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Detection of Denial of Service Attacks on the Open Radio Access
Network Intelligent Controller through the E2 Interface

Vikas Krishnan Radhakrishnan

(ABSTRACT)

Open Radio Access Networks (Open RANs) enable flexible cellular network deployments

by adopting open-source software and white-box hardware to build reference architectures

customizable to innovative target use cases. The Open Radio Access Network (O-RAN) Al-

liance defines specifications introducing new Radio Access Network (RAN) Intelligent Con-

troller (RIC) functions that leverage open interfaces between disaggregated RAN elements

to provide precise RAN control and monitoring capabilities using applications called xApps

and rApps. Multiple xApps targeting novel use cases have been developed by the O-RAN

Software Community (OSC) and incubated on the Near-Real-Time RIC (Near-RT RIC)

platform. However, the Near-RT RIC has, so far, been demonstrated to support only a

single xApp capable of controlling the RAN elements. This work studies the scalability of

the OSC Near-RT RIC to support simultaneous control signaling by multiple xApps tar-

geting the RAN element. We particularly analyze its internal message routing mechanism

and experimentally expose the design limitations of the OSC Near-RT RIC in supporting

simultaneous xApp control. To this end, we extend an existing open-source RAN slicing

xApp and prototype a slice-aware User Equipment (UE) admission control xApp imple-

menting the RAN Control E2 Service Model (E2SM) to demonstrate a multi-xApp control

signaling use case and assess the control routing capability of the Near-RT RIC through an

end-to-end O-RAN experiment using the OSC Near-RT RIC platform and an open-source

Software Defined Radio (SDR) stack. We also propose and implement a tag-based message



routing strategy for disambiguating multiple xApps to enable simultaneous xApp control.

Our experimental results prove that our routing strategy ensures 100% delivery of control

messages between multiple xApps and E2 Nodes while guaranteeing control scalability and

xApp non-repudiation. Using the improved Near-RT RIC platform, we assess the security

posture and resiliency of the OSC Near-RT RIC in the event of volumetric application layer

Denial of Service (DoS) attacks exploiting the E2 interface and the E2 Application Proto-

col (E2AP). We design a DoS attack agent capable of orchestrating a signaling storm attack

and a high-intensity resource exhaustion DoS attack on the Near-RT RIC platform compo-

nents. Additionally, we develop a latency monitoring xApp solution to detect application

layer signaling storm attacks. The experimental results indicate that signaling storm attacks

targeting the E2 Terminator on the Near-RT RIC cause control loop violations over the E2

interface affecting service delivery and optimization for benign E2 Nodes. We also observe

that a high-intensity E2 Setup DoS attack results in unbridled memory resource consump-

tion leading to service interruption and application crash. Our results also show that the

E2 interface at the Near-RT RIC is vulnerable to volumetric application layer DoS attacks,

and robust monitoring, load-balancing, and DoS mitigation strategies must be incorporated

to guarantee resiliency and high reliability of the Near-RT RIC.
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Vikas Krishnan Radhakrishnan

(GENERAL AUDIENCE ABSTRACT)

Telecommunication networks need sophisticated controllers to support novel use cases and

applications. Cellular base stations can be managed and optimized for better user expe-

rience through an intelligent radio controller called the Near-Real-Time Radio Access Net-

work (RAN) Intelligent Controller (RIC) (Near-RT RIC), defined by the Open Radio Access

Network (O-RAN) Alliance. This controller supports simultaneous connections to multiple

base stations through the E2 interface and allows simple radio applications called xApps to

control the behavior of those base stations. In this research work, we study the performance

and behavior of the Near-RT RIC when a malicious or compromised base station tries to

overwhelm the controller through a Denial of Service (DoS) attack. We develop a solution

to determine the application layer communication delay between the controller and the base

station to detect potential attacks trying to compromise the functionality and availability

of the controller. To implement this solution, we also upgrade the controller to support

multiple radio applications to interact and control one or more base stations simultaneously.

Through the developed solution, we prove that the O-RAN Software Community (OSC)

Near-RT RIC is highly vulnerable to DoS attacks from malicious base stations targeting the

controller over the E2 interface.
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Chapter 1

Introduction

1.1 Research Motivation

Open Radio Access Network (Open RAN) is an industry initiative for ensuring interop-

erability between disaggregated elements of the Radio Access Network (RAN) using open

interfaces. The Open Radio Access Network (O-RAN) Alliance defines specifications to

standardize these open interfaces and enable intelligent RAN control [1]. The O-RAN Soft-

ware Community (OSC) develops open-source O-RAN software for the RAN Intelligent

Controllers (RICs) following the reference archtitecture specified by the O-RAN Alliance

[2]. The RIC platform allows custom applications to control the RAN. Given the increasing

industry interest in rolling out O-RAN-compliant fifth generation (5G) mobile networks for

civilian and military use cases, it is crucial to assess and guarantee the security posture and

controllability of the RIC. It is also important to ensure that the RIC platform is scalable

enough to support multiple applications targeting wide-ranging use cases.

1.2 Research Objectives

This thesis seeks to investigate the OSC Near-Real-Time RIC (Near-RT RIC) for compliance

with the O-RAN specifications. It also aims to profile the scalability of the Near-RT RIC

platform to support simultaneous RAN control applications. This thesis also proposes a

1



2 CHAPTER 1. INTRODUCTION

method to measure the control-loop latency of messages between the Near-RT RIC and the

RAN. Finally, it evaluates the control loop signaling performance of the Near-RT RIC during

a volumetric application layer Denial of Service (DoS) attack from a malicious RAN element.

This thesis emphasizes real-time research experiments conducted on an end-to-end O-RAN

deployment implemented on the Commonwealth Cyber Initiative (CCI) xG testbed [3], a

Software Defined Radio (SDR)-based O-RAN-compliant experimental research testbed.

1.3 Research Contributions

We make the following contributions as part of this thesis:

• Contribution 1: We demonstrate, for the first time, the shortcomings in the design of

the current reference implementation of the open-source Near-RT RIC from the OSC

that restrict it from supporting simultaneous RAN control workflows through multiple

xApps.

• Contribution 2: We semantically describe an Information Element (IE) named RIC

Requestor ID defined in the O-RAN E2 Application Protocol (E2AP) specification [4]

and extend it to propose a robust message-routing mechanism that enables simultane-

ous control messaging support for multiple xApps.

• Contribution 3: We enhance an existing open-source RAN slicing xApp, and proto-

type a new Slice-aware Admission Control (SAC) xApp to study an O-RAN use case

with multiple xApps to enable control scalability for the Near-RT RIC platform.

• Contribution 4: We develop a Latency Monitoring xApp to monitor the control-loop

signaling latency between the Near-RT RIC and the RAN.
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• Contribution 5: We design a multi-threaded E2 Node simulator capable of orches-

trating a resource exhaustion DoS attack and launching a signaling storm using RIC

Indications over the E2 interface.

• Contribution 6: We assess the resiliency of the Near-RT RIC platform in the event

of a volumetric application layer DoS attack via the E2 interface.

In addition to the above contributions, this thesis also reports on the following related

extensions of research work:

• Contribution 7: Development of an Artificial Intelligence (AI)/Machine Learn-

ing (ML)-based end-to-end O-RAN workflow for policy-based RAN slicing that was

demonstrated at the Mobile World Congress 2022.

• Contribution 8: Design of a RIC orchestration solution to optimize the placement of

disaggregated RIC platform components for minimal control-loop execution latency.

1.4 Related Work

Research on enabling software-defined control of the RAN is reported in [5, 6, 7]. Within

an O-RAN-compliant network architecture, most research work revolve around demonstrat-

ing RAN control using simulated RAN [8, 9, 10] without leveraging open-source software

radio stacks to realize RAN control through the Near-RT RIC as demonstrated in [11]. Re-

siliency in O-RAN functions is studied in [12], however, it mainly targets fault tolerance for

xApps deployed on the Near-RT RIC and not the Near-RT RIC platform itself. Furthermore,

O-RAN specifications concerning the security of the Near-RT RIC have been mostly focused

on mitigating threats from malicious xApps and compromised ML data pipelines from the
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Non-Real-Time RIC (Non-RT RIC) or the Service Management and Orchestration (SMO)

entity [13, 14, 15, 16, 17]. Also, security agencies stress the necessity to secure all O-RAN

components and functions [18, 19]. However, E2 interface resiliency and security during

interactions between multiple xApps and external E2 Nodes are still largely open questions.

1.5 Thesis Outline

This thesis is organized into nine chapters. Chapter 2 describes the Near-RT RIC archi-

tecture, and details the components and messaging sequences involved in the E2 inter-

face. Chapter 3 illustrates an O-RAN use case requiring RAN control through multiple

xApps and experimentally exposes the inability of the OSC Near-RT RIC to simultaneously

support multiple xApps for RAN control. Chapter 4 analyzes the internal message rout-

ing mechanism for low-latency communications within the Near-RT RIC and expands upon

end-to-end subscription and control message routing to ascertain the message routing lim-

itation within the Near-RT RIC. Chapter 5 explains the implementation of the improved

routing mechanism with experimental results validating multi-xApp RAN control scalabil-

ity for the Near-RT RIC. Chapter 6 discusses the security aspects and the resiliency of

the OSC Near-RT RIC platform and outlines the types of DoS attacks that can target the

Near-RT RIC along with a potential latency monitoring solution leveraging the messaging

routing mechanism demonstrated in Chapter 5. Chapter 7 elucidates the end-to-end experi-

mental setup for orchestrating volumetric DoS attacks and explains each component involved

in the attack. Chapter 8 reports the results concerning the performance of the Near-RT RIC

and the E2 interface during normal operation, signaling storm attack conditions, and a high-

intensity volumetric application layer DoS attack. Chapter 9 concludes the thesis with a

summary of the research contributions and results, and outlines the scope for future work.



Chapter 2

Near-RT RIC and E2 Interface

Communication

This chapter lays the foundation for the contributions 1, 2, 3, 4, 5, and 6 and serves

as a guide for the work realized in Chapters 3 through 8. In this chapter, we describe

the platform components within the Near-RT RIC per the O-RAN specifications and the

open-source reference software implementation from OSC. We also explore the lifecycle

management of an xApp and understand the relevant procedures and messages involved in

establishing a successful end-to-end connection between the xApp and the RAN. In O-RAN

parlance, the RAN element is usually denoted as an E2 Node; in this document, these terms

are interchangeable.

2.1 Near-RT RIC Platform

The Near-RT RIC is a conglomeration of multiple platform components providing key ser-

vices to the infrastructure as a whole. Figure 2.1 shows the internal architecture of the

OSC Near-RT RIC platform. The platform is managed as a Kubernetes cluster hosting sev-

eral Near-RT RIC platform components deployed as microservices in a particular namespace

within the cluster. These components coordinate with one another to facilitate service de-

livery through external interfaces (e.g., O1, A1, and E2) [2]. The E2 interface is a logical

5



6 CHAPTER 2. NEAR-RT RIC AND E2 INTERFACE COMMUNICATION

network interface that allows southbound E2 Nodes to connect to the Near-RT RIC and ex-

pose externally-controllable RAN functions within the platform. These RAN functions can

be utilized by one or more authorized xApps to modify specific RAN behavior [20]. The main

Near-RT RIC platform components involved in enabling end-to-end network communication

between an xApp and an E2 Node include:

A1   Interface


Shared Data Layer (SDL)

O1 Mediator

(NETCONF)


O1   Interface


E2   Interface


E2 Terminator

(SCTP)


RMR

E2 Manager


R
M

R

RMR

xApp
Manager


A1 Mediator

(HTTP)


R
M

R

Subscription
Manager


R
M

R

R
M

R Routing

Manager


RMR

RMR

Security


AI/ML

Support


Mgmt.

