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Deep Reinforcement Learning for Next Generation Wireless Net-
works with Echo State Networks

Hao-Hsuan Chang

(ABSTRACT)

This dissertation considers a deep reinforcement learning (DRL) setting under the practical

challenges of real-world wireless communication systems. The non-stationary and partially

observable wireless environments make the learning and the convergence of the DRL agent

challenging. One way to facilitate learning in partially observable environments is to com-

bine recurrent neural network (RNN) and DRL to capture temporal information inherent

in the system, which is referred to as deep recurrent Q-network (DRQN). However, training

DRQN is known to be challenging requiring a large amount of training data to achieve con-

vergence. In many targeted wireless applications in the 5G and future 6G wireless networks,

the available training data is very limited. Therefore, it is important to develop DRL strate-

gies that are capable of capturing the temporal correlation of the dynamic environment that

only requires limited training overhead. In this dissertation, we design efficient DRL frame-

works by utilizing echo state network (ESN), which is a special type of RNNs where only the

output weights are trained. To be specific, we first introduce the deep echo state Q-network

(DEQN) by adopting ESN as the kernel of deep Q-networks. Next, we introduce federated

ESN-based policy gradient (Fed-EPG) approach that enables multiple agents collaboratively

learn a shared policy to achieve the system goal. We designed computationally efficient

training algorithms by utilizing the special structure of ESNs, which have the advantage

of learning a good policy in a short time with few training data. Theoretical analyses are

conducted for DEQN and Fed-EPG approaches to show the convergence properties and to



provide a guide to hyperparameter tuning. Furthermore, we evaluate the performance un-

der the dynamic spectrum sharing (DSS) scenario, which is a key enabling technology that

aims to utilize the precious spectrum resources more efficiently. Compared to a conventional

spectrum management policy that usually grants a fixed spectrum band to a single system

for exclusive access, DSS allows the secondary system to dynamically share the spectrum

with the primary system. Our work sheds light on the real deployments of DRL techniques

in next generation wireless systems.



Deep Reinforcement Learning for Next Generation Wireless Net-
works with Echo State Networks

Hao-Hsuan Chang

(GENERAL AUDIENCE ABSTRACT)

Model-free reinforcement learning (RL) algorithms such as Q-learning are widely used be-

cause it can learn the policy directly through interactions with the environment without

estimating a model of the environment, which is useful when the underlying system model

is complex. Q-learning performs poorly for large-scale models because the training has to

updates every element in a large Q-table, which makes training difficult or even impossible.

Therefore, deep reinforcement learning (DRL) exploits the powerful deep neural network to

approximate the Q-table. Furthermore, a deep recurrent Q-network (DRQN) is introduced

to facilitate learning in partially observable environments. However, DRQN training requires

a large amount of training data and a long training time to achieve convergence, which is

impractical in wireless systems with non-stationary environments and limited training data.

Therefore, in this dissertation, we introduce two efficient DRL approaches: deep echo state

Q-network (DEQN) and federated ESN-based policy gradient (Fed-EPG) approaches. Theo-

retical analyses of DEQN and Fed-EPG are conducted to provide the convergence properties

and the guideline for designing hyperparameters. We evaluate and demonstrate the per-

formance benefits of the DEQN and Fed-EPG under the dynamic spectrum sharing (DSS)

scenario, which is a critical technology to efficiently utilize the precious spectrum resources

in 5G and future 6G wireless networks.
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Chapter 1

Introduction

1.1 Reinforcement learning (RL)

RL is an important type of machine learning where an RL agent learns how to behave in an

environment. It lies between supervised and unsupervised learning. The supervised learning

algorithm learns a function that maps an input to an output based on a labeled dataset,

which provides answers of example input-output pairs. In contrast, the unsupervised learning

algorithms learns how to infer a function to describe a hidden structure from unlabeled data.

Unlike the ground truth lables provided by the supervised learning, the RL agent is not told

which action to take. Instead, the RL agent must explore the environment to accumulate

knowledge of the environment and exploit its accumulated knowledge to take the best action.

Specifically, the RL algorithm aims to learn a policy, a mapping from the observed states

to the action, to maximize the cumulative reward. RL provides a flexible architecture for

solving many types of practical problems because it does not need to model complex systems

or to label data for training.

The dynamics of the stochastic environment in RL is usually modeled as a Markov decision

process (MDP), which characterized by a tuple (S,A, T , R, γ), where S is the state space,

A is the action space, T is the state transition probability, R is the reward function, and

γ is a discount factor for calculating cumulative reward. Specifically, at time t, the state

is st ∈ S, the RL agent selects an action at ∈ A by following a policy π(st) and receives

1



2 CHAPTER 1. INTRODUCTION

the reward rt = R(st, at), and then the system shifts to the next state st+1 according to the

state transition probability T (st+1|st, at). Note that the action at affects both the immediate

reward rt and the next state st+1. Consequently, all subsequent rewards are affected by the

current action. The goal of the RL agent is to find a policy π to maximize the expected

cumulative reward, Eπ [
∑∞

t=1 γ
t−1rt].

1.2 Model-free RL

In RL, a model-free algorithm directly learns the policy through interactions with the envi-

ronment without explicitly estimating the transitions between states and the reward function

associated with the MDP. Model-free RL algorithms are helpful if the underlying dynam-

ics of the environment is too complex to be estimated. Q-learning [1] is the most widely

used model-free RL algorithm that iteratively improve the decisions of the learning agent

through estimating the Q-function. Each element of the Q-function represents the Q-value

of a state-action pair for a given policy, which is defined as

Qπ(s, a) = Eπ

[
∞∑
t=1

γt−1rt | s1 = s, a1 = a

]
. (1.1)

Accordingly, Qπ(s, a) represents the expected cumulative reward when taking action a in

the initial state s and then following the policy π. The optimal policy has the maximum

expected cumulative reward for all state-action pairs, which is defined as

π∗(s) = argmax
a

Qπ∗
(s, a). (1.2)

To find the optimal policy, Q-learning constructs a Q-table to estimate the Q-function of

the optimal policy by iteratively updating each Q-value through a value iteration approach.
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To be specific, the update rule of the value iteration is written as:

Q(st, at)← Q(st, at) + α ·
[
rt + γ max

a
Q(st+1, a)−Q(st, at)

]
, (1.3)

where α ∈ (0, 1) is the learning rate. Once the Q-table is updated, the policy π is also

updated using the ϵ-greedy policy as follows:

at =


argmaxaQ(st, a) , with probability 1− ϵ,

random action , with probability ϵ,

(1.4)

where ϵ ∈ [0, 1] is the exploration probability. The Q-function and the policy updates

alternatively until convergence. It is well-known that Q-learning can converge to the optimal

policy and the corresponding Q-function [1].

Although Q-learning is a simple and effective method, it performs poorly when the dimension

of the state is high because updating a large Q-table makes training difficult or even impos-

sible. Deep Q-Networks (DQN) [2] is introduced to solve high-dimensional state problems by

leveraging a neural network as the function approximator of the Q-table, which is referred

to as the Q-network. DQN has attracted much attention in recent years because it enables

RL to efficiently learn in a large state and action spaces by providing a good approximation

of Q-value using the powerful deep neural networks. Specifically, the Q-network takes the

state as input and outputs the estimated Q-function of all possible actions. To improve the

stability of the Q-newtwork training, DQN creates two Q-networks: the evaluation network

Q(s, a; θ) and the target network Q(s, a; θ̂). The target network is utilized to generate the

targets for training the evaluation network, while the evaluation network is utilized to de-

termine the actions. The loss function for training the weights of the evaluation network θ
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is written as (
rt + γ max

a
Q(st+1, a; θ̂)−Q(st, at; θ)

)2
, (1.5)

where rt + γ max
a

Q(st+1, a; θ̂) is the target Q-value. The weights of the target network θ̂ is

periodically synchronized with the weights of the evaluation network θ. In this way, the target

Q-values can be fixed temporarily during the training of the evaluation network instead of

changing in each training iteration, so the training stability is significantly improved.

1.3 Challenges of Real-World RL

In the last few years, RL has been shown to be effective on different fields, such as playing

video games [2], playing chess [3], to robotics [4]. However, much of the progress in RL

is difficult to be exploited in real-world systems due to some practical challenges. In this

section, we will present some of these practical challenges that appear when applying RL to

real-world systems.

1.3.1 Partial Observability

In many real-world sequential decision processes, the state is not fully observable by the

agent, and thus a MDP is generalized to a partially observable Markov decision process

(POMDP). POMDP model is characterized by a tuple (S, A, T , R, Ω, O, γ), where S

is the state space, A is the action space, T is the state transition probability, R is the

reward function, Ω is the observation space, O is the conditional observation probability,

and γ ∈ [0, 1] is a discount factor for calculating the cumulative reward. To be specific, at

time t, the state is st ∈ S, the agent receives an observation ot ∈ Ω with probability O(ot|st)

and selects an action at ∈ A. Afterwards, the agent receives a reward rt = R(st, at), and the
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system shifts to the next state st+1 based on the state transition probability T (st+1|st, at).

In partially observable environments, an observation at single time step may not contain

sufficient information to predict future rewards and future states. Therefore, a policy that

depends on observation histories has a beneficial effect in POMDP environments.

1.3.2 Non-stationary Environment

In many real-world scenarios, the non-stationary environments degrade the performance of

DRL-based strategies drastically over time. The non-stationary environment poses a big

challenge to learning stability and prevents the direct use of experience replay because the

training data become obsolete as the environment changes [5]. On the other hand, experience

replay is an important technique for DQN [2] to stabilize the training of neural networks

and improve sample efficiency. Therefore, we design an online algorithm that is able to

remove outdated training data and continue updating the policy in order to adapt to the

non-stationary environment.

1.3.3 Limited Training Data

Most existing DRL algorithms require a large number of samples for the training to converge.

This may not be an issue for applications such as computer games where samples can be easily

obtained. However, in many other real-world problems, data collection is usually expensive

making it challenging to directly apply DRL algorithms. Furthermore, the environments

are usually non-stationary in real-world problems where the collected past data may become

obsolete and no longer reflect the current environment as time goes. As a result, developing

efficient DRL algorithms requiring limited training data with fast convergence will be critical

to make DRL accessible to a wide range of real-world applications.
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1.4 Echo State Network (ESN)

Recurrent neural network (RNN) is a powerful neural network structure that can learn the

temporal behavior for a time sequence. Specifically, RNN has memory that stores the previ-

ous neuron activation to process sequential input data. To deal with the partial observability

in many real-world environments, we can utilize RNNs in the DRL to capture the temporal

correlation of observation sequences, which is referred to as the deep recurrent Q-network

(DRQN) [6]. DRQN can better approximate actual Q-values from sequences of observations,

leading to better policies in partial observable environments. Even though DRQN is a pow-

erful machine learning tool, it faces serious issues related to training due to two reasons: 1)

The kernel of DRQN, the RNN, has issues on vanishing and exploding gradients that make

the underlying training computationally inefficient [7]; and 2) DRL requires a relatively

large amount of training data to ensure the learning agent converges to an appropriate pol-

icy. In many real-world problems, the environments are non-stationary, where the rewards

and the transition probabilities between states change with time. The training has to be

computationally efficient to allow a DRL agent to quickly adapt its policy to the changing

environment. Meanwhile, generating an enormous amount of training data is only feasible

in artificial problems such as playing computer games. Obtaining training data from the

environment is usually costly in real-world problems. Therefore, the difficulties in training

DRQN prevent it from being widely adopted in real-world applications [8].

In light of training challenges of DRQNs, we utilize a special type of RNNs, echo state

networks (ESNs), to reduce the training time and the required training data [9]. The network

architecture of ESN is shown in Figure 1.1. Given a sequence of inputs (x1, · · · , xt), the
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Figure 1.1: The network architecture of ESN.

update equations of RNN/ESN have the same form, which are written as:

ht = tanh (Winxt +Wrecht−1) ,

yt = Woutht,

(1.6)

where ht is the hidden state, Win is the input weights, Wrec is the recurrent weights, and

Wout is the output weights. The hidden state ht represents a summary of the past sequence

of inputs up to t, and we set the initial hidden state h0 = 0. The standard RNN training,

backpropagation through time (BPTT), unfolds the network in time into a computational

graph that has a repetitive structure to train input weights, recurrent weights, and output

weights. On the other hand, ESNs simplify the underlying RNNs training by only training the

output weights while leaving input weights and recurrent weights untrained. To be specific,

the input weights and the recurrent weights of ESNs are initialized randomly according to

the constraints specified by the Echo State Property [10], and then they remain untrained.

Only the output weights of ESNs are trained so the training is extremely fast. The main
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idea of ESNs is to generate a large reservoir that contains the necessary summary of past

input sequences for predicting targets. The fixed recurrent connections of the reservoir

provide a high dimensional dynamics that is able to create all possible spatial and temporal

combinations of the input history, which are analogous to cortical dynamics in human brain

[11]. The learned output weights determine the best linear combination of the reservoir’s

state and the input signal to perform the desired task. This approach largely reduces the

computation time because only the output weights are trained. Existing research shows

that ESNs can achieve comparable performance with RNNs, especially in some applications

requiring fast learning [12].

1.5 Summary of Contributions

Motivated by the success of DRL techniques in multiple domains, we utilize the power of

the deep neural network to help the development of next generation wireless networks. In

this dissertation, we first identify the practical challenges of applying DRL techniques to

real-world wireless networks, where the wireless environments are usually non-stationary

and partially observable. Meanwhile, the available training data that can be obtained from

the wireless environment is extremely limited. To address the aforementioned practical

challenges that appear when applying DRL to real-world wireless communication systems, we

focus on designing an efficient DRL framework under non-stationary and partially observable

environments with limited training data. To be specific, we introduced an efficient DRL

method by adopting ESN as the Q-network in the DRL framework, which is referred to

as the deep echo state Q-network (DEQN). DEQN can efficiently capture the temporal

correlation of the underlying time-dynamic wireless communication systems.

We evaluate the performance of the introduced DEQN method under the dynamic spectrum
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sharing (DSS) scenario, which is a key enabling technology in 5G and future 6G wireless

networks. First, we developed a single-user spectrum access strategy in the DSS networks

using the DEQN approach. Next, we investigate multi-user spectrum access strategies in

the DSS networks using two learning approaches: independent DEQN learning approach

[13, 14] and federated ESN-based policy gradient (Fed-EPG) approach. To be specific, in

the independent DEQN learning approach, each secondary user (SU) trains its DEQN agent

locally to update its spectrum access policy under limited control information between the

primary system and the secondary system. On the other hand, the Fed-EPG approach

jointly learns a shared spectrum access policy for all SUs that can perform well across all

SUs’ local environments.

The main contributions of this dissertation can be summarized as the following:

• An efficient DRL method called DEQN is introduced to quickly adapt to the non-

stationary and partially observable environment with limited training data. Mean-

while, we designed a specialized online training algorithm for DEQNs that decrease

the training overheads significantly.

• Convergence analysis of the introduced DEQN approach is conducted to demonstrate

the faster convergence of DEQN compared to that of DRQN.

• The bias-variance tradeoff of DEQN is characterized to identify the spectrum norm

constraint of generating ESN’s recurrent weights.

• The introduced Fed-EPG approach enables multiple users to collaboratively learn a

shared policy in the multi-agent reinforcement learning (MARL) environment without

sharing their private data. ESN-based policy network is suitable for the federated

learning framework because the communication overheads can be largely decreased by

only sharing the output weights of the ESN-based policy network.
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• Convergence analysis of the Fed-EPG approach is conducted to show the tradeoff

between the convergence rate and the communication period.

• We evaluate the performance of DEQN and Fed-EPG in the critical problem of DSS,

which is a promising technology to improve the spectrum utilization for 5G and future

6G DSS networks.

• We built a new network simulator to evaluate the performance of DSS in a near

real-world wireless environment. The simulator strictly follows the 3rd Generation

Partnership Project (3GPP) standards based on field measurements.

1.6 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents the DEQN framework

for the single-user spectrum access strategy in the DSS network. Section 2.1 describes

the background knowledge of the DSS system and its challenges. Section 2.2 reviews the

existing literature on conventional DSS strategies and DRL-based DSS strategies. Section

2.3 describes the system model for the considered DSS problem with single-SU and multi-PU,

and Section 2.4 describes the DRL problem formulation of the corresponding system model.

Section 2.5 presents the network architecture and the training algorithm of the introduced

DEQN method. Section 2.6 provides the theoretical analysis of DEQN. Simulation results

for the single-user DSS strategy are presented in Section 2.7. Chapter 2 is concluded in

Section 2.8.

Chapter 3 presents the independent DEQN framework for the multi-user spectrum access

strategy in the DSS network. Section 3.1 describes the spectrum multiple access methods

in other wireless technologies and lists the requirements for designing spectrum multiple
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access in the DSS network. Section 3.2 describes the system model for the considered DSS

problem with multi-SU and multi-PU, and Section 3.3 describes the corresponding DRL

problem formulation. Section 3.4 presents the training algorithm of the independent DEQN

framework. Simulation results for the multi-user DSS strategy using independent DEQN are

presented in Section 3.5. Chapter 3 is concluded in Section 3.6.

Chapter 4 presents the collaborative learning framework called Fed-EPG for the multi-

user spectrum access strategy in the DSS network. Section 4.1 introduces the background

knowledge of multi-agent reinforcement learning, and Section 4.2 introduces the background

knowledge federated learning. Section 4.3 describes the system model for the considered

DSS problem in the CBRS system with multi-SU and multi-PU, and Section 4.4 describes

the corresponding DRL problem formulation. Section 4.5 presents the network architecture

and the training algorithm of the introduced Fed-EPG method. Section 4.6 provides the

convergence analysis of Fed-EPG. Simulation results for the multi-user DSS strategy using

Fed-EPG are presented in Section 4.7. Chapter 4 is concluded in Section 4.8.

Finally, we summarize the dissertation in Chapter 5.



Chapter 2

Dynamic Spectrum Sharing via

ESN-based RL

2.1 Dynamic Spectrum Sharing (DSS)

In wireless communication, spectrum is a precious resource due to its scarcity. Only few MHz

frequency band is extremely expensive. For example, in the FCC’s AWS-3 spectrum auction,

the revenues of total winning bids were $44.9 billion for 65 MHz bandwidth frequency [15].

