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Computational and Machine Learning-Reinforced Modeling and De-
sign of Materials under Uncertainty

Md Mahmudul Hasan

(ABSTRACT)

The component-level performance of materials is fundamentally determined by the underly-

ing microstructural features. Therefore, designing high-performance materials using multi-

scale models plays a significant role to improve the predictability, reliability, proper function-

ing, and longevity of components for a wide range of applications in the fields of aerospace,

electronics, energy, and structural engineering. This thesis aims to develop new method-

ologies to design microstructures under inherent material uncertainty by incorporating ma-

chine learning techniques. To achieve this objective, the study addresses gradient-based and

machine learning-driven design optimization methods to enhance homogenized linear and

non-linear properties of polycrystalline microstructures. However, variations arising from

the thermo-mechanical processing of materials affect microstructural features and properties

by propagating over multiple length scales. To quantify this inherent microstructural un-

certainty, this study introduces a linear programming-based analytical method. When this

analytical uncertainty quantification formulation is not applicable (e.g., uncertainty propaga-

tion on non-linear properties), a machine learning-based inverse design approach is presented

to quantify the microstructural uncertainty. Example design problems are discussed for dif-

ferent polycrystalline systems (e.g., Titanium, Aluminium, and Galfenol). Though conven-

tional machine learning performs well when used for designing microstructures or modeling

material properties, its predictions may still fail to satisfy design constraints associated with



the physics of the system. Therefore, the physics-informed neural network (PINN) is devel-

oped to incorporate problem physics in the machine learning formulation. In this study, a

PINN model is built and integrated into materials design to study the deformation processes

of Copper and a Titanium-Aluminum alloy.



Computational and Machine Learning-Reinforced Modeling and De-
sign of Materials under Uncertainty

Md Mahmudul Hasan

(GENERAL AUDIENCE ABSTRACT)

Microstructure-sensitive design is a high-throughput computational approach for materi-

als design, where material performance is improved through the control and design of mi-

crostructures. It enhances component performance and, subsequently, the overall system’s

performance at the application level. This thesis aims to design microstructures for poly-

crystalline materials such as Galfenol, Titanium-Aluminum alloys, and Copper to obtain

desired mechanical properties for certain applications. The advantage of the microstructure-

sensitive design approach is that multiple microstructures can be suggested, which provide

a similar value of the design parameters. Therefore, manufacturers can follow any of these

microstructure designs to fabricate the materials with the desired properties. Moreover, the

microstructure uncertainty arising from the variations in thermo-mechanical processing and

measurement of the experimental data is quantified. It is necessary to address the resultant

randomness of the microstructure because it can alter the expected mechanical properties.

To check the manufacturability of proposed microstructure designs, a physics-informed ma-

chine learning model is developed to build a relation between the process, microstructure,

and material properties. This model can be used to solve the process design problem to

identify the processing parameters to achieve a given/desired microstructure.
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Chapter 1

Introduction

Materials are at the heart of our daily life, and they guarantee the functioning, long-term

durability, safety, and environmental compatibility of all the devices, machinery, and ser-

vices around us. The applications utilizing advanced materials include but are not limited

to energy, aerospace, automotive, and biomedical engineering. Therefore, developing new

materials and enhancing their properties will be of critical importance for current and fu-

ture engineering systems. Polycrystalline metals, including Titanium (Ti) and Aluminium

(Al) alloys as well as Galfenol, are widely used in the aerospace and electronics industries.

Here, Ti and Al are usually categorized as aerospace materials. Ti alloys show excellent

corrosion and oxidation resistance with high mechanical strength at high-temperature en-

vironments [1]. Therefore, Ti alloys are utilized for aircraft structure and engine parts, for

example in aircraft springs, turbine compressors, and helicopter rotor systems [2]. On the

other hand, Al alloys are well-known for their light-weight nature and high strength-to-weight

ratios that make these alloys desired materials for aircraft components [3, 4]. Additionally,

Al-based alloys are advantageous because of their low costs and ease of manufacturing. They

are used in many different parts of the aircraft, such as wings, turbines, combustion chamber,

fan, compressor, and casing, to reduce the weight [2]. Similarly, Galfenol can be utilized

for different sensors and actuators of aircraft systems owing to its excellent magnetostrictive

features compared to other ductile materials [5]. The performance of these materials directly

depends on the underlying microstructures. Therefore, the selection of these materials with

14
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optimum properties for better performance is the key purpose of polycrystalline materials

design. The imperfections occurring during the fabrication of polycrystals such as unan-

ticipated thermal and stress gradients arising from thermo-mechanical processing can cause

variations in microstructural features. This uncertainty also refers to the diversity of the

microstructure that cannot be described with a deterministic representation. The variability

in different stages of traditional or additive manufacturing techniques causes the discrep-

ancy in the predicted micro and macro-scale properties and material performance [6, 7, 8].

It can even lead to material failure if the deviations in the critical properties exceed a cer-

tain limit. Therefore, robust engineering designs always take into account the variability

in the microstructure and the propagation of this microstructural uncertainty over multiple

length scales. The optimum microstructure can be obtained through different deformation

processing steps, i.e., tension/compression and shear loads. Therefore, designing processing

parameters also plays a vital role in materials design.

1.1 Contributions

Machine learning (ML) is one of the most fascinating tools which have recently entered

the toolbox of material science, therefore, its application has become more visible in this

area [9]. This set of statistical techniques has already demonstrated its ability to signifi-

cantly speed up both fundamental and applied research. Traditionally, the experimental

setup is required to find and characterize new materials, which can lead to a tedious and

prolonged process. Moreover, it may require high costs for resources and equipment. The

development of computational techniques, particularly the density functional theory (DFT),

Monte Carlo simulations (MCS), and molecular dynamics, contributed to the first computa-

tional revolution in materials science [10]. The time and expense associated with materials
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design have been significantly decreased by combining experiments and computer simula-

tions. However, computational methods can often be expensive when they depend on many

conditions [11]. For example, a polycrystalline microstructure has many features to be mod-

eled to compute its homogenized properties, thereby leading to an ultra-high-dimensional

computational problem. Investigation of large-deformation behavior (e.g., crystal plastic-

ity modeling) can further increase the computational expense. ML-based surrogate models

can be a suitable alternative that can precisely capture the underlying relation between the

process-(micro)structures-property. Therefore, introducing ML to microstructure-sensitive

materials design and uncertainty quantification of microstructures is expected to improve

the computational efficiency of these studies. In this study, the theoretical limits of the

homogenized (meso-scale) material properties are investigated with the help of ML. The mi-

crostructural uncertainty arising from manufacturing processes and its propagation on the

material properties and performance are also quantified. Moreover, ML-based new method-

ologies are developed to design polycrystalline materials under microstructural uncertainty.

In addition, crystal plasticity modeling of metallic microstructures is performed using a

Physics-Informed Neural Network (PINN) based surrogate model.

The overall contributions of this study in the fields of multi-scale materials design, uncer-

tainty quantification, and design under uncertainty are summarized below:

• Investigation of the theoretical limits of physical material properties (property

closures)

• Microstructure design of polycrystals for isotropic properties

• Investigation of the effects of fabrication/processing-related uncertainty on mi-

crostructures and material properties

• Investigation of the effects of fabrication/processing-related uncertainty on the de-
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sign of polycrystalline materials

• Modeling and inverse design of process-structure-property linkage of metals with

data-driven surrogate models under uncertainty

Figure 1.1 also summarizes the objectives of this study by introducing ML to the multi-scale

design of materials under uncertainty.

Microstructure

Property

Machine Learning

UQ

Figure 1.1: Schematic of the machine learning reinforced multi-scale design of mate-
rials and uncertainty quantification. Figure courtesy of processing image: Scot Forge
(https://www.scotforge.com/).

The organization of this thesis is as follows: The next sections of Chapter 1 focus on the

literature review on the multi-scale design of materials, uncertainty quantification (UQ), and
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ML applications in materials design. Chapter 2 discusses the mathematical background of

the microstructure model using the orientation distribution function (ODF), analytical and

numerical UQ models, and data-driven ML model. Chapter 3 describes the microstructure-

sensitive design of polycrystalline materials, which involves the optimization of elastic con-

stants and the design of isotropic materials using gradient-based and ML-reinforced tech-

niques. Chapter 4 discusses the modeling of microstructural uncertainty and its propagation

on homogenized material properties (e.g., elastic constants) and the microstructure design

approach using analytical and ML-based UQ formulations. Next, the application of PINN in

materials design is described in Chapter 5. Finally, conclusions and the potential future ex-

tensions to materials design problems for mechanical and magnetic properties are discussed

in Chapter 6.

1.2 Multi-Scale Materials Design

The field of multi-scale materials design aims to identify the material features that provide

optimum properties for specific engineering applications [12, 13, 14]. The studies in the

last decade to design theoretical tools for optimizing material microstructures are classified

as ‘microstructure-sensitive design for performance optimization’ (MSDPO) [15, 16]. The

main advantage of this approach is its ability to create a design space of all possible values

of the desired parameters, which allows the designer to select the optimum solution of the

design parameter(s) for a particular engineering problem [17, 18]. Additionally, this optimum

solution can be mapped back to the corresponding microstructure space which can help to

determine the optimum manufacturing route of the material [19]. Due to the anisotropic

nature of polycrystalline materials, the microstructure that provides the maximum value of a

desired parameter (e.g., stiffness constant, C11) may not be the optimum solution for another
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parameter (e.g., C12). However, this challenge also creates an opportunity for polycrystalline

materials design to achieve a prescribed material property for a particular application by

tailoring the microstructures [20, 21]. This research area has become more prevalent with the

introduction of the Integrated Computational Materials Engineering (ICME) [22] paradigm.

Recent developments in ICME have led to a significant improvement in many aspects of

computational materials science and process engineering as the emerging techniques reduce

the cost and risks of manufacturing technology [23, 24].

Different approaches have been applied by researchers to obtain optimum material proper-

ties using the microstructure-sensitive design. Acharjee et al. [25] and Ganapathysubrama-

nian et al. [26] applied proper orthogonal decomposition (POD) and method of snapshots

in Rodrigues orientation space to develop the reduced-order model representation of the

microstructural orientations in a polycrystalline material. This strategy was able to save

significant computational time. The material design was performed for a compliant beam

microstructure by Adams et al. [27] through generating a spectral representation of the

Orientation Distribution Function (ODF), which defines the design variables for the poly-

crystalline material [28, 29]. A similar approach was adopted by Kalidindi et al. [30] for

designing a thin plate with a circular hole in the center to maximize the uniaxial load-

carrying capacity of the plate without plastic deformation. The microstructure-sensitive

design method was applied to the hexagonal close-packed (HCP) microstructures by Fast

et al. [31] to obtain the design space of elasto-plastic properties of a cantilever beam that

is made of alpha-Titanium. Other optimization studies reported in the literature to im-

prove mechanical properties of polycrystalline materials used finite element analysis [32] and

graph-based methods [33].

More recently, a linear programming algorithm was used to find out the microstructural

textures that lead to optimum homogenized (volume-averaged) properties using the idea
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of building a reduced-order design space, called the property closure [34, 35, 36]. The

optimization techniques can also be used within this reduced space to calculate the desired

properties by designing the microstructural texture. The applications of this approach were

performed by Acar et al. [35] including the example of finding the best microstructure design

of an airframe panel for obtaining the maximum buckling temperature. This process was

extended to find the maximum yield strength of the Galfenol alloy while the constraints for

the vibration tuning were considered [36]. In both cases, the property closures of several

homogenized stiffness parameters were generated and utilized for the solution. This thesis

integrates microstructure-sensitive materials design with machine learning and develops a

fast and efficient multi-scale model that builds a linkage between process-structure-property.

1.3 Uncertainty Quantification for Polycrystalline Ma-

terials

The uncertainties in physical systems can arise from different sources and exhibit various

features. Generally, uncertainty can be classified as: (i) aleatoric uncertainty and (ii) epis-

temic uncertainty. Aleatoric uncertainty is the natural randomness of the system, which is

unavoidable. In the case of materials science, the main source of aleatoric uncertainty is

the variations associated with thermo-mechanical processing [37]. The fluctuations in the

stress and thermal gradients during material processing can cause unexpected variations in

atomistic, molecular, and meso-scale aspects. The aleatoric uncertainty can propagate over

multiple length scales, and affect the microstructural features, such as the crystallographic

texture. Though this inherent uncertainty of the microstructure cannot be eliminated, utiliz-

ing extensive experimental data can quantify and predict the effects of the microstructural

variability. On the other hand, epistemic uncertainty arises from the lack of knowledge



1.3. UNCERTAINTY QUANTIFICATION FOR POLYCRYSTALLINE MATERIALS 21

regarding a model or a system. Therefore, it is also categorized as model uncertainty, pa-

rameter uncertainty, or algorithmic uncertainty. However, aleatoric uncertainty is studied

more extensively in the literature than epistemic uncertainty [37].

Depending on the type of the design problem, the Uncertainty Quantification (UQ) is clas-

sified as 1) forward UQ problem and ii) inverse UQ problem. The forward UQ problem

concentrates on the propagation of the uncertainty on the output (e.g., volume-averaged

material properties) if the probability distributions of the input parameters (e.g., small-scale

material properties) are captured. As a result, the forward problem is frequently referred

to as the uncertainty propagation problem in the fields of materials science and engineer-

ing. [38]. Conversely, inverse UQ problems aim to understand the uncertainty of input

parameters when the variations of the output parameters (e.g., volume-averaged proper-

ties) are captured. For instance, this problem focuses on tailoring the distribution of the

stochastic inputs to obtain targeted meso-scale material properties. Inverse UQ problems are

more suitable to be investigated by numerical models due to their computationally expensive

nature. An overview of the forward and inverse UQ problems for microstructure-property

connections is visualized in Fig. 1.2.

The state-of-the-art utilizes computationally-expensive numerical UQ methods, such as Monte

Carlo Simulation (MCS), stochastic collocation, and spectral decomposition to quantify the

microstructural stochasticity [40]. Creuziger et al. [41] estimated the uncertainty in the ODF

due to the variations in the measured pole figures using MCS. Luan et al. [42] produced the

single crystal microstructures using the Potts MCS method and studied the consequences

of the presented sampling strategy on the calculation of different parameters, such as the

grain size and grain face number distribution. An extended finite element method along with

MCS was suggested by Hiriyur et al. [43] to quantify the uncertainty in the homogenized

elastic parameters of multi-phase materials. Huyse et al. [44] computed the propagation of
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Figure 1.2: Overview of forward and inverse design of microstructure-property relations for
both deterministic and stochastic problems [39].

microstructural uncertainty on homogenized parameters using different window sizes of the

actual microstructure. Moreover, they utilized MCS to study the stochasticity in Young’s

modulus and Poisson’s ratio. Sakata et al. [45] introduced a perturbation-based homoge-

nization method to identify the influence of the microstructural uncertainty on macroscopic

parameters, such as Young’s modulus and Poisson’s ratio. They validated the results against

the MCS approach. In another study, Sakata et al. [46] applied a Kriging-based approxima-

tion that was coupled with a probabilistic density function to find out the variations in the

macroscopic properties of composite materials due to the microscopic uncertainty. Clément

et al. [47, 48] developed a numerical stochastic analysis scheme for non-linear hyperelastic

materials by representing the microstructure geometry with high-dimensional random pa-

rameters. Moreover, Kouchmeshky et al. [49] used the collocation approach to identify the
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uncertainty of the deformation behavior due to the processing-induced variations in the ini-

tial microstructure. The dispersion and sensitivity analysis of in-plane Young’s modulus are

examined by Madrid et al. [50] because of the uncertainties in the microstructure geometry,

single-crystal elastic constants, and crystallographic texture. Niezgoda et al. [51] defined

the microstructure statistically and measured the structural variance. The variances in the

microstructure properties are visualized by the space of the principal components. Here, the

readers are referred to the extensive summary provided in Ref. [37] for the state-of-the-art

UQ algorithms utilized in small-scale materials science problems.

The numerical methods that are already described above are computationally-expensive as

they utilized sampling or interpolation functions to express the probability distributions of

the random variables. In addition, if the number of variables increases and the system con-

tains design constraints, then these methods are assumed to be computationally inefficient.

For instance, the ODF involves a large number of independent variables, e.g., 50 variables for

the hexagonal close-packed (HCP) Titanium (Ti) using the presented finite element approach

in this study. Moreover, the ODF needs to satisfy the volume normalization constraint as

explained in the mathematical modeling (Chapter 2). Therefore, the numerical UQ methods

are not efficient to quantify the uncertainty in the ODFs of the polycrystalline materials [52].

To overcome these limitations, Acar and Sundararaghavan [53] proposed an analytical for-

mulation of the uncertainty in the ODF due to the variations in the measured pole figures.

Using a similar approach, they quantified the uncertainty in the ODF and macro-scale prop-

erties as a result of the stochasticity in the electron backscatter diffraction data [54]. The

inverse problem of identifying the microstructural uncertainty given the variations of in-plane

Young’s modulus and shear modulus values was studied by Acar using this analytical UQ

method [52]. A similar approach was applied to determining the propagation of the uncer-
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tainty over the multi-scale properties of composite materials [55, 56, 57]. The authors also

developed a linear programming-based analytical method to evaluate the stochasticity of the

microstructure and its propagation on the material properties through a Gaussian distribu-

tion definition [58]. They also studied the effects of the epistemic uncertainty [59] during the

microstructure reconstruction using Markov Random Field method [60]. Acar extended this

study to compute the propagation of the microstructural uncertainty on macro-scale mate-

rial properties [61] by coupling reliability constraints with an optimization solution [62]. A

design optimization problem was also solved to investigate the epistemic uncertainty effects

on the microstructure that arise from the measurements of single crystal properties [63]. This

study aims to develop machine learning-reinforced UQ tools for quantifying the uncertainty

of the microstructures and its effects on the material properties.

1.4 Machine Learning-Reinforced Materials Design

Extracting useful information from existing data through various computing resources has

become an important paradigm in different scientific disciplines including image recognition,

cognitive science, and genomics [64]. In recent years, ML has become one of the most ex-

citing methods in computational materials science. In the past studies, the ML approach

has been applied to different studies in the fields of polycrystalline materials design [65, 66],

materials discovery [67, 68], and microstructure design for obtaining specific design param-

eters [69, 70]. This approach has also been extended to composite materials design and

analysis [71, 72, 73]. In the case of materials design under uncertainty, ML has been proven

as a promising tool [74]. For example, Xiao et al. [75] applied ML to quantify the uncer-

tainty arising from the atomic energy surfaces using the atomistic simulations for titanium
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dioxide (TiO2). Vaishali et al. [76] investigated the material and structural uncertainty ef-

fects on the performance of functionally-graded material (FGM) shells with an ML-based

non-intrusive approach. Recently, an ML-based crystal plasticity model representation for

Ti-7Al (Titanium-7 wt% Aluminum) alloy has been developed by Acar [77] using supervised

learning techniques.

