

Q = 2, and Nd = 98. The number of neurons in the RC is set to 128 with an input buffer of

length 32 as the windowed-ESN structure discussed in [100].

To evaluate the symbol detection performance, we first compare the introduced approach to

conventional methods assuming perfect CSI. This result is illustrated in Fig. 2.5. As we can

observe, the introduced method outperforms the conventional linear minimum mean square

estimation (LMMSE) strategy while is strictly inferior to the optimal maximum likelihood

(ML) detection strategy. In a more relevant scenario, we conduct the CSI estimation first

using the available reference signals/pilots. The underlying performance evaluation is shown

in Fig. 2.6 where we conduct LMMSE-based channel estimation to obtain the estimated CSI.

The results suggest that the introduced method can offer detection performance that is close
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0 2 4 6 8 10
SNR

3 × 10 1

4 × 10 1

6 × 10 1

Symbol Error Rate of 16 QAM

LMMSE-SD with Perfect CSI
ML-SD with Perfect CSI
Introduced Approach with Perfect CSI

Figure 2.5: Symbol error rate comparison under perfect CSI.

to the optimum ML method especially in the low SNR regime. Note that the complexity of

RC-based strategy is even lower than that of LMMSE-based strategy.

Finally, we present the performance comparison under alternate NN architectures. This

comparison uses the metric of generalization error which is characterized by the symbol error

rate (SER) in this case, as demonstrated in Fig. 2.7. The label ‘shifting MLP’ represents a

structure similar to Fig. 2.7, but using a multilayer perceptron (MLP) in the time domain

instead of the RC. The training scheme is the same as in the introduced network. The

label ‘pure MLP’ represents an MLP that performs the symbol detection directly instead of

employing the knowledge of structure to build the multi-class symbol detector. The results

demonstrate that our method which includes a strong inductive bias can achieve a better

generalization performance compared to other generic non structure-aware NN architectures

illustrating the power of RC and structure knowledge in wireless systems.
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Figure 2.6: Symbol error rate comparison under LMMSE-based estimated CSI.
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Figure 2.7: SNR = 10 dB, Training Set Size = 2 MIMO-OFDM Symbols
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2.5 Conclusion

A NN-based symbol detector for MIMO-OFDM systems is introduced in this paper. The

NN incorporates structural knowledge of MIMO-OFDM signals that characterizes features

in time, frequency and constellation where the training overhead is significantly reduced due

to the inductive bias. The time domain information is captured through the RC while the

frequency domain information is reflected in the initialization of RC’s output layer. The

structure of the modulation scheme is incorporated by a shifting process which generalizes

binary symbol detectors to multi-class detectors. The training of the associated network

weights is conducted through backpropagation. Experimental results show that the intro-

duced NN-based detection can perform close to ML detection under estimated CSI. Since

the complexity of the introduced RC-based strategy is relatively low, it provides a promising

symbol detection strategy for MIMO-OFDM systems.



Chapter 3

MIMO-OFDM Symbol Detection via

Deep-RC

3.1 Introduction

This chapter presents an alternative symbol detection method without using explicit channel

estimation. The implementation is fully based on reservoir computing (RC) [57] which is a

special category of RNNs. RC is capable of avoiding the issues of vanishing and exploding

gradients which occur during training of conventional RNNs using back-propagation through

time (BPTT) [75]. Furthermore, the training of RC is only conducted on the output layer

while the hidden layers and the input layers are fixed according to a certain distribution.

In this way, the amount of training needed for MIMO-OFDM symbol detection can be

significantly reduced making it an operationally feasible solution to address Challenge 1.

This benefit can be clearly seen in Section 3.5.4 where we show a quantitative comparison

of the training overhead for various learning-based strategies. The RC architecture makes

applying NN techniques in the physical layer of cellular networks possible and feasible. It is

also shown in [84] that RC-based symbol detection can significantly improve the underlying

energy-efficiency of the system.

In this work, rather than directly applying the shallow RC structure, we attempt to address

Challenge 2 and Challenge 3 by introducing RCNet through the following extensions to facil-

25
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itate deep RC-based symbol detection methods that further improve detection performance:

• Extend the output layer of a shallow RC structure to a multiple-layer network promot-

ing joint time-frequency processing. This method can effectively resolve Challenge 2 by

incorporating the structural information (time-frequency structure) of MIMO-OFDM

signals into the output layer design of RCNet.

• Stack shallow RCs together into a “deep” RC to improve the processing capability of

RCNet. In this way, Challenge 3 can be addressed owing to the boosting mechanism

of NNs.

The first extension on deepening the output layer is achieved by replacing the original single

layer output of the shallow RC with a three-layer structure: a time-domain layer, a Fourier

transform layer, and a frequency-domain layer, namely the “time-frequency RC”. The time-

domain layer attempts to reconstruct the transmitted time-domain signal. The Fourier

transform layer is used to transform the time-domain signal to the frequency-domain. The

frequency-domain layer attempts to extract frequency-domain features to further improve the

detection performance. The second extension is achieved by concatenating multiple “time-

frequency RCs” sequentially. Note that the output weights of each RC layer are trained in

a consecutive fashion.

Through extensive experiments, we show that this deep structure of RCNet demonstrates

appealing and robust performance when non-linear effects exist in the end-to-end wireless

system. In other words, it outperforms conventional MIMO symbol detection strategies

under channel non-linearities caused, for e.g., by the power amplifier (PA) at the transmit-

ter (Tx) or the quantization error due to the low resolution of analog-to-digital converters

(ADCs) at the receiver (Rx). The results suggest that the introduced MIMO-OFDM sym-

bol detection framework can be a very promising enabling technology for Beyond-5G cellular
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systems where high-frequency spectrum and low-resolution ADCs would be frequently used.

To the best of our knowledge, we believe this is the first recurrent neural network-based

MIMO-OFDM symbol detector in the literature that can provide good symbol detection

performance using a limited training set under relevant channel environments (e.g., the

Winner II channel) in the presence of practical real-world constraints such as transmit-side

non-linearity due to the PA and limited quantization resolution in the receiver.

3.1.1 Related Work

Deep RNN

Deep neural networks (DNN) can extract sophisticated features thereby providing improved

classification performance over shallow NNs [38]. Hierarchical RNNs are shown to be capable

of learning long-term dependencies of signals [23]. In [34], the deep long short-term memory

network was introduced by consecutively stacking the hidden layers of multiple RNNs. This

deep structure is shown to significantly improve performance in the task of speech recog-

nition. The methods of extending a shallow RNN to deep RNNs have been summarized

in [74]: multi-layer RNNs can be constructed by increasing input layers, hidden layers and

output layers, as well as stacking multiple shallow RNNs into a deep form. Concatenating

echo state networks (ESNs) into a chain by learning readout layers connecting to each ESN

layer is introduced in [42]. The follow up work in [29, 30] extended this structure into a

deep version which is demonstrated to be able to achieve a higher memory compared to the

shallow one. However, these extensions are very general and do not consider specific domain

knowledge and structural information for targeted applications.
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NN-based Symbol Detection

Based on the convolution feature of wireless channels, convolutional neural networks (CNNs)

are utilized for OFDM symbol detection in [94]. The work in [80] combines the CSI and

received symbols together as the input of DNNs for MIMO symbol detection. In [17], it is

shown that NN-based MIMO symbol detection can be generalized under imperfect CSI. Two

frameworks, namely, data-driven and model-driven NNs, are introduced in [45] for the design

of an OFDM receiver. However, all of the above methods are based on the NNs requiring

a large training set. Therefore, it is almost impossible to adopt any of these methods in

practical cellular networks.

On the other hand, our previous work [64, 100], showed that shallow RCs can achieve

good performance for MIMO-OFDM symbol detection even with a very limited training

set. In [64], an ESN, which is a special variant of RC, is introduced as an OFDM symbol

detector without relying on obtaining explicit CSI. This scheme is evaluated under relevant

scenarios for cellular networks where the training/reference signal overhead is comparable

to that of current cellular networks. In our follow-up work, the windowed ESN (WESN) is

introduced by adding a sliding window to the input of ESN to enhance the short-term mem-

ory (STM) [100]. Experimental results show that WESN can provide good performance over

standard ESNs using the training/reference signal set adopted in 4G LTE-Advanced [5]. Fur-

thermore, ESN-based symbol detectors can effectively compensate for the distortion caused

by non-linear components in wireless transmission.

The organization of this paper is as follows. In Sec. 3.2, we briefly describe the transceiver

architecture. In Sec. 3.3 and 3.4, we introduce the two extensions incorporated in our

proposed RCNet structure and its associated learning algorithms. Sec. 3.5 evaluates the

performance of RCNet as opposed to existing symbol detection strategies for MIMO-OFDM
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systems. The conclusion and future work is contained in Sec. 4.6.

3.2 OFDM Transceiver Architecture and Structural In-

formation

In this section, we briefly introduce the transceiver architecture of a MIMO-OFDM system

and illustrate the structural information that we will utilize for the design of RCNet. The

OFDM resource grid can be seen most clearly in Fig. 3.1. The total system bandwidth

is divided into Nsc sub-carriers. In each sub-frame, the first Q OFDM symbols are the

reference signals (the training set) and the rest Nd OFDM symbols are used to carry data

(the testing set). Therefore, the reference signal overhead (training overhead) is defined as

η = Q/(Q + Nd). In 3GPP LTE/LTE-Advanced and 5G systems, Q + Nd = 14 for normal

sub-frames and the overhead is typically below 20% to improve spectral-efficiency [4, 6]. For

fre
qu

en
cy

time

Q OFDM symbols Nd OFDM symbols

Nsc subcarriers

Reference signal

Data

Figure 3.1: OFDM Resource Grid

a single MIMO-OFDM symbol, we denote the modulation symbol as {z(n)}Nsc−1
n=0 , where

z(n) ∈ CNt×1 represents the modulation symbols at the nth sub-carrier of the underlying
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MIMO-OFDM symbol in the frequency domain; Nt is the number of transmit antennas

in the system. Each element of z(n) is modulated using quadrature amplitude modulation

(QAM). A single MIMO-OFDM symbol in the frequency domain also can be lumped as a

matrix,

Z ≜ [z(0), z(1), · · · , z(Nsc − 1)]T . (3.1)

After the inverse fast Fourier transform (IFFT) operation and addition of the cyclic prefix

(CP), we can obtain the time domain MIMO-OFDM symbol, denoted as X̃. At the

transmitter, the MIMO-OFDM symbol is distorted by a non-linear activation function f(·)

due to the inherent non-linearity of transmitter-side radio circuits, such as the PA [46]. At

the receiver, a single MIMO-OFDM symbol is expressed as

X = q(h(f(X̃)) +N ), (3.2)

where X ≜ [x(0),x(1), · · · ,x(Nsc +Ncp − 1)]T ∈ C(Nsc+Ncp)×Nr ; Nr is the number of receive

antennas; N is the additive noise; h(·) represents the multi-path channel, such as the 3GPP

spatial channel model (SCM) [1] and q(·) represents the non-linearity at the receiver.

For RC-based MIMO-OFDM symbol detection, the objective is to recover the frequency

domain modulation symbols {z(n)}Nsc−1
n=0 . On the other hand, the inputs to the RC are the

time domain samples {x(t)}Ncp+Nsc−1
t=0 . This structural information needs to be explored

in the design of RCNet to improve its detection performance beyond that of the existing

shallow RC-based symbol detection. In the supervised learning framework, the training set
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is defined as {dq}Q−1
q=0 :

dq ≜
(
{xq(t)}Ncp+Nsc−1

t=0 , {zq(n)}Nsc−1
n=0

)
,

∼=
(
{xq(t)}Ncp+Nsc−1

t=0 , {x̃q(t)}Ncp+Nsc−1
t=0

)
,

∼=
(
Xq,Zq

) ∼= (Xq, X̃q

)
.

(3.3)

∼= represents equivalently defined as; The subscript ‘q’ stands for the qth MIMO-OFDM

symbol, i.e, the training set has Q batches in total. The notations used are summarized in

Table 3.1.

Table 3.1: Notations

Symbols Definitions
Nr Number of receiver antennas
Nt Number of transmitter antennas
Nsc Number of sub-carriers
Ncp Length of Cyclic Prefix (CP)
Q Number of MIMO-OFDM symbols in the training set
Nd Number of MIMO-OFDM symbols carrying data
η Reference signal (training) overhead
X One MIMO-OFDM symbol at Rx in the time domain
X̃ One MIMO-OFDM symbol at Tx in the time domain
Z One MIMO-OFDM symbol at Tx in the frequency domain
t Sample index in the time domain
n Sub-carrier index in the frequency domain

z(n) The nth modulation symbol of one MIMO-OFDM symbol at Tx
in the frequency domain

x̃(t) The tth sample of one MIMO-OFDM symbol at Tx
in the time domain

x(t) The tth sample of one MIMO-OFDM symbol at Rx
in the time domain

y(t) The tth sample of one MIMO-OFDM symbol
at the output of a time domain RC

ỹ(n) The nth modulation symbol of one MIMO-OFDM symbol at
the output of a time domain RC in the frequency domain

z̃(n) The nth modulation symbol of one MIMO-OFDM symbol at
the output of a time-frequency domain RC
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3.3 Time-Frequency RC – Incorporating Structural In-

formation

To incorporate the time-frequency structural information inherent in the OFDM signal struc-

ture, we introduce in this section the new concept of “time-frequency RC” in addition to the

shallow RC. For differentiation, the shallow RC is referred to as the “time domain RC” in

this paper. To provide a systematic view of the RC-based design and to better articulate

how the structural information is incorporated, we will first briefly discuss the “time domain

RC” used in our previous work [64, 100] before describing the “time-frequency RC”.

3.3.1 Time Domain RC – The Shallow RC

Input Layer

Reservoirs

Output Layer

Output Feedback

Figure 3.2: RCNet: Time Domain RC - Echo State Network (ESN) Realization

One realization of the time domain RC is illustrated in Fig. 3.2, namely an ESN [41]. In the

figure, the collection of neurons is denominated as a reservoir. The ESN drives the input

signal into a high dimensional dynamic response through a fixed random projection, where

the response signal is represented by the trajectory of hidden neuron states. Meanwhile,

non-linear activation functions are applied to the neuron states transition. The neurons in

the reservoir are sparsely connected with fixed weights to satisfy certain distributions under

which the response signals are asymptotically uncorrelated to the initial neuron states [41].
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One justification for using fixed hidden states transition is from an experimental fact that

the dominant changes of an RNN’s weights during training happen at the output layer [82].

Finally, the desired outputs are obtained by learning a combination of the non-linear response

signals.

Given the training set {dq}Q−1
q=0 , the states of the reservoir generated by the qth batch are

sTq (t+ 1) = f(sTq (t)W s + xT
q (t)W in + x̃q

T (t)W fb + nT (t)) (3.4)

where sq(t) ∈ CNn×1 represents the neurons state vector, with Nn denoting the number of

neurons in the reservoir; f is the activation function; W s ∈ CNn×Nn denotes the state transi-

tion weights matrix; W in ∈ CNr×Nn denotes the weights of the input layer; n(t) ∈ CNn×1 is

an optional noise regularization term; W fb ∈ CNr×Nn represents the weights on the feedback

path which can be removed when teacher forcing is not required [41]. Correspondingly, the

output signal of the time domain RC can be written as

yT
q (t) = sTq (t)W tout (3.5)

where W tout ∈ CNn×Nr represents the readout layer. Note that in the training stage, if

teacher forcing is enabled, the feedback signal associated with W fb is x̃q. On the other

hand, the feedback signal x̃q is replaced by yq after training.

To drive yq(t) to the desired time domain MIMO-OFDM symbol, we can minimize the

l2-norm distance between {yq(t)}
Q−1
q=0 and {x̃q(t)}Q−1

q=0 through

min
W tout

Q−1∑
q=0

Ncp+Nsc−1∑
t=0

∥∥yq(t)− x̃q(t)
∥∥2
2
. (3.6)
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Therefore, the readout weights are updated by the following closed-form expression,

W tout =
([

ST
0 , · · · ,ST

Q−1

]T)+ [
X̃

T

0 , · · · , X̃
T

Q−1

]T
(3.7)

where (S)+ is the pseudo-inverse of S, and Sq is stacked by the trajectory of the states as

Sq ≜ [sq(0), sq(1), · · · , sq(Nsc +Ncp − 1)]T . (3.8)

In addition, due to the feedback nature of RC, there exists a lag-effect on the generated state

response [57]. A delay parameter can be introduced in the learning process such that the

following slightly revised training set is utilized[39],

d(p) ≜
(
[X0, · · · ,XQ−1,ONr×p]

T , [ONr×p, X̃0, · · · , X̃Q−1, ]
T
)

where p is the aforementioned delay parameter, and O represents the zero matrix. The time

domain RC is trained with different values of p with p⋆ being the value of p generating the

minimal objective value defined in (3.6). This input-output delay offset p⋆ will be used to

configure the RC for testing. Overall, the training procedure of the time domain RC-based

MIMO-OFDM symbol detection is summarized in Algorithm 5, where p is uniformly sampled

from 0 to Ncp in steps of P . Symbol detection is conducted by feeding the received signal to

the learned RC.

3.3.2 Time-Frequency RC – RC with Structural Information

Since the time domain RC focuses only on the received time domain signal without process-

ing in the frequency domain, it is clear that it does not take advantage of the structural

information of the underlying OFDM signalization. In OFDM systems, the training signal is
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Algorithm 1 Time domain RC-based MIMO-OFDM symbol detection
Input: {dq}Q−1

q=0

Output: W tout, p⋆
for p ∈ [0, Ncp] with step size P do
Generate p-delayed training set d(p)

Generate the state matrix {S(p)
q }Q−1

q=0 according to the dynamics equation (3.4)
Calculate the output weights W

(p)
tout using (3.7) and the objective value Objp using (3.6)

end for
Find the optimal p⋆ = arg minp Objp and W tout = W p⋆

tout

Time Sequence 
Input Layer Reservoir

Time Sequence 
Output
Layer

CP removal 
and S/P 

FFT Layer Frequency Symbols 
Output Layer

P/S

Figure 3.3: RCNet: Time-Frequency RC

sent over the frequency domain and the frequency domain provides a much cleaner view of

the transmitted signal. Therefore, it is desirable for the NN-based symbol detector to con-

duct detection tasks in the frequency domain. Meanwhile, the underlying NN-based symbol

detector should also take advantage of the time domain correlation.

