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Exploring the Stochastic Performance of Metallic Microstructures
With Multi-Scale Models

Arulmurugan Senthilnathan

(ABSTRACT)

Titanium-7%wt-Aluminum (Ti-7Al) has been of interest to the aerospace industry owing to

its good structural and thermal properties. However, extensive research is still needed to

study the structural behavior and determine the material properties of Ti-7Al. The homog-

enized macro-scale material properties are directly related to the crystallographic structure

at the micro-scale. Furthermore, microstructural uncertainties arising from experiments

and computational methods propagate on the material properties used for designing aircraft

components. Therefore, multi-scale modeling is employed to characterize the microstruc-

tural features of Ti-7Al and computationally predict the macro-scale material properties

such as Young’s modulus and yield strength using machine learning techniques. Investiga-

tion of microstructural features across large domains through experiments requires rigorous

and tedious sample preparation procedures that often lead to material waste. Therefore,

computational microstructure reconstruction methods that predict the large-scale evolution

of microstructural topology given the small-scale experimental information are developed

to minimize experimental cost and time. However, it is important to verify the synthetic

microstructures with respect to the experimental data by characterizing microstructural

features such as grain size and grain shape. While the relationship between homogenized

material properties and grain sizes of microstructures is well-studied through the Hall-Petch

effect, the influences of grain shapes, especially in complex additively manufactured mi-

crostructure topologies, are yet to be explored. Therefore, this work addresses the gap



in the mathematical quantification of microstructural topology by developing

measures for the computational characterization of microstructures. Moreover,

the synthesized microstructures are modeled through crystal plasticity simulations to de-

termine the material properties. However, such crystal plasticity simulations require sig-

nificant computing times. In addition, the inherent uncertainty of experimental data is

propagated on the material properties through the synthetic microstructure representations.

Therefore, the aforementioned problems are addressed in this work by explicitly quantify-

ing the microstructural topology and predicting the material properties and their variations

through the development of surrogate models. Next, this work extends the proposed multi-

scale models of microstructure-property relationships to magnetic materials to investigate

the ferromagnetic-paramagnetic phase transition. Here, the same Ising model-based multi-

scale approach used for microstructure reconstruction is implemented for investigating the

ferromagnetic-paramagnetic phase transition of magnetic materials. The previous research

on the magnetic phase transition problem neglects the effects of the long-range interactions

between magnetic spins and external magnetic fields. Therefore, this study aims to build

a multi-scale modeling environment that can quantify the large-scale interactions

between magnetic spins and external fields.



Exploring the Stochastic Performance of Metallic Microstructures
With Multi-Scale Models

Arulmurugan Senthilnathan

(GENERAL AUDIENCE ABSTRACT)

Titanium-Aluminum (Ti-Al) alloys are lightweight and temperature-resistant materials with

a wide range of applications in aerospace systems. However, there is still a lack of thorough

understanding of the microstructural behavior and mechanical performance of Titanium-

7wt%-Aluminum (Ti-7Al), a candidate material for jet engine components. This work in-

vestigates the multi-scale mechanical behavior of Ti-7Al by computationally characterizing

the micro-scale material features, such as crystallographic texture and grain topology. The

small-scale experimental data of Ti-7Al is used to predict the large-scale spatial evolution of

the microstructures, while the texture and grain topology is modeled using shape moment in-

variants. Moreover, the effects of the uncertainties, which may arise from measurement errors

and algorithmic randomness, on the microstructural features are quantified through statis-

tical parameters developed based on the shape moment invariants. A data-driven surrogate

model is built to predict the homogenized mechanical properties and the associated uncer-

tainty as a function of the microstructural texture and topology. Furthermore, the presented

multi-scale modeling technique is applied to explore the ferromagnetic-paramagnetic phase

transition of magnetic materials, which causes permanent failure of magneto-mechanical

components used in aerospace systems. Accordingly, a computational solution is developed

based on an Ising model that considers the long-range spin interactions in the presence of

external magnetic fields.
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Chapter 1

INTRODUCTION

Materials for aerospace applications must meet numerous selection criteria regarding me-

chanical and chemical properties [1] to ensure safety and deliver better performance [2].

Different parts of an aircraft have individual requirements significant to their function. For

example, aircraft frames require a good strength-to-weight ratio, high fatigue life cycle, dam-

age tolerance, reliability, high corrosive resistance, etc. Additionally, the engine components

necessitate materials to exhibit the ability to endure high temperatures [1]. By consistently

meeting the requirements, aircraft models have evolved throughout the years [1]. Design

conditions for aerospace materials induce research in the field of material science for a better

understanding of the structural and material behavior of existing commercial materials and

to develop new alloys that would perform better. One such class of materials that satisfies

the design requirements for particular aircraft components is the Titanium-Aluminum (Ti-

Al) alloys. Owing to their lightweight, and resistance to heat and corrosion, titanium alloys

have been employed in different parts of aircraft including the turbine fan blades, fuselage,

low-pressure compressor blade, etc [3, 4]. The possible application of titanium and its alloys

in the aerospace industry has been well studied in the past [4, 5, 6, 7, 8, 9, 10, 11, 12].

The amalgamation of titanium and aluminum has proven to be increasing the ductility of the

material and simultaneously reducing its weight [13]. The most commercially used titanium

alloy is Ti-6Al-4V [10]. Segregation of aluminum into titanium yields a lightweight material.

However, when the aluminum content is increased above 7%, a decrease in the ductility of

1



2 CHAPTER 1. INTRODUCTION

the material is observed [13, 14] due to the formation of Ti3Al (α2 phase) that embrittles the

material. Nevertheless, the ductility until 7% is reported to be satisfactory [13]. Additionally,

the intermetallic Titanium-Aluminides have also been found to be sustaining better at higher

temperatures [15, 16] and significantly lighter than the nickel and iron-based alloys [15].

Therefore, Ti-7Al is of huge interest to the aerospace industry owing to its lightweight and

high thermal properties [16, 17]. Especially, Ti-7Al is considered for use in turbine blades [18].

Having a better understanding of the microstructural behavior of Ti-7Al helps in designing

the material better suited for the performance of aircraft components at the macro-scale.

The Ti-7Al alloy has a Hexagonal Close-Packed (HCP) crystal structure. It has three basal

< a >, three prismatic < a >, six pyramidal < a >, twelve pyramidal < c+a > slips and six

tensile twin systems. However, the crystal plasticity parameters of Ti-7Al are not universally

agreed [19]. Moreover, Young’s modulus values of Ti-7Al are also known to be varying due to

experimental measurement uncertainties [20]. Therefore, multiple different approaches have

been employed in the past to study the material behavior of Ti-7Al and determine its elastic

and plastic properties [14, 21, 22]. However, experimental methodologies performed to study

the microstructural behavior of Ti-7Al and determine its homogenized material properties

are costly and computationally expensive.

The conventional manufacturing methodologies often lead to huge wastage in raw materials

and are limited when producing parts and components with complex geometries [23]. There-

fore, additive manufacturing techniques such as Selective Laser Melting (SLM) have been

of keen interest to the aerospace industry [12, 24, 25]. Additive manufacturing surpasses

the disadvantages of traditional subtractive technologies by ensuring the machinability of

complex shapes with optimized topology [23]. However, metal additive manufacturing still

remains a costly method. Therefore, owing to the high cost of materials used in the aerospace

industry, the manufacturing capabilities are considered under design to reduce production
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costs and time. Moreover, the crystallographic nature of polycrystalline materials such as

Ti-7Al is a direct result of the manufacturing process. The microstructural topology of a

material heavily influences the macro-scale homogenized material properties that are consid-

ered in the design. Hence, it is crucial to investigate what set of manufacturing parameters

can yield a microstructure with desired homogenized material properties. Additionally, the

experimental measurements often lead to uncertainty in the microstructural topology which

then propagates on the computed material properties [20]. Therefore, uncertainty is heeded

as an important factor in designing aircraft components [26]. Moreover, algorithmic uncer-

tainties can also propagate on the material properties computed through simulations mod-

eled with synthetic microstructures [27, 28]. Therefore, in order to improve the component

performance at the macro-scale and achieve economic feasibility during manufacturing, the

characteristic features of the polycrystalline material should be studied at the micro-scale

through physics-based and data-driven multi-scale models while considering the effects of

uncertainty.

Multi-scale modeling is a cross-disciplinary approach that employs information from one

length scale to understand the behavior of a system at another, thereby linking the gap be-

tween different length scales (Figure 1.1). By reducing experimental iterations, multi-scale

modeling lowers the cost and time required for materials design. Additionally, multi-scale

modeling provides room for innovation in design that would improve product performance

and quality. Over the years, the applications of multi-scale modeling have been explored in

fields such as Astronomy [29], Biology [30], Physics [31], Chemistry [32], and many more.

In the field of materials science, the application of multi-scale modeling has produced a bet-

ter understanding of structure-property relations [33, 34]. Multi-scale modeling benefits in

solving the macro-scale problems at the component level by understanding the characteristic

features of material topology at the micro-scale. For instance, metallic parts and components
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Figure 1.1: Multi-scale modeling as a cross-disciplinary approach to study material behavior
[36, 37, 38, 39, 40]. This dissertation work develops numerical methods to study the multi-
scale mechanical and magnetic behavior of Ti-Al alloys and ferromagnetic materials widely
used in aerospace systems.

that frequently experience fatigue loading perform worse and eventually lead to failure. The

failure of materials can be attributed directly to their microstructural characteristic features.

This is because the homogenized (volume-averaged) properties and performance of materials

are determined by the underlying microstructural features (i.e., texture, grain topology). In

fact, the grain size and shape of a polycrystalline microstructure significantly impact the

homogenized material response [35].

A classic example is the failure of ductile materials due to the nucleation and coalescence of

voids at the micro level upon external loading [41]. Even in the absence of external loads, the

presence of several kinds of crystallographic defects can influence the homogenized material

properties. Inversely, one can design the material to have desired properties by optimizing the

topology of microstructures. The recrystallization process can eliminate any defects in the

material which improves the ductility of the material. Thus, by controlling the micro-scale
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phenomenon, macro-scale qualities of materials can be designed. The macro-micro relations

of grain size and homogenized material properties are well-studied through the Hall-Petch

effect [35]. However, the influences of grain shapes, especially in complex microstructures,

are yet to be explored.

1.1 Motivation

This work focuses on developing multi-scale models for understanding two different research

problems. The first involves Microstructure Characterization and Reconstruction (MCR)

techniques. In order to save the cost and time required for experiments, computational meth-

ods are developed to reconstruct synthetic microstructures in large domains. The microstruc-

tural features are visualized with instruments such as an optical microscope, Scanning Elec-

tron Microscope (SEM), Transmission Electron Microscope (TEM), and Atomic Force Mi-

croscopy (AFM) [42, 43]. For metallic microstructures, Electron Backscatter Diffraction

(EBSD) [44, 45, 46, 47, 48] and X-ray diffraction [49, 50, 51] are predominantly used to de-

termine the grain orientation information. Moreover, many other procedures are introduced

to detect the grain mapping [52, 53, 54].

However, micro-scale experiments using expensive instruments often require rigorous time-

consuming sample preparation procedures that often lead to material waste. To minimize the

cost and time requirements of these large-scale experiments, computational microstructure

reconstruction methods are applied to predict the microstructural evolution in large domains

given the small-scale experimental information [55]. Next, these synthesized microstructures

are used to determine the material properties through computational simulations. However,

carrying out a combination of tasks involving microstructure reconstruction and crystal

plasticity simulations is expensive. Additionally, the inherent uncertainty of experimental
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images propagated on the material properties via reconstructed samples requires a ubiquitous

methodology to quantify the microstructure topology. Therefore, this work concentrates on

addressing the aforementioned problems and contributes toward advancing the state-of-the-

art techniques for microstructure reconstruction by explicitly quantifying the grain shapes of

the synthetic microstructures and developing surrogate models to predict material properties

as a function of microstructure texture and topology [56, 57, 58, 59, 60]. This work focuses

on Ti-7Al, a candidate for applications in the aerospace industry owing to its lightweight

and better strength at higher temperatures [16]. The EBSD samples of Ti-7Al used in this

work indicate a close-to-randomly oriented microstructural texture with slight variability

in the textures of different samples. The presented scheme will be applicable to study

microstructures having any type of grain structure and here it will be tested for the forged

and additively manufactured samples of the same material, which is the Ti–7Al alloy.

On the other hand, the second research problem involves investigating the instability of the

ferromagnetic-paramagnetic phase transition in metals. Ferromagnetic materials naturally

exist in magnetic domains where all of the spins in each domain are aligned in the same

direction. These materials exhibit permanent magnetic properties upon applying an external

magnetic field. Ferromagnetic materials are used in various electromagnetic and Giant-

Magneto Resistance (GMR) devices in aircraft due to their strong magnetic properties [61].

More importantly, the powdered ferrites are used in fighter aircraft [62] as a Radar Absorbing

Material (RAM) that converts the incoming radar waves into heat and thereby performs as

a stealth aircraft. Only a few materials including iron, cobalt, nickel and some rare earth

materials exhibit this ferromagnetic property.

However, the extreme environment contributes to affecting the performance of magnetic

materials that are used in critical components. When the temperature exceeds a point

known as the Curie temperature, ferromagnetic materials lose their magnetic strength and
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transition into a weak magnetic phase known as paramagnetic material. However, in reality,

the phase transition is rather a zone than a single point due to measurement uncertainties.

Conventionally, a lattice-based model is used to study the magnetic phase transition [63,

64] under the effects of neighbor spins [65, 66, 67, 68] and external magnetic field [69, 70,

71, 72, 73]. Nevertheless, the computational time restricts obtaining the exact solution for

the magnetic phase transition problem under the effects of long-range neighbors. Therefore,

by using numerous approximation theories [67], historically the magnetic phase transition

problem is solved either for short-range neighbors either with [68, 69, 70, 71, 72, 73] or

without an external magnetic field [65, 66, 74]. Although some notable works have attempted

to include long-range interactions [75, 76], this work develops a numerical approach using

optimization techniques including the presence of an external magnetic field. Furthermore,

the magnetic phase transition problem is also solved for the 3D model but without the effects

of the external magnetic field [67]. Therefore, this work builds the theory for solving a 2D

magnetic phase transition problem using an optimization approach that is to be extended

to study the 3D polycrystalline materials while accounting for the crystallographic effects in

the future.

