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ABSTRACT

Balancing indoor comfort and energy consumption is crucial to building energy efficiency.

Occupancy information is a vital aspect in this process, as it determines the energy demand.

Although there are various sensors used to gather occupancy information, environmental

sensors stand out due to their low cost and privacy benefits. Machine learning algorithms

play a critical role in estimating the relationship between occupancy levels and environmental

data. To improve performance, more complex models such as deep learning algorithms are

necessary. Long Short-Term Memory (LSTM) is a powerful deep learning algorithm that has

been utilized in occupancy estimation. However, recently, an algorithm named Attention

has emerged with improved performance. The study proposes a more effective model for

occupancy level estimation by incorporating Attention into the existing Long Short-Term

Memory algorithm. The results show that the proposed model is more accurate than using a

single algorithm and has the potential to be integrated into building energy control systems

to conserve even more energy.
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GENERAL AUDIENCE ABSTRACT

The motivation for energy conservation and sustainable development is rapidly increasing,

and building energy consumption is a significant part of overall energy use. In order to make

buildings more energy efficient, it is necessary to obtain information on the occupancy level

of rooms in the building. Environmental sensors are used to measure factors such as humidity

and sound to determine occupancy information. However, the relationship between sensor

readings and occupancy levels is complex, making it necessary to use machine learning

algorithms to establish a connection. As a subfield of machine learning, deep learning is

capable of processing complex data. This research aims to utilize advanced deep learning

algorithms to estimate building occupancy levels based on environmental sensor data.
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Chapter 1

Introduction

Building occupancy analytics serve as the cornerstone for maintaining indoor environments

and boosting building energy efficiency, thereby advancing sustainable development. An

accurate analysis model enables us to integrate it into building energy control systems,

such as heating, ventilation, and air conditioning (HVAC) and lighting systems, which are

the primary energy consumers in buildings. By merging robust occupancy analysis with

these systems, we can create a more efficient control strategy, resulting in improved energy

efficiency and the realization of a smart building.

Occupancy information is a crucial aspect in building management and can be obtained

through the use of sensors. Each type of sensor has its unique advantages and disadvantages.

Cameras, for instance, can accurately determine occupancy numbers, but they may pose

privacy concerns as they require the detection of people’s movements. Passive Infrared

Sensors (PIRs) are able to detect the presence or absence of occupants, but cannot provide

a precise count. Environmental sensors provide a practical solution to the privacy challenge

and have the ability to evaluate occupancy levels effectively.Furthermore, their low cost

makes them more feasible for future deployment.

In order to establish the relationship between environmental sensor data and occupancy

levels, we utilize machine learning techniques known for their proficiency in function ap-

proximation. To enhance the performance of our model, we adopt deep learning algorithms

like Long Short-Term Memory (LSTM) and Attention and evaluate their effectiveness by

1



2 CHAPTER 1. INTRODUCTION

comparing them to using LSTM alone. Improved performance in estimating occupancy levels

equates to a higher capability in conserving energy, especially when integrated into building

control systems.



Chapter 2

Literature Review

There are three fields related to the topic “Occupancy counting based on machine learning

by using environmental sensors”: Building Energy, the Internet of Things, and Artificial In-

telligence. Figure 2.1 shows the interdisciplinary branch among these three fields. Following

we will summarize the work related to this topic in these three fields.

Figure 2.1: Related fields

3
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2.1 Building Energy

2.1.1 Importance of building energy

Building energy is a big consumption in the world. In China, building energy consump-

tion is up to 25% of total social energy consumption [1] and trending upward year by year.

Kim et al [2] claim that the global urbanization rate is expected to reach 68% in 30 years

from 55% in 2018. Experts in [3] make a prediction that energy consumption can be saved

by 34% in existing and new buildings, but the goal should be made by researchers and

engineers to explore good energy-saving strategies. Energy utilizations in buildings come

from cooling, space heating, water heating, lighting , ICT requirements,plug loads, ventila-

tion,refrigeration,elevator use, etc.[4]. Researchers and engineers are trying to find energy-

saving strategies to save as much energy as possible. Al-Ghaili et al [5]state that the factors

in the building energy, like energy consumption, energy use, and energy demand, are the

problems affecting the building’s energy whose objectives are energy savings and occupant’s

comfort. These factors interact or counteract with each other, for e.g., when we lower en-

ergy consumption, and energy demand too much, the energy saving will be good, but the

occupants’ comfort will be low. As a result, implementing energy-use strategies is crucial for

buildings in order to strike a balance between comfort and energy savings.

2.1.2 Energy saving strategies

Many energy-saving strategies exist like [6] trying to find a smart lighting control system

to save energy, and [7] focusing on air-conditioning control to save energy. However, we

should consider that demand is the basis of energy consumption. Occupancy information

constitutes one of the critical building information both in terms of energy consumption
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and indoor environmental quality [8] since energy can be saved during non-occupied hours

when we adopt a proper control strategy. Kim et al [9] also show that there is relationship

between occupancy and electricity consumption. Peng et al [10] apply the demand-driven

control strategy based on the occupancy data in the office of the commercial buildings in

achieving 20.3% energy saving. The occupant’s comfort is also a factor we should consider

without only focusing on saving energy limitlessly. For e.g., [11] have attempted to minimize

energy use without compromising thermal comfort by controlling the HVAC systems.

2.1.3 Occupancy information in building energy

Occupancy information has many properties. Labeodan et al [12] list 6 properties present if

the room is occupied, namely the location of the people in the space, the count or number

of people, the activities of the people in the space, the identity of the people, and the track

or previous location of the people. Sun et al [13] state that only occupancy detection which

shows the presence/absence people, counting to indicate how many people are in the space

and, identity and tracking to show the activity and location, are the only properties needed

to obtain the exact data on occupancy.

