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Process Monitoring and Control of Advanced Manufacturing based
on Physics-Assisted Machine Learning

Jihoon Chung

(ABSTRACT)

With the advancement of equipment and the development of technology, the manufacturing

process is becoming more and more advanced. This appears as an advanced manufacturing

process that uses innovative technology, including robotics, artificial intelligence, and au-

tonomous systems. Additive manufacturing (AM), also known as 3D printing, is the repre-

sentative advanced manufacturing technology that creates 3D geometries in a layer-by-layer

fashion with various types of materials. However, quality assurance in the manufacturing

process requires high expectations as the process develops. Therefore, the objective of this

dissertation is to propose innovative methodologies for process monitoring and control to

achieve quality assurance in advanced manufacturing.

The development of sensor technologies and computational power offer process data, provid-

ing opportunities to achieve effective quality assurance through a machine learning approach.

Hence, exploring the connections between sensor data and process quality using machine

learning methodologies would be advantageous. Although this direction is promising, some

constraints and complex process dynamics in the actual process hinder achieving quality

assurance from the existing machine learning methods.

To address these challenges, several machine learning approaches assisted by the physics

knowledge obtained from the process have been proposed in this dissertation. These ap-

proaches are successfully validated by various manufacturing processes, including AM and



multistage assembly processes. Specifically, three new methodologies are proposed and de-

veloped, as listed below.

1. To detect the process anomalies with imbalanced process data due to different ratios

of occurrence between process states, a new Generative Adversarial Network (GAN)-

based method is proposed. The proposed method jointly optimizes the GAN and clas-

sifier to augment realistic and state-distinguishable images to provide balanced data.

Specifically, the method utilizes the knowledge and features of normal process data to

generate effective abnormal process data. The benefits of the proposed approach have

been confirmed in both polymer AM and metal AM processes.

2. To diagnose process faults with a limited number of sensors caused by the physical

constraints in the multistage assembly process, a novel sparse Bayesian learning is

proposed. The method is based on a practical assumption that it will likely have a

few process faults (sparse). In addition, the temporal correlation of process faults and

the prior knowledge of process faults are considered through the Bayesian framework.

Based on the proposed method, process faults can be accurately identified with limited

sensors.

3. To achieve online defect mitigation of new defects that occurred during the printing due

to the complex process dynamics of the AM process, a novel Reinforcement Learning

(RL)-based algorithm is proposed. The proposed method is to learn the machine

parameter adjustment to mitigate the new defects during the printing. The method

transfers knowledge learned from various sources in the AM process to RL. Therefore,

with a theoretical guarantee, the proposed method learns the mitigation strategy with

fewer training samples than traditional RL.

By overcoming the challenges in the process, the above-proposed methodologies successfully



achieve quality assurance in the advanced manufacturing process. Furthermore, the methods

are not designed for the typical processes. Therefore, they can easily be applied to other

domains, such as healthcare systems.



Process Monitoring and Control of Advanced Manufacturing based
on Physics-Assisted Machine Learning

Jihoon Chung

(GENERAL AUDIENCE ABSTRACT)

The development of equipment and technologies has led to advanced manufacturing pro-

cesses, including additive manufacturing processes. The advanced manufacturing processes

greatly impact various industries, such as the automotive, aerospace, and medical indus-

tries. However, one of the major challenges is how to ensure product quality by detecting

and mitigating defects. For example, the voids and cracks of the aircraft materials cause se-

vere problems in the aerospace industry. Therefore, quality assurance in the manufacturing

processes has become a very important issue in providing consistently high-quality products.

Considering the importance of this problem, this dissertation aims to accomplish quality

assurance by developing advanced machine-learning approaches.

In this dissertation, several advanced machine learning methodologies using the physics

knowledge from the process are proposed. These methods overcome some constraints and

complex process dynamics of the actual process that degrade the performance of existing

machine learning methodologies in achieving quality assurance. To validate the effectiveness

of the proposed methodologies, various advanced manufacturing processes, including addi-

tive manufacturing and multistage assembly processes, are utilized. The performance of the

proposed methodologies provides superior results for achieving quality assurance in various

scenarios compared to existing state-of-the-art machine learning methods.



The applications of the achievements in this dissertation are not limited to the manufactur-

ing process. Therefore, the proposed machine learning approaches can be further extended

to other application areas, such as healthcare systems.
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Chapter 1

Introduction

1.1 Background and Motivation

Recently, with the development of equipment and technology, the manufacturing process

is becoming more and more advanced. This appears as an advanced manufacturing pro-

cess, including additive manufacturing (AM), providing consumers with many benefits and

convenience. Despite the significant development achieved in the advanced manufacturing

processes, producing high-quality products from the processes is a challenging task. There-

fore, it is necessary to develop innovative approaches for process monitoring and control to

achieve quality assurance in the advanced manufacturing process.