1.2 Contributions

The contributions of this study to the state-of-the-art multi-scale modeling of materials are

listed next:

1. Quantitatively characterizing the microstructure topology

• This work develops a two-stage methodology that statistically validates the recon-

structed microstructure images with respect to available small-scale experimental



8 CHAPTER 1. INTRODUCTION

data. The validation is achieved by quantifying the 2D and 3D grain shapes

of polycrystalline microstructures using the concept of moment invariants. The

Principle Eigenvalue Moments (PEM) are introduced as new shape descriptors for

representing the microstructure topology. The developed methodologies aid the

computational tools used to investigate the material behavior and properties of

alloys like Ti-7Al, which are of great interest to the aerospace industry. Moreover,

the developed methodologies are also designed to be ubiquitous in characterizing

any kind of microstructure including composites, ceramics, etc.

2. Quantifying the uncertainty of the microstructure topology

• This work proposes PEM based on Hu moments [77] as a numerical descriptor

to quantify the uncertainty of microstructural features and homogenized proper-

ties arising from the experimental data and computational reconstruction of the

synthetic microstructures. These parameters are utilized to capture the expected

values of the microstructural features in addition to the deviations arising from

the uncertainties. These statistical parameters can also be used to understand

and analyze the quality of the microstructure reconstruction when employing

different MRF parameters, including the window size and image resolution.

3. Investigating the effects of topology and its uncertainty on material prop-

erties

• A surrogate model based on Gaussian Process Regression (GPR) (Figure 1.2) is

developed to predict the material properties and the associated uncertainty as a

function of PEM that quantifies the microstructure texture and topology. The

surrogate model is also used to compute the variations of the mechanical proper-

ties as a result of the microstructure uncertainty. Therefore, moments invariant
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Figure 1.2: Outline of a surrogate model developed for predicting mechanical properties as
a function of moment invariants representing microstructural features

to Rotation, Scale and Translation (RST) are proposed as a new descriptor for

representing microstructural topology. Using RST invariants to represent mi-

crostructural topology brings significant data reduction when compared to direct

image-based training performed using computationally expensive deep learning

techniques.



Chapter 2

MICROSTRUCTURE

RECONSTRUCTION AND

CHARACTERIZATION

The topology of metallic microstructures is conventionally identified through EBSD [44,

45, 46, 47, 49, 78] that scans small sample surfaces in an SEM device. EBSD imaging

provides a dataset containing information about the crystallographic characteristics of the

material. One such important microstructural feature is the grain orientation displayed

through the Inverse Pole Figure (IPF) [79]. The IPF mapping identifies the crystallographic

orientation information of the microstructure through the Red-Green-Blue (RGB) coloring

system. Thus, EBSD serves as a powerful tool in extracting vital information about material

characterization. However, it requires rigorous and tedious sample preparation techniques.

Furthermore, operating powerful devices, such as electron microscopes, comes at the expense

of requiring vigorously trained human work and utilizing the device multiple times. On the

other hand, computational material science offers efficient solutions for expensive experimen-

tal techniques. One such example would be the microstructure reconstruction techniques [80,

83, 84, 85, 86, 87, 88, 89, 90, 81, 82] developed to predict microstructural evolution in large

domains using the small-scale information characterizing the microstructural features.

In the past, the area of Microstructure Characterization and Reconstruction (MCR) has

10
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been widely investigated [55]. MCR is based on the notion that if a parameter describing

the characteristic features of a microstructure contains enough information about the mi-

crostructural topology, it can be utilized to create a statistically equivalent microstructure.

The rapidly evolving field of MCR has begun with some pioneer works developing statistical

parameters that are set to capture the information about the microstructural images explic-

itly. Examples include two-point correlations either with simulated annealing [80, 83, 84, 91,

92, 93] or the phase recovery algorithm [94, 95], and the Voronoi tessellation [86, 96]. This

is followed by the utilization of the geometry-based shape descriptors such as the ellipsoid

[84, 85]. Some other notable techniques include image in-painting [97] and the experimental

reconstruction through milling [98, 99].

A more advanced characterization technique involves the implementation of a pattern recog-

nition algorithm through the Support Vector Machine (SVM) [87], deep learning [88], and

supervised machine learning [88, 89, 90, 81, 82] techniques. The complex and implicit nature

of Machine Learning (ML) based methodologies make the reconstruction of color (RGB) mi-

crostructure images difficult. On the other hand, the image-based reconstruction techniques

are found to perform better than the above-mentioned methods by eliminating the need of

characterizing the topology without compromising the physical meaning of the microstruc-

tural features [28]. It does so by using a neighboring analysis (NA) where a window size

parameter is defined. One such example would include the Markov Random Field (MRF)

method [28, 100, 101, 102, 103]. Furthermore, some ML-based techniques such as transfer

learning [81], supervised learning [89], and Convolutional Neural Network (CNN) [82] have

also been used for MCR with a non-parametric approach. However, deep learning techniques

always require a large amount of data samples for training neural networks. Therefore, the

probabilistic graphical model that requires relatively minimum experimental data is chosen

in this study to reconstruct the microstructures of 2D EBSD images using the MRF method.
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The organization of Chapter 2 is as follows: Section 2.1 discusses the development of the

Ising model. Section 2.2 introduces the reconstruction of microstructure images using MRF.

Section 2.3 presents the microstructural characterization techniques for verification of the

reconstructed microstructures.

2.1 Ising model

The Ising model was initially developed by Ernest Ising for understanding the magnetic

phase transition [63]. The Ising model corresponds to a lattice-based structure (Figure 2.1

(a)). The lattice points are a set of periodically located points at regular intervals. The bond

connecting the lattice points is called an edge and it encloses the model with boundaries.

Thus, the lattice arrangement of the model can be thought as of a periodic arrangement

of the lattice square connecting four lattice points forming the unit cell in 2D. For 3D, the

unit cell would be the lattice cube connecting 6 points. The Ising model can be constructed

for any model size of Nd with dimensions, d, of 1, 2, and 3. Another important concept

of the Ising model is the nearest neighbors which are defined for a lattice point (i) as the

immediate neighboring lattice points (j) located in all available directions. For the cases of

d = 1, 2, and 3, the numbers of nearest neighbours are j = 2, 4, and 6, respectively. The

nearest neighbors are also known as the first-order neighbors. The second-order neighbors

constitute the next level of close neighbors.

The edges enclosing the first and second nearest neighbors form a square window of size 1

(pixel2). An example window with a size of 1 is illustrated in Figure 2.1 (b). For the kth

nearest neighbor, the window size ranges from k = 1 to k = N − 1. However, for the lattice

points on the boundary, the neighborhood window is not square. Rather, the shape of the

window is bent according to the number of available lattice points. The same applies to
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(a) Simple Ising model

(b) Simple Ising model with Square window

(c) Higher order Ising model

Figure 2.1: MRF as an undirected graphical model. The circles show the pixels of an image.
The bonds are used to connect the neighbors: (a) Ising model with the nearest neighbor
interactions. (b) A square window on a simple Ising model with a pixel of interest located
at the center (Red) connected to all neighbors (blue) within the window. (c) A higher-order
Ising model. The microstructure reconstruction performed in this work is based on the MRF
method, which is a higher-order Ising model [56].
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the bonding connecting the lattice points on the boundary. While the interior lattice points

are covered by all j neighbor points, the boundary lattice points get cut due to the shape

of the model. However, Ising models are applied often for larger systems and so only a

small fraction of the total number of lattice points occupies the lattice sites of the boundary.

Hence, the assumption of adjustable window size for the lattice nodes located at the edges

and corners is acceptable.

An image of N × N dimensions is mathematically a matrix of N × N with each element

of the matrix containing the pixel intensity value of that particular pixel. While a binary

and a grayscale image have a single channel representing a single matrix, a color image has

three (RGB) channels. The pixel intensity of a grayscale or an RGB image is defined with

values ranging from 0 to 255 for each channel while the binary image has only two choices:

either 0 or 1. A simple model is illustrated in Figure 2.1 (a). Furthermore, for modeling

microstructures, a higher-order Ising model where all the nodes are connected to one another,

as illustrated in Figure 2.1 (c), is assumed to include the long-range interactions.

In order to reconstruct the synthetic microstructure images, the higher-order system is fur-

ther developed as a probabilistic graph model by applying conditional dependence according

to Markov’s rule [28]. When the lattice points and the edges can be thought as of random

variables (RVs) and correlation functions, respectively, the Ising model can be used to model

the microstructural images. Because, in an image, the pixels are correlated with one another

[56].
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2.2 Microstructure reconstruction by Markov Random

Fields

Graphical model (GM) is a class of machine learning used to study domain problems with a

graphical approach. Since GM can help incorporate the uncertainty, it is a suitable candidate

for modeling microstructure images for reconstruction with a non-deterministic approach.

GM is a general framework that has a declarative representation of a model describing the

construction of a system. The model contains the knowledge of system function in detailed

semantics and algorithms are developed for reasoning the most probable outcome based on

the developed graphical model [104].

There are two types of probabilistic graphical models namely the Directed Graphical Model

(DGM) and the Undirected Graphical Model (UGM). The difference between the two is

the assignment of a direction to the edges connecting two random variables. The directed

model such as a Bayesian network relies on the history of the present state. However, the

absence of a direction paves the way for defining a neighborhood window in the undirected

models. Therefore, the UGM solely depends on its current state. Conventionally, UGM is

also known as Markov networks based on which the Markov Random Field (MRF) algorithm

is developed.

There are multiple reasons to prefer MRF for microstructure reconstruction. First, MRF

has an edge over the other types of reconstruction techniques since the random nature of

its algorithm enables the reconstruction of multiple samples from a relatively small amount

of experimental data. Also, MRF samples are a useful source to analyze the propagation

of epistemic and aleatoric uncertainty. Furthermore, MRF requires relatively very small

experimental data to synthesize the microstructures. Hence, MRF is adopted in this work

to generate synthetic microstructures [56, 57, 58, 59, 60]. The MRF reconstruction has been
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applied in the past for both spatial and temporal reconstruction [28] in large domains using

small-scale experimental data. This work focuses on using the algorithm implemented in

[28] for the spatial reconstruction of Ti-7Al microstructure images. The methodology of the

MRF algorithm follows the previous work by [28, 103]. The structure of the algorithm is

explained by [28] and is described here in brevity.

To apply the MRF algorithm, the microstructure image is mathematically constructed using

an Ising model [63]. Therefore, the image is designed as an N × N lattice with values X i

containing any one of G color levels in the range 0, 1, ..., G − 1 assigned to each particle i

of the lattice. In an Ising model for microstructural images, each particle representing the

pixels conditionally depends on its neighbors [56]. In other words, the edge connecting two

particles of the lattice is absent if they both are conditionally independent. Conventionally,

each particle of an Ising model is connected to its neighbors as illustrated in Figure 2.1 (a).

However, for modeling microstructures, a higher order Ising model is used by linking all the

lattice points as illustrated in Figure 2.1 (c) [56]. This structure defines an MRF where the

joint probability density of all particles is defined by the local Markovian property which

indicates that the probability of a value (X) is conditionally independent of all other values

that are placed outside of its neighbors. The graphical network is designed in a way to have

conditional dependence on its neighbors exhibiting a joint probability distribution globally.

An important feature of the MRF algorithm is the Window Size (WS). It is defined as the

size of a square neighborhood window around a pixel of interest located at the center and

bonding it to every other pixel within the window (Figure 2.1 (b)). The window size is a

crucial adjustable parameter during MRF reconstruction. While smaller window sizes can

cause more uncertainty to propagate on the synthetic model, choosing larger window sizes

is computationally expensive. Hence, determining an optimum window size is essential to

reconstruct synthetic microstructures.
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The algorithm initiates its first step by randomly selecting a W ×W (pixel2) seed window

(where W << N) from the experimental image and transfers it to the center of the synthetic

image. Since the location of the seed window is selected at random, one can create multiple

synthetic images from the same experimental image. The resemblance between the experi-

mental and synthetic window results from solving a minimum distance problem as described

in [28]. In order to find the value of the unfilled pixel, the algorithm performs an exhaustive

search. During the search, the algorithm looks for a neighborhood window in the input mi-

crostructure image that matches well with the neighborhood window of the synthetic model.

The matching between both windows is measured through a distance parameter [28]. Among

all the neighborhood windows in the input image that satisfy the threshold condition [28],

one of them is randomly chosen and the center pixel of the chosen window is taken to be

the pixel intensity of the unfilled pixel. Next, the algorithm moves around in a clockwise

direction filling each of the unfilled pixels. For the RGB image, the above-mentioned pro-

cedure is repeated for all three color channels. If none of the neighbors are filled in the

synthetic model, then the threshold is raised by a small percentage. Then, the algorithm

moves the window outwards from the center of the synthetic image in a clockwise direction,

and it determines the pixel intensity of the next unfilled pixel. The algorithm repeats this

process by incrementally moving the synthetic window clockwise until the reconstruction of

the synthetic surface topography map is complete [56].

Due to a large number of variables in color images, the mathematical construction is sub-

jected to model uncertainty as the MRF algorithm works using joint probability distributions.

While the stochastic nature of the MRF algorithm is a beneficial feature, the randomness

(epistemic) can still give rise to uncertainty. Furthermore, the unavailability of the cor-

rect pixel intensity information (aleatoric) in the microstructure image can also introduce

uncertainty. This is because the microstructures are inherently stochastic due to the uncer-
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tainties arising from the unanticipated fluctuations in stress and thermal gradients during

thermo-mechanical processing (processing-induced or aleatoric uncertainty). More about

the source of uncertainty is described in detail in Chapter 4. Therefore, a single experimen-

tal microstructure sample is not representative of all features of the entire specimen and

there are several possible outcomes for synthetic images. The goal of MRF is to achieve a

“statistically-equivalent” microstructure, rather than the exact same microstructure. How-

ever, during reconstruction, incorrect pixel intensity values might propagate on the synthetic

samples due to uncertainty. Even a slight change in one of the color channels may alter the

color of the reconstructed pixel and affect the subsequent process. Therefore, it is important

to use a quantifiable parameter that not only captures the resemblance of two images as

a whole but also accounts for the uncertainty of the algorithm by explicitly comparing the

original and synthesized images. The present work uses Hu moments [77] to investigate

this important challenge. The application of moment invariants, which are derived from Hu

moments, to compare and verify the original and synthesized microstructures are explained

in the next section.