On the other hand, many engineering models are built upon underlying physical laws. The

solutions of these models also need to satisfy boundary conditions as well as initial condi-

tions. For traditional data-driven modeling, a large amount of data are required to build a

high-fidelity model [78]. However, due to computational time requirements, it is not efficient

for some models like crystal plasticity modeling to produce sufficient data to train a high-

fidelity ML model. Moreover, traditional data-driven ML models may not be aware of the

underlying physics-based design constraints [79]. To incorporate the physics of the prob-

lem into the ML model to improve the ”domain-awareness” of the model, a new framework

called Physics-Informed Neural Network (PINN) was introduced by Raissi et al. [64]. Before

this study, Lee et al. [80] first applied a neural network algorithm to solve the differential

equations. After that, Lagaris et al. [81] solved ordinary and partial differential equa-

tions using artificial neural networks. They used a similar methodology to solve boundary

value problems with irregular boundaries [82]. Later, Sirignano et al. [83] developed a deep

learning algorithm to solve high-dimensional (up to 200 dimensions) partial differential equa-

tions (PDEs) with boundary and initial conditions. PINN has become very popular within

the scientific community since Raissi et al. published a detailed framework of PINN for

solving PDEs [84] and discovering PDEs [85]. Later, they published an integrated version

of the previous two articles [64]. Subsequently, PINN was adopted in different engineer-

ing applications, such as solid mechanics [86, 87, 88], crystal plasticity modeling [89, 90],
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fluid mechanics [91, 92, 93, 94, 95], heat transfer [96], nano-optics, metamaterials [97, 98],

medicine [99, 100, 101], and power systems [102]. Recently, PINN was also applied to quan-

tify the model uncertainty [103, 104, 105]. In 2021, a total of 1300 articles are found in

the literature related to PINN, which is more than twice the number in 2020 [106]. These

numbers imply the increasing significance of PINN in the current literature. Therefore, in

this study, for the first time, PINN is applied to multi-scale materials design and discovery

through microstructure optimization.



Chapter 2

Mathematical Background for

Multi-Scale Computational Modeling

This chapter delineates the necessary mathematical background for multi-scale computa-

tional modeling by introducing formulations of microstructure description, uncertainty quan-

tification, and machine learning algorithms employed in this study. A multi-scale modeling

approach that connects processing parameters, microstructural features (micro-scale), and

homogenized (volume-averaged) material properties is applied through the use of a one-point

probability descriptor, Orientation Distribution Function (ODF). Section 2.1 describes the

ODF model, which quantifies the microstructural texture and is applied to calculate the

homogenized material properties of polycrystalline materials. It also discusses the texture

evolution model during deformation processing using the ODF approach. Moreover, mi-

crostructures can demonstrate inherent uncertainty. Therefore, analytical and numerical

uncertainty quantification (UQ) models that are used to capture microstructural uncertainty

are explained in Section 2.2. A machine learning-driven multi-scale model is introduced to

predict homogenized material properties and quantify microstructural uncertainty. Sec-

tion 2.3 discusses the mathematical background of the data-driven machine learning model.

27
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2.1 Modeling of Microstructural Texture and Its Evo-

lution During Processing

A polycrystalline material consists of several crystals having different crystallographic orien-

tations that define the microstructural texture. The individual orientations of the crys-

tals can be represented by the angle-axis parameterization technique developed by Ro-

drigues [107]. This method follows a different approach to representing crystal orientations in

comparison to the Euler angles representation [108, 109]. In this work, the microstructure is

described using the ODF, which defines the volume density of each unique crystal orientation

in the microstructure. A local finite element discretization scheme is applied along with the

Rodrigues parameterization to compute the meso-scale properties. The interested readers

are referred to the study by Kumar et al. [110] for detailed information about the Rodrigues

parameterization of microstructural solution spaces. The definition of the ODF, in terms

of the volume densities of the crystals, requires the implementation of the normalization

constraint that is expressed by the following equation:

∫
Ω

A(r, t) dv = 1 (2.1)

Here, A(r, t) represents the ODF in a particular crystal orientation (r) at a certain time, t.

The integration for the homogenized properties is performed over the fundamental region,

Ω, by considering the lattice rotation, R. Given the Rodrigues orientation vector, r, R can

be obtained with the following expression:

R =
1

1 + r · r
(I(1− r · r) + 2(r ⊗ r + I × r)) (2.2)
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Homogenization aims to compute the volume-averaged properties of the polycrystalline mi-

crostructures as a function of the single-crystal properties. For example, using the Taylor

estimation [111], the volume-averaged elastic properties Cavg of homogeneous polycrystalline

materials can be obtained from the following equation:

Cavg =< C > (2.3)

where C is the stiffness tensor of each crystal and < . > is the symbol of averaging. Similarly,

if any property of a single crystal χ(r), which is dependent on the crystal orientation, is

known, then the homogenized polycrystal property < χ > can be determined by performing

the averaging over the ODF. Mathematically, the expression is:

< χ >=

∫
Ω

χ(r)A(r, t) dv (2.4)

As mentioned earlier, the crystal orientation is represented by the Rodrigues parameteri-

zation, which is obtained from the scaling of the axis of rotation, n, that is expressed in

terms of the orientation, r, and angle of rotation, θ, as: n = r/tan(θ/2). In Eq. 2.4, χ(r)

represents the single-crystal material properties.

The homogenized (volume-averaged) properties of the microstructures are obtained using

the given expression in Eq. 2.4. Any polycrystal property obtained using Eqs. 2.2 and 2.4

can be shown in the linear form by this parameterization [34]. The finite element discretiza-

tion of the microstructural orientation space is exhibited in Fig. 2.1 for hexagonal and cubic

crystal systems. Here, each independent nodal point of the finite element mesh represents a

unique ODF value for the associated crystal. The matrix representation of Eq. 2.4 can be

written as follows:
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< χ > =

∫
Ω

χ(r)A(r, t) dv

=

Nelem∑
n=1

Nint∑
n=1

χ(rm)A(rm)ωm|Jn|
1

(1 + rm.rm)2

(2.5)

where Nelem is the number of elements of the finite element mesh with Nint integration

points in each element, and A(rm) is the ODF value at the mth integration point with global

coordinate rm of the nth element. |Jn| is the Jacobian matrix of the nth element and ωm is

the integration weight of the mth integration point. The Rodrigues parameterization metric

is given by:

1

(1 + rm.rm)2

The expression in Eq. 2.5 is given in terms of the nodal point values, while it can also be

(a) (b)

Figure 2.1: Finite element discretization of the orientation space for (a) hexagonal close-
packed (HCP) microstructure (Ti-7Al) and (b) face-centered and body-centered cubic (FCC
and BCC) microstructures (Al and Galfenol). The red-colored nodal points show the inde-
pendent ODF values while the blue-colored nodes indicate the dependent ODFs as a result
of the crystallographic symmetries [112].
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derived in terms of the properties defined at the integration points: < χ >= PintT Aint,

which is a linear form in terms of the ODF at integration points:

Pint = χ(ri)ωi|Ji|
1

(1 + ri.ri)2
and Aint = A(ri)

where, i=1,2,.......Nint ×Nelem.

When the symmetry arising from the crystalline system is considered, the number of in-

dependent nodal points decreases. Let A be the vector of ODF values at the independent

nodes that are obtained from the integration point values, Aint, using the tetrahedral finite

element definition. Next, the properties can simply be represented as < χ >= PTA in terms

of the independent nodal point ODF values. The nodal point property matrix, PT , can also

be computed from PintT . Here, the meso-scale stiffness tensor can be computed using the

microstructure homogenization expression (for example, C11 = PT
11A, where P11 is the prop-

erty matrix of the single-crystal values for C11). The Young‘s modulus (E11), on the other

hand, is inversely related to the stiffness as it is given by E11 = 1
S11

, where S11 = S(1, 1)

while S is the compliance matrix defined as S = C−1. Therefore, it is called a non-linear

property. Similarly, the normalization constraint of Eq. 2.1 can be written in the linear form

as qTA = 1. Finally, the ODF must satisfy the following non-negativity condition (A ≥ 0).

Here, A and q are vectors and P is a matrix. Their dimensions depend on the number of

independent nodes in the orientation space. For Ti-7Al, which has 50 independent nodes,

the dimensions of A, P and q are (50× 1), (36× 50) and (1× 50), respectively.

During the deformation process, the ODFs change due to the reorientation of the grains.

They evolve from the initial ODFs (at time t = 0) to the final deformed ODFs (at time

t = tfinal). The evolution of the ODF values is governed by the ODF conservation equation,

which satisfies the volume normalization constraint of Eq. 2.1. Equation 2.6 shows the
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Eulerian rate form of the conservation equation in the crystallographic orientation space

with a gradient operator given by [113]:

∂A(r, t)

∂t
+∇A(r, t) · v(r, t) + A(r, t)∇ · v(r, t) = 0 (2.6)

where v(r, t) is the reorientation velocity. The texture evolution can be calculated by the

microstructure constitutive model in terms of a velocity gradient (L) definition (see Eq. 2.7

below), which is linked to v(r, t) by the Taylor macro-micro linking hypothesis. A rate-

independent constitutive model is adopted to compute the reorientation velocity [113]. The

evolution of current texture A(r, t) from the initial texture A(r, 0) is solved by the consti-

tutive model and finite element representation in the Rodrigues orientation space.

Each deformation process, such as tension/compression and shear, generates a particular

ODF as output after applying a load for a specific amount of time. The macro velocity

gradient, L, for a particular process is used by the crystal plasticity solver to explore the

ODF evolution during that process. The velocity gradient of a crystal with the orientation,

r, can be written as:

L = S + R
∑
α

γ̇αT̄αRT (2.7)

where S represents the lattice spin, R, indicates the lattice rotation, γ̇α and T̄α indicate the

shearing rate and Schmid tensor for the slip system α, respectively.

The macro velocity gradient expression of Eq. 2.7 can be written in the following matrix

form for the tension/compression process (Eq. 2.8) and its derivation is skipped here for

brevity which can be found in Ref. [113].
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L = α1


1 0 0

0 −0.5 0

0 0 −0.5

 (2.8)

where α1 relates to the strain rate of the tension/compression process.

2.2 Uncertainty Quantification (UQ) Models

In this study, both analytical and numerical models of uncertainty quantification (UQ) are

employed. If the material properties are linearly related to the ODFs, which are called

linear homogenized properties, an analytical UQ approach is applied as it is computationally

efficient. However, if an explicit relation between the material property and ODFs cannot be

established, numerical methods are applied for uncertainty quantification and propagation.

The mathematics behind these UQ models are described in the following subsections.

2.2.1 Analytical Modeling of Microstructural Uncertainty for Lin-

ear Properties

The microstructural texture uncertainty is characterized using the ODF representation by

assuming that each independent node can have variations due to the aleatoric uncertainty

associated with the inherent randomness of materials and deformation processing. Firstly,

the ODFs are assumed to follow a multi-variate Gaussian distribution in this work based

on the evidence demonstrated by the measurements of the 150 experimental microstructure

data samples of Ti-7Al alloy [114]. Therefore, the mean values and variances of the ODFs are

defined as the design variables. If the ODF mesh contains k independent nodes, the mean

values of the ODFs at those nodes will create the vector µA, where, µA = [µ1, ..., µk]
T = E[A]



34 CHAPTER 2. MATHEMATICAL BACKGROUND FOR MULTI-SCALE COMPUTATIONAL MODELING

(E defines the expected value). In addition to the mean values, the covariance matrix

of the ODFs, ΣA, is required to describe the uncertainty in the microstructure. Here,

ΣA=cov(Ai, Aj) = E[(Ai − µAi
)(Aj − µAj

)], i, j = 1, ...., k. As ODFs follow a Gaussian

distribution, any property which is linearly dependent on the ODFs (e.g., Eq. 2.4), will

demonstrate a Gaussian distribution [52]. Therefore, for a material property Z, which is

linearly related to A, the mean value µZ and covariance ΣZ can be written as follows:

Z = PA (2.9)

µZ = PµA (2.10)

ΣZ = PΣAPT (2.11)

The derivation of Eq. 2.10 and Eq. 2.11 is reported in Ref. [53].

A linear system is developed here using the Gaussian distribution to calculate the mean

values and the covariance matrix of the ODF (A) from the known set of properties (C) with

uncertainty. As discussed earlier, the volume-averaged material property matrix (C) can be

related to the ODFs as follows:

P TA = C (2.12)

where C is an (m × k) matrix which includes the k single crystal values for m properties.

The ODFs are considered to be fully correlated. Therefore, the linear system solution will

provide the vector of k ODF mean values and the symmetric covariance matrix of size (k×k).

The normalization constraint (qTA = 1) can be represented by two equations because of the

uncertainty in the ODF. They are:

qTµA = 1 (2.13)

qTΣAq = 0 (2.14)
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According to Eq. 2.14, the vector of ODFs, A, for any certain point selected from its joint

probability distribution, must satisfy the normalization constraint. Therefore, the covariance

matrix of A must agree with Eq. 2.14. However, Eq. 2.14 can also be written in the form

of the following expression:

ΣAq = 0 (2.15)

The derivation of Eq. 2.15 from Eq. 2.14 is explained in detail in Appendix A.

Similarly, the expressions of the mean values (µC) and covariance matrix (ΣC) of the ma-

terial properties (C) are as follows:

P TµA = µC (2.16)

P TΣAP = ΣC (2.17)

The matrix representation of the ODF equality constraints can be shown as:



qT
(1×k) 0(1×n−k)

P T
(m×k) 0(m×n−k)

0(r×k) P̄(r×n−k)

0(k×k) Q̄(k×n−k)


 µA(k×1)

Σvec
A(n−k×1)

 =



1

µC(m×1)

Σvec
C(r×1)

0(k×1)


(2.18)

where µC and Σvec
C are the vectors of the mean values of the known properties and the upper

diagonal elements of the symmetric covariance matrix of the same properties, respectively.

Similarly, the upper diagonal elements of the ODF covariance matrix generate the vector

Σvec
A . The total number of entries in the ΣA matrix is n = k + k(k + 1)/2, whereas n − k

variables are unknown. Here, k is the length of the vector of the ODF mean values. Therefore,

the number of ODFs (k) of the microstructure defines the problem dimensionality. Moreover,

the simplification of Eq. 2.17 and 2.15, yields P̄ and Q̄, which describe the corresponding
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coefficient matrix for Σvec
A , respectively.

2.2.2 Uncertainty Quantification using Numerical Models

The Monte Carlo Simulation (MCS) is the most widely used UQ algorithm in materials de-

sign. The MCS technique is popular owing to its robust predictions and simplicity. However,

the MCS method is well-known for being computationally costly despite its robustness. This

is due to the large number of design samples that must be evaluated to reach an acceptable

degree of accuracy (often millions of design samples) [37]. Recently, Gaussian Process Re-

gression (GPR) has drawn the attention of the materials science community to solve design

(forward and inverse) and UQ problems. This method can provide high-fidelity predictions

and it is computationally efficient compared to MCS [37]. GPR is a powerful computational

technique that is capable of capturing the underlying relationship between inputs and out-

puts along with the variations in the inputs and their effects on outputs. Recent progress

and developments in GPR can be found in the review presented by Viana et al. [115]. The

mathematical background of GPR is summarized below.

The prediction of the Gaussian process model can be expressed as ȳ(x) ∼ N (µȳ, σ
2
ȳ), where

µȳ and σ2
ȳ are the mean value and variance of the output. The covariance expression of the

input is defined in terms of the kernel, kr. The covariance can be estimated using different

kernels such as constant, linear, polynomial, rational quadratic, exponential, and squared

exponential formulations [116]. A rational quadratic function will be applied in this work to

represent the kernel which is defined as:

kr(x, x̄) = σ2

(
1 +

(x− x̄)

2αl2

)−α

(2.19)

where x, x̄ represent data sets whose covariance is calculated, and σ, α, and l are the
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hyperparameters that need to be optimized by minimizing the difference between the GPR

predictions and the ground truth values of the output. Like other data-driven surrogate

models, e.g., neural networks, GPR also requires both training and test data. Let x and x∗

denote the training and test data sets, respectively. Then the overall covariance matrix (K)

of the training and test points can be expressed as

K =

 kr(x, x̄) kr(x, x̄
∗)

kr(x, x̄
∗)T kr(x

∗, x̄∗)

 =

 [K]rxr [K∗]rxt

[K∗]
T
txr [K∗∗]txt

 (2.20)

where r and t indicate the number of training and test samples. The elements of the matrix

K can be calculated using the kernel function of Eq. 2.19. The expected mean value (E[Ȳ ])

and the covariance ([ΣȲ ]) of GPR model outcomes (Ȳ ) can be determined using Eq. 2.21

and Eq. 2.22, respectively.

E[Ȳ ] = [K∗]
T
[
[K] + σ2[I]

]−1
Y (2.21)

[ΣȲ ] = [K∗∗]− [K∗]
T
[
[K] + σ2[I]

]−1
[K∗] + σ2[I] (2.22)

where Y is the known output of training data.

2.3 Data-Driven Machine Learning Models

Machine learning is a powerful tool that can mimic the linear or non-linear relations between

the variables by training the network with a set of known input and output data. This is

called supervised machine learning [117]. In this study, the Artificial Neural Network (ANN)
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method is applied to capture the relation between ODFs and volume-averaged material

properties.

A neural network consists of three layers such as an input layer, the hidden layer(s), and an

output layer. Each layer contains a single neuron or multiple neurons. One question comes

to mind immediately is that how many hidden layers and neurons should be used to create

an artificial neural network (ANN) architecture? Unfortunately, there is no exact answer to

this question [118]. However, different methods are found in the literature applied by the

researchers during the last decades to decide the number of hidden layers and neurons [119].

Panchal et al. [120] argued that one hidden layer is sufficient to solve most of the problems

unless the input data follows any special pattern like a saw tooth wave pattern. On the

other hand, too many neurons in the hidden layers can cause overfitting and underfitting

that occurs due to less number of neurons [121]. The literature reveals that the hidden layer

neurons can be 70% to 90% or less than twice of the input layer neurons and any number

between the input and output layer neuron sizes [120, 121, 122]. In this study, the input

data set (ODFs) does not demonstrate too much variability and the input layer contains 50
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Figure 2.2: A schematic of the ANN model with three layers which takes ODFs as input and
predicts material properties [112].
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neurons with only one neuron in the output layer. Therefore, only one hidden layer having

25 neurons is chosen for the network. The schematic of the ANN architecture is depicted in

Fig. 2.2.

Every connection between two neurons has a certain weight. In Fig. 2.2, W1 is a matrix of

(50 × 25) dimensions containing the weight values of the connections between the neurons

of input and hidden layers. Similarly, W2 is the weight matrix with a length of (25 × 1) of

the connection lines of the hidden layer and output.

2.3.1 Training of the Network

Using the known data, the training of the network is performed. The output layers create a

vector Y, which is obtained from the following equation:

Y = WX + b (2.23)

where W is the weight matrix between two layers, X is the input vector of each layer and b

is the bias of that layer. The outputs of each layer again go through the activation function.

Different activation functions, such as linear, Sigmoid, ReLU, and tanh, can be employed

while studying the ANN. The sigmoid function, which is mostly preferred and found to be

useful [123], is chosen for this study and it gives an output between 0 and 1. This function

is defined as below:

ϕ(Y) =
1

1 + e-Y (2.24)

By following this formulation, the output will be computed from the output neuron. The

loss function (L) and error signal (Es) can be defined from the network output (y′) and the
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known output (y) [124]. The expressions are as follows:

L =
1

2
(y − y′)2 (2.25)

Es = y − y′ (2.26)

Next, the training (e.g., back-propagation) is conducted using the stochastic gradient descent

method [124, 125] to update the weights and biases that minimize the loss function. Each

weight and bias of the network is updated using the following formula until the highest

accuracy is obtained where the loss function converges to a global minimum.

wupdated = wold − α
dL

dwold
(2.27)

bupdated = bold − α
dL

dbold
(2.28)

where α is the learning rate, which is a hyperparameter and can take any positive value.