The development of sensor technologies offers rich data that enables data-driven approaches,

including machine learning-based methods to deal with quality assurance in the manufac-

turing process. Utilizing the rich information from sensor data, the existing work provides

effective process monitoring and control by identifying the relationship between the sensor

data and process quality. Despite the capabilities of this direction, some constraints and

complex process dynamics in the process hinder achieving quality assurance through the

existing machine learning approaches. For example, the low frequency of occurrence of ab-

normal states (with defects) compared to normal ones (without defects) in the process results

in imbalanced data, which may limit the information required for machine learning methods

to achieve quality assurance. In addition, the actual processes might have some physical

1



2 CHAPTER 1. INTRODUCTION

constraints that prevent the attachment of enough sensors, which reduces the process mon-

itoring & diagnosis accuracy. Furthermore, the complex process dynamics of AM process

provide new defects during the printing that cannot be mitigated by the existing methods

for process control.

Hence, this dissertation aims to create advanced machine learning-based methodologies for

process monitoring and control. Specifically, the methods effectively utilize the physics

knowledge from the process to overcome the above challenges. Three different advanced

manufacturing processes, namely, the actual autobody assembly process, Fused Filament

Fabrication, and Electron Beam Melting processes, are utilized to validate the proposed

methodologies in this dissertation.

1.2 Research Objectives

As mentioned in the previous section, quality assurance is a critical problem in advanced

manufacturing processes. Although the sensor data provides rich information for the machine

learning approach for process monitoring and control, some constraints and complexity of

the process deteriorate the performance of existing machine learning methods to achieve

quality assurance. Thus, the ultimate objective of this dissertation is to propose advanced

machine learning approaches assisted by physics knowledge from the process to overcome

these challenges. Specifically, the goal consists of three research objectives as follows:

• Imbalanced data occurs in process sensing: how to overcome the imbalanced training

data for the supervised classification method to detect process anomalies?

• Insufficient number of sensors for process monitoring & diagnosis: how to effectively

diagnose the process faults from the limited information?
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• Mitigating new defects for process control: how to learn the machine parameter ad-

justment to mitigate the new defects that occurred during the printing?

Through accomplishing the above three objectives, the contributions of these studies are

summarized as the following three aspects.

1. First, a Generative Adversarial Network-based data augmentation method is proposed.

The method augments the data to address the imbalanced data that occurs in the pro-

cess sensing stage. Specifically, the method uses the knowledge and features from the

normal process state to effectively generate the abnormal process state. The generated

data is used for the supervised classification method to detect process anomalies.

2. Second, sparse Bayesian learning for the accurate process faults diagnosis in the mul-

tistage assembly process is developed. The method effectively utilizes the prior knowl-

edge and the correlation structure of the process faults in the process. Therefore, the

method accurately diagnoses the process faults from the limited number of sensors.

3. Finally, a Reinforcement Learning-based method is proposed. The proposed method is

to learn the machine parameter adjustment to mitigate the new defects that occurred

during the printing in process control. By considering the prior knowledge of defect

mitigation from various sources of the process, the method learns to mitigate the new

defect with a few parameter adjustments.

All three research are validated from the actual manufacturing processes. In practice, the

methods are not limited to the manufacturing processes but to the various domains, such as

healthcare systems.
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1.3 Dissertation Organization

The rest of this dissertation consists of several chapters, as described as follows. Chapter 2

provides the overview of the proposed research and related studies. Based on the related

studies, the research gap analysis is described. In Chapter 3, a new Generative Adversarial

Network-based data augmentation model is provided. The model augments the process

anomalies in AM process to address the imbalanced data that occurs in the process sensing

stage. In Chapter 4, a novel sparse Bayesian hierarchical model is proposed. The method is

proposed to diagnose process faults in the multistage assembly process when there exists a

small number of sensor measurements. In Chapter 5, a novel Reinforcement Learning-based

algorithm is proposed to learn the decision rule to mitigate the new defect that occurred

during printing. Finally, Chapter 6 summarizes this dissertation and explores the possible

directions for future research.



Chapter 2

Review of Literature

2.1 Research Overview

As mentioned in Section 1.1, the research goal of this dissertation is to develop innovative

machine learning methods assisted by physics knowledge for quality assurance in advanced

manufacturing processes. Figure 2.1 shows the overview of the proposed research framework

to achieve the goal. The framework consists of sensing, monitoring & diagnosis, and control

stages of the process sequentially. First, a new data augmentation method is developed

Figure 2.1: The overview of the proposed research framework.

to address the imbalanced process data issue that occurred in the process sensing stage.