With the development of new wireless technologies and applications, the demand for wireless

access has increased remarkably in recent years. Meanwhile, the popularity of smartphones

and widespread applications of the Internet of Things (IoT) has spurred explosive growth

of the number of mobile devices. According to Cisco’s annual internet report, the number

of wireless devices is expected to grow at a compound annual growth rate (CAGR) of 10%

between 2018 and 2023, reaching 29.3 billion wireless devices by 2023 [16]. To cope with

this unprecedented high demand of wireless connections, extending the radio spectrum for

commercial use is critical for the fifth-generation (5G) mobile broadband networks. How-

ever, the online table of frequency allocation published by the Federal Communications

Commission (FCC) demonstrates the extremely congested frequency allocations. Such a

crowded frequency allocation makes obtaining new licensed spectrum bands for developing

wireless applications costly and challenging. Although the radio spectrum is a precious re-

12
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source, experimental tests and investigations from both academia and industries show that

the spectrum utilization ratio is actually very low in certain areas [17, 18]. This paradox is

caused by the traditional static spectrum management policy that allocates a fixed spectrum

band to a single system for exclusive use. The spectrum is underutilized because unlicensed

users cannot operate on the licensed spectrum even when licensed users are idle. Therefore,

dynamic spectrum sharing (DSS) has emerged as a promising technique by adopting a hi-

erarchical spectrum access structure with primary users (PUs) and secondary users (SUs)

[19]. To be specific, SUs are allowed to access the licensed spectrum when PUs are idle or

PUs only receive little interference from SUs. In this way, the spectrum can be utilized more

efficiently, and thus the spectrum utilization ratio can be increased significantly. In fact,

DSS has been announced as the key technology for 5G by many companies and operators

around the world including Qualcomm, Ericsson, AT&T, and Verizon [20, 21].

There are some differences between DSS networks and other wireless networks. First, com-

pared to the scheduled resource allocation of cellular networks, the available spectrum re-

source for the secondary system in the DSS network depends on PUs’ activities. Second,

avoiding interference from SUs to PUs is extremely important since PUs are the licensed

users. DSS techniques aim to increase the spectrum utilization by allowing a secondary

system to use the licensed spectrum under the constraint of not interfering the primary sys-

tem. A common technique is to construct a static protection zone around each PU where

co-channel SU-transmissions are not allowed. Even though dynamic protection zones are

introduced in recent works [22], the boundary estimation relies on accurate interference esti-

mation [23], which is difficult to achieve in real-world deployment. Therefore, the protection

zone technique is not flexible enough to enable efficient utilization of spectrum by SUs. An-

other common technique is through spectrum sensing, where a SU has to perform spectrum

sensing to detect the available spectrum holes before accessing a wireless channel [24]. To be
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specific, spectrum sensing allows SUs to detect the existence of PUs in a particular channel

which utilizes energy detection [25], cyclo-stationary feature detection [26], matched filter

based detection [27], and covariance-based detection [28]. The range of spectrum sensing

can be divided into narrowband sensing and wideband sensing, which monitors single chan-

nel and multiple channel at a particular time, respectively. Wideband sensing divides the

spectrum into multiple narrowbands and either senses theses narrowbands sequentially or in

a parallel manner. Although wideband sensing can let a SU achieve high data throughput

by accessing the best channel among multiple sensed narrowband channels, it is impractical

since sequential sensing suffers long sensing time and parallel sensing suffers from high hard-

ware cost and the requirement of sensors synchronization. The pros and cons of narrowband

and wideband sensing and more details can be found in [29].

DRL is a suitable framework for developing DSS strategies because the DRL agent can adapt

to an unknown environment without modeling the complex wireless systems. However, the

real deployment of DRL techniques in DSS systems have been hindered by many practical

issues. First, the mobile wireless environments are non-stationary by nature due to many

factors, such as user locations, fading, and user traffics [30], which makes allocating spectrum

resources to users challenging. Second, obtaining control information from the DSS system

is costly. For example, a SU usually cannot detect the existence of all PUs simultaneously

because performing spectrum sensing is energy-consuming. Meanwhile, exchanging control

information between wireless devices imposes a control overhead on wireless operations. It

is challenging to optimize the system performance because collecting training data under

limited control information is time-consuming. Furthermore, the non-stationary wireless

environment largely decreases the number of effective training data that reflect the latest

environment. Under these practical issues, the wireless environment of the DSS system

is usually non-stationary and partially observable with extremely limited effective training
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data. Therefore, in this dissertation we designed an efficient learning framework for devel-

oping DSS strategies, which can quickly adapt to an unknown non-stationary environment

and only require little training data.

2.2 Literature Review

2.2.1 Conventional DSS strategies

Many strategies have been introduced to achieve spectrum co-existence between SUs and

PUs, and they can be classified into two schemes in general. The first scheme is called

Listen-Before-Talk (LBT), also known as the interweaving scheme, where a SU can access

a frequency band only if it is detected to be available [31]. Although this scheme can ef-

fectively avoid causing strong interference to primary users, spectrum opportunities for SUs

to access shared frequency bands may be rather limited. This reason is that the spectrum

access depends completely on current spectrum sensing outcome in LBT scheme. In reality,

due to the dynamic random nature of wireless environments, limited/no cooperation among

SUs, and other practical factors spectrum sensing can never be perfect. This will cause

false alarm or miss detection of PUs’ activities leading SUs to make inappropriate decisions

regarding channel access [32]. The second scheme is called spectrum sharing, also known

as the underlaying scheme [33]. In this scheme, SUs coexist with PUs on shared frequency

bands, and adjust their transmit power level so that the accumulated interference experi-

enced at PUs is less than a tolerable interference threshold. This scheme requires a strong

assumption that the channel state information between transmitters of SUs and the receivers

of PUs are known as apirori in order to conduct power control. However, in reality, it is

usually difficult to obtain these channel state information without a central controller. Even
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under the presence of a central controller, exchanging these channel state information may

impose a heavy control overhead for the underlying network, which makes it difficult to be

implemented in practice.

Most non-learning based DSS methods translate the operations in wireless networks into

tractable mathematical formulations and then find solutions based on optimization theory.

The non-learning based methods predict the spectrum accessibility by introducing statis-

tical models such as Poisson processes [34], linear regressions [35] and Bayesian prediction

[36]. However, with the proliferation of wireless applications in 5G networks, the underlying

management of spectrum resources become more complicated, hence leading to more com-

plex mathematical formulations. Finding a closed-form solution via classical optimization

approaches in such a complex wireless system becomes extremely challenging if not possi-

ble. Even if a comprehensive and tractable mathematical formulations can be obtained, the

developed algorithms may have high computational complexity making them impractical.

Furthermore, obtaining accurate network information for building the mathematical model is

costly in the wireless system because the background noise in wireless environments largely

decreases the accuracy of the obtained network data. Therefore, many machine learning

(ML) approaches have been applied to the DSS problem because of their abilities to adapt

to unknown environment without modeling the complex wireless network and requiring ac-

curate network information. ML helps the network to dynamically manage the spectrum

resources by analyzing network data, such as user spectrum sensing results and user behavior

information.
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2.2.2 DRL-based DSS strategies

RL stands out from many ML approaches due to its model-free data analysis characteristic,

which substantially improves the spectrum resources allocation in real-world scenarios [37].

DRL-based methods have recently been applied in the DSS networks [38, 39, 40] because

their ability to adapt to unknown environments from the partial observation of the system by

improving performance on a specific task. However, there are some over-simplified network

assumptions in these works. In [38], only one SU is considered in the network with perfect

spectrum sensing outcomes (i.e., there is no error in spectrum sensing), but spectrum sensing

usually contains lots of noise in reality. On the other hand, [39] assumes that the available

spectrum channels are known as a priori and develops a centralized spectrum access algorithm

for multi-user access, so it does not consider the interference to PUs. Furthermore, both [38]

and [39] focus on the ”access” part of the DSS problem by assuming that one channel can

only be utilized by one user at any particular time. Although [40] allows that multiple

SUs can access a channel at the same time, a SU cannot access a channel that a PU is

using. Meanwhile, [40] assumes that each SU can sense all channels simultaneously and the

collision between a PU and a SU can be perfectly detected. In this work, in order to provide

a comprehensive study for the impact DSS strategies, we consider practical situations of

DSS where 1) a SU cannot conduct spectrum sensing perfectly. 2) the SU cannot sense

multiple channels at a particular time. 3) A channel can be shared by the primary system

and the secondary system. To handle the partial observations in wireless environments due

to the incomplete and noisy spectrum sensing results, we utilize RNNs for the introduced

DRL-based DSS strategies, which is also adopted by [41]. Furthermore, we utilize a special

type of RNNs called ESNs to reduce the training time and the required training data.

Unlike most previous works utilize binary ACK/NACK feedback as the reward function, we

calculate the practical reward based on the spectral-efficiency of the primary system. To
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reflect the real wireless environment, we built a new network simulator strictly following

the 3GPP specifications, where field data are used to construct the underlying wireless

environment and the PU traffic. In this new network simulator, the PU activity patterns

are affected by multiple factors, including the scheduling algorithm, the PU traffic, and the

data transmission procedure. In this way, we can train and evaluate the DSS strategies in

realistic wireless application scenarios.

2.3 System Model

Figure 2.1: The DSS scenario where there are 1 SU, 4 PUs, and 2 wireless channels.

In this section, we describe the system model of the DSS problem and discuss its challenges.

DSS is a promising technology to improve the utilization of radio spectrum. DSS allows a

SU to access the licensed radio spectrum if PUs only receive tolerable interference. A DSS

scenario is illustrated in Figure 3.1, where the primary system consists of a primary base

station (PBS) and M PUs, and the secondary system consists of a secondary base station

(SBS) and a SU. The primary system has a license to operate on C wireless channels. Our

goal is to develop a spectrum access strategy of the SU to increase the overall spectrum

utilization without generating intolerable interference to PUs. Each user can only transmit
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on one channel at a particular time. It is assumed that cross-channel interference is negli-

gible so two users transmit on different wireless channels do not interfere with each other.

Without loss of generality, we use a discrete time model to represent the dynamics of the

DSS environment, where changes of the environment happen at discrete time slot k (k is a

natural number). The PBS is responsible for scheduling the spectrum resources to PUs. To

be specific, at time slot k, PBS allocates each channel to one of the PUs that require data

transmission based on its scheduling algorithm.

A spectrum opportunity occurs on a channel for two cases: 1) There is no PU conducting data

transmission on that channel. 2) The SU can share a channel with the PU if the interference

to the PU is tolerable. Unfortunately, obtaining this control information is costly in mobile

wireless networks. Furthermore, the control information is outdated quickly in the highly

dynamic wireless networks. Therefore, it is impractical to design a DSS strategy by assuming

that all the control information is known.

The quality of the wireless connection of a user is determined by its received signal-to-

interference-plus-noise ratio (SINR), which is a ratio of the desired signal power to the

sum of the interference power and the background noise power. A higher value of the SINR

indicates the better quality of the wireless connection. For example, if PBS allocates channel

c to PU m at time slot k, the received SINR at PU m is written as

SINRPBS,m
c [k] =

PPBS
c [k] ·

∣∣HPBS,m
c [k]

∣∣2
P SBS
c [k] ·

∣∣∣HSBS,m
c [k]

∣∣∣2 +Nc[k]
, (2.1)

where PPBS
c [k] and P SBS

c [k] are the transmit power of PBS and SBS on channel c, respectively,

HPBS,m
c [k] is the channel gain of the desired link between PBS and PU m on channel c, HSBS,m

is the channel gain of the interference link between SBS and PU m on channel c, and Nc[k]

is the background noise power on channel c. SBS causes interference to PU m if the SU
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conducts data transmission on channel c at time slot k (P SBS
c [k] > 0), otherwise there is no

interference to PU m at time slot k. Note that the channel gain is dynamic over time and

channel, which is affected by many factors such as user locations and fading.

To enable the protection to the primary system, we assume that the primary system will

broadcast a warning signal if it experiences a low SINR. The warning signal contains in-

formation related to which PU may be interfered so that the SU is aware of the issue. In

fact, this kind of warning signal is similar to the control signals used in current 4G and 5G

networks. It is common to assume that the control signals are received perfectly by the SU,

otherwise the underlying network will not even work. This is the only control information

from the primary system to the secondary system to enable the protection for PUs.

Figure 2.2: Time structure of sensing and data transmission.

The SU performs spectrum sensing to detect the existence of a PU before accessing a channel.

Considering the power and complexity constraints, the SU can only sense one channel at a

particular time. The energy detector is adopted as the underlying spectrum sensing method,

which is the most common one due to its low complexity and cost. We consider the half-

duplex spectrum sensing scheme, where a SU cannot transmit data and performs spectrum

sensing at the same time. We assume a periodic time structure of spectrum sensing and

data transmission as shown in Figure 2.2. To be specific, the tth period contains K time

slots (from time slots (t−1)K+1 to tK), where the spectrum sensing part contains the first

Ks time slots (from time slots (t − 1)K + 1 to (t − 1)K + Ks), and the data transmission
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parts contains the subsequent K −Ks time slots (from time slots (t− 1)K +Ks + 1 to tK).

Accordingly, in the tth period, the SU performs spectrum sensing on channel c by computing

the energy of received signals as follows:

Ec[t] =

(t−1)K+Ks∑
k=(t−1)K+1

∣∣∣√PPBS
c [k] ·HPBS,SU

c [k] + ωc[k]
∣∣∣2 , (2.2)

where ωc[k] ∼ CN (0, Nc[k]) is a circularly-symmetric Gaussian noise on channel c, PPBS
c [k]

is the transmit power of PBS on channel c, and HPBS,SU
c [k] is the channel gain of the sensing

link between PBS and the SU on channel c. Note that if PBS allocates channel c to one PU

at time slot k, then PPBS
c [k] is a positive value, otherwise PPBS

c [k] is zero.

If the computed energy is lower than a threshold, conventional energy detectors regard

channel c as a spectrum opportunity in the tth period. However, setting the threshold is

challenging because it requires the sensing link’s channel gain information, which is difficult

to obtain in the real wireless environment. Furthermore, setting a threshold is difficult

in some cases because of the relative locations of the base station and users. As shown in

Figure 3.1, the sensing link is between PBS and the SU, while the interference link is between

SBS and the PU. The discrepancy of the sensing link and the interference link may cause

the problem that the sensing link is weak but the interference link is strong. For example,

the SU and PBS are far away from each other while SBS is close to the PU. In this case, the

SU cannot detect the existence of PBS, but SBS will cause strong interference to the PU.

The warning signals from PUs are designed to provide additional protection to the primary

system for the case where the SU cannot detect the existence of PBS. Therefore, instead of

making the spectrum access decision solely based on outcomes of the energy detector, we

developed a DRL framework to construct a new spectrum access policy: The DRL agent

will use the sensed energy as the input to learn a spectrum access strategy to maximize the
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spectrum utilization while enabling the protection to PUs.

2.4 DRL Problem Formulation

We now formulate the DSS problem using the DRL framework. To be specific, we assume

that the SU has a DRL agent that takes its observation as the input and learns how to

perform spectrum sensing and access actions in order to maximize its cumulative reward.

The reward for the SU is designed to maximize the spectrum utilization while preventing

harmful interference to PUs. The observation of the SU in the tth period is denoted by

ot = (E[t], Q[t]) , (2.3)

where E[t] is the energy of received signals, and Q[t] is a one-hot C-dimensional vector

indicating the sensed channel in the tth period. If the index of the sensed channel is c, then

the cth element of Q[t] is equal to one while other elements of Q[t] are zeros, and E[t] is equal

to Ec[t] that is calculated by Equation (2.2). Accordingly, the dimension of the observation

space is (C + 1).

The action of the SU in the tth period is denoted by

at = (q[t], z[t]) , (2.4)

where q[t] ∈ {0, 1} represents the SU will either access the current sensed channel (q[t] = 1)

or be idle (q[t] = 0) during the data transmission part of the tth period, z[t] ∈ {1, ..., C}

represents the SU will sense the channel z[t] during the sensing part of the (t+1)th period. In

other words, the SU makes two decisions: q[t] decides whether to conduct data transmission

in the current sensed channel of the tth period and z[t] decides which channel to sense in the
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(t+ 1)th period. Accordingly, the dimension of the action space is 2C. Note that the sensed

channel in the tth period may be different from that in the (t+ 1)th period

Table 2.1: The SINR and CQI mapping to modulation and coding rate.

CQI SINR modulation code rate spectral-efficiency
(≥) (×1024) (bits/symbol)

0 out of range
1 -6.7 QPSK 78 0.1523
2 -4.7 QPSK 120 0.2344
3 -2.3 QPSK 193 0.3770
4 0.2 QPSK 308 0.6016
5 2.4 QPSK 449 0.8770
6 4.3 QPSK 602 1.1758
7 5.9 16QAM 378 1.4766
8 8.1 16QAM 490 1.9141
9 10.3 16QAM 616 2.4063
10 11.7 64QAM 466 2.7305
11 14.1 64QAM 567 3.3223
12 16.3 64QAM 666 3.9023
13 18.7 64QAM 772 4.5234
14 21.0 64QAM 873 5.1152
15 22.7 64QAM 948 5.5547

In our work, we use a discrete reward function which is similar to the existing DRL-based

DSS methods. Compared to a simple binary reward (0 and +1, −1 and +1) in [38] and [39],

we consider a more relevant and comprehensive reward design that is based on the underlying

achieved modulation and coding strategy (MCS) adopted in the 3GPP LTE/LTE-Advanced

standard [42]. To be specific, a receiver measures SINR to evaluate the quality of the

wireless connection and feedback the corresponding Channel Quality Indicator (CQI) to the

transmitter [43]. We follow the method presented in [44] to map the received SINR to the

CQI. After receiving the CQI, the transmitter determines the MCS for data transmission

based on the CQI table specified in the 3GPP standard [42]. The SINR and CQI mapping

to MCS is given in Table 2.1 for reference. Accordingly, the achieved spectral-efficiency can
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be calculated by (bits/symbol) = (modulation’s power of 2) × (code rate) representing the

average information bits per symbol. This critical metric is utilized as the reward function

of our design.

The reward function corresponding to the SU accessing channel c in the tth period depends

on the average spectral-efficiency of the primary system. To be specific, we calculate the

average spectral-efficiency of PUs ēPU
c [t] during the tth data transmission period of the SU

as follows

ēPU
c [t] =

1

|ΨPU
c [t]|

∑
k∈ΨPU

c [t]

ePU
c [k] (2.5)

where ΨPU
c [t] is the set of time slots when PBS allocates channel c to one PU in the SU’s

tth data transmission period (from time slots (t − 1)K + Ks + 1 to tK), and ePU[k] is the

spectral-efficiency of the PU that conducts data transmission on channel c at time slot k.

Note that PBS allocates each channel to only one PU at a particular time slot.