To achieve these goals, we introduce the time-frequency RC whose structure is shown in

Fig. 3.3. Following the same line of reasoning as the time domain RC, the reservoir first

generates high dimensional response signals according to the input. The response signals

are mapped to the desired signals through a time domain layer, a fixed FFT layer, and

a frequency domain layer. Accordingly, the time domain layer output is the same as that

in (3.5). After removing the CP and conducting an FFT on {yq(t)}
Nsc+Ncp−1
t=Ncp

, the obtained

frequency domain symbols are denoted as {ỹq(n)}Nsc−1
n=0 . Subsequently, the frequency domain
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layer output is defined as

z̃T
q (n) = ỹT

q (n)diag (wfout(n)) (3.9)

where wfout(n) ∈ CNr×1 is the weight specified at the nth sub-carrier; diag(w) represents a

diagonal matrix which has w as the main diagonal elements. Furthermore, we set the mag-

nitude of each entry of wfout(n) as 1. This allows the introduced frequency domain layer

to compensate for the residual phase error after the time domain processing. It is impor-

tant to note that the frequency domain processing can effectively tune the delay parameter

discussed in Section 3.3.1. This is because the FFT layer converts a shift in the time do-

main to a phase variation in the frequency domain. Accordingly, the added output layers in

the time-frequency RC essentially leverage the structural information of the MIMO-OFDM

signal.

The learning objective of the time-frequency output layer is

min
W tout

{wfout(n)}Nsc−1
n=0

Q−1∑
q=0

Nsc−1∑
n=0

∥zq(n)− z̃q(n)∥22

s.t. diag (|wfout(n)|) = I, ∀n = 0, · · · , Nsc − 1

. (3.10)

which is equivalent to the time domain objective function defined in (3.6). In order to seek

a proper solution to the above problem, we resort to alternative least squares (ALS) as the

solver to obtain closed-form update rules for W tout and wfout(n). The detailed derivation

can be found in the Appendix with their closed-form update rules outlined in (B.4) and (B.1)

respectively. The learning algorithm of the time-frequency RC is summarized in Algorithm 2.

Note that there are certain implementation-related issues that need to be clarified when fully
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Algorithm 2 Time-frequency RC based MIMO-OFDM symbol detection
Input: {dq}Q−1

q=0

Output: W tout, {wfout(n)}Nsc−1
n=0

Generate the state matrix {S(p)
q }Q−1

q=0 according to the dynamics equation (3.4)
Initialize wfout(n) = 1, ∀n = 1, · · · , Nsc

while (3.10) does not converge do
Update W tout using (B.4)
Update wfout(n) using (B.1)
end while

connected layers are employed in the frequency domain, i.e. replacing diag (wfout(n)) with

W fout(n) in (3.9). In this case, the learning rule of the output layers becomes

min
W tout

{W fout(n)}Nsc−1
n=0

Nsc−1∑
n=0

∥∥∥F̃ (n)SW toutW fout(n)−Z(n)
∥∥∥2
F

where F̃ (n) ≜ I ⊗ f(n), f(n) ∈ CNsc×1 is the nth row of a Fourier matrix, ⊗ denotes the

Kronecker product operation and

S ≜ [S0(Ncp : Nsc +Ncp − 1, :)T , SQ−1(Ncp : Nsc +Ncp − 1, :)T ]T

Based on ALS, the update rule of W fout(n) is given by

W fout(n) = (F̃ (n)SW tout)
+Z(n). (3.11)

However, given W fout(n), W tout is updated by solving a Sylvester’s equation which can

introduce a heavy computational load. Meanwhile, this brings more parameters to learn

which can lead to overfitting since the training set size is usually limited in practical systems.
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3.4 RCNet – Stacking RCs for a Deep Network

Input Layer

Reservoirs

Intermediate
Output Layer

Intermediate
Input Layer

Reservoirs Reservoirs

Output Layer
Intermediate
Output Layer

Intermediate
Input Layer

Figure 3.4: RCNet: Deep Time RC

We now introduce RCNet by stacking multiple RCs into a “deep” RC network. Intuitively,

this deep structure can be interpreted as decomposing different levels of interference can-

cellation for the received MIMO-OFDM signal. Based on the discussion in Section 3.3, the

basic building block of RCNet can be either the time domain RC or the time-frequency RC.

When the building block is the time domain RC, RCNet can be constructed by stacking

them into a deep structure (Deep Time RC) as shown in Fig. 3.4. Let L denote the total

number of building blocks in RCNet. Given the training set d(p), for the lth RC, the state

equations are

s(l)Tq (t+ 1) = f
(
s(l)Tq (t)W (l)

s + y(l−1)T
q (t)W

(l)
in + x̃T

q (t)W
(l)
fb + nT (t)

)

where the superscript (l) represents the lth RC; y(l) follows the output equation from the

previous layer which is defined in (3.5). The output layer and intermediate output layers of

this RCNet are learned sequentially, i.e. the intermediate output layer closest to the input

is learned first; the next RC is learned based on the results generated by the previous one.

The input of the lth RC is the output of the (l− 1)th RC after training. The teacher forcing

for different RCs is the same. The final output of this RCNet generates an estimate of

the desired MIMO-OFDM symbol, i.e. y
(L)
q (t). In the state equation of the lth layer, the
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feedback signal associated with W
(l)
fb is replaced by yq after training. The learning algorithm

of the deep time RC is summarized in Algorithm 3. This learning method can be interpreted

via the boosting framework [28]: by sharing learned features among a set of weak learners,

their ensemble can result in a stronger learning ability.

Algorithm 3 RCNet: Deep Time RC based MIMO-OFDM Symbol Detection
Input: {dq}Q−1

q=0

Output: {W (l)
tout}L−1

l=0 , {p(l)}L−1
l=0

{x(o)
q (t)}Ncp+Nsc−1

t=0 = {xq(t)}Ncp+Nsc−1
t=0

for l from 0 to L− 1 do
dq(l) ≜

(
{x(l)

q (t)}Ncp+Nsc−1
t=0 , {x̃q(t)}Ncp+Nsc−1

t=0

)
for p ∈ [0, Ncp] with step size P do
Generate p-delayed training set d(p)(l)
Generate the state matrix {S(p)

q }Q−1
q=0 according to the state equation (3.4)

Calculate the output weights W
(p)
tout using (3.7) and the objective value Objp using (3.6)

end for
Find the optimal p(l) = arg minpObjp and W

(l)
tout = W p(l)

tout

Use the learned W
(l)
tout and p(l) to generate {x(l+1)

q (t)}Ncp+Nsc−1
t=0

end for

Similarly, we can change the building block of RCNet from the time domain RC to the newly

introduced time-frequency RC. The structure of the corresponding RCNet (Deep Time-

Frequency RC) is shown in Fig. 3.5. The Deep Time-Frequency RC is expected to provide

better performance than the Deep Time RC since it takes advantage of the structural in-

formation of OFDM signalization. Furthermore, it is important to note that compared to

the Deep Time RC version of RCNet, additional IFFT layers need to be added between two

adjacent time-frequency RCs to transform the former frequency domain output to a time

domain signal for subsequent processing. A similar learning algorithm for this RCNet (Deep

Time-Frequency RC) is summarized in Algorithm 4. Note that this learning methodology of

RCNet is fundamentally different from conventional gradient-based learning in that the RC

structures do not require learning of the internal state transition matrix and the input layer.



40 Chapter 3. MIMO-OFDM Symbol Detection via Deep-RC

Using the l2-norm as the loss function allows us to leverage the least squares framework

to arrive at a closed-form solver, which is more efficient than conventional gradient-based

objective descent. Training any of the deep RC structures via backpropagation through time

(BPTT) is very inefficient since BPTT essentially unfolds the RC structure into a “very deep

neural network” in both the time and space dimensions, which can cause severe gradient van-

ishing issues during training. On the other hand, the sequential learning methodology builds

on the boosting mechanism, where results learned from previous layers offer a good starting

point for the learning of the deeper layers.

Figure 3.5: RCNet: Deep Time-Frequency RC structure

Algorithm 4 RCNet: Deep Time-Frequency RC based MIMO-OFDM Symbol Detection
Input: {dq}Q−1

q=0

Output: {W (l)
tout}L−1

l=0 , {p(l)}L−1
l=0

{x(o)
q (t)}Ncp+Nsc−1

t=0 = {xq(t)}Ncp+Nsc−1
t=0

for l from 0 to L− 1 do
dq(l) ≜

(
{x(l)

q (t)}Ncp+Nsc−1
t=0 , {x̃q(t)}Ncp+Nsc−1

t=0

)
∼=
(
{x(l)

q (t)}Ncp+Nsc−1
t=0 , {zq(n)}Nsc−1

n=0

)
Generate the state matrix {S(p)

q }Q−1
q=0 according to the state equation (3.4)

Initialize wfout(n) = 1, ∀n = 1, · · · , Nsc

while (3.10) does not converge do
Update W tout using (B.4)
Update wfout(n) using (B.1)
end while
Use the learned W tout and wfout(n) to generate {x(l+1)

q (t)}Ncp+Nsc−1
t=0

end for

The number of RC components in RCNet is another tunable parameter. A validation set can
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be utilized for determining the proper value of L. We can simultaneously test the validation

error while increasing L: Once the validation error stops decreasing, we can stop increasing

L. Furthermore, the number of neurons in each RC can also be configured differently. How

to optimize the number of neurons in each RC to achieve the best generalization perfor-

mance can be treated as future work. The comparison of the complexity of time RC with

conventional approaches can be found in Table I in our previous work [100]. Following a

similar derivation, the additional number of FLOPS required for the time-frequency RC is on

the order of O(NrNsc(Q+ 1+Qlog(Nsc))), with training the corresponding deep structures

being L times more computationally expensive.

3.5 Performance Evaluation

In this section, we provide performance evaluations for the introduced RCNet framework

under relevant scenarios. The modulation scheme used to generate z(n) is set to be 16-QAM.

The simulation parameters in the performance evaluation are configured as the follows: Nr =

4, Nt = 4, Nsc = 1024, Ncp = 160, Q = 4, and Nd = 13. Note that in this case the training

overhead is only 23.5%, which is significantly lower from most other NN-based detection

methods that use a prohibitively high training overhead. The channel model adopted in

the evaluation is the Winner II channel model defined in [60], where the transmitter and

receiver are configured with uniform linear arrays having half-wavelength antenna spacing.

Furthermore, the communication scenario is chosen to be the outdoor-to-indoor case.

Recall from Fig. 3.1 that the first Q OFDM symbols constitute the training set and next

Nd OFDM symbols are the data symbols that make up the testing set. Therefore, the first

Q OFDM symbols will be used to train the RCNet while the bit error rate (BER) will

be evaluated using the testing set (data symbols). This training and testing procedure is
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conducted for 100 consecutive sub-frames. The number of neurons for each layer of the

RCNet (the component of the shallow RC) is set as 128. The number of layers L is set

as 3 for the deep structures. Furthermore, a time window is added to the input layer of

each RC unit as suggested in [100], where the length is set as 128. The state transition

matrix W s is generated randomly to satisfy the echo state property [41], where the spectral

radius is chosen to be smaller than 1. The input weights matrix W in is generated randomly

from a uniform distribution. In our evaluations, adding teacher forcing does not show an

improvement in performance. Therefore, W fb is set to zero.

3.5.1 BER Performance under Tx Non-linearity

Figure 3.6: Average BER for RCNet-based methods and conventional methods in PA linear
region

To evaluate the symbol detection performance, we compare RCNet to shallow RC-based

strategies as well as conventional methods. To incorporate the Tx non-linearity in our eval-
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Figure 3.7: Average BER for RCNet-based methods and conventional methods by varying
IBO to operate in PA’s non-linear region

uation, the following RAPP model was adopted for the power amplifier (PA),

f(x) =
x[

1 +
(

|x|
xsat

)2ρ]1/2ρ (3.12)

where x represents the PA input signal, ρ is the smoothing parameter, and xsat is the

saturation level. When x ≪ xsat, we have f(x) ≈ x, implying that the PA output signal

has no distortion compared with the input. In our evaluation, we set ρ = 3 and xsat =

1. As a benchmark, two conventional symbol detection methods, namely linear minimum

mean squared error (LMMSE) and sphere decoding (SD) [32], are selected. Since these two

methods rely on the knowledge of channel state information (CSI), we utilize LMMSE as the

channel estimation strategy based on the Q OFDM symbols of reference signals (training

set) assuming perfect knowledge of the noise variance and the linearity of the underlying

wireless link.
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We first consider the BER performance when the PA input power is in the linear region.

In this case, the PA input power is backed off to be far from the PA’s saturation region.

Accordingly, the input back-off (IBO), which is defined as the ratio between the PA’s satu-

ration power to the input power, is chosen to be greater than 8 dB. In Fig. 3.6 we show the

bit error rate (BER) plotted as a function of the received signal to noise ratio (SNR) in dB

for various symbol detection schemes, where the SNR is calculated as the average signal to

noise ratio across all subcarriers at the receiver side. From the results we can observe that

all RC-based methods including the shallow structures and RCNet can perform better than

conventional methods when the transmission power is low. This is because the estimated

CSI is inaccurate in the low-SNR regime resulting in poor performance of the conventional

model-based methods. For example, the performance of LMMSE symbol detection is greatly

dependent on the accuracy of the channel state information (CSI), which is estimated using

over-the-air pilots in practical systems. Therefore, inherent error in the CSI estimate can

deteriorate the symbol detection performance, depending further on the modulation scheme

used. On the other hand, RC-based methods are able to learn the underlying features of

the channel without explicitly relying on the underlying CSI. Furthermore, it can be seen

from the results that the two versions of RCNet provide slight performance improvement

over their shallow counterparts demonstrating the benefits of the deep network structure.

In Fig. 3.7, we show the BER performance when the PA input power is close to the saturation

region. In this case, the PA’s output is distorted due to the compression effect. The distor-

tion occurs when the peak-to-average-power-ratio (PAPR) of the PA input signal is higher

than the IBO, where the PAPR of an OFDM signal x(t) is defined as ∥x(t)∥2∞/∥x(t)∥22. In

our evaluation, the signal’s PAPR is controlled in the range from 6 dB to 9 dB. Therefore,

in order to investigate the BER performance under the PA’s compression effect, we choose

the IBO to be below 6.5 dB as shown in Fig. 3.7. The results clearly show that all RC-based
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methods perform relatively well when the IBO is low, especially when it is lower than 5

dB. Note that the PA efficiency is substantially higher when it is operating at a low IBO.

This clearly suggests that RC-based methods can provide an improvement in PA efficiency

by compensating for the transmitted waveform distortion at the receiver. Furthermore, the

results in Fig. 3.7 demonstrate the benefits of utilizing the signal’s structural information in

the underlying NN design: the Time-Frequency RC performs significantly better than the

Time RC and the Deep Time-Frequency RC performs better than the Deep Time RC. This

is because the newly introduced Time-Frequency RC does take advantage of the OFDM

signalization in the design of the underlying network structure of RC to address Challenge 2.

On the other hand, the evaluation results also clearly show the power of the deep nature of

the introduced RCNet to address Challenge 3 without additional training overhead: RCNet

performs substantially better than its shallow counterparts with the same training overhead.

Note that in Fig. 3.7, as the IBO reduces, the received SNR will also increase leading to op-

eration in the high SNR region at the receiver. Note that there are existing methods such

as Digital Pre-Distortion (DPD) to mitigate the PA’s non-linearity by pre-preprocessing the

transmit data in the digital domain. However, such methods rely on accurate PA models

and parameters, and cannot compensate for the loss when operating in the PA’s compression

region, but only when operating in its distortion region. Additionally, such mitigation meth-

ods rely on corrective processing at the transmitter, whereas RCNet can compensate for this

distortion completely at the receiver, therefore, allowing PA operation at the transmitter in

the non-linear regime for enhanced efficiency.

Furthermore, in Fig. 3.8, we investigate the distribution of symbol error rate (SER) over

all subcarriers as a function of channel correlation. Accordingly, the x-axis is set to be the

spatial channel condition numbers from all subcarriers. The SER is evaluated in the PA’s

nonlinear region with an IBO of 6 dB. Fig. 3.8 demonstrates that although the performance
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of all methods is affected by the channel condition number, both the Time RC and the

Time-Frequency RC can maintain a given SER across a wider range of condition numbers,

as compared to LMMSE.

Figure 3.8: SER distribution over channel condition numbers

3.5.2 BER Performance under Rx Non-linearity

The non-linearity in the receiver stems primarily from the quantization of the received signal

due to the finite resolution analog-to-digital conversion. For a MIMO-OFDM signal, the in-

phase and quadrature components are quantized by a pair of analog-to-digital converters

(ADCs), where the input-output relation of the ADCs can be defined as

q(x) =

 ∆⌈x/∆⌉ −∆/2, if|x| < Amax

Amax · sign(x), otherwise
(3.13)
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Figure 3.9: Average BER curves for RCNet-based methods and conventional methods using
1-bit resolution ADCs

in which x is the ADC’s input, ⌈·⌉ is the ceiling function, ∆ > 0 represents the quantization

interval, and Amax is the maximal input amplitude of ADC such that Amax = (2n − 1)∆/2,

where n is the number of quantization bits. To be specific, when ∆ = 2Amax, q(x) represents

a one-bit ADC. In the state-of-the-art, low-resolution ADCs are often utilized to digitize

a signal with a large bandwidth at high frequencies (e.g., mmWave bands and Terahertz

bands) or to reduce the power consumption of the underlying ADCs. Note that almost all

existing work in the symbol detection domain with limited resolution ADCs makes system

assumptions such as large number of antennas and ideal CSI, which are either not compatible

with the setting in RCNet or not feasible in practice. Also, to the best of our knowledge,

we did not find existing work that can generate stable channel estimation results as well as

conduct symbol detection in a MIMO-OFDM system with quantized CSI.