5
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Subsequently, a novel process diagnosis method is proposed to detect the process fault when a

limited number of sensors exist in the process monitoring & diagnosis stage. Finally, the new

control method is developed to learn the mitigation strategies for new defects that occurred

during the process. According to this framework, the overall study of this dissertation

consists of the following three tasks, which can be summarized as follows.

1. Task 1: To detect the process anomalies with imbalanced process data due to different

ratios of occurrence between process states, a new Generative Adversarial Network-

based method is proposed (Chapter 3).

2. Task 2: To diagnose process faults with a limited number of sensors caused by the

physical constraints in the multistage assembly process, a novel sparse Bayesian learn-

ing is proposed (Chapter 4).

3. Task 3: To achieve online defect mitigation of new defects that occurred during the

printing due to the complexity of the AM process, a novel Reinforcement Learning-

based algorithm is proposed (Chapter 5).

By accomplishing the above three tasks, this dissertation provides innovative process mon-

itoring and control methodologies to achieve quality assurance in advanced manufacturing

processes.
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2.2 Literature Review

This dissertation is focused on developing advanced machine learning approaches assisted

by physics knowledge from the process to achieve quality assurance for advanced manufac-

turing. The existing studies are reviewed in this section. Section 2.2.1 provides the existing

anomaly detection approaches for advanced manufacturing processes. Then, Section 2.2.2

present the existing work of fault diagnosis in the multistage assembly process. Subsequently,

Section 2.2.3 describes the existing studies of defect mitigation in the Fused Filament Fab-

rication (FFF) process, which is the representative polymer AM process.

2.2.1 Anomaly Detection Approaches for the Advanced Manufac-

turing Processes

Based on the developments of sensor technologies and computational power, machine learn-

ing approaches, including deep learning methods, are widely utilized in anomaly detection

in manufacturing processes to achieve quality assurance. Specifically, deep learning meth-

ods provide superior performance in anomaly detection by using the capability of the deep

network structure. For example, [73] proposed using convolutional neural networks (CNNs)

to classify mixed-type defect patterns in wafer bin maps (WBM) in the semiconductor man-

ufacturing process. [97] developed a voting-based deep ensemble feature framework for ef-

ficiently classifying defective WBMs. [72] used deep neural networks to accurately classify

melt pool images in the metal AM process concerning different laser powers, resulting in

different porosity levels. [139] converted the vibration signal from the drive end bearing to

the images. The images were used as training data for CNN for bearing fault diagnosis. In

addition, [60] applied CNN to extract the features from the infrared thermal images for the
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fault diagnosis of rotating machinery in the manufacturing process. [113] presented a novel

CNN architecture that pixel-wise localization of layer-wise surface data from the powder bed

metal AM process for anomaly detection.

In addition to the deep learning-based methods, various machine learning-based methods

are utilized in anomaly detection in the manufacturing processes. For example, [98] pro-

posed a graph-theoretic approach to differentiate the distinctive thermal signatures of melt

pool images, leading to poor abnormal surface finish from the metal AM process. [89] also

developed a novel anomaly detection framework in the metal AM process. The approach

classified the process state by accounting for the spatial dependence among successive melt

pools through the Gaussian process. For the polymer AM process, [84] proposed a feature

extraction method based on manifold learning to diagnose surface defects such as under-fill.

[114] also proposed a novel supervised feature extraction method to extract discriminant and

informative features from the surface states in the FFF process. [107] developed a Bayesian

nonparametric method for online quality monitoring for the surface defects in the FFF pro-

cess using heterogeneous sensors. In addition to the several AM processes, [11] proposed a

sparse estimation-based classification approach for process monitoring in the semiconductor

chemical mechanical planarization process. [14] presented a classification method to diagnose

the cutting tool condition in the manufacturing process by analyzing the machined surface.

Specifically, a kernel-based support vector machine classifier was trained with the features ex-

tracted from the gray-level co-occurrence matrix of machined surface images. [129] proposed

weight masks to extract rotation-invariant features for wafer map failure pattern detection

in the semiconductor manufacturing process. Furthermore, [134] extracted geometry-based

features from wafer maps and used support vector machines (SVM) to classify wafer map

defects. [138] proposed the conditional two-dimensional principal component analysis (PCA)

algorithm to extract features from wafer maps for accurate classification.
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2.2.2 Fault Diagnosis Methodologies in Multistage Assembly Sys-

tems

Numerous machine learning and data-driven methods have focused on fault diagnosis method-

ologies for multistage assembly systems, utilizing the fault-quality model outlined in Eq. (4.1).

[69] developed a PCA-based orthogonal diagonalization strategy to transform the measure-

ment data. It enabled the estimation of the variance of process errors in a multistage assembly

system. [144] utilized a mixed linear model to detect the process errors with both mean shift

and variance change by utilizing a maximum likelihood estimator. [20] presented a fault

diagnosis method by using the principal component analysis (PCA) and pattern recognition.