The reward of the SU in the tth period is defined as

rt =


0, SU is idle

−1, SU accesses channel c and ēPU
c [t] < 3

1, SU accesses channel c and ēPU
c [t] ≥ 3

(2.6)

The reward rt is 0 if the SU is idle in the tth transmission period. To enable the protection

for the primary system, the primary system will broadcast a warning signal if its average

spectral-efficiency is below 3, and then the reward received by the SU is −1. If the primary

system does not suffer from strong interference (the average spectral-efficiency of PUs is

larger than 3), the reward rt is 1.
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2.5 Deep Echo State Network (DEQN)

DRQN has been introduced to capture the temporal correlation of observation sequences in

POMDP environments. However, the training of RNNs is known to be difficult that suffers

from vanishing and the exploding gradients problems. The standard training technique for

RNNs, backpropagation-through-time (BPTT), is to unfold the network in time into a com-

putational graph that has a repetitive structure. BPTT suffers from the slow convergence

rate and needs many training samples. Furthermore, both the required amount of training

data and required training time for achieving convergence are large in the DRL framework,

since the DRL agent has to find a good policy by exploring the environment with differ-

ent potential policies. Therefore, training DRQNs under non-stationary environments with

limited available training data is extremely challenging.

In light of training challenges of DRQNs, we introduce DEQN by adopting ESN as the

kernel of deep Q-network to reduce the required training time and the training data [9].

ESNs simplify the BPTT by only training the output weights while leaving input weights

and recurrent weights untrained. Existing research shows that ESNs can achieve compa-

rable performance with RNNs, especially in some applications requiring fast learning [12].

Since the hidden states are fixed in the ESNs, our DEQN training algorithm can pre-store

hidden states. In this way, DEQNs can substantially decrease the amount of training data

by avoiding recalculating hidden states in every training iteration. Compared to DRQNs,

DEQNs will have a much faster training rate with better utilization of the training data.

The action-value function in DRQN/DEQN is approximated by the Q-network Qθ with

parameter θ = (Win,Wrec,Wout), where Win ∈ Rdh×do is the input weights, Wrec ∈ Rdh×dh is

the recurrent weights, and Wout ∈ Rdy×dh is the output weights. A sequence of observations

o1, . . . , ot ∈ Rdo is input to the Q-network to generate a sequence of outputs y1, . . . , yt ∈ Rdy
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as follows:
ht = tanh (Winot +Wrecht−1) ∈ Rdh ,

yt = Woutht ∈ Rdy ,

(2.7)

where ht is the hidden state. The hidden state ht is used to represent a summary of the past

sequence of observations up to t and we set h0 = 0. Note that the ath element of yt is equal

to the estimated Q-value of selecting action a, i.e., yat = Qθ (o≤t, a), where o≤t = (o1, . . . , ot).

The loss function for training θ is

(
rt + γ max

a
Qθ−(o≤t+1, a)−Qθ(o≤t, at)

)2
, (2.8)

where θ− is the parameter of target Q-network. To stabilize the training targets, θ− is

periodically synchronized with θ instead of being updated in each training iteration.

2.5.1 DEQN Training Algorithm

BPTT involves unfolding the network in time into a computational graph that has a repeti-

tive structure, which suffers from the slow convergence rate due to vanishing and exploding

gradients [7]. Furthermore, DRQN requires a large amount of training data to ensure the

learning agent converges to an appropriate policy. Unfortunately, in the DSS problem, the

DRL agent can only collect limited training data and the wireless environment is usually

non-stationary. To quickly adapt to the non-stationary wireless environment using limited

training data, we design an online training algorithm for DEQN.

The designed DEQN training algorithm is stated in Algorithm 1. First, the input weights

and the recurrent weights of ESNs are initialized randomly, and then they remain untrained.

Only the output weights of ESNs are trained so the training is extremely fast by avoiding

BPTT. Second, given (o1, . . . , ot), we can observe that the hidden states (h1, . . . , ht) are
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Algorithm 1 The online training algorithm for DEQN.
Initialize the number of episodes L, the number of samples in one episode T , the explo-
ration probability ϵ, and the discount factor γ.
Initialize an evaluation network θ, a target network θ̂, and a memory buffer D for the
agent.
Initialize a Q-network θ and a target Q-network θ−.
for l = 1, ..., L do

Set θ− = θ and empty the replay buffer D.
Observe o1 from the environment.
for t = 1, ..., T do

Input ot and ht−1 to Qθ to calculate ht and yt.
Select action at based on ϵ-greedy policy.
Execute at based on yt and then receive rt.
Observe ot+1 from the environment.
Input ot+1 and h−

t to Qθ− to calculate h−
t+1.

Store (ht, at, rt, h−
t+1) in replay buffer D.

end for
Sample (hj, aj, rj, h−

j+1) from replay buffer D.
Update θ by performing gradient descents on(

rj + γ max
a

Qθ−(h
−
j+1, a)−Qθ(hj, aj)

)2
.

end for

unchanged during the training process from Equation (2.7) because the input weights and

recurrent weights are fixed. In contrast to DRQNs that waste some training samples and

computational resources to recalculate the hidden states in every training iteration, DEQNs

can pre-store the hidden states in the replay buffer and use them for training. Therefore, the

DEQN training is much more sample and computationally efficient than the DRQN training.

Third, the DEQN training can randomly sample from the replay buffer to create a training

batch because the hidden states are unchanged and pre-stored. On the other hand, the

DRQN training has to sample continuous sequences to create a training batch. Breaking the

temporal correlations of sampled data during training is crucial for reducing generalization

error, as the stochastic optimization algorithms usually assume i.i.d. data. Lastly, to deal

with the non-stationary environment, the outdated training data in the replay buffer will be

removed and the policy will be updated continually by the effective data collected from the
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latest environment.

2.6 Theoretical Analysis for DEQN

In this section, we first provide the convergence analysis for both DRQN and DEQN to

demonstrate the faster convergence of DEQN over DRQN. Second, we characterize the bias-

variance tradeoff of DEQN to select the maximum spectrum norm constraint for ESNs’

recurrent weights. In the following analysis, we denote ∥ · ∥ as the l2 norm of vectors and

the spectral norm of matrices. The proofs of theorems in this section are presented in the

supplementary file due to the page limitation.

To simplify the theoretical analysis while providing sufficient insights, we will make several

assumptions. We make Assumption 2.1 because if o≤t does not contain enough information

for predicting reward and future state, no RL algorithms will be able to work.

Assumption 2.1. The observation sequence up to time t, o≤t = (o1, . . . , ot), contains the

sufficient information for determining the optimal action at time t.

For DRQN/DEQN, we can define a policy π that depends on the observation history. Under

Assumption 2.1, the optimal action-value function Q∗ is defined as

Q∗(o≤t, at) = sup
π

Qπ(o≤t, at), ∀(o≤t, at) ∈ Ω≤t ×A, (2.9)

where Ω≤t =
∏t

i=1Ω and Qπ(o≤t, at) is the action-value function under the policy π.

In Algorithm 2, we simplify the DRQN/DEQN training algorithm as a Neural Fitted Q-

iteration algorithm [45], which is a common framework for RL theoretical analysis using

function approximations [46, 47]. The output of Algorithm 2 is the greedy policy πL with
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Algorithm 2 Neural Fitted Q-Iteration Algorithm.
Initialize the number of episodes L.
Initialize the number of samples in one episode T .
Initialize a Q-network θ0 ∈ Θ and a memory buffer Z.
for l = 1, ..., L do

Sample T transitions (ot, at, rt, ot+1) from the environment and stores in buffer Z.
Calculate the targets
zt = rt + γ maxa′ Qθl−1

(o1, ..., ot+1, a
′).

Update the action-value function:
θl ← argmin

θ∈Θ

1
T

∑T
t=1 (zt −Qθ (o1, ..., ot, at))

2

end for
Define πL as the greedy policy with respect to QθL .

respect to the learned Q-network QθL . To simplify the underlying theoretical analysis, we

make the following assumption.

Assumption 2.2. The optimal weights θl can be characterized in each Q-iteration of Algo-

rithm 2.

Note that Assumption 2.2 can be achieved relatively easily for DEQNs with a reasonably large

number of training iterations. This is because only the output weights of ESNs are trainable,

while it is much more challenging to be achieved for DRQNs due to the underlying training

issues of RNNs. However, we still let Assumption 2.2 hold for both DRQN and DEQN even

though it is biased towards DRQNs.

Theorem 2.1. (Theorem 6.1 in [48]) Let σ be the sampling distribution over Ω≤t × A in

Algorithm 2, µ be a fixed probability distribution over Ω≤t × A, and Rmax be the maximum

reward value. Then we have

Eµ

[∣∣Q∗ −QπL
∣∣] ≤ 2ϕµ,σγ

(1− γ)2
· ηmax,t +

4γL+1

(1− γ)2
·Rmax, (2.10)

where ϕµ,σ is the concentration coefficient of µ and σ, πL is the output policy of Algorithm 2,
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and ηmax,t is the maximum one-step approximation error.

Theorem 2.2. (Theorem 6.2 in [48]) Let ϵ > 0 and Vmax = Rmax/(1 − γ). From Theorem

6.2 in [48], the upper-bound of ηmax,t can be written as

η2max,t ≤4 sup
θ′∈Θ

inf
θ∈Θ

Eσ

[
(BQθ′ −Qθ)

2]
+ C1 · V 2

max/T · logN ext
ϵ,t + C2 · Vmax · ϵ,

(2.11)

where C1 and C2 are constants, B is the Bellman optimality operator, and N ext
ϵ,t is the exterior

ϵ-covering number of RNN/ESN with respect to the Euclidean norm.

The first term in Equation (2.10) represents a statistical error while the second term rep-

resents an algorithmic error. It is clear that the algorithmic error converges to zero as the

Neural Fitted Q-iteration algorithm proceeds. On the other hand, the statistical error term

is bounded by Equation (2.11), which characterizes the bias and variance of estimating the

action-value function using neural networks. The first term in Equation (2.11) corresponds

to the bias incurred by approximating the target BQθ′ using RNN/ESN. It can be viewed as

a measure of the completeness of RNN/ESN with respect to the Bellman operator B. The

second term and the third term in Equation (2.11) correspond to the variance of estimating

action-value functions. Since the variance represents the model’s sensitivity to small fluctu-

ations in the training set, the convergence rate of DRQN/DEQN scales with the estimator

variance [49].

In this paper, we analyze the covering numbers of RNNs and ESNs to compare the underlying

convergence rates of DRQNs and DEQNs. To provide an analytical characterization of the

covering numbers for RNN/ESN, we will make some mild assumptions to bound inputs

and spectral norms of weight matrices of DRQN/DEQN. Note that these assumptions are

commonly used for the analysis of neural networks [50, 51].
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Assumption 2.3. The input is bounded: ∥ot∥ ≤ Bo.

Assumption 2.4. The spectral norms of weight matrices are bounded:

∥Win∥ ≤ σmax
in , ∥Wrec∥ ≤ σmax

rec , ∥Wout∥ ≤ σmax
out . (2.12)

Furthermore, we make σmax
rec < 1 to satisfy the Echo State Property [9].

A function class constructed by RNN/ESN represents a family of functions that maps o≤t

to yt. To begin our analysis, we specify two types of function classes where functions are

represented by Equation (2.7) with different weight matrices. The first type of function

class, At(a, b), contains a family of functions with weights satisfying ∥Win∥ ≤ a, ∥Wrec∥ ≤

b, ∥Wout∥ ≤ σmax
out . The second function class, Bt(a, b), contains a family of functions with

weights satisfying ∥Win∥ = a, ∥Wrec∥ = b, ∥Wout∥ ≤ σmax
out . Since all weights are trainable

in RNNs, the function class constructed by RNNs is At(σ
max
in , σmax

rec ) based on Assumption

2.4. On the other hand, the function class constructed by ESNs is random because input

weights and recurrent weights of ESNs are initialized randomly and are untrained. Let Sin

and Srec be two random variables representing the spectral norm of random input weights

and random recurrent weights, respectively. According to Assumption 2.4, the interval of

Sin is (0, σmax
in ] and the interval of Srec is (0, σmax

rec ]. The probability density function (PDF)

of Sin and Srec are denoted by fSin(·) and fSrec(·), respectively. Then the random function

class constructed by ESNs is denoted as Bt(Sin, Srec).

Let the exterior ϵ-covering number of RNNs and ESNs be N ext
RNN,ϵ,t and N ext

ESN,ϵ,t, respectively.

Note that N ext
ESN,ϵ,t is a random variable because the function class constructed by ESNs is

random. To analyze the theoretical properties of DEQN, we define N ext
ESN,ϵ,t = E[N ext

ESN,ϵ,t] and

use N ext
ESN,ϵ,t for analysis without loss of generality. Theorem 2.3 and Theorem 2.4 contain

the comparison of ϵ-exterior covering numbers of RNNs and ESNs.
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Theorem 2.3. N ext
ESN,ϵ,t is less than or equal to N ext

RNN,ϵ,t almost surely.

Theorem 2.4. The lower-bounds and the upper-bounds of N ext
RNN,ϵ,t and N ext

ESN,ϵ,t are written

as follows.

N ext
RNN,ϵ,t ≥ L (σmax

in , σmax
rec ) , (2.13)

N ext
RNN,ϵ,t ≤ U (σmax

in , σmax
rec ) (2.14)

N ext
ESN,ϵ,t ≥

∫∫
0<a≤σmax

in
0<b≤σmax

rec

L (a, b) fSin(a)fSrec(b)dadb, (2.15)

N ext
ESN,ϵ,t ≤

∫∫
0<a≤σmax

in
0<b≤σmax

rec

U (a, b) fSin(a)fSrec(b)dadb, (2.16)

where
U (a, b) =

[
1 +

2Boσ
max
out a (1− bt)

ϵ(1− b)

]dy
,

L (a, b) =

[
σmax
out Ht(a, b)

ϵ

]dy
,

Ht(a, b) = tanh (aBo + bHt−1(a, b)) ,

H1(a, b) = tanh (aBo) .

Furthermore, N ext
RNN,ϵ,t −N ext

ESN,ϵ,t is lower bounded by

∫∫
0<a≤σmax

in
0<b≤σmax

rec

[L (σmax
in , σmax

rec )− U (a, b)]+ fSin(a)fSrec(b)dadb,
(2.17)

where [x]+ = max(0, x).

It is important to note that Theorem 2.3 and Theorem 2.4 show that the exterior covering

number of ESNs is smaller than that of RNNs. This means that DEQN has a smaller

variance of estimating optimal Q-value compared to DRQN, suggesting a faster convergence
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rate of DEQN. From Equation (2.17), it can be seen that the lower-bound of the gap between

N ext
RNN,ϵ,t and N ext

ESN,ϵ,t depends on fSin(·) and fSrec(·). Since Win and Wrec of ESNs are randomly

generated, we can identify fSin(·) and fSrec(·) using random matrix theory.

Algorithm 3 Initialize Win and Wrec of ESNs.
Each entry of Win and Wrec follows N (0, 1).
Win ← Win · σmax

in / (3γin + µin), where

µin =
(√

do − 0.5 +
√

dh − 0.5
)2

,

γin =
√
µin

(
1√

do − 0.5
+

1√
dh − 0.5

) 1
3

.

Wrec ← Wrec · σmax
rec / (3γrec + µrec), where

µrec = 4 · (dh − 0.5),

γrec =
√
µrec ·

(
2√

dh − 0.5

) 1
3

.

If ∥Win∥ > σmax
in , then Win ← Win · σmax

in /∥Win∥.
If ∥Wrec∥ > σmax

rec , then Wrec ← Wrec · σmax
rec /∥Wrec∥.

To satisfy the spectrum constraints on weights in Assumption 2.4, Win and Wrec of ESNs are

initialized using Algorithm 3. Specifically, each entry of Win and Wrec of ESNs is generated

from independent standard normal distribution, and then Win and Wrec are scaled to satisfy

the spectrum norm constraints. Note that the normalized spectrum norm distribution of

large Gaussian random matrix follows Tracy-Widom distribution [52]. To be specific, if W is

a large m× n Gaussian random matrix, then we can obtain a type-1 Tracy-Widom random

variable TW as the following:

TW = (∥W∥ − µW ) /γW , (2.18)
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where
µW =

(√
m− 0.5 +

√
n− 0.5

)2
,

γW =
√
µW

(
1/
√
m− 0.5 + 1/

√
n− 0.5.

) 1
3

Let the spectrum norm constraint be σmax. Since Pr (∥W∥ ≤ 3γW + µW ) = Pr (TW ≤ 3) ≈ 1,

we first multiply W by σmax/(3γW +µW ) to have Pr (∥W∥ ≤ σmax) ≈ 1. If ∥W∥ is still larger

than σmax, then we multiply W by σmax/∥W∥ to make ∥W∥ = σmax. After generating Win

and Wrec of ESNs using Algorithm 3, fSin(a) and fSin(b), are represented in Theorem 2.5.

Theorem 2.5. Under Algorithm 3, fSin(a) and fSin(b) are

fSin(a) = δ (a− σmax
in ) · [1− FTin (3)] + 1 (a < σmax

in ) ·Kin · fSin

(
Kina−

µin

γin

)
, (2.19)

fSrec(b) = δ (b− σmax
rec ) · [1− FTrec (3)] + 1 (b < σmax

rec ) ·Krec · fSrec

(
Krecb−

µrec

γrec

)
, (2.20)

where
Kin =

3γin + µin

γinσ
max
in

,

Krec =
3γrec + µrec

γrecσmax
rec

,

Tin and Trec are type-1 Tracy-Widom random variables, FTin(·) and FTrec(·) are cumulative

distribution function (CDF) of Tin and Trec, respectively, δ(·) is the delta function, and 1(·)

is the indicator function.

In order for ESNs to work properly, the reservoir has to satisfy the Echo State Property in

Definition 2.6.

Definition 2.6. Let ht+N(o
t+N
t , ht−1) be the hidden state at time t + N of Equation (2.7)

given the hidden state at time t− 1 and the input sequence ot+N
t = (ot, . . . , ot+N). An ESN

is said to satisfy the Echo State Property whenever for any ht−1 = a, ht−1 = b, and for any
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ot+N
t , it holds that:

∥∥ht+N(o
t+N
t , a)− ht+N(o

t+N
t , b)

∥∥→ 0 as N →∞.

The Echo State Property means that ESNs will asymptotically wash out any information

from initial hidden states as time passes, which can be satisfied by σmax
rec < 1 [9]. However, it

does not specify a sufficiently accurate design principle of determining σmax
rec . Therefore, we

derive a new bias-variance decomposition by extending Theorem 2.2, which is presented in

Theorem 2.7

Theorem 2.7. The upper-bound of ηmax,t can be written as

η2max,t ≤ 4max
(
0,

√
dyRmax

1− γ
− ϵ(N ext

ϵ,t )
1
dy

)2

+ C · logN ext
ϵ,t + C ′, (2.21)

where
C =

(
8
√
2T +

256

Vmax

)
· V

2
max
T

,

C ′ = (16 + 4
√
2n+ 36) · Vmax · ϵ.