Higher-level measurements mean more sensors to collect and more complex algorithms to

process the data, which will increase the cost and achievability of building energy system

applications. To make occupancy estimation effective for applications [14], occupancy count-

ing will be a good choice with good function and low cost, and compared with identity and

location data, it also protects the privacy of people [15]. Occupancy is a hot topic to combine

with different areas like machine learning [16], and IoT [17]. The occupancy also has some

application areas like control systems [18], Building Energy Management [19], and Edge com-

puting [20]. The above papers show the importance of building energy saving, for effective
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and low-cost occupancy measurement methods are worth investigating and improving.

2.2 Machine Learning Algorithm

Machine learning is a hot topic in Artificial Intelligence. [21] and [16] made a review of the

machine learning algorithms applied to Occupancy estimation like Feed Forward Neural Net-

works (FFNN), Recurrent Neural Networks (RNN), Convolutional Neural Network (CNN),

and Decision-Tree.

2.2.1 Feed Forward Neural Networks (FFNN)

FFNN structure can work as a universal function approximator to approximate any contin-

uous function [22], so it can apply in a wide range of applications. The common FFNN im-

plementation usually adapts two hidden layers to process input data and performs relatively

well in the low-scale room environment [23]. When it comes to a larger scale environment,

however, the performance will drop, because FFNN lacks temporal interdependence between

features [24]. Also, some works like [25] find out the limitation of FFNN on detecting the

occupancy period’s beginning and end.

2.2.2 Convolutional Neural Network (CNN)

Convolutional NN can discover time series’ structures and generates features accordingly if

we apply it to the process of time-series data [26], as a type of deep learning, it can learn

significant features itself [27], but it needs big data to get a good performance.
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2.2.3 Decision Tree

The decision tree algorithm can select the class by deriving the decision node tree where

each internal node represents the comparison of a feature value with a learning threshold

[28], it has been used to build a framework to combine sensors to do occupancy prediction

and gets good result [29].

2.2.4 Recurrent Neural Networks (RNN)

Recurrent NN allows temporal dynamics behavior, it is a common module applied in oc-

cupancy estimation named Elman neural network [30]. However, the traditional RNN has

major problem named the vanishing gradient. To solve this problem, Long Short Term Mem-

ory (LSTM) was developed [31]. In my current research, my module will be based on the

LSTM methodology. LSTM is also a kind of deep learning; it requires a big data size and

can process the time series data ensuring good performance. Above was a summary of the

deep learning methods applied in occupancy measurement.

2.3 IoT sensor

The IoT sensor is an essential part to measure occupancy, there are many kinds of sensors like

cameras, Wi-Fi, Passive infrared (PIR) sensors, CO2 sensors, and electricity meters. There

are many research papers focusing on images or videos based on the camera [15], using

the images from the camera , using computer vision area to do the people counting in the

classroom[32], and using overhead to measure the person tracking and get very high accuracy

up to 99%. It seems that the camera is enough to do the occupancy measurements with

this so high accuracy and high performance in measuring high-level estimation like tracking
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and counting [33]. However, because overhead can get more information about people, there

will generate more problems. Like privacy problems cameras also can detect people’s faces,

low-quality images will affect the result by illumination and high cost in deployment with

the camera.

2.3.1 Wi-Fi Devices

Wi-Fi devices are also a good way to count people when people connect to the local network

with their smart mobile devices [34], while in [35], authors also got good performance on

occupancy tracking and detection with high accuracy. But the limitations of Wi-Fi devices

are also clear, i.e., people without mobile or decline to connect the Wi-Fi devices will directly

decrease the accuracy because Wi-Fi devices will not be able to take them into consideration.

2.3.2 Passive infrared sensors (PIR)

PIR sensors have good performance on occupancy presence [36] and in many real-life appli-

cations like our lab room on the roof, there is a PIR sensor to detect my presence by checking

my motion, and PIR sensors are a type of low-cost device. Raykov et al [37] tried to use a

single PIR sensor to count people but found the result inaccurate, thus demonstrating the

limitation of PIR sensors for occupancy counting. PIR sensors only detect a specific area of

a room which can be inconvenient in estimating occupancy. For e.g., we sit at a desk next

to the entrance and the ceiling PIR sensor located in the center of the room cannot detect

my motion. As a result, the lighting turns off frequently and we have to stand up, move

towards the center of the room to shake my hand to show my presence to the PIR sensor.
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2.3.3 CO2 sensors

The CO2 sensor is good at occupancy analytics, [38] shows the correlation between the

number of people and CO2 level. It is the same as a PIR sensor at a low cost and is easy to

install [39]. Jiang et al [40] predicted occupancy numbers by using CO2 concentration and

got a very high accuracy, but this result was because absence period contains a huge part

of the total time, and their module can detect the absence of the room but when people

present in the room the accurate number of people was also a challenge to them to predict.

Moreover, the CO2 rate can be affected by the detector’s location and the slow data time

delay is also a problem [41].

2.3.4 Electricity meters

Electricity meters are more like PIR sensors on occupancy detection in that they also can

only check the occupancy presence. Kleiminger et al [42] derive occupancy data from the

electricity meter by monitoring the electric-load curve. Although electricity meter is a low

cost device for the experiment, this method will bring privacy risks indirectly to the residen-

tial house to display the presence or absence of the house [43]. And this kind of data only

display absence or existence in the room, doesn’t have the ability to estimate the occupancy

level if we put it into the commercial building.