[35] presented a fault diagnosis method in the multistage assembly systems integrating the

state space model of the process and matrix perturbation theory. [126, 127] proposed a

fault diagnosis method in the machining process, considering the process physics regarding

how fixtures generate the patterns. Using the method, root cause identification was con-

ducted sequentially. All these approaches assume the number of measurements is greater

than that of the process errors, which may not be consistent with the industrial practice.

However, if this assumption is violated, all of the approaches mentioned above are ineffec-

tive because the fault-quality linear model becomes an underdetermined system resulting

in the non-existence of a unique solution. To overcome an underdetermined system in the

multistage assembly system, sparse learning has been actively used recently. Specifically,

sparse Bayesian learning has been actively utilized to incorporate the sparsity of process

faults as the prior distribution. [9] proposed a fault diagnosis methodology by enhancing the

relevant vector machine to detect process errors with the variance change. [12] proposed a

spatially correlated sparse Bayesian learning to deal with the case when process errors have

a spatial correlation. The premise of this study is that if one of the fixture locators varies
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away from its intended design specifications, it is likely that the adjacent locators will also

exhibit deviations. [75] presented a Bayesian approach for identifying variation sources in

a multistage manufacturing process using the sparse variance component prior. The work

focuses on the identification of process faults that have variance increases.

2.2.3 Defect Mitigation in the Fused Filament Fabrication Process

Fused Filament Fabrication (FFF) processes are vulnerable to surface defects because the

thermoplastic properties of filaments that determine the ability to create a bond between

layers and solidify the extruded filament are sensitive to the environment [71]. There were

several proposed solutions using post-processing, DOE, mathematical optimization methods,

and closed-loop control to deal with surface defects. [44] proved that significant improve-

ments on the surface finish of acrylonitrile butadiene styrene (ABS) parts could be achieved

using the chemical post-processing treatment. [74] used an acetone vapor bath for post-

process smoothing to reduce the surface roughness and reach a maximum 95% reduction

in surface roughness. Using the DOE method, [3] determined the effect of layer thickness

and deposition speed on the surface roughness of the FFF process. [55] used a factorial

design to improve the surface roughness of ABS 400 polymer materials in the FFF process.

[108] studied the effect of process variables on surface texture parameters to predict surface

roughness by the Taguchi method. In addition, there were several research efforts to deal

with quality issues in the FFF process by optimization of mathematical models. [17] applied

a genetic algorithm to determine the optimum part deposition orientation to improve the

surface quality by measuring the arithmetic mean of surface roughness. [77] used a particle

swarm optimization algorithm to obtain a target surface quality. Recently, [83] developed a

closed-loop controller for the FFF process. It consists of the image-based process monitoring

[114] and PID controller for defect mitigation.
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2.3 Research Gaps Analysis

The related research work introduced in Section 2.2.1 summarizes the research efforts for the

anomaly detection methods in the process monitoring stage. However, most of the existing

work assumes balanced training data among the process states can be collected in the sensing

stage, which is an unrealistic assumption in the actual manufacturing process. Section 2.2.2

is focused on the fault diagnosis method in the multistage assembly process. Most of the

existing work assumes plenty of sensors in the process which may not be consistent with

industrial practice. Recently several work have been published to address the issue by

developing sparse Bayesian learning. However, the existing studies did not take into account

the temporal correlation of sensor measurements and prior knowledge of process faults, so

performance is limited when there are few sensors. The work summarized in Section 2.2.3

contributes to the defect mitigation for online process control in the representative polymer

AM process. But they assumed the defects that occurred in the process had been identified

in advance. Therefore, existing methods are not suitable for handling new defects during

printing. In light of these gaps, the research methodologies proposed in this dissertation aim

to overcome these challenges by creating novel and advanced machine learning methodologies

assisted by physics knowledge from the process.



Chapter 3

Anomaly Detection in Additive

Manufacturing Processes using

Supervised Classification with

Imbalanced Data based on Generative

Adversarial Network

Supervised classification methods have been widely utilized for the quality assurance of the

advanced manufacturing process, such as additive manufacturing (AM) for anomaly (defects)

detection. However, since abnormal states (with defects) occur much less frequently than

normal ones (without defects) in a manufacturing process, the number of sensor data samples

collected from a normal state is usually much more than that from an abnormal state.

This issue causes imbalanced training data for classification analysis, thus deteriorating

the performance of detecting abnormal states in the process. It is beneficial to generate

effective artificial sample data for the abnormal states to make a more balanced training

set. To achieve this goal, this paper proposes a novel data augmentation method based

on a generative adversarial network (GAN) using additive manufacturing process image

sensor data. The novelty of our approach is that a standard GAN and classifier are jointly

12
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optimized with techniques to stabilize the learning process of standard GAN. The diverse

and high-quality generated samples provide balanced training data to the classifier. The

iterative optimization between GAN and classifier provides the high-performance classifier.