Corollary 2.8. Let LESN
ϵ,t be the lower-bound of N ext

ESN,ϵ,t and UESN
ϵ,t be the upper-bound of

N ext
ESN,ϵ,t. Then we can obtain

T∑
t=1

η2max,t ≤
T∑
t=1

(
C · logUESN

ϵ,t + C ′)+ T∑
t=1

4max
(
0,

√
dyRmax

1− γ
− ϵ
(
LESN
ϵ,t

) 1
dy

)2

, (2.22)

where the first term and the second term represent the variance and the squared bias of

estimating the action-value function using ESNs, respectively.

Corollary 2.8 can provide a method to determine σmax
rec by minimizing the sum of the squared

bias and the variance in Equation (2.22) through numerical evaluation. To be specific, fSin(a)
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and fSin(b) in Theorem 2.5 are used to calculate the squared bias and the variance.

2.7 Performance Evaluation

In this section, we evaluate the performance of the introduced DEQN methodology in the

DSS scenario of a relevant wireless network. We develop a network simulator to provide prac-

tical radio environments in wireless networks by incorporating field measurements obtained

from a 10-cell ray-tracing area in a city and real-world spectrum occupancy database [53].

All users randomly move at 0.7m/s - 1m/s based on the random waypoint model [54], which

is commonly used for modeling the movement of mobile users in mobility management. Fig-

ure 2.3 shows the DSS scenario in our experiment, where there are 1 SU and 12 PUs in

a 400m×400m area. The primary system has a license to operate on 3 wireless channels

(do = 4 and dy = 6), while the SU has to access the channels without generating intolerable

interference to the primary system. For each channel, the bandwidth is set to 10MHz and

the variance of the Gaussian noise is set to −157.3dBm/Hz. The transmit power of PBS and

SBS are both set to 400mW. We set the sensing and data transmission period K to 100 time

slots and the sensing duration Ks to 20 time slots, where one time slot represents interval of

1ms. We list all the parameters to generate the wireless environment in Table 2.2.

2.7.1 Network Simulator

To provide realistic performance evaluation, we develop a network simulator to provide

practical radio environments in a real wireless network by incorporating field measurements

and real-world datasets. First, we utilize the field measurement data obtained from a 37-cell

ray-tracing area in a city to build the channel gains between the base station and the users.
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Figure 2.3: A snapshot of the DSS network geometry at 1s and 50s, where there are 1 SU
and 12 PUs. PBS/SBS represent the base station of PU/SU.

As shown in Figure 2.4, the channel gains used in the simulation are extracted from cell

23-25 and cell 35-37, where the channel gains on 3 wireless channels from SBS and PBS are

obtained from cell 23-25 and cell 35-37, respectively. Figure 2.5 shows the spectral-efficiency

of a PU on channel 1-3 at different locations within the simulation area when the PU and

the SU are operating on the same channel.

Second, we use real-world spectrum occupancy data for generating the data traffics of PUs.

Most of the literature [55] assumes that the PU’s activity follows a Markov chain which

may not be realistic. In our evaluation, the PU’s activity is determined by the scheduling

algorithm of PBS and its data traffic reflecting practical and relevant wireless network op-

erations. In realistic scenarios, the data traffic of a user usually consists of several sequences

of packets with periods of inactivity in between [56]. Therefore, we extract the per-user data

traffic of PU from RWTH Aachen University’s spectrum occupancy database [53, 57] based

on field measurements. Each PU has a transmit buffer for requiring unsent data from PBS.

The PBS schedules spectrum resources to PUs that require data transmission based on the
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Table 2.2: The values of parameters for generating the wireless environment.

Parameter Value
number of PUs M 12

number of channels C 3
simulation area 400m×400m

transmit power of PBS 400mW
transmit power of SBS 400mW

variance of Gaussian noise −157.3dBm/Hz
bandwidth of a channel 10MHz
interval of one time slot 1ms

sensing and transmission period K 100 time slots
sensing duration Ks 20 time slots

proportional fair scheduling algorithm [58], which is designed to maintain fairness among

users while ensuring good spectral-efficiencies. Specifically, the PBS allocates channel c to

PU z with the maximum of the priority function at time slot k as follows:

z = argmax
m∈Φ[k]

Rm
c [k]

Tm[k]
, (2.23)

where Φ[k] is the set of PUs that require data transmission at time slot k, Rm
c [k] is the

instantaneous rate of PU m provided by channel c at time slot k, and Tm[k] is the aver-

age throughput of PU m up to time slot k. Therefore, a balance between the maximum

throughput and the average throughput can be achieved. The time-scale of scheduling is

done every 1 millisecond. The transmit buffer of a PU is updated if the PU is allowed to

conduct data transmission by the PBS, where the transmitted data size of the PU depends

on the number of allocated channels and the spectral-efficiency of the wireless link. Once

the transmit buffer of a PU is emptied, PBS will not allocate spectrum resources to this PU.

Note that Rm
c [k] is time-variant depending on the spectral-efficiency of PU m at time slot k.
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Figure 2.4: Ray-tracing data and simulation area.

2.7.2 Training Details

The SU adopts an online training algorithm that learns its spectrum access strategy contin-

ually to adapt to the non-stationary wireless environment. To be specific, the SU collects

T = 500 training samples in one episode and stores them in its memory buffer. After col-

lecting 500 training samples in one episode, the SU trains its DRQN/DEQN agent for 100

iterations to update its policy and then applies the updated policy in the next episode. Since
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Figure 2.5: Spectral-efficiency of PU on different channels.

the environment gradually changes over time, the SU removes the outdated training samples

from the memory buffer and collects another T training samples in the new episode.

Because we aim to evaluate the effect of using ESN as the recurrent Q-network, we compare

with DRQN [6] that uses RNN as its recurrent Q-network structure. Although we assume

vanilla RNN in theoretical analysis for DRQN to simplify the analysis, Long Short Term

Memory (LSTM) is usually preferred to be used in DRQN. Therefore, LSTM is used as the

Q-network for DRQN. To have a fair comparison, the LSTM of DRQN and the ESN of DEQN

have the same number of neurons dh = 64 and the same learning rate 0.001. Furthermore,

we let Bo = 1, σmax
in = 0.5, σmax

out = 10, γ = 0.9, Rmax = 1, and ϵ = 0.001. From Corollary 2.8,

we calculate the sum of the squared bias and the variance under different σmax
rec in Figure 2.6,

and we set σmax
rec to 0.7, which corresponds to the lowest sum. Since the number of channels is

3, the dimensions of input weights, recurrent weights, and output weights are 4×64, 64×64,

and 64×6, respectively.
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Figure 2.6: The sum of the squared bias and the variance vs. σmax
rec .

2.7.3 Results

We run all our experiments with 3 random seeds, which varied the user geometry and the

neural network initialization. Each episode consists of 500 periods of spectrum sensing

and data transmission, and the results are averaged over these 500 periods and 3 random

seeds. The curves of mean reward of different methods are shown in Figure 2.7, and the

curves of reward variance of different methods are shown in Figure 2.8. As expected, the

training curves of DRQN is extremely unstable and cannot converge well due to insufficient

training data and training time. On the other hand, DEQN has a stable training curve

and the lowest reward variance. These two reward curves show that DEQN has more stable

and better performance than DRQN, which empirically proves that DEQN can learn more

efficiently with limited training data than DRQN.

Figure 2.9 (a) and Figure 2.9 (b) show the success probability and failure probability of the

SU’s access under 3 channels and 4 channels, respectively. The curves represent an average
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Figure 2.7: Mean of reward vs. episode.

over 3 random seeds, and the shaded areas show the 95% confidence interval. If the SU

accesses a channel without generating intolerable interference to the primary system and

receives a reward +1, then the SU finds a spectrum opportunity successfully, so we call it as

a successful SU access. On the other hand, if the SU generates intolerable interference to the

primary system and receives a reward −1. then we call it as a failed SU access. Note that

a slight increase of the reward mean corresponds to a significant improvement in the DSS

performance. Since the number of available channels decreases, the spectrum opportunities

for the SU in 2 channels is less than that in 3 channels. Therefore, we can observe that the

success probability of SU’s access in 2 channels is lower than that in 3 channels. We observe

that DEQN has the lowest failure probability and highest success probability of the SU’s

access in both scenarios. In sum, Table 2.3 shows the average success/failure probability of

SU’s access. Therefore, DEQN can find the most spectrum opportunities for the SU.
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Figure 2.8: Variance of reward vs. episode.

Table 2.3: The average success/failure probability of SU’s access.

Probability DRQN DEQN
Success (2 channels) 0.68 0.70
Failure (2 channels) 0.15 0.07
Success (3 channels) 0.68 0.76
Failure (3 channels) 0.18 0.07

Table 2.4 compares the average training time for 200 episodes when implemented and exe-

cuted on the same machine with 2.71 GHz Intel i5 CPU and 12 GB RAM. The training time

for DRQN is about 2.52 times more than the training time for DEQN. This huge difference

shows the training speed advantage of our introduced DEQN method against the DRQN

method. DRQN suffers from high training time because BPTT unfolds the network in time

to compute the hidden states and gradients, while DEQN can be trained very efficiently

because the hidden states can be pre-stored and only output weights are updated. Since all

methods have the same number of training samples and training iterations, the evaluation
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Table 2.4: Average Training Time

DEQN DRQN
302.4sec 762.5sec

results confirm the theoretical findings and clearly demonstrate that DEQN has the benefit

of faster learning under limited training data than DRQN in practice.

Figure 2.10 shows the reward mean curves of DEQN under different σmax
rec . We can observe

that σmax
rec = 0.7 achieves the best performance, which confirms the numerical evaluation of

the sum of the squared bias and the variance in Figure 2.6

2.8 Conclusion

In this work, we introduced a new RNN-based DRL strategy, DEQN, that provides a fast

convergence rate to deal with partial observable and non-stationary environments under

limited training data. An online learning algorithm is designed for DEQN with significantly

reduced training overheads compared to DRQN. Upper-bounds and lower-bounds of exte-

rior ϵ-covering numbers of RNN and ESN are analytically characterized to demonstrate the

faster convergence rate of DEQN. Furthermore, we characterize the bias-variance tradeoff of

DEQN to determine the spectrum norm constraint of generating ESN’s recurrent weights.

Experimental results in the DSS environment are obtained to validate our analytical claims.

Both analytical and experimental results demonstrate the benefits of DEQN as an efficient

DRL framework.
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(a) 3 channels.

(b) 2 channels.

Figure 2.9: Success/Failure probability of SU’s access vs. episode.
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Figure 2.10: Reward mean under different σmax
rec vs. episode.



Chapter 3

Multi-user Dynamic Spectrum

Sharing via ESN-based RL

3.1 Spectrum Multiple Access

When multiple SUs access the same group of wireless channels, a good multiple access strat-

egy is needed to avoid collisions and contention among SUs. Multiple access techniques

aims to utilize the spectrum resources more efficiently. There are mainly two approaches

of spectrum multiple access techniques: random access approaches and channel partitioning

approaches. Random access approaches include carrier sense multiple access with colli-

sion avoidance (CSMA/CA) and carrier sense multiple access with collision detection (CS-

MA/CD). The CSMA/CA protocol used by WiFi has two important rules to avoid collisions

with other users: (1) Listen before talk. (2) Wait a random time period after colliding with

other user. It is important to note that CSMA/CA does not detect collision during trans-

mission. On the other hand, CSMA/CD stops transmission immediately when collision is

detected during transmission. CSMA/CD is adopted by Ethernet, which is the dominant

wired local area networks (LAN) technology in the world. Since WiFi adopts CSMA/CD

multiple access approach, a WiFi user cannot terminate data transmission on the fly. The

main reasons that WiFi adopts CSMA/CA are: (1) The strength of the received signal is

much smaller than the strength of the transmitted signal, so it is costly to build hardware

47
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that can detect and send simultaneously. (2) The hidden terminal problem and fading make

the WiFi users cannot detect all collisions. These two problems are resulted from the char-

acteristic of wireless channels, and Ethernet does not have the same problems. Since there

is no collision detection for WiFi users, WiFi has the drawback that the resource cannot be

allocated efficiently and collisions may happen frequently, which degrades the performance

significantly when there are many WiFi users.

Cellular networks adopt channel partitioning approach to achieve spectrum multiple access.

Using the fact that the radio signal attenuates when it propagates in space, the available

frequency spectrum for cellular networks is reused throughout the service area. To be spe-

cific, the service area of cellular networks is divided into cells, and a group of cells forms a

cluster. The available frequency spectrum is reused in every cluster, and each cell has a base

station that is responsible to control a portion of available frequency bands. The inverse

of the number of cells in a cluster is defined as frequency reuse factor (FRF), which indi-

cates how frequently cellular system uses a given amount of spectrum. The multiple access

techniques used in commercial cellular networks are channel partitioning approaches, in-

cluding frequency-division multiple access (FDMA), time-division multiple access (TDMA),

code-division multiple access (CDMA), wideband code-division multiple access (WCDMA),

and orthogonal frequency-division multiple access (OFDMA). 1G standards only support

analog voice call and adopt FDMA for multiple users. 2G standards adopt TDMA+FDMA

for Global System for Mobile communication (GSM) system, the most dominant cellular

standard in the world, and adopt CDMA for IS-95 system, which is the first CDMA system.

3G standards use CDMA or WCDMA to support increasing data services demand, and 4G

standards adopt OFDMA to provide more flexible frequency resource allocation for different

users. In sum, these multiple access methods in cellular networks are based on scheduled

allocation, which provides exclusive service to licensed users. If the traffic of licensed users
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is low or only a few licensed users locate in a cell, then some spectrum resources are unused

and wasted.

We investigate artificial intelligence-enabled spectrum multiple access strategies in the DSS

network. To reduce the control overhead of the underlying DSS network, we incorporate

the powerful DRL technique for SUs to learn “appropriate” spectrum access strategies in a

distributed fashion assuming NO knowledge of the underlying system statistics. DRL is a

suitable framework for developing spectrum multiple access strategies because it is able to

adapt the unknown environment without requiring labeled training data. DRL usually re-

quires tons of training data and long training time to converge. However, obtaining training

data from the wireless environment is costly in wireless networks because it may impose con-

trol overheads to obtain or exchange control information in wireless systems. Furthermore,

wireless networks are dynamic due to factors such as path loss, shadow fading, and multi-

path fading [30], which largely decreases the number of effective training data that reflect

the latest environment. Therefore, the major challenge of designing DRL-based spectrum

multiple access strategies in the DSS network is how to optimize the system performance

under limited control information exchange between the secondary system and the primary

system. The performance of spectrum sharing depends on access strategies of multiple users.

If one user changes its access strategy, then other users have to change their access strategies

accordingly. As a result, designing an efficient DRL framework only requiring a small amount

of training data will be critical for 5G and future 6G DSS networks. In this work, we utilize

DEQNs to realize DRL by taking advantage of the underlying temporal correlation of the

DSS network. To be specific, DEQN-based spectrum multiple access scheme is developed to

facilitate DSS systems to perform appropriate channel access, aiming at protecting primary

users from harmful interference and avoid collisions with other SUs. DEQN is utilized to

learn a spectrum access strategy for each SU in a distributed fashion with limited training
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data and short training time in the highly dynamic DSS networks.

3.2 System Model

In this section, we introduce the DSS problem with multiple SUs. We consider a DSS system

where the primary network consisting of M PUs and the secondary network consisting of N

SUs. It is assumed that one wireless channel is allocated to each PU individually and cross-

channel interference is negligible. We consider a discrete time model, where the dynamics

of the DSS system, such as behaviors of users and changes of the wireless environment, are

constrained to happen at discrete time slots t (t is a natural number). Our goal is to develop

a distributive DSS strategy for each SU to increase the spectrum utilization without harming

the primary network’s performance.

The data of an user are transmitted over the wireless link between its transmitter and

receiver. Signal-to-interference-plus-noise ratio (SINR) is a quality measure of the wireless

connection that compares the power of a desired signal to the sum of the interference power

and the power of background noise. The higher value of the SINR, the better quality of the

wireless connection. The SINR of the user k’s wireless connection on channel m at time slot

t is written as

SINRk
m[t] =

P k ·
∣∣Hk[t]

∣∣2∑
z∈Φk

m

P z · |Hzk[t]|2 +Nm

(3.1)

where P k and P z are the transmit power of the user k and the user z, respectively, Φk
m is the

set containing all the users that are transmitting on channel m except for the user k, Hk[t] is

the channel gain of the desired link of the user k, Hzk[t] is the channel gain of the interference

link between the user z’s transmitter and the user k’s receiver, and Nm is the background

noise power on channel m. Note that all channel gains are changing over time so SINR is
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Figure 3.1: The desired links, the interference links, and the sensing links when PU1, SU1,
and SU2 are operating on the same channel. PUT/SUT represent the transmitters of PU/SU
and PUR/SUR represent the receivers of PU/SU.

also time-variant. The desired link is the link between the transmitter and the receiver of

the same user. The interference link is the link between the transmitter and the receiver of

two different users if these two users are transmitting on the same channel simultaneously.

Figure 3.1 shows the complicated association of desired links and interference links when

PU1, SU1, and SU2 are operating on the same channel. Since cross-channel interference is

negligible, the interference link between two users operating on different channels is out of

consideration.

The radio signal attenuates as it propagates through space between the transmitter and the

receiver, which is referred to as the path loss. In addition to the path loss, the channel gain

is affected by many factors such as shadow fading and multi-path fading. Shadow fading is
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caused by a large obstacle like a hill or a building obscuring the main signal path between the

transmitter and the receiver. Multi-path fading occurs in any environment where multiple

propagation paths exist between the transmitter and the receiver, which may be caused

by reflection, diffraction, or scattering. In telecommunication society, the channel model is

carefully designed to be consistent with wireless field measurements. We generate channel

gains based on the WINNER II channel model [59], which is widely used in industry to make

fair comparisons of telecommunication algorithms.

To enable the protection of the primary network, we assume that a PU will broadcast

a warning signal if its data transmission experiences a low SINR. There are two possible

causes for low SINR. First, the wireless connection of the desired link of the PU is in deep

fade, which means the channel gain of the desired link is low. This leads to a small value

of the numerator in Equation (3.1) so SINR is low. Second, the signals from one or more

SUs cause strong interference to a PU when they are transmitting over the same wireless

channel at the same time. This leads to a large value of the denominator in Equation (3.1),

so SINR assumes a low value again. We called SUs ”collides” with the PU in this case.