Services


DB (R-NIB & UE-NIB)

xApps

xApp1

RMR

xAppn

RMR

xApp2
RMR

...

Figure 2.1: OSC Near-RT RIC architecture.
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2.1.1 Routing Manager

The Routing Manager facilitates inter-platform messaging within the Near-RT RIC. It gen-

erates and distributes routing policies to all other platform components and any deployed

xApps. These routing policies are used by the internal messaging infrastructure, called the

RIC Message Router (RMR), to determine the correct messaging endpoint.

2.1.2 RMR

The RMR is not a monolithic platform component; instead, it is a messaging library incor-

porated by all platform components on the OSC Near-RT RIC, and functions as a message

bus within the platform. This lightweight library is implemented atop Socket Interface-95

(SI95), which is reportedly more performant than the commonly-used Google Remote Proce-

dure Call (gRPC) library [21]. The RMR sets up the sender and receiver message endpoints

at predefined ports on the platform components and xApps that are deployed in the OSC

Near-RT RIC. We explore the RMR and the Routing Manager in more detail in Chapter 4.

2.1.3 E2 Terminator

The E2 Terminator acts as the gateway for all E2 Nodes to access Near-RT RIC functions

and services over the E2 interface. It is configured to listen for incoming E2 setup connections

from E2 Nodes over a Stream Control Transmission Protocol (SCTP) connection. During

E2 interface setup, the E2 Terminator records identifying information of the E2 Node in the

platform database so that the Routing Manager can set up routing policies for RMR messages

to reach this E2 Node. The E2 Terminator maintains E2 interface connectivity between the

Near-RT RIC and one or more E2 Nodes and routes messages between them. It uses Abstract
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Syntax Notation One (ASN.1) messaging for decoding and encoding E2AP messages from

and to the E2 Nodes, respectively, over the E2 interface. For internal messaging within the

Near-RT RIC, the RMR library is used to route ASN.1-decoded messages to the receiver

endpoint based on the routes advertised by the Routing Manager.

2.1.4 E2 Manager

The E2 Manager functions as a means to a scalable architecture for managing multiple E2

Terminator instances within the same Near-RT RIC platform. It monitors the connection

status of E2 Nodes bound to multiple E2 Terminator instances. Upon any state change,

such as a successful connection or disconnection/loss of either the E2 Terminator instance or

of an E2 Node to a managed E2 Terminator instance, it also triggers the Routing Manager

to distribute updated routes, including that of the newly connected/disconnected E2 Node

endpoint, to all platform components and deployed xApps.

2.1.5 Subscription Manager

The Subscription Manager enables authorized xApps to subscribe to RAN functions exposed

by any connected E2 Nodes. It also merges identical subscriptions from multiple xApps

targeting the same E2 Node, avoiding redundant data traffic on the E2 interface. A publish-

subscribe model is, thus, provided for xApps to control and optimize the RAN. Upon

receiving a valid subscription request from an xApp, the Subscription Manager generates a

unique subscription ID and assigns it to the requesting xApp. Upon receiving a successful

subscription response from the E2 Node, it notifies the xApp and triggers the Routing

Manager to generate an updated routing table with the assigned subscription ID to enable

further communications between the xApp and the E2 Node.
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2.1.6 xApp Manager

The xApp Manager is in charge of the lifecycle management of xApps. The functions

performed by this component map to the management Application Programming Inter-

faces (APIs) for the Near-RT RIC outlined in the Working Group (WG) 3 specifications

[20]. These specifications envision the deployment and management of xApps to be con-

trolled by the northbound SMO entity. The OSC Near-RT RIC currently requires xApp

deployments to be triggered manually by first “onboarding” them first onto a Deployment

Management Services (DMS) agent and then launching the onboarded xApp as a container-

based microservice. Upon successful registration, the xApp Manager triggers the Routing

Manager to update the routing table and inform all platform components of the induction

of the registered xApp into the Near-RT RIC platform. Although the message flow for

deregistering a deployed xApp has not yet been defined by O-RAN WG3 [20], the OSC

Near-RT RIC software still implements this functionality in the xApp Manager as part of

the manual lifecycle management process for xApps.

2.1.7 Database and Shared Data Layer (SDL)

The Near-RT RIC platform stores RAN data in two different databases, namely the Radio

Network Information Base (NIB) (R-NIB) and the User Equipment (UE) Network Infor-

mation Base (NIB) (UE-NIB). These databases persist RAN and UE data consumed by

xApps to optimize service delivery. For example, the R-NIB could include details such as

the E2 Node ID, its corresponding Public Land Mobile Network (PLMN) ID, and its connec-

tion status, while the UE-NIB could contain identifying information about the list of UEs,

e.g., International Mobile Subscriber Identity (IMSI) for pre-5G networks, and SUbscriber

Concealed Identity (SUCI) for 5G networks, and other tracking data associated with the
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connected E2 Nodes. The databases are abstracted using the SDL API to enforce database

integrity and monitorability, and to ensure high availability, scaling, and load balancing.

This API can be accessed by all Near-RT RIC components and authorized xApps; how-

ever, in Figure 2.1, we only capture those API connections necessary for the end-to-end

communication between an xApp and the E2 Node.

2.2 E2 Control-plane Signaling

As previously discussed, the E2 interface is a logical link between the Near-RT RIC and

one or more E2 Nodes. Signaling over the E2 interface is achieved using ASN.1-encoded

messages transported over a time-critical SCTP connection. Each E2 message consists of

multiple IEs, and a sequence of E2 messages constitutes an E2 procedure [4]. The E2AP is an

application layer signaling protocol that defines two types of procedures for operationalizing

service delivery to the E2 Nodes.

2.2.1 Near-RT RIC Support Functions

These functional procedures allow the Near-RT RIC to support the establishment and man-

agement of an E2 interface connection atop the transport network layer. The E2 Terminator

utilizes these functions to realize multiple E2 procedures such as E2 Setup, E2 Reset, E2

Removal, Near-RT RIC Service Update, and E2 Node Configuration Update. For example,

the E2 Setup procedure, depicted in Figure 2.2, shows the messaging sequence between an

E2 Node and the Near-RT RIC to set up a successful E2 connection.

The E2AP specifications [22] detail the mechanics of the other aforementioned Near-RT RIC

support functions. For a functional E2 interface link between the E2 Node and the Near-RT RIC,
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Near-RT RIC E2 Node

E2 Node pre-configured with Near-RT RIC
IP address, RIC service information &
E2 Node configuration

1 SCTP connection establishment

2
E2 SETUP REQUEST 
(Global E2 Node ID, RAN Functions
and E2 Node Configuration Details)

Near-RT RIC maps the list of supported RIC
services to RAN functions and stores the list
of E2 Node component configuration information.

3

E2 SETUP RESPONSE
(RAN Functions {Accepted, Rejected} List) OR
E2 SETUP FAILURE
(Cause, Time to Wait)

Figure 2.2: E2 Setup procedure between the E2 Node and Near-RT RIC.

the completion of the E2 Setup procedure is mandatory, while other support procedures en-

sure scalable and resilient operation of the interface over extended time periods.

2.2.2 Near-RT RIC Services

Near-RT RIC services include global procedures that allow for configurable service logic

execution by an xApp on an E2 Node through the Near-RT RIC. The E2AP specifications

define four RIC Services that xApps can provide to the E2 Node.

• REPORT Service: Allows the E2 Node to transfer information from the E2 Node as

reports to the Near-RT RIC. This service involves asynchronous messaging in that no

response is elicited from the Near-RT RIC.

• INSERT Service: Allows the E2 Node to temporarily suspend call processing and

request control guidance from the Near-RT RIC. This service involves synchronous

messaging, and a predefined subsequent action is automatically executed upon the
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expiration of a Time to Wait timer.

• CONTROL Service: Allows the Near-RT RIC to initiate or resume an associated pro-

cedure in the E2 Node. This service involves synchronous messaging, provided the

Near-RT RIC requests acknowledgment for the control request from the E2 Node.

• POLICY Service: Allows the E2 Node to automatically execute a specific policy upon

the occurrence of the trigger event. This service involves asynchronous messaging.

For an xApp to consume a RIC Service, one or more E2AP procedures are required to be exe-

cuted by the Near-RT RIC on the E2 Node. Figure 2.3 shows the sequence diagram detailing

the fundamental E2AP procedures carried out by the E2 Terminator in the Near-RT RIC

to install a RIC Service on the E2 Node [22]. The following E2AP procedures are defined

by O-RAN WG3 [4]:

• RIC Subscription: Sets up a subscription between an xApp and an E2 Node;

• RIC Subscription Delete: Removes an existing subscription on the E2 Node;

• RIC Subscription Delete Required: Allows an E2 Node to request deletion of an existing

subscription;

• RIC Indication: Transfers report data from the E2 Node to the Near-RT RIC based

on the subscription;

• RIC Control: Initiates or resumes a specific functionality in the E2 Node.

A RIC Procedure requires a sequence of individual E2AP messages to be exchanged between

the Near-RT RIC and the E2 Node. For example, to carry out the RIC Subscription Proce-

dure, a RIC SUBSCRIPTION REQUEST message (sequence 1⃝ in Figure 2.3) is sent to the
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E2 Node over the E2 interface. The message contains a contract-like payload that informs

the E2 Node of the RIC service requested by the xApp in the Near-RT RIC. It carries IEs

identifying the entity within the Near-RT RIC e.g., an xApp requesting a RIC Service and

the corresponding RAN Function ID on the E2 Node that needs to be subscribed to. In

response, the E2 Node attempts to provision its internal resources to meet the requirements

in the subscription request and, if successful, responds with a RIC SUBSCRIPTION RE-

SPONSE message. In case the subscription cannot be completed, a RIC SUBSCRIPTION

FAILURE message (sequence 2⃝) is sent back to the Near-RT RIC. Similar to the RIC

Subscription Procedure, sequence 3⃝ in Figure 2.3 implements the RIC Indication Proce-

dure, sequences 4⃝, 5⃝, 6⃝ implement the RIC Control Procedure, while 8⃝, and 9⃝ together

implement the Subscription Delete Procedure.