2.3.2 Bayesian Regularization

The standard back-propagation method, described in the previous section, updates the

weights and bias until the loss function converges to a minimum point. However, if ad-

justing the weights takes a long time, the model can be overfitted which results in an ac-

ceptable performance of the model for the training data but poor prediction performance

for unseen data [126]. Therefore, the model can lose its generalizing capability [127]. To

overcome this problem, different methods are applied. Among these, early stopping of the

training is an easy and effective approach [128]. Different forms of regularization terms like
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L1, L2, Newton’s, Levenberg-Marquardt, and Bayesian are added to the cost function to

prevent overfitting [129]. In this study, Bayesian regularization is chosen which works based

on the probabilistic features of the network parameters. The theory behind the Bayesian

regularization is explained in detail in Appendix B.



Chapter 3

Microstructure-Sensitive Design of

Polycrystalline Materials

Material properties are directly dependent on underlying microstructures. In this chapter,

two different approaches to the microstructure design of polycrystalline materials are pre-

sented. One of them is gradient-based optimization, and the other one is machine learning-

based optimization. These approaches can be applied to design materials for different appli-

cations. Before discussing these methods and their applications, a new sampling approach is

presented for the multi-scale design of materials. The performance of different optimization

algorithms is also examined for microstructure design problems. Based on the performance

of different methods, gradient-based design optimization is selected to optimize linear and

non-linear properties of cubic microstructures. Moreover, an inverse optimization strategy

is presented to design microstructures for prescribed values of homogenized properties, such

as the stiffness constant (C11) and in-plane Young’s modulus (E11). The applications are

presented for Aluminum (Al), Nickel (Ni), and Silicon (Si) microstructures.

Furthermore, machine learning-based optimization has been applied to build both linear

and non-linear property closures for metallic materials. A property closure is a closed design

space of material properties that contains all possible values of the closure variables. Theo-

retically, the property closures of volume-averaged material properties can be derived using

42
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single-crystal microstructure solutions; however, this theory is not valid for non-linear prop-

erties. Therefore, an ML-reinforced strategy is used to generate both linear and non-linear

material property closures using the Linear Regression (LR) and Artificial Neural Network

(ANN) method with Bayesian Regularization. The closures for material properties, such

as the elastic stiffness parameters and critical buckling load, are generated for Titanium-7

wt% Aluminum (Ti-7Al), Magnesium (Mg), and Aluminum (Al). The outcomes of the ML

surrogate models for these properties are compared to each other. The organization of this

chapter is as follows: Section 3.1 explained the design sampling approach in property space

for multi-scale design. Next, Section 3.2 discusses the gradient-based optimization for mi-

crostructure design to optimize homogenized material properties. Section 3.3 focuses on the

microstructure design approach for isotropic material properties using gradient-based opti-

mization. Finally, Section 3.4 discusses the novel approach of predicting material property

closures using machine learning.

3.1 Design Sampling in Property Space for Multi-scale

Design

As microstructure is defined in terms of ODFs, the design variables of this study are also

ODFs. To improve the optimum solution, it is beneficial to provide multiple initial samples

to the optimization method that covers the whole design space. Similarly, ML performance

depends on good-quality training data. Therefore, training data should also cover the de-

sign space uniformly to capture the problem behavior properly. Latin Hypercube Sampling

(LHS) [130] is a popular technique to generate samples from the design space. However,

sampling in the ODF space using LHS was shown to lead to limited material property space

coverage [17]. Two material properties, i.e., Young’s modulus (E11) and Poisson’s ratio (ν)
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for Al are calculated from the ODFs that are generated from ODF sampling space. It is

shown in Fig. 3.1(d) that both E11 and ν are concentrated in a particular sub-space rather

than distributed uniformly over the design space. To overcome this issue, a new sampling

approach was introduced by Acar [17] that performs sampling in the material property space

instead of the ODF design space. This approach is shown in Fig. 3.1. Firstly, a known

property closure of C11-C12 is drawn for Al (Fig. 3.1(a)). Then, a triangulation is performed

Sampling in ODF Space

Sampling in 

Property Space

(a) (b)

(d)(c)

Figure 3.1: New sampling approach for ODF design space: (a) known property closure of
C11-C12 for Al (b) triangulation of the property space into sub-spaces (c) uniform design
samples for each triangle and (d) distribution of E11 and ν values calculated from the ODF
samples generated by sampling in ODF space and sampling in property space.
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to divide the property closure into sub-spaces (Fig. 3.1(b)). Next, the design samples are

generated for each triangle (each sub-space) of the closure (Fig. 3.1(c)). The number of

design samples in each triangle is directly determined by the area of the corresponding trian-

gle. After generating these samples of the property closure variables, an inverse optimization

algorithm is run to attain the corresponding set of ODFs. Again, E11 and ν are calculated

using the new set of ODFs, and it is evident from Fig. 3.1(d) that this time E11 and ν are

distributed uniformly throughout the design space.

3.2 Gradient-Based Optimization

Two separate optimization problems are defined for the microstructure-sensitive design. One

of them is to find the optimum microstructures that maximize and minimize the stiffness

(C11) and in-plane Young’s modulus (E11) values. The second problem is to obtain the

microstructure design that provides a prescribed value of E11. Table 3.1 shows the mathe-

matical definitions of these optimization problems.

Table 3.1: Summary of the optimization problems to maximize and minimize C11 and E11

values and design microstructures for a prescribed E11 value.

max and min C11 and E11 min (E11- design E11 value)2
subject to: qTA = 1 subject to: qTA = 1

A ≥ 0 A ≥ 0

The ODF solutions of the optimization problem in Table 3.1 need to satisfy two design

constraints, i.e., the volume normalization constraint and the non-negativity of the ODFs.

Next, the performance of five different optimization methods, including gradient-based, pat-

tern search, particle swarm, genetic algorithm, and simulated annealing, are studied for

microstructure optimization. In order to do that, E11 of Al is maximized using these algo-

rithms. Fifty initial guesses of ODFs (generated using sampling in the property space) are
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supplied to each optimization method.

Table 3.2: Performance of different optimizers to maximize the E11 value of Al.

Algorithm Maximum E11 (GPa) Texture Type Computational Time (sec)
Gradient-Based 77.75 Sharp Texture 7
Pattern Search 77.11 Sharp Texture 60
Particle Swarm 77.75 Sharp Texture 195

Genetic Algorithm 74.62 Random Texture 2882
Simulated Annealing 77.02 Sharp Texture 140

The summary of the solutions obtained by five different optimization methods is provided in

Table 3.2. It is obvious that the gradient-based method (Sequential Quadratic Programming

(SQP)) provides the maximum value of E11 with the lowest computation time. Particle

swarm also yields the same value; however, the computational time is eight times more

than the gradient-based algorithm. On the other hand, the genetic algorithm takes the

highest computational time but provides the lowest value of E11. All ODF solutions indicate

sharp textures except the genetic algorithm solution, which is close to a randomly oriented

texture. Figure 3.2 exhibits the optimum ODF solutions of gradient-based, particle swarm,

and genetic algorithms in the orientation space.

(a) (b) (c)

Figure 3.2: Optimized Al microstructures (ODFs) in the orientation space that maximize
E11 obtained from (a) Gradient-based (b) Particle swarm and (c) Genetic algorithms.

Next, the gradient-based algorithm is applied to solve other microstructure optimization
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problems owing to its capacity to provide the maximum value with the lowest computational

time.

3.2.1 Optimization of a Linear Property (C11)

The single-crystal microstructure, which is intrinsically anisotropic, provides the maximum

and minimum values of C11 in the < 111 > and < 100 > directions, respectively [131, 132].

The gradient-based algorithm of this study is also able to find these single-crystal ODFs

for the maximum and minimum C11. To the best of the author’s knowledge, there is no

experimental study that is performed to find the meso-scale maximum or minimum C11

value. It is also difficult to manufacture single-crystal materials. Therefore, the range of

experimental C11 values have been chosen from the literature without labeling them as

maximum or minimum to compare with the numerical results. Table 3.3 shows the optimum

values for C11 using gradient-based optimization and their comparison with the available

experimental data from the previous studies [133, 134] for the three example materials.

Data show that the values obtained from gradient-based optimization are higher than the

available literature values of C11.

Table 3.3: Comparison of maximum and minimum stiffness constant (C11) values obtained
from gradient-based optimization with the literature data (unit of C11 is GPa)

Material Gradient-based Optimization Range of C11 values from the literature [133, 134]
Cmax

11 Cmin
11

Al 122.8104 107.202 105.6 - 112
Ni 346.2944 268.0388 220 - 270
Si 184.9062 156.5225 165.7 - 168
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3.2.2 Optimization of a Non-Linear Property (E11)

The selected non-linear property is the in-plane Young‘s modulus value (E11). Accordingly,

Emax
11 and Emin

11 are calculated for Al, Ni, and Si by gradient-based optimization. In this

case, unlike the homogenized linear properties, there is no guarantee that the single-crystal

microstructures yield extreme values of the non-linear properties [17]. This is also verified

through our observation in the present study as a sharp polycrystalline texture with two non-

zero ODF values is found to be the optimum solution. The optimized Emax
11 value is used

for comparison with the literature [135, 136] as the maximization of the in-plane Young‘s

modulus (E11) is naturally a more important design problem for improved elasticity. Table

3.4 reports the optimum values of E11 from gradient-based optimization and their validation

with the available data from the previous studies for the three example materials.

Table 3.4: Comparison of maximum and minimum in-plane Young’s modulus values (E11)
obtained from gradient-based optimization with the literature data (unit of E11 is GPa)

Material Gradient-based Optimization
Emax

11 from the literature [135, 136] Error (%)
Emax

11 Emin
11

Al 77.7468 48.2523 72.3 7.3
Ni 277.5323 140.2831 288 3.9
Si 170.0734 127.84 172 0.5

The Emax
11 values for Al and Si are used from Cantwell et al. [135] where the authors estimated

the in-plane Young’s modulus as a function of crystallographic directions for microelectrome-

chanical systems (MEMS). On the other hand, the Ni data was used from the study by Ju

et al. [136] which modeled the nanoindentation of a Ni surface at different crystal orienta-

tions using molecular dynamics (MD) simulations to approximate the maximum E11. The

outcomes of the presented optimization approach also provide similar Emax
11 values for these

materials. The percentage errors for Al, Ni, and Si are 7.3%, 3.9%, and 0.5%, respectively.

These errors are anticipated to arise from the microstructural uncertainty and modeling as-
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sumptions. For example, the two-crystal optimum solution of the present work is a sharp

texture design that is substantially difficult to process. Therefore, there could be differences

between the mathematical optimum solutions and processed textures. Another possible er-

ror source can be the epistemic uncertainties related to the computational methods (e.g.,

modeling assumptions, convergence, errors).

3.2.3 Inverse Design Optimization

The next objective of this study is to design the microstructure for a prescribed value of

E11 using gradient-based optimization (see Table 3.1). Therefore, three different values of

E11 (close to the Emax
11 value) have been considered for the example materials. For instance,

the E11 values of Al are determined as 75 GPa, 76.5 GPa, and 77 GPa where the Emax
11 of

(a)

(c)

(b)

(d)

Figure 3.3: Optimized Al microstructures (ODFs) in the orientation space with (a) E11=75
GPa (b) E11=76.5 GPa (c) E11=77 GPa and (d) Emax

11 =77.5 GPa [137].
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(a)

(c)

(b)

(d)

Figure 3.4: Optimized Ni microstructures (ODFs) in the orientation space with (a) E11=270
GPa (b) E11=273 GPa (c) E11=275 GPa and (d) Emax

11 =277.53 GPa [137].

Al is 77.75 GPa. Similarly, the chosen values for Ni are 270 GPa, 273 GPa, and 275 GPa

while its maximum value for E11 is 277.5 GPa. These values for Si are 165 GPa, 167.5 GPa,

and 169 GPa where Emax
11 is 170.06 GPa. For all three microstructures, the results exhibit

that the ODFs converge to the optimum sharp texture design (two-crystal solution) as E11

approaches its maximum value.

This outcome is also visible from Figs. 3.3-3.5. For example, in Fig. 3.3, the microstructures

(ODFs) of Al are plotted in the Rodrigues orientation space for the three prescribed E11

values and the maximum E11 value. Figure 3.3(a) represents the microstructure with E11

value of 75 GPa, which demonstrates a smooth polycrystalline texture. The texture becomes

sharper as the E11 value increases, e.g., E11 of 76.5 GPa (Fig. 3.3(b)) and E11 of 77 GPa

(Fig. 3.3(c)). Finally, the optimum two-crystal texture providing the Emax
11 value of 77.75

GPa is depicted in Fig. 3.3(d). The optimum microstructure designs for Ni and Si, in Fig.

3.4 and Fig. 3.5, respectively, follow the same trend. This result underlines the two unique
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orientations for cubic microstructures that lead to maximum in-plane Young’s modulus. The

presented technique for inverse design can be applied to all polycrystalline microstructures

to achieve the prescribed values of the homogenized material properties.

(a)

(c)

(b)

(d)

Figure 3.5: Optimized Si microstructures (ODFs) in the orientation space with (a) E11=165
GPa (b) E11=167.5 GPa (c) E11=169 GPa and (d) Emax

11 =170.06 GPa [137].

3.3 Microstructure Design for Isotropic Properties

For some engineering applications, it may be preferable to have material designs that demon-

strate equivalent properties in all directions to improve the predictability of the material

performance. Additionally, in some cases, the direction of the applied load might be un-

certain. Therefore, maintaining isotropic/quasi-isotropic material properties throughout a

component would improve the predictability of the material performance and, thus, minimize

the risk of failure (i.e., crack propagation or buckling in the weakest direction). To the best
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of the author’s knowledge, there is no study in the literature that has aimed to design mate-

rials to achieve isotropic properties using the microstructure-sensitive design technique. The

goal of this study is to design the microstructures for obtaining equivalent elastic properties

(i.e., Young’s Modulus (E) or stiffness constants (C)) in different directions. Accordingly,

two optimization problems are introduced. The first problem aims to minimize the differ-

ence between the stiffness parameters in corresponding directions (C11, C22, and C33). The

goal of the second problem is to optimize the anisotropy ratio of the corresponding crystal

structure accordingly. Moreover, the stochastic analysis of the microstructure will report

the effects of the microstructure uncertainty on isotropic designs (see Chapter 4). One pure

metal (Al) and two metallic alloys (Ti-7Al and Galfenol) are chosen as example materials

which have enabled the analysis of the similarities/differences between their anisotropy ra-

tios. Here, Ti-7Al and Al are mainly recognized as aerospace materials. Galfenol also has

promising applications in the aerospace as well as electronic industry. Therefore, the mi-

crostructure design for these materials is expected to enhance the predictive performance of

aircraft components by preventing failure in the weakest direction. Next, the property clo-

sures of stiffness parameters (the feasible design spaces for C11, C22, and C33) are generated

to visualize the isotropic property regions which can be mapped back for the inverse design

of the corresponding microstructures.

3.3.1 Problem Statement

Isotropic material properties are independent of crystallographic orientations of the mi-

crostructure as they are equivalent in different directions. In the case of polycrystalline

materials, anisotropy can be introduced by tailoring the underlying microstructure in order

to improve any specific material property along a preferred direction depending upon the

application [138]. Moreover, thermo-mechanical processing causes microstructure formation
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that leads to anisotropy in properties. In general, the single crystal textures are intrin-

sically anisotropic [132, 139]; however, they are difficult to be processed with traditional

manufacturing techniques.

P

P

P

x

y

z

𝐸11, 𝐸22 and 𝐸33

Figure 3.6: A schematic of the example problem that involves a solid bar having equivalent
compressive loads in x, y, and z directions [140].

Many engineering applications may benefit from materials that demonstrate isotropy in

their properties. Figure 3.6 shows the definition of an example design problem involving

a cantilever beam with one fixed and one free end. The forces with a magnitude of P are

applied in the x, y, and z directions at the free end. The decision variables are Young’s

modulus (E) and stiffness constants (C), which are the functions of the microstructural

design variables defined as the independent ODF values. The following assumptions are

considered: 1) The directions of the loads do not change during deformation and 2) There

is no buckling. Improving the elastic properties in certain directions would mean sacrificing

those properties in other directions. Achieving isotropic material property distributions (e.g.,

equivalent stiffness in all directions) would prevent weakness in directions that may not be
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immediately of interest in design, thereby reducing the risks of material failure in those

directions. This study aims to design the microstructures for Ti-7Al, Al, and Galfenol that

can guide the material engineers and manufacturers to produce materials with equivalent

stiffness values in x, y, and z directions.

Stress-Strain Constitutive Relationship for Polycrystalline Materials

The stress-strain constitutive relationship for polycrystalline materials can be expressed as

follows by considering a general anisotropic material [141]:

σij = Cijklϵkl (3.1)

where Cijkl is the fourth-order elastic stiffness tensor. The inverse of the stiffness tensor is the

compliance tensor, Sijkl. Although the stiffness tensor of Eq. 3.1 has 81 components, Cijkl

agrees with the following symmetry that reduces the number of independent components to

21.

Cijkl = Cklij = Cjikl = Cijlk (3.2)

After considering all symmetries in the material constants, the generalized stiffness matrix

becomes [142]:

C =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

sym C44 C45 C46

C55 C56

C66


(3.3)

An orthotropic material has three mutually orthogonal planes with microstructural symme-
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try (see Fig. 3.6), which lead to a stiffness matrix with 9 independent components. The

resultant form of the stiffness matrix for an orthotropic material is given next:

C =



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

sym C44 0 0

C55 0

C66


(3.4)

In the case of isotropic materials, the following relations are considered: C11 = C22 = C33,

C12 = C13 = C23, and C44 = C55 = C66 = (C11 − C12)/2. To achieve the volume-averaged

isotropic material properties, an optimization algorithm will be run to find out the ODFs that

minimize the differences between C11, C22, and C33. These ODFs will also provide almost

equal Young’s modulus values in x, y, and z directions.

Anisotropy Ratio

The material anisotropy is quantified using a dimensionless parameter called anisotropy ratio

(AR) [143, 144]. First, Zener [145] introduced a formula to quantify the anisotropy in cubic

(BCC) crystals. The expression of the Zener anisotropy index (ARz) was given as:

ARz =
2C44

C11 − C12

(3.5)

The cubic crystals have three independent stiffness constants, C11, C12, and C44. However,

for HCP materials, there are five independent constants as C11, C12, C13, C33, and C44. Using

this information, the anisotropy ratio formulas for FCC and HCP materials were defined as
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follows, respectively [146]:

ARfcc =
2C44(C11 + 2C12)

C11(C11 + C12)− 2C2
12

(3.6)

ARhcp =
C33C11 − C2

13

C2
11 − C2

12

(3.7)

A value closer to 1 implies that the microstructure is becoming more isotropic. The AR value

of 1 indicates a perfectly isotropic material. Moreover, Ranganathan et al. [147] proposed a

universal equation to measure anisotropy for all cubic crystals:

ARu =
6

5
(
√
ARz −

1√
ARz

) (3.8)

where ARz is the Zener anisotropy index. However, in this case, the ARu value of 0 indicates

an isotropic material.