The warning signal contains information related to which PU may be interfered so that the

SUs transmitting on the same channel are aware of the issue. In fact, this kind of warning

signal is similar to the control signals (e.g. synchronization, downlink/uplink control) used

in current 4G and 5G networks. It is common to assume that the control signals are received

perfectly at receivers, otherwise the underlying network will not even work. In reality, the

control signal can be transmitted through a dedicated control channel. According to this

mechanism, a PU will broadcast a warning signal once the received SINR is low, and this

is the only control information from the primary system to the secondary system to enable

the protection for PUs under DSS. Note that a PU may send a warning signal even when no

collisions happen because of deep fade.
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The activity of a PU consists of two states: (1) Active and (2) Inactive. If a PU is transmitting

data, it is in Active state, otherwise it is in Inactive state. A spectrum opportunity on a

channel occurs when the licensed PU of that channel is in Inactive state or any SU can

transmit on that channel with little interference to the Active licensed PU. Unfortunately,

it is difficult for a SU to obtain the information of activity states of PUs or the interference

that it will cause in the highly dynamic wireless networks. A SU has to perform spectrum

sensing to detect the activity of a PU, but the accuracy of detection is based on the wireless

link between the transmitters of the PU and the SU, the background noise, and the transmit

power of the PU. On the other hand, the interference level caused by a SU is determined by

the interference link from the SU to the PU, the desired link of the PU, transmit powers of

the PU and the SU, and the background noise. Furthermore, all these factors for determining

spectrum opportunities are time-variant so control information becomes outdated quickly.

Since obtaining control information is costly in mobile wireless networks, it is impractical to

design a DSS strategy by assuming that all the control information is known.

SUs should provide protection to prevent PUs from harmful interference since the primary

system is the spectrum licensee. A commonly used method is that the transmitter of a SU

performs spectrum sensing to detect the activity of a PU before accessing a channel. Due to

the power and complexity constraints, a SU is unable to perform spectrum sensing across all

channels simultaneously. Therefore, we assume that a SU can only sense one channel at a

particular time. We adopt the energy detector as the underlying spectrum sensing method,

which is the most common one due to its low complexity and cost. The energy detector of

SU n first computes the energy of received signals on channel m as follows:

En
m[t] =

t+Ts−1∑
t′=t

|ynm[t′]|
2 (3.2)

where t is the starting time slot of the spectrum sensing, ynm[t′] is the received signal at time
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slot t′, and Ts is the number of time slots of the spectrum sensing. We consider the half-

duplex SU system where a SU cannot transmit data and perform spectrum sensing at the

same time. We assume a periodic time structure of spectrum sensing and data transmission

as shown in Figure 3.2. To be specific, the kth sensing and transmission period contains T

time slots from kT + 1 to (k + 1)T , the spectrum sensing contains the first Ts time slots in

the period from kT +1 to kT +Ts, and the data transmission contains the subsequent T −Ts

time slots in the period from kT + Ts + 1 to (k + 1)T .

Figure 3.2: The time structure of spectrum sensing and data transmission.

The received signal ynm[t′] depends on the activity state of PU m, the power of PU m, the

background noise, and the sensing link between the transmitters of PU m and SU n. When

PU m is in the Inactive state, the received signal is represented as

ynm[t
′] = ωm[t

′] (3.3)

When PU m is in the Active state, the received signal is represented as

ynm[t
′] =
√
Pm ·Hmn[t′] + ωm[t

′] (3.4)

where ωm[t
′] ∼ CN (0, Nm) is a circularly-symmetric Gaussian noise with zero mean and

variance Nm, Pm is the transmit power of PU m, and Hmn[t] is the channel gain of the

sensing link between the transmitters of PU m and SU n.
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If the energy computed in Equation (3.2) is higher than a threshold, the PU is considered

in the Active state, otherwise the PU is considered in the Inactive state. The challenge of

designing an energy detector is how to set the threshold properly. The value of the threshold

is actually a trade-off between the detection probability and the false alarm probability.

However, setting the threshold for achieving a good trade-off is related to many factors,

including the channel gain of the sensing link, the transmit power of the PU, the noise

variance, the number of received signals, etc. This information is difficult to obtain before

deploying in the real environment and is time-variant. Furthermore, setting a threshold is

difficult in some cases because of the relative positions of transmitters and receivers. As

shown in Figure 3.1, the sensing link is between the transmitters of the PU and the SU, but

the interference link is between the transmitter of the SU and the receiver of the PU. The

discrepancy between the sensing link and the interference link may cause the hidden node

problem, where the sensing link is weak but the interference link is strong. For example,

the transmitters of a SU and a PU are far away from each other while the SU transmitter

is close to the receiver of the PU. In this case, the transmitters of the SU and the PU are

hidden nodes with respect to each other. For example, a SU’s transmitter is far away from a

PU’s transmitter but is close to a PU’s receiver, then this SU may not detect the existence

of this PU but still causes strong interference to this PU. These SU and PU are said to

be hidden nodes with respect to each other in this case. On the other hand, a SU should

access the channel more aggressively if the interference link is weak. The warning signals

from PUs are designed to provide additional protection to the primary system for the case

where the SU cannot detect the activity of the PU, thereby mitigating the issues caused by

the hidden nodes. Meanwhile, instead of making the spectrum access decision solely based

on the outcomes of the energy detector, we developed a DRL framework to construct a novel

spectrum access policy: The DRL agent will use the sensed energy as the input to learn

a spectrum access strategy to maximize the cumulative reward. The reward is designed to
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maximize the spectral-efficiencies of SUs while enabling the protection for PUs with the help

of warning signals from PUs.

3.3 DRL Problem Formulation

We now formulate the multi-user DSS problem using the DRL framework, where all SUs in

the secondary system learn their spectrum access strategies in a distributed fashion through

the interactions with the mobile wireless environment. To be specific, we assume that each

SU has a DRL agent that takes its observed state as the input and learns how to perform

spectrum sensing and access actions in order to maximize its cumulative reward. The re-

ward for each SU is designed to maximize its spectrum efficiency and to prevent harmful

interference to PUs.

The observation of SU n in the kth sensing and transmission period is denoted by

sn[k] = (En[k], Qn[k]) , (3.5)

where k is a non-negative integer, En[k] is the energy of received signals, and Qn[k] is a one-

hot M -dimensional vector indicating the sensed channel from time slots kT + 1 to kT + Ts.

If the index of the sensed channel is m, then the mth element of Qn[k] is equal to one while

other elements of Qn[k] are zeros. On the other hand, En[k] is equal to En
m[kT ] that is

calculated by Equation (3.2).

The action of SU n in the kth sensing and transmission period is denoted by

an[k] = (qn[k], zn[k]) , (3.6)
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where qn[k] ∈ {0, 1} represents SU n will either access the current sensed channel (qn[k] = 1)

or be idle (qn[k] = 0) during the data transmission part of the kth period (from time slots

kT + Ts + 1 to (k + 1)T ), zn[k] ∈ {1, ...,M} represents SU n will sense channel zn[k] during

the sensing part of the (k + 1)th period (from time slots (k + 1)T + 1 to (k + 1)T + Ts). In

other words, SU n makes two decisions: qn[k] decides whether to conduct data transmission

in the current sensed channel of the kth period and zn[k] decides which channel to sense in

the (k + 1)th period. Therefore, the dimension of each SU’s action space is 2M . Note that

the sensed channel in the kth period may be different from that in the (k + 1)th period

We use a discrete reward function which is similar to the reward function design in Section

2.4. To be specific, each user adopts Table 2.1 to map the received SINR to the achieved

spectral-efficiency. Then the spectral-efficiency is utilized as the reward function design for

the multi-user DSS system. To jointly consider the performance of the primary and the

secondary systems, the reward function corresponding to SU n accessing channel m depends

on both the spectral-efficiency of SU n and PU m. During time slots kT +Ts+1 to (k+1)T ,

the average spectral-efficiency of SU n, ēn[k], and the average spectral-efficiency of PU m,

ēm[k], are calculated by

ēn[k] =
1

T − Ts

(k+1)T−1∑
t′=kT+Ts

enm[t
′]

ēm[k] =
1

T − Ts

(k+1)T−1∑
t′=kT+Ts

emm[t
′]

(3.7)

where enm[t
′] and emm[t

′] represent the spectral-efficiency of SU n and PU m on channel m at

time slot t′, respectively.
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The reward of SU n in the kth transmission period is defined as

rn[k] =



−2, if ēm[k] < 1.5

−1, if SU n is idle in the kth period

0, if ēm[k] ≥ 1.5 and ēn[k] < 1

1, if ēm[k] ≥ 1.5 and 1 ≤ ēn[k] < 2

2, if ēm[k] ≥ 1.5 and 2 ≤ ēn[k] < 3

3, if ēm[k] ≥ 1.5 and ēn[k] ≥ 3

(3.8)

To enable the protection for the primary system, PU m will broadcast a warning signal

if its average spectral-efficiency is below 1.5, and then the reward received by SU n that

accesses channel m is set to −2. To motivate SUs to explore spectrum opportunities, the

reward rn[k] is set to −1 if SU n decides to be idle in the kth transmission period. When

PU m does not suffer from strong interference (the average spectral-efficiency of PU m is

larger than 1.5), we increase the reward rn[k] from 0 to 3 as the average spectral-efficiency

of SU n increases (see Equation (3.8)). Note that the low spectral-efficiency of a PU or a SU

does not necessarily mean collisions because the underlying wireless channels are changing

dynamically over time. If the channel gain of the wireless link is small, the spectral-efficiency

of the user will be low even if there is no collision. Therefore, the reward function and the

warning signal are introduced since it is impossible to detect collisions perfectly in practical

wireless environments.
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3.4 Independent DEQN

To capture the activity patterns of PUs, which are usually time-dependent, applying DRQNs

is a natural choice. Although DQNs are able to learn the temporal correlation by stacking

a history of states in the input, the sufficient number of stacked states is unknown because

it depends on PUs’ behavior patterns. RNNs are a family of neural networks for processing

sequential data without specifying the length of temporal correlation.

However, the training of RNNs is known to be difficult that suffers from vanishing and

the exploding gradients problems. Furthermore, the required amount of training data for

achieving convergence is large in the DRL scheme, since there are no explicit labels to guide

the training and the agents have to learn from interacting with its environment. In the

wireless environment, the channel gain of a wireless link changes rapidly, which is shown in

Figure 3.3. Note that the environment observed by a SU is affected by other SUs’ access

strategies because of possible collisions between SUs, and all SUs are dynamically adjusting

their DSS strategies during their training processes. As a result, in the DSS problem, the

duration for a learning environment being stable is short and the available training data is

very limited.

The standard training technique for RNNs is to unfold the network in time into a computa-

tional graph that has a repetitive structure, which is called backpropagation through time

(BPTT). BPTT suffers from the slow convergence rate and needs many training examples.

DRQN also requires a large amount of training data because a learning agent finds a good

policy by exploring the environment with different potential policies. Unfortunately, in the

DSS problem, there are only limited training data for a stable environment due to dynamic

channel gains, partial sensing, and the existence of multiple SUs. To address this issue, we

use ESNs as the Q-networks in the DRQN framework to rapidly adapt to the environment.
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Figure 3.3: Time-variant channel gain of a wireless link.

ESNs simplify the training of RNNs significantly by keeping the input weights and recurrent

weights fixed and only training the output weights.

We denote the sequence of observations for SU n by {sn[1], sn[2], ...}. Accordingly, the

sequence of hidden states, {hn[1], hn[2], ...}, is updated by

hn[k] =(1− β) · hn[k − 1]

+ β · tanh (W n
ins

n[k] +W n
rech

n[k − 1]) ,

(3.9)

where W n
in is the input weight, W n

rec is the recurrent weight, β ∈ [0, 1] is the leaky parameter,

and we let hn[0] = 0. The output sequence, {on[1], on[2], ...}, is computed by

on[k] = W n
outu

n[k] (3.10)

where un[k] is a concatenated vector of sn[k] and hn[k], and W n
out is the output weight. Note

that the output vector on[k] is a 2M -dimensional vector, where each element of on[k] corre-
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sponds to the estimated Q-value of selecting one of all possible actions given the observation

sn[1], ..., sn[k].

The double Q-learning algorithm [60] is adopted to train the underlying DEQN agent of

each SU. Each DEQN agent has two Q-networks: the evaluation network and the target

network. Let the output sequence from the evaluation network and the target network

be {onθ [1], onθ [2], ...} and {onθ− [1], onθ− [2], ...}, respectively. The loss function for training the

evaluation network of SU n is written as

(
rn[k] + γony,θ− [k + 1]− ony,θ[k]

)2
, (3.11)

where ony,θ− [k + 1] and ony,θ[k] are the yth element of onθ− [k + 1] and onθ [k], respectively, y is

the index of the maximum element of onθ [k + 1], rn[k] + γony,θ− [k + 1] is the target Q-value.

To stabilize the training targets, the target network is only periodically synchronized with

the evaluation network.

The input weights and the recurrent weights of ESNs are randomly initialized according to

the constraints specified by the Echo State Property [10], and then they remain untrained.

Only the output weights of ESNs are trained so the training is extremely fast. The main idea

of ESNs is to generate a large reservoir that contains the necessary summary of past input

sequences for predicting targets. From Equation (3.9), we can observe that the hidden state

hn[k] at any given time slot k is unchanged during the training process if the input weights

and recurrent weights are fixed. In contrast to conventional RNNs that usually initialize the

hidden states to zeros and waste some training examples to set them to appropriate values

in one training iteration, the benefit of ESNs is that the hidden states do not need to be

reinitialized in every training iteration. Therefore, the training process becomes extremely

efficient, which is especially suitable for learning in a high dynamic environment. Compared
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to storing (s[k], a[k], r[k], s[k + 1]) in conventional DRQN framework, we also store hidden

states (h[k], h[k + 1]) because hidden states are unchanged. In this way, we do not have to

waste lots of training time and data to recalculate hidden states in every training iteration.

It largely boosts the training efficiency in the highly dynamic environment since we can avoid

using BPTT and only update the output weights of networks. Furthermore, we can ran-

domly sample from the replay memory to create a training batch, while conventional DRQN

methods have to sample continuous sequences to create a training batch. Thus the training

data can be more efficiently used in our DEQN method. The training data stored in the

buffer will be refreshed periodically in order to adapt to the latest environment. Therefore,

our training method is an online training algorithm that keeps updating the learning agent.

The training algorithm for DEQNs in the DSS problem is detailed in Algorithm 4.

3.5 Performance Evaluation

3.5.1 Experimental Setup

We set the number of PUs and SUs to 4 and 6, respectively, and the locations of PUs and SUs

are randomly defined in a 2000m×2000m area. The distance between the transmitter and

the receiver of each desired link is randomly chosen from 400m-450m. Figure 3.4 shows the

geometry of the DSS network, where PUT/SUT represent the transmitters of PU/SU and

PUR/SUR represent the receivers of PU/SU. The channel gains of desired links, interference

links, and sensing links are generated by the WINNER II channel model widely used in 3GPP

LTE-Advanced and 5G networks [59]. In this case, there are 4 desired links for PUs, 6 desired

links for SUs, 30 interference links between different SUs, 24 interference links between SUTs

and PURs, 24 interference links between PUTs and SURs, and 24 sensing links between PUTs
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Figure 3.4: The DSS network geometry. PUT/SUT represent the transmitter of PU/SU.
PUR/SUR represent the receiver of PU/SU.

and SUTs. Totally, 112 wireless links are generated in our simulation, which establishes a

more complicated scenario than existing DRL-based DSS strategies [38, 39, 40]. Specifically,

[38] considers each channel only has two possible states (good or bad) without modeling

the true wireless environment; [39] assumes that the collision between users can be perfectly

detected without considering the dynamics of interference links; [40] assumes that SUs are

forbidden to access a channel when a PU is using without considering the actual interference

links between PUs and SUs.

For each channel, the bandwidth is set to 5MHz and the variance of the Gaussian noise is

set to -157.3dBm. The transmit power of PUs and SUs are both set to 500mW. We set the

sensing and transmission period T to 10 time slots and the sensing duration Ts to 2 time

slots, where one time slot represents interval of 1ms. For the activity pattern of PUs, we

let two PUs be in Active state every 3T (PU1 and PU3) and two PUs be in Active state
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every 4T (PU2 and PU4). We list all the parameters to generate the wireless environment

in Table 3.1.

Table 3.1: The values of parameters for generating the wireless environment.

Parameter Value
number of PUs M 4
number of SUs N 6
simulation area 2000m×2000m

distance between user pair 400m-450m
transmit power of PU 500mW
transmit power of SU 500mW

variance of Gaussian noise -157.3dBm
bandwidth of a channel 5MHz
interval of one time slot 1ms

sensing and transmission period T 10 time slots
sensing duration Ts 2 time slots

3.5.2 Training Details

Each SU trains its DEQN agent and updates the policy accordingly after collecting 300

samples in the buffer. The buffer will be refreshed after training so we only use training data

from the latest 3 sec. The total number of training data is 60000, which requires 600 sec

to collect all the training data. The initial exploration probability ϵ is set to 0.3, and then

it will gradually decrease until ϵ is 0. We first train the Q-network with learning rate 0.01,

and then the learning rate decreases to 0.001 when ϵ is less than 0.2.

As shown in Figure 3.5, our DEQN network consists of L reservoirs for extracting the neces-

sary temporal correlation to predict targets. The number of neurons in each reservoir is set

to 32 and the leaky parameter β is set to 0.7 in Equation (3.9). During the training process,

the input weights {W (1)
in , ...,W

(L)
in } and the output weights {W (1)

rec , ...,W
(L)
rec } are untrained.

To find a good policy, only the output weight Wout is trained to read essential temporal
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Figure 3.5: The network architecture of DEQN.

information from the input observations and the hidden states stored in the experience re-

play buffer. Existing research shows that stacking RNNs automatically creates different time

scales at different levels, and this stacked architecture has better ability to model long-term

dependencies than single layer RNN [61, 62, 63]. We also find that stacking ESNs can indeed

improve the performance in our experiment.

3.5.3 Results

We evaluate our introduced DEQN method with three performance metrics: 1) The system

throughput of PUs. 2) The system throughput of SUs. 3) The required training time. The

throughput represents the number of transmitted bits per second, which is calculated by

(spectral-efficiency) × (bandwidth), and the system throughput represents the sum of users’

throughput in the primary system or secondary system. A good DSS strategy should increase

the throughput of SUs as much as possible, while the transmissions of SUs do not harm the

throughput of PUs. Therefore, each SU has to access an available channel by predicting
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activities of other mobile users. We compare with conventional DRQN method that uses

Long Short Term Memory (LSTM) [64] as the Q-network. For a fair comparison, we also

set the number of neurons in each LSTM layer to 32. The training algorithm of DRQNs

is BPTT and double Q-learning with the same learning rate as DEQNs. Since each SU

updates its policy for every 300 samples, we show all of our curves in figures by calculating

the moving average of 300 consecutive samples for clarity.

Figure 3.6: The system throughput of PUs.