As a result, only using one type of sensor is hard to get a good result, it’s beneficial to

combine different types of sensors with their advantages to make up for their limitations.
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2.4 Research specificity

The research is focusing on Occupancy Analytics, where data from an environmental sensor

named Netatmo will be used to collect indoor environmental data in the target building. A

deep learning technique named Attention as the data processing method to develop analytics

about the building occupancy. By comparing with the hot deep learning algorithm named

Long Short Term Memory(LSTM), show the better performance model that can make the

occupancy estimation more accurate.

2.4.1 Environmental device

Netatmo collects and records data for five indoor parameters in buildings: temperature,

humidity, sound, CO2, and air pressure, which parameters do not raise any privacy issues

because these do not identify any individual’s characteristics or behavior while inside the

building. [44] shows using non-intrusive sensors can get good performance on the indoor

occupancy level. What’s more is that the cost of the device is reasonably low and easily

deployable for this experiments like this one.

2.4.2 Long Short Term Memory(LSTM)

LSTM is a good deep-learning algorithm that has already been applied in similar experiments

showing a very good performance in accuracy than other algorithms. In reference [45], the

authors assessed occupancy levels using environmental data, excluding sound data, and

demonstrated a detection accuracy of up to 95% and a classification accuracy of up to

76.04%. This paper, however, introduces a tolerance of up to 7 people in order to achieve

even higher accuracy.
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The work by Ramanujam et al [46] improves upon the LSTM method of Occupancy estima-

tion by adding Convolutional NN and getting the accuracy up to 0.946. However, the data

size is too small (only four days of data) as well as the size of the room (only can contain

4 people) as mentioned in [40]. However, the methodology may not be good for counting

people when the number of people increases as in my proposed experiment environment.

The important works mentioned above do not take HVAC into consideration. HVAC works

as a part of the building system and therefore its working status can affect all data that

sensors will collect and in turn affect the occupancy estimation. Although [46] has some

differences or limitations with respect to my experiment, it is essential to add more powerful

mechanism to improve the performance.

2.4.3 Attention Mechanism

Attention mechanism first proposed by [47] in natural language processing area and [48]

made a breakthrough work by introducing a new architecture for neural machine translation

called Transformer that uses a purely attention-based mechanism to model dependencies

between the input and output sequences.

The many-to-one attention is a kind of attention mechanism to improve the performance

in the natural language processing area like machine translation, text summarization, and

sentiment analysis.

The many-to-one attention mechanism is typically used in conjunction with encoder-decoder

architectures for natural language processing tasks such as machine translation, text sum-

marization, and sentiment analysis. The encoder network processes the input sequence and

produces a sequence of hidden states, which are used by the attention mechanism to compute

the context vector. The decoder network then generates the output sequence based on the
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context vector and the previous decoder output.

However, the many-to-one mechanism can be applied to other domains beyond natural lan-

guage processing, where there is a sequence of input vectors and a single output vector. So

it’s reasonable to apply this mechanism to our model since we have five inputs in time series

sequence and one output vector(occupancy level). Following is detailed information about

how to the mechanism works.

[49] and many papers show the attention mechanism becomes a standard component in many

neural machine translation models, as well as in other natural language processing tasks. The

attention mechanism has also been extended and modified in various ways to improve its

performance and address specific problems in different domains. So it’s reasonable to apply

the attention mechanism to train our data to predict the occupancy level.

2.4.4 Contribution

My research focuses on the application of the many-to-one attention mechanism[50] to oc-

cupancy level estimation. Occupancy level estimation is an important problem to solve

because it can help optimize building energy use by enabling more efficient heating, cooling,

and lighting control.

First, we select an appropriate sensor for collecting environmental data by reviewing relevant

research papers and websites. This helps us to evaluate various types of sensors, ultimately

leading us to choose an environmental sensor. Next, we identify a suitable experimental

location where people regularly attend scheduled classes.

Second, we analyze the environmental data obtained from the sensor. We find that the

environmental data changes when people are present in the room, and the peak levels of

CO2 vary depending on the number of people occupying the space. As a result, it is feasible
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to use environmental data to estimate occupancy levels.

Finally, by using environmental data as input, my model with many-to- one attention mech-

anism can estimate the occupancy level of a building at any given time without getting

privacy data of people and in a low cost. The many-to-one attention mechanism is an ad-

vanced deep learning algorithm that has the ability to outperform traditional RNN or LSTM

models. By incorporating this mechanism, I aim to increase the accuracy of my model and

ultimately save more energy in future applications.



Chapter 3

Experiment

3.1 Data Collection

The experiment took place on the sixth floor of the Virginia Tech Arlington campus building,

in classroom 6-053, which has a capacity of approximately 25 people. Figure 3.1 illustrates

the weather station positioned in the center of the classroom to enhance the accuracy of

detection values, as the center offers an equal distance from every seat.

We obtained input data directly from the Netatmo weather website. However, for output

data(for verification purposes), such as the number of people, we had to count manually at

the start of each class. The Netatmo mobile app features a notification system that alerts

us when CO2 levels exceed a predetermined threshold, indicating the presence of people in

the classroom. This enables us to visit the classroom(for occupancy number verification

purposes) as soon as we receive the notification, rather than waiting for the entire day, in

case someone is there for a brief meeting.

Table 3.1: Input data from Netatmo

Temp Hum CO2 Noise Pressure
21.5 43 482 53 1020.8
21.6 43 504 52 1020.7
21.6 43 497 52 1020.6
21.7 43 504 56 1020.6
21.7 43 528 59 1020.6
21.7 43 535 57 1020.6

14
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Figure 3.1: Experiment place

3.2 Data Analysis

In the analysis, two values vary dramatically when people join the classroom: CO2 and sound.