Optimization Problem Formulation

Based on the discussions of the previous sections, two optimization problems are defined to

achieve microstructures that produce isotropic properties. The formulation of the optimiza-

tion problems is summarized in Table 3.5. Problem 1 is defined to obtain the lowest possible

difference between C11, C22, and C33. Though Young’s modulus of the materials directly

depends on the compliance tensor, the stiffness constants are considered for the solution of

Table 3.5: Mathematical formulations of the optimization problems

Problem 1 Problem 2
min (C11 − C22)

2 + (C22 − C33)
2 + (C11 − C33)

2 min (AR− 1)2

subject to: qTA = 1 subject to: qTA = 1
A ≥ 0 A ≥ 0



3.3. MICROSTRUCTURE DESIGN FOR ISOTROPIC PROPERTIES 57

this problem. This is due to the linear relationship between Cij and ODFs defined through

upper bound averaging, whereas Sij is a non-linear function of the ODFs when upper bound

averaging is used [17].

(a) (b)

(c) (d)

Figure 3.7: (a) Optimum ODFs in the Rodrigues orientation space (b) < 001 > (c) < 100 >
and (d) < 101 > pole figures of the microstructure obtained from optimizing the elastic
constants for Ti-7Al [140].

Problem 2 is related to the anisotropy ratio. The optimization problem is specified to ensure

that the solution (optimum ODFs) would yield isotropic properties. In the formulation of

Problem 2 (see Table 3.5), AR will be replaced by Eqs. 3.5, 3.6, and 3.7 for BCC (Galfenol),

FCC (Al), and HCP (Ti-7Al) microstructures, respectively. The solutions to the optimiza-
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tion problems must satisfy the normalization constraint (qTA = 1). The gradient-based

algorithm, Sequential Quadratic Programming (SQP), is chosen to solve the optimization

problems. SQP is a widely-used gradient-based algorithm for constrained optimization prob-

lems. The optimization problems of the presented work involve quadratic objective functions

and a design constraint (ODF normalization constraint), which makes the SQP algorithm

a desired method to obtain the optimum solutions. The initial guess for the gradient-based

optimization is assumed to be a randomly oriented texture. The stopping criteria are defined

(a) (b)

(c) (d)

Figure 3.8: (a) Optimum ODFs in the Rodrigues orientation space (b) < 001 > (c) < 100 >
and (d) < 101 > pole figures of the microstructure obtained from optimizing the anisotropy
ratio for Ti-7Al [140].
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through the objective function and constraint tolerance values.

3.3.2 Design for Isotropic Properties

This section presents the results of the optimization problems that are solved for each mate-

rial to obtain isotropic properties. The solution is the microstructure which is expressed in

terms of the ODFs that provide equivalent Young’s modulus values in x, y, and z directions.

(a) (b)

(c) (d)

Figure 3.9: (a) Optimum ODFs in the Rodrigues orientation space (b) < 001 > (c) < 100 >
and (d) < 101 > pole figures of the microstructure obtained from optimizing the elastic
constants for Al [140].
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For each material, two optimum ODFs are found from two optimization problems given in

Table 3.5. Figures 3.7-3.12 exhibit the optimum ODFs for Ti-7Al, Al, and Galfenol plotted

in the Rodrigues orientation space as well as the corresponding three pole figures at < 001 >,

< 100 >, and < 101 > directions. The optimized values for C11, C22, and C33 along with

E11, E22, and E33 are reported in Table 3.6. The anisotropy ratios for the isotropic designs

are also checked using Eqs. 3.5, 3.6, 3.7 and 3.8 as shown in Table 3.6. Interestingly, both

problems yield different microstructural texture designs that provide almost equivalent elas-

tic constant values along three different directions. This is advantageous because multiple

solutions around optimum design will give the flexibility to the manufacturers to follow any

of the designs for product development.

Table 3.6: Elastic constant values (unit is GPa) for the optimum designs of Ti-7Al, Al, and
Galfenol

Material Problem 1 Problem 2
C11 C22 C33 E11 E22 E33 C11 C22 C33 E11 E22 E33

Ti-7Al 161.3 161.3 161.3 114.2 114.2 114.2 161.2 161.3 161.2 114.1 114.3 114.2
Al 116.9 116.9 116.9 66.9 66.9 66.9 116.7 116.7 116.7 66.6 66.7 66.6

Galfenol 296.8 296.8 296.8 215.4 215.4 215.4 292.9 293.6 292.9 208.8 210.1 208.8

Table 3.7: Anisotropy ratios for the optimum designs of Ti-7Al, Al, and Galfenol

Material Problem 1 Problem 2
ARz ARfcc ARhcp ARu ARz ARfcc ARhcp ARu

Ti-7Al 1 1 0.99 0 1 1 1 0
Al 0.99 0.99 1 0 0.99 0.99 0.99 0

Galfenol 0.95 0.95 1 0.003 1 1 0.99 0

In the case of Ti-7Al, the optimum ODFs of Problem 1 and Problem 2, as well as the three

pole figures, are depicted in Fig. 3.7 and 3.8. Table 3.6 shows that the optimum ODFs of

Problem 1 and Problem 2 provide almost the same C11, C22, and C33 values of 161.3 GPa

and E11, E22 and E33 values of 114.2 GPa. The corresponding anisotropy ratio values shown

in Table 3.7 also support the isotropic properties objective as the ratios are close to 1 for Eq.
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3.5, 3.6, and 3.7; and to 0 for Eq. 3.8. Similarly, Al also shows two different microstructural

texture designs obtained by two different optimization problems as plotted in Fig. 3.9 and

3.10.

The ODFs of the polycrystalline microstructure of Problem 1 provides C11, C22, and C33

values of 116.9 GPa and E11, E22, and E33 values of 66.9 GPa along x, y, and z directions.

These values are 116.7 GPa and 66.7 GPa, respectively for Problem 2. Table 3.7 also shows

(a)
(b)

(c) (d)

Figure 3.10: (a) Optimum ODFs in the Rodrigues orientation space (b) < 001 > (c) < 100 >
and (d) < 101 > pole figures of the microstructure obtained from optimizing the anisotropy
ratio for Al [140].
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promising anisotropy index values for both problems.

The optimized ODFs and the corresponding pole figures of Galfenol are displayed in Fig.

3.11 and 3.11. Two different textures are obtained from two separate optimization problems.

The optimized ODFs of Problem 1 yield C11, C22, and C33 values of 296.8 GPa and E11, E22,

and E33 values of 215.4 GPa. The corresponding AR values are obtained as 0.95, 0.95, 1,

and 0.003 using Eq. 3.5, 3.6, 3.7, and 3.8, respectively. Next, the ODF solution of Problem 2

(a) (b)

(c) (d)

Figure 3.11: (a) Optimum ODFs in the Rodrigues orientation space (b) < 001 > (c) < 100 >
and (d) < 101 > pole figures of the microstructure obtained from optimizing the elastic
constants for Galfenol [140].
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provides a C11 value of 292.9 GPa, C22 value of 293.6 GPa, and C33 value of 292.9 GPa. The

E11, E22, and E33 values are 208.8 GPa, 210.1 GPa, and 208.8 GPa, respectively. Though

the computation of these properties may be subject to small computational errors, the AR

values are sufficiently close to the expected values for an isotropic design.

The property closures of C11, C22, and C33 for Ti-7Al, Al, and Galfenol are presented in

Fig. 3.13. The isotropic points (the points that provide almost isotropic properties) are also

(a) (b)

(c) (d)

Figure 3.12: (a) Optimum ODFs in the Rodrigues orientation space (b) < 001 > (c) < 100 >
and (d) < 101 > pole figures of the microstructure obtained from optimizing the anisotropy
ratio for Galfenol [140].
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visualized within the corresponding closures. The anisotropy ratios of all points within the

property closures are represented as the color variable. In all three cases, color bars imply the

presence of a range of solutions where the anisotropy ratio values are nearly one. Therefore,

there are multiple ODFs that can provide quasi-isotropic properties. Manufacturers can

follow any of these solutions to fabricate materials with quasi-isotropic properties. The range

of anisotropy ratio values is 0.8-1.4 for Ti-7Al and Al while for Galfenol, the range is 0.6-

2.2. This implies that Galfenol can demonstrate significantly more anisotropic properties

depending on the underlying microstructure design. However, the increase in anisotropy

might also increase the chance of failure for structures under the effects of multi-axial forces,

such as the loading condition given in Fig. 3.6. Therefore, this study can be a useful guide

for manufacturers to fabricate materials that demonstrate quasi-isotropic properties with the

utilization of the presented design approach.

Isotropic Point

Isotropic Point Isotropic Point

(a) (b) (c)

Figure 3.13: Property closures of C11 − C22 − C33 for (a) Ti-7Al, (b) Al, and (c) Galfenol,
where the color of each point represents the corresponding anisotropy ratio [140].
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3.4 Machine Learning-Driven Optimization

To perform machine learning (ML)-driven design optimization, the polycrystalline microstruc-

ture is also quantified by the ODF. If any material property is linearly related to the

ODF, that is referred to as a linear property. However, if there is no linear

relation (mathematically) between material property and ODF, it is called a

non-linear property. The property closure concept theoretically works only for such lin-

ear properties, but no other approach is found in the literature for plotting the property

closures of non-linear parameters. Therefore, a new approach to finding the property clo-

sures of non-linear properties is presented using an ML method, Artificial Neural Network

(ANN), which has the ability to mimic the complex relations between the input and output

variables.

Linear Property

Known Property 
Closure

Uniform 
Sampling of the 

Closure 

Data Generation 
from the Samples

Training of the ML 
Surrogate Models

Prediction of the 
Property Closure by 

ML Model

Validation of 
the Method

C
o

m
p

ar
is

o
n Similar Approach 

for Predicting Non-
Linear Property 

Closure

Figure 3.14: The flow diagram of machine learning-based prediction of material property
closures. The method is validated with the known property closure of linear properties and
applied for predicting non-linear material properties [112].

The aim of this study is to integrate microstructure-sensitive design and ML

techniques for predicting both linear and non-linear material properties using

property closures. Figure 3.14 shows the flow diagram of the study. By definition, a
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property closure contains all possible values of the material properties obtained by the de-

sign parameters. Therefore, it can be used for generating a uniform data set, which can

be employed to train the machine learning models (ANN and LR) that can predict those

properties with high accuracy. One of the challenges for applying ML techniques is pro-

ducing a general data set that can describe the problem behavior properly. The property

closure can mitigate this issue by providing a uniform data set. This study will demonstrate

an approach for generating Artificial Neural Network (ANN) and Linear Regression (LR)-

reinforced property closures by discussing different examples for three engineering materials:

Titanium with 7% Aluminium (Ti-7Al), Magnesium (Mg), and Aluminum (Al). The ar-

rangement of this section is as follows: First, the method of generating uniform data from

property closures is described. The validation of the ML model, the prediction of the linear

and non-linear property closures using ANN and LR, and the accuracy analysis of the new

property closures (non-linear property) are reported in the Results and Discussions section

by presenting example problems for Ti-7Al, Mg, and Al.

3.4.1 Training Data Generation from Property Closures

Two ML models, LR and ANN, are employed to check their performance for the prediction

of both linear and non-linear properties of materials. Necessary training data for both LR

and ANN are generated from the property closure. Using the ODF approach, the property

closure of the volume-averaged properties is defined by all possible values of these variables.

Using the finite element discretization formula in Eq. 2.5, the volume-averaged stiffness

matrix (C) can be defined as follows:

PTA = C (3.9)
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(a) (b) (c)

Figure 3.15: Property closures of (a) C11 − C12 (b) C12 − C44 and (c) C12 − C66 for Ti-7Al
with uniform design samples within the closure shown as black dots [112].

where, P is a (m× k) matrix which includes the k single crystal values for 36 (stiffness is a

6× 6 matrix) properties. All the elements of the C matrix can be derived from Eq. 3.9. For

example, C11 = PT
1 A, C12 = PT

2 A....., and C66 = PT
36A. The single-crystal designs demon-

strate the extreme values of the linear (volume-averaged) properties of a microstructure.

However, this may not be true for non-linear properties [17]. Therefore, it is straightforward

to build the property closure for volume-averaged properties owing to the linear relationship,

while there is no such conclusion for non-linear properties (see Fig. 3.15).

The ML models will be trained to predict the linear and non-linear material properties.

Training data should cover the design space uniformly to capture the problem behavior

properly. Training data are generated using sampling in the property space as described in

Section 3.1. Following the approach, the property closures of C11-C12, C12-C44 and C12-C66

Table 3.8: Summary of the optimization problems to generate the set of ODFs using the
property closure for training the ANN model.

C11 − C12 C12 − C44 C12 − C66

min |PT
2 A − C12i | min |PT

22A − C44i | min |PT
36A − C66i |

subject to: qTA = 1 subject to: qTA = 1 subject to: qTA = 1
PT

1 A = C11i PT
2 A = C12i PT

2 A = C12i

A ≥ 0 A ≥ 0 A ≥ 0
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for Ti-7Al are built as shown in Fig. 3.15(a), Fig. 3.15(b), and Fig. 3.15(c), respectively.

As visualized in Fig. 3.15, the design samples (black dots) cover the entire closure uni-

formly. After generating these samples, another optimization algorithm is run to attain the

corresponding set of ODFs. A total of 1500 samples are generated from the closures which

will be used further for the training of the ML models (ANN and LR). Table 3.8 shows the

mathematical expression of the optimization problem for the three closures of Fig. 3.15.

In Table 3.8, i = 1, 2, 3, ..., n where n represents the number of samples that are obtained

from each property closure. For each point of the closure, the corresponding set of ODFs that

produces both property values of that point is determined. However, it is not guaranteed

that only a single set of ODFs provides the corresponding property values. There can be

multiple ODFs that yield the same properties. In the case of linear parameters like C11,

C12, the null space vectors are determined to calculate the multiple ODF solutions that

satisfy the ODF normalization constraint. This method is described in Ref. [35], which is

skipped here for brevity. Initially, an optimum solution is obtained from the optimization

problem of Table 3.8. Next, using the null space method, multiple ODFs are generated from

that optimum solution for a single point of the closure. Two sets of ODFs are created for

the samples of C11 − C12 in Fig. 3.15(a). One set contains only single solutions for 1500

samples, and the other set includes multiple solutions for those samples. In this application,

only four different directions of null space vectors are considered. Therefore, additional four

different sets of ODFs are produced from the optimum solution (a total of 6000 ODFs for

1500 samples). Next, these ODFs are used for the training of the ANN and LR models for

the prediction of closure variables. The performance of the surrogate models trained by both

the single set of ODFs and multiple ODF solutions is also investigated.
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3.4.2 Results and Discussions

This section presents the applications of the methods which have been described in the

previous section. Different example problems for the three widely-used engineering materials

such as Ti-7Al, Mg, and Al are discussed. Before going into the details, the validation of the

proposed techniques is required, which is delineated in the following subsection.

Validation of the ML Models

In this section, the performance of LR and ANN models is checked for a linear property.

Moreover, the effects of multiple ODFs on the training of the ML models are investigated.

Next, the ML-predicted property closures are compared to the property closures of elastic

constants that are generated theoretically. For instance, the property closures of C11 − C12,

C12 − C44, and C12 − C66 of Ti-7Al are taken into consideration for the validation of the

surrogate model. It is theoretically known that single crystal ODFs provide the boundary

(extreme) points of the closure for linear material properties, such as C11, C12, C44, and C66.

Therefore, the property closures of those parameters can be estimated by checking the values

of the single-crystal ODF solutions. Figure 3.15 shows the property closures of C11 − C12,

C12 − C44 and C12 − C66 with the uniform samples inside the closures.

As mentioned earlier, the training data is generated by optimizing the uniform samples taken

from the closures. Two sets of training data, including the single and multiple (using null

space vectors) ODF solutions, are generated. Next, the LR and ANN models are trained

with these data sets. In both cases, the training data is provided to MATLAB tools where

80% data is used for training, 10% is used for validation, and 10% is used for testing. After

the training of LR and ANN models, additional 20 ODFs and 100 ODFs are supplied to

the trained models to generate the parity plots (comparison of the predicted values to the
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(a) (b) (c)

Figure 3.16: Performance evaluation of the ML models for C11 and C12 (a) parity plot of C11

(a) parity plot of C12 and (b) comparison of the predicted C11 − C12 closures of Ti-7Al by
ML models with the theoretical property closure generated with multi-scale modeling [112].

ground-truth values) and to calculate the Root Mean Square Error (RMSE) of the prediction,

respectively for C11 and C12. Figure 3.16(a) and 3.16(b) display the comparison of the ANN

and LR predicted (both single and multiple ODFs) C11 and C12 values with actual values

obtained from the computational model. It shows an excellent agreement (almost 100%

(a) (b)

Figure 3.17: Comparison of the ANN-predicted property closures of Ti-7Al with the actual
closures of the multi-scale model for (a) C12 − C44 and (b) C12 − C44 [112].
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accuracy) for the predicted values of C11 and C12 by ANN and LR models with the actual

values. The RMSE values of the predictions (see Table 3.9) also demonstrate that the values

for all cases are almost zero. The property closure of C11 −C12 predicted by the ML models

is shown in Fig. 3.16(c), which perfectly coincide with each other and same as the known

property closure of C11 − C12.

Table 3.9: Root Mean Square Error (RMSE) values (unit is GPa) of the predicted values for
C11 and C12 of Ti-7Al by ANN and LR models considering single and multiple ODFs

Parameter ANN with single ODFs ANN with multiple ODFs LR with single ODFs LR with multiple ODFs
C11 0.00057 0.0013 0 0
C12 0.00036 0.0005 0 0

It is also observed that both ANN and LR models are performing similarly for the linear

properties. After considering the multiple ODFs for a single point of the closure, the model

accuracy is not improved for both ANN and LR models. Therefore, it is computationally not

efficient to generate numerous ODF sets for a single property and incorporate them into the

ML training as they have no effects on the model performance. Moreover, the ANN model

can perform better for both linear and non-linear cases. On the other hand, the linear model

might not be a good choice for the non-linear property. The performance of the linear model

on the non-linear property will be discussed in the next section. The property closures for

C12 −C44 and C12 −C66 of Ti-7Al predicted by the ANN model that is trained by the single

ODF solutions are shown in Fig. 3.17. These closures are found to be exactly matching with

the known closures from the theoretical model.

Property Closures for Non-Linear Material Properties

The example application includes the generation of the property closures for the critical

buckling load of a rotating shaft, which has a non-linear relationship with the ODF values

of the underlying microstructure. Figure 3.18 shows the schematic of the problem that
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describes a rotating shaft. The rotational forces act as axial loads that affect the stiffness of

the structures and even cause buckling. Accordingly, the rotation of the shaft in Fig. 3.18 is

modeled as a compressive load, P . This translates into a system that can be compared to a

long column where failure can occur when the axial load reaches a critical value, known as

the critical load of buckling (Pcr). In this problem, the objective is to generate a property

closure of the critical buckling load (Pcr) for Ti-7Al, Mg, and Al. It will also be checked

whether a linear model like linear regression can accurately predict the non-linear property.

To estimate the buckling load of a rotating shaft, finite element analysis is applied. In

Buckling Load (P)

L

d

E, I and 𝝎

Figure 3.18: Schematic of the rotating shaft. The rotation of the shaft translates into a
compressive axial force that can cause the failure of the system due to buckling [112].