In Fig. 3.9 and Fig. 3.10, we investigate the BER performance of uncoded MIMO-OFDM

signals under 1-bit and 2-bit quantization respectively (n = 1 and n = 2) using QPSK mod-
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Figure 3.10: Average BER curves for RCNet-based methods and conventional methods using
2-bit resolution ADCs

ulation as a function of the received SNR. Since only 1-bit and 2-bit ADCs are used, the

resulting quantization errors are usually large. From the figures, we can see that conven-

tional methods are very sensitive to quantization errors, for e.g., the SD strategy completely

collapses in both cases. On the other hand, all RC-based methods can handle the large

quantization errors very well showing the benefits of adopting this particular learning-based

approach. It is important to note that the RC-based strategies outperform the conventional

LMMSE and SD in all SNRs of interest. Furthermore, a considerable gain can be achieved

from Time-Frequency RC to Time RC showing the importance of incorporating structural

information in the underlying NN design for MIMO-OFDM symbol detection. As for the

comparison between the shallow RCs and the RCNet structures, we see very marginal BER

performance improvement. This might be due to the fact that the shallow RC already takes

the best advantage of the available limited information for symbol detection while additional

iteration does not provide performance improvement. Identifying the detailed reasons behind
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this phenomenon can be treated as a future extension of this work. Note that even though

Fig. 3.6 shows that deep time-frequency RC performs slightly worse than the time RC in

the PA’s linear region, i.e., in the absence of non-linearities, their performance is typically

close to each other in the absence of system impairments. On the other hand, Fig. 3.7 and

Figs. 3.9, 3.10 demonstrate that in the PA’s non-linear operation region and with extremely

low-resolution ADCs in the receiver respectively, both the time-frequency RC and the deep

time-frequency RC provide better performance than their time RC counterparts. Finally,

even though the uncoded BER range of 0.25 to 0.4 presented in Fig. 3.9 and Fig. 3.10 rep-

resents an infeasible operational range for a radio receiver, the performance gain of RCNet

over model-based methods in this extremely challenging situation of 1-bit or 2-bit quanti-

zation and highly distorted CSI demonstrates its applicability and the advantage it offers

over conventional methods in such challenging scenarios. By incorporating channel coding,

it is possible to improve the RCNet performance further to a feasible operating point for

LTE/LTE-Advanced systems.

3.5.3 Learning Convergence of RCNet

The evaluation results presented in previous sections show that RC-based methods are effec-

tive in the low SNR regime and under the effects of transmitter and receiver non-linearities.

These evaluations use L = 3 for the RCNet structures. Intuitively, we can increase L to yield

better training performance, however, a higher L may cause over-fitting. Fig. 3.11 shows

the testing BER of RCNet as a function of L considering only the transmitter non-linearity:

increasing L does ensure a decrease in the generalization error up to L = 3 in general. For

implementation, a suitable value for L that minimizes the testing BER may be determined

via fine-tuning.



50 Chapter 3. MIMO-OFDM Symbol Detection via Deep-RC

Figure 3.11: Testing BER (Generalization Error) for RCNet as a function of L

We now evaluate the convergence behavior of RCNet under transmit non-linearity. For an

SNR of 12 dB, we train different RCs under the same channel realization. The objective

function used for tracing the number of iterations is defined in (3.6) for the Time RC and

in (3.10) for the Time-Frequency RC. Fig. 3.12 shows the learning curve of the time domain

RCs where each iteration corresponds to a fixed delay parameter. For the delayed training

of RCNet, we set P = 5 and choose the delay parameters uniformly from 0 to Ncp in

Algorithm 3. Therefore, the training of each RC layer of RCNet requires 5 iterations and

a total of L = 10 layers are considered in Fig. 3.12. The legend “entering next layers”

represents a single iteration in the for-loop on L in Algorithm 3 and Algorithm 4. For

instance, when the iterator l changes from l = L1 to l = L1+1, the output signal of layer L1

“enters” layer L1+1. For the shallow time RC, we set P = 50 in Algorithm 5, meaning that

the resolution used in the search for the optimum delay is finer for the case of shallow RC

than that for the case of RCNet. Therefore, there are a total of 50 iterations for the shallow
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Figure 3.12: Learning curves of the Shallow Time RC and RCNet (Deep Time RC)

Time RC. From Fig. 3.12, we clearly observe that a finer delay parameter cannot result in

a lower objective value, whereas adding extra layers of RCs on top of the shallow RC can

decrease the objective value.

A similar conclusion can be drawn by observing the learning curve of the Time-Frequency

RC and RCNet as depicted in Fig. 3.13. For RCNet (Deep Time-Frequency RC), we fix the

number of iterations of the ALS for solving each RC layer to be 5 in Algorithm 4. Therefore,

as in Fig. 3.12, the training for each RC layer of the RCNet requires 5 iterations and a total of

L = 10 layers are considered in Fig. 3.13. As shown in Fig. 3.13, the objective value decreases

significantly by adding one extra RC layer. Compared with the shallow Time-Frequency RC,

the fitting error of RCNet (Deep Time-Frequency RC) is significantly smaller. To gain an

intuition of the role of the different RC layers in RCNet, the layers can be thought of as

learning different levels of features, with each layer producing a different output distance

compared to the training target, so that the signals generated by the deeper layers are
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Figure 3.13: Learning curves of the Shallow Time-Frequency RC and RCNet (Deep Time-
Frequency RC)

closer to the target. Therefore, deepening the RCNet structure can lead to a decrease in the

training error, as compared to the shallow structure. The comparison between the two RCNet

structures (Deep Time RC and Deep Time-Frequency RC) is presented in Fig. 3.14. In this

comparison, we set the number of iterations of each RC layer to be 20 with L being swept

from 1 to 10. Fig. 3.14 shows that the Deep Time-Frequency RC yields a stable objective

value where increasing L no longer helps in deceasing the training error. On the other hand,

increasing L always helps to reduce the training error for the Deep Time RC. From the

generalization error on the testing set shown in Fig. 3.11, the stability characteristics of the

learning curve for the Deep Time-Frequency RC provide an efficient way to determine a

suitable value for L that can avoid overfitting issues.
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Table 3.2: Bit Error Rate (BER) Comparison with alternate NN-based methods (PA IBO
= 2.2 dB)

Detection Framework Training Symbols η (%)
Time RC [100]

4 23.5
Time-Frequency RC
RCNet: Deep Time RC
RCNet: Deep Time-Frequency RC
LSTM

4 23.5Bi-LSTM
GRU
LSTM

10 43.5Bi-LSTM
GRU
LSTM

20 60.6Bi-LSTM
GRU
LSTM

500 97.5Bi-LSTM
GRU
LSTM 5000 99.7
LMMSE

4 23.5Sphere Decoder
DetNet [81] (IID Gaussian Channel)
Training with Perfect CSI

3000 83.5Training with Estimated CSI
MMNet [47] (3GPP MIMO Channel)
SNR = 13− 18 dB 3096 38.24
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Table 3.3: Bit Error Rate (BER) Comparison with alternate NN-based methods (PA IBO
= 2.2 dB)

Detection Framework Training BER Testing BER
Time RC [100] 2 × 10−3 9 × 10−2

Time-Frequency RC 8 × 10−3 8 × 10−2

RCNet: Deep Time RC 1.4 × 10−3 7.3 × 10−2

RCNet: Deep Time-Frequency RC 3.5 × 10−2 6.9 × 10−2

LSTM 3 × 10−2 4.7 × 10−1

Bi-LSTM 4.6 × 10−5 4.7 × 10−1

GRU 6 × 10−2 4.7 × 10−1

LSTM 2.2 × 10−1 4.7 × 10−1

Bi-LSTM 5.1 × 10−2 4.7 × 10−1

GRU 2.7 × 10−1 4.8 × 10−1

LSTM 2 × 10−1 4 × 10−1

Bi-LSTM 9.9 × 10−2 4 × 10−1

GRU 2.5 × 10−1 4.1 × 10−1

LSTM 4.5 × 10−1 4.4 × 10−1

Bi-LSTM 4.4 × 10−1 4.3 × 10−1

GRU 4 × 10−1 4.4 × 10−1

LSTM 4.4 × 10−1 4.3 × 10−1

LMMSE N/A 9.2 × 10−2

Sphere Decoder 1.3 × 10−1

DetNet [81] (IID Gaussian Channel)
Training with Perfect CSI 7 × 10−2 1.7 × 10−1

Training with Estimated CSI 1.3 × 10−1 1.5 × 10−1

MMNet [47] (3GPP MIMO Channel) 2.4 × 10−1 2.55 × 10−1
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Figure 3.14: Learning curve of the Deep Time RC and Deep Time-Frequency RC structures
in RCNet

3.5.4 Comparison with Other NNs

In Table 3.2, we present the performance comparison between the RC-based symbol detectors

(shallow RCs and RCNet) and symbol detectors constructed using alternate NN architec-

tures. Specifically, other popular RNN architectures are considered for performance compar-

ison against RCNet. The variants include long short-term memory (LSTM), bidirectional-

LSTM (Bi-LSTM) and gated recurrent unit (GRU) that are more robust against the short-

term memory issue in vanilla RNNs. Bi-LSTM is an extension of traditional LSTMs, training

on both the original input sequence as well as its reversed copy leading to a doubling of the

training time for a given size of the reference signal set. To keep the comparison fair, the

number of units in the recurrent hidden layer for the LSTM, Bi-LSTM and GRU structures

is set to 128, in line with the 128 neurons used in each layer of RCNet. In this comparative

analysis, only the PA non-linearities in the transmitter are exercised by choosing a low input
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back-off (IBO) of 2.2 dB while ignoring quantization effects of the ADCs in the receiver. It

can be seen that in the case of all three RNN-variants, even a prohibitively large training

set of 500 reference OFDM symbols, amounting to a reference signal (training) overhead of

η = 97.5%, is insufficient to achieve an acceptable BER for data transmission. On the other

hand, with only 4 reference OFDM symbols, i.e., a reference signal overhead of η = 23.5%,

all four RCNet detection methods achieve better BER performance than conventional de-

tection methods (SD and LMMSE) listed in Table 3.2. Note that SD performs worse than

LMMSE since we are operating in the non-linear region of the PA, as can be confirmed from

the results in Fig. 3.7.

As a benchmark to compare RCNet against, we also evaluate another deep learning-based

MIMO symbol detection scheme DetNet, presented in [81]. A key requirement of DetNet

is the availability of perfect CSI during testing for MIMO symbol detection. However,

perfect CSI is either infeasible or extremely costly to obtain in practical wireless systems.

In order to provide a fair comparison of DetNet against RCNet which does not rely on CSI

for detection, we evaluate DetNet’s performance in the 4 × 4 IID Gaussian channel in the

following two cases: 1) Training with perfect CSI, and 2) Training with estimated CSI. In

Case 1), we assume perfect CSI is available in the training phase of DetNet. Note that the

perfect training CSI assumption is valid for DetNet since the amount of training data is

abundant for the receiver to obtain the close-to-perfect CSI. On the other hand, during the

testing phase of DetNet, like in the case of LMMSE and SD, we assume the LMMSE channel

estimator is adopted to obtain the underlying CSI estimate. Accordingly, the estimated CSI

is utilized in the testing phase. In Case 2), we assume the LMMSE estimator is also adopted

in the training phase of DetNet to make sure the training and testing environments are the

same. It is important to note that in both cases the training/channel estimation overhead

is the same: the training overhead in the training phase + CSI estimation overhead in the
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testing phase. Further realizing that a PA backoff of 2.2 dB maps to a received SNR of

17 dB for RCNet, the same SNR value is used to train and test DetNet with its default

configurations of parameters such as number of training iterations, learning rate and batch

sizes. Table 3.2 clearly suggests that RCNet can outperform DetNet in both cases. To be

specific, when training with perfect CSI, DetNet can achieve a testing BER of 0.17 with a

training overhead of 83.5% (a training overhead of 60% and a pilot overhead of 23.5% for

CSI estimation) On the other hand, the testing BER for DetNet is 0.15 when trained with

estimated CSI. Both DetNet results in IID channels are significantly higher than 0.069, the

corresponding testing BER of RCNet (Deep Time-Frequency RC). Furthermore, we faced

significant difficulty ensuring the stability and convergence of the training process of DetNet

with the spatially-correlated 3GPP SCM channel. This demonstrates that DetNet cannot be

extended to realistic correlated MIMO channels. Additionally, for DetNet, a fixed training

overhead is needed to train the underlying neural network in addition to the pilot overhead

for channel estimation. This leads to a much higher training symbol overhead compared

to RCNet. Furthermore, once the channel statistics have changed, the underlying neural

network needs to be trained again under the new channel statistics.

For an exhaustive comparison with other NN-based detection methods, we also consider an

iterative MIMO symbol detection framework such as MMNet [47]. From Table 3.2, it can

be seen that for a 4 × 4 MIMO system, even with a training overhead of 38.24%, the BER

performance is as high as 0.255 across the SNR range used for 3GPP MIMO channels in [47].

Note that this setting for evaluating MMNet is significantly different from [47], where massive

MIMO channels (16 × 64 or 32 × 64) are considered. A best-effort hyperparameter tuning

(learning rate and number of layers) is also performed in order to achieve the lowest possible

SER for the 4× 4 system, which is very different from the configurations for which MMNet

parameters are originally trained. The reason behind the poor performance of MMNet in the



58 Chapter 3. MIMO-OFDM Symbol Detection via Deep-RC

4×4 MIMO setting may be understood from the fact that iterative methods such as MMNet

rely on the asymptotic property of the massive MIMO channel to achieve optimality [43],

which does not hold for small number of transmit and receive antennas.

Overall, from the comparison with other RNN-based symbol detection strategies we can

clearly see that RCNet offers advantages of requiring very limited training overhead to pro-

vide good performance of MIMO-OFDM symbol detection tasks. Compared with conven-

tional model-based symbol detection strategies, we can see that RCNet provides advantages

such as being robust to model mismatch and RF non-linearities (transmitter and/or re-

ceiver). On the other hand, the state-of-art NN-based symbol detection strategies, such as

DetNet and MMNet either require extensive amount of training data, time, and computa-

tional resources compared to RCNet or are not well-suited to a MIMO configuration with

limited antennas.

3.6 Conclusion and Future Work

RC-based symbol detectors have been introduced for MIMO-OFDM systems to work under

very limited training sets. This paper introduced a deep RNN-based network called RC-

Net to 1) incorporate structural information of the OFDM signalization, and 2) deepen the

original shallow RC-based symbol detection strategies to further improve the detection per-

formance. Incorporating structural information has been achieved through the invention of

Time-Frequency RC where the learning is done both in the time and frequency domains to

take advantage of the time-frequency structure of the underlying OFDM signal. Meanwhile,

the deep nature of RCNet has been achieved by extending a shallow RC structure to a deep

RC structure in the following two ways: cascading time domain RCs and cascading Time-

Frequency RCs. The associated learning algorithms have been developed for each of these
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extensions and extensive evaluation has been conducted. Experimental results showed that

RCNet can outperform conventional methods using a limited training set under non-linear

RF effects of the wireless link demonstrating the effectiveness of incorporating structural

information and deepening RCs for symbol detection.

An important area of exploration for future research is how to determine the optimal L, i.e.,

the number of RCs in RCNet especially under receiver non-linearity. Connections to the

boosting method may provide insights on designing the number of neurons in each layer.

Another interesting direction for future work is how such RC-based detection methods can

be combined with transmit-side precoding to jointly optimize the link performance with

limited CSI feedback at the transmitter. The full potential of the RCNet symbol detection

method is yet to be explored. From a theoretical standpoint, it would also be meaningful

to analyze the functionality of each layer in the interference cancellation for a multi-user

MIMO network.



Chapter 4

Massive MIMO Symbol Detection via

Tensor-RC

4.1 Introduction

Adding more antennas to the base station is proven to be able to offer more favorable channel

propagation conditions [59]. Therefore, massive multiple-input multiple-output (MIMO) be-

comes an essential physical layer technique for the 5th generation cellular networks (5G) [58].

By employing a large number of antennas at base stations (BSs), a “favorable propagation”

channel condition can be achieved. It allows inter-user interference being effectively elimi-

nated via fairly simple linear precoding or receiving methods, e.g., conjugate beamforming

for downlink, or matched filtering for uplink [31].

However, the deployment of massive MIMO in practical systems encounters several imple-

mentation constraints. Primarily, for the sake of achieving the promised benefits by massive

MIMO, highly accurate channel state information (CSI) is needed [90]. On the other hand,

CSI with high precision is challenging to be obtained due to the low received signal-to-

noise (SNR) before beamforming/precoding, as well as the limited pilot symbols defined in

modern cellular networks due to control overhead [85]. Furthermore, theoretical analysis of

massive MIMO systems usually assume ideal linearity and pleasing noise figures requiring

exceptionally high costs on radio frequency (RF) and mixed analog-digital components [91].

60
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This ends up with a compromise on the hardware selection which introduces imperfectness

(e.g. dynamic non-linearity) to the transmission link. The resulting non-linearity, on the

other hand, leads to waveform distortion and thereby diminishes the transmission reliability,

which is challenging to be analytically tackled using model-based approaches.

Symbol detection is a critical stage in wireless communications. It is a process that ac-

complishes miscellaneous interference cancellation at receivers, such as inter-symbol, inter-

stream, and inter-user inference, etc. Due to the potential model mismatch from the non-

linearity caused by low-cost hardware devices, standard model-based signal processing ap-

proaches are no longer effective. With the advent of deep neural networks, there are growing

interests in using neural networks (NNs) to handle the model mismatch [85]. In general,

NN-based framework aims to compensate for the model mismatch through the non-linearity

of NNs. This recent awareness of bridging learning-based approaches to the symbol detection

task in massive MIMO systems has posed the following conceptual discussions in the NN

design.

• Curse of Antenna Dimensionality: Since the input, hidden, and output layers of NNs

are often configured as the same scale as the antennas to jointly extract and pro-

cess spatial and time-frequency features, the growth of antenna numbers inevitably

lead to the increase of the volume of underlying NN coefficients. As NNs essentially

learn the underlying statistics of data, the corresponding increase in the parameter

dimensionality often imposes an exponential need on the training data set to offer

a reasonable generalization result. However, the availability of the training data for

cellular networks (e.g.,4G or 5G) especially the online ones is extremely limited due

to the associated control overhead [96]. Furthermore, the computational complexity

is also evinced with an exponential relation to the NN scale. Learning neural weights

through generic back-propagation can result in large computational complexities lead-
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ing to severe processing delays which are not desirable especially for delay-sensitive

applications.

• Blessings of Antenna Dimensionality: On the other hand, a large number of antennas

is able to offer favorable propagation conditions [58]. Properly leveraging the asymp-

totic orthogonality of the wireless channels can often result in surprising outcomes,

which conversely transforms the curse of dimensionality into “the blessings of dimen-

sionality” [15]. These findings align with the measurement concentration phenomena

which are widely applied to simplifying machine learning frameworks [33]. Therefore,

to explore learning-based strategies for massive MIMO, we can incorporate inherent

structures from the spatial channel as well as time-frequency features from the modu-

lation waveform to the design of NNs, which is “blessed” to offer good generalization

performance yet under very limited online training.

4.1.1 Previous Work

A commonly utilized approach for building learning-based symbol detectors is through un-

folding existing optimization-based symbol detection methods to deep NNs, such as DetNet[81]

and MMNet[47]. Since this framework is based on using explicit CSI, it usually suffers from

performance drop or requires extensive hyper-parameters tuning when CSI is not perfect.