Every RIC Service, except for the RIC CONTROL Service, always begins with a Subscrip-

tion Procedure, which includes message sequences 1⃝ and 2⃝ in Figure 2.3. The REPORT

Service involves a subscription to the E2 Node for a periodic or event-triggered condition,

satisfying which, the E2 Node activates the RIC Indication Procedure with an Indication

Type of REPORT. This Service involves message sequences 1⃝, 2⃝, and 3⃝. The INSERT

service differs from the REPORT service in that the E2 Node halts processing the associated

call upon detecting the event trigger. It activates the RIC Indication Procedure with an In-

dication Type of INSERT and awaits further guidance from the Near-RT RIC. In such cases,

the Near-RT RIC references the Call Processing ID IE from the RIC Indication Procedure

and issues a RIC CONTROL REQUEST ( 4⃝) to the E2 Node with subsequent actions. If

the E2 Node is able to service the control request, and the Near-RT RIC has requested an ac-

knowledgment for the same, it responds with a RIC CONTROL ACKNOWLEDGE message

( 5⃝); otherwise, a RIC CONTROL FAILURE message ( 6⃝) is sent back. The Near-RT RIC

can also choose to activate the RIC Control Procedure asynchronously ( 6⃝ and 7⃝) based on
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its internal event trigger conditions as well.

One or more RIC Services can be combined to create an E2 Service Model (E2SM) that can

steer and optimize RAN behavior towards a target condition or state depending on the use

case for the O-RAN deployment [23]. xApps leverage E2SMs to address RAN-specific use

cases, as we shall explain in Chapter 4.

2.3 xApp Lifecycle Management

xApps are plug-and-play-style containerized microservices dedicated to the Near-RT RIC

platform, and are deployed and managed by the SMO. The complete lifecycle of an xApp

in the OSC Near-RT RIC is shown in Figure 2.4 and involves three distinct phases:

1. Registration: Once deployed within the Near-RT RIC, an xApp needs to first register

itself with the xApp Manager. The registration process involves sharing a configuration

file with data such as the xApp’s name, version, the types of messages it intends to

send and receive within the Near-RT RIC platform, among other details. The xApp

Manager validates the registration request and triggers a routing table update to the

Routing Manager to enable the xApp to communicate with the rest of the Near-RT RIC

platform components.

2. Operation and Reconfiguration: After successful registration, the xApp performs

service discovery, a process by which different Near-RT RIC services the xApp is au-

thorized to interact with are discovered. Next, the xApp establishes communications

using the RMR messaging infrastructure. Subsequently, it queries the SDL to check

for connected E2 Nodes. Upon finding a matching target, the xApp sends a sub-

scription request containing a RIC Service installation request to the Subscription
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Near-RT RIC E2 Node

 E2 Setup Procedure Complete 

1
RIC SUBSCRIPTION REQUEST
(RIC Request ID, RAN Function ID, RIC Event Trigger, Actions List)

2

RIC SUBSCRIPTION RESPONSE
(RIC Request ID, RAN Function ID, RIC Actions Admitted List, RIC Actions Not
Admitted List) OR
RIC SUBSCRIPTION FAILURE
(RIC Request ID, RAN Function ID, Cause, Criticality Diagnostics)

E2 Node detects RIC Event Trigger - periodic or event-triggered

loop [For each Action in Action Admitted List]

E2 Node executes action defined in RIC Action ID & RIC Action Type (Report/Insert/Policy)

3
RIC INDICATION
(RIC Request ID, RAN Function ID, RIC Action ID, RIC Indication SN, RIC Indication
Type, RIC Indication Header, RIC Indication Message, RIC Indication Call Process ID)

alt [Received RIC Indication Type is INSERT and RIC Call Processing ID set]

4
RIC CONTROL REQUEST
(RIC Request ID, RAN Function ID, RIC Call Process ID, RIC Control Header, RIC
Control Message, RIC Control Ack Request)

5

RIC CONTROL ACKNOWLEDGE
(RIC Request ID, RAN Function ID, RIC Call Process ID, RIC Control Outcome) OR
RIC CONTROL FAILURE
(RIC Request ID, RAN Function ID, RIC Call Process ID, Cause, RIC Control Outcome)

Near-RT RIC detects internal event trigger or RIC Indication REPORT message

6
RIC CONTROL REQUEST
(RIC Request ID, RAN Function ID, RIC Call Process ID, RIC Control Header, RIC
Control Message, RIC Control Ack Request)

7

RIC CONTROL ACKNOWLEDGE
(RIC Request ID, RAN Function ID, RIC Call Process ID, RIC Control Outcome) OR
RIC CONTROL FAILURE
(RIC Request ID, RAN Function ID, RIC Call Process ID, Cause, RIC Control Outcome)

8
RIC SUBSCRIPTION DELETE
(RIC Request ID, RAN Function ID)

9
RIC SUBSCRIPTION DELETE RESPONSE (RIC Request ID, RAN Function ID) OR
RIC SUBSCRIPTION DELETE FAILURE (RIC Request ID, RAN Function ID, Cause)

Figure 2.3: RIC Services, Procedures and their component E2AP messages.



16 CHAPTER 2. NEAR-RT RIC AND E2 INTERFACE COMMUNICATION

Manager. The Subscription Manager validates the subscription request and assigns a

new subscription ID to the subscription request. It then forwards the request to the

E2 Terminator, which, in turn, forwards it to the E2 Node over the E2 interface. Upon

receiving a subscription response in the same return path, the subscription manager

requests the Routing Manager to generate updated routing policies by mapping the

subscription ID to the requesting xApp. The xApp can then interact directly with the

E2 Node through the E2 Terminator using the unique subscription ID.

3. Deregistration: The OSC Near-RT RIC allows the xApp Manager to deregister an

xApp manually and clean up resources after gracefully terminating the microservice.

When the xApp Manager triggers deregistration for a running xApp, the xApp removes

all subscriptions it has with one or more E2 Nodes by triggering the Subscription

Delete Procedure. The xApp can then terminate gracefully, following which, the xApp

Manager requests the Routing Manager to update the routing table to remove any

routes pointing to the terminated xApp.

The subsequent chapters build upon concepts discussed in this chapter to realize use cases

that involve the execution of multiple xApps for simultaneous RAN control and for charac-

terizing the security aspects of the Near-RT RIC towards the E2 interface.
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Near-RT RIC

xApps

xApp
xApp Manager

(APPMGR)
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(RTMGR)
Subscription Manager
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E2 Manager

(E2MGR)
E2 Terminator

(E2T)
E2

Node

E2 Setup and xApp Registration

1 E2 Setup
Request

1 Deploy

2 Register xApp (name,
version, message types)

2 Update E2 Node list
(Global E2 Node ID)

3 Registration response
(success/failure) 3 Update Response

4 Send updated xApp
list (xApp name, config)

4 Send E2 Node list
(E2 Node config)

4 E2 Setup
Response

5 Update routing table
& distribute new
routes to all services

End-to-End Operation between xApp in the Near-RT RIC and the E2 Node

6
RIC SUBSCRIPTION REQUEST (RIC Request ID, RAN Function ID,
Event Trigger, Actions List)

7 E2 Subscription Request

8
RIC Subscription
Procedure

9 E2 Subscription Response

10
RIC SUBSCRIPTION RESPONSE (RIC Request ID, RAN Function ID,
RIC Actions Admitted List, RIC Actions Not Admitted List)

11 Share updated
routes

13 RIC Event
Trigger detected

12 Update routing
table

14 RIC Indication
Procedure

15
RIC Indication (RIC Request ID, RAN Function ID, RIC Action ID, Indication SN, Indication Type,
Indication Header, Indication Message, Indication Call Process ID)

16
INSERT Indication or
Internal event trigger

17
RIC CONTROL REQUEST (RIC Request ID, RAN Function ID, RIC Call Process ID, RIC Control Header,
RIC Control Message, RIC Control ACK Request)

18
RIC Control
Procedure

19 RIC CONTROL ACKNOWLEDGE (RIC Request ID, RAN Function ID, RIC Call Process ID, RIC Control Outcome)

Figure 2.4: E2 Node setup and xApp lifecycle management.



Chapter 3

Multi-xApp RAN control

In this chapter, we leverage the concepts discussed in the previous chapter to explain an

O-RAN use case concerning slice-aware UE admission control that requires simultaneous

control of the target E2 Node by multiple xApps deployed on the same Near-RT RIC platform

(Contribution 3). Furthermore, we describe our experimental setup on the CCI xG Testbed

for implementing and validating the aforementioned use case on an end-to-end O-RAN-

compliant open-source software radio stack. As part of the results, we demonstrate the

inherent limitations in the routing mechanism of the existing OSC Near-RT RIC for routing

E2 control messages among multiple xApps (Contribution 1).

3.1 E2SMs for xApp-driven RAN Control

In Section 2.2, we highlighted the aspect of combining RIC Services into an E2SM to enable

complex signaling workflows between the Near-RT RIC and the RAN. The O-RAN speci-

fications define several E2SMs targeting specific behaviors of the E2 Nodes. For example,

the Key Performance Measurement (KPM) E2SM installs a simple REPORT RIC Service

that instructs the E2 Node to send the key performance metrics in a REPORT-type RIC

INDICATION message. The event trigger can be periodic or based on a condition defined

by the xApp, e.g., when a serving E2 Node receives a UE measurement report with Signal

to Interference & Noise Ratio (SINR) value lower than a set threshold. Likewise, the RAN

18



3.2. SLICE-AWARE UE ADMISSION CONTROL USE CASE 19

Control (RC) E2SM installs multiple RIC Services, including INSERT and CONTROL ser-

vices that enable the E2 Node to seek near-real-time guidance from the Near-RT RIC to

manage transient conditions such as mobility handover and UE admission control.

3.2 Slice-aware UE Admission Control Use Case

RAN slicing has been well-researched in fourth generation (4G) as well as 5G mobile networks

[24]. While open-source solutions already exist for realizing slicing control on the RAN

scheduler [11], no Open RAN-based open-source solutions exist to perform dynamic slice

profile management. A typical requirement for enabling RAN slicing is a slice resource

optimizer that can dynamically allocate each UE to a slice based on a slice profile that

caters to the Quality of Service (QoS) requirements of the end-users. We consider such a

use case and design an O-RAN workflow that extends an open-source closed-loop subframe

slicing xApp called NexRAN [11] by adding the ability to dynamically add UEs to or remove

them from an existing slice managed by the xApp on the RAN.

Figure 3.1 shows the system architecture for realizing the slice-aware UE admission control

use case using the OSC Near-RT RIC. The setup consists of 4 components:

• Evolved Packet Core (EPC): Hosts the 4G mobile core. We use srsEPC in our imple-

mentation [25].

• evolved NodeB (eNB): O-RAN-compatible monolithic RAN software radio stack. It

connects to the EPC over the backhaul S1 interface and to the Near-RT RIC over the

E2 interface. A Universal Software Radio Peripheral (USRP) X310 SDR acts as the

radio front-end for over-the-air radio transmission.

• Near-RT RIC: Provides infrastructure support for xApps to connect to and control
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the eNB.

• UE: The end-user device that connects to the 4G network. We use the srsUE applica-

tion on a compute node connected to a USRP X310 for over-the-air signal transmission

and reception.
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Figure 3.1: System architecture of the experimental setup.