The effectiveness of the proposed method is validated by both open-source data and real-

world case studies in polymer and metal AM processes.

3.1 Introduction

The utilization of advanced manufacturing techniques such as additive manufacturing (AM)

is prevalent in diverse fields such as aerospace, healthcare, and the automotive industry

[83]. However, a major barrier preventing broader industrial adoption of the processes is the

quality assurance of products. For example, surface defects exist, such as under-fill from the

Fused Filament Fabrication (FFF) process shown in Figure 3.1. It is due to highly complex

interactions in consecutive layers during printing. The defect causes a deficiency in the

mechanical properties of the final product, such as density, tensile strength, and compressive

strength [51]. Therefore, timely detection of the anomaly in the process is necessary so that

corrective actions can be taken to mitigate the defects and improve the quality of products

[90].

In recent times, advancements in sensor technologies and computational capabilities have

enabled the acquisition of online process data, creating opportunities for efficient quality

assurance through a data-driven approach [84]. The sensor data, typically in high volume

regarding dimensionality and sampling frequency, contains valuable insights into the manu-

facturing processes [143]. Hence, exploring the inherent connections between the sensor data

and process quality state using a data-driven approach is highly advantageous [81]. Utiliz-

ing the sensor data, supervised classification methods have been widely applied to online
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anomaly detection in the manufacturing process [8, 49, 63]. This is because these methods

can fully utilize the label information of the process state, resulting in more accurate and

reliable detection results than unsupervised methods. [8, 49, 63] utilized balanced training

data collected from both normal and abnormal states in the manufacturing processes to

achieve a high anomaly detection rate from classifiers [25].

Figure 3.1: Normal surface and Abnormal defect in AM process.

However, the manufacturing process is usually in a normal state [81]. Therefore, balanced

training data assumed by the existing work [8, 63] is expensive and not realistic. In reality,

abnormal conditions, such as surface defects in AM process (Figure 3.1), may happen but

rarely. Consequently, the sensor data collected under abnormal states are smaller than those

collected in a normal state, and may not be sufficient for training supervised classification

methods. It causes imbalanced training data among process states [22], leading to compro-

mised anomaly detection performance in actual manufacturing processes [81]. Specifically,

when the number of training data samples from a normal state is significantly more than

that of abnormal states, the prediction in classification models tends to be biased towards

the normal state (i.e., majority class) [25]. This leads to a high probability of misclassifying
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samples from the abnormal states (i.e., minority classes).

To overcome this severe issue caused by imbalanced data problems in the manufacturing

process, data augmentation can be applied to obtain balanced training data among process

states.

Simple data augmentation techniques such as rotation, flipping, and synthetic minority

oversampling technique (SMOTE) [21] are widely used for balancing training data in the

supervised classification method for the manufacturing process because of their simplicity

in application [28, 76, 99]. However, these methods reflect the local information; thus, they

could not consider the global information, including the entire data distribution, and suffers

from the problem of overfitting [37, 95]. As a result, these methods are unsuitable for gener-

ating realistic and diverse data on abnormal states in manufacturing applications [41, 106].

Recently, the generative adversarial network (GAN) [47] has been actively used for data aug-

mentation in manufacturing. This is because GAN generates more representative data than

the simple augmentation method by learning the entire distribution of actual data through

two neural networks: discriminator and generator [4, 66]. For example, [46] used conditional

GAN to generate layer images from the metal AM process. In addition, [81] developed a

novel GAN method considering temporal orders of the sensor signal from the polymer AM

process to generate the balanced training signal data.

Utilizing GAN, the existing studies achieved high classification performance by training the

classifier using the balanced training samples which are generated from GAN. The gener-

ated samples of each process state are realistic by learning the distribution of actual data.

However, features enabling differentiation between process states (i.e., state-distinguishable

features) that can further improve the classification performance have not been considered

in the generation process from GAN in the previous studies [46, 81].
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This paper proposes a novel GAN-based data augmentation method in manufacturing to

generate realistic and state-distinguishable generated data. Compared to a standard GAN

consisting of two players, i.e., discriminator and generator, the proposed method comprises

three players, including a classifier. All players are jointly optimized in the proposed ap-

proach to meet their respective goals. Specifically, the generator learns to generate data

deceiving the discriminator. In contrast, a discriminator learns to distinguish whether data

is from a generator or an actual process. This adversarial learning results in generating

realistic samples from the generator. At the same time, the generator and classifier coop-

erate to generate distinctive samples among process states in the manufacturing process.