2.3 Computational Characterization of Microstructures

The MRF algorithm generates statistically equivalent microstructures. Hence, it is crucial

to validate the synthetic microstructures reconstructed from experimental data. The key

to validating the reconstructed microstructures lies in characterizing microstructural fea-

tures. One such important feature is the grain shape which also relates to the texture of

the microstructure. The characterization and quantification of grain shapes of polycrys-

talline microstructures are significant to verify the reconstructed microstructure images and

understand the effects of different grain shapes on homogenized material properties. How-
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ever, the broad variety and intricate nature of grain shapes including highly non-convex or

concave grains [105] poses a challenge for grain shape quantification. Therefore, a univer-

sal approach is necessary to characterize and quantify grain shapes. This work focuses on

developing metrics to ubiquitously describe the grain shapes of any microstructure.

Many practical methods to quantify the grain shapes are based on intuitive approaches in-

volving experiments [106, 107]. Moreover, Fourier analysis has also been used in the past for

the classification of crystal shapes [108]. Another idea was the utilization of the Minkowski

functions [109], which are mostly used in the field of astronomy [110], to characterize 3D

microstructures [111]. The traditional approach is to perform a visual inspection for grain

mapping that does not lead to any quantitative information [89]. Another novel approach

for determining the validity of 3D reconstructed grains from 2D maps is utilizing the surface

projection error [112], which only includes information about the diameter and volume of the

grains and therefore does not capture any detailed shape information. Other than the afore-

mentioned techniques, the attempts to characterize microstructural features can widely be

classified as statistical functions and physical descriptors. The statistical functions can fur-

ther be sub-classified into point-based or line-based functions. For example, the widely-used

two-point correlations [113, 114, 115] do not maintain sufficient information to analyze the

statistical equivalence of microstructures and, thus, they cannot provide explicit information

about the grain shape.

A similar yet more informative physical descriptor is the 2-point cluster correlation, which

can be used to quantify the microstructure in 2D and 3D domains [89]. However, they do not

explicitly determine the size and shape of individual grains [116]. Unlike point-based func-

tions, line-based comparisons are also attempted [28, 55] using linear path functions that do

not explicitly capture the local-level microstructure features, such as the grain shape. On the

other hand, the physical descriptors can be used to check the statistical equivalency between
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the features of the original and reconstructed microstructures. The geometrical shape-based

descriptors are introduced for quantifying the microstructure topology [55]. However, these

descriptors are not ideal for quantifying complex grain shapes, such as those resulting from

additive manufacturing techniques. None of the shape descriptors and correlation functions

discussed above explicitly capture the grain shapes. Therefore, they cannot be used as uni-

versal metrics to characterize different grains. A quantitative scheme that can explicitly

compare grain shapes was not developed previously.

However, a notable characterization technique for shape quantification is the shape quotient

[117]. The shape quotient, which is based on the isoperimetric inequality, is invariant to affine

transformation [118]. However, the shape quotient is more of a compactness measure of shape

with respect to a common geometry like a circle for the 2D case or an ellipsoid/sphere for

the 3D case. The shape quotient can only measure the shape of the object while the moment

invariant can also capture the changes in the orientations (texture) of the microstructure by

considering the changes in the pixel intensity of the image samples.

The moments stand out from other shape descriptors by their quality of invariance to different

shapes. In this work, the goal is to build a quantitative verification approach based on

image moments that will compute both global-level (volume-averaged) and local-level (grain

scale) features of the synthesized microstructures generated with the MRF for both 2D and

3D. The moment invariants are used in diverse fields, ranging from simple object shape

detection to human face recognition [119, 120, 121, 122, 123, 124, 125, 126]. For instance,

Žunić [127, 128, 129, 130] studied the application of the first Hu moment to measure the

circularity, ellipticity, and ellipsoidness of 2D and 3D shapes. The use of moment invariants

in materials science, particularly for grain shape recognition, is a relatively new research

area. The application of moment invariants for measuring shapes has also been investigated

to quantify grain shapes of 2D and 3D microstructures [105, 117, 131, 132, 133, 134, 135,
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136]. More recently, the use of moment invariants as a grain shape descriptor was found

applicable by Callahan et al. [105, 133], MacSleyne et al. [117, 134, 135], and DeGraef

[136] for both 2D and 3D microstructures. MacSleyne et al. [117] discussed the applications

of dimensionless moment invariants (denoted by ω1 and ω2) and introduced normalized

moments as a shape descriptor, specifically for 3D microstructures [134, 135]. Additionally,

moment invariants are derived for standard 2D and 3D geometric shapes [105, 135, 135] for

classifying particle shapes [105], compare experimental and synthetic grains [134], and for

the quantification and analysis of precipitate grain shapes [119, 134, 135]. However, these

methods do not work well for the highly irregular grain shapes of additively manufactured

materials. To address this problem, the present study aims to quantify the grain shapes

of microstructures without the need of comparing them to another geometry. The shape

moments are invariant with respect to Rotation, Scale, and Translation (RST), and thus

become a preferable choice for quantifying grain shapes. Different measures to quantify the

effects of the uncertainty affecting the 2D and 3D grain shapes of microstructures are also

explored using these descriptors. The moment invariants were formulated by Hu as a special

set of image moments that are invariant to RST transformations [123]. In an image, the Hu

moments describe the distribution of the pixel intensities over the image while remaining

invariant to shape transformation. The image moments have been applied in this work to

compare experimental and synthesized 2D microstructure images at global and local levels

[56]. In addition, the present work proposes to use the concept of moment invariants to study

the uncertainty propagation on the grain features of 2D and 3D synthetic microstructures

[57, 59].

A moment as defined in classical mechanics is a product of a physical quantity and distance

between where it is applied and a reference point. The mathematical concept of a moment

in image processing is the same as this physical meaning. For an image, pixel intensity is a
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random variable distributed over the image discretely. Therefore, a moment of an image is

a measure of an average weighting number based on each pixel’s intensity. Since an image

is a 2D figure, the moments derived in the following sections are for 2D spaces. The basic

type of a moment is called a raw moment. It is defined as the summation of the product

of each pixel’s location and its corresponding pixel intensity. To determine the location of

pixels, the images are graphically expressed over a Cartesian coordinate system (x, y).

mij =
∑
x

∑
y

xiyiI(x, y) (2.1)

Equation 2.1 demonstrates the definition of the raw moment, where i, j = 0, 1, 2, ..., N with

N representing the order of the moment. The zeroth and first-order raw moments can

yield two important properties that are used to calculate more advanced moments. When

i = j = 0, the raw moment also statistically signifies its equivalence to the expected mean

which is defined for a discrete random variable as m00. Hence, m00 can also be thought of

as the expected value of the image. It can also be called the image area since m00 is the

summation of all the pixel intensities of an image. Another property that can be derived

from the first-order raw moments is called the centroid (x̄ and ȳ). The centroid is defined as

the ratio of the first-order moment (m10, m01) with respect to the image area. It represents

the geometric center of an image.

x̄ =
m10

m00

, ȳ =
m01

m00

(2.2)

x̄ and ȳ represent the coordinates of the centroid of the image. µij is a subset of another

type of moment called the central moment. It is estimated through raw moments but each of

the pixel locations is subtracted from their centroid coordinates of the image as formulated
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in Equation 2.3.

µij =
∑
x

∑
y

(x− x̄)i(y − ȳ)iI(x, y) (2.3)

The first-order central moment is always zero and the second-order central moments are

statistically equivalent to the variance. An important characteristic of the central moment

is that it is invariant. For instance, µij is invariant to the translation of shapes. A scale

invariant is introduced by normalizing the central moments by the image area to the power

of γ. This is called as normalized central moment, (ηij), given as:

ηij =
µij

(m00)γ
where γ =

2 + i+ j

2
(2.4)

The use of a central or normalized central moment, however, does not provide a complete

one-to-one image comparison as they are not invariant to rotations. A quantity that is

invariant to the rotation, scale, and translation of shapes is available using the set of seven

moments (Equation 2.5) defined by Hu [77].
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ϕ1 = η20 + η02

ϕ2 = (η20 − η02)
2 + 4η211

ϕ3 = (η30 − 3η12)
2 + (3η21 − η03)

2

ϕ4 = (η30 + η12)
2 + (η21 + η03)

2

ϕ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

ϕ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]

+4η11[(η30 + η12)(η21 + η03)]

ϕ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21

+η03)
2]− (η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

(2.5)

Furthermore, many different moments that provide similar invariant properties to Hu mo-

ments can be developed. For example, MacSleyne et al. [135] has developed a dimensionless

moment invariant (ω) to quantify grain shapes and precipitates. In addition, the possi-

bility of developing a graphical map based on the moment invariants is also investigated

by MacSleyne et al. [135] to quantify and characterize the grain shapes. However, mo-

ment invariants have not been explored for uncertainty quantification. This work develops

a formulation based on shape moment invariants to investigate the effects of uncertainty as

explained in Chapter 4.

The central moments are developed in the form of multivariate distributions. Hence, the

second-order central moments represent the variance (µ20, µ02) and covariance (µ11) of an

image while the third-order normalized central moment contains the skewness information of

the same image. Similarly, a fourth-order moment provides information about the kurtosis

of the image. The present work focuses on the utilization of the second-order Hu moments,
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which are used to quantify grain shapes. Interested readers are referred to [137] for more

information about the statistical meaning of the higher-order Hu moments.

By calculating all the second-order central moments, the covariance matrix can be formed

as:  Σxx Σxy

Σxy Σyy

 =

 µ20 µ11

µ11 µ02

 (2.6)

Similarly, a 2×2 covariance matrix for the normalized central moments can be defined as:

 η20 η11

η11 η02

 (2.7)

The eigenvalues of Equation 2.7can be formulated in terms of the Hu moments, as follows:

λ1/2 =
ϕ1 ±

√
ϕ2

2
(2.8)

The eigenvalues of this matrix yield PEM denoted by λ. The present work uses the Principal

Eigenvalue Moments (PEM) denoted by Equation 2.8 to develop a graphical domain and

derive five parameters to quantify the uncertainty arising from the reconstruction of 2D and

3D microstructures. A similar approach was presented earlier [134, 135] with a map of ω1 and

ω2 for comparing grain shapes. Here, ω1 and ω2 are the dimensionless moment invariants.

The map developed from these moments can be used to characterize the grain and particle

shapes. However, in this work, the focus is on quantifying the uncertainty propagated on

the reconstructed microstructures with a map of PEM. Significant statistical parameters

based on the PEM moments that can be used to study the uncertainty quantification of

reconstruction methods have been developed in this work and described in detail in Chapter

4. Furthermore, the PEM map can be used as a universal measure for understanding the
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uncertainty propagated on both 2D and 3D reconstructed microstructures.



Chapter 3

RESULTS AND MODEL

VERIFICATION

The MRF algorithm, as discussed in Chapter 2, is applied to reconstruct the microstructure

images of Ti-7Al samples that are forged and additively manufactured (presented in Figure

3.1 (a) and Figure 3.1 (b), respectively). The microstructure images are obtained through the

EBSD technique in the SEM device [38]. The EBSD images contain information about the

microstructural topology. The RGB colors in an EBSD image represent a crystallographic

orientation. The MRF algorithm reconstructs the synthetic images by building statistics of

the pixel intensity values of the input (EBSD) image. However, computational reconstruction

aims to predict a statistically equivalent microstructure. Therefore, it is crucial to verify the

reconstructed microstructures.

This chapter is structured as follows: Section 3.1 presents the results of the synthetic mi-

crostructures reconstructed with the MRF algorithm. Section 3.2 presents the computational

time consumed for generating reconstructed microstructure images. Section 3.3 discusses the

two-stage methodology developed to verify the 2D synthetic microstructures with respect

to the experimental data and Section 3.4 discusses the procedure to verify the 3D synthetic

microstructures reconstructed by the MRF algorithm.

27
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3.1 Synthesized microstructures of MRF

The synthetic microstructures are reconstructed using the EBSD data of Ti-7Al samples

fabricated with conventional forging (Figure 3.1 (a)) and additive manufacturing (Figure 3.1

(b)) [38]. The reconstruction is performed for the same size and higher resolution (1.5 times

(1.5×) and 2 times (2×) larger images than the original image) using window sizes of 5,

7, and 9. In each case, a hundred images are generated to find the efficiency of the MRF

algorithm and optimum window size. The results are presented in Figure 3.2 and Figure

3.3 for the same size reconstruction. The results for higher resolution cases are presented in

Figures 3.4 - 3.7.

To reduce the effects of the algorithmic uncertainties, a strategy is developed for filtering the

reconstructed images using the Hu moments and without biasing the MRF process. Every

time an image is reconstructed by the MRF, this strategy (i) converts the reconstructed image

into grayscale, (ii) calculates the Hu moments for the entire grayscale image, and (iii) saves

the reconstructed image only if certain conditions based on the Hu moments are satisfied.

These conditions are defined in terms of the first (ϕ1) and second (ϕ2) Hu moments. The ϕ1

and ϕ2 values of the synthesized images satisfy the following conditions: error percentages

of eϕ1<2% (error in ϕ1) and eϕ2<10% (error in ϕ2) with respect to the Hu moments of the

original image in grayscale. When the resolution is higher, it takes more time to find the

images satisfying these filtering conditions. To limit the required computational time, in the

forged 2× case (when the synthesized samples are 2 times larger than the original), only the

first filtering condition (ϕ1<2%) is used. The percentage values are chosen based on trials.

For filtering, the image is converted into grayscale for improving computing times. The ϕ1

and ϕ2 values used for filtering are purely based on the second-order moment. The third

and higher-order moments are found to be too sensitive when used as filtering criteria. Also,
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(a) (b) (c) (d)

Figure 3.1: Experimental and reconstructed images (a) Experimental forged image with
a resolution of 100x100 pixels, (b) Additively manufactured image with a resolution of
93x93 pixels, (c) Reconstructed forged image of 100x100 pixels using window size (WS)
of 5 with error percentages of ϕ1=1.09%, ϕ2=12.35%, ϕ3=238.51%, ϕ4=77.60%, ϕ5=97.78%,
ϕ6=96.32%, ϕ7=82.56%. (d) Reconstructed additively manufactured image of 93x93 pix-
els with WS of 5 with error percentages of ϕ1=0.25%, ϕ2=1.49%, ϕ3=69.87%, ϕ4=25.30%,
ϕ5=80.80%, ϕ6=329.81%, ϕ7=53.71% [56].

the order of magnitude for the higher-order moments (third and higher) is extremely low

[56]. This is because when the central moments are divided by the pixel area which is of

higher magnitude than the central moment, the resulting value becomes rather small. While

the third and higher order moments can assure the presence of uncertainty even when the

images are visually satisfying (Figure 3.1 (c), (d)), including them for filtering the synthesized

samples is infeasible due to the computational time requirements.