(a) (b) (c)

Figure 3.19: Optimum ODFs in Rodrigues orientation space for (a) Ti-7Al (b) Mg, and (c)
Al that maximize Pcr of these materials [112].
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addition to the elastic stiffness matrix (kb), a geometric stiffness matrix (kg) is derived to

represent the effects of the rotations on the stiffness of the shaft and, thus, to obtain the

effective stiffness matrix (ke) of the rotating shaft [148]. The geometric stiffness matrix is

defined according to the state of an axial load; i.e., tensile loads make the system stiffer

while compressive loads make it less stiff (or less resistant to buckling). The elastic stiffness

and geometric stiffness matrices of the beam can be expressed as follows:

[kb] =
EI

L3



12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2


(3.10)

and

[kg] =
P
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(3.11)

where E is Young’s modulus of the material, I is the area moment of inertia of the cross-

section, L is the length of the shaft, and P is the axial load due to the rotation. The

total length and diameter of the shaft are taken as 1000 mm and 50 mm, respectively. The

effective stiffness of the shaft is defined as: [ke] = [kb] − [kg] (because of the compressive

load arising from rotations). At the critical buckling load, the following condition should be

satisfied [148]:

det[ke] = 0 (3.12)

Solving Eq. 3.12 will obtain the Pcr in terms of Young’s modulus, E, which is a microstructure-

sensitive property. In particular, Young’s modulus along the length of the shaft can be



74 CHAPTER 3. MICROSTRUCTURE-SENSITIVE DESIGN OF POLYCRYSTALLINE MATERIALS

named as E11, where E11 = 1/S11. Here, S11 is the corresponding compliance parameter

that is obtained from the compliance tensor (S) of the material such that S11 = S(1, 1),

and the compliance is inversely related to the volume-averaged stiffness tensor as S = C−1.

Therefore, the relation between the ODFs and E is not linear when upper bound averaging

is used, and Pcr also follows a similar correlation.

After obtaining the Pcr expression, an optimization solution is run in the design space to find

the microstructure that maximizes the buckling load. Figure 3.19(a), 3.19(b), and 3.19(c)

depict the ODFs in the Rodrigues space that produce the maximum buckling load for Ti-

7Al, Mg, and Al, respectively. In the case of Ti-7Al and Mg, the single-crystal ODFs provide

the optimum values. On the other hand, the maximum critical load is obtained with a

polycrystalline microstructure for Al.

Property Closure of Critical Buckling Load

The main challenge of applying supervised ML is the generation of sufficient data to train

the model. In the case of C11 − C12, C12 − C44, and C12 − C66 property closures of Ti-7Al

or any other material, the theoretical closure is known and it is used for producing the

training data. The extreme points of the closures for the linear properties such as C11 and

C12 are found through the single crystal ODFs. However, for non-linear material properties,

the assumption of producing extreme points with single-crystal solutions may not be valid

anymore. It is also evident from Fig. 3.19 that the maximum Pcr values for Ti-7Al and

Mg are obtained from single crystal textures, but a polycrystalline microstructure provides

the maximum Pcr for Al. Therefore, a closure is first generated using the optimum ODFs

that provide the maximum and minimum values of the design variables. Next, the training

data is generated from this closure. Though this data does not cover the entire design space,

this minimal closure will always remain within the actual property closure. Therefore, the
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training data will also prevail within the actual design space. The null space approach is

not applicable for generating multiple ODFs that satisfy the selected values of the non-

linear property. Consequently, multiple initial points can be chosen efficiently that cover the

design space as an input of the gradient-based optimization to obtain multiple local optimum

solutions for the problem. In this study, 20 different initial guesses are considered and 20

local solutions that provide the same values of the closure variables are obtained. Like the

linear property case, two different sets of ODFs (single and multiple ODF solutions) are

generated for training the ML models.

Next, the LR and ANN models with Bayesian Regularization are trained with the gener-

ated data. After the training, another set of ODFs is introduced to check the accuracy of

the models with four different scenarios. Figure 3.20(a) and 3.20(b) show the comparison

between the predicted values and actual values of C11 and Pcr, respectively for Ti-7Al. The

RMSE values of the predictions are 0.00123 and 2.8× 10−5 for ANN and LR models trained

by both single and multiple sets of ODFs for C11. These values are 0.25 and 0.95 for Pcr for

(a) (b)

Figure 3.20: The comparison between the predicted values by ML models and the actual
values of (a) C11 and (b) Pcr for Ti-7Al [112].
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ANN and LR (both single and multiple ODFs), respectively. Even though the parity plot of

Pcr (Fig. 3.20(b)) shows a good agreement between the actual values and predicted values,

the accuracy of LR is not as good as the ANN model, as demonstrated by the RMSE values

(0.25 for ANN and 0.95 for LR). It can be inferred that this error value will be larger for

more complex non-linear properties like the crystal plasticity parameters. In the case of C11,

LR and ANN are performing alike, as also evident from Table 3.9. Moreover, the models

trained by single ODFs and multiple ODFs are also providing the same predictions for Pcr.

Therefore, the property closures of the non-linear property (Pcr) for Ti-7Al, Mg, and Al are

predicted by the ANN model using the single ODF solutions. In this study, C11, C12, and

C66 are chosen along with Pcr as another design variable to build the property closures.

The ANN model with Bayesian Regularization is trained with the generated data. 80% of the

data is used for training and 20% of the data is utilized for validation and testing of the model.

After the training, another set of data, which includes the optimum ODFs for minimum and

maximum values of the variables, and single-crystal and polycrystal ODFs, are employed to

plot the property closure using the ANN model. A similar set of data is also used to generate

the closures of Pcr, C11, C12 and C66, which is named as “Limited Knowledge Closure” to

(a) (b) (c)

Figure 3.21: Property closures of (a) Pcr−C11 (b) Pcr−C12 and (c) Pcr−C66 of Ti-7Al [112].
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Table 3.10: Optimization error analysis of the different interior and exterior points of the
property closures of Ti-7Al.

Location (C11, Pcr)
Optimization
Error (kN) (C12, Pcr)

Optimization
Error (kN) (C66, Pcr)

Optimization
Error (kN)

Inside
of the
closure

(165,90) 0.98 (75,85) 0 (40,82) 0
(170,95) 1.43 (72,100) 0 (45,92) 0
(158,84) 0.25 (77,85) 0 (47,100) 0.003

Boundary
of the
closure

(154.7,79.8) 0 (68.1,82.1) 0 (46.1,76.8) 0.96
(166.3,97.6) 4.93 (69.9,76.5) 5.05 (47.5,81.1) 0
(160.4,80.7) 4.85 (71.5, 74.1) 1.76 (48.74,98.15) 0.04

Outside
of the
closure

(170,76) 20.5 (80,72) 8.1 (37,90) 9.7
(160,100) 14.1 (75,105) 10.83 (50,80) 3
(175,90) 11.9 (67,90) No solution (43,105) 7.2

compare it to the ANN-predicted closure. It is called limited knowledge closure as it is only

generated by a set of ODF values that may or may not provide the extreme values of the

non-linear properties by utilizing the assumption behind the theoretical property closures

of linear properties. In this way, the difference between the ANN-predicted and limited

knowledge closures can also be measured. Figure 3.21 displays the closures for Ti-7Al,

where the maximum deviations between the limited knowledge and ANN-predicted closures

are 6.5 kN, 6 kN, and 2.5 kN for Pcr −C11, Pcr −C12 and Pcr −C66, respectively. In the case

of Mg property closures in Fig. 3.22, these values are 0.2 kN, 0.25 kN, and 0.3 kN, and they

are 5 kN (Pcr −C11), 7 kN (Pcr −C12), and 6 kN (Pcr −C66) for the property closures of Al,

as shown in Fig. 3.23.

(a) (b) (c)

Figure 3.22: Property closures of (a) Pcr − C11 (b) Pcr − C12 and (c) Pcr − C66 of Mg [112].
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Table 3.11: Optimization error analysis of the different interior and exterior points of the
property closures of Mg.

Location (C11, Pcr)
Optimization
Error (kN) (C12, Pcr)

Optimization
Error (kN) (C66, Pcr)

Optimization
Error (kN)

Inside
of the
closure

(58,34) 0.46 (22.5,35) 0 (17,35) 0
(59.3,36) 0.28 (21.5,36) 0 (17.5,36) 0
(57.5,33.7) 0.04 (23.5,34) 0 (18.5,34) 0.002

Boundary
of the
closure

(58.06,35.05) 0.3 (21.3,35.4) 0 (18.4,34.8) 0.09
(58.01,34.5) 0.01 (22.7,32.6) 0.5 (18.7,33.6) 0.4
(57.4,33.6) 0 (23.3,32.9) 0.28 (18.6,32.7) 0.4

Outside
of the
closure

(59,32.5) 3.4 (23,37) 2.04 (18,37) 1.5
(58,36) 1.3 (21.5,33) 0.67 (17.5,32) 1.17
(60,35) 2.3 (24,36) 2.45 (19,36) 2.9

The next step involves the testing of the ANN-predicted closure to verify whether it repre-

sents the actual property closure of the material. However, as the actual closure for non-

linear properties cannot be theoretically estimated, there is also no direct way to compute

the accuracy of the ANN-predicted property closures. Therefore, exemplary design samples

have been selected from the inside, boundaries, and outside of the ANN-predicted property

closure and an optimization problem is solved to identify whether an ODF solution can pro-

duce those exemplary material property values. Therefore, the optimization problem aims to

minimize the difference between the property values of the selected points and the property

values produced by the optimum ODF solutions. The selected points and the numerical

error (or minimum objective function) obtained in the optimization problem are shown in

Table 3.10.

For example, in Fig. 3.21(b), three points are selected inside the Pcr−C12 closure, where these

points are (75, 85), (72, 100), and (77, 85), and they locate in the middle, left top corner,

and the right side of the lower area, respectively. In a similar way, the outside and boundary

points are chosen from all closures of Fig. 3.21-3.23. Next, these values are optimized to

check if there are any ODFs that provide the same Pcr value by satisfying corresponding

Cij values. However, for any solution, the ODFs must satisfy the normalization constraint

(qTA = 1) as well. The optimization error should be zero or a very small number for the

points within the closure and on the boundary. Here, the optimization error defines the
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difference between the Pcr value of the selected points from the closure and the Pcr of the

optimized ODFs that also satisfy the corresponding Cij.

The property closures of Ti-7Al are shown in Fig. 3.21. The ANN predicted closure is

covering more design space for Pcr −C11 than the limited knowledge closure of Ti-7Al. The

highest optimization error inside the closure is 1.43 kN. For the boundary points, the ANN

model is likely to over-predict up to 4.93 kN. The outside points cause large errors like

20.5 kN, 14.1 kN, etc. These values are expected because those points are located outside

of the property closure. Therefore, the optimization algorithm is unable to find any ODF

solution that can satisfy both Pcr and C11 values simultaneously without errors. In the case

of Pcr −C12 and Pcr −C66, both property closures are almost similar except for some of the

points near the boundary. The optimization errors in both cases are also zero for the interior

points and very small for the boundary points of the closure (see Table 3.10). Like Pcr−C11,

the optimization errors are also larger for the outside points compared to the points in the

closure for Pcr − C12 and Pcr − C66.

Figure 3.22 shows the property closure of Mg, and the corresponding error analysis is given

in Table 3.11. In all cases, the property closures are almost coinciding with the limited

(a) (b)
(c)

Figure 3.23: Property closures of (a) Pcr − C11 (b) Pcr − C12 and (c) Pcr − C66 of Al [112].
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Table 3.12: Optimization error analysis of the different interior and exterior points of the
property closures of Al.

Location (C11, Pcr)
Optimization
Error (kN) (C12, Pcr)

Optimization
Error (kN) (C66, Pcr)

Optimization
Error (kN)

Inside
of the
closure

(110,41.5) 0.5 (63,52) 0.6 (20,57) 0.45
(116,50) 0.3 (68,50) 0 (22,50) 0.003
(120,58) 2.6 (72,45) 0 (28.5,50) 1

Boundary
of the
closure

(122,48.2) 10 (61.9,57.6) 2.6 (21.1,62.9) 5.5
(113.2,56.4) 10.7 (66.9,61.7) 4.5 (25.9,60.6) 6.2
(119.7,60.4) 5.4 (73.9,39.6) 2.4 (28.4,35.5) 4.5

Outside
of the
closure

(120,35) 20.3 (65,40) 9.8 (20,42) 9.8
(110,50) 9.1 (70,65) 11.2 (22,65) 7.6
(115,63) 14.7 (75,50) 3.6 (30,60) 14.1

knowledge closures. This means that the ANN is not correcting the closure significantly.

The points, which are located inside and on the boundary of the closures, cause very small

errors that are even zero in many cases of Pcr − C11, Pcr − C12 and Pcr − C66. The exterior

points of the closures yield high optimization errors for all three cases (see Table 3.11).

Similarly, the property closures of Al and corresponding error analysis are shown in Fig.

3.23 and Table 3.12, respectively. Interior points of the closures indicate a well-matching

result by providing small optimization errors for all cases. However, the boundary points of

Pcr−C11 give the highest optimization error of 10.7 kN. In the case of Pcr−C12 and Pcr−C66,

the highest optimization errors for boundary points are 4.5 kN and 6.2 kN, respectively. The

increased number of independent nodes in the ODF mesh for Al compared to the Ti-7Al

and Mg might be the reason for the large optimization error for Al. Like other materials,

the exterior points are yielding large errors, which are desired.

From the above discussion, it can be concluded that ANN can be a useful tool to predict the

non-linear material property closures that are correlated with the ODFs using the limited

knowledge approach. Though the linear model can predict linear properties, it is unable to

provide high accuracy for non-linear property prediction. However, optimization errors are

obtained when the limited knowledge closures are used as the generated data from those

closures may not fully represent the material behavior. Moreover, the optimization errors

for Al are larger in every case compared to Ti-7Al and Mg. The number of independent
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nodes (ODFs) for Al is 76 while this value is 50 for Ti-7Al and Mg. The increase in the

number of variables is predicted to be the reason behind the large errors for Al.



Chapter 4

Stochastic Design of Polycrystalline

Materials

Uncertainty in microstructures significantly influences material properties. The microstruc-

tural uncertainty arises from the fluctuations that occur during thermo-mechanical process-

ing and can alter the expected material properties and performance by propagating over

multiple length scales. It can even lead to material failure if the deviations in the critical

properties exceed a safe limit. The effects of microstructural uncertainty on the isotropic ma-

terial properties are described in this chapter (Section 4.1). Moreover, a linear programming

(LP) based method is introduced to quantify the effects of the microstructure uncertainty

on desired material properties of the Titanium-7wt%Aluminum (Ti-7Al) alloy, which is a

candidate material for aerospace applications. The LP problem solves the mean values and

covariance of the ODFs that maximize a volume-averaged linear material property. How-

ever, the analytical procedure is not applicable for maximizing non-linear material properties

where the explicit relation between those properties and microstructure is unknown. There-

fore, an artificial neural network (ANN) based sampling method is developed to estimate the

mean values and covariance of the ODFs that satisfy design constraints and maximize the

volume-averaged non-linear material properties. A couple of other design problems are also

illustrated to clarify the applications of the proposed models for both linear and non-linear

properties which are discussed in Section 4.2.

82
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4.1 Forward Design under Uncertainty

In this section, the variations in isotropic design as a result of the microstructural uncer-

tainty will be analyzed in terms of the anisotropy index (AR) and Young’s modulus (E).

The anisotropic ratio is defined using the stiffness parameters. Therefore, it is affected by

microstructural uncertainty. The deterministic problem was introduced in Section 3.3. The

microstructure is represented by the ODFs, therefore, each ODF value is assumed to demon-

strate uncertainty. The optimum ODF solution for isotropic design obtained from Section

3.3 is considered to demonstrate 10% of variations around its mean values according to a

joint normal distribution definition [149] as shown in Fig. 4.1.

(a) (b)

Figure 4.1: Normally-distributed ODFs (a) ODF1 (b) ODF50 [140].

Two sample probability distributions for ODFs (ODF1 and ODF50) are exhibited in Fig.

4.1(a) and Fig. 4.1(b), respectively. Using the finite element discretization of the HCP,

FCC, and BCC systems (see Fig. 2.1), Ti-7Al is modeled using 50 independent ODFs, and

Al and Galfenol are modeled using 76 independent ODFs, with each agreeing with a normal

distribution. Next, Gaussian Process Regression (GPR) is applied to estimate the expected
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mean values (µ) and standard deviations (σ) of the outputs (anisotropy index and Young’s

modulus) due to probabilistic input (microstructure). The solutions obtained by GPR are

validated with Monte Carlo Simulation (MCS), which is known as a high-fidelity and robust

method.

At first, correlated ODF samples are generated by considering 10% variations around their

mean values. A convergence study is performed to select the number of ODF samples for

both MCS and GPR. The mean E11 value of Ti-7Al is considered to observe the change in its

value with the change in the number of ODF samples. Two convergence plots are depicted in

Fig. 4.2 for the tolerance values of 0.001 GPa and 0.0001 GPa. Figure 4.2(a) shows that the

change of mean E11 value is less than the tolerance value of 0.001 GPa achieved after 37,500

samples. Five thousand samples were taken initially with an increment of 500 samples until

it reached convergence. Similarly, 157,500 samples provide the convergence for the tolerance

value of 0.0001 GPa. To ensure high accuracy, 157,500 ODF samples are selected for MCS.

(a) (b)

Figure 4.2: Convergence of the sample size for MCS with the tolerance value of (a) 0.001
GPa and (b) 0.0001 GPa in the mean value of Young’s modulus (E) of Ti-7Al.
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A similar approach is taken for the GPR convergence to decide the sample size. In this

case, it is observed that the mean E11 of Ti-7Al is not changing after 1000 samples with a

tolerance value of 0.01 GPa. If the sample size is increased further, the model is getting over-

fitted, and computational time increases significantly. Therefore, a total of 157,500 and 1000

ODF samples are selected to perform MCS and GPR, respectively. The same sample sizes

are applied for Al and Galfenol as well to avoid bias in the selection of the number of samples.

In the case of GPR, 75% of the data are used for training, and 25% are used for test. The

outputs of the surrogate model are Young’s modulus (E) and anisotropy ratio (AR). Figure

4.3 and Fig. 4.4 show the GPR predictions of the expected outcomes and their comparisons

with known computational output (test data). In the case of Young’s modulus, the GPR

prediction is in good agreement with the test data of Ti-7Al, Al, and Galfenol (see Fig. 4.3).

However, Ti shows more deviation from the known output compared to Al and Galfenol.

Similarly, GPR predicts the anisotropy ratio for these materials as displayed in Fig. 4.4 by

capturing the uncertainty of the ODFs. The mean values and standard deviations of these

parameters (E and AR) are reported in Table 4.1.

Next, uncertainty propagation on the elastic constants and anisotropy index due to the

(a) (b) (c)

Figure 4.3: Comparison of GPR-predicted Young’s Modulus (E) with the known test data
for (a) Ti-7Al (b) Al and (c) Galfenol [140].
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microstructural variations is modeled by Monte Carlo Simulation (MCS). MCS is a robust

numerical UQ method. Therefore, the outcomes of the GPR model are compared to the

MCS solutions. A total of 157,500 random samples agreeing with the normal distribution

are generated to describe the probability distributions of the ODFs. Then MCS is applied

to find the mean (expected) values and the standard deviations of Young’s modulus values

(E11, E22, and E33) and anisotropy index (AR).

(a) (b) (c)

Figure 4.4: Comparison of GPR-predicted Anisotropy Ratio (AR) with the known test data
for (a) Ti-7Al (b) Al and (c) Galfenol [140].