Specifically, the classifier guides the generator to create samples that could benefit classifi-

cation results. Then, the classifier is trained with balanced training data supplemented from

generated samples of abnormal states. However, the joint optimization between GAN and

classifier suffers from the explosion of the generator’s gradient, resulting in unstable learning

and low-quality generated samples [5, 123]. It limits the improvements of the classifier’s

performance by joint optimization.

Therefore, the proposed method provides two terms in the objective function of the dis-

criminator to improve the training stability of standard GAN. First, the proposed method

regularizes the gradient of the discriminator [42]. Second, the proposed approach provides

an additional task to the discriminator compared to standard GAN, preventing the discrim-

inator from discerning the origin of data very well [57]. Both terms improve the training

stability by preventing gradient exploding in training the generator. Finally, the iterative

learning among three-player with these stabilizing techniques finally provides the classifier

with high performance. The contributions of this work are summarized as follows:

• From the methodological point of view, this paper proposes a novel data augmenta-

tion method that standard GAN and classifier are jointly optimized with techniques
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to stabilize the learning process of standard GAN. The generated samples from the

generator provide balanced training data to the classifier. The iterative optimization

between GAN and classifier provides a classifier with superior performance.

• From the application perspective, the proposed method is applied to anomaly detection

in actual additive manufacturing processes. The technique successfully detects process

anomalies when highly imbalanced data sets exist. The effectiveness of the proposed

method is validated by the statistical hypothesis test [109] from polymer and metal

AM processes, namely, Fused Filament Fabrication (FFF) and Electron Beam Melting

(EBM) processes.

• In terms of the broad applicability of the proposed technique in the manufacturing

process, the usage of the method is not limited to surface image data but also to signal

data from various sensors, including microphones and acceleration sensors, widely used

for process monitoring. In addition, the method can be directly applied to other

manufacturing processes, such as semiconductor manufacturing [130] and automobile

industries [106] that suffer from imbalanced data for their process monitoring.

The subsequent sections of this paper are structured in the following manner. The proposed

methodology is presented in Section 3.2, followed by case studies with open-source and actual

AM data sets to validate its effectiveness in Section 3.3. In addition, the proposed method

is applied to biomaterial data to show the generalizability of the method in Section 3.4.

Finally, conclusions are summarized in Section 3.5.
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3.2 Proposed Research Framework

This section proposes a novel GAN-based data augmentation method. The structure of

the proposed method is illustrated in Section 3.2.1. Specifically, the objective function of

the proposed method is described in Section 3.2.2, followed by the training procedure in

Section 3.2.3.

3.2.1 Three-Player Structure for Imbalanced Data Learning

Figure 3.2 shows the structure of the proposed method, which consists of three players:

a discriminator, a generator, and a classifier. The generator generates images of the

Figure 3.2: Structure of the proposed method.
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manufacturing process from the random noise and corresponding state label. Among the

generated images, the images of abnormal states are combined with the actual imbalanced

manufacturing process images, providing a balanced training sample to the classifier. The

proposed method offers adversarial and cooperative learning to make the generated images

beneficial to the classifier’s performance. The roles of these two are provided as follows.

• Adversarial learning: The relationship between discriminator and generator follows

the adversarial relationship from the GAN structure. The relationship enables both

networks to compete with each other, resulting in realistic generated samples of the

manufacturing process from the generator.

• Cooperative learning: The cooperative relationship between the generator, and the

classifier enables the generator to generate samples that are distinguishable among

process states in the manufacturing process (i.e., state-distinguishable samples) from

the classifier.

Based on these two relationships, the generator generates samples of abnormal states in the

manufacturing process with both properties (i.e., realistic and state-distinguishable). The

generated samples are added to actual ones and provided as a balanced training batch that

the number of training samples passing through the network at one time of a classifier. The

iterative learning process among these three players finally provides a classifier with high

performance. The detailed objective function and training procedures are explained in the

following sections.

3.2.2 Objective Functions for Three-Player

In this subsection, the review of the generative adversarial network in the manufacturing

process is described in Section 3.2.2.1 initially. Then, the objective functions of the dis-
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criminator, generator, and classifier are illustrated in Sections 3.2.2.1, 3.2.2.2, and 3.2.2.3,

respectively.

3.2.2.1 Generative Adversarial Network in the Manufacturing Process

The idea of a Generative Adversarial Network (GAN) is to train two networks, namely, gen-

erator G and discriminator D, with a minimax game for V (D,G) demonstrated in Eq. (3.1)

[125].
min
G

max
D

V (D,G) = Exa∼P (Xa)[log(D(xa))]

+ Ez∼P (Z)[log(1−D(G(z))],

(3.1)

where z is the random noise, and xa denotes actual samples from the manufacturing process.