These values increase to indicate the presence of people. CO2 increases as people stay in the

room due to respiration, while sound increases due to the activities in the classroom such as

classes, meetings, and speeches, generating noise and disrupting the normal sound level.

Although sound is a good indicator of people’s presence, to determine the number of people

in the classroom, it is not consistent. We chose to use the CO2 level as the occupancy

level indicator. More people generate more CO2 gas, making it necessary to use a machine

learning model to establish the relationship between CO2 level and occupancy level.

To demonstrate the validity of the research, we chose two different days with varying numbers
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of people in the classroom for comparison. Firstly, we selected a day on Jan 31, 2023, with

CO2 and sound level data in Figures 3.2 and 3.3. In Figure 3.2, the CO2 level increased

from the normal level of 565ppm to a peak value of 754ppm, fluctuating around 710ppm,

indicating the presence of people in the classroom. When people left, the CO2 level slowly

dropped from 687ppm to the normal level.

Figure 3.2: CO2 in 1/31/2023

Figure 3.3 shows when people inside room the sound level increases directly up to 70dB and

then varied between 75dB to 64dB. Then when people left, the sound level dropped back to

64dB as was the case before. It shows the ability to react if there is people in the room, but

since big fluctuations are observed when people are present, it is not have a reliable indicator

of room occupancy level.

To perform a comparison, we also selected another day on Feb 9, 2023, with sound and CO2

data shown in Figures 3.4 and 3.5. The sound level trend was similar to that of Jan 31,

increasing and decreasing quickly when people entered and left the classroom. However, the

CO2 level was different. In Figure 3.2, the CO2 level dropped slowly to the normal level in
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Figure 3.3: Sound in 1/31/2023

Figure 3.4: CO2 in 2/9/2023

a few hours after people left, while in Figure 3.4, the CO2 level did not drop over time.

This difference is due to the presence of an HVAC system in our experimental location. The

system operates at a high rate during weekdays’ working hours and returns to a low-power
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state at night. It usually starts working at a high rate around 6:00 am and returns to a low

rate around 9:00 pm, which can be observed in the sound level figures. When the system

is working at a high rate, it generates noise, as seen from the sound level increase from

51dB to 64dB before returning to 51dB. The same condition applies to the CO2 level, where

the system can reduce the CO2 concentration quickly when operating at a high rate(due

to larger volume of air), after people leave. However, when people leave when the airflow

volume is low, the CO2 level remains high. This is why we cannot rely solely on the CO2

Figure 3.5: sound in 2/9/2023

parameter to estimate the occupancy level. If the CO2 level remains high during the low air

flow rate of the HVAC system, the model may assume that there are people in the room,

even though there are no individuals present. This occurs because the air flow is low, and

the CO2 level does not decrease as rapidly as when the HVAC system is operating at a high

rate. Therefore, it is essential to consider other parameters, such as sound levels, to better

estimate the number of individuals in the room.

My model tries to incorporate several parameters, including sound and CO2 data, tem-
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perature, humidity, and pressure. Although temperature, humidity, and pressure may not

exhibit significant variation in the database, they play a crucial role in supporting the sound

data to determine the air flow rate of the HVAC system.

Sometimes people will be present in a room during periods of low HVAC system activity,

leading to abnormal sound levels. In such cases, the temperature, humidity, and pressure

data can help identify the actual rate of HVAC by providing additional information about

the room’s conditions. Thus, by combining multiple parameters, my model can provide a

comprehensive and accurate estimation of the occupancy level.

After determining that it is meaningful to apply environmental data for occupancy level

determination, we need to put data in a proper format to allow the deep learning algorithm

to train the data and build a relation between the environmental data and occupancy level.

3.3 Data Pre-processing

3.3.1 Normalization

The aim of normalization is to convert all data values into a range between zero and one,

in order to facilitate subsequent data processing. This process transforms large numbers in

a database into a smaller range, enabling the model to perform computations on smaller

numbers instead of large ones. As a result, normalization improves the model’s convergence

rate, allowing for quicker execution and time savings in the calculation process.

In deep learning calculations, using normalization before initiating gradient descent can speed

up the iteration process by reducing the calculation range. Additionally, normalization can

help deep learning models avoid gradient explosion, improving overall model stability. Two

common normalization methods are Min-Max and Z-score.
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Min-Max normalization transforms the values of the data source into the range of 0 to 1.

The maximum value in the data is designated as vmax, and the minimum value as dmin. The

data value d is then expressed as a percentage of the difference between dmax and dmin, as

shown in Equation 3.1. This process preserves the relationship between previous data values

such that values close to the minimum result in values close to 0, and values close to the

maximum result in values close to 1. When d equals dmax, the result will be 1, and when d

equals dmin, the result will be 0.

d̄ =
d− dmin

dmax − dmin

(3.1)

Min-Max normalization can reserve the relationship in the previous data that value close to

dmin, the result will be close to 0, the same with the dmax, but if there is unusual value which

is very big in the data, that will result the difference of the value near the dmin will smaller.

In addition, if in the future data the range is exceed the current range [min,max], the system

will show the mistake and we need to set up new min and max for the data again.

Z-score, also called standard score, is a normalization method that requires the overall data

mean value (d̄), overall data standard deviation (σ), and individual data (d) before process-

ing. Using equation 3.2, we map the data into a small range. After Z-score processing, the

mean value of the overall data is zero, and the standard deviation is one.

z − score =
d− d̄

σ
(3.2)

Z-score is more adaptable for our model because it can solve situations where the maxi-

mum/minimum is unknown. Furthermore, it can process unusual data that exceeds the

range of normal data. This is helpful when facing different situations in the future where
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some data may vary from previous data and need updating. Using the Min-Max method, we

may face system error. However, with Z-score, if unusual data exists, the overall standard

deviation (σ) will increase and map the unusual value into a small range.