The similarity of individual synthetic grains to the grains of the experimental image is

studied better through the difference in the magnitudes of the Hu moments without the

need to compare them to common geometrical shapes. A small change in the size or shape

of the grain can directly be measured by the Hu moment values. Hence, in this work, the

reconstructed image is compared to the original image on two levels. In the first level, global

parameters are defined to describe the whole image by accounting for each and every pixel

intensity in all three color channels. In the second level, a local measure is defined to compare

the size and shape of each grain.
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Figure 3.2: Original experimental forged image (100x100 pixels) versus the same-size recon-
structed images (100x100 pixels) of Ti-7Al. (a) Original image. Reconstructed images: (b)
Type 1 acceptable image of WS 5, (c) Type 2 acceptable image of WS 5, (d) Eliminated
image of WS 5, (e) Type 1 acceptable image of WS 7, (f) Type 2 acceptable image of WS 7,
(g) Eliminated image of WS 7, (h) Type 1 acceptable image of WS 9, (i) Type 2 acceptable
image of WS 9, and (j) Eliminated image of WS 9 [56].
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Figure 3.3: Original additively manufactured experimental image (93x93 pixels) versus the
same-size reconstructed images (93x93 pixels) of Ti-7Al. (a) Original image. Reconstructed
images: (b) Type 1 acceptable image of WS 5, (c) Type 2 acceptable image of WS 5, (d)
Eliminated image of WS 5, (e) Type 1 acceptable image of WS 7, (f) Type 2 acceptable
image of WS 7, (g) Eliminated image of WS 7, (h) Type 1 acceptable image of WS 9, (i)
Type 2 acceptable image of WS 9, and (j) Eliminated image of WS 9 [56].
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Figure 3.4: Original experimental forged image (100x100 pixels) versus 1.5x reconstructed
images (150x150 pixels) of Ti-7Al. (a) Original image. Reconstructed images: (b) Type
1 acceptable image of WS 5, (c) Type 2 acceptable image of WS 5, (d) Eliminated image
of WS 5, (e) Type 1 acceptable image of WS 7, (f) Type 2 acceptable image of WS 7, (g)
Eliminated image of WS 7, (h) Type 1 acceptable image of WS 9, (i) Type 2 acceptable
image of WS 9, and (j) Eliminated image of WS 9 [56].



3.1. SYNTHESIZED MICROSTRUCTURES OF MRF 33

Figure 3.5: Original additively manufactured experimental image (93x93 pixels) versus 1.5x
reconstructed images (69x69) of Ti-7Al. (a) Original image from which a 46x46 image is
cut from the center for reconstruction. Reconstructed images: (b) Type 1 acceptable image
of WS 5, (c) Type 2 acceptable image of WS 5, (d) Eliminated image of WS 5, (e) Type 1
acceptable image of WS 7, (f) Type 2 acceptable image of WS 7, (g) Eliminated image of
WS 7, (h) Type 1 acceptable image of WS 9, (i) Type 2 acceptable image of WS 9, and (j)
Eliminated image of WS 9 [56].
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Figure 3.6: Original experimental forged image (100x100 pixels) versus 2x reconstructed im-
ages (178x178) of Ti-7Al (a) Original image from which a 78x78 image is cut. Reconstructed
images: (b) Type 1 acceptable image of WS 5, (c) Type 2 acceptable image of WS 5, (d)
Eliminated image of WS 5, (e) Type 1 acceptable image of WS 7, (f) Type 2 acceptable
image of WS 7, (g) Eliminated image of WS 7, (h) Type 1 acceptable image of WS 9, (i)
Type 2 acceptable image of WS 9, and (j) Eliminated image of WS 9 [56].
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Figure 3.7: Original additively manufactured experimental image (92x92 pixels) from which
a small image of size 46x46 is cut from the center for reconstruction versus 2x reconstructed
images (92x92) of Ti-7Al (a) Original image. Reconstructed images: (b) Type 1 acceptable
image of WS 5, (c) Type 2 acceptable image of WS 5, (d) Eliminated image of WS 5, (e)
Type 1 acceptable image of WS 7, (f) Type 2 acceptable image of WS 7, (g) Eliminated
image of WS 7, (h) Type 1 acceptable image of WS 9, (i) Type 2 acceptable image of WS
9, and (j) Eliminated image of WS 9 [56].
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3.2 Computational time

The computational time of the reconstruction is formulated in Table 3.1. The spread of

the color range reveals that the additively manufactured sample requires less time to be

reconstructed than the forged sample in some of the higher-resolution cases. Table 3.1 shows

the required computational times for each window size, which is normalized by the time

required for the window size 5. As it can be seen from Table 3.1, the average computational

time ratio increases with increasing window size in each resolution case. Hence, window size

9 has the highest computational time. The computational time depends on the image size of

the reconstructed sample. For an image of 100 × 100 resolution, it would take approximately

45 s in a moderate computational platform (such as a desktop computer) for the same size

reconstruction while the higher resolutions (1.5× and 2×) would respectively take 2 and

3 times more without any constraints. Additionally, any constraints on reconstruction as

presented in this work would require slightly more computational time. (See Table 3.1.)

Table 3.1: Computational time [56]

Resolution Window size Total time ratio
Conventional forged Additively manufactured

WS5 1 1
Same size WS7 2.34 2.77

WS9 3.07 4.27
WS5 1 1

1.5x WS7 1.45 1.24
WS9 1.56 1.61
WS5 1 1

2x WS7 1.49 1.89
WS9 3.94 3.66
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3.3 Verification methodology for 2D reconstructed im-

ages

For reconstruction algorithms such as MRF that require only one input image to generate

multiple samples, a methodology needs to be implemented to verify the synthetic data. It

is crucial to statistically validate the synthesized images with respect to the experimental

image. To achieve a high-fidelity and statistically similar representation of the original exper-

imental image, the synthesized samples are assessed according to their global and local level

features. At the global level, the whole microstructure images are compared to each other.

At the local level, individual grains are compared through their shapes and sizes. Moment

invariants are applied for both global and local level comparisons. First, at the global level,

the difference in the largest eigenvalues of the second-order normalized covariance matrix

(Equation 2.7) is used to identify the reconstructed images which resemble the original the

most. Furthermore, a distance parameter (described in Section 3.3.1) measuring the distance

between the centroid of two images is also included at the global level. At the local level,

the grains of the EBSD images are separated. Each grain is quantified through the first Hu

moment and the grain sizes are measured through an equivalent radius parameter.

3.3.1 Global level

The global level involves comparing the topology of the reconstructed microstructure with

the experimental image. Therefore, at the global level, the whole microstructure images of

the experimental and reconstructed samples are compared. In an image, the pixel intensity

ranging from 0−255 for all the three color (RGB) channels is spread in both x and y directions

as a discrete function. Determining the variance of pixel intensities can give the data spread
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in one direction (horizontal spread Σxx or vertical spread Σyy). Here, the data changes in

a 2D space. Therefore, the covariance (Σxy) is also needed to represent the data spread in

the image. The second-order central moment represents the variance and covariance values

of the image. The covariance here defines how pixel intensity is varying in both x and y

directions. The percentage difference (δλ1) between the largest PEM (λ1) quantifying the

experimental (λ1,E) and synthesized images (λ1,S) is used at the global level to verify the

reconstructed samples along with a distance parameter defined in the following equation.

dcr =
√

(ȳS − ȳE)2 + (x̄S − x̄E)2 (3.1)

where S and E represent the synthetic and experimental data, respectively, and dcr shows

the Euclidean distance between the centroid points of the experimental (x̄E & ȳE) and

synthetic (x̄S & ȳS) images. Therefore, dcr is defined as a measure of similarity between

the distributions of pixel intensity values. If the MRF takes the seed image from the center

region, then the reconstructed image would resemble the original more, assuming that the

level of the algorithmic uncertainty would be smaller. However, if the seed image is selected

from the corner of the original image, then the reconstruction begins around the corner and

the resulting synthesized image can look slightly different than the original. Therefore, dcr

can represent how far the seed image is taken from the center. Unlike the PEM, dcr is not

a geometric measure as it depends on the distribution of the pixel intensity. At the global

level, the dcr parameter assists the PEM in filtering the acceptable images from a pool of

synthesized samples. The selected cut-off value for the error percentage (δλ1) and dcr varies

for different images. The cut-off value for δλ1 is set to 3% for the forged sample, and 10%

for the additively manufactured samples. The cut-off value for dcr is set to be 1 for both

cases. All the cut-off values are chosen based on trial and error. The synthesized images

that satisfy the cut-off values are defined as acceptable samples. However, it is important to
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note here that the cut-off values are also affected by the filtering conditions described earlier

in Section 3.1. Therefore, the cut-off values are subjected to change for different types of

microstructural images.

The acceptable images at the global level are further categorized into two types. Type-1

reconstructed samples are the images that satisfy both the global filtering conditions (For

example, δλ1 < 3% & dcr < 1 for the conventionally forged case). Type-2 reconstructed

samples are the images that only satisfy the eigenvalue global filtering condition (For ex-

ample, δλ1 < 3% for the conventionally forged case). For some microstructure images, as

the color density of the microstructure image increases, the uncertainty propagating on the

grain shapes of reconstructed images increases as well. This needs the inclusion of more than

one constraint to filter out noisy images. Examples of Type-1 acceptable images of the same

size reconstruction are presented in Figure 3.2 (b), (e), and (h) for the conventionally forged

and Figure 3.3 (b), (e), and (h) for the additively manufactured samples. Similarly, for the

higher resolution cases (1.5× and 2×), the Type-1 acceptable images are presented in Figure

3.4 - 3.7 (b), (e), and (h). The Type-1 acceptable images are the closest to the original in

terms of the defined global level measures. Hence, these images have the least average Hu

moment error represented by the blue curves in Figures 3.8 - 3.10 for each window size.

Type-2 is defined as the acceptable images satisfying the filtering conditions only for δλ1 .

Therefore, dcr is greater than 1 for the Type-2 acceptable images. Hence, they are not as

close to the original as the Type-1 but still statistically similar to the experimental image

with low levels of uncertainty. The difference between Type-1 and Type-2 can be because the

seed image can be selected from a corner region of the experimental image. To demonstrate

the dissimilarity between the Type-1 and Type-2 images, all the reconstructed images are

quantified by Hu moments and compared to the original image. The difference in the two

types of acceptable images can be observed in the graphical plots of Figure 3.8 (same size)
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and Figure 3.9 - Figure 3.10 (higher resolution) where the average Hu moment errors of the

Type-2 acceptable images are above the curves of the Type-1 acceptable images. Examples of

Type-2 acceptable images are presented in Figure 3.2 and Figure 3.3 (c), (f), and (i). Thus,

together with the δλ1 and dcr, the global parameters help with identifying the acceptable

images from the whole pool of reconstructed samples.

Because of the uncertainty of the experimental images and the algorithmic randomness,

the MRF can also produce images with high uncertainty, as presented in Figure 3.2 - 3.7

(d), (g), and (j) for the same size and higher resolution reconstruction. However, they are

eliminated in this work using global measures. From the graphs of Figures 3.8 - 3.10, it

can be observed that the red curves, which represent the eliminated reconstructed images,

have high uncertainty reflected in the error percentages of the Hu moments. The blue and

black curves again prove that Type-1 has the least error percentage for the Hu moments

with respect to the original image, thereby validating the categorization method based on

the eigenvalues and distance parameters at the global level. The curves in Figures 3.8 - 3.10

also prove that as the order of moment increases, its sensitivity to the change in the pixel

intensity also increases. Thus, the error percentages of the third-order moments (ϕ3 and ϕ4)

in the eliminated samples are much higher.

Table 3.2 shows the percentage of acceptable images among the 100 reconstructed images

for each case. Even though a particular window size may produce more acceptable images in

each category, there are repetitions of the reconstructed images, especially in higher window

sizes of the forged (window size 9) and additively manufactured (window size 7, window size

9) samples. This means more possible solutions can be obtained with the MRF algorithm if

the image has a diverse color range, as observed in the forged alloy. Additionally, all three

window sizes seem to have the ability to produce good results (for example, Type-1 results in

Figures 3.8 - 3.10). Therefore, more parameters are required to decide the optimum window
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Additively manufactured

(a)

(b)

(c)

Forged

(d)

(e)

(f)

Figure 3.8: Average error percentage plots of the same size synthesized images for the ad-
ditively manufactured microstructure with (a) WS 5, (b) WS 7 and (c) WS 9 and for the
forged microstructure with (d) WS 5, (e) WS 7, and (f) WS 9 [56].
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1.5x

(a)

(b)

(c)

2x

(d)

(e)

(f)

Figure 3.9: Average error percentage plots of the forged synthesized images reconstructed at
a scale of 1.5× with (a) WS 5, (b) WS 7 and (c) WS 9 at a scale of 2× with (d) WS 5, (e)
WS 7, and (f) WS 9 with various window sizes [56].
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1.5x

(a)

(b)

(c)

2x

(d)

(e)

(f)

Figure 3.10: Average error percentage plots of the additively manufactured synthesized im-
ages reconstructed at a scale of 1.5× with (a) WS 5, (b) WS 7 and (c) WS 9 at a scale of
2× with (d) WS 5, (e) WS 7, and (f) WS 9 with various window sizes [56].



44 CHAPTER 3. RESULTS AND MODEL VERIFICATION

Table 3.2: Percentage acceptable images of hundred reconstructed samples for forged and
additively manufactured microstructures after global level analysis [56]

Resolution Window size % acceptable (forged) % acceptable (Add. Manuf.)
WS5 72% 83%

Same size WS7 63% 88.68%
WS9 64.86% 85.42%
WS5 63% 67%

1.5x WS7 76% 59%
WS9 64% 59%
WS5 47% 75%

2x WS7 57% 39%
WS9 55% 44%

size for the given image.

The chosen acceptable images at the global level are again compared at the local level where

each grain in the reconstructed image is separated as a single image and compared to the

grains in the experimental image.

3.3.2 Local level

The grain size and shape are two important geometric parameters that form the layout

of the microstructure. Hence, it is crucial to measure and compare these parameters in

reconstructed images with the original. Since the global measures do not capture these,

it is necessary to introduce a local-level analysis of the grains. The images filtered at the

global level will be used at the local level for the grain-by-grain comparison. Every grain in

each filtered synthetic image at the global level is separated into a single image of the same

resolution.