The distributions of E and AR due to the variations in the ODFs are depicted in Fig. 4.5

and Fig. 4.6, respectively for the example materials. The corresponding mean values and

standard deviations are reported in Table 4.1. It is evident from Table 4.1 that the mean

values of E11, E22, E33, and AR predicted by both methods (GPR and MCS) are equal to

the deterministic optimum values of the same parameters (see Table 3.6) as the optimum

Table 4.1: Mean values and standard deviations of the elastic constants and anisotropic
ratio of Ti-7Al, Al, and Galfenol due to microstructural uncertainties, estimated by MCS
and GPR (unit is GPa)

Parameter Ti-7Al Al Galfenol
µMCS µGPR σMCS σGPR µMCS µGPR σMCS σGPR µMCS µGPR σMCS σGPR

E11 114.2 114.1 1.59 1.43 66.9 66.9 0.32 0.44 215.4 215.3 1.01 1.02
E22 114.2 114.2 1.59 1.44 66.9 66.9 0.32 0.44 215.4 215.3 1.01 1.02
E33 114.2 114.1 1.68 1.44 66.9 66.8 0.32 0.43 215.4 215.3 1.02 1.02
AR 0.99 0.99 0.0016 0.03 0.99 0.99 0.0008 0.01 0.95 0.94 0.0017 0.02
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ODFs are assumed to demonstrate uncertainty around their mean values. MCS provided

equal standard deviation values for E11, E22, and E33 for all three materials, except the stan-

dard deviation of E33 for Ti-7Al, which is higher than the standard deviations of E11 and

E22. Moreover, Ti-7Al shows higher deviations from the mean compared to Al and Galfenol.

GPR-predicted standard deviations for E are 1.44, 0.44, and 1.02 GPa for Ti-7Al, Al, and

Galfenol, respectively. Compared to MCS, GPR is found to predict 0.15 GPa (E11 and E22)

and 0.24 GPa (E33) smaller standard deviations for Ti-7Al, 0.12 GPa higher standard devia-

tion for Al, and the same standard deviation for Galfenol. In the case of the anisotropy ratio,

the predicted standard deviation values are very small, i.e., 0.0016, 0.0008, and 0.0017 by

MCS, and 0.03, 0.01, and 0.02 by GPR for Ti-7Al, Al, and Galfenol, respectively. These val-

ues indicate that the microstructural uncertainties are not influential on the anisotropy ratio.

(a) (b) (c)

Figure 4.5: Distribution of Young’s Modulus (E) for (a) Ti-7Al (b) Al and (c) Galfenol
because of the microstructural uncertainty [140].

With the presented results, the GPR is proven as a powerful technique to quantify the uncer-

tainty of ODFs and its propagation on the volume-averaged material properties. Therefore,

GPR can be implemented further in other problems where the effects of microstructural

uncertainty can be crucial. Moreover, this study can be extended to other alloys to design

materials with isotropic properties, or to minimize the level of anisotropy in certain applica-
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(a) (b) (c)

Figure 4.6: Distribution of the Anisotropy Ratio (AR) for (a) Ti-7Al (b) Al and (c) Galfenol
because of the microstructural uncertainty [140].

tions. Other elastic properties, such as bulk modulus, shear modulus, or Poisson’s ratio can

be incorporated into the design problem in the future to obtain a fully isotropic material.

4.2 Inverse Design under Uncertainty

In this section, the effects of the aleatoric uncertainty of the microstructure on the volume-

averaged linear properties will be studied using the stochastic model developed in the pre-

vious section for correlated ODFs. Ti-7Al alloy is considered here as an example material.

The alloy has 50 independent ODFs and each orientation is assumed to demonstrate uncer-

tainty. The LP-based optimization model is developed to find the optimum mean values

and covariance matrix of the ODFs to meet the three design objectives which will be dis-

cussed in this section. The LP-based model is only applicable to material properties that

are linearly related to the ODFs. Therefore, the second part of this section delineates the

sampling method that utilizes the Artificial Neural Network (ANN) model to maximize the

non-linear material properties under the effects of the microstructure uncertainty. Young’s

modulus (E11) is selected as the example non-linear material property. Finally, the example

problems are introduced, and the inverse design results are discussed.
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4.2.1 Inverse Design for Linear Properties under Microstructural

Uncertainty using the Analytical Model

As discussed in Section 2.2.1, to model the uncertainty in the ODFs, a known set of mean

values along with the covariance matrix are required. Therefore, considering the orthotropic

property assumption in the stiffness matrix, C12, C33, and C44 are chosen as input parameters.

To maintain the model simplicity, the other elastic constants are neglected when defining

the uncertainty of the microstructure. This assumption is valid also because their effects

on the results are found to be not significant. In addition, the following can be assumed

for HCP structures: C11 = C22 and C55 = C44 [150]. The problem will focus on how the

microstructure uncertainty affects the stiffness constant, C11. However, C66 also depends

on C11 and C12. Therefore, both C11 and C66 are also omitted from the input parameters.

Due to the orthotropy assumption for the Ti-7Al alloy, the epistemic uncertainty that may

arise from the modeling of the material anisotropy is not considered. The input parameters

(mean values and covariance of stiffness parameters) for all example problems are defined as

follows:

µC = [µC12 µC33 µC44 ]
T = [74.3 161 43.4]T GPa

and

Σvec
C = [ΣC1,1 ΣC1,2 ΣC1,3 ΣC2,2 ΣC2,3 ΣC3,3 ]T = [0.042 0.065 0.021 0.103 0.033 0.026 ]T GPa2

The following three design objectives in Table 4.2 are utilized in design problems.
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Table 4.2: The three objective functions used in design optimization problems

Objective 1 Objective 2 Objective 3
max µC11 min σ2

C11
max (µC11 − 3σC11)

The set of design variables (mean values and covariance of ODFs) is defined as:

x = [µA(k×1)
Σvec

A(n−k×1)
]T

The optimization problems need to satisfy the equality constraints of Eq. 2.18. The upper

bounds of the design variables are: µAi
≥ 0 and ΣAii

≥ 0.

(c) (d)

(b)(a)

Figure 4.7: Optimum microstructures in Rodrigues orientation space for the (a) determin-
istic problem; and (b) objective 1, (c) objective 2, and (d) objective 3 of the stochastic
problems [39].
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The first objective aims to maximize the mean value of the volume-averaged C11 of Ti-

7Al under the microstructure uncertainty. C11 can be computed by the homogenization

expression (Eq. 2.12). The second problem refers to a robust optimization application as

the objective is defined as the minimization of the variance of C11. The third objective

is defined as the maximization of C11 with the worst-case condition assumption under the

uncertainty by considering the Gaussian representation. The solutions of three optimization

problems are depicted in Fig. 4.7 along with the deterministic solution. The results include

the optimum microstructure in the Rodrigues orientation space for the deterministic case

(c)

(b)(a)

Figure 4.8: Diagonal elements (variances) of the ODF covariance matrix shown in Rodrigues
orientation space for (a) objective 1 (b) objective 2 and (c) objective 3 [39].
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(Fig. 4.7(a)), as well as the objective functions 1, 2, and 3 in Fig. 4.7(b), 4.7(c), and 4.7(d),

respectively. The diagonal elements of the covariance matrix (variances) of the ODFs for

three objective functions are plotted in the Rodrigues orientation space as shown in Fig. 4.8.

The solution of the stochastic problem-1 provides the maximum mean value of C11 as 162.7

GPa, which is equal to the value obtained with the deterministic approach. The details of the

deterministic approach are not explained here as it was mentioned in Section 3.2. Similarly,

the optimum ODF solutions of objectives 2 and 3 yield the mean values of C11 as 161.5 GPa

and 162.5 GPa, respectively. The ODFs shown in Fig. 4.7(a) and 4.7(b) are the same and

have sharp textures as they have four non-zero ODF values, corresponding to the presence

of only four crystallographic orientations.

However, the ODFs in Fig. 4.7(c) and Fig. 4.7(d) demonstrate polycrystal designs. The

diagonal entries (variances) of ODF covariance matrices for three objectives are visualized

in Fig. 4.7. The variances of the ODFs for objective-1 (Fig. 4.7(a)) reveal that only two

nodal point values (only two orientations described by the 1th and 30th ODF values) in

the microstructural orientation space influence the standard deviation of the ODFs. The

effects of other nodes are found to be negligible. Figure 4.7(b) is the representation of the

ODF variances for objective-2 and it shows polycrystals which describe that the standard

deviation of the ODFs is dictated by all crystal orientations. Likewise, the ODF variances

for objective-3 are very similar to a random texture representation. Therefore, each diagonal

element of the ODF covariance matrix has an influence on the standard deviation of the

ODFs and the objective function. The standard deviations of C11 for three design problems

can be calculated using the corresponding covariance matrix of the ODFs. The standard

deviation values for C11 are found to be 0.32 GPa, 0.29 GPa, and 0.292 GPa, respectively

for objectives 1, 2, and 3. The probability distribution of C11 is displayed in Fig. 4.9 for

all the objectives using the corresponding mean values and standard deviations. The ranges
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of C11 values by considering three standard deviations from the mean are 161.7-163.6 GPa,

160.6-162.4 GPa, and 161.6-163.4 GPa, respectively for objectives 1, 2, and 3.

Figure 4.9: The Gaussian probability distributions of C11 values for objectives 1, 2, and 3 of
the stochastic problem along with the deterministic solution [39].

4.2.2 Inverse Design for Non-linear Properties under Microstruc-

tural Uncertainty using the ANN Model

If a linear relation between ODFs and material properties cannot be established, the ana-

lytical method presented in the last section is not applicable to the optimization of those

properties. Linear properties including stiffness constants, Cij, are linear functions of the

ODFs, A (see Eq. 2.12). Therefore, the propagation of the Gaussian-distributed ODFs re-

sults in Gaussian-distributed linear material properties. However, in the case of non-linear

properties such as Young’s modulus, E11, which is defined as E11 = 1/S(1, 1) where the com-
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pliance is defined as the inverse of the stiffness such that S = C−1, it cannot be guaranteed

that E11 will also follow a Gaussian distribution. Moreover, the transformation of random

variables cannot be applied in this case because this is a non-invertible function in terms

of ODFs. Therefore, the ANN-based sampling method in the design space is employed to

quantify the uncertainty in the ODFs and its effects on the non-linear properties.

Microstructures

(ODFs) 

Computational 

Model

Non-Linear 

Properties

ML (ANN) 

Training

Trained Model

N number of 

Microstructures 

from Design Space

Mean and Variance 

of Non-Linear 

Properties

Stochastic

The 

Figure 4.10: Overview of the ANN-based sampling method for optimizing non-linear prop-
erties [39].

The summary of the ANN-based sampling method is shown in Fig. 4.10. Here, the sampling

method indicates that the solver randomly selects the ODF samples from the design space

that satisfy the normalization constraint. Next, it creates an N number of ODF samples

originating from the initial ODFs by considering the uncertainty in each ODF node. Next,

all samples are evaluated in the objective function to obtain the optimum values (maxi-

mum or minimum) and check whether they satisfy the design constraints. If the objective

function converges to a global/local minimum or maximum, the solver stops. The values of

the objective function are calculated using the trained ANN model to save computational
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time. For example, the calculation of crystal plasticity parameters of polycrystalline mate-

rials is a costly process [151]. Therefore, it is not preferable to integrate such an expensive

computational model into the optimization algorithm. Accordingly, the ANN model is de-

veloped using the known computational data to capture the relationship between the input

and output variables that define the optimization problem. With the implementation of the

stochastic inverse design approach, the mean value of the non-linear property is maximized

given the prescribed variance value of the same non-linear property. The mean value and

variance of the non-linear property are calculated through the N number of ODF samples

using the trained ANN model.

(a) (b)

(d)(c)

2000 Samples 2500 Samples

3000 Samples 3500 Samples

Figure 4.11: Convergence of the ANN performance in terms of sample size [39].
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Example Problems and Solutions

To illustrate the methodology which is discussed in the previous section, the in-plane Young

modulus, E11, is considered a non-linear material property when using the upper bound

averaging. At first, the volume-averaged E11 expression is formulated in terms of the mi-

crostructure (ODFs) by the multi-scale model using Eq. 2.12, where, E11 = 1/S(1, 1) and

S is the compliance matrix, which is the inverse of the stiffness matrix, C. Next, using

the optimization toolbox, maximum and minimum values of E11 are determined for Ti-7Al.

These values are 141.3 GPa and 101.3 GPa, respectively. Next, the training data is generated

between the maximum and minimum values of E11 and the corresponding ODF sets that

satisfy the normalization constraint are determined using the inverse optimization. How-

ever, the performance of ANN also depends on the sample size. Therefore, a convergence

study is carried out to select the number of training samples as depicted in Fig. 4.11. The

Deep Learning library, called ‘nnstart’, of Matlab (version: 2019a) is used to train the ANN

model. Four different sample sizes such as 2000, 2500, 3000, and 3500 are considered for

checking the ANN performance. The data set is divided into three categories e.g., training

(80 %), testing (10%), and validation (10%) during the training of the Bayesian regularized

neural network where the ODFs are the inputs and the corresponding E11 values are the

output. The training performance of the ANN is examined by the R2 (coefficient of determi-

nation) and mean squared error (MSE) [152] values. Figure 4.11 shows the plot of training

and testing errors for those four cases up to 1000 epochs. Though the differences in MSE

values are very small for all cases, the training and testing errors converge for 3000 samples

(Fig. 4.11(c)) and 3500 samples (Fig. 4.11(d)). This also implies that these two models will

have less chance of overfitting. Therefore, 3000 samples are picked for training the ANN

model as more samples require more computational time to generate the training data. For

the selected configuration, the creation of the training data took about 90 minutes and the
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training of the ANN model required 5 minutes on a desktop computer. The computational

time for optimizing E11 in the main algorithm took about 1 hour using the same computing

platform. After the training, the ANN-generated function, Q, is employed in the optimiza-

tion algorithm to calculate the E11 values from the ODF samples of the design space. The

ANN model that determines the E11 values from the sampled ODFs is computational-time

efficient. This becomes more evident when a significant number of ODF samples (1000 in

this case) are provided in each iteration for calculating the E11 values. The saved compu-

tational time is in the order of hours in this study which can be in the order of days for

problems that involve crystal plasticity simulations.

This methodology is applied to optimize two design problems. They are: 1) Maximizing

the mean value of E11 for a given variance of E11 (max µE11); 2) Minimizing the variance

of E11 for a given mean value of E11 (min σ2
E11

). In both cases, the design variables are the

mean values of the 50 ODFs (µA) and the corresponding variances (σ2
A). The symmetric

covariance matrix of ODFs is 50 × 50, and it has a total of 1325 upper diagonal elements

(1275 elements are unique). Among them, 50 elements are diagonal entries (variances). In

the cases of linear properties, all elements of the covariance matrix are modeled. The results

show that the off-diagonal terms are negligible (almost zero in all examples of optimizing

the linear properties). This motivates the elimination of the non-diagonal terms in the case

of a non-linear property. Moreover, considering the non-diagonal terms will increase the

number of design variables to 1325 as the linear property case and, thus, the numerical cost

and complexity. As their impact is found to be almost negligible for the linear property,

the same assumptions are maintained for the non-linear properties. The pseudo-code that is

used for maximizing the µE11 value under the ODF uncertainty is provided in Table 4.3. The

first column of Table 4.3 contains the main file where the optimization constraints, lower

bounds, upper bounds, and the optimization algorithm are mentioned. The second column
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Table 4.3: Pseudo-code for maximizing the mean value of E11 under the ODF uncertainty
using the sampling method

Objective: max µE11

Input: Property matrix of Ti-7Al; Variance of E11 (σ2
E11

)
Output: A vector of mean values of ODFs at 50 nodes (µA) and corresponding variances (σ2

A)
main file objective and constraint file

1: fun= (-µE11) (maximizing objective function) 1: k = 50; (no of independent nodes in the ODFs)
Constraints of the optimization problem: N = 1000, number of random sample generation
2: x = [µA(1×k)

Σvec
A(1×k)

]T , total 100 variables 2: odf sample=zeros(N, k)
3: qTµA = 1 3: for i = 1, 2, .....k
4: qΣAqT = 0 4:odf= x(i) + 3 ∗ σA ∗ randn(N, 1)
5: A=[]; b=[] 5: odf sample (:, i)=odf (samples satisfy the normalization constraint)
6: lb=zeros(100,1) 6: end
7: ub= [ 1

q(i) , +Inf*ones(1,50)]; i = 1, 2, ..., k 7: E11 = Q(odf sample); where, Q is the ANN generated function
8: [solution] = patternsearch(f,X0,A,b,Aeq,beq,lb,ub, nonlcon) 8: µE11 = mean(E11)
9: µA = solution(1 : k) 9:standard deviation (σE11)=std(E11)
10: σ2

A = solution(k : 100) 10: nonlcon: σ2
E11

= 0.25GPa2; (given non-linear constrain)

shows the definition of the objective function and the given non-linear constraint (variance

of E11). In Table 4.3, fun shows the definition of the objective function, x is the vector of

design variables, A represents the coefficient matrix for the inequality constraints, b is the

vector of the right-hand side (constant) values for the inequality constraints, Aeq shows the

coefficient matrix for the equality constraints, beq is the vector of right-hand side (constant)

values for the equality constraint values, lb is the vector of lower bounds for design variables

(ODFs), and ub is the vector of upper bounds for design variables (ODFs).

In the case of the second objective function (min σ2
E11

), the problem remains similar to the

information provided in Table 4.3 except for the switch between the objective function and

known non-linear constraint. For the second problem, µE11 is known where the variance

should be minimized. In both cases, Matlab (version: 2019a) built-in pattern search algo-

rithm is used to find the optimum point. The reasons behind choosing the pattern search

optimization are: 1) The nature of the objective function is unknown, e.g., whether it is con-

tinuous and differentiable or not since we generate 1000 random samples from each design

point considering the ODF uncertainty. Therefore, pattern search is a convenient choice

as it is a gradient-free algorithm. 2) In each iteration, design samples are generated and

the objective function values are determined. The sample that provides the lowest function
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value is passed to the next iteration. The iterations continue until the objective function

value converges to a global/local minimum point (when the change in objective function

value is lower than the tolerance). The advantage of this algorithm is that it ensures the

use of a direction that improves the objective function value in each iteration until the algo-

rithm stops. 3) Moreover, a sampling method is used in the design space. Every time the

set of design variables (x) changes, the corresponding objective function value is evaluated

simultaneously. The graphical representation of the function values also allows us to make

the decision about the convergence of the objective function to a global/local minimum or

maximum. The randomly oriented texture design is chosen as the initial guess (iteration

1) for the optimization. In each iteration, the candidate design points (polling points) are

generated by updating the current design point with pre-defined search direction values that

depend on the mesh size parameter (iteration number), k (where k = 1, 2, 3, .., n, and n is

the number of total iterations). The objective function value is evaluated for each of these

candidate designs and the design that provides the lowest/largest objective function value

(for minimization and maximization, respectively) is selected as the next iteration’s design

point. Interested readers are referred to Ref. [153] for a more detailed description of the

pattern search algorithm.