We use the Z-score normalization method to preprocess the input environmental data since

the input data range is unpredictable, and it provides better performance. For the output

data, we use one-hot encoding to process it.

3.3.2 One-hot encoding

When dealing with the number of individuals prior to one-hot encoding, we should consider

the maximum capacity of the room, which is typically around 20 people. However, it is

rare for a classroom to have more than 15 students. Although the probability of having

more than 15 individuals is very low, it cannot be completely dismissed since there may be

circumstances in the future in which there are more than 25 people in the classroom. Thus,

we group any number above 15 as 15, which puts them in the same category.

One-hot encoding is a technique that uses binary digits with values of 0 or 1. We set the

length of this group to 16 to accommodate categories ranging from 0 to 15. For example, if

the number of individuals is 15, after one-hot encoding, only the 16th bit will be set to 1,

while all the others will be set to 0.

In the output layer, the data is represented using a single item in one-hot encoding format.

To ensure that the sum of all one-hot indices equals 1 and transform the output index range

from 0 to 1, we apply the Softmax activation function. The Softmax function, outlined

in equation 3.3, is used to obtain output probability instead of a single number. Here,

j represents the total number of items from the previous neural network nodes, while i

represents the index of the item. The probability of a given element is calculated by dividing
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the exponent of the element by the sum of the exponents of all the elements.

Si =
ej∑
i e

j (3.3)

The resulting probability of each index shows the probability of the people number predicted

by the model based on the input data. We then transform the index with the highest

probability back to the corresponding people number, thus presenting the model’s prediction

of the number of people in the classroom.

Table 3.2 displays an example of the output data before the transformation into people

numbers. We observe that the thirteenth index has the highest probability, indicating that

our model predicts 12 individuals in the classroom. This approach ensures that the model

provides accurate predictions of the number of people in the classroom, thus improving the

effectiveness of our analysis. Upon categorization and implementing one-hot encoding, it’s

Table 3.2: One hot encoding

People 0 1 2 3
Possibility 3.15e-02 1.11e-03 1.98e-01 1.21e-01
People 4 5 6 7
Possibility 1.74e-01 9.97e-04 7.63e-04 3.76e-02
People 8 9 10 11
Possibility 1.0577185e-03 4.60e-04 8.24e-04 7.56e-04
People 12 13 14 15
Possibility 4.27e-01 2.04e-03 9.29e-04 4.26e-04

vital to shape the data suitably for input into the attention mechanism. We use Python as our

programming language of choice to build the model and tap into deep learning algorithm

libraries. Given that the algorithm can compute and produce results independently, our

workflow aligns with the stages illustrated in Figure 3.6. These stages encompass data

collection, data analytic, and pre-processing to comply with the format demanded by the
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deep learning algorithm.

Figure 3.6: Experiment structure

3.3.3 Loss Function

Loss function plays a crucial role in estimating the disparity between the predicted and true

values. A lower loss function value implies that the model has better robustness. In our

case, we use the one-hot encoding technique along with the softmax activation function to

process the output data. Therefore, it is essential to implement the categorical cross-entropy

loss function defined in Equation (3.4), where ti represents the true label, and pi denotes the

probability obtained from the softmax function. As the range of people is between 0 to 15,

n is assigned a value of 16.

LCE = −
n∑

i=1

tilog(pi) (3.4)

Upon analyzing Table 3.3, we can observe that the predicted number of people is 12, whereas

the actual count is 7. Consequently, the loss between the two tables is substantial. However,

we can minimize the loss function by adjusting the value of index 8 to be closer to 1, while

the other indices should be closer to 0.
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Table 3.3: True value

People 0 1 2 3
Result 0 0 0 0
People 4 5 6 7
Result 0 0 0 1
People 8 9 10 11
Result 0 0 0 0
People 12 13 14 15
Result 0 0 0 0

3.3.4 Optimizer

The optimizer is an essential tool for determining the minimum loss result in order to achieve

better model performance. We employ the Adaptive Momentum (Adam) optimizer to attain

the best results. Based on gradient descent, Adam is a stochastic optimization technique

that has gained widespread popularity. It merges the strengths of AdaGrad and RMSProp,

offering adaptive gradients and the capacity to operate under non-stationary circumstances.

Adam stands out as the preferred optimizer for several reasons:

1) Straightforward implementation, effective computation, and minimal memory usage

2) Updates to parameters remain unaffected by gradient scaling transformations

3) Hyper-parameters are easy to comprehend and generally demand minimal or no fine-

tuning

4) Appropriate for scenarios involving large-scale data and parameters

5) Relevant for unstable objective functions

6) Well-suited for sparse gradients or those with considerable noise

7) Ability to self-adjust the learning rate
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Currently, Adam functions as a high-quality optimizer, adept at managing most scenarios

due to its significant benefits. Furthermore, various extensions of Adam exist that enhance

its performance, such as AdaMax, Adadelta, and Nadam. To determine the optimal fit for

our model, we ought to evaluate each optimizer individually and compare their performances.

Ultimately, we should select the one that yields the best results as our final choice.

3.4 LSTM module

3.4.1 Introduction

Long-Short-Term Memory (LSTM) is a unique type of recurrent neural network that sur-

passes the performance of conventional recurrent neural networks. One of its key advantages

is the use of a gate mechanism that controls the flow of information through the network,

thereby reducing the vanishing gradient problem that plagues traditional RNNs. Further-

more, LSTMs have the ability to effectively process long sequences of data. An LSTM is

composed of multiple LSTM units, as shown in Figure 3.7. A single LSTM unit has three

gates: the forget gate (f), the input gate (i), and the output gate (o).