DEQN1 and DEQN2 are our DEQN method with one and two layers, respectively, and

DRQN1 and DRQN2 are the conventional DRQN method with one and two layers, respec-

tively. The system throughput of PUs is shown in Figure 3.6 and the system throughput
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Figure 3.7: The system throughput of SUs.

of SUs is shown in Figure 3.7. We observe that DEQNs have more stable performance than

DRQNs, which empirically proves that the DEQN method can learn efficiently with limited

training data. Note that one experience replay buffer only contains 300 latest training sam-

ples. After updating the learning agent of each SU using the 300 data in the buffer, DSS

strategy of each SU changes so the environment observed by one SU also changes. Therefore,

we have to erase the outdated samples from the buffer and let SUs collect new training data

from the environment. Figure 3.8 shows the average reward of SUs versus time. We observe

extremely unstable reward curves of both DRQN1 and DRQN2 so it proves that DRQNs

cannot adapt to this dynamic wireless scenario well with few training data.
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Figure 3.8: The average reward versus time.

We observe that DEQN2 has better performance than DEQN1 in both the system throughput

of PUs and SUs, which shows that deep structure (stacking ESNs) indeed improves the

capability of the DRL agent to learn long-term temporal correlation. As for DRQNs, we

observe that DRQNs do not have improved performance as we increase the number of layers

in the underlying RNN. The main reason is that more training data are needed for training

a larger network but even DRQN with one layer cannot be trained well.

The top priority of designing a DSS network is to prevent harmful interference to the primary

system. To analyze the performance degradation of the primary system after allowing the

secondary system to access, we show the system throughput of PUs when there is no SU
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Figure 3.9: The average warning frequency of PU1 and PU2 versus time.

exist in Figure 3.6. We observe that DEQN2 can achieve almost the same performance of

the system throughput of PUs. A PU broadcasts a warning signal if its spectral-efficiency

is below a threshold. For each PU, we record the frequency of (the PU sends a warning

signal and it is received by some SUs) / (number of the PU’s access), which is called as the

warning frequency. Figure 3.9 and Figure 3.10 show the average warning frequency of each

PU versus time. We observe that the every PU decreases its warning frequency over time,

meaning that each SU learns not to access the channel that will cause harmful interference
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Figure 3.10: The average warning frequency of PU3 and PU4 versus time.

to PUs.

We compare the training time of different approaches in Table 3.2 when implemented and

executed on the same machine with 2.71 GHz Intel i5 CPU and 12 GB RAM. The required

training time for DRQN1 is 23.4 times the training time for DEQN1, and the required train-

ing time for DRQN2 is 42.8 times the training time for DEQN2. This huge difference shows

the training speed advantage of our introduced DEQN method against the conventional

DRQN method. DRQN suffers from high training time because BPTT unfolds the network
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Table 3.2: The comparison of training time of different network architectures.

Network Training time (sec)
DEQN1 161
DEQN2 178
DRQN1 3776
DRQN2 7618

in time to compute the gradients, but DEQN can be trained very efficiently because the

hidden states can be pre-stored for many training iterations.

3.6 Conclusion

In this work, we study spectrum multiple access strategies in a distributive DSS network

under the condition of imperfect spectrum sensing and no centralized controllers. The

independent DEQN learning approach can efficiently capture the temporal correlation of

the underlying time-dynamic environment requiring very limited amount of training data.

Equipped with the DEQN agent, each SU is able to make proper spectrum access decisions

distributively relying only on minimal warning information from the PUs, their own spectrum

sensing outcomes, and the learning outcomes. Compared to the DRQN-based approach, the

DEQN-based approach largely increase the convergence rate. Experimental results verify the

performance of the independent DEQN learning framework, showing significant performance

improvements over state-of-the-art DRQN-based approaches. This provides strong evidence

for adopting DEQN for real-time and time-dynamic applications.
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Algorithm 4 The training algorithm for independent DEQN.
Initialize the wireless environment with M PUs and N SUs.
Set the sensing and transmission period to T time slots and the sensing duration to Ts

time slots.
Set the buffer size to Z, the training iteration to I, and the exploration probability to ϵ.
Randomly initialize an evaluation network DEQNn

θ and a target network DEQNn
θ− with

the same weights for each SU n.
Each SU n randomly selects one channel (= zn[0]) to sense for Ts time slots and then
computes the state sn[1].
for q = 1, ... do

Initialize an empty buffer Bn
q for each SU.

for z = 1, ..., Z do
Let k = (q − 1)Z + z.
Each SU n inputs sn[k] to DEQNn

θ , calculates the hidden state hn
θ [k], and outputs

onθ [k].
Each SU n decides action an[k] = (qn[k], zn[k]) based on ϵ-greedy policy, where an[k]
is the index of the maximum element of onθ [k] with probability 1−ϵ and an[k] is chosen
randomly with probability ϵ.
Each SU n accesses channel zn[k − 1] if qn[k] = 1 or does not access if qn[k] = 0 for
T − Ts time slots.
Each SU n obtains the reward rn[k].
Each SU n senses channel zn[k] for Ts time slots and then computes the state sn[k+1].

Each SU n inputs sn[k+1] to DEQNn
θ− , calculates the hidden state hn

θ− [k], and outputs
onθ− [k].
Each SU n stores (sn[k], hn

θ [k], a
n[k], rn[k], sn[k + 1], hn

θ− [k]) in Bn
q .

end for
for iteration = 1, ..., I do

Each SU n samples random training batch (sn[k], hn
θ [k], a

n[k], rn[k], sn[k + 1], hn
θ− [k])

from Bn
q .

Each SU n inputs sn[k] and hn
θ [k] to DEQNn

θ to calculate onθ [k]
Each SU n inputs sn[k + 1] and hn

θ [k + 1] to DEQNn
θ− to calculate onθ− [k]

Each SU n updates DEQNn
θ by performing gradient descent step on(
rn[k] + γony,θ− [k + 1]− ony,θ[k]

)2
,

where y is the index of the maximum element of onθ [k + 1].
end for
Each SU n synchronizes DEQNn

θ− with DEQNn
θ .

end for



Chapter 4

Multi-user Dynamic Spectrum

Sharing via ESN-based MARL

4.1 Multi-agent Reinforcement Learning (MARL)

We can treat the spectrum multiple access in the DSS network as a problem of multi-

agent reinforcement learning (MARL) problem, where multiple RL agents share a common

environment. In fact, many of the successful DRL applications such as the games of Go

and Poker [3], robotic control [65], and autonomous driving [66], naturally fall into the

realm of MARL. MARL is a challenging problem because both the local observation and

the local reward received by each agent are influenced by other agents’ actions. In other

words, an agent not only interacts with the environment but also interacts with each other,

resulting in a non-stationary environment from each local agent’s viewpoint. To be specific,

MARL is characterized by N tuples (Sn,An, T n, Rn,Ωn,On, γ)n∈N , where N is the number

of agents, Sn is the state space of agent n, An is the action space of agent n, Ωn is the

observation space of agent n, and γ ∈ [0, 1] is the discount factor. At time t, the state

of agent n is sn[t] ∈ Sn, the observation of agent n is on[t] ∈ Ωn, the action of agent n

is an[t] ∈ An, and the reward of agent n is rn[t]. Note that T n is the state transition

probability of agent n providing Pr (sn[t+ 1]|sn[t], a[t]), On is the observation probability of

agent n providing Pr (on[t+ 1]|sn[t+ 1], a[t]), Rn is the reward function of agent n providing

73
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rn[t] = Rn (·|sn[t], a[t]). In addition, we denote S = ∪Nn=1Sn as the joint state space, A =

∪Nn=1An as the joint action space, and R =
∑N

n=1R
n as the joint reward function. The goal

of the considered MARL problem is to optimize the joint reward r[t], which is defined as

r[t] =
N∑

n=1

rn[t]. (4.1)

It is important to note that rn[t] depends on the joint action, a[t] =
(
a1[t], . . . , aN [t]

)
, in the

MARL setting.

Most MARL algorithms assume that a joint reward is received by all agents, or each agent

receives an individual reward but shares it with other agents. However, this assumption may

not be practical in some real-world applications because agents do not share their received

observations and rewards for data privacy and security issues. In this paper, we assume that

each agent does not share its local observations and rewards with other agents, where each

agent updates its policy to maximize its own long-term local reward. We leverage federated

learning to jointly learn a shared policy that maximizes the joint reward by combining all

agents’ local policies.

4.2 Federated Learning

The training of ML algorithms can be centralized or distributed. To ensure the training

accuracy, most learning based methods require a centralized server to collect all the training

data and perform the centralized training. Since the training data are usually distributed

over wireless users in different locations, these wireless users have to send their collected

data to the centralized server frequently to maintain the accurate decision making in the

highly dynamic 5G network. However, the frequent data exchange between the centralized
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server and wireless users result in high communication overhead in network operations.

Furthermore, the user data sent to the server may contain sensitive information such as user

location, which may be eavesdropped by hackers and cause privacy issues.

Therefore, it triggers the idea of the distributed learning framework that does not require

users to send their private data to the centralized server. In the entirely distributed learning

scheme called independent learning, each wireless user only optimizes its own training task

without communicating with one another. Authors in [39] utilizes Aloha based protocol DRL

method to solve multi-user spectrum access problem in a independent learning manner, which

has a DQN architecture with lower computational complexity. Although the independent

learning can maintain the efficiency and scalability when handling a large number of users,

the system performance of the independent learning is much worse than the centralized

training due to a lack of cooperation among users.

To address the aforementioned problems, we utilize a special distributed learning framework

called federated learning (FL). FL enables multiple devices to collaboratively learn a shared

model while keeping the training data local. To be specific, each device downloads the shared

model from the centralized server and updates the model using its local training data. These

locally trained models are then sent to the centralized server, and the centralized server

aggregates the information from these models to obtain an updated shared model. Then

the updated shared model is downloaded by distributed devices to start next training cycle.

In this way, all the training data remains on local devices, so data privacy can be ensured.

Furthermore, the communication efficiency can be improved because only model updates

are exchanged between the centralized server and local devices. Lastly, FL enables the

cooperation among devices via the adequate model aggregation process in the centralized

server.
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4.3 System Model

The Federal Communications Commission (FCC) has released the 3.5 GHz (3550-3700 MHz)

band, termed Citizens Broadband Radio Service (CBRS), for shared spectrum usage of

federal and commercial users [67]. To be specific, the CBRS system has been opened for

spectrum sharing across three tiers of users: Incumbent User (IU), Priority Access Licenses

(PAL) users, and General Authorized Access (GAA) users. IUs include federal users such

as military radars and satellite ground stations, which are the highest tiers and should be

protected from possible interference from the lower tiers such as PAL or GAA users. The

second tier PAL users are commercial users that are protected from the interference caused

by GAA users. PALs are licensed based on spectrum auction, and each PAL consists of

a 10 MHz channel for a 10-year term. Finally, the lowest tier GAA users must not cause

harmful interference to IUs or PAL users and must accept interference from them. Under

these constraints, GAA provides free access to the available spectrum, so GAA users act as

unlicensed users in the CBRS system. FCC requires that the operations among users in these

three tiers should be managed through an automated frequency coordinator called Spectrum

Access System (SAS). When managing spectrum access, SAS may incorporate information

from an Environmental Sensing Capability (ESC), which is a sensor network that detects

the transmissions of IUs. In this work, we focus on designing the spectrum access algorithm

for GAA users in the CBRS system.

In this section, we describe the DSS problem in the CBRS system, which is shown in Figure

4.1 The CBRS system has been opened for shared access under a three-tiered spectrum access

model: IUs, PAL users, and GAA users. IUs have the highest priority in this three-tiered

spectrum access model, so the SAS ensures that they only receive negligible interference

from PAL users and GAA users. Next, the spectrum is allocated to commercial users who
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Figure 4.1: The CBRS system model.

buy PALs for a specified location and period of time. Lastly, the remaining spectrum is

allocated to GAA users. It is important to note that both PAL users and GAA users should

stop using the spectrum immediately if IUs need the spectrum. Similarly, GAA users have

to stop using the spectrum if PAL users need the spectrum.

In this paper, we focus on designing the spectrum access strategies for GAA users to ef-

ficiently utilize the spectrum resources. We assume that there are N GAA users sharing

M wireless channels, where 1, · · · , N represent the index set of GAA users and 1, · · · ,M

represent the index set of wireless channels. Without loss of generality, we assume that a

GAA user can access at most one channel at a particular time. We use a one-hot vector

an[t] ∈ {0, 1}M to denote the accessed channel index of GAA user n at time t. If GAA user

n accesses channel m at time t, we let an[t] = δm, where δm is an M -dimensional vector

with its mth element is equal to 1. It is important to note that GAA users do not receive

interference protection from the SAS, so they may interfere with each other if multiple GAA

users access the same channel at the same time. To be specific, the channel capacity of GAA
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user n on channel m at time t is defined as

cnm[t] = Bm log2

(
1 +

SINRn
m[t]

Γn

)
, (4.2)

where

SINRn
m[t] =

1 (an[t] = δm)P
n · hn,n

m [t]
N∑

z=1,z ̸=n

1 (az[t] = δm)P z · hz,n
m [t] +Nm[t]

, (4.3)

Bm is the bandwidth of channel m, P n and P z are transmit power of GAA user n and GAA

user z, respectively, 1(·) is an indicator function, hn,n
m [t] is the channel gain of the desired

link between user n’s transmitter and receiver at time t, hz,n
m [t] is the channel gain of the

interference link between user z’s transmitter and user n’s receiver at time t, Nm[t] is the

noise on channel m at time t, and Γn is the SNR gap corresponding to the modulation and

coding strategy of user n. From the interference term in Equation (4.3), it can be observed

that the channel capacity of each GAA user on a channel depends on other GAA users that

transmit on the same channel. We can calculate the channel capacity of GAA user n at time

t is

cn[t] =
M∑

m=1

cnm[t]. (4.4)

According to the spectrum management rules in the CBRS system, the SAS ensures that a

GAA user accesses a channel that is not utilized by IUs or PAL users. The channel activity

state, qm[t] ∈ {0, 1}, is used to denote the existence of IUs and PAL users on channel m at

time t. If qm[t] is equal to 0, GAA users cannot access channel m because IUs or PAL users

are using channel m. On the other hand, if qm[t] is equal to 1, GAA users are allowed to

access channel m. The dynamics of each channel activity state are modeled as a two-state

Markov chain as shown in Figure 4.2. The transition probability of the two-state Markov
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Figure 4.2: Channel activity model.

chain on channel m is denoted as

pm =

p00m p01m

p10m p11m

 , (4.5)

where pijm (i, j ∈ {0, 1}) represents the probability of next activity state of channel m is j

given that current activity state of channel m is i.

4.4 DRL Problem Formulation

In this section, we formulate the DSS problem using the DRL framework. To be specific,

each GAA user n has a DRL agent with policy network parameters θn that determines its

spectrum access decisions based on its observation. The local state of each agent n at time

t is written as

sn[t] = (P n,Γn, hn,n
m [t], P z, hz,n

m [t], az[t], Nm[t]) ,∀m ∈M,∀z ∈ N \ n. (4.6)
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The joint state at time t is written as

s[t] = (P n,Γn, hz,n
m [t], az[t], Nm[t]) ,∀n, z ∈ N ,∀m ∈M. (4.7)

It can be observed that the joint state space is the union of all agents’ local states. The

received reward of GAA user n at time t is the achieved channel capacity, which is written

as

rn[t] =
M∑

m=1

qm[t]Bm log2

(
1 +

SINRn
m[t]

Γn

)
. (4.8)

We let the received reward be zero if GAA user n accesses a channel m that is currently

utilized by IUs or PAL users, i.e., qm[t] = 0.

Let V n
π be the value function that the agent n follows policy π in its environment, which is

defined as

V n
π (s

n
i ) = E

[
∞∑
t=0

γtRn (sn[t], an[t]) | sn[0] = sni , a
n[t] ∼ π (sn[t])

]
, (4.9)

where sni is the initial state of agent n. Let πθn be the policy obtained from the agent n’s

policy network with parameters θn and let ρn be the initial state distribution of the agent n.

Then we can represent the value function of agent n as a function of θn, which is written as

fn(θn) = Esni ∼ρn
[
V n
πθn

(sni )
]

= E

[
∞∑
t=0

γtRn (sn[t], an[t]) | sn[0] ∼ ρn, an[t] ∼ πθn (s
n[t])

]
.

(4.10)

The goal is to jointly learn a policy that can perform well across all agents’ environments.

To be specific, the sum of all agents’ value functions that all agents follow the same policy
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πθ can be written as a function of θ, which is represented as:

f(θ) =
N∑

n=1

fn(θ). (4.11)

Accordingly, the goal is to find a joint policy πθ∗ with parameters θ∗ that maximizes the sum

of all agents’ value functions:

θ∗ = argmax
θ

f(θ). (4.12)

In many real-world applications, it is impossible for an agent to perfectly observe the en-

vironment and obtain the complete state information. Instead, an agent receives a partial

observation from the environment. In the DSS problem of the CBRS system, we define the

observation received by GAA user n at time t is

on[t] = (cnm[t− 1], cnm[t− 1]) ,∀m ∈M, (4.13)

where cnm[t− 1] represents the average channel capacity at time t− 1, which is defined as

cnm[t] = α · cnm[t− 1] + (1− α) · cnm[t], (4.14)

where α is a positive number between 0 and 1.

4.5 Federated Training Algorithm

To enable the collaboration among GAA users, it is natural to design a centralized spectrum

sharing strategies for GAA users. In the centralized approach, all GAA users need to share

their sensory data, such as spectrum access histories, detection of interference, and transmit

powers. However, gathering all GAA users’ information in a spectrum access database may
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not always be appropriate due to privacy and security concerns. Furthermore, it may increase

control overheads significantly for the GAA users to send their spectrum access information.

To decrease the communication overheads and increase the data privacy, we utilize FL to

design a distributed spectrum sharing strategy that does not require GAA users to share

their private data.