The maximum mean E11 value is found as 126 GPa under the ODF uncertainty for the given

E11 variance of 0.25 GPa2. The standard deviation of C11 is found to be around 0.3 GPa

in the last section, therefore, the variance of E11 is chosen as 0.25 GPa2 i.e. the standard

deviation is 0.5 GPa. The solution is depicted in Fig. 4.12 where the mean ODF values

are visualized at each node (Fig. 4.12(a)) and the variances are shown (Fig. 4.12(b)). The

optimum ODFs and covariance elements indicate a highly polycrystalline microstructure

design. Similarly, Fig. 4.12(c) and 4.12(d) show the mean values and variances of the ODFs

in the Rodrigues orientation space as the solutions of the second design problem. Here, the
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mean is assumed to be known (124 GPa) which is selected around the maximum possible

mean value (126 GPa) to compare the results of two design problems. The objective is to

minimize the variance of E11. This is an interesting design problem as the desired mean value

is known for the objective and the goal is to minimize the variance under microstructural

uncertainty. However, similar to the first problem, the optimum results (mean and variances

of ODFs) indicate a highly polycrystalline design, which is advantageous over sharp textures

for manufacturability. The lowest variance can be achieved as 0.16 GPa2. Thus, the possible

minimum standard deviation that satisfies the design constraints is 0.4 GPa. The pattern

search algorithm can only guarantee a local optimum solution for a given initial guess,

(a) (b)

(c) (d)

Figure 4.12: (a) Optimum mean ODFs and (b) Variances of ODFs for objective 1 (c) Op-
timum mean ODFs and (d) Variances of ODFs for objective 2 in the Rodrigues orientation
space [39].
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which is similar to the gradient-based algorithms. In this study, the optimum solutions are

explored by changing the initial guesses, and the optimum solution that provides the best

solution among all local solutions is selected (an exhaustive-search-like approach). In each

run, the solver converges to a local optimum point. The solution of that run with a small

perturbation is selected as an initial point for the next iteration. Using this approach, the

optimum solution has converged only using 75 initial guess points since the variations in the

optimum solutions are small (within 1% range). This strategy is found to be more efficient

compared to a strategy that is fully based on an exhaustive search owing to the generation

of the initial design points in a more effective way. The distributions of the E11 values

for both objectives are plotted in Fig. 4.13 using their optimum solutions (mean ODFs

and corresponding variances). In both cases, 105 samples are created around the mean of

each node using the corresponding standard deviation according to a normal distribution.

The ODF samples which satisfy the normalization constraint are passed through the E11

Figure 4.13: The distribution of E11 values for objectives 1 and 2 of the stochastic prob-
lems [39].
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formulation to generate a set of E11 values. The plots of these E11 values for both objective

functions are illustrated in Fig. 4.13. It is obvious that these plots do not represent a

Gaussian distribution representation like ODFs. However, the standard deviation values are

not high in both cases hence the ranges of E11 are small, i.e., 6.5 GPa and 6.4 GPa for

objectives 1 and 2, respectively.



Chapter 5

Crystal Plasticity Modeling with

Physics-Informed Neural Networks

A physics-informed machine learning approach is integrated into microstructure design to

improve microstructure-sensitive design’s accuracy, computational efficiency, and explain-

ability. When data generation is costly, and numerical models need to follow certain physical

laws, domain-aware machine learning models perform more efficiently than conventional ma-

chine learning models. Therefore, a new paradigm called Physics-Informed Neural Network

(PINN) is introduced in the literature [64]. This study applies the PINN to microstructure-

sensitive modeling and inverse design to explore the material behavior under deformation

processing. In particular, the application of PINN to a small-data problem driven by a crystal

plasticity model is demonstrated that needs to satisfy the physics-based design constraints

of the microstructural orientation space. For the first problem, the microstructural texture

evolution of Copper is predicted during a tensile deformation process as a function of initial

texturing and strain rate. The second problem aims to calibrate the crystal plasticity pa-

rameters of Ti-7Al alloy by solving an inverse design problem to match the PINN-predicted

final texture and experimental data.

Recently, Dornheim et al. [154] formulated a model-free deep reinforcement learning algo-

rithm in order to optimize the processing paths (up to 100 combinations) for a targeted

metallic microstructure. Instead of relying on prior samples, their algorithm can commu-

103
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nicate with processing simulations during optimization. They expanded the technique to

address multi-objective optimization problems. In a different study, Honarmandi et al. [155]

proposed a novel approach based on batch Bayesian optimization to solve the inverse prob-

lem of determining the material processing requirements using microstructure data. They

created a surrogate model based on Gaussian Process Regression (GPR) to replace the com-

putationally expensive process models and integrated it into inverse design optimization

using low-fidelity and high-fidelity phase field models. In this study, inspired by PINN,

physics-informed and data-driven surrogate models are developed to replace costly material

processing simulations to predict the final deformed textures and their evolutions over time.

Models are trained with small data and customized to incorporate the underlying physics-

derived constraints. Therefore, this study presents a combined approach of microstructure-

sensitive materials design and physics-informed ML. The example problems will be presented

for two different crystal structures, i.e., hexagonal close-packed (HCP) and cubic. Two exam-

ple materials, Ti-7Al and Copper (Cu) are chosen as they have wide engineering applications

under high thermo-mechanical stresses, including aerospace systems. In the first problem,

a surrogate model for Cu is developed, which predicts the final texture and its evolution at

different time steps when a tensile force is applied to the material for a certain time with

different strain rates. Next, an inverse design problem is defined to solve the optimum slip

and twin system parameters of Ti-7Al to achieve a final texture prediction that matches the

experimental texture data. In order to do that, another surrogate model is developed to

predict the deformed texture as a function of crystal plasticity parameters when the mate-

rial is under compression. In both cases, long short-term memory (LSTM) neural network is

implemented to develop a data-driven ML model. LSTM network is preferred because this

study involves time-dependent simulation data. Moreover, the physics-based constraints can

be implemented in the LSTM network [156, 157, 158, 159]. The organization of this chapter

is as follows: Section 5.1 discusses the necessary mathematical background of the physics-
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informed LSTM network. Results for forward modeling and inverse design using PINN are

discussed in Section 5.2.

5.1 Physics-Informed Neural Networks with LSTM

Neural networks are used to estimate the outcomes of a function. However, a conventional

neural network described in Section 2.3 cannot incorporate the underlying physics of the

system while training. Therefore, in the case of PINN, the loss function of a conventional

neural network (see Eq. 2.25) is modified to accommodate the physical laws, initial/boundary

conditions, or any design constraints present in the system. Next, it can be embedded into

the physical systems to approximate the solution while satisfying any initial or boundary

conditions and physics-derived constraints.

Feed Forward Neural Networks (FNN) are the most basic network structure comprised of

different layers with many nodes, which map inputs to the outputs by adding weighted

inputs with bias. As FNN relays information in only one direction, problems containing

parallel time series data that are related to each other cannot be predicted accurately with

this type of network. Therefore, a special type of recurrent neural network (RNN) called

long short-term memory (LSTM) network is utilized to correlate the processing parameters

and texture evolutions with time during the deformation process.

Unlike FNN, RNN has nodes in its layers that communicate with the nodes of the previous

layer and also create a cycle, where it can act as a memory to fit the variable sequence inputs.

This is achieved by back-propagation, ensuring that the weights in the previous layers are

updated based on the derivative of the estimated error at the output layer, with respect

to the weights, within a training epoch. As the inputs are not independent of each other,

relations between the features could be captured directly. It is also able to handle inputs
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Figure 5.1: LSTM architecture adaptation for a multiple parallel time-series problem to
predict the evolution of ODFs and the internal block structure of an LSTM cell [160]. Figure
Courtesy: Zekeriya Ender Eger, a PhD student, Virginia Tech.

and outputs of different sizes. However, there are still major issues when implementing the

network standalone, such as gradient exploding or vanishing and processing large sequences.

In order to tackle the disadvantages of the RNN structure, LSTM is proposed. The main

additions are the gates in the form of activation functions that provide the ability to select

which information to discard or to keep in the memory. As summarized in Fig. 5.1, the

cell is composed of a group of neural networks that operates with three gates. The input

gate decides whether new information should enter the cell, the forget gate releases the

information that is considered not important, and the output gate decides if the whole

process starting from the input gate should affect the output. These gates also reduce the

time consumed in the training, thus helping the whole neural network system to handle a

long sequence effectively. Equations from 5.1 to 5.4 give the expressions at the forget (f),

input (i), and output (o) gates, respectively, where σ stands for activation function, W is
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the gate weight matrix, U corresponds to the hidden unit weight matrix, b represents the

bias, and g is the candidate for cell state. After the input xt and the hidden state ht are

multiplied with the weights, they become inputs for their respective activation functions.

ft = σ
(
W (f)xt +U (f)ht−1 + b(f)

)
(5.1)

it = σ
(
W (i)xt + U (i)ht−1 + b(i)

)
(5.2)

ot = σ
(
W (o)xt + U (o)ht−1 + b(o)

)
(5.3)

gt = C̃t = tanh
(
W (g)xt + U (g)ht−1 + b(g)

)
(5.4)

These gates are then used to calculate the new memory and the cell output in Equations 5.5

and 5.6, respectively [161], with element-wise multiplication, to ensure that gate values either

destroy the corresponding value when they are close to zero or allow them to pass when they

are close to one.

Ct = gt
⊙

it + ft
⊙

Ct−1 (5.5)

ht = ot
⊙

tanh (Ct) (5.6)

For modeling the evolution of the Cu microstructure during a tensile process, the first

LSTM layer takes the initial ODFs as the input with the addition of the strain rate.

The output of the layer is then converted to a multi-column shape for it to conform to

the shape of the output that has multiple time steps. For the second problem that ex-

plores the optimum crystal plasticity parameters of Ti-7Al alloy to match the final tex-

ture data, the first LSTM layer inputs the slip and twin system parameters. The second

LSTM layer takes the output of the previous layer and predicts the output through the
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dense layer. The predicted output Ŷ for each time step, based on the strain rate and the

initial ODF, is evaluated via a loss function where it is compared with the actual ODF

(Y ) for the corresponding time step obtained from the physics-based simulator. The loss

function is modified to incorporate the physics-based normalization constraint (see Eq. 2.1)

which needs to be satisfied by the ODFs at each time step. Therefore, an extra term has

been added in the loss function that accounts for the physics-informed loss which becomes

as Total Loss = Physics-Informed Loss + Data-Driven Loss. The total loss (J) can be ex-

pressed as:

J =
L∑
i=1

[(1− q · Ŷi)
2 +

1

M

M∑
j=1

(
Yi,j − Ŷi,j

)2
] (5.7)

Here, the first term ensures that the accuracy search does not violate the physics-based

constraint (volume normalization), and the second term ensures the minimum error in model

prediction. L is the total number of steps in the ODF evolutions, which is 10, and M is the

number of ODF in the output, which is 76 for Cu.

5.2 Results and Discussions

Employing the above-mentioned mathematical models, we develop two surrogate models

for forward modeling and inverse design of deformation processing. In the forward model,

the physics-informed ML model predicts the texture evolution during a tensile deformation

process for Cu. In the other problem, we build another surrogate model to predict the final

deformed texture as a function of slip and twin system parameters of Ti-7Al. In both cases,

training data are generated using the physics-based crystal plasticity simulations with the

constitutive model developed by Sundararaghavan et al. [34].
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5.2.1 Forward Model of Crystal Plasticity Simulations

The objective of this surrogate model is to predict the texture evolution and the final tex-

ture of tensile deformation using any given initial texture and strain rate. Copper (Cu)

is considered as the example material that has 76 independent ODFs. We generated 1200

random training data samples of initial textures using the physics-based simulations with

strain rates varying from 0.1 to 1 s−1. The tensile force is applied for 0.1 sec in each case.

Training data contains the final deformed texture with 9 intermediate time steps of textures

in terms of ODF snapshots. 200 data samples are reserved for testing the performance of

the model. Among 1000 data samples, 85% and 15% of the data are used for training and

validation, respectively. Adam optimizer [162] is used for the training that had 2000 epochs

with a batch size of 77 and a learning rate of 0.0001. The trained model is then used to test

Figure 5.2: Comparison of the actual and predicted normalized ODFs for three different
test cases along with the convergence of mean squared error for both training and validation
data [160].
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different sets of ODFs. An example prediction for a set of normalized final ODFs is given

in Fig. 5.2 that shows a high-accuracy match with most of the test points. The root mean

squared error (RMSE) values of the predictions are 0.19, 0.16, and 0.21, respectively. In

addition, the training and validation accuracy of the model is also reported in Fig. 5.2.

Furthermore, a random initial texture is chosen to run the process simulation using both

physics-based and surrogate models for the strain rate of 1 s−1. The final texture and two

intermediate steps of ODF evolution from both models are shown for comparison in Fig. 5.3.

It is evident from Fig. 5.3 that the physics-informed surrogate model is able to capture the

Final Texture Final Texture 

Initial Texture 

Physics Based 

Output

Surrogate Model 

Prediction

3rd Step 

(t=0.03 sec)

7th Step

(t=0.07 sec)

Intermediate Steps

10th Step

(t=0.1 sec)

Figure 5.3: Comparison of the ODFs in Rodrigues orientation space at different time steps
obtained by the physics-based model and physics-informed ML surrogate model [160].
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trend of ODF evolution in time with a minimum error (RMSE values are 0.44, 0.65, and

0.85 for 3rd, 7th, and 10th steps, respectively). Moreover, the predicted ODFs in each step

satisfy the volume normalization constraint of Eq. 2.1. It is observed that the RMSE value

of the prediction is increasing with time. In addition, these values are higher for predicting

the high strain rate processes. The possible reason behind this finding is that larger changes

occur in the ODF values from the initial time step to the final time step when the strain

rate is high. In such cases, the surrogate model needs more data from the physics-based

simulations to achieve high prediction accuracy.

5.2.2 Inverse Design of Crystal Plasticity Parameters

This work addresses ML-reinforced robust modeling of metallic microstructures under the

effects of uncertainties. The presented methodology is applied to explore the elasto-plastic

deformation behavior of Ti-7Al alloy. Although it is a candidate aerospace material owing to

its outstanding mechanical performance under high stresses, there is still no consensus on its

crystal plasticity modeling parameters (specifically the slip and twin system parameters) of

the alloy in the literature due to the significant uncertainties arising from the experiments.

Some of these parameters are reported in several studies [163, 164, 165], while none of these

studies considered the effects of the experimental uncertainties. In this work, the goal is to

build a high-fidelity crystal plasticity surrogate model of the Ti-7Al alloy using the PINN

framework with the consideration of the effects of the material uncertainties.

In a previous study [79], a high-fidelity crystal plasticity surrogate model was developed for

Ti-7Al using conventional neural networks. A two-step solution was proposed to develop an

inverse problem that yielded optimum crystal plasticity parameters by minimizing the dif-

ference between experimental microstructure data and the neural network predictions of the
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same. However, only 50 data points were generated using PRISMS-Plasticity software [166]

to train the model as the data generation was costly. Moreover, the design variables (ODFs)

were required to satisfy the normalization constraint. As a result, the overall prediction

quality of the conventional neural network was lower than desired. Therefore, we also train

the model using physics-informed LSTM as it has shown very good potential in process

modeling for Copper. The findings of PINN are also compared to the previous data-driven

predictions.

The material of interest, Ti-7Al alloy, has a hexagonal close-packed (HCP) crystal structure,

which exhibits an < a > slip, either on the prismatic or basal plane [163], three basal < a >,

three prismatic < a >, six pyramidal < a >, twelve pyramidal < c+ a > slip and six tensile

twin systems. Hence, it can demonstrate slip and twin deformation behavior. To perform

the crystal plasticity simulations, the slip hardening model that is integrated into the crystal

plasticity simulations is explained next:

hαβ = [q + (1− q)δαβ]hβ (no sum on β) (5.8)

where hβ is a single slip hardening rate, q is the latent-hardening ratio (which is equal to 1.4

for non-co-planar slip systems) and δαβ is the Kronecker delta function. For the single-slip

hardening rate, the following specific form is used:

hβ = ho(1−
sβ

ss
)a (5.9)

where ho, a, and ss are slip hardening parameters. The basal < a >, prismatic < a >,

pyramidal < a > and pyramidal < c + a > slip systems, and {101̄2} < 1̄011 > twin-

ning mechanism are computationally modeled. The elastic parameters of Ti-7Al are taken
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as [167]: C11 = C22 = 175 GPa, C33 = 220 GPa, C12 = 88.7 GPa, C13 = C23 = 62.3

GPa, C44 = C55 = 62.2 GPa, and C66 = (C11 − C12)/2. Using this model and the exper-

imental compression stress-strain data, the potential ranges for slip and twin parameters

(s0, h0, ss, a) are determined with an inverse optimization in the preliminary studies of our

group [79, 168]. The ranges are presented in Table 5.1.

Table 5.1: Optimum ranges for the crystal plasticity parameters for compression [79, 168]

Slip System s0 (MPa) h0 (MPa) ss (MPa) a
Basal < a > [200, 349.95] [200, 299.5] [1500, 1784.2] [1.3, 2.0149]

Prismatic < a > [220, 399.33] [200, 299.5] [1500, 1784.2] [1.3, 2.0149]
Pyramidal < a > [900, 1199.7] [200, 299.5] [1500, 1784.2] [1.3, 2.0149]

Pyramidal < c+ a > [800.2, 1199.1] [200, 299.5] [1500, 1784.2] [1.3, 2.0149]
Twinning [609.88, 999.28] [800.12, 1110] [1500, 1784.2] [3.6584, 3.9998]

Like the forward process modeling of Cu, we have used the same process simulator with

Figure 5.4: Comparison of the actual and predicted normalized ODFs for three different
test cases along with the convergence of mean squared error for both training and validation
data [160].
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(a) (b)

Figure 5.5: Experimental EBSD image of the Ti-7Al alloy sample at 13.5% compressive
strain (a) after compression (b) after re-crystallization. Figure Courtesy: Prof. John Allison
and Dr. Anna Trump from the University of Michigan.

the constitutive model developed by Sundararaghavan et al. [34] to generate the training

data samples for a compression process. The crystal plasticity parameters are defined as the

input and the ODFs are the output. A total of 50 random combinations of the slip and twin

parameters are chosen within the given ranges in Table 5.1 to generate training data. Using

this small dataset, another physics-informed surrogate model is trained using the LSTM

network of Fig. 5.1. The combinations are split in 80%-10%-10% as training, validation, and

test sets where the learning rate is set to 0.01. To prevent overfitting, training is stopped early

Table 5.2: Optimum slip and twin system parameters obtained from PINN-based inverse
optimization providing the best match with the experimental ODFs after compression

Slip System s0 (MPa) h0 (MPa) ss (MPa) a
Basal < a > 324.5 297.9 1620.2 1.3

Prismatic < a > 225.7 295.1 1780.8 1.97
Pyramidal < a > 1170.9 216.8 1682.5 1.9

Pyramidal < c+ a > 947.3 296.3 1629.7 2.0
Twinning 775.2 1101.9 1546.8 3.7



5.2. RESULTS AND DISCUSSIONS 115

at the 900th epoch along with a batch size of only 2. Unlike the first approach, in this case,

the input layer has 20 features (slip and twin system parameters) and the output layer has

50 independent ODFs of Ti-7Al. Similar to the previous model, these ODFs need to satisfy

the volume normalization constraint which is incorporated in the training by customizing

the loss function (see Eq. 5.7).

Accuracy of the trained model in terms of comparison between the actual and predicted

normalized ODFs and the mean squared error for training and validation data are reported in

Fig. 5.4. The first test case shows a little discrepancy between the actual and predicted ODFs

with an RMSE value of 0.27. However, the other two cases exhibit promising agreement

between the actual and predicted ODFs with RMSE values of 0.03 and 0.05, respectively.

Next, we estimate the optimum crystal plasticity parameters that provide the best match

with the given experimental ODF values. The experimental ODF values, shown in Fig. 5.5,

are derived from the Euler angles information using the closest simplex search technique to

group the orientation information [114]. The EBSD images of the Ti-7Al sample are obtained

at 13.5% compressive strain [169]. Figure 5.5(a) was taken after the end of the compression

process and Fig. 5.5(b) was collected after re-crystallization of the microstructure. Next, an

inverse optimization problem is defined to solve this problem. Therefore, the objective of this

optimization problem is to minimize the RMSE between the computational and experimental

ODFs.