The NexRAN xApp employs a custom E2SM that utilizes the REPORT RIC Service to

periodically monitor the KPM metrics of the RAN, and the CONTROL RIC Service to

dynamically modify the slice share of the Proportional Fair (PF) subframe scheduler in the

Medium Access Control (MAC) layer of the Long Term Evolution (LTE) radio stack. This

xApp requires the operator to manually bind and unbind UEs to a slice on the RAN. We

prototype the SAC xApp that automates the admission of an incoming UE into an existing
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slice based on RAN resource availability and the UE’s QoS requirements. The prototype

implements the RC E2SM by subscribing to the INSERT RIC Service on the RAN. The

subscription is configured such that the E2 Node sends a RIC INDICATION message of type

INSERT whenever a new UE needs to be admitted into the network. The SAC xApp analyzes

the RAN resource utilization status from the NexRAN xApp and accordingly sends a RIC

CONTROL REQUEST informing the RAN about whether the new UE should be admitted

or rejected. It is pertinent to note that the RIC Control Procedures utilized by both the

xApps are completely non-conflicting; that is, the RIC CONTROL REQUEST messages

sent by each xApp affect the RAN mutually exclusively. The NexRAN xApp adjusts the

slice share by modifying the number of Physical Resource Blocks (PRBs) allocated to each

slice, while the Slice Admission Control xApp accepts or rejects a UE into a RAN slice.

3.3 Experimental Setup

As part of our experimental validation, we upgrade the NexRAN xApp with the current

version of the E2AP (E2AP v02.03) to work with the G-Release of the OSC Near-RT RIC.

Additionally, we prototype the E2AP signaling logic and the RC E2SM for the SAC xApp

to facilitate slice-aware UE admission control on slices managed by the NexRAN xApp

(Contribution 3). The two xApps are deployed on the Near-RT RIC platform simulta-

neously and configured to target a single E2 Node to perform non-conflicting RAN control

actions: change of slice shares by the NexRAN xApp, and UE admission control by the SAC

xApp. We use a modified version of the open-source srsRAN 4G software radio stack for

deploying the eNB, the 4G core, and the UE application. [11].

Figure 3.2 shows the number of RIC CONTROL messages exchanged between the two xApps

and the E2 Node over the E2 interface. At 1⃝, the NexRAN xApp initiates a REPORT
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Figure 3.2: Control message routing for simultaneous xApp control in the current OSC
Near-RT RIC.

subscription to the E2 Node and triggers the RIC CONTROL Service based on received

RIC INDICATION reports. At 2⃝, the SAC xApp sends an INSERT subscription to the

E2 Node and triggers a separate RIC CONTROL Service whenever the RIC INDICATION

arrives. Soon after the SAC xApp begins execution, the NexRAN xApp stops receiving its

control response messages ( 3⃝). Interestingly, those control response messages get routed

to the SAC xApp, as witnessed by the steady increase in its control response messages

as compared to the control requests sent. This status continues until the SAC xApp is

terminated ( 4⃝), after which control response messages to the NexRAN xApp get delivered

as expected ( 5⃝). This control message routing behavior indicates that the RIC Control

Procedure of the first xApp is interrupted whenever both xApps execute the CONTROL

RIC Service as observed again in 6⃝. The following chapter analyzes the root cause behind

this message routing anomaly.



Chapter 4

Message Routing in the Near-RT RIC

This chapter analyzes how the OSC Near-RT RIC accomplishes internal message routing.

It also discusses the limitations of the current design of the Routing Manager and the RMR

in disambiguating between routing endpoints for RIC CONTROL REQUEST messages and

their security ramifications. Finally, we propose an improved message routing mechanism to

remedy the routing inconsistencies discussed in the previous section and to enable multiple

xApps to control the E2 Node simultaneously (Contribution 2).

4.1 Routing Table and Policies

In chapters 2, and 3, we explain how communication over the E2 interface between the E2

Terminator in the Near-RT RIC and the E2 Node is accomplished using the E2AP. After the

E2 messages reach the Near-RT RIC platform, the RMR messaging library and the Routing

Manager together enable them to be routed amongst all platform components, including the

xApps. The Routing Manager generates new routing policies and distributes the routing

table to all connected Near-RT RIC services whenever a new entity is detected or lost by the

Near-RT RIC platform. These transient entities could be xApps, E2 Terminator instances,

or E2 Nodes. The routing table contains route entries with fields separated by a vertical bar

( | ) and satisfying the following syntax:

23
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mse | <msg-type>[,<sender-endpoint>] | <sub-id> |

<endpoint-group>[;<endpoint-group>;...]

Each route entry starts with the label mse and contains 4 fields (indicated within angled

brackets <>) in the syntax above. The sub-fields denoted within square brackets [] are

optional. The RMR routes messages using two key fields: msg-type and sub-id, to de-

termine the correct recipient of an RMR message. A route entry is considered valid if no

sender endpoint is specified, or if the sender endpoint matches correctly with an application’s

hostname and RMR listening port. Message types are mapped to constant message IDs for

identifying the correct receiver endpoint or endpoint groups by the RMR using the routing

policies generated by the Routing Manager. Table 4.1 lists the common message types and

their corresponding message IDs used by the RMR.

Message ID Message Type
12010 RIC SUBSCRIPTION REQUEST
12011 RIC SUBSCRIPTION RESPONSE
12012 RIC SUBSCRIPTION FAILURE
12020 RIC SUBSCRIPTION DELETE REQUEST
12021 RIC SUBSCRIPTION DELETE RESPONSE
12022 RIC SUBSCRIPTION DELETE FAILURE
12040 RIC CONTROL REQUEST
12041 RIC CONTROL ACKNOWLEDGE
12042 RIC CONTROL FAILURE
12050 RIC INDICATION

Table 4.1: Common RMR message types used for routing.

For messages of the same message type to be routed to different receiver endpoints, the RMR

uses the sub-id as a secondary key for determining the correct destination for the message.

This key can be considered logically optional since the RMR always routes certain message

types to a fixed endpoint. For example, all subscription requests from xApps are always

routed to the Subscription Manager. The sub-id in such cases is set to −1 to indicate

that routing should be based solely on the message type. Moreover, for a given message
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type, if there exist multiple routes with identical sub-ids, then the RMR uses the last valid

route entry in the routing table. As we shall see in Section 4.3, this design severely hampers

routing when the sender does not have a live subscription to the E2 Node.

4.2 Subscription and Control Messaging Flows

Messaging workflows initiated by xApps can be broadly classified into two types: 1) Sub-

scription messaging and 2) Internally-triggered control messaging, as described next.

Near-RT RIC

xApps

xApp SUBMGR E2T E2 Node

1 RIC SUB REQ
Subscription requests routed to SUBMGR

2 Generate new sub-idIf new subscription request,
then forward it to E2 Node

E2T routes messages from E2 Node
to xApp if RIC Instance ID == sub-id

3 RIC SUB REQ
(RIC Request ID.RIC Instance ID = sub-id)

Edit RIC Request ID
4 RIC SUB REQ

5 RIC SUB RESP
6 RIC SUB RESP
(RIC Request ID.RIC Instance ID = sub-id)

7 RIC SUB RESP
(RIC Instance ID = sub-id)

Routing table updated to route messages with registered sub-id to xApp

8 RIC INDICATION9 RIC INDICATION (RIC Request ID.RIC Instance ID = sub-id)

RIC CONTROL REQ is routed to E2T by default (invalid sub-id=-1); RIC CONTROL ACK/
FAILURE is routed to xApp based on xApp-defined RIC Request ID.RIC Instance ID (sub-id)

10 RIC Control Procedure (RIC Request ID.RIC Instance ID = sub-id) RIC Control

Figure 4.1: Subscription messaging workflow.



26 CHAPTER 4. MESSAGE ROUTING IN THE NEAR-RT RIC

4.2.1 Subscription Messaging

xApps usually require data from the E2 Node before they can control and optimize RAN

behaviors. This data can either be generated through a subscription to the E2 Node or

retrieved from the Near-RT RIC platform database (R-NIB or UE-NIB). Given that xApps

need to operate in the near-real-time timescale of 10ms− 1s, they normally aggregate data

through new subscriptions to the E2 Node. The subscription workflow is shown in Figure 4.1.

When an xApp sends a fresh subscription request over RMR, it does not have a sub-id

yet. Since all subscription-related messaging is facilitated by the Subscription Manager, the

sub-id key is set to −1, in which case, the RMR routes the subscription request using only

the msg-type in consultation with the routing table. The route entry for this routing policy

could be:

mse | 12010, <xapp-rmr-endpoint-name> | -1 |

<submgr-service-rmr-endpoint-name:rmr-port>

Similarly, the route entries to route subscription messages between the Subscription Man-

ager and the connected E2 Node(s) also exist in the routing table. Upon reception of the

subscription request message from the xApp, the Subscription Manager creates a unique

sub-id and assigns this value to the RIC Instance ID field within the RIC Request ID IE of

the subscription request message and forwards it to the E2 Terminator which in turn sends

the message to the E2 Node. Considering a positive outcome, wherein the E2 Node suc-

cessfully registers the request, it sends a subscription response to the E2 Terminator, which

forwards the message to the Subscription Manager. Sensing the successful subscription, the

Subscription Manager informs the Routing Manager to update routes exposing the xApp’s

RMR endpoints directly to the E2 Terminator for subsequent messaging. The Subscription

Manager also forwards the subscription response to the xApp with the RIC Instance ID set

to the sub-id. The E2 Terminator decodes the incoming message payload from the E2 Node
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to figure out the RIC Instance ID value to set the sub-id for the RMR message to be sent

to the receiver endpoint. This enables the xApp to receive RIC INDICATION messages

for this subscription from the E2 Node and to reuse the same sub-id for further control

messaging with the same E2 Node. The control messaging thus established is assumed to

be synchronous, wherein the xApp is “triggered” to control the E2 Node based upon the

reception of a RIC INDICATION message of type INSERT.

4.2.2 Internally-triggered Control Messaging

As shown in Figure 4.2, this type of control messaging happens when an xApp asynchronously

initiates the RIC Control Procedure on a target E2 Node without an explicit INSERT-type

RIC INDICATION message from the E2 Node. This messaging flow is necessary in two

prominent cases: 1) the xApp wants to control RAN behavior based on REPORT-style RIC

INDICATION messages from a merged subscription shared by multiple xApps. 2) the use

case for the xApp does not require an explicit subscription to any RIC Service, but wants

to initiate the RIC Control Procedure based on an internal event trigger.

Near-RT RIC

xApps

xApp SUBMGR E2T E2 Node

No existing subscriptions between xApp and E2 Node. xApp generates
random sub-id for sending asynchronous RIC CONTROL REQUEST

1 RIC CONTROL REQUEST
(RIC Request ID.RIC Instance ID = sub-id) 2 RIC CONTROL REQUEST

3 RIC CONTROL ACK/FAILURE
E2T not able to route RIC CONTROL ACK/
 FAILURE to xApp since no route exists

Figure 4.2: Internally-triggered control messaging workflow.
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Allowing xApps to control RAN behavior without first subscribing to a RIC Service could

be seen as a potential security vulnerability as malicious and compromised xApps can make

spurious RAN control modifications that could have disastrous consequences for both the E2

Node and the Near-RT RIC. Also, since the Subscription Manager can merge subscriptions

with the same event triggers and actions, allowing a subscribed xApp to reuse the same

sub-id for control messaging that requires a control response from the E2 Node could be

counterintuitive. This is because the RMR routes messages from the E2 Node to any and all

xApps with that sub-id. For example, xApps listening to RIC Indication messages through

a merged subscription, but not registered to use the RIC CONTROL Service, might end up

receiving control response messages for control requests issued by another merged subscriber

xApp if message routing is solely based on a merged sub-id.