4.5.1 Distributed Federated Policy Gradient

Algorithm 5 Federated policy gradient training algorithm.
Let Q (·) be the quantized function, β ∈ (0, 1], and η ∈ (0, 1], where β > η.
Initialize a shared policy network with parameters θ0
for k = 1, · · · , K do

Set each agent n’s policy network as the shared policy network:
θnk−1,0 = θk−1,∀n ∈ N .

for c = 1, · · · , τ do
Each user n empties its memory buffer Dn.
for t′ = 1, · · · , T do

t = τT (k − 1) + T (c− 1) + t′

Each agent n receives observation on[t] from the environment.
Each agent n determines an[t] based on its policy network.
Each agent receives reward rn[t] from the environment after executing an[t].
Each agent n stores the training sample (on[t], an[t], rn[t]) in its memory buffer Dn.

end for
Each agent n updates its policy network locally using the training samples from Dn:

θnk−1,c = θnk−1,c−1 + η∇fn(θnk−1,c−1). (4.15)

end for
The centralized controller updates the shared policy network via taking the average of
all quantized local policy networks:

θk = (1− β) · θk−1 + β · 1
N

N∑
n=1

Q
(
θnk−1,τ

)
(4.16)

end for
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We utilized the distributed federated policy gradient as the training algorithm, which is for-

mally stated in Algorithm 5. In this algorithm, the SAS serves as a centralized controller

to learn a shared model by aggregating the information of all locally trained models. To be

specific, each agent first downloads a shared policy network from the centralized controller,

and then each agent updates the policy network using the collected data from its local en-

vironment. Next, each agent sends its local policy network to the centralized controller. It

is important to note that only the policy network is sent to the centralized controller, while

training data are kept in each local agent. The centralized controller aggregates the infor-

mation of all received local policy networks. In this paper, we let the centralized controller

update the shared policy network via taking the average of the parameters of local policy

networks. Then the shared policy network will be downloaded by each local agent again

to start a new trainig cycle. The aforementioned training method can be summarized as a

Periodically Averaging Stochastic Gradient Descent (PASGD) as the following:

θnk,c =


1
N

N∑
n′=1

θn
′

k−1,τ , c = 1,

θnk,c−1 + η∇fn
(
θnk,c−1

)
, c = 2, · · · , τ ,

(4.17)

where η is the learning rate, c is the iteration of SGD, k is the iteration of FL, θn1,1 is

randomly initialized, θnk,c is the local policy model parameters of agent n at SGD iteration c

and FL iteration k. We can observed that the local policy networks are averaged after every

τ iterations. If τ = 1, then PASGD is equal to fully synchronous SGD as the following:

θnk = θnk−1 + η

[
1

N

N∑
n=1

∇fn
(
θnk−1

)]
. (4.18)

For the fully synchronous SGD, the local policy networks are averaged for every SGD itera-

tion.
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4.5.2 Federated ESN-based Policy Gradient (Fed-EPG)

Figure 4.3: Federated ESN-based Policy Gradients.

DRL aims to solve the large state space problem in traditional reinforcement learning. Con-

ventional RL techniques such as Q-learning have limited applications with low-dimensional

state spaces. DRL utilizes deep neural network as a function approximator to accelerate

the convergence time when the state space is large [68]. In our considered DSS problem,

the state is continuous resulting in infinite state space, so we apply DRL as the underlying

policy network.

To handle the partially observable environment and to accelerate the training, we utilize

ESN as the underlying neural network structure of the policy network. Specifically, the
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softmax function is used as the last activation function of a ESN to generate a probability

distribution over the action space. For each agent n, we let the input sequence of ESN be

the observation history on≤t = (on[1], · · · , on[t]), and the parameters of the ESN-based policy

network of agent n are θn = (W n
in,W

n
rec,W

n
out). The update equations of the ESN-based

policy network is written as:

yn[t] = W n
outh

n[t],

hn[t] = tanh (W n
ino

n[t] +W n
rech

n[t− 1]) ,

(4.19)

where the dimension of yn[t] is equal to the action space. Accordingly, the resulting distri-

bution over actions at time t is given as

πθn
(
a|on≤t

)
=

eyna [t]∑
a′∈A

eyna′ [t]
, ∀a ∈ An, (4.20)

where yna [t] is the ath element of yn[t].

From Algorithm 5, the data collected from agent n’s environment are (on[t], an[t], rn[t]) from

t = 1 to t = T . According to the policy gradient algorithm, the loss function of the ESN-

based policy gradient (EPG) is written as

argmin
Wn

out

T∑
t=1

log πθn
(
an[t]|on≤t

)
·

(
t∑

t′=1

γt′−1rn[t′]

)
. (4.21)

The system model of the introduced federated ESN-based policy gradient (Fed-EPG) is

shown in Figure 4.3. Each agent first downloads a shared ESN-based policy network from

the centralized controller, and then each agent updates the ESN-based policy network locally.

Next, each agent only uploads the output weights of the ESN-based policy to the centralized

controller because only weights of the ESN-based policy network are trainable. Therefore,
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ESN-based policy network is suitable for the FL framework because the communication

overheads can be largely decreased.

4.6 Convergence Analysis

The convergence analysis is conducted under the following assumptions:

Assumption 4.1. Each agent n can compute the exact gradient ∇fn(θ).

Assumption 4.2. The value function fn(θ) is Lipschitz smooth with constant L:

∥∇fn(θ1)−∇fn(θ2)∥ ≤ L ∥θ1 − θ2∥ .

Assumption 4.3. ∇fn(θ) is lower-bounded: ∥∇fn(θ)∥ ≤ Z.

We can rewrite the PASGD update equations in Equation (4.17) as follows:

θnk,c = θnk,c−1 + η∇fn
(
θnk,c−1

)
, ∀c ∈ {2, · · · , τ}, (4.22)

where θnk,1 = θ̄k and

θ̄k =
1

N

N∑
n=1

θnk−1,τ , ∀k ∈ {2, · · · , K}. (4.23)

It is easily seen that

θnk,τ = θ̄k + η

τ∑
c=1

∇fn
(
θnk,c−1

)
. (4.24)

By plugging Equation (4.24) into Equation (4.23), we have

θ̄k = θ̄k−1 +
η

N

N∑
n=1

τ∑
c=1

∇fn
(
θnk−1,c−1

)
. (4.25)
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From Equation (4.23) and Equation (4.22), we can obtain

θnk,c = θ̄k + η

c∑
c′=1

∇fn
(
θnk,c′−1

)
, ∀c ∈ {1, · · · , τ}. (4.26)

By using the fact that ∇fn(θ) is lower-bounded, we can obtain the following upper-bounds:

∥∥θ̄k − θ̄k−1

∥∥ =

∥∥∥∥∥ η

N

N∑
n=1

τ∑
c=1

∇fn
(
θnk−1,c−1

)∥∥∥∥∥ ≤ ητZ (4.27)

and ∥∥θnk,c − θ̄k
∥∥ =

∥∥∥∥∥η
c∑

c′=1

∇fn
(
θnk,c′−1

)∥∥∥∥∥ ≤ ηcZ ≤ ητZ. (4.28)

We can rewrite Equation (4.24) as

θnk,τ = θ̄k + ητ∇f
(
θ̄k
)
+ η

τ∑
c=1

(
∇fn

(
θnk,c−1

)
−∇f

(
θ̄k
))

(4.29)

By plugging Equation (4.29) into Equation (4.23), we have

θ̄k = θ̄k−1 + ητ∇f
(
θ̄k−1

)
+

η

N

N∑
n=1

τ∑
c=1

(
∇fn

(
θnk−1,c−1

)
−∇f

(
θ̄k−1

))
. (4.30)

According to the Lipschitz smooth assumption, we have:

fn
(
θ̄k
)
≥ fn

(
θ̄k−1

)
+
〈
∇fn

(
θ̄k−1

)
, θ̄k − θ̄k−1

〉
− L

2

∥∥θ̄k − θ̄k−1

∥∥2 . (4.31)

By plugging Equation (4.30) into Equation (4.31), we can obtain

fn
(
θ̄k
)
≥ fn

(
θ̄k−1

)
+
〈
∇fn

(
θ̄k−1

)
, ητ∇f

(
θ̄k−1

)〉
+ An +B, (4.32)



88 CHAPTER 4. MULTI-USER DYNAMIC SPECTRUM SHARING VIA ESN-BASED MARL

where

An =

〈
∇fn

(
θ̄k−1

)
,
η

N

N∑
n=1

τ∑
c=1

(
∇fn

(
θnk−1,c−1

)
−∇f

(
θ̄k−1

))〉
(4.33)

B = −L

2

∥∥θ̄k − θ̄k−1

∥∥2 . (4.34)

Using the Lipschitz smooth assumption and Equation (4.28), we have

∥∥∇fn
(
θnk−1,c−1

)
−∇f

(
θ̄k−1

)∥∥ ≤ L
∥∥θnk−1,c−1 − θ̄k−1

∥∥ ≤ LητZ. (4.35)

We use the Cauchy–Schwarz inequality to obtain the following upper-bound of An.

|An| ≤
∥∥∇fn

(
θ̄k−1

)∥∥ · ∥∥∥∥∥ η

N

N∑
n=1

τ∑
c=1

(
∇fn

(
θnk−1,c−1

)
−∇f

(
θ̄k−1

))∥∥∥∥∥
≤ Z · η

N
NτLητZ = Lη2τ 2Z2.

(4.36)

Thus we have
1

N

N∑
n=1

An ≥ −Lη2τ 2Z2. (4.37)

In addition, we have B ≥ −Lη2τ2Z2

2
from Equation (4.27). Summing up both sides of

Equation (4.32) over n, we obtain

fn
(
θ̄k
)
≥ fn

(
θ̄k−1

)
+

1

N

N∑
n=1

〈
∇fn

(
θ̄k−1

)
, ητ∇f

(
θ̄k−1

)〉
+

1

N

N∑
n=1

An +B

≥ fn
(
θ̄k−1

)
+
〈
∇f

(
θ̄k−1

)
, ητ∇f

(
θ̄k−1

)〉
− Lη2τ 2Z2 − Lη2τ 2Z2

2

= fn
(
θ̄k−1

)
+ ητ

∥∥∇fn
(
θ̄k−1

)∥∥2 − 3Lη2τ 2Z2

2

(4.38)

Thus, we have

ητ
∥∥∇fn

(
θ̄k
)∥∥2 ≤ fn

(
θ̄k+1

)
− fn

(
θ̄k
)
+

3Lη2τ 2Z2

2
. (4.39)
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From Equation (4.39), we can obtain

ητ

K−1∑
k=0

∥∥∇fn
(
θ̄k
)∥∥2 ≤ fn

(
θ̄K
)
− fn

(
θ̄0
)
+

3Lη2τ 2Z2K

2

≤ f ∗ − fn
(
θ̄0
)
+

3Lη2τ 2Z2K

2
.

(4.40)

Then we have

min
k∈[0,K−1]

∥∥∇fn
(
θ̄k
)∥∥2 ≤ f ∗ − fn

(
θ̄0
)

ητK
+

3LητZ2

2
. (4.41)

4.7 Performance Evaluation

4.7.1 Experimental Setup

In this section, we evaluate the introduced Fed-EPG method for the DSS problem in the

CBRS system through simulations. There are 8 GAA users and 4 channels, where each

channel is 10MHz. Each GAA user can request data transmission on one of the channels,

but the final channel allocation is determined by the SAS. In other words, if a GAA user

requests a wireless channel that is currently occupied by IUs or PAL users, then it cannot

access that wireless channel. For each GAA user n, the distance of the transmitter and the

receiver of GAA user n is denoted as dn and the transmit power is set to P n. As described in

(), the dynamics of each channel activity state is modelled as a two-state Markov chain. For

each channel m, we randomly choose p00m and p11m from a uniform distribution over [0.8, 1] and

[0, 0.2], respectively, and then p01m = 1− p00m and p10m = 1− p11m can be calculated accordingly.

To generate channel gains of desired links and interference links, we set the path loss model

as 41 + 22.7 log10(d) dB, where d is the distance between a transmitter and a receiver in

meter. The small-scale channel gain follows a Rician distribution, where the ratio of the
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average power in the Line-of-Sight path to that in the Non-Line-of-Sight paths is set as 0.8.

The noise spectral density N0 is set to −164 (dBm/Hz).

4.7.2 Training Details

Each GAA user interacts with the environment to collect T = 50 training samples, and

then each GAA user updates its ESN-based policy network locally using these collected

samples. All ESN-based policy networks use ESNs with 32 neurons. After updating its

policy network for τ iterations, each GAA user uploads the output weights of the ESN-based

policy network to the centralized controller in the SAS. The centralized controller calculates

a shared ESN-based policy network by aggregating the information from all local ESN-

based policy networks. Accordingly, τ represents the communication overhead between the

centralized controller and the local agents. If τ = 1, then it is equal to the fully synchronous

SGD approach. The learning rate of the local SGD and the FL are set to 0.8 and 0.95,

respectively. We let γ = 0.9 and use 8 bits to represent the quantized value of each weight

of the ESN-based policy network. The simulation parameters are listed in Table 4.1.

4.7.3 Results

We compare with two baselines: the fully synchronous SGD method (τ = 1) and the in-

dependent learning method. Independent learning method represents that each agent aims

to optimize its local reward without information aggregation in the centralized controller,

so the training is totally independent. We run all our experiments with 300 random seeds,

which varied the initial locations of users and the neural network initialization. Since all

users are randomly moving in the experiment, user locations change over time, and the wire-

less environment changes accordingly. Each episode consists of 50 samples, and the reported



4.7. PERFORMANCE EVALUATION 91

Table 4.1: Simulation Parameters.

Parameter Value
Number of channels (M) 4

Number of GAA users (N) 8
Power of GAA user n (P n) 50 mW

Transmit distance of GAA user n (dn) 50m-150m
Simulation area 500m×500m

Channel bandwidth (Bm) 10MHz
Path loss model (Bm) 41 + 22.7 log10(d[m]) dB

Small-scale fading Rician distribution
Noise spectral density (N0) −164 (dBm/Hz),

Number of training data for each SGD iteration (T ) 50
SGD period (τ) 5

Total number of training data 50000
FL period (K) 1000/τ

SGD learning rate (η) 0.8
FL learning rate (β) 0.95

Entropy regularization parameter (λ) 0.01

curves are averaged over these 50 samples and 300 random seeds. The curves of the sys-

tem throughput are shown in Fig. 4.4, where the shaded areas show the 95% confidence

interval. As expected, the fully synchronous SGD achieves the best system performance be-

cause it performs federated learning every local SGD iteration. However, the communication

overheads of the fully synchronous SGD is unbearable for the DSS network. On the other

hand, Fed-EPG with τ = 5 achieves comparable performance while maintaining reasonable

communication overheads between the centralized controller and the local agents. Lastly,

the independent learning method has the worst system performance due to no collaboration

among agents. It is because if any GAA user updates its spectrum access policy, then the

local environments of other agents change, which results in unstable environment from local

agent’s perspective in the independent learning method.
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Figure 4.4: The system throughput versus time for fully synchronous SGD, independent
learning, and Fed-EPG.

4.8 Conclusion

In this work, we introduce a new collaborative spectrum access strategies in the DSS network.

To reduce the communication overheads and improve the data privacy, we utilize federated

learning to design a distributed spectrum sharing strategy called Fed-EPG. Fed-EPG can

learn a joint policy that achieves the system goal in the partially observable environment

without requiring users to share their private data. We conduct theoretical analysis to show

the tradeoff between the communication overhead and the convergence rate. Experimental

results in the DSS network of the CBRS system are obtained to show that the introduced

Fed-EPG method can achieve comparable performance with the fully synchronous method.



Chapter 5

Summary

DRL techniques are appealing to wireless communications society because they can provide

a flexible architecture for solving many types of critical problems in next generation wireless

networks. Although DRL shows tremendous empirical success in many other fields, apply-

ing DRL techniques to wireless systems is still difficult due to many practical constraints in

the wireless systems. In the real-world wireless communication systems, the environment is

always non-stationary and partially observable, and the available effective training data is

extremely limited. Therefore, this dissertation aims to develop the efficient DRL methods

that can be deployed in the real-world wireless applications with aforementioned properties,

such as spectrum sharing, multi-user scheduling, and cell load balancing. To handle these

practical challenges, we utilized the efficient training structures of ESNs to design the DEQN

method and the Fed-EPG method. Furthermore, we provide theoretical analysis for DEQN

and Fed-EPG to show the fast convergence properties and a guideline for designing hyper-

parameters. We evaluate our methods in the DSS problem, which is a key technology in

5G and future 6G wireless systems. DSS allows the secondary system to access the licensed

radio spectrum if the primary system only receive tolerable interference, which increases the

utilization ratio of the precious spectrum resources. Simulation results show that our meth-

ods can enable the DRL agents to quickly update its spectrum access policy to adapt to the

changing environment with limited training overheads. This work shed a light on realizing

the powerful DRL techniques in the next generation wireless networks.
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Appendix A

Proofs of theorems in Section 2.6

In this supplementary material, we present detailed proofs of Theorem 2.2, 2.3, 2.4, 2.5, and

2.7. In the following analysis, we denote ∥ ·∥ as the ℓ2 norm of vectors and the spectral norm

of matrices. We first define the function class constructed by RNN/ESN. A function class,

Ft := {ft : o≤t → yt}, represents the family of functions that maps the first t observations to

the t-th output according to update equations in Equation (2.7). In our analysis, the function

class Ft can be a family of RNN/ESN satisfying Assumption 2.3 and Assumption 2.4. We

now define the exterior ϵ-net and ϵ-covering number of a given function class Ft.

Definition A.1. (The exterior ϵ-net and ϵ-covering number) Given a function class Ft and

let ϵ > 0. We can define a function class, C(Ft, ϵ, d), as the exterior ϵ-net of Ft if for any

ft ∈ Ft, there exists f̂t ∈ C(Ft, ϵ, d) such that

sup
o≤t

d
(
ft(o≤t), f̂t(o≤t)

)
≤ ϵ

where d is the distance metric, ft(o≤t) and f̂t(o≤t) is the t-th output of RNN/ESN calculated

by ft and f̂t given the input sequence o≤t, respectively. The smallest possible cardinality of

C(Ft, ϵ, d) is called the exterior ϵ-covering number of Ft.

In our analysis, we consider d as the ℓ2 distance and denote the exterior ϵ-covering number

of Ft with respect to the ℓ2 distance by N ext
ϵ (Ft). To begin our analysis, we specify two

types of function classes where functions are represented by Equation (2.7) with different
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constraints on weight matrices. The first type of function class, At(a, b), contains a family

of functions with weights satisfying

∥Win∥ ≤ a, ∥Wrec∥ ≤ b, ∥Wout∥ ≤ σmax
out . (A.1)

The second function class, Bt(a, b), contains a family of functions with weights satisfying

∥Win∥ = a, ∥Wrec∥ = b, ∥Wout∥ ≤ σmax
out . (A.2)

In our analysis, we assume that the weights of both RNN and ESN satisfy Assumption

2.4. Since all weights are trainable in RNNs, the function class constructed by RNNs is

denoted by At(σ
max
in , σmax

rec ). On the other hand, the function class constructed by ESNs is

random because input weights and recurrent weights of ESNs are initialized randomly and

are untrained. Let Sin and Srec be two random variables representing the spectral norm

of random input weights and random recurrent weights, respectively. Then the random

function class constructed by ESNs is denoted by Bt(Sin, Srec), where the interval of Sin and

Srec are (0, σmax
in ] and (0, σmax

rec ], respectively. Therefore, the exterior ϵ-covering number of

RNN and ESN with respect to the ℓ2 norm are

N ext
RNN,ϵ,t = N ext

ϵ (At (σ
max
in , σmax

rec )) (A.3)

and

N ext
ESN,ϵ,t = N ext

ϵ (Bt (Sin, Srec)) (A.4)

respectively. Note that N ext
ESN,ϵ,t is a random variable because the function class Bt(Sin, Srec)

is a random function class. To analyze the theoretical properties of DEQN, we define the
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expected value of N ext
ESN,ϵ,t as

N ext
ESN,ϵ,t = E[N ext

ESN,ϵ,t] =

∫∫
0<a≤σmax

in
0<b≤σmax

rec

N ext
ϵ (Bt (a, b)) fSin(a)fSrec(b)dadb, (A.5)

where fSin(·) and fSrec(·) are the probability density function (PDF) of Sin and Srec, respec-

tively. We use N ext
ESN,ϵ,t for analysis without loss of generality.