3.4.2 LSTM Cell

The forget gate is responsible for determining how much historical information should be

incorporated into the current cell state calculation. The function of the forget gate is illus-

trated in 3.5. The last time step statement, st−1 in the figure is h, and the current time input,

xt, are used in conjunction with weight matrices (Wf ) and a bias vector (bt), which can be

learned through training. The gate controller, which uses the sigmoid function, outputs a
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Figure 3.7: LSTM cell

value between 0 and 1 for the information stored in cell state Ct−1.

ft = σ(Wf · [st−1, xt] + bt) (3.5)

The input gate is used for updating the new information into the new cell state. First, the

Sigmoid function is used to determine the relevance of the new information, st−1 is the output

of last state. Next, the candidate values Ĉt are generated using the hyperbolic tangent (tan)

function. These two functions are combined to update the new information into the new cell

state.

By using the forget gate and input gate, it is possible to update the new cell state Ct by

forgetting some historical information and integrating new information . The cell statement

is the most important and unique component of LSTM, as it participates in the calculation
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of the output for the current state. Subsequently, it can then proceed to the next statement,

wherein it can obtain updated information and forget some historical information.

The output gate is derived from both the current input, xt, and the previous state output,

ht−1, and is utilized in calculating the current state output. In order to achieve this, the

current cell state, Ct, is also involved. Similar to the forget gate, the output gate employs

the Sigmoid function to decide the output information, while the tanh function is utilized in

conjunction with the cell state to obtain the current output.

3.5 Attention Mechanism

3.5.1 Introduction of many-to-one mechanism

The many-to-one attention mechanism is a powerful tool that is frequently used in con-

junction with encoder-decoder architectures to tackle natural language processing tasks like

machine translation, text summarization, and sentiment analysis. In these tasks, the encoder

network first processes the input sequence and produces a series of hidden states. These hid-

den states are then utilized by the attention mechanism to calculate the context vector,

which is later employed by the decoder network to generate the output sequence based on

the previous decoder output.

Despite being widely used in natural language processing, the many-to-one mechanism can

also be applied to other domains where there is a sequence of input vectors and a single

output vector. In our case, since we have a time series sequence with five input vectors and

one output vector representing the occupancy level, it makes perfect sense to incorporate

this mechanism into our model.
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3.5.2 Application in the model

Many to one mechanism firstly used in [50] named Hierarchical Attention Networks(HAN),

HAN includes word attention layer and sentence attention layer, by getting the hidden state

from Bidirectional RNN to train the data. Word in our model is the input features like noise

or temperature about the sentence we assume the whole input sequence as a sentence since

our data don’t like the sentence has the connection with the previous segment.

To analyze the input data at the word level, we begin by feeding it into a Bidirectional

LSTM to generate the hidden state output hit. Here, i represents the index of the sentence

layer and t represents the index of the word within the current sentence. In our model, we

only have one sentence layer. However, not all input data contributes equally to the final

result, so the HAN incorporates an attention mechanism to weigh each individual input’s

importance. This involves computing the attention vector uit (as shown in Equation 3.6) and

using the softmax function to determine the importance weight αit (as shown in Equation

3.7). Based on these weights, we can compute the sentence-level attention factor si as the

sum of the word-level weights (as shown in Equation 3.8).

uit = tanh(Wwhit + bw) (3.6)

αit =
exp(uT

ituw)∑
texp(uT

ituw)
(3.7)

si =
∑
t

αithit (3.8)

When it comes to analyzing input data at the sentence level, the method is similar to that
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used for individual words. As shown in Figure 3.8, the authors of the paper constructed a

many-to-one attention network to connect sentences and words. However, in our model, we

Figure 3.8: Attention structure

don’t require connections between sentences. so we only have one sentence layer size and

can obtain the result directly. Finally, the authors use a fully connected layer to combine all

the units together and integrate them to generate a single output via the softmax function

again.
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Evaluation

4.1 F1 score

The F1 score is an effective evaluation method for categorization tasks, as it incorporates

both Precision and Recall. For multi-category problems, the micro-F1 method can be em-

ployed to assess the performance of a model by comparing its predictions with the ground

truth.

In the case of micro-F1, the Recall can be calculated using equation (4.1). Here, TP rep-

resents True Positive, which indicates that for category m, both the predicted and actual

results are m. FN stands for False Negative, meaning that the actual result is m, but the

predicted result is not m. Recall, then, represents the proportion of True Positives when the

actual result is m.

micro−Recall =

∑
TPm∑

TPm +
∑

FNm

(4.1)

Precision can be calculated using equation (4.2), where FP represents False Positive. This

means that the actual result is not m, but the predicted result is m. Therefore, Precision is

the proportion of True Positives when the predicted result is m.

micro− Precision =

∑
TPm∑

TPm +
∑

FPm

(4.2)

30
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The F1 score in equation (4.3) is based on the harmonic mean of Precision and Recall,

striking a balance between these two metrics, as they often exhibit a trade-off. Generally,

when the Precision value is high, the Recall value tends to be low, and vice versa. The

F1 score calculation aims to balance these two parameters in order to evaluate the overall

performance of the model.

micro− F1 = 2
Recallm × Precisionm

Recallm + Precisionm

(4.3)

4.2 Performance

This section presents all the result figures, accompanied by F1 scores. The x-axis of each

figure indicates five-minute intervals, while the y-axis denotes the number of people, with a

maximum of 15. We make this assumption for cases with more than 15 people to prevent

situations where the number of people might inadvertently exceed the room’s capacity.