The size and shape of the synthetic grains are to be compared with that of the grains present

in the original image. The grain size is estimated by different methods for the forged and

additively manufactured samples due to the difference in grain structures. For the forged
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Figure 3.11: (a) A synthetic image reconstructed from Figure 3.1 (b) at a scale of 1.5 ×. (b)
Clusters separated from the (a).

sample, the maximum distance between two pixels on the boundary of the grain is estimated

to be the grain size. However, for the additively manufactured sample, the grain shapes

are complex. Ten major colors in the image are identified first and then using the k-means

clustering algorithm, the microstructure image is separated into ten images, where each of

them contains a cluster of grains with one single color. An example of clusters is presented

in Figure 3.11 for a synthetic image reconstructed at a scale of 1.5×. Here, each color

represents the orientation of the grain. This approach can also be viewed as separating the

grains from each other based on their orientations. The number of pixels in each of the ten

images is calculated and an equivalent circle, which contains the same number of pixels, is

generated. The radius of that circle is used as a parameter for studying the size of the grains

in additively manufactured images.

The first Hu moment, ϕ1, is decided to be the measure for the grain-by-grain shape compari-
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son since it is the dominant moment among all seven Hu moments (Equation 2.5) magnitude-

wise. ϕ1 can capture both the shape and orientation of a grain. Unlike previous works [135],

which were focused on comparing the invariant numbers to a particular shape, ϕ1 can be

treated as a single invariant number directly related to a specific grain. Among a set of

grains, ϕ1 can be used to represent the grains of the same shape or a range of ϕ1 values

can be defined to represent the grains of very similar shapes (grain family). This is possible

with only ϕ1 because it does not have a covariance term or any other higher-order complex

moment. ϕ1 is also the sum of the diagonal of the second-order normalized covariance matrix.

In other words, the summation of the normalized variance of the horizontal and vertical

axes captures the shape of the grain. On the other hand, ϕ1 cannot be used as a single local

measure because it does contain information about the dimensions of the grains. Hence, grain

size is also included at the local level comparison. Other Hu moments do not capture the

grain shape as effectively as ϕ1 since they have decreasing order of importance magnitude-

wise. Mathematically, any type of moment without a covariance term can capture the grain

shape. As the Hu moment is invariant to RST transformations, ϕ1 would be the same number

for the same grain shape irrespective of its location, rotation, or scale size.

The pixel intensities in the microstructure maps directly correspond to the orientation of

the grain. When it comes to a small image with only one grain, ϕ1 not only captures the

shape but also the change in pixel intensity. Moreover, moment invariants capture the grain

shapes explicitly and eliminate the need for defining a common geometry for studying the

grain properties in a microstructure map.

Table 3.3 and Table 3.4 summarize the local-level grain-by-grain comparison of the same-size

resolution cases. The average number of grains in all reconstructed cases is not the same as

the original image. This shows that local-level analysis is also necessary. Additionally, the

MRF reconstruction provides higher quality synthesized samples in general for the forged
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microstructure, compared to the additively manufactured microstructure. This is because

of the complex grain features of the additively manufactured material, which are still well

characterized by the MRF and image moments; however, the forged samples are easier to

quantify owing to their grain structure.

It was found at both local and global levels (Table 3.3 and Table 3.4) that the uncertainty is

amplified more as the spatial resolution increases. At the global level, the Type-1 acceptable

images of higher resolution cases are not as close to the original as the Type-1 of the same

size resolution. Additionally, it is observed from Table 3.2 that the percentage of acceptable

images decreases as the resolution increases. At the local level, the percentage change in the

grain shape increases from the same size to the 2× in both forged and additively manufac-

tured samples, as can be seen in Table 3.3 and Table 3.4. However, it is the opposite for the

case of the forged sample at 2× resolution because of different filtering conditions. At the

global level, the Type-1 acceptable images have the lowest average error in both 1.5× and

2×, as shown in Figures 3.8 - 3.10. The grains are repeated several times in higher resolution

reconstruction due to uncertainty. Such repetitions are identified and their sizes and shapes

are averaged at the local-level analysis. In the forged sample, the number of orientations in

high-resolution samples is found to be different than the number of orientations in the same

resolution. The best-performing window size is found to be changing with respect to each

global and local level parameter. Therefore, the window size that performs the best for most

global and local parameters is selected as the optimum window size.

3.3.3 Determination of optimum window size for reconstruction

The performance of reconstruction is significantly affected by the user-defined window size

parameter. The optimum window sizes change for each type of microstructure image. There-



48 CHAPTER 3. RESULTS AND MODEL VERIFICATION

Table 3.3: Local level analysis of forged and additively manufactured samples of same size
resolution [56]

Category Window size Average grain size Average change in grain shape
Original 12.55 -

Forged WS5 12 9.25%
(Same size) WS7 12.5 5.72%

WS9 12.7 6.46%
Original 16.06 -

Add. Manuf WS5 16.04 3.54%
(Same size) WS7 16.1 4.83%

WS9 16.03 2.86%

fore, for the aforementioned 2D to 2D MRF reconstruction for the conventionally forged and

additively manufactured microstructures, the optimum window size is determined based on

multiple factors. The selection of the optimum window size is detailed in Table 3.5. From

Table 3.5, it is clear that for the additively manufactured sample, the window size of 5 is

optimum. Even though in the same size reconstruction, the window size of 7 produces more

acceptable images, and the window size of 5 produces higher quality images at the local

level. For the forged sample, both window size 5 and window size 7 can be selected as the

optimum.

3.4 Verification methodology for 3D reconstructed mi-

crostructures

Based on the concept of moment invariants, a methodology is established for comparing the

2D experimental microstructures and 3D synthetic microstructures. For demonstration, the

3D microstructures reconstructed by Javaheri et al. [100, 101] are used. The computational

reconstruction of two anisotropic microstructures manufactured by two different techniques

is considered. The first one is the additively manufactured 316L stainless steel and the other
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Table 3.4: Local level analysis of forged and additively manufactured sample under higher
resolution reconstructions [56]

Forged Sample

Category Window size Average grain size Average change in grain shape
Original 15.7 -

1.5x WS5 11.9 4.73%
WS7 26 7.29%
WS9 21 6.07%

Original 16.23 -
2x WS5 16.48 5.15%

WS7 17.04 6.88%
WS9 17.18 8.80%

Additively Manufactured Sample

Category Window size Average grain size Average change in grain shape
(original) 12.03 -

1.5x WS5 11.89 7.44%
WS7 11.9 8.74%
WS9 11.8 11.95%

(original) 15.91 -
2x WS5 15.84 10.89%

WS7 15.77 5.81%
WS9 15.67 8.37%
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Table 3.5: Best performing window size at each parameter [56]

Category Resolution Average ϕ1 error % Acceptable Average grain size Grain shape Optimum WS
Same size WS7 WS5 WS7 WS7 WS7

Forged 1.5x WS5 WS7 WS5 WS9 WS5
2x WS7 WS7 WS5 WS5 WS5&7

Same size WS5 WS7 WS5 WS9 WS5
Add Manuf 1.5x WS7 WS5 WS5 WS5 WS5

2x WS5 WS5 WS5 WS9 WS5

one is a rolled aluminum-lithium (Al-Li) alloy sample. Experimental 2D anisotropic images

of both samples are spatially reconstructed in 3D using the MRF algorithm by Javaheri et

al [100, 101]. For more details about the reconstruction procedure, readers can refer to [100,

101]. The present work proposes to use normalized central moments (η) as formulated in

Equation 2.4, as a universal measure to quantify grain shapes in different dimensions. Using

the same metric (η), the distributions of the 2D and 3D grains are compared first. Then, a

demonstration of the box whisker plot is used to compare the shapes and orientations of the

2D and 3D grains in detail.

First, each of the 2D and 3D grains separated from the microstructure is quantified by η in all

three directions. The parameter η is suitable for quantifying grains because it is invariant to

both shape and orientation. Additionally, η can serve as a universal parameter to measure the

grain shapes of different dimensions. Since MRF is developed using a Gaussian-distributed

weight parameter [28], the synthetic microstructure is also expected to produce a texture

with a similar distribution. Evidently, the grains of both materials quantified using the

lognormal transformation of η exhibit a normal distribution as presented in Figures 3.12

and 3.13. Hence, lognormal distributions of the grains are compared in Figure 3.12 and

Figure 3.13 for rolled and additively manufactured samples, respectively. The logarithmic

value of η is negative because the η values are less than 1 due to a large image area. The

distribution curves in Figures 3.12 and 3.13 for both 2D and 3D grains demonstrates the

normal distribution. For both samples (rolled and additively manufactured), as presented
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in Figures 3.12 and 3.13, the distribution of synthetic 3D grains are matching with its

corresponding counterpart directions in the 2D images. Each of the three distribution curves

of the 3D microstructure (Figure 3.12 (b) and Figure 3.13 (b)) is compared to its counterpart

in 2D distributions. The distribution curves are color-coded to compare the directions. The

distribution lines of 2D orthogonal images have different shades to denote the three planes.

For example, ηx of the 3D microstructure representing the normalized variations of all the

3D grains in the x direction is compared to the ηx of 2D grains obtained for the xy and xz

planes i.e, the planes normal to the direction of xy plane (Long direction (L)) and xz plane

(Long Transverse direction (LT)). The distributions of 2D ηx for both xz and xy planes and

the distribution of 3D ηx are found to be comparable (Figures 3.12 and 3.13). A similar

comparison can be made for the ηy and ηz distributions (Figures 3.12 and 3.13). Therefore,

all the grains in the 2D and 3D microstructures are varying proportionally in the three

directions.

Next, the shape and orientation of 2D and 3D grains are compared using the same metric (ηx,

ηy, and ηz). A box whisker plot using the |ln η| values is presented in Figure 3.14 and Figure

3.15 for the rolled and additively manufactured microstructure samples, respectively. The

normalized variances of both 2D and 3D grains quantified by the invariant η are compared

in all three directions. For 2D grains, the normalized variance in a direction is spread out

in two planes. That is, the net ηx value of 2D grain is resolved into the planes normal to

LT (xz-plane) and L (xy-plane) directions. Therefore, three box whisker plots are created

for each sample to individually compare the data. For example, as illustrated in Figure

3.14 and Figure 3.15, the planes normal to the ST (Short Transverse) direction (yz-plane)

contain the information about the spread and skewness of all the 2D and 3D grains in both

y and z directions. The η is the same measure quantifying both shape and orientation

(represented by pixel intensities) of 2D and 3D grains making it advantageous over other
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(a) 2D orthogonal images (b) 3D microstructure

Figure 3.12: Distributions of 2D and 3D microstructures of rolled Al-Li sample [60].

moments. The box whisker plot provides an analysis of the grain shape comparison for each

plane individually, which makes it preferable for the case of anisotropic microstructures.

First, for the rolled sample, the spread of normalized variance in the z direction of 2D

grains in the LT plane (zLT ) is found to be completely within the range of the normalized

variance of 3D grains in the z direction (z3D). Both ηzLT
and ηz,3D have no skewness, thus

agreeing with a normal distribution. The long transverse direction (y) also has the 2D and

3D grains varying commensurate to each other. This can be found in the plots of ηy,ST vs

ηy,3D in the ST plane (Figure 3.14) and ηy,L vs ηy,3D in the L plane (Figure 3.15). The slight

mismatch between the ηy values of 2D and 3D grains in both the ST and L planes for the

aforementioned comparison can be attributed to the large volume of the 3D grains. However,

when it comes to the normalized variance of 2D and 3D grains in the x direction, the spread

of 3D grains is translated slightly away from the range of 2D grains both in the LT and L

planes. The 2D grains varying in the x direction of the LT and L planes and the z direction

of the ST plane are found to be slightly skewed to the left. Their counterpart directions in

the 3D microstructure (ηz and ηx), although not visible in Figure 3.14, do produce a slightly



3.4. VERIFICATION METHODOLOGY FOR 3D RECONSTRUCTED MICROSTRUCTURES 53

(a) 2D orthogonal images (b) 3D microstructure

Figure 3.13: Distributions of 2D and 3D microstructures of additively manufactured 316L
stainless steel sample [60].

left-skewed distribution.

Next, for the additively-manufactured sample, the small boxes for 2D cases in box whisker

plots of Figure 3.15 imply that the shapes of 2D grains are similar to each other. When

compared to 3D, the 2D grains are varying proportionately to the 3D grains in both x and z

directions. The spread and skewness of ηx in xz and xy planes and ηz in yz and xz planes for

both 2D and 3D grains are found to be analogous. On the other hand, the y direction has a

slight anomaly indicating that the reconstruction has provided more similar microstructural

features to the experimental data in x and z directions. The outliers in Figure 3.14 and

Figure 3.15 simply represent the corner grains and grains with unusual shapes compared to

the other 2D and 3D grains. An example of an outlier grain is presented in Figure 3.16.

The synthetic microstructures generated by the MRF algorithm demonstrate features that

are statistically equivalent to the input (experimental) microstructure. Therefore, it becomes

crucial to analyze how much the shape and orientation of synthetic 3D grains are varying

with respect to the 2D grains. The statistical parameters from the distribution data (Figure
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(a) ST plane

(b) LT plane

(c) ST plane

Figure 3.14: Box whisker plot of 2D and 3D microstructures of rolled samples [60].
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(a) X plane

(b) Y plane

(c) Z plane

Figure 3.15: Box whisker plot of 2D and 3D microstructures of additively manufactured
sample [60].
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Figure 3.16: An outlier grain from the experimental zxz data of Figure 3.15. Here, the
orientations of all pixels are very similar. As a result, the clustering algorithm considered
them to be the same grain. [60]

3.12 and Figure 3.13) of both materials are determined and listed in Table 3.6 to understand

the anisotropic nature of the reconstructed microstructure. The parameters describing 3D

grains are compared to 2D grains for each direction. The notation for the 2D grain directions

in Table 3.6 is as follows: directionplane. The mean value can be used to find how much the

3D grains are offset from the 2D grains. The standard deviation and variance measure

how much the 3D grains are varying from the distributions of the 2D grains in a particular

direction. For example, it is worth noting that for the rolled sample, the mean of 3D grains

offsets more from the mean of 2D grains in the x direction compared to the other two. For

the additively manufactured sample, the mean of 3D grains offsets more in the y direction

than the other two, which is analogous to the observation made from the box whisker plot

of the additively manufactured sample. Furthermore, in the case of the rolled sample, it

is observed that the variance of 3D grains in the z direction (L) is close to the variance of

the 2D grains in the z direction of the yz plane (ST) than the z direction of the xz plane

(LT). From this observation, it can be concluded that the reconstruction works better on

the yz plane rather than the xz plane for the rolled sample. The mean and variance values

demonstrate that the algorithm produces 3D features that are statistically more similar to

the experimental orthogonal images in some directions than others. These statistics can
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be better characterized with larger databases of reconstructed samples in the future. The

generation of statistical data can also enable to study the propagation of the algorithmic

uncertainty of the MRF method on synthetic anisotropic microstructures.