A.1 Proof of Theorem 2.2

Theorem 6.2 in [48] shows that: For any δ ∈ (0, 1] and ϵ′ > 0, we have

η2max,t ≤(1 + δ)2 sup
θ′∈Θ

inf
θ∈Θ

Eσ

[
(BQθ′ −Qθ)

2]
+ C

′

1 ·
V 2

max
T · δ

· logNϵ′,t,ℓ∞ + C
′

2 · Vmax · ϵ′,
(A.6)

where
C

′

1 = (1 + δ)2
[
(1 + δ)

√
2T + 64/Vmax

]
C

′

2 = (1 + δ)(4 +
√
2T ) + 18,

B is the Bellman optimality operator, and Nϵ,t,ℓ∞ is the ϵ-covering number of RNN/ESN

with respect to the ℓ∞ norm. Similar to Definition A.1, the ϵ-covering number of a given

function class Ft is the smallest cardinality of the ϵ-net of Ft, but the ϵ-net of Ft is required

to be a subset of Ft.

From Exercise 4.2.9 in [69], we have the following relation between the covering number and

the exterior covering number:

Nϵ′,t,ℓ∞ ≤ N ext
ϵ,t,ℓ∞ , (A.7)
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where ϵ = ϵ′/2 and N ext
ϵ,t,ℓ∞

is the exterior ϵ-covering number of RNN/ESN with respect to

the ℓ∞ norm.

Let N ext
ϵ,t,ℓ2

and Cext
ϵ,t,ℓ2

be the exterior ϵ-covering number and the minimal exterior ϵ-net of

RNN/ESN with respect to the ℓ2 norm, respectively, where
∣∣Cext

ϵ,t,ℓ2

∣∣ = N ext
ϵ,t,ℓ2

. According

to the exterior ϵ-net definition, for any function ft in RNN/ESN, there exists f̂t in Cext
ϵ,t,ℓ2

such that supo≤t

∥∥∥ft(o≤t)− f̂t(o≤t)
∥∥∥
2
≤ ϵ. Furthermore, Cext

ϵ,t,ℓ2
must be an exterior ϵ-net of

RNN/ESN with respect to the ℓ∞ norm because ∥x∥∞ ≤ ∥x∥2. Since the exterior ϵ-covering

number is the cardinality of the minimal exterior ϵ-net, we have

N ext
ϵ,t,ℓ∞ ≤ N ext

ϵ,t,ℓ2
. (A.8)

Let δ = 1 and N ext
ϵ,t = N ext

ϵ,t,ℓ2
. By utilizing Nϵ′,t,ℓ∞ ≤ Nϵ,t, we can extend Equation (A.6) to

η2max,t ≤4 sup
θ′∈Θ

inf
θ∈Θ

Eσ

[
(BQθ′ −Qθ)

2]
+ C1 ·

V 2
max
T
· logN ext

ϵ,t + C2 · Vmax · ϵ,
(A.9)

where
C1 = 8

√
2T +

256

Vmax
,

C2 = 16 + 4
√
2T + 36.

A.2 Proof of Theorem 2.3

The function class constructed by RNNS is At(σ
max
in , σmax

rec ), while the random function class

constructed by ESNs is Bt(Sin, Srec), where the interval of Sin and Srec are (0, σmax
in ] and

(0, σmax
rec ], respectively. For any constants a ∈ (0, σmax

in ] and b ∈ (0, σmax
rec ], we have Bt(a, b)

as a realization of Bt(Sin, Srec). According to Equation (A.1) and Equation (A.2), Bt(a, b)
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is a subset of At (σ
max
in , σmax

rec ). Let C be the smallest exterior ϵ-net of At (σ
max
in , σmax

rec ), i.e.,

|C| = N ext
ϵ (At (σ

max
in , σmax

rec )). From Definition A.1, for any ft ∈ At (σ
max
in , σmax

rec ), there exists

f̂t ∈ C such that supo≤t
d
(
ft(o≤t), f̂t(o≤t)

)
≤ ϵ, where d is the ℓ2 distance metric. Since each

function of Bt(a, b) belongs to At (σ
max
in , σmax

rec ), C must be an exterior ϵ-net of Bt(a, b). Note

that the exterior ϵ-covering number is the cardinality of the smallest exterior ϵ-net, so we

have

N ext
ϵ (Bt (a, b)) ≤ |C| = N ext

ϵ (At (σ
max
in , σmax

rec )) . (A.10)

Since Equation (A.10) holds for every realization of Bt(Sin, Srec), we can have

Pr
(
N ext

ESN,ϵ,t ≤ N ext
RNN,ϵ,t

)
= 1. (A.11)

A.3 Proof of Theorem 2.4

A.3.1 Proof of the upper-bound of N ext
RNN,ϵ,t

For the function class At(a, b), we establish a recursion that relates ht with ht−1 as follows:

∥ht∥ = ∥tanh (Winot +Wrecht−1) ∥

≤ ∥Winot +Wrecht−1∥

≤ ∥Win∥ · ∥ot∥+ ∥Wrec∥ · ∥ht−1∥

≤ aBo + b · ∥ht−1∥, (A.12)



A.3. PROOF OF THEOREM 2.4 109

where the last inequality follows Assumption 2.3 and Equation (A.1). Applying Equation

(A.12) recursively with h0 = 0, we get

∥ht∥ ≤ Boa
t−1∑
i=0

bi = Boa
1− bt

1− b
(A.13)

Then we can upper bound ∥yt∥ as follow:

∥yt∥ = ∥Woutht∥ ≤ Boσ
max
out a

1− bt

1− b
(A.14)

Let R = Boσ
max
out a

1−bt

1−b
and Bn(r) be the Euclidean ball in Rn centered at the origin with

radius r. Since ∥yt∥ ≤ R, Bdy(R) contains all possible yt from At(a, b).

We define the set that contains all possible yt from a given function class Ft as

ϕ(Ft) = {ft(o≤t) : ∀ft ∈ Ft} (A.15)

According to Proposition 4.2.12 in [69], we can bound the ϵ-covering number using volume

as follows:
vol (ϕ(Ft))

vol (Bn(ϵ))
≤ N ext

ϵ (Ft) ≤
vol (ϕ(Ft) +Bn(ϵ/2))

vol (Bn(ϵ/2))
, (A.16)

where vol(·) denotes the volume of a set and

ϕ(Ft) +Bn(ϵ/2) = {a+ b : a ∈ ϕ(Ft), b ∈ Bn(ϵ/2)}.

Since the set of all possible yt from At(a, b) is contained in Bdy(R), we have the following
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relation:
N ext

ϵ (At(a, b)) ≤
vol
(
Bdy(R) +Bdy(ϵ/2)

)
vol (Bdy(ϵ/2))

=

[
R + ϵ/2

ϵ/2

]dy
=

[
1 +

2Boσ
max
out a (1− bt)

ϵ(1− b)

]dy

By letting U (a, b) =

[
1 +

2Boσmax
out a(1−bt)
ϵ(1−b)

]dy
, we have

N ext
ϵ (At(a, b)) ≤ U (a, b) . (A.17)

Since N ext
RNN,ϵ,t = N ext

ϵ (At (σ
max
in , σmax

rec )), we have

N ext
RNN,ϵ,t ≤ U (σmax

in , σmax
rec ) . (A.18)

A.3.2 Proof of the lower-bound of Next
RNN,ϵ,t

Let Gt(a, b) be the function class that has the following properties: 1) Win is a full rank

matrix with all singular values equal to a. 2) Wrec is a full rank matrix with all singular

values equal to b. 3) Wout is a full rank matrix with all singular values equal to σmax
out . We

can find that Gt(a, b) is a subset of At(a, b) from Equation (A.1). Furthermore, Gt(a, b) is

also a subset of Bt(a, b) from Equation (A.2). Similar to the analysis in Equation (A.10), we

have

N ext
ϵ (Gt (a, b)) ≤ N ext

ϵ (At (a, b)) . (A.19)

N ext
ϵ (Gt (a, b)) ≤ N ext

ϵ (Bt (a, b)) . (A.20)
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Now we identify the set of all possible yt from Gt(a, b). From Assumption 2.3, the set of ot

is an Euclidean ball with radius Bo. Since h0 = 0 and Win is a full rank matrix with all

singular values equal to a, the set of all possible h1 from Gt(a, b) is an Euclidean ball with

radius

H1(a, b) = tanh (aBo) (A.21)

Furthermore, we define the set of all possible ht′ from Gt(a, b) is an Euclidean ball with

radius Ht′(a, b), where t′ ≤ t. By using the fact that Wrec is a full rank matrix with all

singular values equal to b, we can establish a recursion that relates Ht′(a, b) with Ht′−1(a, b)

as follows:

Ht′(a, b) = tanh (aBo + bHt′−1(a, b)) . (A.22)

Finally, we find that the set of all possible yt from Gt(a, b) is an Euclidean ball with ra-

dius σmax
out Ht(a, b) because Wout is a full rank matrix with all singular values equal to σmax

out .

According to Equation (A.16), we have

N ext
ϵ (Gt (a, b)) ≥

vol
(
Bdy (σmax

out Ht(a, b))
)

vol (Bdy(ϵ))

=

[
σmax

out Ht(a, b)

ϵ

]dy (A.23)

By letting L (a, b) =
[
σmax
out Ht(a,b)

ϵ

]dy
, we have

N ext
ϵ (Gt (a, b)) ≥ L (a, b) . (A.24)

Since N ext
RNN,ϵ,t = N ext

ϵ (At (σ
max
in , σmax

rec )), we have

N ext
RNN,ϵ,t ≥ N ext

ϵ (Gt (σ
max
in , σmax

rec )) ≥ L (σmax
in , σmax

rec ) . (A.25)
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A.3.3 Proof of the upper-bound of Next
ESN,ϵ,t

From Equation (A.1) and Equation (A.2), we can find that Bt(a, b) is a subset of At(a, b).

Similar to the analysis in Equation (A.10), we have

N ext
ϵ (Bt (a, b)) ≤ N ext

ϵ (At (a, b)) . (A.26)

From the definition of N ext
ESN,ϵ,t in Equation (A.5), we can obtain

N ext
ESN,ϵ,t =

∫∫
0<a≤σmax

in
0<b≤σmax

rec

N ext
ϵ (Bt (a, b)) fSin(a)fSrec(b)dadb

≤
∫∫

0<a≤σmax
in

0<b≤σmax
rec

N ext
ϵ (At (a, b)) fSin(a)fSrec(b)dadb

≤
∫∫

0<a≤σmax
in

0<b≤σmax
rec

U (a, b) fSin(a)fSrec(b)dadb,

where the last inequality follows Equation (A.17).



A.3. PROOF OF THEOREM 2.4 113

A.3.4 Proof of the lower-bound of Next
ESN,ϵ,t

From the definition of N ext
ESN,ϵ,t in Equation (A.5), we have

N ext
ESN,ϵ,t =

∫∫
0<a≤σmax

in
0<b≤σmax

rec

N ext
ϵ (Bt (a, b)) fSin(a)fSrec(b)dadb

≥
∫∫

0<a≤σmax
in

0<b≤σmax
rec

N ext
ϵ (Gt (a, b)) fSin(a)fSrec(b)dadb

≥
∫∫

0<a≤σmax
in

0<b≤σmax
rec

L (a, b) fSin(a)fSrec(b)dadb,

where the first inequality follows Equation (A.20) and the second inequality follows Equation

(A.24).

A.3.5 Proof of the lower-bound of Next
RNN,ϵ,t −Next

ESN,ϵ,t

From Equation (A.3) and Equation (A.5), we have

N ext
RNN,ϵ,t −N ext

ESN,ϵ,t = N ext
ϵ (At (σ

max
in , σmax

rec ))−
∫∫

0<a≤σmax
in

0<b≤σmax
rec

N ext
ϵ (Bt (a, b)) fSin(a)fSrec(b)dadb

=

∫∫
0<a≤σmax

in
0<b≤σmax

rec

[
N ext

ϵ (At (σ
max
in , σmax

rec ))−N ext
ϵ (Bt (a, b))

]
fSin(a)fSrec(b)dadb.

From Equation (A.10), we have

N ext
ϵ (At (σ

max
in , σmax

rec ))−N ext
ϵ (Bt (a, b)) ≥ 0 (A.27)
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for any constants a ∈ (0, σmax
in ] and b ∈ (0, σmax

rec ]. Furthermore, we can obtain

N ext
ϵ (At (σ

max
in , σmax

rec )) ≥ L (σmax
in , σmax

rec ) (A.28)

from Equation (A.24) and

N ext
ϵ (Bt (a, b)) ≤ N ext

ϵ (At (a, b)) ≤ U(a, b) (A.29)

from Equation (A.26) and Equation (A.17).

Combining Equation (A.27), Equation (A.28), and Equation (A.29), we can derive that

N ext
RNN,ϵ,t −N ext

ESN,ϵ,t ≥
∫∫

0<a≤σmax
in

0<b≤σmax
rec

[L (σmax
in , σmax

rec )− U(a, b)]+ fSin(a)fSrec(b)dadb, (A.30)

where [x]+ = max(0, x).

A.4 Proof of Theorem 2.5

To satisfy the spectrum norm constraints on weights in Assumption 2.4, Win and Wrec of

ESNs are initialized using Algorithm 3. Take Win as an example, we first initialize W 1
in as a

do × dh Gaussian random matrix. Without loss of generality, we assume that the number of

neurons, dh, is a large integer. According to [52], Tin =
∥W 1

in∥−µin
γin

follows type-1 Tracy-Widom

distribution, where
µin =

(√
do − 0.5 +

√
dh − 0.5

)2
,

γin =
√
µin

(
1√

do − 0.5
+

1√
dh − 0.5

) 1
3

.
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Second, we let

W 2
in = W 1

in ·
σmax

in
3γin + µin

. (A.31)

Then we have

∥W 2
in∥ = ∥W 1

in∥ ·
σmax

in
3γin + µin

. (A.32)

Last, we obtain Win as follows

Win =


W 2

in ·
σmax

in
∥W 2

in∥
, if ∥W 2

in∥ ≥ σmax
in ,

W 2
in, if ∥W 2

in∥ < σmax
in .

(A.33)

Therefore, we have

Sin = ∥Win∥ =


σmax

in , if ∥W 2
in∥ ≥ σmax

in ,

∥W 2
in∥, if ∥W 2

in∥ < σmax
in .

(A.34)

If Sin < σmax
in , then we have

Sin = ∥W 2
in∥ = ∥W 1

in∥ ·
σmax

in
3γin + µin

= (Tin · γin + µin) ·
σmax

in
3γin + µin

In this case,

Tin = KinSin −
µin

γin
,

where

Kin =
3γin + µin

γinσ
max
in

.
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On the other hand, if Sin = σmax
in , then we have

Pr (Sin = σmax
in ) = Pr

(
∥W 2

in∥ ≥ σmax
in
)

= Pr
(
(Tin · γin + µin) ·

σmax
in

3γin + µin
≥ σmax

in

)
= Pr (Tin ≥ 3) = 1− FTin(3),

where FTin(·) is cumulative distribution function (CDF) of Tin. Therefore, we can obtain

fSin(a) = δ (a− σmax
in ) · [1− FTin (3)] + 1 (a < σmax

in ) ·KinfSin

(
Kina−

µin

γin

)
, (A.35)

where 1(·) is the indicator function.

Similarly, we can derive fSrec(·) as

fSrec(b) = δ (b− σmax
rec ) · [1− FTrec (3)] + 1 (b < σmax

rec ) ·KrecfSrec

(
Krecb−

µrec

γrec

)
, (A.36)

where
µrec = 4(dh − 0.5),

γrec =
√
µrec

(
2√

dh − 0.5

) 1
3

.

A.5 Proof of Theorem 2.7

We can rewrite Equation (A.9) as

η2max,t ≤ 4 sup
θ′∈Θ

inf
θ∈Θ

Eσ

[
(BQθ′ −Qθ)

2]+ C · logN ext
ϵ,t + C ′, (A.37)
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where
C = C1 ·

V 2
max
T

=

(
8
√
2T +

256

Vmax

)
· V

2
max
T

,

C ′ = C2 · Vmax · ϵ =
(
16 + 4

√
2T + 36

)
· Vmax · ϵ.

Let Rmax be the maximum reward value, and the maximum Q-value is written as

Vmax =
∞∑
t=1

γt−1Rmax =
Rmax

1− γ
.

Therefore, the optimal Q-function Q∗ is contained in a ∞-norm ball in Rdy centered at

the origin with radius Vmax, which is denoted by B
dy
∞ (Vmax). Then the upper-bound of the

squared bias term in Equation (A.37) is written as

sup
θ′∈Θ

inf
θ∈Θ

Eσ

[
(BQθ′ −Qθ)

2] ≤ sup
Q∗∈Bdy

∞ (Vmax)

inf
θ∈Θ

Eσ

[
(Q∗ −Qθ)

2] . (A.38)

From Equation (A.16), we can obtain that the volume of the set of yt from RNN/ESN is

lower bounded by vol
(
Bdy(ϵ)

)
· N ext

ϵ,t , so the largest Euclidean ball that can be contained

in the set of yt has radius ϵ
(
N ext

ϵ,t

) 1
dy , which is denoted by B

dy
2

(
ϵ
(
N ext

ϵ,t

) 1
dy

)
. Therefore, we

have

sup
Q∗∈Bdy

∞ (Vmax)

inf
θ∈Θ

Eσ

[
(Q∗ −Qθ)

2] ≤ sup
Q∗∈Bdy

∞ (Vmax)

inf
Q∈Bdy

2

(
ϵ(Next

ϵ,t )
1
dy

) (Q∗ −Q)2 (A.39)

Since the maximum ℓ2 distance from the origin to B
dy
∞ (Vmax) is

√
dyVmax, we have

sup
Q∗∈Bdy

∞ (Vmax)

inf
Q∈Bdy

2

(
ϵ(Next

ϵ,t )
1
dy

) (Q∗ −Q)2 ≤ max
(
0,
√

dyVmax − ϵ(N ext
ϵ,t )

1
dy

)2
. (A.40)
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Therefore, we can obtain

η2max,t ≤ 4max
(
0,

√
dyRmax

1− γ
− ϵ(N ext

ϵ,t )
1
dy

)2

+ C · logN ext
ϵ,t + C ′. (A.41)
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