In Figure 4.1, we employ the LSTM algorithm without the use of one-hot encoding. The per-

formance illustrated reveals a linear decrease or increase in the number of people, indicating

that during certain time periods, the people count is not a whole number. The performance

depicted in this figure is unsatisfactory, as the prediction and actual outcome lines do not

show significant overlap and F1 score is the lowest of all results 0.7703.

The whole number issue is resolved by incorporating one-hot encoding, as depicted in Figure

4.2. However, the performance remains unsatisfactory, as there is no predicted value in the

first wave, even though the actual value is ten, and the F1 score is 0.9382.
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Figure 4.1: LSTM without one-hot encoding

Figure 4.2: LSTM with one-hot encoding
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Performance improves when we apply the attention algorithm along with the Adam opti-

mizer, as shown in Figure 4.3. The model predicts the number of people with low tolerance

error, sometimes even yielding the exact count. However, the F1 score does not increase

significantly (0.9385) due to the presence of noise, causing the predictions to drop to zero

and then return when people are present. This makes it difficult to accurately estimate the

real-time number of people. For this reason, we begin searching for a better optimizer to

Figure 4.3: Attention-Adam

enhance performance. Adadelta in Figure 4.4, one such optimizer, turns out to be a not

good choice due to its time-consuming nature, with epoch times reaching up to 500, and its

results disregarding the first wave. However, the F1 score experiences a slight increase to

0.9417, as Adadelta performs well when no people are present. This is unlike LSTM, which

sometimes predicts the number of people to be outside the expected range, even when no

one is in the room.
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Figure 4.4: Attention-Adadelta

Figure 4.5: Attention-Ftrl
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The Follow The Regularized Leader (FTRL) algorithm in Figure 4.5 was developed at Google

during the 2010s for click-through rate prediction. It is well-suited for addressing shallow

models with large and sparse feature spaces. However, in our model, it takes longer to

stabilize, necessitating up to 800 epoch times, and the overall performance is somewhat

unsatisfactory, with an F1 score of 0.9356, despite the figure appearing promising.

RMSprop in Figure 4.6, short for Root Mean Squared Propagation, is an extension of the

gradient descent optimization algorithm. In RMSprop, the learning rate changes over time

instead of being a fixed hyperparameter, making this algorithm suitable for solving small

batch models. In our case, it demonstrates decent performance with lower epoch times of 10

and a higher F1 score of 0.9485. This result appears acceptable if we cannot achieve better

performance using other optimizers.

Figure 4.6: Attention-RMSprop

Nesterov-accelerated Adaptive Moment Estimation in Figure 4.7, or Nadam for short, is an
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extension of the Adam algorithm that incorporates Nesterov momentum to improve perfor-

mance. However, in our model, the performance is subpar as it misses the first prediction

wave, even though the epoch time is relatively short at 10. The resulting F1 score is 0.9456.

Figure 4.7: Attention-Nadam

The Adaptive Gradient Algorithm in Figure 4.8, known as Adagrad, is a form of stochas-

tic optimization that can adjust the learning rate automatically, eliminating the need for

manual modifications. While our model can precisely represent all wave patterns, it does

not excel at predicting the presence or absence of people. In some instances, the model

anticipates people being present when they are not. Consequently, the F1 score stands at

0.9257, requiring as many as 250 epochs to reach this performance level.
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Figure 4.8: Attention-Adagrad

Figure 4.9: Attention-SGD
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Stochastic gradient descent(SGD) in Figure 4.9 is an iterative method similar to gradient

descent optimization. It is an important method in machine learning with long history about

70 years. In our model, it shows relative good performance with F1 score 0.9437 and epoch

times 50. The result is similar to RMSprop method is acceptable if we can not find better

method.

As depicted in Figure 4.10, Adamax is an extension of the Adam version of gradient descent

and can generalize the approach to the maximum. In some cases, it may yield better results.

In our model, Adamax outperforms all other optimizers under the dropout value is 0.3

achieving an F1 score of 0.9579 after 50 epochs.

Figure 4.10: Attention-AdaMax dropout=0.3

To attain the best performance, I modified some parameters, such as dropout, to stabilize

the model and ensure acceptable results. Given that attention is a complex deep-learning

technique, our training data might not be sufficient, potentially leading to over-fitting. To
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mitigate over-fitting, we employed the dropout method and adjusted the corresponding pa-

rameter in our model. Dropout is a regularization technique used to train neural networks

with various architectures simultaneously. During training, the model randomly drops out

or disregards some layer outputs, forcing network layers to compensate for errors made by

preceding layers.

In Figure 4.11, we keep using AdaMax optimizer and decreasing the dropout to 0.2. With

the same epoch times the result is not good as dropout=0.3

Figure 4.11: Attention-AdaMax dropout=0.2

In Figure 4.12, we increased the dropout value to 0.4 to examine if performance could be

improved. Upon conducting the initial test, the result was better than that of the 0.3 case,

with the F1 score rising to 0.9585 – the highest value we have ever achieved. If the model

remains stable, we will consider this result as our final outcome.

However, when we ran the same model with identical parameters again in 4.13, the perfor-
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Figure 4.12: Attention-AdaMax dropout=0.4

Figure 4.13: Attention-AdaMax dropout=0.4 unstable
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mance changed, as the model entirely missed the first wave and the F1 score dropped to

0.9385. We conducted several additional tests, and the results were inconsistent – sometimes

the performance was excellent, while other times it was entirely unacceptable. This outcome

indicates that the model, under these parameters, is unstable and unreliable. Therefore, we

cannot use the model in this state to estimate occupancy levels.