In cases where the xApp’s use case requires leveraging the RIC CONTROL Service without

first having a subscription, the xApp has to self-generate an RMR sub-id and set it to the

RIC Instance ID field within the RIC Request ID IE in the control request. When the xApp

sends the control request, the RMR forwards the message to the E2 Terminator which is the

default receiver endpoint for all RIC CONTROL REQUEST RMR messages (sub-id = −1).

However, when the control response arrives from the E2 Node, the E2 Terminator is not able

to route the control response RMR message back to the concerned xApp since it cannot find

a valid sub-id in the routing table corresponding to the RIC Instance ID value that the

xApp generated.

4.3 OSC Near-RT RIC Design Limitations

The OSC Near-RT RIC currently provides complete support for subscription-based mes-

saging. However, internally-triggered control messaging is limited to, at most, one xApp
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because the Routing Manager is configured, by default, to generate routes with an invalid

sub-id when the xApp registers itself with the xApp manager. This results in the following

route table entries upon successful xApp registration:

mse | 12040, <xapp-rmr-endpoint-name:rmr-port> | -1 |

<e2term-rmr-endpoint-name:rmr-port>

mse | 12041 | -1 | <xapp-rmr-endpoint-name:rmr-port>

mse | 12042 | -1 | <xapp-rmr-endpoint-name:rmr-port>

Here, a sub-id value of −1 indicates that control messages shall be routed based only on

the message type. While all control requests originating from different xApps get routed

seamlessly to the E2 Node through the E2 Terminator, response messages from the E2 Node

are routed back to the sending xApp if and only if a single xApp is registered to send

and receive control-related messages. Since the RMR considers the last valid entry in the

routing table as the receiver endpoint, control response messages are always routed to the

last xApp that was registered with a configuration defined to utilize the CONTROL RIC

Service. This explains the anomalous message routing behavior observed in Figure 3.2. A

malicious xApp could easily exploit this vulnerability in routing control responses to spoof

the E2 Terminator and flood an xApp peer with unexpected control responses leading to a

DoS attack on the xApp service, the Near-RT RIC, or connected E2 Nodes. This condition

points to the limitation in the routing policy used by the Routing Manager. It also exposes

a fundamental design flaw in the RMR library that prevents it from disambiguating between

multiple xApps during control message routing from the E2 Node into the Near-RT RIC. The

following chapter presents a comprehensive messaging strategy to prevent routing conflicts

for control messages.



Chapter 5

Improved Routing Mechanism for

xApp Control Scalability

In this chapter, we address the control message routing anomaly demonstrated in the

previous chapter by implementing a foolproof message-routing mechanism that allows the

Near-RT RIC to support simultaneous control messaging by multiple xApps while guarantee-

ing control scalability and xApp non-repudiation on the Near-RT RIC platform (Contribution

2). This is achieved through xApp tagging — to differentiate multiple xApps or multiple

instances of the same xApp, and tag-aware message routing in the RMR — to ensure un-

ambiguous route selection.

5.1 xApp Tagging

We propose that an xApp requesting registration in the Near-RT RIC platform should be

assigned a platform-wide unique app-id by the xApp manager. The xApp should use this

tag value for subsequent messaging within the Near-RT RIC. This scheme streamlines the

xApp registration process in a way similar to how the Subscription Manager generates and

manages unique and non-conflicting sub-ids. Upon successfully registering the xApp, the

xApp manager requests the Routing Manager to update its routing policies by including the

app-id tag value. The updated route table entry looks as shown below:

30
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mse | <msg-type>[,<sender-endpoint>] | <app-id> | <sub-id> |

<endpoint-group>[;<endpoint-group>;...]

where the app-id indicates the locally unique tag assigned to the xApp by the xApp Man-

ager. This provides a way to disambiguate between multiple xApps within the Near-RT RIC

platform irrespective of whether they have a valid subscription to an E2 Node. xApp tagging

also enables the Near-RT RIC to manage multiple instances of the same xApp when they

need to be scaled for resiliency and load balancing.

5.2 Robust Routing Design for RMR and E2 Termina-

tor

In order to support message routing based on xApp tag values, we update the RMR to

route messages based on the app-id in addition to msg-type and sub-id. This enables

all Near-RT RIC platform services that use the RMR library to additionally consider the

app-id to determine the correct receiver endpoint within the Near-RT RIC. The xApp needs

to compulsorily set its tag value in the app-id of the RMR message, and optionally update

the sub-id received from the Subscription Manager (otherwise set to −1 by default), before

sending the RMR message to other receiver endpoints.

As for the RIC CONTROL REQUEST message to be sent over the E2 interface, the xApp

needs to additionally set the app-id in the payload similar to how the sub-id is assigned

to the RIC Instance ID. The E2AP specifications [20, 22] highlight the need to use the RIC

Request ID IE for unique identification of messages exchanged between the xApp and the

E2 Node. Notably, the IE contains two IEs, namely the RIC Requestor ID and the RIC

Instance ID. The E2AP specifications [4] do not explicitly specify how these IEs should be
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used to mark messages that are exchanged over the E2 interface. In the OSC Near-RT RIC,

only RIC Instance ID is currently used, i.e., to tag the message with sub-id. We propose to

use the IE RIC Requestor ID to carry the app-id that uniquely identifies different xApps or

even different instances of the same xApp, since the xApp Manager allocates unique tags to

each registered xApp. Figure 5.1 shows the updated workflow to ensure guaranteed control

request and response delivery between the xApps and E2 Nodes.

Near-RT RIC

xApps

xApp APPMGR SUBMGR E2T E2 Node

1 Registration Request
APPMGR assigns locally unique app-id to xApp

Routing Manager updates the routing table with
registered app-id and the xApp endpoint

2 Registration Response

No existing subscriptions between xApp and E2 Node. xApp sets APPMGR-assigned
app-id to RIC Request ID.RIC Requestor ID before sending RIC CONTROL REQUEST

3 RIC CONTROL REQUEST
(RIC Request ID.RIC Requestor ID = app-id
RIC Request ID.RIC Instance ID = sub-id) 4 RIC CONTROL REQUEST

5 RIC CONTROL ACK/FAILURE

6 RIC CONTROL ACK/FAILURE
(RIC Request ID.RIC Requestor ID = app-id
RIC Request ID.RIC Instance ID = sub-id) E2T uses both sub-id & app-id

to route messages to the xApp

Figure 5.1: xApp-triggered control messaging workflow with the proposed routing mecha-
nism.

When the response message arrives from the E2 Node, the E2 Terminator decodes the

payload and sets the RIC Requestor ID and the RIC Instance ID values to the app-id and

sub-id fields of the RMR message respectively. With the updated routing table, the RMR

message unambiguously determines the correct receiver endpoint and delivers the message
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to the correct xApp.

5.3 Evaluation of the Improved Routing Mechanism

Figure 5.2: Control message routing for simultaneous xApp control with the proposed routing
mechanism.

We validate the performance of the proposed message routing mechanism by rerunning the

same experiment for the slice-aware UE admission control use case discussed in Chapter 3.

Figure 5.2 shows the number of control messages exchanged between the NexRAN and SAC

xApps towards the target E2 Node, and the total number of control messages processed by

the E2 Terminator. Unlike the routing behavior observed in Figure 3.2, even after the SAC

xApp subscribes to the E2 Node and initiates RIC CONTROL service ( 2⃝), both xApps

continue to receive control response messages corresponding to their control requests ( 3⃝).
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We notice consistent message routing behavior between xApp restarts, as indicated in 4⃝

and 5⃝. We also observe no routing conflicts and 100% message delivery to both xApps,

irrespective of the subscription status of each xApp within the Near-RT RIC.

This improved routing mechanism was deployed in a related work concerning the devel-

opment of an AI/ML-based end-to-end O-RAN solution for policy-based RAN slicing. A

demonstration of this closely-related work was premiered at the CCI exhibition booth dur-

ing the Mobile World Congress held in September 2022 (Contribution 7). Another related

work titled “RIC-O: An Orchestrator for the Dynamic Placement of a Disaggregated RAN

Intelligent Controller” on optimizing the positioning of disaggregated Near-RT RIC compo-

nents to reduce the control loop signaling latency over the E2 interface was demonstrated

at the IEEE INFOCOM Conference (Contribution 8) [26].

In the following chapter, we analyze further security aspects of the Near-RT RIC that involve

E2AP messaging over the E2 interface and utilize the multi-xApp RAN control capability

enabled through our tag-based message routing mechanism to monitor the signaling latency

of control messages over the E2 interface.



Chapter 6

Near-RT RIC Security

This chapter studies the resiliency and security aspects of the Near-RT RIC platform for E2

signaling by leveraging the message routing mechanism implemented in the previous chapter.

In particular, we investigate the scope for connected E2 Nodes to orchestrate an application-

level DoS attack targeting the Near-RT RIC over the southbound E2 interface. Furthermore,

we extend the multi-xApp RAN control capability demonstrated in the previous chapter to

implement a latency monitoring xApp to monitor the health of the E2 interface and detect

unusual signaling activity over the E2 interface that might lead to degraded performance or

complete unavailability of the Near-RT RIC. Although we highlight strategies to mitigate

such availability attacks, a complete preventive solution is out of scope for this thesis work.

6.1 Security in the E2 Interface

The O-RAN Alliance has defined various security specifications to ensure confidential trans-

mission and reception of information over the E2 interface [27]. This requires the use of

Internet Protocol (IP) Security (IPSec) on the IP network layer to support confidentiality,

integrity, replay protection, and data origin authentication [28]. We note, however, that

the OSC Near-RT RIC does not yet provide any APIs to implement these security features

for its E2 communications. Even then, although the specifications guarantee the security

until the transport layer, they do not outline any safeguards to detect or prevent attacks

35
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targeting the application layer of the E2 interface implemented using the E2AP. This allows

a threat actor to target the Near-RT RIC over the application layer, if not over the network,

or transport layers. Figure 6.1, for instance, highlights a sample E2AP SETUP REQUEST

message exchanged between the E2 Node and the Near-RT RIC over the E2 interface. One

can observe that this E2AP application layer message is exchanged in cleartext between the

Near-RT RIC and the E2 Node increasing the probability for a potential man-in-the-middle

attack.

Figure 6.1: Wireshark packet capture of E2AP signaling on the E2 interface.

As discussed in Section 2.1.3, the E2 Terminator acts as the gateway for the E2 interface

at the Near-RT RIC, moderating all signaling between the E2 Node and other components

within the Near-RT RIC. In the OSC Near-RT RIC implementation, the E2 Terminator

is deployed as a microservice listening for SCTP connections on the service port 36422,

and the node port 32222. The node port allows entities external to the Near-RT RIC to

connect to the E2 Terminator. While this setting is necessary to expose the Near-RT RIC
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for southbound control of E2 Nodes, it also makes the E2 Terminator, and consequently, the

Near-RT RIC, vulnerable to DoS attacks exploiting the O-RAN-specified E2AP signaling

protocol on the application layer.