Meanwhile, the resulting “very deep neural networks” are extremely demanding in com-

putational resources which hinders their applications in practical scenarios. Alternatively,

implicit CSI can be utilized to circumvent the above mentioned training issues. For example,

[93] introduced a deep feedforward NNs for symbol detection in single-input-single-output

(SISO) OFDM systems. Due to its independence from channel models, this approach can

equalize the channel with nonlinear distortion (power amplifier (PA)). However, this method
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uses a less-structured deep NN which is yet too complicated to train in practice, since the

guaranteed generalization performance is based on extensive training over large datasets that

are impossible to obtain in over-the-air scenarios. Furthermore, “uncertainty in generaliza-

tion” [85] will arise if the dataset used for training the underlying NN is not general enough

to capture the distribution of data encountered in testing. This is especially true for 5G and

Beyond 5G networks that needs to offer reliable service under vastly different scenarios and

environments.

In 4G/5G MIMO-OFDM systems, there exists different operation modes with link adapta-

tion, rank adaptation, and scheduling on a subframe basis [54]. Therefore, it is challenging,

to adopt a complete offline training-based approach. Rather, it is critical to design an online

NN-based approach to conduct symbol detection in each subframe only using the limited

training symbols that are present in that particular subframe. In this way, the online-

learning-based approach can be adaptive and robust to the change of operation modes,

channel distributions, and environments. On the other hand, conducting effective and ef-

ficient learning only through the limited training symbols within a subframe is extremely

challenging. To achieve this goal, more structural knowledge of the wireless channel and

modulation waveform need to be incorporated as inductive priors to the NNs to significantly

relieve the training overhead in each subframe basis[96, 98]. Reservoir computing (RC)

and its deep version have been introduced for the MIMO-OFDM symbol detection task in

[64, 99, 100, 101] to achieve learning on a subframe basis. To be specific, [64] is the first work

using a vanilla RC structure to conduct MIMO-OFDM symbol detection, where the input

and output are defined in the time domain. It shows this simple approach can achieve good

symbol detection performance in short memory channels with limited training. [99, 100, 101]

extended the RC-based symbol detection framework by adding units in width and deepth to

handle channel with long taps as well as more severe non-linearity. Experiments show that
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the extended RC framework – RCNet can effectively compensate for the distortion caused

by non-linear components in wireless systems as well as mitigate miscellaneous interference

merely from receiver side using the training dataset only from each subframe.

4.1.2 Contributions

In this paper, we consider the uplink symbol detection in a massive MIMO system with

OFDM waveform using a “subframe by subframe” learning framework. Uplink transmission

is a typical low SNR scenario since mobile terminals often use relatively low transmission

powers, and the RC framework has not yet been investigated under the scope of the massive

MIMO systems. Being able to conduct receive processing – symbol detection on a subframe

basis is extremely important for robust and adaptive communications in the 5G and be-

yond 5G massive MIMO networks. By referring to the multi-dimensional feature of massive

MIMO signals (e.g. elevation and azimuth directions in the spatial domain, the time and

frequency domain), we are motivated to incorporate this tensor structure into our symbol

detection NN. Although the concept of tensor-driven NNs has been studied before, such as

Tensorized NNs in [68], where NN weights are formulated as a tensor-train decomposition

[69], and CANDECOMP/PARAFAC (CP) decomposition characterized convolutional layers

for learning-acceleration from [52], our strategy is different to these techniques as tensor is

utilized as the forward path data structure rather than NN coefficients. In its application

to massive MIMO systems, instead of treating the input signal as a vector sequence, we

define the received signal as a tensor sequence that is consistent with the intrinsic multiple

mode property of the underlying massive MIMO signals. Such a signal processing perspec-

tive has been studied in [18, 97] to solve conventional massive MIMO channel estimation

problems. However, a more accurate explicit CSI does not sufficiently lead to an improve-

ment of the transmission reliability, since symbol detection is conducted on a separate stage
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without knowledge of the channel estimation errors. Our introduced method is to directly

demodulate symbols avoiding the intermediate channel estimation stage. More importantly,

our method accomplishes the symbol detection by using training dataset only from each

subframe. The resulting multi-mode processing framework can in general be extended to

process any other tasks with tensor structured sequence, such as video, social networks, and

recommendation systems, etc.

We name our introduced RC-based NN structure as “multi-mode reservoir computing”

(Multi-mode RC), as it inherits the dynamic mechanism of RC and processes input-output

relation using a tensor format (multi-dimensional array). In our framework, a core-tensor

is built as hidden features of the input tensor sequence. Desired output is then obtained

through a multi-mode mapping. In terms of tensor algebra, the RC readout is learned

through a Tucker decomposition with a deterministic core-tensor thanks to the aforemen-

tioned feature extraction. A theoretical analysis is then provided to show the uniqueness

of the learned NN coefficients. Our experiments reveal that this uniqueness condition is

related to the avoidance of over-fitting issues since it prevents a zero loss value which often

results in poor generalization performance on the testing dataset. Compared to single-mode

RC, Multi-Mode RC can achieve better symbol detection performance in terms of uncoded

bit error rate in the low SNR regime with reduced computational complexity. In addition,

the introduced method is shown to be effective to combat extreme waveform distortion,

e.g. applying one-bit analog to digital converter (ADC) as the receiving quantization. The

remainder of this paper is organized as follows: In Sec. 5.2, we briefly introduce math foun-

dations of tensor and the background of reservoir computing which are utilized to build the

concept of Multi-Mode RC in Sec. 4.3. In Sec. 4.4, the application of Multi-Mode RC to

massive MIMO-OFDM symbol detection is discussed. Sec. 4.5 evaluates the performance of

Multi-Mode RC as opposed to existing symbol detection strategies in massive MIMO-OFDM
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systems. The conclusion and future research directions are outlined in Sec. 4.6.

4.2 Preliminary

This section provides an overview of basic tensor algebra and reservoir computing which will

be used in the rest of this paper as the methodology development. In our math notations:

scalars, vector, matrix, and tensor are denoted by lowercase letters, boldface lowercase letters,

boldface uppercase letters, and boldface Euler script letters respectively, e.g., x, x, X and

X .

4.2.1 Tensor Algebra

Tensor is an algebraic generalization to matrix. A tensor represents a multidimensional

array, where the mode of a tensor is the number of dimensions, also known as ways and

orders[49]. The (i1, i2, · · · , iN)th element of a N -mode tensor, or namely a Nth order tensor,

X ∈ CI1×I2×···×IN , is denoted as xi1,i2,··· ,iN , where indices range from 1 to their capital

versions.

By following matrix conventions, rank(X) represents the rank of the matrix X. XT , XH

and X+ respectively stands for the transpose, hermitian transpose, and Moore–Penrose

pseudoinverse of the matrix X. Analogously, the tensor transpose of a tensor X is denoted as

X TΠ which means the ith mode of X TΠ correspond to the mode numbered as Π(i) of X , where

Π is a permutation on set {1, 2, .., N}. Moreover, blockdiag(A1, · · · ,AN) represents stacking

A1, · · · ,AN as a block-diagonal matrix. We denote superblockdiag(·) as a super-diagonal

tensor by stacking its tensor arguments as illustrated in Fig. 4.1. superblockdiag−n(·) forms

a super diagonal tensor except on mode n.
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Figure 4.1: Illustration of the tensor diagonalization of 3-mode tensors: The left
hand-side represents a super diagonal tensor superblockdiag(G(1),G(2),G(3),G(4)), the
right hand side represents a super diagonal tensor only on the first two modes, i.e.
superblockdiag−3(G(1),G(2),G(3),G(4)), where the diagonal elements are G(1), G(2), G(3) and
G(4).

The definition of the mode-n matricization of a tensor X is denoted as X(n), where (i1, i2, . . . , iN)

of X ∈ CI1×I2×···×IN maps to the (in, j) entry of matrix X(n) ∈ CIn×I−n , where I−n :=∏
k ̸=n Ik. According to[51],

j := 1 +
N∑
k=1
k ̸=n

(ik − 1) Jk with Jk =
N∏

m=k+1
m ̸=n

Im. (4.1)

The n-mode product of a tensor X with a matrix U ∈ CJ×In is defined as,

(X ×n U)i1...in−1jin+1...iN
=

In∑
in=1

xi1i2...iNujin .

The Tucker decomposition of a tensor X is defined as

X = G ×1 A(1) ×2 A(2) · · · ×N A(N) (4.2)

where A(n) represents the nth factor matrix and G is named as the core tensor. Accordingly,
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the mode-n unfolding of the tensor X is given by

X(n) = A(n)G(n)(A
(1) ⊗ · · ·An−1 ⊗An+1 · · · ⊗A(N))T , (4.3)

where G(n) is the mode-n unfolding of G. Note the above unfolding tensor has a reverse

order in the Kronecker products of factor matrices which differs to [49]. This is because we

alter the way to pile up the indices of unfolding tensors according to (4.1).

We now consider a super diagonal core tensor G with K blocks, i.e.,

G = superblockdiag(G(1),G(2), · · · ,G(K))

where G(k) ∈ CI
(k)
1 ×I

(k)
2 ×···I(k)N and a matrix A(n) being partitioned as

[A(n,1),A(n,2), · · · ,A(n,K)].

Accordingly, the resulting n-mode product between G and A(n) can be written in terms of a

super diagonal tensor except on the nth mode:

G ×n A
(n) = superblockdiag−n(G(1) ×n A

(n,1),G(2) ×n A
(n,2), · · · ,G(K) ×n A

(n,K)).

When we assume the core tensor of X is super-diagonal, the Tucker decomposition defined in

(4.2) can be alternatively expressed in terms of a summation of sub-Tucker decompositions:

X =
K∑
k=1

G(k) ×1 A(1,k) ×2 A(2,k) · · · ×N A(N,k). (4.4)

An illustration for Tucker decomposition of a three mode tensor is depicted in Fig. 4.2.
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Figure 4.2: Illustration for a Tucker decomposition of a three mode tensor: Core tensor and
factor matrices are with four partitions.

4.2.2 Reservoir Computing

Reservoir computing (RC) is defined as a framework for computation by using memory units.

The ‘reservoir’ is composed of nonlinear components and recurrent loops, where the non-

linearity allows RC to process complex problems and the recurrent loops enable RC with

memory. The ‘computing’ is achieved by reading out the states in the reservoir through

learned NN layers. The training of this framework is conducted only on the readout layers

which fundamentally circumvents gradient vanishing/explosion issues in back-propagation

through time thanks to the fixed reservoir dynamics.

A vanilla discrete-time realization of RC is characterized by a state equation and an output

equation. The state equation is formulated with time index t by,

s(t+ 1) = σ

W tran

s(t)
y(t)


 (4.5)

where σ is a nonlinear function, s(t) is a vector representing the internal reservoir state, y(t)

is the input vector, and W tran stands for the reservoir weight matrix which is often chosen

with a spectral radius smaller than 1 in order to asymptotically achieve a “similarity” to
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desired dynamic model[56]. The output equation is simply treated as

z(t) = W out

s(t)
y(t)

 , (4.6)

where W out is the output weight matrix and z(t) stands for the output. As we can see, the

output is with a skip-connection to the input which assimilates to a residual arrangement

[10].

4.3 Multi-Mode Reservoir Computing

In this section, we introduce the framework of Multi-Mode RC. It processes a sequence-in

and sequence-out task, where the time sequences are configured with more than one explicit

modes, i.e., the input sequence is formulated as Y (t) or Y(t) rather than a scalar-wise

sequence y(t) or a vector-wise one y(t).

4.3.1 Two-Mode Reservoir Computing

For ease of discussion, we begin by considering a two-mode RC. The architecture is comprised

of a recurrent module, a feature queue, and an output mapping.

Recurrent Module: A recurrent module maps input sequence Y (t) ∈ CNin−1×Nin−2 to a

state sequence S(t) ∈ CNs×Ns , where Ns represents the number of neurons defined on each

mode of S(t)1. Therefore, the total number of neurons is N2
s . To equally obtain observations

1For simplicity, we assume S(t) as a square matrix. In general, it also can be designed as a non-square
matrix. Meanwhile, the size of Ns is configured through experiments in order to maintain a balance between
overfitting and underfitting according to the datasets. The RC structure based on non-square S(t) is left as
our future work.
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from the row-space and column-space of Y (t), we define the recurrent equation as,

S(t+ 1) = σ

W tran−1

S(t), O

O, Ỹ (t)

W T
tran−2

 (4.7)

where

Ỹ (t) = blockdiag(Y (t),Y (t− 1), · · · ,Y (t− T ′)),

T ′ is a hyper-parameter representing the length of input window, σ is a non-linear function,

W tran−1 ∈ CNs×(Ns+T ′Nin−1), W tran−2 ∈ CNs×(Ns+T ′Nin−2) are reservoir weight matrices ap-

plied on the row and column spaces respectively. Note that (4.7) also can be written as a

sum as the form of (4.4). Accordingly, the state equation (4.7) can be regarded as an exten-

sion of the standard state equation (5.13) by incorporating independent mappings into the

row and column spaces of state S(t) and input Y (t). It also can be equivalently written via

the form of (5.13) through vectorizing the matrix-wise state and input. Rather than directly

applying vectorized state and input to the standard RC, our introduced approach preserves

the multi-mode feature of the input signal, where the advantages of using this strategy will

be discussed in the analysis and evaluation sections of this paper.

Feature Queue: Our definition of the feature queue G(t) is a queue of sequence, i.e., at a

given time t, the sample G(t) is a queue which is stacked up by current state sample S(t)

and input sample Ỹ (t). We opt for a simple formulation and use diagonalizing operation to

write the queue as follows,

G(t) = blockdiag(S(t),ST (t), Ỹ (t), Ỹ
T
(t)). (4.8)
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G(t) is also called extended state sequence as it is obtained with a skip connection to the

input. The presence of Ỹ T
(t) and ST (t) is to create a fair treatment on the row and column

space of Ỹ (t) and S(t).

Output Mapping: An output layer ensures the feature queue can be identically mapped

back to our desired output size. It is defined as:

Z(t) = W out−1G(t)W T
out−2

= G(t)×1 W out−1 ×2 W out−2

(4.9)

where W out−1 ∈ CNout−1×Nf−1 and W out−2 ∈ CNout−2×Nf−2 ; Nf−1 := 2Ns+T ′(Nin−1+Nin−2)

and Nf−2 := 2Ns + T ′(Nin−1 + Nin−2) respectively represent the size of row and column of

G(t); Meanwhile, Nout−1 and Nout−2 respectively stand for the size of row and column of

Z(t).

Loss Function: In this paper, the loss function is defined to handle sequence-to-sequence

tasks. Given a set of {Y q(t),Zq(t)} as the input-output pairs for training, where q stands

for the batch index, our objective aims to generate Zq(t) by using Y q(t). Therefore, we use

min
W out−1,W out−2

NK∑
q=1

NT∑
t=1

∥Zq(t)−Gq(t)×1 W out−1 ×2 W out−2∥2F , (4.10)

where ∥·∥F is the Frobenius norm of a matrix. Although the loss function is simply formulated

via a least square framework, it offers a connection between the RC readout learning and

alternating least squares (ALS) algorithm which has been widely used and can be easily

analyzed in the context of tensor decomposition[20]. We can further stack Zq(t) and Gq(t)

to 4-mode tensors along the time axis and the batches to have Z ∈ CNout−1×Nout−2×NT×NK and

G ∈ CNf−1×Nf−2×NT×NK respectively. Accordingly, the loss objective (4.10) can be rewritten
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in concise way,

min
W out−1,W out−2

∥Z − G ×1 W out−1 ×2 W out−2∥2F . (4.11)

In the training stage, we feed a batch of sequences to RC and solve the problem (4.11) using

alternating least squares, where W out−1 and W out−2 are iteratively updated by solving the

following matrix-wise least square problems,

W out−1 = arg min
W out−1

∥Z(1) −W out−1G(1)(W out−2 ⊗ INT
⊗ INK

)T∥F

W out−2 = arg min
W out2

∥Z(2) −W out−2G(2)(W out−1 ⊗ INT
⊗ INK

)T∥F .

The iterative process continues until a certain stopping criterion is reached. In this ALS

formulation, G(1) and G(2) represent the mode-1 and mode-2 unfoldings of tensor G. How-

ever, directly using this ALS calculation often requires large memory resources due to the

Kronecker products. Therefore, we introduce an alternative approach to calculate the ALS

which is discussed in Appendix.

Since reaction delays exist in RC systems[99], we often need to add another parameter τ ,

namely “Delay of RC states” in the loss objective to optimize. Therefore, we have the

following augmented loss objective,

min
τ<τmax

min
W out−1,W out−2

NK∑
q=1

NT∑
t=1

∥Zq(t)−Gq(t+ τ)×1 W out−1 ×2 W out−2∥2F , (4.12)

where τmax represents the upper bound of τ to search. Accordingly, the samples of Gq(t)

ranging from time index t = 1 to t = NT + τmax are obtained by using {Y (t)}NT
t=1 with

a τmax-length zero paddings at the end as the RC input. At testing stage, the learned

τ are applied to truncate the RC state sequence such that the output sequence becomes
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Table 4.1: Notations of Multi-Mode RC

Notations Definitions
T ′ Input window length
N Number of signal mode in Multi-Mode RC
Nin−n Number of RC input at mode n
Nout−n Number of RC output at mode n
Nf−n Feature queue size at mode n
NT Input and output sequence length
NK Training batch size
Ns Number of neurons on each mode of a state tensor
τ Delay configuration in RC state response
Y(t) ∈ CNin1×Nin−2×···×Nin−N The input of Multi-Mode RC
G(t) ∈ CNf−1×Nf−2×···×Nf−N The internal feature of Multi-Mode RC
Z(t) ∈ CNout−1×Nout−2···×Nout−N The output of RC
Y ∈ CNin1×Nin2×···×Nin−N×NT×NK A higher order tensor by stacking Y(t)
G ∈ CNf−1×Nf−2×···×Nf−N×NT×NK A higher order tensor by stacking G(t)
Z ∈ CNout−1×Nout−2···Nout−N×NT×NK A higher order tensor by stacking Z(t)

{G(t+τ)×1W out−1×2W out−2}NT
t=1, since the output is anticipated as a NT -length sequence.

In general, the output sequence can be truncated off more or less samples in order to match

the desired sequence of the tasks.

4.3.2 Multi-Mode Reservoir Computing

Recurrent Layer Feature Queue

Figure 4.3: Illustration of Three-Mode Reservoir Computing Architecture

The structure of multi-mode (beyond 2-mode) reservoir computing is illustrated in Fig. 4.3.
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As a general framework of the 2-mode RC, each component is respectively extended as

• Recurrent Module:

S(t+ 1) = σ(superblockdiag(S(t), Ỹ(t))×1 W tran−1 ×2 · · · ×N W tran−N)

Ỹ(t) = superblockdiag(Y(t), · · · ,Y(t− T ′))

(4.13)

• Feature Queue:

G(t) = superblockdiag(comb(S(t)), comb(Ỹ(t))) (4.14)

where comb(S(t)) := superblockdiag(S(t),STΠ1 (t),STΠ2 (t) · · · ), Π1, Π2 · · · stand for

permutation patterns which are up to N ! cases.