Specifically, the generator is to generate samples of the manufacturing process G(z) from z,

and the discriminator is to distinguish whether the origin of input samples is from actual

(xa) or generator (G(z)). In other words, the discriminator is to discern the input samples,

while the generator synthesizes artificial samples to deceive the discriminator. This adver-

sarial learning results in the distribution of newly generated samples, close to the underlying

distribution of the actual samples in the manufacturing process, P (Xa).

As shown in Figure 3.2, the proposed method needs to provide balanced training samples

among the manufacturing process states in every batch of a classifier. To achieve this,

conditional GAN [37] is applied in the proposed method making the process state label

attached to the input of the generator and discriminator. It enables users to determine the

number of generated samples from abnormal states of the manufacturing process to make a

balanced batch. Therefore, the proposed method does not suffer from mode collapse among

the process states that the generator only generates the specific states as output [117]. The
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objective function of conditional GAN is demonstrated in Eq. (3.2) as follows.

min
G

max
D

V (D,G) = E(xa,ya)∼P (Xa,Ya)[log(D(xa, ya))]

+ E(z,yg)∼P (Z,Yg)[log(1−D(G(z, yg), yg)],

(3.2)

where ya and yg denote the process state label of an actual and generated sample, respec-

tively. subsubsectionObjective Function of Discriminator The objective of the discriminator

in the proposed method is to maximize Eq. (3.2) through adversarial learning with the gener-

ator. Specifically, the discriminator learns to distinguish the input (xa, ya) and (G(z, yg), yg)

are actual and generated, respectively. In addition, the proposed method provides two addi-

tional terms for stabilizing the learning process, as the training of the GAN is unstable and

challenging to converge due to the gradient exploding issue in adversarial learning [5, 120].

First, the proposed method regularizes the gradient of the discriminator by providing the

gradient penalty in the form of Eq. (3.3) as follows.

E(x̂,ya)∼P (X̂,Ya)
[(∥∇(x̂,ya)D(x̂, ya)∥2 − 1)2], (3.3)

where x̂ = αxa + (1 − α)G(z), and α is sampled uniformly between 0 and 1. It enforces

1-Lipschitz continuity to the discriminator [29]. The term is widely used in the previous

work [42, 48, 57] to overcome the limited diversity and poor quality of generated samples

from GAN caused by unstable adversarial learning.

Second, the proposed method provides an additional input consisting of the actual sample

(xa) and a mislabeled process state (ym) to the discriminator. The discriminator learns to

distinguish that the input (xa, ym) is not an actual but generated sample because of the



22
CHAPTER 3. ANOMALY DETECTION IN ADDITIVE MANUFACTURING PROCESSES USING SUPERVISED

CLASSIFICATION WITH IMBALANCED DATA BASED ON GENERATIVE ADVERSARIAL NETWORK

mislabeled process state by minimizing the following quantity.

−E(xa,ym)∼P (Xa,Ym)[log(1−D(xa, ym)],

where ym is randomly sampled from the remaining labels in the manufacturing process except

for the actual state label. Since the input provides an additional task for the discriminator

to learn, it prevents the discriminator distinguishes very well between actual and generated

samples before the generator approximates the actual sample distribution of the manufactur-

ing process. Otherwise, it causes unstable learning of GAN through exploding or vanishing

the gradient of the generator [5, 123].

In summary, the objective function of the discriminator (LD) in the proposed method is to

minimize the following equation consisting of several losses.

LD(Z,Xa, Ya, Yg, Ym) =

−E(xa,ya)∼P (Xa,Ya)[log(D(xa, ya))]︸ ︷︷ ︸
loss from actual sample in discriminator

−E(z,yg)∼P (Z,Yg)[log(1−D(G(z, yg), yg)]︸ ︷︷ ︸
loss from generated sample in discriminator

−E(xa,ym)∼P (Xa,Ym)[log(1−D(xa, ym)]︸ ︷︷ ︸
loss from mislabeled sample in discriminator

+ λE(x̂,ya)∼P (X̂,Ya)
[(∥∇(x̂,ya)D(x̂, ya)∥2 − 1)2]︸ ︷︷ ︸

loss from gradient penalty

,

(3.4)

where λ is the coefficient of the gradient penalty term. The first three losses in Eq. (3.4)

are related to losses when the discriminator misclassified the origin of the actual, generated,

and mislabeled sample. The last loss represents the loss related to the gradient of the

discriminator.
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3.2.2.2 Objective Function of Generator

The objective of the generator is to generate samples via learning the distribution of actual

samples of the manufacturing process (P (Xa)) by minimizing Eq. (3.2). Alternatively, the

proposed method trains the generator to maximize Eq. (3.5) to avoid the saturation problem

occurring when minimizing Eq. (3.2) in practice [47].