6.2 E2 Application layer DoS Attacks

Although it is possible to detect and prevent DoS attacks on the network and transport

layers, application layer DoS attacks are more challenging to identify or mitigate since the

attack payload looks pretty similar to normal signaling traffic [29]. Such attacks tend to

disrupt extant communications through resource exhaustion, session starvation, or timeout

exploitation. We analyze two strategies that an attacker can utilize to exploit the E2 interface

for orchestrating application layer DoS attacks on the Near-RT RIC.

6.2.1 Resource Exhaustion DoS Attack

This approach involves performing a volumetric DoS attack on the E2AP application layer

by flooding the E2 Terminator with E2 SETUP REQUEST messages. If the E2 Terminator

is not able to quickly handle all incoming messages, it starts queueing messages, thereby

resulting in increased resource usage (memory or CPU cores). This might have undesir-

able effects on the Near-RT RIC such as resource starvation for other critical Near-RT RIC

components or resource exhaustion leading to an application crash of the E2 Terminator

microservice. Figure 6.2 shows an example workflow of a resource exhaustion DoS attack on

the Near-RT RIC using the simple E2 Setup procedure.

The attack targets the E2 Terminator in the Near-RT RIC servicing an existing E2 Node

with live subscriptions by one or more xApps ( 1⃝). This attack can be orchestrated by a
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Near-RT RIC

xApps

xApp E2 Terminator
Genuine
E2 Node

Malicious
E2 Node

1 E2 SETUP completed successfully xApp begins subscriptions
to the E2 Node

loop [Until E2 Interface down]

2 E2 SETUP REQUEST FloodE2 Term queues
incoming messages

3
Forward Request to
E2 Manager and

receive ResponseRequest forwarded to
E2 Manager for
setup processing

alt [E2 Setup request accepted]

[E2 Setup request rejected]

4
E2 Setup Response
(SCTP Connection maintained)

5
Maintain SCTP connection
to E2 Terminator and idle

6
E2 Setup Failure
(Time to Wait, Cause)

7
Resend E2 Setup Request
for the rejected request

8  9 SCTP Conenction ABORT sent to all E2 Nodes

10
Application crash
and restartE2 Terminator becomes

unresponsive and crashes

Denial of Service to all
conencted E2 Nodes until
E2 Terminator is online

1 1 E2 Communication interrupted

Figure 6.2: Sequence workflow for a Resource Exhaustion DoS attack on the Near-RT RIC
exploiting the E2 Setup procedure.
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single malicious E2 Node within the same network as the Near-RT RIC or a distributed

“botnet” of E2 Nodes targeting the same Near-RT RIC instance. The E2 Node continuously

sends a flood of E2 SETUP REQUEST messages to the E2 Terminator ( 2⃝) in an attempt

to open up as many E2 Interface connections as possible or until the E2 Terminator is no

longer able to serve any more connections. The E2 Terminator forwards all connection setup

requests to the E2 Manager ( 3⃝) in a sequential fashion since the addition of E2 Nodes

involves atomic operations to the Near-RT RIC platform database. Therefore, flooding the

E2 Terminator with E2 SETUP REQUEST messages leads to an increase in Near-RT RIC

resource utilization (such as memory or CPU cores). The attacking E2 Node maintains the

open SCTP connection in case of a successful outcome ( 4⃝ and 5⃝) and can conditionally

reissue a new request if the Near-RT RIC rejects the setup request ( 6⃝ and 7⃝). Upon

breaching a certain threshold, the E2 Terminator becomes unresponsive, closing existing

connections to all peer E2 Nodes ( 8⃝ and 9⃝) thereby causing horizontal service unavailability

( 10⃝). Although such a scenario could be considered highly improbable owing to the stringent

O-RAN security specifications [27] for the network and transport layers, it could still leave

damaging effects on the Near-RT RIC if successfully orchestrated because of the percolation

of signaling into other platform components such as the E2 Manager, SDL, and the Routing

Manager. Considering the nature of all volumetric attacks, solutions attempting to detect

and thwart this type of DoS attack need to be localized in the E2 Terminator in the interest

of effecting a quick response. A primitive solution to mitigate the effects of this attack could

be throttling E2 Setup signaling beyond a threshold tolerable to the E2 Terminator service.

6.2.2 Signaling Storm DoS Attack

The signaling storm DoS attack can be orchestrated over the E2 interface by flooding the E2

Terminator with RIC INDICATION messages from one or more connected E2 Nodes. Com-
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pared to the resource exhaustion DoS attack discussed earlier, this attack targets timeout

exploitation for time-critical signaling messages between xApps and subscribed E2 Nodes.

Such conditions could arise due to a compromised E2 Node or could even result from an

unprecedented increase in signaling load handled by the Near-RT RIC. Figure 6.3 shows the

attack workflow for a sample signaling storm DoS. This attack can lead to either degradation

or complete denial of the E2 Terminator service to the E2 Nodes and xApps.

Near-RT RIC

xApps

xApp E2 Terminator
Genuine
E2 Node

Compromised
E2 Node

1 E2 SETUP completed successfully with xApp subscriptions
to different E2 Nodes

2
E2 Node compromised
or requires unsually
large E2 signaling loadA compromised E2 node can inititate

a volumetric E2AP signaling storm
on the E2 Terminator

3 Flood of RIC INDICATION Messages

4
E2 Terminator drops all unsolicited
RIC INDICATION messagesLegitimate signaling

slowed down due to
extra processing burden

Degraded service
to all conencted
E2 Nodes

5 Increased E2AP signaling latencies

Figure 6.3: Sequence workflow for a Signaling Storm DoS attack.

In this attack, a malicious E2 Node without a live subscription or a compromised E2 Node

connected to the Near-RT RIC and with subscriptions ( 1⃝ and 2⃝) could flood the E2 Termi-
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nator with bogus RIC Indication messages with a large message payload ( 3⃝). This barrage

of messaging traffic overwhelms the E2 Terminator and forces it to perform waste work ( 4⃝).

In the process, the service gets bogged down and starts lagging on other time-critical sig-

naling between other E2 Nodes and their target xApps ( 5⃝). This could lead to increased

latencies in services between other E2 Nodes and xApps and eventually trigger control loop

violations, resulting in service degradation. If the E2 Terminator is not able to handle this

anomalously heavy signaling traffic, it could go down, causing DoS on all connected E2

Nodes. Since this attack vector only focuses on the E2 Terminator service, it can be compar-

atively easily detected and mitigated, for example, using an xApp-based latency monitoring

solution, as discussed in the following section.

6.3 xApp-based E2 Application Latency Monitoring

Since xApps operate in the near-real-time control loop, they can be leveraged to monitor the

status of the E2 interface by checking the signaling latency between the E2 Terminator service

and multiple connected E2 Nodes. The OSC provides an open-source xApp called Bouncer

that is claimed to benchmark the Near-RT RIC using E2 signaling latencies. However, we

observe that the latency calculated by the Bouncer xApp only involves the processing delay

between the reception of a message by the xApp and the transmission of the processed

message back to the E2 Node. To perform an application layer “ping” on the target E2

Node, we implement the RC E2SM to develop a new E2 latency monitoring xApp for the

Near-RT RIC. As we shall further see in chapter 7, this xApp can also be used to monitor

signaling latency over multiple E2 Nodes connected to the Near-RT RIC.



Chapter 7

Orchestrating E2 DoS Attacks

This chapter assesses the resiliency of the Near-RT RIC platform against DoS attacks or-

chestrated over the E2 interface. In particular, we study the effects of the DoS strategies

discussed in the previous chapter on the OSC Near-RT RIC and characterize the behavior

of the platform components affected in such scenarios. As part of this research study, we

develop a DoS attack agent for a malicious E2 Node actor (Contribution 5). We also de-

scribe the latency monitoring xApp discussed in Section 6.3 to detect and analyze signaling

storm conditions on the Near-RT RIC (Contribution 4).

7.1 Experimental Setup

We study DoS attacks on the Near-RT RIC using the proof-of-concept experimental setup

shown in Figure 7.1. The components responsible for and affected by the DoS attack are

highlighted inside a red dashed box. The setup consists of the following key components:

• DoS attack agent: The malicious E2 Node(s) simulation agent capable of orchestrating

a DoS attack on the Near-RT RIC;

• E2 Nodes: srsRAN-based benign E2 Nodes that utilize RAN control and optimization

capabilties provided by the Near-RT RIC;

42
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Figure 7.1: Proof-of-concept experimental setup for orchestrating DoS attacks.

• Near-RT RIC: Hosts all platform components including the E2 Terminator, responsible

for enabling xApp-E2 Node communication over the E2 interface;

• xApps: Multiple xApps that subscribe to one or more E2 Nodes.

The following subsections delve into how each component involved in the attack

is implemented or impacted.

7.1.1 DoS Attack Agent

We design an attack agent aimed at orchestrating the strategies outlined in Sections 6.2.1

and 6.2.2. In positive terms, the attacker is represented as a performance benchmarking

tool to assess the scalability of the Near-RT RIC to simultaneously support multiple E2
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Nodes. The OSC provides an E2 Node simulator that instantiates a 5G Next Generation

NodeB (gNB) implementing the E2AP over the E2 interface. This application, however, has

two limitations: 1) It only allows a single E2 Node instance to connect to the Near-RT RIC,

and 2) It uses an older version of the E2AP (v1.01) which is incompatible with the G-

Release of the Near-RT RIC. We enhance this application by allowing support for multiple

E2 Node instances through multi-threading along with E2AP v2.03 support. The attacker

uses the KPM E2SM to generate RIC INDICATION messages of type REPORT and flood

the Near-RT RIC, resulting in an E2AP signaling storm. Currently, the DoS agent uses

multi-threaded E2 Node instances to orchestrate the E2 Setup-based resource exhaustion

attack and a single-threaded E2 Node instance to realize the RIC Indication-based signaling

storm attack.

7.1.2 E2 Nodes

We deploy E2 Nodes running the srsRAN LTE software radio stack and connected to the

Near-RT RIC to study the effects of the DoS attack on the platform components. The E2

Nodes are deployed on physical and virtualized compute nodes situated in geographically

distinct locations. As depicted in Figure 7.2, one E2 Node is located in the same deployment

site (CCI xG Testbed, Arlington, Virginia) as the Near-RT RIC, and two other E2 Nodes

are deployed in the Virginia Tech Blacksburg campus. All E2 Nodes connect internally to

their own EPC through the S1 interface and additionally, to the Near-RT RIC through the

E2 interface established using a Virtual Private Network (VPN) hosted at the controller

site. While all E2 Nodes are capable of interfacing with SDR radio front-ends, only two E2

Nodes, one located at the xG Testbed, and the other deployed on the CORNET Testbed in

Blacksburg, are configured to use the USRP X310 SDRs for Physical (PHY) layer processing.

All other E2 Nodes simulate the PHY layer using the ZeroMQ messaging library [30]. UEs
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are instantiated using the srsUE application and are configured to use either USRP X310

SDRs for over-the-air transmission or the ZeroMQ library for simulated connectivity.