Table 3.6: Statistical parameters of 2D and 3D grains quantified by η in all the three
directions [60].

Method Parameter X Y Z
3D Xxz Xxy 3D Yyz Yxy 3D Zyz Zxz

Rolled Mean 9.13848 5.380784 5.976988 8.779185 7.350776 6.743291 7.231071 4.660436 7.197765
Standard deviation 1.242754 1.028651 0.89541 1.228236 1.334567 0.808697 1.164793 1.13509 0.951241

Variance 1.544438 1.058122 0.80176 1.508564 1.78107 0.65399 1.356743 1.288429 0.90486
Additively manufactured Mean 7.595243 6.080227 7.747056 9.357121 6.049683 5.61661 8.402375 7.185405 7.015467

Standard deviation 1.339053 1.051975 0.608671 1.251892 0.811646 0.888308 1.330783 0.795874 0.884797
Variance 1.793062 1.106652 0.370481 1.567235 0.658770 0.789092 1.770984 0.633415 0.782866



Chapter 4

UNCERTAINTY

QUANTIFICATION FOR

MICROSTRUCTURE TOPOLOGY

An outcome of a deterministic model design may not be reliable without considering the un-

certainties. Therefore, to achieve robust results, design under uncertainty has been heeded

as an important research topic in the field of material science and the aerospace industry.

[26, 138]. Experiments and simulations often cause measurement and modeling/paramet-

ric uncertainties, respectively. Because of these uncertainties, a notable deviation in the

performance of aircraft components is observed [139]. Therefore, uncertainty is taken into

consideration during the material design for aircraft turbine components [140, 141]. Aircraft

materials are required to satisfy multiple selection criteria involving mechanical and chem-

ical properties [1]. Hence, designing materials for aircraft components requires performing

rigorous testing to determine the homogenized material properties. The macro-scale prop-

erties of materials such as Young’s modulus or the yield strength are directly affected by

the crystallographic nature of the material at the micro-level. Therefore, the microstructure

topology of the material is studied through EBSD experimental techniques. This work aims

to quantify the effects of the uncertainty of microstructure topology and its propagation

on homogenized material properties. While there are previous studies in the literature that

58



59

modeled the effects of uncertainty of the microstructural texture on the homogenized prop-

erties [142, 143, 144], the effects of the uncertainty on microstructure topology (i.e., the

grain shapes) have not been considered before in the literature, to the best of the author’s

knowledge.

Many state-of-the-art models have been developed in the past for Uncertainty Quantification

(UQ) based on numerical and analytical techniques [42, 115, 142, 145, 146, 147, 148] while

the numerical UQ algorithms pose some challenges. For instance, the Monte Carlo Simula-

tion (MCS) is a computationally expensive method that can be numerically intractable for

quantifying the uncertainty of large 3D microstructure samples [147]. On the other hand,

a Bayesian approach-based UQ model [142] requires a good knowledge in the selection of a

prior distribution and thus is not suitable for representing the randomness arising from mi-

crostructure reconstruction [147]. Models based on advanced techniques such as Deep Neural

Networks have also been developed [149] for UQ while their large data requirements pose

challenges. As an alternative strategy, surrogate models have been developed using proba-

bilistic and non-probabilistic theories [146]. However, the present study explores the effects

of uncertainty on grain shapes and resulting homogenized properties of microstructures by

introducing new moment invariant-based statistical measures.

In this work, the uncertainties arising from the EBSD experimental technique and the re-

construction algorithm are studied and quantified through the concept of moment invariants

as explained in Section 2.3 [57, 58, 59]. First, the source of the uncertainties is identified.

EBSD technique has a long sample preparation process such as mechanical polishing, which

can introduce uncertainty on the RGB pixel intensity values representing the microstructural

orientation information. Mechanical polishing is a method used to create a smooth sample

surface for the EBSD device to map the crystallographic orientation topology with Orienta-

tion Image Mapping (OIM) [47]. Although polishing is not performed for this work, a brief



60 CHAPTER 4. UNCERTAINTY QUANTIFICATION FOR MICROSTRUCTURE TOPOLOGY

explanation of the procedure is provided for understanding the causes of experimental uncer-

tainty. The mechanical polishing procedure starts with coarse grinding the sample surface to

fine grinding on different standardized abrasive papers. Then, the scratchings on the sample

surface that has resulted due to grinding is removed by using slurry solutions. The final

result will be a mirror-like flat surface. Thus, the sample surface has to undergo a series of

long and tedious procedures because the phosphorous screen in the EBSD device requires a

flat and clean polished surface to obtain the crystallographic orientation. However, often the

scratching and deposits of slurry solutions are left over on the sample surface which affects

the information obtained by the EBSD device. This experimental error is reflected on the

microstructure image as incorrect pixel intensity values while scanning the sample surface

with OIM and thus resulting in aleatoric uncertainty. Therefore, during reconstruction, the

erroneous pixel intensity values obtained experimentally are propagated on the synthesized

images.

Another source of uncertainty is the stochastic nature of the MRF algorithm. The presence of

randomness in the reconstruction algorithm introduces uncertainties to the microstructural

features that lead to variations in homogenized properties. The use of probabilities leads

to randomness in the reconstructed microstructural features. In other words, each synthetic

microstructure would look slightly different than one another if the MRF algorithm is run

multiple times using the same input data. This randomness in the microstructural features

as a result of the model uncertainty would lead to variations in the material properties. This

type of uncertainty is called epistemic uncertainty.

Proof of both kinds of uncertainty can be observed in the following demonstration. The ex-

perimental image of Ti-7Al presented in Figure 3.1 (a) is used to reconstruct three synthetic

microstructures spatially at a scale of 1.5× and 2× with window sizes ranging from 5 to 9.

Examples of some of the synthesized microstructures are presented in Figure 4.1. Each of the
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synthesized images is modeled using PRISMS-Plasticity [150, 151] (details explained in Ap-

pendix A) and uniaxial tension simulations are performed on the modeled microstructures to

determine the material properties. The resulting stress-strain curves are presented in Figure

4.2. Using the k-means clustering algorithm, each microstructure image is separated into 15

clusters as presented in Figure 4.3. Each cluster has a collection of grains that has the same

orientation. Then, every single grain from all the clusters is further isolated and quantified

by ω1 and ω2 which are introduced by [135]. ω is a dimensionless moment invariant to dif-

ferent shape transformations [135]. Since this demonstration has been completed prior to

the aforementioned microstructure characterization and verification procedures, PEM is not

used for grain shape quantification. More details are available in [152]. It can be observed

in Table 4.1 and Table 4.2 that when compared to the average ω values of the grains in the

experimental image (7.2277, 98.7023), the synthesized images generated grains that demon-

strate ω values ranging as: ω1 = [6.5291, 7.6292] and ω2 = [91.1067, 101.3621]. These ranges

lead to the variations of -9.67% to +5.56% for ω1 and -7.7% to +2.7% for ω2 compared

to the experimental data. The uncertainty observed in the microstructure also propagates

on the material properties. Compared to the experimental image that demonstrates Young‘s

modulus (E) of 133.7456 GPa and yield strength (σy) of 726.2467 MPa according to the

crystal plasticity simulations, a range of material properties is determined for the synthe-

sized images with different window sizes. The variations in the properties of the synthesized

samples are determined to range from -0.48% to +3.59% for E and from -4.21% to

+2.5% for σy compared to the values obtained with the crystal plasticity simulation of the

experimental microstructure. Evidently, the material properties calculated through Crystal

plasticity (CP) simulations are affected by the changes in the grain topology. Therefore, it

is crucial to develop statistical parameters that would quantify the uncertainty propagating

on the synthesized microstructures.
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Table 4.1: ODF and shape moment invariant values for 1.5x reconstructed images [57]

Window size 5 Window size 7 Window size 9
ω1 ω2 ω1 ω2 ω1 ω2

Image 1 7.6292 101.3621 7.2539 97.3060 7.1019 94.7028
Image 2 7.0504 94.6042 6.5010 97.8937 7.1474 94.3335
Image 3 7.2160 94.9669 7.1773 93.3669 7.0567 97.0908

Table 4.2: ODF and shape moment invariant values for 2x reconstructed images [57]

Window size 5 Window size 7 Window size 9
ω1 ω2 ω1 ω2 ω1 ω2

Image 1 6.6630 91.5392 6.8309 90.6279 6.5291 91.1067
Image 2 6.6869 90.7083 6.7574 92.0010 6.8494 93.3216
Image 3 6.7238 90.5626 6.7342 92.3165 6.8224 93.8803

Figure 4.1: (a) Experimental image of Ti-7Al with resolution 100 × 100, (b) 1.5× recon-
structed image (150× 150) with WS5, (c) 1.5× reconstructed image (150× 150) with WS7,
(d) 1.5× reconstructed image (150×150) with WS9, (e) 2× reconstructed image (200×200)
with WS5, (f) 2× reconstructed image (200 × 200) with WS7; and (g) 2× reconstructed
image (200× 200) with WS9 [57].
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(a) 1.5× reconstructed images (b) 2× reconstructed images

Figure 4.2: Stress-strain curves of reconstructed images compared to the experimental curve
up to 3% strain [57].

Figure 4.3: (a) Original experimental image, (b) Separation of 15 clusters with each cluster
indicating a unique microstructural orientation [57].
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This chapter is organized as follows: Section 4.1 presents the new statistical parameters de-

veloped based on the moment invariants to quantify the epistemic and aleatoric uncertainties

in the microstructural topology. Section 4.2 demonstrates the ability of shape moment in-

variants as a microstructure descriptor when predicting the material properties as a function

of microstructural topology.

4.1 Moment invariant based statistical parameters for

UQ

To study the uncertainty propagation on the synthesized material and resultant the material

properties, microstructure images were reconstructed without any aforementioned filters

discussed in Section 3.1. Two different Ti-7Al microstructure images (Figure 4.4 (a) and

Figure 4.4 (b)) are used to predict the larger scale evolution of microstructures. Using the

MRF method, a total of 1000 images are reconstructed for each image at a scale of 1.5×.

Figure 4.4 (c-d) shows one example selected among 1000 synthesized images. The probability

of finding the optimum pixel intensity value for the synthetic structure is achieved through

the Gaussian distributed weight parameter of the MRF algorithm [28].

The synthesized microstructure texture quantified by the PEM has also yielded a probability

distribution similar to the Gaussian distribution (Figure 4.5). The advantage of MRF’s

resemblance to the Gaussian distribution feature is taken into account for modeling the

uncertainty of material properties. The absolute PEMs are calculated for the whole image

and their values are plotted (Figure 4.6) in a natural logarithmic scale. Figure 4.6 shows

the ln|λ| values of both experimental and synthetic microstructures. Here, the synthetic

data (represented with λs) forms a cluster around the experimental eigenvalue (λe). The
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Table 4.3: Parameters to statistically validate 2D images [58]

R dλ ζ ρa ρp
Forged 0.1187 0.0159 0.0336 2.3579 1.3828
Additively manufactured 0.4348 0.0981 0.1186 5.8036 2.1048

eigenvalues are calculated using Equation 2.8 for any particular image. While λe is constant

for a single experimental image, λs varies within λs1, λs2,...,λsN for the synthetic images

ranging from 1 to N, where N represents the total number of reconstructed samples. The

mean of the eigenvalues for all the synthesized images is also plotted (λ̄s) in Figure 4.6 and it

is found to be in close proximity to the experimental data points λe for both cases. However,

Figure 4.6 is the graphical representation to validate the reconstruction. To study the UQ

problem for the reconstructed microstructures, five different parameters are derived from the

PEM map (Figure 4.6).

Hence, in the present work, the statistical parameters for UQ are defined using the concept

of moment invariants to develop an explicit and computationally efficient model. The devel-

oped statistical parameters can also be applied to the UQ of any reconstruction technique

making this a universal approach. However, a special focus is given to the MRF algorithm.

This is because the MRF method generates multiple unique microstructures using the same

experimental image. Next, uncertainty propagated on the reconstructed microstructures and

material properties are determined using crystal plasticity simulations.

The following five parameters are derived from the PEM-based map illustrated in Figure 4.6

to quantify epistemic and aleatoric uncertainty.

The first parameter is the radius (R) of the enclosed circle that completely covers the cluster

of all synthesized eigenvalue points where the center of the circle is defined as the eigenvalue

of the experimental image (λe). The radius parameter measures the maximum possible

extent of the data spread in the PEM-based map with respect to the experimental value.
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Figure 4.4: Original experimental images of (a) Forged Ti-7Al of size 100x100, (b) Additively
manufactured material of size 93x93, (c) Reconstructed example of the forged Ti-7Al with
size of 150x150, and (d) Reconstructed example of the additively manufactured material
with size of 140x140 [58].
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Figure 4.5: (a)-(b) Standard normal distributions of λ1 for additively manufactured Ti-7Al
microstructure and forged Ti-7Al microstructure (c)-(d) Standard normal distributions of λ2

for additively manufactured Ti-7Al microstructure and forged Ti-7Al microstructure [58].
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(a) Conventionally forged

(b) Additively manufactured

Figure 4.6: PEM-based map for Ti-7Al microstructure [58]
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The second parameter is the average distance (dλ̄), which measures the distance between

the average eigenvalue of all synthesized images (λ̄s) and the eigenvalue of the experimental

image (λe). dλ̄ helps with evaluating the average of the data spread for a given reconstruction

procedure. This is because the PEM of an image as a whole predominantly depends on the

image size and the pixel area, which is the sum of all pixel intensities of all three color

channels (RGB). However, the ratio of the radius over this average distance can distinguish

different images vividly.

dλ̄ = ||λ̄s − λe|| (4.1)

The next parameter, ζ, is the mean of the distances between all the synthesized points with

respect to the experimental eigenvalue. ζ is defined to demonstrate the statistical similarity

of 2D and 3D reconstructed microstructures to the experimental data (where N stands for

the total number of synthesized samples).

ζ =

∑
(||λs − λe||)

N
(4.2)

The last two parameters, ρa and ρp, are the ratios of the area and perimeter of the enclosed

circle to that of a convex hull. The circle covers the maximum area enclosed by the spread of

all λs points. On the other hand, the convex hull is the closure of the smallest area covered

by the spread of all λs points.