• Output Layer:

Z(t) = G(t)×1 W out−1 ×2 W out−2 · · · ×N W out−N (4.15)

• Loss Function:

min
τ

min
W out−1,W out−2,··· ,W out−N

NK∑
q=1

NT∑
t=1

∥Zq(t)− Gq(t+ τ)×1 W out−1 · · · ×N W out−N∥2F

(4.16)

Similarly to the 2-mode case, the output weights are learned through alternating least

squares. The optimization (4.16) can also be formulated as a high order tensor decomposi-

tion as defined in (4.11). Moreover, to further avoid model overfitting, regularization terms

can be added in the loss function, such as ridge regression, i.e., ∥W out−1∥2F + ∥W out−2∥2F +

· · · + ∥W out−N∥2F . In addition, we can observe that the optimization problem (4.16) is not
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the canonical Tucker decomposition defined in [19]. This is because the factor matrices are

not designed as full column-rank in our framework. On the contrary, we choose the factor

matrices with full row-rank to fulfill the mechanism of RC that is “yielding desired output

through dimension reduction from internal memory states.”

4.3.3 Theoretic Analysis

We now study the condition on the uniqueness of solving (4.16) via alternating least squares.

Through our derivation as presented in Appendix, we can arrive at the following theorem.

Theorem 4.1. Given Z ∈ CNout−1×Nout−2×···×Nout−N×NT×NK and G ∈ CNf−1×Nf−2×···×Nf−N×NT×NK

with rank-(Nout−1, Nout−2, · · · , Nout−N , NT , NQ)
2 and rank-(Nf−1, Nf−2, · · · , Nf−N , NT , NK)

respectively, and ∀n, Nf−n ≥ Nout−n, N ≥ 2, the achieved minimization of (4.16) is unique

by using ALS when the initialization factor matrices are chosen as full rank and

∑
i ̸=n

Nout−i +NT +NK ≥ Nf−n,∀n. (4.17)

The above theorem reveals that the uniqueness condition of the Multi-Mode RC learn-

ing is characterized by the shape of the output tensor and feature core-tensor. Alterna-

tively, if we use a single batch for training, i.e., merge the last two modes of the ten-

sors into one, the shape of the output tensor and core-tensor respectively become Z ∈

CNout−1×Nout−2×···×Nout−N×(NTNK) and G ∈ CNf−1×Nf−2×···×Nf−N×(NTNK). Therefore, the unique-

ness condition can be rewritten as

∑
i ̸=n

Nout−i +NTNK ≥ Nf−n,∀n. (4.18)

2This stands for the multi-mode rank of a tensor. The definition can be found in Appendix.
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In our experiments, we observe that when the uniqueness condition holds, the loss-value is

often greatly larger than zero. The model thereby does not over-fit to the training dataset

which can offer generalization on the unseen testing dataset. More related discussions on

this observation are in the evaluation section.

On the other hand, Multi-Mode RC can be analyzed as an advance of conventional RC by

imposing particular structures on the output layer, where the conventional RC refers to RC

operating on single-mode data structures, i.e., scalars and vectors. To gain this insight,

we consider vectorizing the output layer of a 2-mode RC. According to (4.9), the resulting

output equation of the 2-mode RC via a single-mode RC based formulation is given by,

Vec(Z(t)) = (W out−2 ⊗W out−1)Vec(G(t)).

The above equation reveals that the output weight of multi-mode RC is forged as a Kronecker

product of two sub-matrices to process a “vectorized” G(t). As opposed to single-mode RC

using a fully connected layer, the resulting Kronecker output layer is with less freedom on

parameters which requires a less amount of data to fit. Meanwhile, the Kronecker structure

can further reduce time and space complexity. We present the complexity analysis results

in Table D.1, where we assume that the conventional RC and Multi-Mode RC are with the

same input-output size. In this table, the time complexity of the forward path is calculated

by the matrix product between the output layer and RC state at each sample, while the

complexity on output learning is from the matrix inverse operations involved in solving the

loss objectives of the entire training data set. The memory costs in the forward path are

calculated based on the size of internal states and output weights. Meanwhile, the memory

spent on learning is on the same scale as the size of the internal state. Moreover, the input

buffer length is ignored in this table for simplicity. However, it can be easily calculated by

substituting Nin−n as NinnT
′ in this table.
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Table 4.2: Time Complexity and Memory Usage Comparison

NN Operations Time
Standard RC forward O(

∏
nNout−n(

∏
nNin−n +NN

s ))
Multi-Mode RC forward O(

∑
n Nout−n(

∏
nNin−nN ! +NN

s ))
Standard RC learning O((

∏
nNin−n +NN

s )3NK)
Multi-Mode RC learning O(

∑
nN

3
f−n

∏
nNout−nNK)

Memory
Standard RC forward O(

∏
nNout−n(

∏
nNin−n +NN

s ))
Multi-Mode RC forward O(

∑
nNf−nNout−n +

∏
nNin−nN ! +NN

s )
Standard RC learning O((

∏
nNin−n +NN

s )NK)
Multi-Mode RC learning O(

∏
nNin−nN ! +NN

s )

user 1

user 2

user 3

BS

Figure 4.4: Uplink transmission in the multi-user massive MIMO system.

4.4 Application: Online Symbol Detection for Multi-

user Massive MIMO

In this section, we will briefly review the transceiver architecture of multi-user massive

MIMO-OFDM systems and elaborate on how to apply Multi-Mode RC to symbol detection

of an uplink massive MIMO network.
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4.4.1 Multi-user Massive MIMO-OFDM System

We assume Nu scheduled users are distributed in a cell communicating to a base station

(BS) equipped with a massive rectangular array as shown in Fig. 4.4, where each user is

mounted with Nq antennas. The transmitted signals from all users to BS can be written

as X(t) ∈ CNu×Nq . Let x(t) = vec(X(t)) ∈ CNt×1, where Nt = NuNq. Each entry of

x(t) is a time sequence which stands for a stream of OFDM signals. For convenience, the

OFDM signal x(t) is organized as OFDM resource grids as illustrated in Fig. 4.5. In the

OFDM resource grids, the horizontal direction represents OFDM symbols, while the vertical

direction stands for sub-carriers indices. OFDM symbols are constructed into subframes

where the time domain signal x(t) is obtained by applying an inverse Fourier transform

(IFFT) on symbols across the subcarriers. Cyclic-prefix (CP) is added for each OFDM

symbol. Let Nc denote the number of subcarriers and ND + NK be the number of OFDM

symbols within a subframe. Here, NK is the number of OFDM symbols that are used as

pilots/reference signals whereas ND OFDM symbols within the same subframe are used for

data transmission. Each element on the resource grids is modulated by quadrature amplitude

modulation (QAM). Note that pilots/reference signals are used to conduct CSI estimation at

the receiver in modern 4G and 5G networks. Furthermore, NK is configured to be smaller

than ND to reduce over-the-air signaling overhead. Meanwhile, NK is often designed to be

proportional to the number of streams to offer a reliable CSI estimation.

The received signal at the BS can be expressed as the following,

Y (t) = r

(
L∑

ℓ=0

H(ℓ)×3 x(t− ℓ) +N (t)

)
(4.19)

where r(·) is a function which characterizes the non-linearity at the receiver, such as ADCs,

as well as model mismatch; H(ℓ) ∈ CNa×Ne×Nt is a tensor which defines a spatial channel
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Figure 4.5: Massive MIMO-OFDM resource grids (subframe-subcarrier) structure for RC
training and symbol detection

response at the ℓth-delay, where the total number of delays is denoted as L; Na is the

number of azimuth antennas, Ne is the number of elevation antennas of the massive MIMO

BS antenna array. Our objective is to train a NN D which can recover X(t) by using Y (t),

i.e.,

D(Y (t)) = X(t), (4.20)

such that the NN is learned by

min
D

f ({D(Y (t))}, {X(t)}) . (4.21)

4.4.2 Online Symbol Detection by Multi-Mode RC

Multi-Mode RC serves as the detection NN, D, through the over-the-air pilots/reference

signals on a subframe basis. The pilots defined in existing massive MIMO-OFDM systems
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of each subframe is directly utilized as the training dataset. The following data symbols in

the same subframe is the testing dataset, i.e., we train the NN using NK pilots to detect

ND data symbols in each subframe. This constraint makes the learning framework different

from conventional NNs to enable online learning for robust and adaptive communications.

The azimuth direction is set as the first mode of Multi-Mode RC and the elevation direction

is set as the second mode. Each OFDM pilot symbol is considered as one training batch.

Accordingly, the input sequence length equals the number of subcarriers, Nc, plus CP. The

output is then truncated to be a Nc-length sequence following the process as described

under equation (4.12). The symbols of each stream on each subcarrier are obtained through

quantization and demodulation.

In massive MIMO systems, symbol detection can be conducted through either a joint or a

decomposed approach:

Joint Processing

In the joint processing, data symbols are obtained through a single Multi-Mode RC with a

multi-head output, where the size of the first and second mode of the RC output sequence

are respectively Nq and Nu. The mode order of the output node also can be reversely

configured. This is because Multi-Mode RC treats equally on each output mode according

to the generation rule of the internal feature queue as shown in (4.14). A well trained joint

model is anticipated to yield a good symbol detection performance since all interference and

imperfect factors are handled jointly.
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Table 4.3: Notations of Multi-Mode RC based MIMO-OFDM Symbol Detection

Notations Definition Corresponding notations
in Multi-Mode RC

Nt Number of antennas stacked from all users N/A
Nu Number of users Nout−1 in joint processing
Nq Number of antennas at each user Nout−2 in joint processing
Na Number of azimuth antennas Nin1

Ne Number of elevation antennas Nin2

Nc Number of OFDM sub-carriers NT

NK Number of pilot symbols in a frame NK-Training batches
ND Number of data symbols in a frame Testing batches
x(t) ∈ CNt×1 Transmitted Signal Desired output
X(t) ∈ CNu×Ns Transmitted Signal Desired output
Y (t) ∈ CNa×Ne Received Signal Input
Y ∈ CNa×Ne×T Stacked tensor of received signal Input

Decomposed Processing

The decomposed approach refers to learning the output weight through a decomposed way.

For instance, in the case of 2-mode RC, it has Nu × Nq pairs of (wout−1,wout−2) to learn,

where the vector weight w maps the internal states to a scalar entry of the output tensor

sequence. In this framework, the training on each decomposed output weight is based on

their individual loss allowing the training through a parallel manner which can significantly

reduce the computation latency. On the other hand, the decomposed method takes extra

resources on storage and computation compared to the joint approach. For instance, in

2-mode RC based joint approach, the size of output weight matrices W out−1 and W out−2

are respectively Nout−1 × Nf−1 and Nout−2 × Nf−2. In the decomposed way, the shapes of

output mapping on each mode are respectively 1 × Nf−1 and 1 × Nf−2. Thus, there are

Nout1Nout2 × (Nf−1 + Nf−2) output weights in total for the decomposed approach which

is higher than Nout−1 × Nf−1 + Nout−2 × Nf−2 from the joint way. Overall, the map from

MIMO-OFDM parameters to the Multi-Mode RC parameters is summarized in Table 4.3.
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4.5 Performance Evaluations

This section provides performance evaluations of the introduced Multi-Mode RC for uplink

symbol detection in a multi-user massive MIMO-OFDM scenario. We choose uncoded bit

error rate (BER) as the quantitative metric to evaluate the reliability of the underlying

link. Table 4.3 contains simulation parameters of the massive MIMO-OFDM system. The

default system configuration is: Na = 8, Ne = 8, Nc = 512, Ncp = 32, Nq = 2, Nu = 2,

NK = 4 and ND = 12. Note that in this setting, the pilots/reference signals overhead is

25% which is inline with 5G standards [4]. The channel coefficients are generated according

to the clustered delay line (CDL) model defined in 3GPP Technical Report (TR) 38.901,

where the transmitter and receiver are configured with uniform linear arrays having half-

wavelength antenna spacing, and the power delay profile is configured with a cluster delay

rate of 3. The maximum delay spread of the channel is set as the length of the CP in

OFDM. Each obtained BER point is collected over 100 consecutive subframes. SNR is

defined as the average power ratio between noise-free received signal and the additive noise.

The configuration of the Multi-Mode RC is set as follows: T ′ = NCP , Ns = 8, the number of

ALS iterations is set as 6, the state transition matrix W tran on each mode is independently

generated with its spectral radius less than 1. Meanwhile, the input weights matrix W in is

generated independently for each mode from a uniform distribution on [−1, 1].

4.5.1 Parsing Multi-Mode RC

We first parse various components of a Multi-Mode RC to offer more insights on the under-

lying NN structure. We consider three types of Multi-Mode RC in the evaluation: 1) Our

introduced one; 2) Our introduced one without using the tensor permutation to construct the

feature queue in (4.14); 3) Our introduced one using a large number of Ns, where Ns = 128.
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Fig. 4.6 and Fig. 4.7 respectively show the training and testing BERs under different num-

bers of iteration when SNR = 15dB. As we can observe that without tensor permutation in

the feature queue, the RC performs underfitting to the task. This is because the feature from

different modes of the input tensor sequence has not been equally extracted. Meanwhile,

if we increase the number of neurons, the NN model complexity increases. Accordingly, it

“overfits” the training data as the training BER dramatically decreases, whereas the testing

BER increases.

0 2 4 6 8 10 12 14 16 18
ALS iteration

10 4

10 3

10 2

10 1

BER in Training Stage
multi-mode RC with proper configurations
multi-mode RC with large # neurons
multi-mode RC without state permutations

Figure 4.6: Training BER of multi-mode RC with respect to iterations in ALS.

4.5.2 Uniqueness Conditions

Now, we investigate how the uniqueness condition defined in Theorem 1 determines the

training and testing performance. For convenience, we set Nc = 64 and use single-batch

based training in this evaluation. According to (4.18), the critical conditions for this task
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0 2 4 6 8 10 12 14 16 18
ALS iteration

10 1

BER in Testing Stage
multi-mode RC with proper configurations
multi-mode RC with large # neurons
multi-mode RC without state permutations

Figure 4.7: Testing BER of Multi-Mode RC with respect to iterations in ALS.

becomes,

Nu +NTNK == 2Ns +NaT
′ +NeT

′

Nq +NTNK == 2Ns +NaT
′ +NeT

′

When we only change parameters T ′ and Ns while fixing the rest based on our default setup,

the critical conditions become 130 == 8T ′ + Ns. This condition is plotted as the dashed

red line in Fig. 4.8 and Fig. 4.9. Meanwhile, we also plot the contours of the log-loss as well

as the BER in the same (Ns, T
′) plane. As shown in Fig. 4.8, the loss is guaranteed to be

greater than a threshold, e.g., −4.00, when the uniqueness condition holds. On the other

hand, when the condition is violated, the loss tends to be close to zero. In this case, the RC

model overly fits to the training data which brings a high risk of over-fitting. This result is

also consistent with the BER contour plotted in Fig. 4.8. Note that even though satisfying

the uniqueness condition can potentially avoid overfitting, it may cause underfitting as we
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can observe the high BER below the condition line in Fig. 4.9.
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Figure 4.8: Log loss contour in (Ns, T
′) plane in training stage

4.5.3 Comparison with State-of-Art Detection Strategies

We now investigate the BER versus SNR using different approaches. In Fig. 4.10, the com-

pared methods are: 1) LMMSE+LMMSE-CSI which uses linear minimum mean square error

(LMMSE) based symbol detection under the LMMSE estimated CSI. 2) SD+LMMSE-CSI

which uses sphere decoding for symbol detection based on the LMMSE estimated CSI. 3)

Large-window RC refers to the windowed echo state network (WESN) introduced in [100]

by vectorizing the input as a vector and setting the input buffer size as 52. 4) Ridge-

large-window RC refers to the same WESN but using l2 norm as a penalty term to the

output weights in the loss function. 5) Multi-Mode RC is the introduced method. 6)

Ridge-Multi-Mode RC standards for the same Multi-Mode RC but also adding a l2 norm

as the regularization on the output weights in the loss objective. Fig. 4.10 clearly demon-
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Figure 4.9: BER contour in (Ns, T
′) plane in testing stage

strates the performance gain of the Multi-Mode RC over the signal processing-based methods

(LMMSE+LMMSE-CSI and SD+LMMSE-CSI). Meanwhile, we can see that the Multi-Mode

RC is more robust than the single-mode RC as the multi-mode feature of MIMO-OFDM sig-

nals is leveraged for the symbol detection.

In addition, we investigate the BER performance by increasing the array size. Fig. 4.11

shows that when the number of antennas increases (e.g improve the antenna array from

8 × 8 to 10 × 10), the BER curves of all methods are improved. On the other hand, the

Multi-Mode RC continues showing its advantage over other methods.



88 Chapter 4. Massive MIMO Symbol Detection via Tensor-RC

0 2 4 6 8 10 12 14
SNR

10 2

10 1

BER in multi-user massive MIMO

LMMSE+LMMSE-CSI
Large-window RC
Ridge-Large-window RC
Multi-Mode RC
Ridge-Multi-Mode RC
SD+LMMSE-CSI

Figure 4.10: BER in a multi-user massive MIMO system with 64 antennas at the BS (8× 8
antenna array).
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Figure 4.11: BER in multi-user massive MIMO with 64 (8× 8) and 100 (10× 10) antennas
at the BS.
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Figure 4.12: BER in one-bit multi-user massive MIMO systems with different antenna num-
bers.

4.5.4 Performance Evaluation under Receiving Non-linearity —-

Low Resolution ADCs

To show the advantage of RC-based approach in other model mismatch scenarios, we evaluate

the BER performance when low precision quantization is added in the link which is extremely

relevant to massive MIMO systems. We consider the extreme case of using one-bit ADC

which quantizes the in-phase and quadrature components to 1 or -1. The definition of the

quantizer for any one of the components is,

q(x) = Amax · sign(x) (4.22)

where Amax is the maximum magnitude of the quantizer where we set it as 0.6 in the

evaluation. Fig. 4.12 clearly shows that the Multi-Mode RC is the most robust method in
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Figure 4.13: BER in a multi-user massive MIMO system with 64 antennas at the BS (8× 8
antenna array).

this scenario. Meanwhile, we can observe the saturation phenomena of the BER curve when

the antenna number increases. This is because the quantization level on each antenna is set

as a fixed value. Intuitively, the performance can be further improved by optimizing the

quantization level on each antenna. This will be considered as our future work.