Table 4.1 summarizes all results using different algorithms and parameters. It is evident

that the many-to-one attention algorithm outperforms the LSTM algorithm under our ex-

perimental conditions. Furthermore, by adjusting various parameters, we discovered that

the attention algorithm with the AdaMax optimizer and a dropout value of 0.3 offers the

best performance in terms of both stability and F1 score.

In terms of applying these results,if we prioritize reduced computation time, we can use the

RMSProp optimizer to obtain relatively acceptable results. For the most accurate occupancy

level estimation, we should employ the attention algorithm with the AdaMax optimizer.

Table 4.1: Performance Summary

Algorithm Optimizer dropout Epoch F1
LSTM(no-onehot) Adam 0.3 70 0.7703
LSTM Adam 0.3 70 0.9382
Attention Adam 0.3 8 0.9385
Attention Adadelta 0.3 500 0.9414
Attention Ftrl 0.3 800 0.9356
Attention RMSProp 0.3 10 0.9485
Attention Nadam 0.3 10 0.9456
Attention Adagrad 0.3 250 0.9257
Attention SGD 0.3 50 0.9437
Attention AdaMax 0.2 20 0.9337
Attention AdaMax 0.4 50 0.9585
Attention AdaMax 0.4 50 0.9385
Attention AdaMax 0.3 50 0.9579

In summary, we have presented the results obtained for estimating occupancy levels. We
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have demonstrated the improvement offered by the attention algorithm and identified the

best performance achievable under this algorithm.
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Conclusion and Limitation

In conclusion, occupancy information is an invaluable asset for optimizing energy usage in

buildings, taking into account the diverse activities of the occupants. To accurately estimate

occupancy levels, we harnessed multi-variable environmental sensors and deployed the Ne-

tatmo Weather Station in a classroom to gather time-sequenced data for our experiment. We

subsequently adapted a deep learning algorithm, the Attention Mechanism, which is charac-

terized by its intricate structure. This approach empowered us to delve into the relationship

between environmental data and occupancy levels. By adjusting and comparing different

settings, our model demonstrated considerable performance in estimating occupancy levels.

Our findings confirm that the Attention Mechanism outperforms the LSTM algorithm in

accurately estimating occupancy levels when processing environmental data.

As the experiment progressed, I discovered a limitation of my research data: the data is

affected by seasonal changes. The experiment took place from November to February, during

the winter months in Arlington. During this time, the HVAC system operates at high power

to heat the room. However, as the weather warms up in March and April, the HVAC system

does not need to use as much power to maintain a comfortable temperature, resulting in

reduced noise from the machinery compared to the winter months. From Figure 5.1, it is

evident that there is no significant difference in sound levels between person number 4 and

person number 8. Consequently, sound levels may not be efficient in estimating the number

of individuals in a room but can effectively gauge their presence.

43
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Figure 5.1: Sound in 3/30/2023

However, Table 5.1 reveals that the sound levels in spring, when people are in the room,

are comparable to those in winter when the room is empty. This suggests that using the

winter schedule experimental data as training data and the spring data as test data could

lead to inconsistent test results. The model may not detect people exist because one of

environmental data proves the no people in the memory.

Table 5.1: Sound level variation

Date people Sound(dB)
1/31/2023 yes 68-74
1/31/2023 no 51-64
3/30/2023 yes 54-60
3/30/2023 no 41-52

In Figure 5.2, we incorporate spring data as an extension of the test data. The model can

accurately estimate the first three waves, which represent winter data. However, for the last

two waves, the model incorrectly predicts that there are no people in the room, while in

reality, the opposite is true.
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Figure 5.2: limitation in estimation for spring data

This outcome supports our previous assumptions and highlights the seasonal limitations

of our experiment. Above all, employing the Attention mechanism in conjunction with

the Adamax optimizer can yield optimal performance, even when faced with seasonal con-

straints.



Chapter 6

Future work

6.1 Model improvement

To enhance the model’s performance and address its limitations, we can consider the following

three strategies:

1) Collect more data: Gathering additional data from various occupancy levels can help

improve performance. By collecting data for more than one year, we may overcome

the seasonal limitations.

2) Add more features: Incorporating relevant features, such as outdoor temperature to

represent seasons, could potentially mitigate the seasonal limitations.

3) Employ better algorithms: As new and improved algorithms become available in the

future, one can apply them to our model to achieve better performance.

Moreover, as we delve deeper into the experiment, we may uncover further methods for refin-

ing and optimizing our model. Ongoing research and development can lead to an improved

understanding of the problem and the identification of more effective solutions.
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6.2 Application

Occupancy data is crucial for various applications, such as controlling lighting and HVAC

systems based on room occupancy to conserve energy. My work will concentrate on enhancing

our model’s performance and exploring its practical applications.

Once our model achieves satisfactory performance, its applications will become increasingly

appealing for future endeavors. We plan to integrate our model into a Building Energy

Management System (BEMS). One potential platform is the Building Energy Management

Open-Source Software (BEMOSS) [51], which has the capability to apply our model to

lighting and HVAC control. For instance, by combining our model with BEMOSS, we aim

to achieve automatic control of lighting and HVAC systems in classrooms. The model can

detect occupancy levels in the classroom, and BEMOSS can adjust lighting brightness or

HVAC output to meet the room’s requirements. When the room is occupied by more people,

we can increase lighting levels and configure the HVAC system to maintain a comfortable

environment for students during their studies. Conversely, when the room is unoccupied or

has few occupants, there is no need to keep all lights on at full power.
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