Although all E2 Nodes deployed in this experiment run a monolithic eNB, the experiment

is totally 5G-compatible in that the E2 Nodes can support a gNB in addition to the eNB in

a Non-Stand-Alone (NSA) or Stand-Alone (SA) configuration. We limit our deployment to

LTE networks since the open-source NexRAN xApp only supports subframe slicing control

for eNBs over the E2 interface. 1

Figure 7.2: Location of Near-RT RIC and E2 Nodes for the experimental setup.

7.1.3 Near-RT RIC

The Near-RT RIC platform is deployed as a single-node Kubernetes cluster with all platform

components managed as microservices using Docker containers. We run the G-Release of the
1The NexRAN xApp does not support slicing for 5G networks since 5G schedulers implement variable

numerologies for slot-based slicing, different from subframe slicing for 4G schedulers.
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OSC Near-RT RIC that supports E2AP v02.03. The default deployment recipe launches the

core platform components with a single instance (termed a replica in Kubernetes parlance).

Each component is exposed to the cluster through one or more services with an internal

ClusterIP service. However, since the E2 Terminator listens for connections from remote

E2 Nodes as well, it is exposed node-wide using the NodePort service type. Persistent data

storage for platform components is provided using Redis Database as a Service (DBaaS).

The platform also enables basic performance monitoring for the Near-RT RIC deployment

using Prometheus. We additionally deploy the InfluxDB time-series database for authorized

xApps to write and read application-specific data obtained through subscriptions to the E2

Node or other platform components. Finally, all platform components that interact with

one another utilize the new tag-based messaging routing architecture to enable simultaneous

RAN control through multiple xApps.

7.1.4 xApps

The NexRAN xApp is deployed to perform closed-loop RAN slicing on the benign E2 Node.

It is configured to throttle slice shares to a set target throughput based on the throttling pe-

riod and the bandwidth usage of a network slice. We also deploy the latency monitoring xApp

discussed in Section 6.3 to monitor the baseline E2 control loop signaling latency between

the Near-RT RIC and other legitimate E2 Nodes. Additionally, we set up the xApp to per-

form simultaneous latency monitoring on all E2 Nodes connected to the Near-RT RIC. This

would help make a comparative analysis of the status of the E2 interface at the Near-RT RIC

by factoring in the latencies on all connected links. As we shall see in the following section,

the E2 signaling latency determined by this xApp is used to flag a signaling storm attack on

the E2 Terminator of the Near-RT RIC.
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7.2 PoC DoS Attack Workflow
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Figure 7.3: PoC DoS attack workflow on the experimental setup.

The proof-of-concept workflow for the DoS attacks demonstrated and studied using the

experimental setup discussed in the previous section is shown in Figure 7.3.

The expected use case involves legitimate E2 Node(s) connecting to the E2 Terminator on

the Near-RT RIC. The E2 Nodes complete the E2 Setup Procedure with the Near-RT RIC

( 1⃝, 2⃝, and 3⃝). It must be noted that the admission of an E2 Node into the Near-RT RIC is

controlled by the E2 Manager, and not directly by the E2 Terminator. Following this step, all

registered xApps subscribe to the connected E2 Nodes based on their control configurations.

In our setup, we deploy the NexRAN xApp and configure it to control the RAN slicing

behavior using the MAC scheduler on a single connected E2 Node ( 4⃝). Multiple other

legitimate E2 Nodes from different locations also connect to the Near-RT RIC using the
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E2 Setup Procedure. Additionally, the latency monitoring xApp checks the SDL for all

connected E2 Nodes and sends subscriptions to all of them for measuring the E2 control

signaling latency using the RC E2SM ( 5⃝). The subscriptions from both xApps are forwarded

to the E2 Terminator and routed to the corresponding E2 Nodes ( 6⃝). The E2 Nodes then

begin sending RIC INDICATION messages of type REPORT or INSERT depending on the

nature of the subscriptions from the xApps. In Figure 7.3, sequences 1⃝ to 6⃝ cover the

interactions for the legitimate operation of the end-to-end O-RAN mobile network. We

observe the performance metrics of the Near-RT RIC and the E2 interface at this stage and

consider these values our baseline for further comparative assessment during the DoS attack.

The relevant performance metrics are described in Chapter 8.

At this stage, we initiate the DoS attack on the Near-RT RIC. The DoS agent initially

spawns multiple E2 Node simulator instances and sends a flood of E2 SETUP REQUEST

messages targeting the E2 Terminator ( 7⃝ and 8⃝). This approach is aimed at exhausting

the Near-RT RIC cluster’s compute resources such as memory and CPU. If the request is

accepted, then the E2 connection is maintained indefinitely, draining the resources of the

Near-RT RIC. Additionally, the DoS agent can also launch a signaling storm by flooding

the E2 Terminator with RIC INDICATION messages without getting any subscriptions from

the Near-RT RIC ( 9⃝). The E2 Terminator wastes its resources to parse the incoming mes-

sages to determine that the messages are invalid and discard them all. At this point, the

latency monitoring xApp detects anomalies in the control signaling latency to flag conditions

stressing the E2 Terminator ( 10⃝). If this condition is left unaddressed, time-critical control

messaging between the xApps and multiple legitimate E2 Nodes could take a hit leading to

abnormally high latencies compromising the control loop criteria for near-real-time opera-

tions such as mobility handoff or UE admission. This leads to service degradation, or, in the

worst case, Near-RT RIC service unavailability due to application crash and restart of the
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E2 Terminator microservice.

In the following chapter, we describe the metrics used to characterize the DoS attack and

analyze the results of the orchestrated attacks on the proof-of-concept experimental setup

described in this chapter.



Chapter 8

Metrics and Results

This chapter studies the metrics necessary to characterize volumetric DoS attacks on the

OSC Near-RT RIC. As part of the results, we also assess the resiliency of the Near-RT RIC

platform components when subjected to application layer DoS attacks (Contribution 6).

8.1 Metrics

The core metrics employed to study the Near-RT RIC platform components include: 1) the

CPU and memory usage of the containers running the microservices and; 2) the network

usage of the Kubernetes pods. We fetch these metrics from the Prometheus monitoring

server available within the OSC Near-RT RIC cluster. In addition to these metrics, we also

monitor the message counter internal to the E2 Terminator to track the number of different

E2 messages processed by it. The E2 Terminator application exposes these counter values as

Prometheus metrics that are scraped by the Prometheus server outlined earlier. Furthermore,

we fetch the application layer latency measurements between the latency monitoring xApp

and the E2 Nodes from the InfluxDB. For confirmation of any signaling storm conditions in

the application layer DoS attack, we also record the network latency using the ping plugin of

the Telegraf utility for InfluxDB. All collected metrics are visualized using the open-source

Grafana dashboard utility.

50
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8.2 Results

This section elaborates on the performance metrics of the Near-RT RIC and the E2 inter-

face during normal operation of the experimental setup described in Section 7.1 and when

subjected to resource exhaustion and signaling storm DoS attacks. We assess the E2 inter-

face performance primarily based on signaling latency and Near-RT RIC performance via

resource metrics such as CPU, memory, and network usage within the platform.

8.2.1 Normal Operation

Figures 8.1 and 8.2 depict the metrics discussed in the previous section. While Figure 8.1

displays the various message counter states at the E2 Terminator, Figure 8.2 shows the

CPU and memory resource utilization, along with the network utilization of those platform

components and entities involved in facilitating communications between xApps and one

or more E2 Nodes. The Near-RT RIC platform consumes negligible resources until the

first E2 Setup procedure is triggered. At about 4 minutes into normal operations, the E2

Nodes (one situated locally alongside the Near-RT RIC deployment, and two other situated

in the Blacksburg campus) connect to the Near-RT RIC one after the other, as shown in

Figure 8.1a. From Figure 8.1b, we observe that the size of a setup request is around 700

bytes, while that of a setup response message is around 100 bytes. We also notice a slight

increase in the memory and CPU consumption of the E2 Terminator and the E2 Manager,

shown in Figure 8.2a. This is expected since all incoming setup request messages over the E2

interface are forwarded by the E2 Terminator to the E2 Manager for acceptance or rejection

of the requesting E2 Node. The network utilization by the E2 platform components, shown

in Figure 8.2b, confirms the same behavior.

After about 5 minutes of normal operation, the NexRAN and Latency Monitoring xApps are
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(a) E2 Setup messages. (b) E2 Setup message payload.

(c) RIC Subscription messages. (d) RIC Subscription message payload.

(e) RIC Indication messages. (f) RIC Indication messages per second.

(g) E2 interface network layer latency. (h) E2 interface application layer latency.

Figure 8.1: E2 Terminator message counters and latencies during normal operation.
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(a) E2 application resource utilization. (b) E2 application network utilization.

(c) Routing Manager resource utilization. (d) Routing Manager network utilization.

(e) DBaaS application resource utilization. (f) Subscription manager resource utilization.

Figure 8.2: Performance statistics of Near-RT RIC components during normal operation.

deployed sequentially. This is validated by Figures 8.1c and 8.1d, showing the subscription

message count and size, respectively. While the NexRAN xApp targets one of the E2 Nodes

located at the CORNET testbed in Blacksburg, the Latency Monitoring xApp subscribes to

all E2 Nodes connected to the Near-RT RIC. The subscription procedure triggers activities

on the Subscription Manager, E2 Terminator, Routing Manager, and the DBaaS platform

components, leading to a marginal increase in memory and CPU consumption (shown in

Figures 8.2c-8.2f). Upon successful subscription, the E2 Nodes begin to send RIC Indications
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to the subscribed xApps through the E2 Terminator. Figure 8.1f shows the number of such

messages handled by the E2 Terminator and the corresponding payload size. Furthermore,

Figure 8.1e shows a per-second delta for the processed indications. Since each E2 Node

receives subscriptions requiring RIC Indications with a frequency between two and four

seconds, the E2 Terminator processes up to 3 indication messages every second with the

payload size remaining below 400 bytes. Figure 8.1g plots the network layer latency between

the compute node hosting the Near-RT RIC cluster and each compute node hosting the

E2 Node (running the srsRAN application suite) using the ping application. The E2 Node

collocated with the Near-RT RIC platform experiences less than 1 ms latency while the two

E2 Nodes located in the Blacksburg campus experience an average latency of 8−10ms. There

is some network jitter causing the latency to increase momentarily to about 20ms. Although

negligible, this jitter is expected since we run the E2 interface over the OpenVPN VPN link.

Figure 8.1h shows the application layer latency determined by the Latency Monitoring xApp

over the E2 interface. The values indicate some jitter along E2 interface connections to a

specific E2 Node (eNB-3 in this case). Otherwise, the application layer latency follows the

network layer latency with an added delay of approximately 4 ms.

After subscribing to the E2 Node at around the sixth minute of the experiment, the NexRAN

xApp starts receiving RIC Indications from its target E2 Node and begins to enforce closed-

loop throttling of the configured RAN slices based on predefined constraints for the slice

profile. Figures 8.3a-8.3c show the slice share status, UE throughput status, and the control

plane signaling latency for the xApp, respectively. We particularly note that the signaling

latency lies under 50ms satisfying the near-real-time control loop requirements of 10ms−1 s.
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(a) Slice share configuration by NexRAN xApp. (b) UE throughput control through RAN slicing.