4.5.5 Comparison with Model-based Learning Approaches

In this section, we compare the Multi-Mode RC against a state-of-the-art model-based sym-

bol detection NN, MMNet [47]. MMNet is a deep NN structure based on unfolding iterative

soft-thresholding algorithms, which adds degrees of flexibility on certain parameters in the

NN for training. In our evaluation, MMNet is configured using the aforementioned training

dataset associated with the LMMSE-estimated CSI. As the legends shown in Fig. 4.13, we

choose three MMNet operation modes as the benchmark methods: 1) MMNet-Online-I con-
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tains only scalar trainable parameters. It assumes the channel additive noise in both testing

and training stages are with homogeneous distributions. The “Online” scheme refers to a

training framework described in the paper, by which a NN for conducting symbol detection

on the first subcarrier is trained from scratch using 1000 iterations and NK pilot symbols,

while other NNs with respect to the remaining sub-carriers are fine-tuned based on the first

NN with 3 additional iterations using their individual training symbols. 2) MMNet-Online-

II has matrix-form parameters as noise variance estimators per layer, which is considered

as an advanced structure of MMNet-Online-I using the same training strategy. 3) MMNet-

Pretraining-Online-II adds a pre-trained training stage to MMNet-Online II. In this way, the

NNs are initialized with pre-trained weights using 256 pilot symbols from historical training

datasets with different channel realizations.

Note that, while MMNet achieves notable performance on both i.i.d Gaussian channels and

spatially-correlated channels in [47], the utilized training symbols are relatively larger than

the setup in this paper (e.g. 500 pilot symbols associated with perfect CSIs which is not

consistent to the online over-the-air scenario as in our paper). Furthermore, the computation

and memory requirements on MMNet are significantly higher than the introduced method.

To be specific, MMNet requires Nc NNs to estimate symbols on all subcarriers, each of

which stacks 10 layers of neurons. Therefore, the number of training iterations significantly

increases. In our method, we only use 4 pilot symbols and a single NN to jointly accomplish

the symbol detection task. Our evaluation results demonstrate that the Multi-Mode RC

outperforms MMNet in the multi-user massive MIMO scenario with a steep performance

improvement slope. Overall, Reg-Multi-Mode RC shows 5 − 6 dB gain in SNR compared

with MMNet.
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4.6 Conclusion

In this paper, we presented a NN structure, Multi-Mode RC, for symbol detection in massive

MIMO-OFDM systems. We elaborated on the NN architecture and its configuration for the

symbol detection task. The introduced Multi-Mode RC framework is shown to be able to

effectively cope with the model mismatch, waveform distortion as well as interference in the

systems. Numerical results demonstrated the advantages of Multi-Mode RC in the following

aspects: It can offer lower BER than conventional single-mode RC frameworks in low SNR

regime while achieving reduced computational complexity. Compared to other model-based

learning approaches, the introduced method can operate on a subframe-basis thus completely

relying on the limited over-the-air pilots/reference symbols. This attractive feature enables

us to train the symbol detection task using a compatible signal overhead as modern cellular

networks.

In our future work, we will consider the optimization of the quantization thresholds at each

antenna port. Since quantization is an irreversible process, adaptive quantization strategies

are a promising approach to preserve the waveform information. Furthermore, incorporating

gradient-free learning algorithms into the RC framework is another interesting direction.
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OTFS Symbol Detection via RC

5.1 Introduction

Telecommunication vendors are expanding their services to various new scenarios, such as

the Internet of Things (IoT), the vehicle-to-everything (V2X), and the global coverage by

non-terrestrial networks (NTN) including both high altitude platforms (HAPs) and low earth

orbit (LEO) satellites in the 5G-Advanced era [26]. For many of those high mobility scenar-

ios such as V2X and NTN, it is imperative to ask: Will the current 5G air-interface design

be sufficient for these new scenarios? Will 5G-advanced and 6G benefit from applying an

alternative waveform design to accommodate these new scenarios? The breakthrough by Or-

thogonal Time Frequency Space (OTFS) modulation [36] has shed light on these questions. It

circumvents the fundamental bottlenecks in the time-frequency processing framework of Or-

thogonal Frequency Division Modulation (OFDM) which is the key physical layer waveform

of 4G LTE-Advanced [55] and 5G NR [86]. Meanwhile, OTFS is a signal design framework/-

control plane that improves network layer functions like scheduling that are essential to

realizing the promise of 5G/6G. As an alternative to OFDM, OTFS is rooted in an “invari-

ant expression” of the doubly-selective wireless channel via the delay-Doppler domain [36].

The resulting channel impulse response exhibits sparsity and persists for longer time than the

time frequency expression. These channel features enable the algorithm and protocol design

of OTFS systems in channel estimation/tracking and equalization with reduced signaling

93
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overhead. As opposed to the equalization benefits, it also can offer waveform benefits: the

cyclic prefix (CP) of each OFDM symbol can be completely abolished in OTFS, significantly

improving spectral efficiency especially for high mobility scenarios where CP is a significant

system overhead for OFDM systems.

For high mobility scenarios with high Doppler shifts, transmitted symbols reside in the

delay-Doppler domain experience a channel that changes more slowly compared with the

counterparts in the time-frequency domain [35]. Motivated by this, OTFS is introduced

by allocating modulation symbols in the delay-Doppler domain. Accordingly, the time-

varying multi-path wireless channel becomes a near-constant impulse response in the delay-

Doppler domain via the symplectic Fourier transformation (i.e., Zak transform). Channel

representation on the delay-Doppler domain behaves slow variation since channel reflective

scatters are relatively static in the surrounding environment. On the other hand, OTFS

can be viewed as a spreading modulation scheme in the time-frequency domain, where the

basis functions are selected from a two-dimensional Fourier series. In this perspective, OTFS

can be regarded as a 2D-CDMA scheme, whereas OFDM is essentially a one-dimensional

spreading scheme using a single-mode Fourier basis. OTFS can achieve enhanced channel

diversity associated with the use of appropriate equalization methods [35, 89].

5.1.1 Signal Processing Challenges in OTFS Systems

In OTFS, the channel is modeled as a 2D multi-path response spread over the dimension

of the delay-tap and the Doppler-shift. Hence, equalization techniques at the receiver are

available to exploit the diversity over these two dimensions. However, the equalizer has to

be adopted to address the following practical challenges:
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• Challenge 1: Pilot Overhead. Conducting equalization in the Delay-Doppler do-

main requires pilots or reference signals for either explicit channel state information

(CSI) estimation or equalizer coefficients adaptation. Due to the multi-tap nature

of the delay-Doppler channel representation, guard intervals between pilot and data

symbols are often inserted to avoid the underlying interference [78]. When OTFS sys-

tems are configured with multiple-input-and-multiple-output (MIMO) antennas, the

overhead resulting from the guard intervals becomes a bottleneck, especially for mas-

sive MIMO systems. Therefore, it is important to resolve the pilot overhead issue by

designing pilot patterns that support associated low complexity equalization methods.

• Challenge 2: Accurate Channel Knowledge. Acquiring accurate CSI in the

delay-Doppler domain is critical for model-based equalizers in OTFS systems. Al-

though time-varying multi-path channels can be ideally approximated as a constant

impulse response in the delay-Doppler domain, high received SNRs of the correspond-

ing pilots or reference signals are needed to acquire accurate 2D channel spreading

profiles. However, obtaining high received SNRs for pilots or reference signals is chal-

lenging in OTFS systems due to power and hardware constraints. For example, when

synchronization is not perfect, the transmitting and receiving pulse shaping filters in

OTFS will fail to be biorthogonal. This introduces additional inter-carrier interference

(ICI) 1 and inter-symbol interference (ISI) [14] leading to low SNRs at the receiver.

Furthermore, the motion of channel scatters can cause misalignment to the channel-

prior assuming a strict sparsity in the delay-Doppler domain. Therefore, it will result

in a model mismatch to sparsity-based channel estimation algorithms.

1ICI happens when the OTFS system is implemented as an overlay to OFDM systems which will be
discussed in Sec. 5.2.3
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5.1.2 Related Work

The equalization of OFDM in doubly selective channels has been extensively studied. In

[79], a low complexity minimum mean-squared error (MMSE) based equalization method

for OFDM systems over a time-varying channel has been introduced. A two-stage MMSE

equalization method was considered in [83] where the first step is to restrict the support

of inter-carrier interference followed by eliminating the interference using successive MMSE.

However, all these signal processing techniques rely on explicit accurate CSI. It is important

to note that OFDM can be viewed as the projection of OTFS onto the time-frequency

domain. In fact, this projection will change more abruptly making the tracking of channel

more challenging. For example, the above introduced OFDM-based schemes require channel

tracking operating on a sub-millisecond basis under high mobility environments for 5G NR

networks. This makes it difficult to adopt neural network-based receive processing strategies.

To handle the wireless channels with high Doppler shifts, state-of-the-art equalization meth-

ods in OTFS systems often assume the explicit CSI in the delay-Doppler domain is ideally

available [35, 36]. On the other hand, various channel estimation methods have been in-

troduced to estimate explicit CSI using the pilot/reference signals. For example, the work

in [27] introduced a channel estimation method with almost linear complexity. Embedded

pilot-aided channel estimation schemes for OTFS are investigated in [78]. In each OTFS

frame, guard intervals are placed between pilot and data symbols on the delay-Doppler do-

main. The underlying CSI is estimated by performing hard thresholding and the estimated

CSI is utilized for symbol detection. Note that the scenario considered is relatively simple

as each delay tap is associated with single Doppler shift generated using Jakes’ formula. An

alternative to using impulse signals as channel estimation pilots in the delay-Doppler domain

is to use pseudo-noise (PN) sequences in the delay-Doppler domain [66].
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Assuming ideal explicit CSI is available, a message-passing-based iterative algorithm for the

equalization on the delay-Doppler domain is introduced in [77] where the extension to MIMO-

OTFS systems has not yet been explored. [88] presents a rake receiver in conjunction with

decision feedback to conduct the symbol detection. Ideal channel knowledge is assumed for

turbo-boosting the success rate. Similar concepts of leveraging decision feedback have been

widely studied in MIMO systems with multi-path channels, such as [7, 21, 50]. However,

feedback errors can propagate to amplify the detection error especially in the low SNR

regime. When these methods are generalized to equalization of OTFS in the 2D delay-

Doppler domain, their efficiency has not been studied.

5.1.3 One-Shot Online Learning for OTFS through Reservoir Com-

puting

To address the above mentioned challenges for OTFS systems, we consider using neural

networks (NNs) to conduct equalization. In 4G and 5G networks where OFDM is used as

the underlying waveform, there exists many MIMO transmission modes with link adapta-

tion, rank adaptation, and scheduling operating on a subframe basis [55]. For high mobility

scenarios that are of interest to 5G-Advanced and 6G, it is critical to design an online

learning-based equalization method for OTFS systems that is adaptive and robust to the

change of wireless environments, such as channel distributions, operation modes, scheduling

decisions, and inter-user interference. However, wireless networks, especially cellular net-

works, have unique features and constraints. For example, the online over-the-air (OTA)

training dataset (e.g., reference signals) of cellular networks is extremely limited since it is

the system overhead instead of the data. In 5G NR, the overhead defined for the demodula-

tion reference signal is at most 20% [3]. Therefore, NN-based online equalization for OTFS

with very limited OTA training datasets is extremely challenging. To address this challenge,
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we consider a “one-shot learning” solution: In contrast to most learning-based algorithms,

which require training on extensive datasets, one-shot learning aims to learn information

from very few training samples. Intuitively, the superior generalization performance of the

one-shot learning concept is achieved by incorporating NNs with inductive prior of unseen

data [62].

This paper considers using reservoir computing (RC, a special recurrent neural network

where the structure is embedded with a sequential inductive bias) for equalization in OTFS

systems. RC has been previously utilized for spatial and temporal interference cancellation

tasks in MIMO-OFDM systems [65, 96, 99, 101], and has proven to be efficient in handling

high Doppler shift in an online fashion even with extremely limited OTA training datasets.

In the RC framework for MIMO-OFDM, the temporal-spatial signal features are read out to

conduct interference cancellation in consecutive OFDM symbols. In this paper, we generalize

the concept by training the RC using a subset of received symbols (designed as specific pilot

patterns) and applying the trained network on the remaining symbols (to equalize interfer-

ence residing in data symbols). Our technical contributions in applying RC to equalization

in OTFS are the following

• Novel Pilot Structures: We investigate two OTFS pilot structures the delay-Doppler

domain for OTFS: interleaved pilot and superimposed pilot. Different from conven-

tional pilot designs, the considered pilot and data symbols are allowed to interfere

with each other without guard intervals between them. The training framework only

utilizes pilot symbols within the same OTFS frame as the data symbols instead of

those in previous OTFS frames or offline training dataset. Therefore, it offers a one-

shot learning objective in terms of optimizing the NN weights learning through each

individual OTFS frame. Since our design and approach is guard interval free and a

sole online-learning based approach, it can effectively address Challenge 1 listed in Sec.
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5.1.1. Furthermore, the pilot overhead in our approach can be adaptively adjusted,

providing a set of feasible configurations in the trade-off space of control overhead and

system performance.

• Robust Learning Algorithms: Novel RC-based learning algorithms are developed

for the two types of pilot pattern. As a result, the learning algorithms can jointly cope

with the interference between the pilot and data symbols regarding the interleaved

pilot pattern in the first part. By contrast, it is the signal power split between pilot

and data for the superimposed pilot that enables the equalization NN to generalize.

More important, the learning algorithm does not rely on explicit CSI providing robust

equalization performance, even in low SNR regimes. This provides us an effective

method to address Challenge 2 raised in Sec. 5.1.1.

The remainder of this paper is organized as follows: In Section 5.2, we briefly introduce the

preliminaries of OTFS systems. In Section 5.3, we develop a learning-based framework for

OTFS equalization in the delay-Doppler domain. The discussion of systems considerations

includes the pilot design (training dataset), the neural network structure, and the loss objec-

tive for the equalization. In Section 5.4, we extend the learning framework to MIMO-OTFS.

We also introduce an approach where we apply multiple RCs in the equalization training of

each OTFS frame. Section 5.5 presents the comparison between conventional equalization

methods and our proposed method in both SISO and MIMO scenarios. We conclude the

paper in Section 5.6.
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5.2 Preliminaries

A wireless channel exhibiting both time and frequency selectivity is referred to as a doubly-

selective channel. This section first provides a mathematical representation of wireless com-

munications signals over the doubly-selective channel. Then, we discuss the OTFS modula-

tion and its connection to the OFDM system. Finally, we present the end-to-end relation

between transmitted symbols and received symbols in the OTFS system in the delay-Doppler

domain.

5.2.1 Doubly-Selective Channel

We consider a wireless communication system with a transmitter and a receiver. Given the

time domain transmitted signal x(t), the received signal r(t) is given by

r(t) =

∫
h̃(τ, t)x(t− τ)dτ , (5.1)

where τ denotes delay and t denotes time in the doubly selective channel response h̃(τ, t).

Using h̃(τ, t), the frequency selectivity of the wireless channel is characterized by having

multi-path coefficients on τ . The time selectivity of the wireless channel is shown as h̃(τ, t1) ̸=

h̃(τ, t2) when t1 ̸= t2. Alternatively, the input-output relation in (5.1) can be expressed via

a Doppler-variant channel impulse response as follows,

r(t) =

∫∫
h(τ, ν)x(t− τ)ej2πνtdτdν (5.2)

where

h(τ, ν) :=

∫
h̃(τ, t)e−j2πνtdt,
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Figure 5.1: Channel representations in different domain: (a) in the time-frequency domain,
(b) in the delay-Doppler domain.

is the so-named Doppler-variant impulse response. It represents the Doubly-selective channel

via the delay-Doppler domain. Note that the above formulation has a missing internal term
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e−2πντ compared to the equation (5.1) in [36]. This is because the missing term is part of

h(τ, ν) in our notation. Representations of a doubly selective channel on these two domains

are plotted in Fig. 5.1.

5.2.2 OTFS Modulation

An implementation of OTFS modulation is shown in Fig. 5.2, where OTFS is realized by

adding pre-and post-processing blocks to a standard multi-carrier modulation system. The

pre-processing block converts modulation symbols from the delay-Doppler domain to the

time-frequency domain and vice versa. The multi-carrier filter bank (Heisenberg transform)

at the Tx converts a 2D time-frequency domain signal to a 1D time-domain waveform. In

our notation, we define the time domain waveform of one OTFS frame as x(t). It is written

as,

x(t) =
N−1∑
n=0

M−1∑
m=0

X[n,m]gtx(t− n∆T )ej2πm∆f(t−n∆T ), (5.3)

where X[n,m] is its time-frequency representation, gtx(t) is the pulse shaping filter, M stands

for the number of frequency tones, ∆T is the time duration of one transmitting pulse, ∆f
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is the frequency spacing, and N is the number of transmitting pulses in one OTFS frame.

Therefore, an OTFS frame occupies N∆T seconds in time and M∆f Hz bandwidth.

The pre-processing block which transforms modulation symbols from the delay-Doppler do-

main to the time-Frequency domain is defined as,

X[n,m] =
1√
NM

N−1∑
k=0

M−1∑
l=0

x[k, l]ej2π(
nk
N

−ml
M ). (5.4)

where x[k, l] are the modulation symbols residing in the delay–Doppler domain. The trans-

formation (5.4) is also referred to as the inverse symplectic finite Fourier transform (ISFFT)

since it has Fourier basis functions. In addition, x[n,m] can be interpreted as the superpo-

sition of QAM symbols spreading over the full time-frequency grid using ej2π(
nk
N

−ml
M ) as the

basis functions. Therefore, OTFS is able to exploit the diversity across the full-time and

frequency domain. At the receiver, the received signals at the time-frequency domain, and

delay-Doppler domain are respectively denoted as Y [n,m] and y[k, l]. The relation between

Y [n,m] and y[k, l] is characterized by the SFFT. Y [n,m] is obtained by using receiving filter

bank, which has a similar formulation as (5.3). For simplicity, we summarized the notations

of the OTFS system in Table 5.1.