ρa =
Area of the enclosed circle

Area of the convex hull (4.3)

ρp =
Perimeter of the enclosed circle

Perimeter of the convex hull (4.4)
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One can use these five parameters to investigate the uncertainty of the reconstructed mi-

crostructures. In this study, the additively manufactured microstructure images are ex-

pected to demonstrate higher variations in microstructural features due to their complex

grain shapes [153]. This hypothesis is also verified using the radius parameter defined above.

However, the high ρa value computed for the additively manufactured microstructures re-

veals that the level of uncertainty associated with each reconstruction is different (Table

4.3). The illustrated values in Table 4.3 calculations show that the synthesized image may

differ significantly from the experimental image due to epistemic and aleatoric uncertainty.

Furthermore, the same set of five statistical parameters for quantifying the uncertainty of 2D

grain topology is extended to the 3D microstructures reconstructed with the MRF algorithm

developed by Javaheri et al [100]. Their MRF technique applies a voxel-by-voxel filling

approach based on matching the neighbor window of a voxel with the 2D image locally in

addition to using a global optimization approach [100]. Therefore, it is important to include

each pixel and voxel value while comparing the 2D and 3D microstructures to understand if

the reconstructed data is statistically equivalent to the input 2D data. The 2D experimental

EBSD image of Ti-7Al manufactured by conventional forging (Figure 3.1 (a)) is used for 3D

reconstruction. More details on the reconstructed 3D synthetic microstructure are available

in [58]. While comparing 2D and 3D samples is more challenging, it is still possible by

using PEM. The eigenvalues for all the plane sections normal to X, Y , and Z directions

are calculated and plotted in the PEM map (Figure 4.7 (a-c)) [58]. The data points of the

3D reconstructed microstructure are found to be located within a range around the original

eigenvalues of the input 2D image in Figure 4.7. This proves that the reconstructed sample

is statistically similar to the input data which can also be observed in Table 4.4.

The histogram of PEM for 1000 synthesized microstructures demonstrates a normal distri-

bution (Figure 4.5) as MRF uses a Gaussian distributed weight parameter to determine the
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(a) X Section

(b) Y Section

(c) Z Section

Figure 4.7: PEM-based map for X, Y , and Z sections of 3D forged Ti-7Al microstructure
[58]
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Table 4.4: Developed Metrics for Statistical Quantification of 3D Microstructure Samples
[58]

Forged Sample X Y Z
R 0.1024 0.1057 0.0905
dλ 0.0303 0.0335 0.0291
ζ 0.0509 0.0453 0.0428
ρa 4.3381 4.2662 2.8814
ρp 1.7343 1.9250 1.6044

probability information. This result is significant since the Gaussian-distributed features can

be used to model uncertainty propagation (on material properties) using Gaussian Process

Regression (GPR).

4.2 Surrogate model of homogenized material proper-

ties

A Gaussian Process is a collection of random variables that agree with a joint Gaussian

probability function [154]. It involves a Bayesian approach where the probability distri-

bution prediction is updated at each iteration until it is converged and assigned as the

final posterior distribution. Gaussian Process Regression (GPR) is a stochastic process that

has applications in optimization [155], supervised machine learning [156], UQ [157], and

multi-fidelity modeling [19]. In the present work, GPR is used to investigate the effects of

microstructural uncertainties by developing a surrogate model representation with the Krig-

ing method. A brief overview of this work is presented in Figure 4.8. The training data is

obtained by the CP simulations that are performed for the synthetic microstructures with

PRISMS-Plasticity [150, 151]. For CP simulations, the microstructure images are modeled

as a single layer made of N2 voxels, where N represents the image dimensions. A 10 × 10

mesh strategy is used on the model to save computational time. The number of voxels is
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Figure 4.8: Flowchart explaining the process implemented for developing the surrogate model
[59]

equal to the number of pixels in the image. This CP model is used to generate training

data of microstructural features quantified by shape moment invariants and corresponding

homogenized properties in a uniaxial tensile test.

The kriging model is widely used in the field of Geology [158]. It consists of a regression of

sample data points followed by a prediction of future outcomes through a correlation function

and has been explored in the past for modeling microstructures [30, 159, 160]. The possibility

of using different combinations of regression models along with the correlation function makes

the kriging method preferable for achieving the objective of predicting material properties as

a function of microstructural topology. With the use of the GPR method, the variance of the

outcomes is automatically predicted in addition to the mean value estimations. Therefore,

it leads to an efficient approach to studying the uncertainty propagation on outputs. In

particular, the kriging method is utilized using the DACE toolbox [161] to build the surrogate
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model of the complex and non-explicit relationship between the shape moment invariants

and material properties (Young’s modulus and yield strength). The hyper-parameters of

the kriging method are found by solving an optimization problem that aims to minimize

the mean squared error computed for all test points by following the approach presented by

Sacks et. al [162]. Here, a polynomial regression of zeroth order is implemented followed by

an exponential correlation function, as defined next.

corr(Xi, Xj) =
∏

e−θjk|Xik,Xjk| (4.5)

where θ is the hyper-parameter of the correlation function obtained with a minimum error

strategy between test points (Xik) and predictions (Xjk) (Equation 4.5).

To train the surrogate model, the results from Section 4.1 are used. To predict the ma-

terial properties two types of surrogate models are developed. One is for conventionally

forged microstructures (Model-1) and the other is for additively manufactured microstruc-

tures (Model-2). Both models use different kinds of shape moment invariants to understand

their ability to predict the homogenized material properties. Model-1 uses ω introduced by

[135] to quantify the microstructural topology and Model-2 uses λ (PEM) developed in this

work. Out of the 1000 reconstructed images of the Ti-7Al microstructures, both models use

70% of the data samples for training and 30% of the data samples for testing. The material

parameters such as Young’s modulus and yield strength values computed by the CP simula-

tions (Appendix A) are used as output, while information on the synthesized microstructure

images (Figure 4.4) collected by the shape moment invariants (ω & λ) are used as input.

Using this collection of data, the surrogate model is trained to predict the material properties

of Ti-7Al microstructures, such as Young’s modulus and yield strength values.

In Figure 4.9 (a)-(b), the GPR predictions of Model-1 for Young’s modulus and yield strength
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(a) (b)

(c) (d)

Figure 4.9: Results for surrogate model-1: (a)-(b) Test Data vs. GPR Prediction for the
expected values of Young’s modulus and yield strength, respectively; (c)-(d) Histograms of
Test Data vs. GPR Predictions for Young’s modulus and yield strength, respectively [59].
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(a) (b)

(c) (d)

Figure 4.10: Results for surrogate model-2:(a)-(b) GPR predictions and test data for Young’s
modulus and yield strength respectively, (c)-(d) Probability distributions of 2D additively
manufactured microstructures for Young’s modulus and yield strength respectively [58].



4.2. SURROGATE MODEL OF HOMOGENIZED MATERIAL PROPERTIES 77

are shown. The predictions appear to be matching the test data with a combined average

error difference of 2.8471 GPa for Young’s modulus (E) and for 18.35 MPa for yield strength

σY . This error accounts for the uncertainty propagated on the homogenized material prop-

erties due to the stochasticity of the microstructure. Also, the CP model prediction for

the experimental microstructure (Figure 4.4 (a)) is found to be 133.7456 GPa for Young’s

modulus and 726.2467 MPa for yield strength. Both values lie within the CP model predic-

tions for the reconstructed microstructures. Furthermore, the GPR predictions capture the

distribution of the actual material properties used as the test points, as can be seen in the

histograms in Figure 4.9 (c-d).

On the other hand, another surrogate model based on GPR is developed for predicting

the material properties of reconstructed samples of additively manufactured microstruc-

tures (Figure 4.4 (d)). Here, the mechanical properties, such as Young’s modulus and yield

strength, are defined as a function of the microstructures represented by the PEM (λ1 and

λ2). The kriging model uses a polynomial regression along with the exponential correlation

function (Equation 4.5) to predict the mechanical properties. The predictions of the sur-

rogate model are illustrated in Figure 4.10. The predictions indicate an average error of

2.1719 GPa and 20.0685 MPa for Young’s modulus and yield strength, respectively. The

similarity between the GPR-predicted outcomes and test data (Figure 4.10 (a) and (b))

implies that the link between the material properties and PEM may agree with an expo-

nential relationship. The probability distributions of the test data and kriging predictions

given in Figure 4.10 (c)-(d) demonstrate a good match. Predictions of both models indicate

that the shape moment invariants that contain the invariant property like the Hu moments

(RST invariants) can represent the microstructure topology when predicting the material

properties. However, compared to other shape moment invariants, PEM has an additional

advantage as it can quantify uncertainties. Therefore, PEM is preferable for UQ in addition
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to representing the microstructural topology.



Chapter 5

MAGNETIC PHASE TRANSITION

This chapter investigates the ferromagnetic-paramagnetic phase transition problem of mag-

netic materials using a numerical formulation derived from the Ising model. The permanent

magnetic property of ferromagnetic material is deemed to be a desired quality in many air-

craft applications. However, the exposure of aircraft components employing ferromagnetic

materials to extreme environments affects the magnetic strength of the material. Therefore,

it is crucial to study the magnetic phase transition phenomenon to achieve a robust design

of aircraft components. In this study, the Ising model-based methodology previously used

for microstructure reconstruction with MRF is extended to model the spin-spin interactions

of magnetic materials.

In a ferromagnetic material, the crystallographic arrangements of the unparalleled electrons

in a uniform direction lead to the formation of small regions called magnetic domains (Figure

5.1 (a)). When an external magnetic field (h) is applied, the ferromagnetic material becomes

a permanent magnet as the magnetic domains get aligned in the directions of the applied

field. Therefore, ferromagnetic materials have a broad array of applications in a variety of

magneto-mechano-electric devices [61]. One of the important applications of ferromagnetic

materials is in aircraft engines as electrical generators due to their strong permanent magnetic

property. However, when ferromagnetic materials are subjected to higher temperatures, they

transform to a different phase where the magnetic spins are randomly aligned leading to a

disorderly state called the paramagnetic phase (Figure 5.1 (b)). The temperature at which

79
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(a) (b)

Figure 5.1: Alignment of magnetic spins in (a) Ferromagnetic and (b) Paramagnetic materials

this transition occurs is called a Curie temperature. Additionally, the interaction between the

external magnetic field and the magnetic spins is also known to influence the phase transition.

However, the experimental measurement uncertainties in the external magnetic field and

temperature (T ) propagating on the magnetization and free energy induce a variation in

the magnetic phase transition. As a result, a range of critical external magnetic fields and

temperatures yields a magnetic phase transition zone. A lack of concrete understanding

of the uncertainty-induced magnetic phase transition zone increases the risk of losing the

permanent magnetic property of ferromagnetic materials. Hence, it is crucial to study the

ferromagnetic-paramagnetic phase transition in order to increase the reliability and design

the magneto-mechano-electrical devices used in the aircraft to perform better.

The modeling of ferromagnetic-paramagnetic phase transition is studied through a lattice

structure developed by Ising [63] in 1924. However, other models have also been developed in

the past for understanding the magnetic phase transition. Notable works include Heisenberg

[163], Potts [164], and Baxter-Wu [165] models. The Heisenberg model differs from the

Ising in its symmetric property. For example, for a particular spin combination, while the

Heisenberg model exhibits global spin rotational symmetry [166], the Ising model has global

spin sign flip symmetry [167]. The Potts model has been extensively studied for phase
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transition and other research problems [164]. Furthermore, the Baxter-Wu model develops

the Ising problem with three spins for a triangle lattice [165]. However, all the aforementioned

models are modified forms of the Ising model. Furthermore, experimental validation exists

for the Ising model prediction of magnetic phase transition for rare earth materials [168, 169,

170]. Therefore, this work uses the Ising model to represent the physical mechanism of the

ferromagnetic-paramagnetic phase transition.

Multiple attempts have been made in the past to address the phase transition problem in

magnetic materials using the Ising model [65, 66, 67, 68, 69, 70, 71, 72, 73]. However, they

usually account only for the nearest neighbor interactions either in the presence [68, 69, 70,

71, 72, 73] or in the absence of an external magnetic field [74, 65, 66]. Furthermore, the

long-range interactions in the Ising model have also been studied but without the external

magnetic field [75, 76]. For instance, Hiley et al. [75] derived some general properties of the

Ising model with long-range interactions for the disordered state with a zero field. Moreover,

Siegert et al. [76] obtained the free energy per spin of the Ising model including long-range

interactions but in the absence of the external magnetic field. To address the challenges in

the literature, this work presents a novel numerical approach using optimization techniques

to study the magnetic phase transition by including the effects of the external magnetic field

and long-range interactions between magnetic spins [171]. This objective is accomplished by

developing a 2D Ising model that accommodates the long-range interactions among magnetic

spins and the external magnetic field.

This chapter is outlined as follows: Section 5.1 describes the developed 2D Ising model

accounting for the long-range interactions of magnetic spins and the external magnetic field.

Section 5.2 presents the solution obtained for magnetic phase transition using mean-field

theory.
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5.1 2D Ising model for phase transition

The structure of the 2D Ising model developed for magnetic phase transition follows the same

procedure as described in Section 2.1. Accordingly, the lattice points of the Ising model are

modeled to represent the magnetic spins of the material. The Hamiltonian energy for any

given Ising model considering the effects of the external magnetic field is defined as [172]:

H = −ωjΣ<i,j>σiσj − hΣiσi (5.1)

where h is the external field parameter and σ is the spin parameter. The spin values of

a particular node (i) and its corresponding neighbors (j = 1, 2, ..., N where N is the total

number of neighbors) are denoted by σi and σj, respectively. The magnetic spin has only

two possible states namely the up spin (σi = +1) and the down spin (σi = −1). The product

of σi and σj represents the interactions between the spins including the long-range spins.

The ωj parameter in Equation 5.1 is defined as a weight parameter for the corresponding

level of neighboring information to be used in the Hamiltonian energy expression. The state

of any spin is driven by both nearest-neighbor and long-range order interactions. How-

ever, the nearest-neighbor spins are more decisive than the far-away spins. Therefore, the

weight parameter, ωj, will be defined for each spin to ensure that nearby neighbors would

be more influential than the long-range neighbors to determine the magnetic state of that

spin. The following constraint (Equation 5.2) will be defined to acknowledge that the effects

of neighboring spins will descend as the order of correlation increases:

ωn < ωn−1 < ωn−2 < .... < ω3 < ω2 < ω1 (5.2)

where n is the maximum order of interactions considered in the Ising model. For example,
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Figure 5.2: 2D Ising model with high-order interactions for (a) WS 1, (b) WS 2 for the
center node, and c) WS 2 for a corner node [171].