(c) NexRAN xApp control plane signaling la-
tency.

Figure 8.3: NexRAN xApp statistics during normal operation.

8.2.2 E2 Signaling Storm

Figure 8.4 characterizes the signaling storm attack on the Near-RT RIC and the E2 interface

between the E2 Terminator and E2 Nodes. For achieving the signaling storm scenario on the

E2 interface, the DoS attacker agent connects to the E2 Terminator with a single E2 Node

instance (Figure 8.4a). Shortly after successful E2 setup, the attacker launches a flood of RIC

Indication messages targeting the Near-RT RIC as shown in Figure 8.4c. This can better

be visualized through Figure 8.4d, which depicts a best-effort message flooding approach

topping around 6000 messages every second. Considering that the RIC Indication message

generated by the attacker is 141 bytes in length, we estimate a peak throughput of 846 kB

of attack traffic directed towards the E2 Terminator. Although this traffic volume pales in

comparison to the traffic volume in typical volumetric DoS attacks, we point to the fact
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(a) E2 Setup message count. (b) E2 interface application layer latency.

(c) RIC Indications. (d) RIC Indications per second.

(e) E2 application resource utilization. (f) E2 application network utilization.

(g) NexRAN control signaling latency. (h) Imprecise slice share control.

Figure 8.4: Signaling storm attack characteristics on the Near-RT RIC and the E2 interface.
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(i) E2 control loop latency violation. (j) Network layer latency during the attack.

Figure 8.4: Signaling storm attack characteristics on the Near-RT RIC and the E2 interface.

that we target a single Near-RT RIC platform service, namely the E2 Terminator, through

the signaling storm. Therefore, we only require a high-intensity yet considerably low-volume

attack to cause service disruption on the Near-RT RIC. The processing strain on the E2

Terminator is confirmed from Figures 8.4e and 8.4f, which point to a sudden spike in the

CPU usage of the E2 Terminator coupled with high network usage of about 250 MB within

a short period of 5 minutes. The CPU usage increases by almost 1000% consuming more

than one CPU core within the Kubernetes cluster. From Figures 8.4d and 8.4e, we observe

that the resource usage is directly proportional to the volume of attack traffic directed at

the E2 Terminator.

The signaling storm attack is detected using the Latency Monitoring xApp. From Fig-

ure 8.4b, we observe that during the attack, the control plane signaling latencies of all

connected E2 Nodes increases 70 times from approximately 10 ms to 700 ms. This is ob-

servable even with the sentinel E2 Node collocated to the Near-RT RIC host. Factoring in

the latency reports of all E2 Nodes can inform the Near-RT RIC about the status of the

E2 interface and trigger an alert in case a signaling storm attack is detected. Since the

anomalous increase in signaling latencies during the signaling storm attack does not scale

proportionally between multiple E2 Nodes situated at different geographical locations, the

Latency Monitoring xApp can leverage the collected data to train ML models that can de-
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termine a dynamic threshold to detect such attacks on the E2 Terminator. The effects of

the signaling storm attack are observable on the NexRAN xApp’s functioning. For example,

Figure 8.4g shows a 5x increase in the control plane signaling latency which affects the ability

of the E2 Node to adjust its slice configuration dynamically, as seen in Figure 8.4h. The

effects are prominent between the fifteenth and eighteenth minutes of the experiment, where

the control messages from the xApp experience more delay impacting how quickly the slice

share can be reconfigured by the NexRAN xApp.

A persistent and elongated signaling storm, as shown in Figure 8.4 could lead to prohibitively

higher latencies on the E2 interface. For example, Figure 8.4i shows a signaling latency of 2 s

violating the near-real-time control loop requirements of 10 ms−1 s resulting in degradation

of service, or, in the worst case, compromise of service availability for all connected E2 Nodes.

We confirm the volumetric application layer DoS attack by the fact that the network layer

latency (shown in Figure 8.4j) remains fairly unaffected for the duration of the attack.

Figure 8.5 characterizes the Near-RT RIC performance after the signaling storm attack is

stopped. The E2 Terminator gives up excess CPU usage (Figure 8.5a) since the RIC Indi-

cations plateau to the normal messaging frequency (Figures 8.5b and 8.5c). This reflects in

the application layer latency measured by the Latency Monitoring xApp as shown in Fig-

ure 8.5d. There is also a marked improvement in the control plane signaling latency of the

NexRAN xApp, with the latency for all control messages staying within 50 ms (Figure 8.5e).

As expected from an application layer DoS attack, the network layer latency remains the

same over all periods of the experiment, as shown in Figure 8.5f.
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(a) E2 application resource utilization. (b) RIC Indications.

(c) RIC Indications per second. (d) E2 interface application layer latency.

(e) NexRAN control loop signaling latency. (f) E2 interface network layer latency.

Figure 8.5: Near-RT RIC statistics post signaling storm attack.
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(a) E2 Setup DoS attack message count. (b) E2 Setup DoS attack message payload size.

(c) E2 application resource utilization. (d) E2 application network utilization.

(e) Routing manager resource utilization. (f) Routing manager network utilization.

(g) DBaaS application resource utilization. (h) E2 interface application layer latency.

Figure 8.6: DoS attack characteristics on the Near-RT RIC and the E2 interface.
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(i) NexRAN xApp control signaling latency. (j) E2 interface network layer latency.

Figure 8.6: DoS attack characteristics on the Near-RT RIC and the E2 interface.

8.2.3 E2 Setup DoS Attack

Figure 8.6 shows the Near-RT RIC performance statistics and application layer latency dur-

ing the E2 Setup DoS attack. We rerun the experiment and ensure normal Near-RT RIC

operation as described in Section 8.2.1. Shortly after the sixth minute, the multi-threaded

DoS attacker agent spawns multiple E2 Node simulators to send an E2 SETUP REQUEST

message from each simulated E2 Node. In our case, we simulate 2000 E2 Nodes connecting

to the Near-RT RIC. Figures 8.6a and 8.6b show the number of messages processed by the

E2 Terminator. Unlike the signaling storm attack, with multiple E2 Setup messages, we

notice a sharp increase in the memory usage (1000% more from 30 MB to almost 350 MB)

of the E2 Terminator in addition to increased CPU consumption (Figure 8.6c). We also note

a corresponding increase in its network usage (Figure 8.6d). Additionally, we observe the

attack spill over to other Near-RT RIC platform components. Notably, the E2 Manager,

Routing Manager, and the DBaaS applications experience a sharp increase in CPU utiliza-

tion shortly after the attack targets the E2 Terminator (Figures 8.6e-8.6g). The Routing

Manager understandably faces the most pressure since it has to create and distribute routes

to all platform components upon the addition of each new E2 Node to the Near-RT RIC.

The resource consumption pattern indicates that the E2 Setup flood can amplify the DoS
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attack by targeting multiple Near-RT RIC platform services. Interestingly, however, we find

no detrimental effects on the application latency for E2 interface control signaling between

the subscribed xApps and E2 Nodes (Figures 8.6h-8.6j). This is attributable to the nature of

the SCTP connection in ensuring individual transport network streams for facilitating com-

munications for established E2 connections. Also, the attack primarily targets the memory

consumption of the E2 Terminator rather than CPU usage as witnessed during the signaling

storm attack (Section 8.4e).

At around the eighth minute, and within two minutes into the DoS attack, the E2 Termi-

nator becomes unresponsive and unable to maintain existing as well as new E2 connections.

Connecting a little more than 1000 E2 Nodes to the E2 Terminator disrupts the RMR com-

munications internal to the Near-RT RIC and the liveness and readiness probes for the pod

fail. Since Kubernetes enforces self-healing to kill and restart unhealthy pods, all existing E2

signaling facilitated by the E2 Terminator is reset. Thus, any E2 Node controlled by one or

more xApps on the Near-RT RIC gets disconnected, thereby impairing RAN optimization

and control on all affected E2 Nodes.

Given the intensity of this resource exhaustion attack, an xApp-based prevention strategy

cannot provide a fool-proof solution to alleviate such attacks from compromising the avail-

ability of the Near-RT RIC. The detection strategy should rather be localized and integrated

within the Near-RT RIC platform. In this regard, a proof-of-concept strategy to optimize

the placing of the E2 Terminator to reduce control plane signaling latency is proposed in a

related work [31]. We suggest a few potential approaches to tackle this problem along with

conclusions for this thesis work in Chapter 9.



Chapter 9

Conclusion and Future Work

This chapter summarizes the contributions of this thesis and recapitulates the results ob-

tained from this experimental research, along with scope for future work.

9.1 Summary of Contributions and Results

This thesis investigated the scalability and security posture of the Near-RT RIC platform

and its components, focusing on the E2 interface. We demonstrated the limitation in the

design of the OSC Near-RT RIC to support multiple xApps to control the RAN simulta-

neously (contribution 1). We also traced this limitation to the lack of clarity in one of

the IEs defined in the E2AP specifications by O-RAN WG3 (contribution 2). We imple-

mented an improved message routing mechanism that enables simultaneous xApp control

(contribution 3). We developed an xApp to monitor the application layer latency over the

E2 interface (contribution 4). We designed a multi-threaded E2 Node simulator for orches-

trating resource exhaustion DoS attacks and signaling storm attacks on the Near-RT RIC

over the southbound E2 interface (contribution 5). Finally, we experimentally assessed the

security posture of the OSC Near-RT RIC by characterizing the performance of the platform

components and the signaling latency between the E2 Terminator and one or more E2 Nodes

(contribution 6).

Our results demonstrate that the E2 Terminator application can be impacted through sig-
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naling storms to violate the control loop latency causing undesirable effects on the E2 Node.

Additionally, we showed that an xApp-based latency monitoring solution can be effective

in detecting signaling storms at the Near-RT RIC. We also demonstrated a high-intensity

spillover DoS attack exploiting the E2 Setup procedure to starve multiple Near-RT RIC

components of physical computing resources like CPU and memory. The control signaling

results indicate that the detection of severe resource exhaustion attacks cannot be accom-

plished using xApps and that detection and mitigation strategies need to be put in place

within the platform to quickly identify such attacks and prevent service outage.

9.2 Future Work

This thesis mainly aimed to establish the possibility of DoS attacks and characterize their

effects on the Near-RT RIC platform components. While the Latency Monitoring xApp is a

decent way to observe the attack, further work is required to reduce false positives and enable

dynamic latency threshold triggers for flagging a potential signaling storm. For example,

AI/ML solutions can be incorporated into the xApp logic to adapt the trigger threshold

based on the historical time-series latency data available from the xApp. Also, more re-

search is required to prevent resource exhaustion through E2 Setup attacks. Currently, the

E2 Terminator is not state-aware and blindly forwards incoming requests to the E2 Manager.

Similarly, the E2 Manager does not check the connection load of the requesting E2 Termi-

nator before accepting an incoming setup request. Enabling such features will increase the

resilience and load balancing capability of the Near-RT RIC and thwart DoS attacks from

malicious RAN elements.
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