5.2.3 Integration with OFDM Systems

As shown in Fig. 5.2, an OTFS system can be implemented as an overlay of an OFDM

system. This implementation expedites prototyping since OFDM systems are highly opti-

mized in current wireless systems, such as 5G NR and WiFi. However, building an OTFS

system on top of an existing transceiver system brings extra complexity. Alternatively, an

OTFS system can be realized via its own “standalone”. This simplification is because half

of the operations on the pre-and post-processing operations (i.e., ISFFT and SFFT) can be
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Figure 5.3: The time-domain frame structure of two different OTFS implementations: the
top one overlays an OFDM system, and the bottom one is a standalone version.

canceled out by the FFT and IFFT operations from the multi-carrier filter bank. Therefore,

the resulting standalone implementation is more lightweight, since it only needs one pair of

FFT and IFFT in the transceiver chain. Meanwhile, the cyclic prefix (CP) of each OFDM

symbol can be eliminated in OTFS, significantly improving spectral efficiency. Without

adding CP inside the OTFS frame, OTFS handles the inter-symbol interference via a frame-

based manner, where the interference “between OFDM symbols” is lumped to a 2D basis to

equalize. However, a CP still needs to be added between two consecutive OTFS frames to

avoid the “frame interference”. As a summary, Fig. 5.3 depicts the time frame structures of

these two different schemes for OTFS system implementation under the same sampling rate

(an overlay on an OFDM system and a standalone version).

5.2.4 End-to-End Channel Model in Delay-Doppler Domain

For simplicity, we assume ideal bio-orthogonal transmit and receive pulse shaping filters[36].

After substituting (5.3) and (5.4), as well as their counterparts at the receiver, into (5.1),

we arrive at an end-to-end model connecting x[k, l] and y[k, l] within one OTFS frame. The
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relation is given below [35],

y[k, l] =
1

NM

N−1∑
k′=0

M−1∑
l′=0

x̄ [k′, l′]h [k − k′, l − l′]

k = 0, · · · , N − 1; l = 0, · · · ,M − 1

(5.5)

where x̄[k′, l′] is the periodized version of x[k′, l′] with periods (1/∆T , 1/∆f) in the delay-

Doppler domain, and

h [k′, l′] := h(ν, τ)|
ν= k′

N∆T
,τ= l′

M∆f
. (5.6)

Note that CP added between two consecutive OTFS frames accomplishes this 2D circular

convolution relation. In addition, any imperfectness in transmitting and receiving pulse

shaping can be absorbed into the channel kernel h[k, l] for a more comprehensive formulation.

Table 5.1: Notation in OTFS Systems

Notations Definitions
x[k, l] Modulation Symbols in Delay-Doppler Domain at Tx
X[n,m] Time-Frequency Domain representation of the modulated symbols (via ISFFT) at Tx
x(t) Time Domain Waveform of OTFS Signal at Tx
h̃(τ, t) Doubly-Selective Channel in delay-time domain
h(τ, ν) Doubly-Selective Channel in delay-Doppler domain
r(t) Time Domain Waveform of OTFS Signal at Rx
N Number of transmitted pulses in one OTFS frame
M Number of sub-carriers in one OTFS frame
y[k, l] Modulation Symbols in Delay-Doppler Domain at Rx
Y [n,m] Time-Frequency Domain representation of the modulated symbols (via ISFFT) at Rx

5.3 RC Meets OTFS in Equalization

We first introduce two types of online training dataset in an OTFS system with single

antennas at the transmitter and receiver. We then present a neural network structure and
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the associated learning algorithms for equalization at the receiver.

5.3.1 Training and Testing Dataset

Since one OTFS frame can be discretized as a grid with N intervals along the Doppler domain

and M intervals along the delay domain, we denote the modulated symbols x[k, l] over one

OTFS frame as a matrix X ∈ CM×N , where C is the predefined constellation for digital

modulation, such as C = {+1,−1} for BPSK, and C = {+1+ 1j,+1− 1j,−1 + 1j,−1− 1j}

for QPSK. We define the online training dataset (i.e., pilot symbols) and testing dataset

allocated within the same OTFS frame. Accordingly, the equalization operation is based on

each OTFS frame: The training method only uses the pilot symbols from one OTFS frame;

Then, it applies the learned neural network to equalize the data symbols in the remainder

of the same OTFS frame. This operation mode is robust to sudden channel changes, such

as when the base station adopts a new transmission rank and schedules a new user. This

paper considers two ways to construct pilots on the delay-Doppler domain: interleaved pilot

and superimposed pilot patterns.

Interleaved Pilot

Here pilot symbols interleave with data symbols on the delay-Doppler domain as shown in

Fig. 5.5. The training dataset is denoted as

{X train := Ω⊙X,Y train := Y }, (5.7)

where inside any of the curly brackets above and below, the left-hand element represents the

NN desired output, while the right-hand component stands for the NN input, and ⊙ stands

for the Hadamard product between two matrices. Accordingly, the testing dataset is given
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by,

{X test := Ω̄⊙X,Y test := Y }, (5.8)

where X is a symbol matrix representing one OTFS frame at the transmitter, Ω is an indi-

cation matrix with value 1 at the location assigned as pilot symbols, and value 0 elsewhere,

and Y is the corresponding received OTFS frame at the receiver. Fig. 5.5 only shows one

possible realization of the interleaved pilot pattern, where the stairwise green spots in the

first sub-figure stand for pilots (training dataset), and the remaining blank blocks represent

data symbols for transmission (testing dataset). Alternative groupings of pilot symbols are

shown in Fig. 5.6. The pilot overhead η for the interleaved pilot is given by,

η =
|Ω|

M ·N
. (5.9)

Note that both the training and testing dataset use the observation Y , rather than Y ⊙Ω

and Y ⊙ Ω̄ respectively. This design is motivated by the objective of learning the mutual

interference between pilot and symbols to further reduce training overhead. It is possible to

add guard symbols between pilot and data symbols, and this approach has been adopted in

conventional channel estimation frameworks for OTFS, such as [78]2.

Superimposed Pilot

Here pilot symbols are spread over the 2D delay-Doppler domain, and are superimposed on

data symbols as illustrated in Fig. 5.7. Therefore, symbols in each transmitted OTFS frame

can be written as X = X train +X test, where X test ∈ CM×N , and X train ∈ CM×N . Since the

2The guard symbols defined in [78] can be absorbed into the support of Ω when calculating the pilot
overhead.
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ideal end-to-end relation in OTFS system can be formulated as a twisted convolution (a linear

mapping) on the 2D plane, the received OTFS symbols are given by Y = Y train + Y test,

where Y train corresponds to the receiving components contributed only from X train, and

Y test is from X test.

However, simply adding superimposed pilots over data symbols may not easy for the receiving

process. Regarding a supervised learning-based equalization framework, the receiver has to

first identify the pilot components from received symbols Y . Rather than using the support

of interleaved pilots as discussed in the previous subsection, we consider resorting to the
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time-frequency domain to distinguish pilot symbols and data symbols. To this end, we

design our superimposed pilot symbols as follows,

X train = SFFT(c ·Ω),

SFFT represents the inverse mapping of (5.4) operating on matrices, and c is a constant which

is expected to suppress the value of any entries of ISFFT(X test) to make pilots distinguishable

from data symbols.

However, a large constant c leads to a high peak to average ratio (PAPR) of the transmitted

signal. We can add an interference term to diminish the energy from data symbols at the

support of Ω instead. To this end, we incorporate an aided interference term defined as

follows,

Xaid−int = −SFFT(ISFFT(X test)⊙Ω).

The newly formed transmitted signals on the delay-Doppler domain are,

X = X train +X test +Xaid−int, (5.10)

and the corresponding received signals are Y . Therefore, the training dataset has the fol-

lowing compact expression,

{X train := SFFT(Ω),Y train := SFFT(ISFFT(Y )⊙Ω)}, (5.11)

The testing dataset is,

{X test,Y test := Y }. (5.12)
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Note that the overhead calculation of the superimposed pilot is not straightforward. If

we were to directly calculate pilot overhead based on the delay-Doppler domain, the pilot

overhead would likely be 0% since data symbols spread over the entire grid in the delay-

Doppler domain. However, we may calculate overhead in terms of power required by the

superimposed pilots. Given the duality between time-frequency and delay-Doppler, we may

still calculate the overhead by using (5.9) on the time-frequency domain.

5.3.2 Neural Network Structure for Equalization – Reservoir Com-

puting

Reservoir computing (RC) is a memory-enabled neural network framework. A vanilla version

of RC comprises a nonlinear activation function, an input layer, a recurrent layer, and an

output layer. The computational power of RC is realized by mapping the recurrent states to

desired signals through learning the output layers. Furthermore, due to the fixed reservoir

dynamics, RC training is only conducted on the readout layers, which effectively avoids

gradient vanishing/explosion issues by avoiding back-propagation through time.

A discrete-time realization of RC can be characterized by its internal state transition and
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output mapping. The state transition is formulated as follows,

s(t+ 1) = σ

W tran

s(t)
y(t)


 (5.13)

where t stands for the time index, σ is a nonlinear function, s(t) is a vector representing the

internal reservoir state, y(t) is the input vector, and W tran stands for the reservoir weight

matrix which is often chosen with a spectral radius smaller than 1 in order to asymptotically

achieve a “similarity” to the desired dynamic model[41]. The output equation is simply

treated as

z(t) = W out

s(t)
y(t)

 , (5.14)

where W out is the output weight matrix and z(t) stands for the output. We can stack the

features in an extended state matrix

S̄ =


s(0)
y(0)

 ,

s(1)
y(1)

 , · · · ,

s(t)
y(t)

 ,


T

. (5.15)

The loss function for the output layer learning is then given by,

min
W

∥RCW (Y train)−X train∥F (5.16)

where the input and output dimensions of RCW (·) are configured as N , and the sequence

length is set as M . Once Y train is fed into RC, an internal extended state matrix S̄ can be

obtained ready for output layer learning as suggested by (5.14).
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5.3.3 Learning Algorithms

We introduce two different ways to learn the output weights of RC in the following two

subsections corresponding to the two different pilot patterns.

Interleaved Pilot

Here we define the loss function as

min
W

∥X train −Ω⊙ (S̄trainW out)∥2F .

A closed-form solution of the above problem can be obtained via rephrasing the objective

function as,

min
W

N∑
n=1

∥((X train):,n − diag(Ω:,n)S̄train(W out):,n])∥22

By solving the above separable least squares, the closed-form solution of W out is given by

each of its column vectors as follows,

(W out):,n =
[
diag (Ω:,n) S̄train

]+
(X train):,n . (5.17)

The transmitted data symbols are estimated by applying the output weights through,

X̂ test = Q
(
S̄testW out

)
⊙Ω. (5.18)

where Q is the optimal quantizer for the constellation of C. Note that S̄train = S̄test since

Y train = Y test.
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Superimposed Pilot

The objective of superimposed pilot based training is given as follows,

min
W

∥X train − S̄trainW out∥2F ,

We can directly obtain the coefficients of the readout weight as follows,

W out = S̄
+
trainX train. (5.19)

Then the transmitted data symbols are obtained by

X̂ test = Q(S̄testW out). (5.20)

Note that quantization from RC output to the estimated symbols essentially eliminates the

contribution from the aided interference term in (5.10). The learning and testing stages for

the above two different pilot patterns are summarized jointly in Algorithm 5.

Algorithm 5 RC for OTFS Equalization
Input: {Y train,X train}, Y test

Output: W out, X̂ test

for l ∈ [0, Lforget] do
Input sequence [Y ,Ol] into RC and obtain a delayed extended state matrix S̄l := S̄(:, l :),
where S̄ is the extended state matrix as defined in (5.15), and Ol is a zero matrix with l
columns.
Calculate a corresponding output layer W l

out by using (5.17) for interleaved pilots and
(5.19) for superimposed pilots.
Cache the LOSSl value of the learned output weight.
end for
Sort the optimal l⋆ = arg minp LOSSp, and select W out = W l⋆

tout

Obtain X̂ test by using (5.18) for interleaved pilot and (5.20) for superimposed pilot.
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5.4 Extensions and Enhancements

5.4.1 Learning in MIMO-OTFS

We assume there are Nt and Nr antennas at transmitter and receiver, respectively. The

end-to-end relation between transmitted and received symbols is given by,

ynr [k, l] =
1

NM

Nt−1∑
nt=0

N−1∑
k′=0

M−1∑
l′=0

x̄nt [k
′, l′]hnr,nt [k − k′, l − l′]

k = 0, · · · , N − 1; l = 0, · · · ,M − 1

, (5.21)

where hnr,nt [k, l] denotes the channel between the nr-th received antenna and the nt-th

transmitted antenna represented in the delay-Doppler domain, and x̄nt is the periodized

representation of the transmitted symbols at the ntth antenna in the delay-Doppler domain.

In the MIMO scenario, we consider the pilot pattern at any single Tx antennas of the MIMO

system follows the same design as the SISO scenario; at the same time, it is reused by

different Tx antennas. This pilot structure allows the neural network to perceive the inter-

ference pattern of the spatial channel at the receiver side. By contrast, conventional channel

estimation methods often employ non-overlapping pilots to avoid antenna interference. To

process the RC based learning, we stack the transmitted symbols as a three-mode matrix

X ∈ CM×N×Nt . Accordingly, the training dataset is generalized as follows,


X train :=



Ω

Ω

...

Ω


⊙



X :,:,1

X :,:,2

...

X :,:,Nt


,Y train :=



Y :,:,1

Y :,:,2

...

Y :,:,Nt




.
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Table 5.2: Notation Appearing in the learning system

Notation Definitions
X train ∈ CMNt×N Transmitted pilot symbols
X test ∈ CMNt×N Transmitted data symbols
X ∈ CMNt×N Transmitted symbols which are assembled in X train and X test

X ∈ CM×N×Nt Transmitted symbols in a 3-mode form
Y train ∈ CMNr×N Received pilot symbols
Y test ∈ CMNr×N Received data symbols
Y ∈ CMNr×N Received symbols which contain Y train and Y test

Y ∈ CM×N×Nr Received symbols in a 3-mode form

The testing dataset is given by,


X test :=



Ω̄

Ω̄

...

Ω̄


⊙



X :,:,1

X :,:,2

...

X :,:,Nt


,Y test :=



Y :,:,1

Y :,:,2

...

Y :,:,Nt




,

Similarly, the training and testing dataset for the superimposed pilot in the MIMO system

are,


X train :=



SFFT(Ω)

SFFT(Ω)

...

SFFT(Ω)


,Y train :=



SFFT(ISFFT(Y :,:,1)⊙Ω)

SFFT(ISFFT(Y :,:,2)⊙Ω)

...

SFFT(ISFFT(Y :,:,Nt)⊙Ω)




. (5.22)

The training and testing process follows the same algorithm flow defined in Algorithm 5. The

RC input dimension is thereby set as Nr×N (The number of antennas times the axis-length

along the Doppler domain).
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5.4.2 Learning using Multiple RCs

The aforementioned training framework utilizes one RC in the entire delay-Doppler domain.

We can also consider applying multiple RCs in one OTFS frame, where an individual RC

is assigned to learn a local channel feature. For instance, when a blockwise pilot pattern is

employed for SISO-OTFS, we can split the training dataset (5.7) into N subsets, where the

nth subset is defined as

{x(n)
train := Ω:,n ⊙ FFT(X):,n,y

(n)
train := FFT(Y ):,n}, (5.23)

where FFT operates along the row of the matrix X. Accordingly, the kth testing dataset is,

{x(n)
test := Ω̄:,n ⊙ FFT(X):,n,y

(n)
test := FFT(Y ):,n}. (5.24)

Therefore, the input dimension of each RC is reduced to 1. We then have N RCs to be

individually learned over one OTFS frame. In general, we can group any number of consec-

utive columns of X as a subset. Accordingly, the number of RCs is reduced to K, where K

stands for the number of subsets. Similar to the analysis in [96], we can easily show that the

complexity of using K RCs is proportional to O(NnNtNM + min{(ηMN/K)2, N2
n}KNt)

FLOPS, where η is the percentage of pilot overhead and Nn is the size of the extended state.

When K = N , the second term in the complexity formula becomes min{(ηM)2, N2
n}NNt.

When K = 1, it is min{(ηM)2, N2
n}Nt. Therefore, the resulting complexity in these two

extreme cases indicates that using multiple RCs tends to be more costly than using one

RC in the computation, though the training set size is reduced in the former case. In

the next section, we observe that changing the number of RCs can impact the bit error

rate performance, offering a tradeoff between the equalization complexity and performance.

Meanwhile, the complexity of message passing (MP) algorithm [77] is O(MNNt(MηNNt)),
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Table 5.3: Simulation Parameters

Parameters Values
Channel Model 3GPP 5G NR CDL
Carrier frequency 4 GHz
Delay Profile in Channel Model CDL-C
Delay Spread 10 ns
Maximum Doppler Shift 555 Hz
Carrier Spacing 15 KHz
Sampling Rate 15.36 MHz
Pilot Overhead for SISO 4.69%
M 1024
N 14

where MηN represents the number of non-zero taps of the channel impulse kernel in the

delay-Doppler domain. This analysis reveals that MP spends more computational resources

than our introduced approach.

5.5 Numerical Experiments

In our simulation, we implement OTFS using the standalone approach, as shown in the

bottom part of Fig. 5.3. Regarding OTFS parameters, we choose M as 14 to be compatible

with the sub-frame length of OFDM as defined in 4G and 5G systems. The number of

sub-carriers is set at 1024. The channel model is selected as 3GPP 5G NR clustered delay

line (CDL) channel, where the parameter settings are listed in Table 5.3. The CP length for

OTFS is set at the maximum channel length generated by the channel model. The channel

Doppler shift is 555Hz which represents mobility at highway speeds as high as 90 mph. All

curves shown below are obtained by running the algorithms over a transmission link having

30 different time-and-frequency dispersive channel realizations. The training overhead for

SISO is set at 4.7% by default, and for MIMO at 18.7%. The x-axis is the signal to noise

ratio in dB defined as the received signal power normalized by the background noise. The
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RC configuration is based on the paper [96], where a windowed buffer is added in the input

layer with size 20. The size of the recurrent internal state in RC for the superimposed pilot

is set as 8. For the interleaved pilot learned by multiple RCs, the internal state for each RC

is set as 8 for SISO and 12 for MIMO. Finally, the link reliability metric utilized below is

uncoded bit error rate.

The comparison between OFDM and OTFS systems is shown in Fig. 5.8. The evaluation

methods by order of the legend are respectively:

1. RC using Interleaved pilot in OTFS (denoted as Interleaved-RC-OTFS), where the

number of RCs in one OTFS frame is configured as 7, and it is selected as the blockwise

pattern in Fig. 5.6.