ω1 and ω2 will be used for the nearest-neighbor and the second nearest-neighbor interac-

tions, respectively. The interactions between the magnetic spins are quantified through the

weightage parameter (ω) assigned in a square window. For example, the ω value remains

constant for all spins along the perimeter of the window but it changes in an arithmetic

sequence as the window size increases. In Figure 5.2, an example of how this window size

parameter changes for the spins at the center and corner can be seen. In addition, as de-

scribed in Equation 5.3, ω values are Gaussian distributed and normalized with respect to

the total sum. In this study, the determination of spin states will be accomplished using

this methodology.

ω =
ω1∑n
i=1 ωi

,
ω2∑n
i=1 ωi

, .....,
ωn∑n
i=1 ωi

(5.3)

In the next section, the developed Ising model accounting for the long-range interactions is

used to determine if they are equipped to represent the magnetic phase transition by finding

the minimum free energy using mean-field theory.
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5.2 Mean field theory

Finding an exact solution to the Ising problem is computationally expensive. Because for any

given model of size N , the number of spin combinations is 2N . However, with Mean Field

Theory (MFT), it is possible to derive an approximate solution by finding the minimum free

energy. MFT is a well-known approach in physics that provides a good approximation to

the exact solutions if the number of dimensions is adequately large. It is the most widely

used estimation technique for simulating interacting systems [172]. However, the mean-field

solutions are still built upon some assumptions regarding the correlations between the inter-

acting spins. In the past, while determining the system’s free energy, either the covariance

relation between the spins in the long-range [172, 173, 174] or the external magnetic field [75,

76] is neglected due to the computational complexities and costs. Therefore, the mean-field

solution will be extended in this study by eliminating the fundamental assumptions made

on magnetic spin interactions. With the mean-field approach, the free energy of system F

is expressed in terms of the Hamiltonian of the 2D lattice, as given in Equation 5.4:

exp(−βF ) = Σσexp(−βH),where, β =
1

kBT
(5.4)

where β is the critical exponent defined in terms of the temperature (T ) and Boltzmann

constant (kB). According to Equation 5.4, the free energy will increase with the increase

in the number of sites N . Hence, to avoid the effects of the finite volume size, the free

energy density per site (f) is defined as the free energy divided by the number of sites. The

magnetization (m) of the system is related to the first derivative of the free energy density

with respect to the external magnetic field, such that m = −∂f/∂h.

The instability in the magnetic phase transition under the combined effects of the external

magnetic field and the temperature is mathematically identified by considering the following
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cases:

1) When T < Tc, the material is ferromagnetic. Upon applying the external magnetic field,

all spins tend to align in the direction of the applied field. However, the state of spins (up

or down) can be mathematically determined by analyzing the first-order derivative of the

free energy with respect to the external magnetic field (∂f(h,T )
∂h

). When the direction of the

applied field is changed, there is a sudden jump in the magnetization of the system as h

passes through zero. Due to the sudden jump in the system’s magnetization value between

M < 0 and M > 0, a discontinuity occurs at h = 0. Therefore, the first-order derivative of

the free energy with respect to the external magnetic field diverges indicating that transition

as a function of the external magnetic field is a first-order transition problem. Evidently,

the first-order transition is observed to occur for a range of temperature values less than Tc

[173]. Therefore, when the external magnetic field reaches critical values (hc), a discontinuity

occurring at a single critical location leads to the first-order transition of the magnetic spin

state. The first-order derivative is defined as:

∂f(h, T )

∂h
= lim

h→hc

f(hc, T )− f(h, T )

hc − h
→ ∞ (5.5)

2) At T = Tc, the thermal energy from the heat source is more than the interaction en-

ergy between the magnetic spins of the system leading to the phase transition from the

ferromagnetic state to the paramagnetic state. In this case, the first-order derivatives re-

main continuous. However, a discontinuity occurs in the second-order derivatives of the

free energy with respect to the external magnetic field and the temperature. Therefore, the

following assumption is made. The second-order derivatives of free energy with respect to

the external magnetic field and temperature diverge (approach infinity). Consequently, the

magnetic phase transition is theoretically identified by solving the following optimization
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problem:

min f(h, T )

subject to: ∂2f(h, T )

∂h2
|T=Tc → ∞ and ∂2f(h, T )

∂T 2
|T=Tc → ∞ (5.6)

The spin state is identified based on the free energy of the system, which is a function of the

external magnetic field and temperature. When an external magnetic field is applied, the

system tends to be in the minimum free energy state. Therefore, the Ising model developed

to represent magnetic phase transition accounting for long-range interactions is tested by

solving the aforementioned optimization problem in Equation 5.6 to find the minimum free

energy. However, the constraints are removed for simplification purposes. For a constant

h = 0.01 and kBT = 0.5, the minimum free energy (Equation 5.4) per number of sites without

any constraints is obtained using a genetic algorithm. To verify the optimum solution, an

exhaustive search is performed by computing the free energy of all possible combinations

for models with dimensions of 2 × 2, 3 × 3, and 4 × 4, as presented in Figure 5.3. Details

about the exhaustive solutions for 3× 3 and 4× 4 domains are displayed in Figure 5.4. The

optimized solutions precisely match the exhaustive solutions. Therefore, it can be concluded

that the newly introduced ω parameter successfully captures the long-range interactions of

magnetic spins during the phase transition. Since the total number of possible combinations

for the 4 × 4 model is 216, determining the exhaustive solutions for domains larger than

4× 4 is computationally impractical. When a positive external magnetic field is introduced,

the optimization problem finds a solution in which a model with all positive spins produces

the minimum free energy per number of sites. Similarly, when a negative field is applied,

the model with all negative spins produces the minimum free energy. This is because the
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Figure 5.3: Free energy solutions obtained by both exhaustive search and optimization for a
2D Ising model with dimensions 2× 2, 3× 3, and 4× 4 when h = 0.01 and kBT = 0.5 [171].

application of an external magnetic field causes a change in the magnetization of each grain

of a polycrystalline microstructure and the spins tend to align in the direction of the external

magnetic field.
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Figure 5.4: Minimum free energy obtained by optimization along with the free energy solu-
tions obtained by exhaustive search for all possible combinations of a 2D Ising model with
dimensions 3× 3 and 4× 4 when h = 0.01 and kBT = 0.5 [171].



Chapter 6

CONCLUSIONS AND FUTURE

WORK

6.1 Conclusions

This work investigates the multi-scale modeling of Ti-7Al by computationally quantifying

and characterizing its microstructural features through the concept of moment invariants.

Thus, the presented formulation determines the homogenized material properties as a func-

tion of grain topology. A significant data reduction is achieved by quantitatively characteriz-

ing the grain topology of Ti-7Al microstructures using PEM. Moreover, the experimental and

algorithmic uncertainties propagating on the synthetic microstructures and material prop-

erties are quantified through statistical parameters developed based on PEM. Altogether,

the findings of the presented research work contribute to the state-of-the-art computational

techniques that are used to study the material behavior of Ti-7Al for potential use in many

aerospace components. Furthermore, the presented techniques are also designed to be uni-

versally applicable to any kind of microstructural topology (e.g., composites, ceramics, etc).

Computational reconstruction of microstructure images alleviates the burden of laborious

and tedious experimental methodologies. Therefore, the forged and additively manufactured

Ti-7Al alloy experimental images [38] are spatially reconstructed into large domains with

the MRF algorithm at different resolutions using different window sizes (Section 3.1). After
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reconstruction, the 2D synthesized samples are compared with the experimental data at two

levels (Section 3.3). At the global level, the whole microstructure images are quantified and

compared through PEM and dcr (Section 3.3.1). At the local level, the grain shapes and sizes

of synthetic and experimental images are compared through Hu moments and an equivalent

radius parameter (Section 3.3.2).

The 3D synthesized microstructures of Al-Li and 316L stainless steel alloys generated with

the MRF algorithm by Refs. [100, 101] are verified by statistically comparing them to the

experimental 2D orthogonal images (Section 3.4). To compare the 2D and 3D grains, the

normalized central moments (η) that are invariant to shape transformations are proposed as

a universal metric. The 3D synthetic microstructures are compared to the experimental im-

ages in three planes normal to the X, Y , and Z directions (Figure 3.12 and Figure 3.13). The

distributions of 2D and 3D grain shapes quantified by η are found to be similar. The grain

topologies are compared in each direction through a box whisker plot (Figure 3.14 and Figure

3.15). Statistical measures derived from the distributions of grain shapes quantified by η

(Table 3.6) are used to understand the anisotropic features of the reconstructed microstruc-

tures. By developing measures for the computational characterization of microstructures,

this work addresses the gap in the mathematical quantification of microstructural topol-

ogy. The ubiquitous two-step verification methodology for synthetic microstructures and

the newly introduced PEM aid the computational techniques in the MCR research field to

analyze any type of microstructures. As a result, the developed methods can be applied to

complex microstructures such as the ones originating from additively manufactured materi-

als.

Furthermore, this work also addresses the quantification of epistemic and aleatoric un-

certainty of microstructural topology and their propagation on the homogenized material

properties. To quantify the uncertainty of microstructural features and homogenized prop-
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erties arising from the computational reconstruction of the synthetic samples, a graphical

map and five novel statistical parameters have been developed based on the PEM (Figure

4.6). Surrogate models are developed for predicting the homogenized material properties of

polycrystalline microstructures as a function of crystallographic texture and grain topology

using GPR. In order to generate sufficient statistical data, synthetic microstructures are

reconstructed from the experimental images of Ti-7Al alloy using the MRF approach. The

input microstructure data is characterized with shape moment invariants by quantifying the

reconstructed samples of the microstructure. Next, the homogenized material properties

such as Young‘s modulus and yield strength values of the reconstructed microstructures are

determined with crystal plasticity simulations (Appendix A) and utilized for training and

test data. The performance of the surrogate model in predicting the homogenized material

properties is analyzed using ω (Figure 4.9) and λ (Figure 4.10). The developed methodolo-

gies for validation, uncertainty quantification, and material property prediction are eligible

to be universally applied to any kind of material or reconstruction methodology.

Additionally, this work addresses the ferromagnetic-paramagnetic phase transition by devel-

oping a 2D Ising model that considers the long-range spin interactions in the presence of

external magnetic fields (Section 5.1). An optimization solution is obtained to identify the

spin combinations and critical external magnetic field that cause phase transition to occur

(Section 5.2). Furthermore, the optimization solution is verified with exhaustive solutions

for small domain sizes (Figure 5.3).

6.2 Future work

1) In Tribology: The present work on microstructure characterization and reconstruction

(MCR) has already been extended to a tribology problem where surface maps of Inconel 718
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(a) Experimental image
(100× 100)

(b) Reconstructed image
(100× 100).

Figure 6.1: Reconstruction of Inconel-718 surface topology using MRF. Experimental image:
Courtesy of Prof. Bart Raeymaekers

have been reconstructed using MRF and synthetic images are verified by the PEM [175] to

reduce the experimental cost and time. An example of the preliminary work is presented in

Figure 6.1. Additionally, the PEM is also being used in ongoing work to classify the different

surface maps. Furthermore, the PEM has a potential application as a shape descriptor for

wear particles [176].

2) In Fracture Mechanics: The extension of the presented research on MCR has potential

applications in the field of fracture mechanics, which has advanced in recent years through

the use of machine learning techniques [177]. However, the advancements still lack thorough

validation procedures to verify the synthetic structures. Therefore, by applying the shape

quantification techniques (Section 3.4) that have been developed in the presented work, it is

possible to validate and improve the quality of the 3D reconstruction of crack propagation.

The uncertainty associated with the reconstruction methods used for the crack prediction

models is not well-researched [177]. Therefore, the statistical parameters developed in the

present work for quantifying the uncertainty of the microstructural topology [58] can be

extended to the 3D crack propagation problems.
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3) In Additive Manufacturing: The complexity of the microstructure and the manu-

facturing cost are some of the obstructions in producing additively manufactured materials.

However, by computationally reconstructing the additively manufactured microstructure im-

ages, it is possible to reduce the experimental cost and time. With the latest developments

in the 3D reconstruction of additively manufactured materials [101], it is possible to train

a neural network-based surrogate model to extensively study the shapes of 3D grains and

quantify them with PEM. With the improved knowledge of various complex grain topologies

of additively manufactured microstructures, it is plausible to solve the inverse problem of

determining the manufacturing parameters that would need to be set for producing a sample

with desired material properties. Solving the inverse problem will help with automating and

speeding up the production process.
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Appendix A

Crystal Plasticity Simulations

The open-source Crystal Plasticity Finite Element (CPFE) software, PRISMS-Plasticity

[150, 151], developed by the University of Michigan, is utilized for carrying out CPFE simu-

lations to determine mechanical properties. The PRISMS-Plasticity is a 3D CPFE software

that involves the rate-independent crystal plasticity model coupled with a twin activation

mechanism. Therefore, it can model both slip and twin system behaviors for Ti-7Al. Because

of the ability to model the twin deformation, the PRISMS-Plasticity model is expected to

achieve a high-fidelity representation of the local deformation behavior. The constitutive

model of each grain in the PRISMS-CPFE software is modeled through a rate-independent

single crystal plasticity theory developed by [178] where the hardening moduli (hβ for the

slip system β) is expressed as:

hαβ = hβ
o q

[
1− sβ

sβs

]aβ
(A.1)

where ho and ss represent the hardening parameter and slip resistance at the hardening

saturation, respectively, a is a material constant, and q represents the latent hardening ratio

[150].

The Ti-7Al alloy has an HCP crystallographic structure with the basal < a >, prismatic

< a >, pyramidal < a >, and pyramidal < c + a > slip systems in addition to the six

twinning systems. However, the twinning activity during the tension test is found to be
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Table A.1: Elastic parameters of Ti-7Al in GPa [179]

C11 C12 C13 C33 C44

175 88.7 62.3 220 62.2

negligible for Ti-7Al alloy [179]. The independent elastic parameters of Ti-7Al used for the

simulations are listed in Table A.1 [179]. The dependent elastic parameters are formulated

as follows: C22 = C11, C23 = C13, C55 = C44, and C66 = (C11 − C12)/2. The microstructure

image of N×N resolution is modeled as voxels of the same dimensions resulting in N2 voxels.

A 10× 10 coarse meshing strategy is used on the model to achieve computational efficiency.

Each pixel of the actual image is represented by a single voxel in the CPFE model. The

slip system parameters used in the crystal plasticity simulation are obtained from a previous

study [180]. The initial texture is assumed to represent variations around a randomly-

oriented microstructure. Uniaxial tension simulations are performed for the microstructural

images and mechanical properties are determined from the resulting stress-strain curves [57,

59, 58].
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