Table 5.3: Optimum slip and twin system parameters obtained from PINN-based inverse
optimization providing the best match with the experimental ODFs after re-crystallization

Slip System s0 (MPa) h0 (MPa) ss (MPa) a
Basal < a > 204.8 213.5 1775.1 1.4

Prismatic < a > 238.7 245.4 1780.5 1.9
Pyramidal < a > 915.5 237.8 1783.5 1.3

Pyramidal < c+ a > 806.6 251.5 1779.7 1.3
Twinning 937.1 812.7 1754.3 3.7
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(a) (b)

(c)

Figure 5.6: ODFs in the Rodrigues orientation space (a) Experimental ODFs after com-
pression, (b) ODFs predicted by PINN, and (c) ODFs predicted by a conventional neural
network [160].

For the first problem, we solved the optimum slip and twin system parameters (see Ta-

ble 5.2) that can provide the closest match of the optimum ODFs to the given experimental

ODFs after compression. This problem was also solved by the conventional neural network

before [79]. However, the prediction accuracy was found to be not sufficient. The RMSE

value of the current prediction for all 50 ODFs is 0.41 which was 1.24 in the previous study

(about three times higher). Figure 5.6 reports the PINN-predicted ODFs in the Rodrigues

orientation space along with the previous prediction by the conventional neural network,

and the experimental ODFs for comparison. It is obvious that the physics-informed LSTM

has improved the prediction accuracy compared to the conventional neural network with the

incorporation of the problem physics.
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(b)(a)

Figure 5.7: ODFs in the Rodrigues orientation space (a) Experimental ODFs after re-
crystallization and (b) ODFs predicted by PINN [160].

Next, we calibrated the crystal plasticity parameters, shown in Table 5.3, using inverse design

optimization that aimed to find the best-matching ODFs with the known experimental ODFs

after re-crystallization of the deformed microstructure. Even though the temperature was

not assigned as an independent design variable during the training of the surrogate model,

the performance of the trained model was also assessed for the experimental texture data

after re-crystallization. The optimum ODFs from the prediction and the experimental ODFs

in the orientation space are displayed in Fig. 5.7. The physics-informed surrogate model

also performs well in this case, however, the RMSE value of the prediction is 0.67, which is

larger than the previous case. The incorporation of the temperature effect in the surrogate

model is expected to decrease this error value and can be explored in the future. Though the

surrogate model predictions are found to improve the prediction accuracy compared to the

previous data-driven ML results, there are still errors potentially arising from (i) epistemic

uncertainty associated with the crystal plasticity simulations and (ii) aleatoric uncertainty

arising from the experimental measurements of the microstructural texture.

This methodology can further be extended in the future to predict the changes not only in the

microstructural features but also in time-dependent material properties (e.g., stress/strain
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fields of microstructures) during the plastic deformation of metals.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this study, microstructure-sensitive design approaches are presented to enhance materials

performance at the component level by building process-structure-property linkages. Ma-

chine learning (ML) has been introduced in the computational model to design processing

parameters and predict material properties as a function of microstructures, which makes

the overall process faster and more efficient without compromising accuracy. The Orienta-

tion Distribution Function (ODF) model is used to represent the microstructural textures.

We examined the performance of different optimization algorithms to solve the optimum

microstructure for maximizing Young’s Modulus of Al. The gradient-based algorithm is

found to provide the best solution along with the lowest computational time. Next, elas-

tic constants of cubic microstructures (Al, Ni, and Si) are optimized with a gradient-based

algorithm where homogenized material properties of the microstructures are computed by

linking the DFT calculations with the ODF-based microstructure model. The solutions of

the optimization problems provide single-crystal optimum microstructures for the extreme

values of C11 and two-crystal designs for E11. Next, a similar design approach is applied to

design materials that produce equivalent Young’s modulus values in x, y, and z directions.

For this purpose, two distinct optimization problems are solved, and the solutions are found

to provide almost equal stiffness and Young’s modulus values in different directions. The

119
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isotropic designs are also validated by computing the anisotropy ratio values. The results

are reported and discussed for Ti, Al, and Galfenol for an example problem that involves

a multi-axial compressive loading state. The property closure plots for C11, C22, and C33

show a region in the design space which can yield the isotropic properties. Therefore, man-

ufacturers have the flexibility to choose any of the textures within that region to fabricate a

microstructure demonstrating quasi-isotropic properties.

A new methodology is developed to predict the property closures of linear and non-linear

properties using ML. The performance of the ML models (linear regression and artificial

neural network (ANN)) is also checked to predict the linear and non-linear properties in

terms of the microstructural texture. However, generating the data set for training the ML

model is a challenging task, which is solved by generating uniform samples from the property

closures of material properties. Next, an inverse optimization problem is solved to obtain

the corresponding sets of ODFs to train the ML models. The neural network with Bayesian

regularization is found to provide more accurate predictions than the linear regression model

for the non-linear property. Hence, unknown and non-linear material property closures of

three engineering materials e.g., Ti, Mg, and Al are predicted using the neural network

model. An example problem is introduced to generate the property closure for the critical

buckling load of a shaft to demonstrate the methodology and its results.

Furthermore, this study analyzes the effects of the microstructural uncertainties arising from

thermo-mechanical processing on directional properties and material anisotropy using Gaus-

sian Process Regression and Monte Carlo Simulation. In the case of the inverse design

problem under microstructural uncertainty, a linear programming-based analytical model is

developed to quantify the effects of the microstructural texture uncertainty on linear prop-

erties. However, the analytical method is not suitable for non-linear properties. Therefore,

an ANN-based sampling technique is applied for uncertainty quantification of non-linear
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properties. Several design problems are solved to improve the linear and non-linear proper-

ties of the Ti-7Al alloy. First, the volume-averaged stiffness value, C11, is optimized using

different objective function definitions. The results show that the C11 (linear parameter)

value of the stochastic design solution can be different than the deterministic solution when

the microstructural uncertainty is accounted for. Moreover, two separate design problems

are introduced to apply the ANN-based sampling method to optimize the non-linear ma-

terial properties (E11) while considering the microstructural uncertainty. The inclusion of

an ANN-based surrogate model in the optimization problem is shown to save significant

computational time.

Finally, the application of physics-informed neural networks is presented in microstructure-

sensitive materials design. The developed physics-informed long short-term memory network

provides very good accuracy for predicting the texture evolution of Copper under the tensile

deformation process with the lowest root mean squared error value of 0.16 for Al. In another

problem, to identify the crystal plasticity parameters of Ti-7Al given the after-deformation

experimental texture, PINN shows promising results for the calibration of crystal plasticity

parameters as its RMSE value is three times smaller than the RMSE value of the conventional

neural network prediction. Therefore, this work has provided insight for future works that

would involve the crystal plasticity modeling of metals by considering the uncertainty of the

microstructures using a physics-informed neural network. The developed surrogate models

are demonstrated to capture the microstructural texture evolution in different time steps of

different deformation processes while accounting for the physics-derived design constraints

of the orientation space.
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6.2 Future Work

In this study, the microstructural textures are quantified and designed using the ODF ap-

proach. The ODF is a one-point probabilistic descriptor, which does not account for the

information of neighboring grains. Using the Taylor assumption [111], the equilibrium in

the grain boundary cannot be captured, and all crystals are assumed to deform uniformly

during loading. Therefore, grain boundary information is not considered while designing

the microstructures. In the future, both grain topology (size and shape) and grain bound-

ary information will be modeled to quantify the microstructure. This can be achieved in

several ways. For example, a higher-order descriptor can capture the neighborhood grain

information. The two-point descriptor is well studied in the past [170, 171], which considers

the neighborhood statistics and promises to model the grain boundary information as well.

Therefore, future work will involve the development of a new framework called Complete So-

lution of Materials Design (CSMD) by developing a digital twin of materials processing and

application of uncertainty quantification to other topics, such as ferromagnetic-paramagnetic

phase transition of magnetic materials.

6.2.1 Complete Solution of Materials Design (CSMD)

In this study, applications of materials design for conventionally forged microstructures are

presented. However, with the introduction of modern processing techniques, the microstruc-

tures of the additively manufactured materials usually demonstrate more complex features

(e.g., non-convex grain shapes) than the forged microstructures, which requires the devel-

opment of higher-order descriptors for the microstructure. In the future, a digital twin will

be designed to replicate materials processing for both traditional and modern manufactur-

ing technology. The proposed framework for a Complete Solution of Materials Design
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Figure 6.1: Complete Solution of Materials Design (CSMD) framework by developing a
digital twin of material processing

(CSMD) is summarized in Fig. 6.1. A digital twin of materials processing will be developed

that is comprised of multiple surrogate models and physics-based models that will build a

linkage between the process-structure-property of polycrystals. As an example material, this

framework will be applied to Ti-7Al. Next, the materials database will be enriched for other

alloys. The framework can be utilized for both forward and inverse material design problems.

The forward problem will investigate the effects of processing parameters on the meso-scale

(homogenized) material properties. Conversely, the inverse design will solve for processing

parameters and microstructural features for the prescribed set of properties. The digital

twin will receive real-time operation data from the physical system and send the feedback

to the physical system to adjust the design parameters accordingly.
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As mentioned earlier, material properties depend on underlying microstructural features that

include grain shape, grain size, grain orientation, and grain boundary. A popular approach

to visualizing the crystal orientation in the microstructure is using Electron Backscatter

Diffraction (EBSD) [172, 173]. As the ODF only represents the crystal orientations, dif-

ferent grain boundary detection techniques, such as tolerance-based neighbor analysis and

Euclidean distance methodologies will be included in the computational model to quantify

microstructure. The application of these methods for colored EBSD samples is studied in

the recent work of Catania et al. [174]. A convolutional neural network (CNN) based image

model will be built that will classify the EBSD based on the processing methods. In order

to do that, the experimental EBSD data produced by conventional processing and additive

manufacturing techniques will be collected for the example materials from the literature.

Next, the CNN classifier will be trained to identify the microstructure. Finally, the mi-

crostructure will be quantified numerically.

Generating experimental (EBSD) data is challenging and expensive. Therefore, a microstruc-

ture synthesis approach can be applied to create a digital library of EBSD (both 2D and

3D). Then, different physics-based simulations will be performed using DREAM 3D [175],

PRISMS [166], and strain rate-independent crystal plasticity models to calculate mechanical

properties by inputting microstructure and processing parameters. After generating suffi-

cient data, another neural network-based surrogate model will be developed to establish the

process-structure-property relationship. In some cases, the surrogate model needs to satisfy

the physics-based design constraints (see Chapter 5), boundary conditions, or initial condi-

tions. For those cases, a physics-informed neural network (PINN) will be applied to build

the surrogate model because the merits of PINN are already proven in Chapter 5.

For both forward and inverse design problems, the microstructural uncertainty arising from
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the processing variations will be accounted for. This uncertainty propagates over multiple

length scales and affects the material properties and performance. Therefore, the uncertainty

model will also be incorporated into the digital twin to achieve robust and reliable predictions.

When all models (physics-based, surrogate models, and uncertainty models) are available, the

digital twin can be built which can provide feedback to the physical system (conventional or

additive manufacturing) for both forward and inverse problems of process-structure-property

linkages.

6.2.2 Uncertainty-Dominated Ferromagnetic-Paramagnetic Phase

Transition

The future work also involves the extension of the presented modeling approach under un-

certainty to study the effects of the uncertainty on magnetic materials, particularly on the

ferromagnetic-paramagnetic phase transition behavior. Ferromagnetic materials have a wide

range of applications in many engineering components such as micro-electromechanical sys-

tems (MEMS), components for energy applications, data storage and memory devices, sen-

sors, generators, antennas, audio and video tapes, microphones and loudspeakers, and exotic

giant magnetoresistance devices [176, 177, 178]. However, ferromagnetic materials can lose

their spontaneous magnetic properties during the phase transition to the paramagnetic state,

which is driven by external magnetic fields and ambient temperature. The uncertainty as-

sociated with the external parameters also plays a significant role in the phase transition,

eventually, it can alter the phase transition onset, which will be addressed in future work.

Considering the inherent stochasticity of the external magnetic fields and ambient temper-

ature, the phase transition occurs at a critical zone rather than a critical point that would

correspond to deterministic parameters. Figure 6.2 summarizes the presented approach of
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this study to address the ferromagnetic-paramagnetic phase transition under the effects of

uncertainties. A 3-D model representation is shown in Fig. 6.2(a) where magnetic spins are

demonstrated as either a spin-up or spin-down state under the effects of external magnetic

fields that determine the overall magnetic state of the material. Figure 6.2(b) demonstrates

the phase transition zone rather than a single point when the effects of uncertainties in the

external magnetic field and ambient temperature are considered. An example visualization

of joint probability distributions of random variables is shown in Fig. 6.2(c). The preliminary

results for 2-D magnetic materials are discussed next.
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Figure 6.2: (a) The 3-D lattice with magnetic spins, which can hold two states: spin-up (+1)
and spin-down (-1), controlled by the external magnetic fields. (b) With the consideration of
the uncertainties in external fields and temperature, the phase transition occurs at a critical
‘zone’. (c) The likelihood of the phase transition in this zone will be computed with a joint
probability representation of the uncertain parameters.

In this study, the external magnetic field and ambient temperature are considered random

parameters. Initially, the effects of the external magnetic field uncertainties on the free

energy are analyzed. The probability distribution of the external magnetic field is assumed

to be Gaussian with a ±10% of variation. Next, a total of 106 random samples agreeing with

the Gaussian distribution are generated. The Monte Carlo Simulation (MCS) is applied to

find the mean (expected) values and the standard deviations of the model parameters such
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as magnetization and free energy. Future work will integrate analytical UQ to remove the

Gaussian assumption and find an exact solution to the probability distribution of free energy.

At first, the effects of the uncertainties on the magnetization parameter, M , are investigated.

The relation between M and h is found using Eq. 6.1 [179].

M = tanh(
h

kbT
) (6.1)

where kb is the Boltzmann constant and T is the temperature. The value of M must remain

(a) (b)

(c)
(d)

Figure 6.3: Magnetization parameter in terms of uncertain external magnetic field for (a)
kbT = 0.5, (b) kbT = 2 and the distribution of the magnetization parameter at the mean (c)
h = 0 and h = −0.4 for kbT = 0.5 [180]

.
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within -1 and 1. 21 different mean values of the external field (h) are defined within a range

of -1 to 1 and -3 to 3 in Fig. 6.3(a) and Fig. 6.3(b), respectively. In each case, h is assumed to

vary according to a Gaussian distribution with a 10% of variation. Next, the mean values and

standard deviations (as error bars) are visualized in Fig. 6.3 for two conditions (kbT = 0.5

and kbT = 2). Figure 6.3 also demonstrates the distributions of M at two different mean

values of h.

Figures 6.3(a) and 6.3(b) show that the standard deviation values are the lowest at both

ends and highest when h = 0. Therefore, if the h value increases M also increases. However,

(a) (b)

(c) (d)

Figure 6.4: Expected mean values and variances of free energy, F , due to the uncertainty of
M for (a) non-interacting spins and ( h

kbT
= 0.3) (b) interacting spins without magnetic field

and Jqq

kbT
= 1.05 and (c) Jqq

kbT
= 1.5 (d) interacting spins with magnetic field for h

kbT
= 0.2 (c)

Jqq

kbT
= 0.9 [181].
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M cannot go beyond -1 or +1, thus the standard deviation values are very small at high h

values. The distribution of M is not Gaussian like h, as the relation between M and h is not

linear (see Eq. 6.1 [179]). Similarly, the mean values and standard deviations (as error bars)

of free energy are plotted against the magnetization parameter (from Eq. 6.2) for different

conditions in Fig. 6.4.

(a) (b)

(c) (d)

Figure 6.5: Probability distributions of free energy for four different conditions of uncertainty
in Fig. 6.4 for the following mean values (a) M = −0.7, (b) M = 0.1, (c) M = 0.3, and (d)
M = 0.9 [181].
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F (M)

NkbT
= −(

Jqq

2kbT
)M2 − (

h

kbT
)M + (

1 +M

2
)log(

1 +M

2
) + (

1−M

2
)log(

1−M

2
) (6.2)

where Jq is a constant and q is the coordination number of the lattice which is 4 for a 2-D

lattice.

Figure 6.4 exhibits that the error of F is minimum where the F value is also minimum.

Then it increases with the increase of F values. Generally, the variance of F is high for large

values of M . Figure 6.5 shows that the probability distribution of F is not Gaussian-like M

(assumed) and this distribution changes with the given conditions and different M values.

In the future, this work will further be extended to high dimensional 2-D and 3-D domains

where the coupled effects of ambient temperature and external magnetic fields along with

their randomness will be considered to investigate the phase transition behavior.
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Appendix A

Covariance Correlation of ODFs

The covariance expression of ODFs presented in Eq. 2.14 can be written as Eq. 2.15. The

proof is given below [58]:

Assuming that k is the last nodal point and i is any nodal point, the covariance of any ODF

can be written as:

Σik = E[(Ai − µAi
)(Ak − µAk

)] (A.1)

where E represents the expected value operator and Ai and Ak are the ODF values at ith

and kth nodal points with mean of µAi
and µAk

, respectively.

Σik = E

[
(Ai − µAi

)

(
1−

∑(k−1)
1 Aiqi
qk

− 1−
∑(k−1)

1 qiµAi

qk

)]

Σik = E

(Ai − µAi
)

− 1

qk

(k−1)∑
1

Aiqi −
(k−1)∑

1

qiµAi



−qkΣik = E

(Ai − µAi
)

(k−1)∑
1

(Ai − µi)qi



−qkΣik =

(k−1)∑
j=1

qjΣij
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Therefore, it can be shown as:

(k−1)∑
j=1

qjΣij +−qkΣik = Σq = 0



Appendix B

Bayesian Regularization

The Bayesian inference of the neural network works based on the probabilistic features of

the network parameter [182]. The cost function Sw of the Bayesian Regularization (BR) can

be described by having an additional term, as shown in Eq. B.1:

S(w) = βED + αEW (B.1)

where α and β are regularization parameters that need to be adjusted , EW = 1
2

∑ NW

j=1 w2
j

is the penalty term for large weights, and Nw is the number of weights [183].

Considering that the Gaussian distribution of weights and data, the prior probability of

weights, (W ), and error, (ED), can be written as:

p(W |α) = 1

ZW (α)
exp(−αEW ) (B.2)

p(D|W,β) =
1

ZD(β)
exp(−βED) (B.3)

The Bayesian framework for weights, W , can be expressed as:

p(W |α, β,D) =
p(D|W,β)p(W |α)

p(D|α, β)
=

1

Zs

exp(−S(W )) (B.4)
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The Bayes inference also allows us to find the optimum value of the regularization parameters,

α and β, by the following equation [184]:

p(α, β|D) =
p(D|α, β)p(α, β)

p(D)
(B.5)

where p(α, β) is the prior probability of α and β, and p(D|α, β) is the likelihood term and

it is also referred as the evidence of the regularization parameter [185]. Finally, the optimal

values of α and β are formulated by Eq. B.6, which is derived in Ref. [186].

α =
γ

2EW

and β =
(n− γ)

2ED

where, γ =
m∑

i=1

(m− α.trace(G−1) (B.6)

where γ is the effective parameter, m is its number, and G is the Hessian matrix of the

objective function Sw.
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