2. Superimposed pilot enabled RC using OTFS (denoted as Superimposed-RC-OTFS);

3. Decision feedback equalization in OTFS using the same amount of training overhead

as RC-OTFS (denoted as DFE-OTFS);

4. LMMSE channel estimation with linear interpolation and LMMSE equalization in

time-frequency domain (denoted as LMMSE-OTFS);

5. Message-passing based equalization in OTFS using estimated CSI which is acquired

using the same pilot overhead as other methods. However, the obtained CSI is imper-

fect in the low SNR regime, which degrades the BER. We show the performance of

this approach by increasing the received SNR for pilot symbols to 17 dB;

6. Message-passing based equalization in OTFS using estimated CSI, where the CSI is

obtained by using pilot symbols with SNR 30 dB;

7. Multiple-RC in OFDM, where 7 RCs are applied in one OFDM subframe. The pilot

overhead is set the same as RC-OTFS (denoted as RC-OFDM);



120 Chapter 5. OTFS Symbol Detection via RC
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Interleaved-RC-OTFS (7 RCs)
Superimposed-RC-OTFS (1 RC)
DFE-OTFS
LMMSE-OTFS
MP-OTFS (using 17 dB pilot SNR)
MP-OTFS (using 30 dB pilot SNR)
RC-OFDM
LMMSE-OFDM
ML-OFDM

Figure 5.8: Comparison of BER performance in SISO-OTFS and SISO-OFDM systems with
different equalization algorithms. Note that the pilot SNR in MP-OTFS is increased to 17
dB and 30 dB to show its BER drop.

8. LMMSE channel estimation with linear interpolation and LMMSE equalization in

the time-frequency domain using the same pilot overhead as RC-OTFS (denoted as

LMMSE-OFDM);

9. Maximum likelihood estimation in OFDM with LMMSE channel estimation and in-

terpolation (denoted as ML-OFDM).

We observe that RC with OTFS outperforms other approaches in the low SNR regime except

for RC-OFDM. The advantage enjoyed by RC-OFDM is because each RC handles the local

channel change within each two OFDM symbols. To obtain more insight on how the number

of RCs utilized in the system can impact performance, we plot the result of using different

numbers of RCs in Fig. 5.9. The figure reveals that there is a tradeoff between the number

of RCs and the BER performance. In addition, the configuration of each RC in OFDM
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Figure 5.9: Comparison of BER performance in SISO-OTFS and SISO-OFDM systems with
different numbers of RC.

is the same as the one in OTFS. Moreover, using one RC for the superimposed pilot can

significantly improve upon using one for the interleaved pilot. Applying more RCs improves

the performance at the cost of increased complexity. As a result, using the OTFS waveform

shows incremental gain over OFDM in the evaluation. More significantly, the OFDM system

cannot accommodate a superimposed pilot similar to OTFS and achieve a comparable BER

performance to OTFS using a single RC. These observations demonstrate the benefits of

modulating information symbols on the delay-Doppler domain.

Fig. 5.10 shows a BER comparison between superimposed pilots and interleaved pilots by

changing the overhead. Note that the pilot overhead for the superimposed one is calculated

in the time-frequency domain. However, the superimposed pilot-based approach also can be

treated as zero overhead in the delay-Doppler domain given a BER threshold. The value of

the pilot overhead ranges from 4.7% to 39.0%. The scenario under interleaved pilot utilizes

2 RCs in the learning. We can observe that the superimposed pilot becomes inefficient as
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Interleaved-RC with 32.8% overhead(7 RCs)
Interleaved-RC with 32.8% overhead(1 RCs)
Superimposed-RC with 32.8% overhead(1 RC)

Figure 5.10: Comparison of pilot overhead for the two different pilot patterns, where the
overhead of interleaved RC is calculated in the delay-Doppler domain, while the overhead in
Superimposed-RC is calculated in the time-frequency domain.

“overhead” increases due to more interference in data symbols added. It is also important to

note that the learning approach for interleaved pilots can eliminate the interference between

pilot and data symbols even though no guard interval is added.

Fig. 5.11 depicts the BER performance of RC and DFE as we change the value of velocity

(Doppler shift). We can observe that the processing of RC is more robust than DFE in the

low SNR regime. The poor performance of DFE as SNR increases is because of the imposed

limited training constraints (only 4% pilot symbols are utilized via a block pilot pattern

on the delay-Doppler domain). To the best of our knowledge, it is still an open problem

to efficiently implement DFE in the 2D delay-Doppler domain with a limited length of

training symbols. Fig.5.12 shows the BER performance using RC for MIMO-OTFS through

blockwise interleaved pilot patterns. We observe that utilizing more RCs need not lead

to a monotonic performance improvement. Fig. 5.13 shows the BER performance under
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Figure 5.11: BER in SISO-OTFS under different mobile station (MS) velocities using DFE
and RC.

different MS velocities in OTFS and OFDM systems using the same method. The MIMO

case also demonstrates the advantage of our approach in the OTFS system. Note that the

comparison between the RC-based approach and the conventional OFDM system is studied

in [96]. Meanwhile, to the best of our knowledge, model-based approaches in MIMO-OTFS

systems have to tackle more interference than the SISO case in the low SRN regime, hence

perform far behind the RC learning-based approaches.

5.6 Conclusion

In this paper, we introduced a neural network-based framework for OTFS equalization.

Our results demonstrate that using a reservoir computing-based neural network structure

coupled with specifically designed pilot patterns (training dataset) can significantly reduce

inter-symbol interference. More significantly, the training of the equalization neural network
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Figure 5.12: BER of RC in MIMO-OTFS and MIMO-OFDM with different numbers of RC.
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Figure 5.13: BER of RC in MIMO-OTFS and MIMO-OFDM with different MS velocities.
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utilizes observations from a single OTFS frame which is competitive with the control plane

employed in current cellular systems. The success of the resulting “learning through one

OTFS frame” is also because the offered channel is an invariant feature of OTFS modulation,

which transforms doubly selective wireless channels to nearly constant convolution kernels

in the delay-Doppler domain. Our numerical results show that the neural network-based

equalization method outperforms traditional methods in various Doppler spread settings.

In addition, we can observe the performance gain of OTFS by applying the same neural

network structure to an OFDM system with the same pilot control overhead. In conclusion,

we believe an OTFS system employed with our implemented equalizer can provide either

better transmission reliability or lower processing complexity to state-of-the-art equalization

approaches for OFDM systems in high Doppler environments.



Chapter 6

Summary

This dissertation introduces various neural network structures to handle the symbol detec-

tion/equalization task in wireless communications systems. The major challenge is to learn

the neural network coefficients with the same training overhead as defined in current physi-

cal layer standards. The limited training constraint makes the symbol detection task unique

compared with conventional NN applications, such as image and speech recognition. To

this end, this dissertation considers using reservoir computing as the basic neural network

building block due to its appealing generalization performance. In addition, different induc-

tive biases are incorporated into the neural network structures to handle the air interference

under different MIMO configurations. According to the dissertation’s presentation order,

the introduced inductive biases include shifting-invariant of the digital constellation, time-

frequency relation of OFDM modulation, multi-mode features of full-dimensional antennas,

and delay-Doppler representation from OTFS modulation. The numerical experiments show

that using these inductive priors improves the symbol detection/equalization performance in

the low SNR regime under a variety of MIMO settings, including point-to-point and multi-

user MIMO. Meanwhile, the evaluations contain two air-interface technologies, OFDM and

OTFS, where OTFM is the dominant technology for modern cellular systems, while OTFS

is developed for high mobility environments. In conclusion, the introduced NN-based ap-

proaches can solve model mismatch issues, thus surpass conventional model-based methods.
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Appendix A

Formulas for Chapter 2

A.1 Equivalent Real-value Signal Model

Let g(·) represent the entire linear mapping in (2.1),

Ỹ = g(X̃) + Ñ . (A.1)

The real-valued form of the above observation equation can be written as the following

composite function

Re(Y )

Im(Y )

 =
L−1∑
ℓ=0

g(ℓ)

f (ℓ)


Re(X)

Im(X)



+

Re(N )

Im(N )


where f (ℓ)(·) is defined as

Re(XFJ ℓ)
T

Im(XFJ ℓ)
T

 =

Re(FJ ℓ)
T ,−Im(FJ ℓ)

T

Im(FJ ℓ)
T ,Re(FJ ℓ)

T


Re(X)T

Im(X)T
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and g(ℓ)(·) is defined as

Re(Y )

Im(Y )

 =

Re(H [ℓ]),−Im(H [ℓ])

Im(H [ℓ]),Re(H [ℓ])


Re(XFJ ℓ)

Im(XFJ ℓ)

 .

A.2 Channel Estimation

Channel estimation is conducted in the frequency domain. Multiplying the discrete Fourier

transform (DFT) matrix FH on both sides of (2.1), we have

Y FH =
L−1∑
ℓ=0

H [ℓ]Xdiag(lℓ) +NFH (A.2)

where lℓ is the vector of eigenvalues of J ℓ, since the eigenvectors of a circulant matrix is the

Fourier matrix, and the diag() operator converts its vector argument to a diagonal matrix.

Accordingly, the jth column of X can be written as

(
Y FH

)
:,j

=
L−1∑
ℓ=0

lℓ(j)H [ℓ]xj + (NFH):,j (A.3)

where
∑L−1

ℓ=0 lℓ(j)H [ℓ] stands for the equivalent channel on the jth sub-carrier which can be

estimated via the LMMSE method using the Q symbols from the training set in (2.8).
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Proofs for Chapter 3

We now consider using alternative least squares to solve the problem (3.10). When W tout is

given, (3.10) can be rewritten as

min
wfout(n)

∥F̃ (n)SW toutdiag(wfout(n))−Z(n)∥2F

s.t. diag(|wfout(n)|) = I, ∀n = 0, · · · , (Nsc − 1),

.

where the definition of F̃ (n), Z(n) and S are given in Sec. 3.3.2. By spelling out the

objective, the optimization problem is equivalent to

min
wfout(n)

− Real(Tr(Z̄(n)diag(wfout(n))Z(n)H))

s.t. diag(|wfout(n)|) = I, ∀n = 0, · · · , (Nsc − 1),

where Z̄(n) ≜ F̃ (n)SW tout. In addition,

Tr(Z̄(n)diag(wfout(n))Z(n)H) =
∑
j

wfout,j(n)Tr(z̄j(n)zj(n)H)

where z̄j(n) is the jth column of Z̄(n), zj(n) is the jth column of Z(n) and wfout,j(n) is

the j the entry of wfout(n). In order to minimize the objective function value, we can select

∠wfout,j(n) = −∠(zj(n)H z̄j(n)) (B.1)

130



131

where ∠ represents the angle of a complex number. When {wfout(n)}Nsc−1
n=0 is fixed in (3.10),

W tout is learned by

min
W tout

∥F̃ SW tout − Ẑ∥2F (B.2)

where F̃ ≜ diag(F , · · · ,F ) ∈ CQNsc×QNsc in which F is the Fourier matrix.

Ẑ ≜ [Ẑ
T

0 , · · · , Ẑ
T

Q−1]
T ,

and

Ẑq ≜ [ẑq(0), ẑq(1), · · · , zq(Nsc − 1)]T , (B.3)

in which ẑq(n) ≜ zq(n)diag(w∗
fout(n)). Therefore, the learning rule of W tout is

W tout = S+F̃
H
Ẑ. (B.4)
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Derivations for Chapter 4

C.1 Proof of Theorem 1

Lemma C.1. Given two full-rank matrices X ∈ CM1×M2 and G×CH×M2, where H ≥ M1,

the following least squares problem has a unique solution if and only if rank(X) = rank(W ⋆),

where W ⋆ is the optimum.

min
W

∥X −WG∥F (C.1)

Proof. Based on the assumptions, we have rank(X) = min{M1,M2} and rank(G) =

min{H,M2}. In general, (C.1) has a unique solution if and only if rank(G) = H [61].

rank(G) = H implies M2 ≥ H. Accordingly, the solution is given by XG+, where G+

represents the Moor-Penrose inverse of matrix G. Since X is with full row rank, G+ is

with full column rank and H ≥ M1, we have rank(XG+) = rank(X). Thus, we have

rank(W ⋆) = rank(XG+) = rank(X).

On the contrary, suppose rank(W ⋆) = rank(X) holds. We have H ≤ M2, otherwise there

exists W ⋆+H which is also a minimum of (C.1), where H is a non-zero solution of HG = 0.

Since G is assumed with full rank, we have rank(G) = H.

Lemma C.2. Given the same assumption as Lemma C.1, the sufficient and necessary
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condition for the uniqueness of (C.1) can be expressed as

M2 ≥ H (C.2)

Proof. Since the necessary and sufficient condition for the uniqueness is rank(G) = H.

Therefore, the uniqueness condition can be alternatively written as (C.1) is M2 ≥ H.

Before proceeding on the proof of Theorem 1, we introduce the following concepts to char-

acterize rank properties of tensor [19].

Definition C.3. The mode-n rank of a tensor G is the mode-n unfolding of G, i.e., G(n).

Definition C.4. A N-order tensor G is with rank-(M1,M2, · · · ,MN) when its mode-1 rank,

mode-2 rank to mode-N rank are equal to M1, M2, and MN , respectively.

Lemma C.5. Given X ∈ CM1×M2×···×MN and G ∈ CH1×H2×···×HN , which are with rank-

(M1,M2, · · · ,MN) and rank-(H1, H2, · · · , HN) respective, and Hn ≥ Mn, N > 2, the mini-

mization of

min
W 1,··· ,WN

∥X − G ×1 W1 ×2 W2 · · · ×N WN∥F (C.3)

is unique if

rank(X(n)) = rank(W ⋆
n) (C.4)

where W ⋆
1, · · · , W ⋆

N is the optimum.

Proof. We prove this theorem by mathematical induction. According to Lemma 1, the
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uniqueness holds for minW 1 ∥X −G×1 W 1∥F . Then, we assume it holds for N order tensor

X and G with N − 1 factor matrices.

Now, we consider the case with N factor matrices,

min
W 1,··· ,WN

∥X − G ×1 W1 ×2 W2 · · · ×N WN∥F

= min
WN

{ min
W 1,··· ,WN−1

∥X(N) − WNG(N)(W1 ⊗ · · · ⊗ WN−1)
T∥F}

We denote W ⋆
N as one of the optima of the above problem. Since W ⋆

N is with full row

rank based on the assumption, we have tensor G ×N W ⋆
N with rank-(H1, H2, · · · ,MN).

This is because G(n) is with full row rank. Therefore, (W ⋆
1, · · · , W ⋆

N−1) as an optimum

of minW 1,··· ,WN−1
∥X − G ×1 W1 ×2 W2 · · · ×N W⋆

N∥F is unique based on the inductive

assumption. We then assert W ⋆
N is unique. Otherwise it contracts to Lemma 1.

Remarks:

• The proof does not conduct the mathematical induction on the tensor mode. This is

because the uniqueness does not hold for matrix decomposition, i.e., minW 1,W 2 ∥X −

W 1GW T
2 ∥F .

• This theorem is only a sufficient condition for the uniqueness of (C.3).

Theorem C.6. Under the same condition as Lemma 3, using ALS to solve (C.3) by initial-

izing the factor matrices with full rank, the achieved solution is unique when

∑
i ̸=n

Mi ≥ Hn.
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Proof. If we solve the optimization problem (C.3) through ALS as well as initializing factor

matrices as full rank, updated factor matrices are with full rank at each iteration if we assume

∑
i ̸=n

Mi ≥ Hn

due to Lemma 2. Here, the prerequisite of Lemma 2 is met because in the updating rule

for W n, rank(G(n)(W1 ⊗ · · ·Wn−1 ⊗ Wn+1 ⊗ · · · ⊗ WN)
T ) = Hn is guaranteed by the full

rank initialization assumption on factor matrices. Therefore, when ALS terminated at an

optimum of (C.3), we can assert this optimum is the unique by using Lemma 3.

With minor revisions on the statement of the above Theorem, we can arrive at Theorem 1.

C.2 Low Complexity Factor Matrix Calculation in ALS

At each step of using alternating least squares to solve the factor matrices W out−1 and

W out−1 in (4.11), suppose we directly solve the following sub-problem to obtain W out−1,

W out−1 = arg min
W out−1

∥Z(1) −W out−1G(1)(W out−2 ⊗ INT
⊗ INK

)T∥F .
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The resulting memory costs on W out−2 ⊗ INT
⊗ INK

are very large. To cope with the

bottleneck from memory units, we alternatively solve W out−1 via the following approach,

W out−1 = arg min
W out−1

∥Z − G ×1 W out−1 ×2 W out−2∥

(a)
= arg min

W out−1

∥Z −
∑
k

G(k) ×1 W
(k)
out−1 ×2 W

(k)
out−2∥

= arg min
W out−1

∥Z(1) −
∑
k

W
(k)
out−1(G(k) ×2 W

(k)
out−2)(1)∥

= arg min
W out−1

∥Z(1) −W out−1[(G(1) ×2 W
(1)
out−2)(1), · · · , (G(K) ×2 W

(K)
out−2)(1)]

T∥

where (a) comes from the partition definition of Tucker decomposition in (4.4) and K :=

N ! + 1. As the above calculation suggests, we can first calculate mode-2 product between

each partitioned core tensor and factor matrix, then concatenate them as a big matrix to

calculate a pseudoinverse to reach a least squares solution of W out−1. Similar tricks can be

apply to calculate W out−2, · · · , W out−N in general multi-mode RC.
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Summary of Complexity Comparison

Here, the appendix summarizes the complexity of the RC-based neural networks. The calcu-

lation is based on the number of FLOPS utilized in the training and testing of sequences with

MIMO multi-carrier modulation. The resulting FLOPS shown in Table D.1 are obtained by

combining the forward path and output weight learning. In Table D.1, the notation def-

Table D.1: Complexity Comparison of Introduced Neural Networks

Approaches Complexity in FLOPS
Shifting RC O(Nout(Nin +Ns)L+ (Nin +Ns)N

2
K +NcNin)

Shallow Time RC O(Nout(Nin +Ns)L+ (Nin +Ns)N
2
K)

Deep Time RC O(K(Nout(Nin +Ns)L+ (Nin +Ns)N
2
K))

Shallow Time-Frequency RC O(Nout(Nin +Ns)L+ (Nin +Ns)N
2
K +NcNin)

Deep Time-Frequency RC O(K(Nout(Nin +Ns)L+ (Nin +Ns)N
2
K +NcNin))

Multi-Mode RC O(
∑

n Nout−n(
∏

n Nin−nN ! +NN
s )L+

∑
nN

2
f−n

∏
nNout−nNK)

Multiple RCs O(Nout(Nin +Ns)L+ (Nin +Ns)N
2
KK)

initions are: Nin represents the input dimension of RC-based NNs; Noutput is the output

dimension; NK is the length of training sequence; K is the number of RCs in Deep-RC or

the number of RCs utilized for the training in one sub-frame; Nc is the number of sub-carriers

in multi-carrier modulation; Nout−n stands for the dimension of output at the nth mode of

multi-mode RC; Nin−n represents the dimension of input at the nth mode of multi-mode

RC; and L is the length of training and testing sequence together.
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