E(z,yg)∼P (Z,Yg)[log(D(G(z, yg), yg)]. (3.5)

Therefore, Eq. (3.5) and the second term in Eq. (3.4) provide the adversarial learning between

the discriminator and generator. In addition to Eq. (3.5), the generator in the proposed

method has an additional term in the objective function related to the classifier. In contrast

to an adversarial relationship with a discriminator, the cooperative relationship is designed

between the generator and classifier to generate well-distinguishable samples among process

states in the manufacturing process. Specifically, the generator needs to generate the extra

samples to make a balanced training data set for the classifier, as shown in Figure 3.2, and

the data need to be helpful for the classifier. In other words, the generator learns to generate

the data that is well-classified from the classifier. To achieve this, the classification loss from

labels of generated samples is provided to the objective function of the generator (2nd term

in Eq. (3.6)). Finally, the generator in the proposed method is trained by minimizing its

objective function (LG), Eq. (3.6).

LG(Z, Yg) =−E(z,yg)∼P (Z,Yg)[log(D(G(z, yg), yg))]︸ ︷︷ ︸
loss from generated sample in discriminator

−αE(z,yg)∼P (Z,Yg)[yglog(C(G(z, yg)))]︸ ︷︷ ︸
loss from generated sample in classifier

,

(3.6)
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where −E(z,yg)∼P (Z,Yg)[yglog(C(G(z, yg)))] (2nd term in Eq. (3.6)) denotes the cross-entropy

loss of generated samples from the classifier. α is the coefficient that needs to be optimized

based on the performance of the validation set. The coefficient is optimized to be constant

(e.g., 1) or increased as the classifier’s epoch increases since the classifier is not trained

enough in the initial part of the learning. To achieve this, the proposed method designs the

rule of α as follows: α = (γ)
100

epochs , where γ ∈ (0, 1]. γ is optimized by grid search.

3.2.2.3 Objective Function of Classifier

The objective function of the classifier (LC) consists of the classification loss from both

actual and generated samples of the manufacturing process as Eq. (3.7). As described in

Figure 3.2, the samples from the generator are supplemented with actual samples from the

manufacturing process to make balanced training data in every batch of the classifier. The

classifier is optimized to minimize the classification loss from both actual and generated

sample by minimizing Eq. (3.7).

LC(Z,Xa,Ya, Yg) = −E(xa,ya)∼P (Xa,Ya)[yalog(C(xa))]︸ ︷︷ ︸
loss from actual sample in classifier

−E(z,yg)∼P (Z,Yg)[yglog(C(G(z, yg))]︸ ︷︷ ︸
loss from generated sample in classifier

.

(3.7)

In particular, −E(z,yg)∼P (Z,Yg)[yglog(C(G(z, yg))], a common term in both Eqs. (3.6) and (3.7)

enables cooperative learning between the generator and classifier.

3.2.3 Training Procedure

To train the three players in the proposed method, the method adopts an alternating gra-

dient descent method among the training of generator, discriminator, and classifier. Before
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starting alternating optimization, the auto-encoder is pre-trained with the existing imbal-

anced samples from the manufacturing process. Auto-encoder is trained to minimize the

reconstruction error of inputs. Auto-encoder is widely used for the initialization of the gen-

erator in GAN because it leads to stable learning and helps the generator learn common

data set knowledge [92]. The pre-trained decoder from an auto-encoder is initialized as

the generator in the proposed method. After the pre-training step, the three players are

optimized alternatively. First, the discriminator is trained with a batch from actual and

generated samples to minimize Eq. (3.4). Sequentially, a batch from generated samples is

utilized to update the generator by minimizing Eq (3.6). Finally, the classifier is trained

by minimizing Eq. (3.7) with balanced training data from all the process states in the man-

ufacturing process. Specifically, a batch (m) from actual data is sampled first. Then, the

remaining samples from abnormal states (mg) are generated from the generator to make

a balanced training set. The alternating training procedure is iterated until it reaches the

pre-defined epochs. The overall training procedure of the proposed method is illustrated in

Algorithm 3.1. The parameters of a discriminator, generator, and classifier are denoted as

θd, θg, and θc, respectively.

3.3 Real-World Case Studies

Several real-world case studies are provided to show the effectiveness of the proposed method.

Section 3.3.1 demonstrates the advantages of the proposed method based on the ablation

study. The method is deeply self-analyzed in various aspects. Sections 3.3.2, 3.3.3, and 3.3.4

provide comparative case studies with benchmark methods across multiple data sets. Specif-

ically, open-source data set is used in Section 3.3.2. In addition, the surface image data from

two actual AM processes, namely, Fused Filament Fabrication (FFF) and Electron Beam
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Algorithm 3.1 Training Procedures of the proposed method.
Require:
Initialize the parameters of three players (i.e., θd, θg, and θc).
P-Epoch: Number of epochs in the pre-training.
A-Epoch: Number of epochs in the alternating loop.
Batch size: Size of samples (m) in each batch.

Procedure:
[Pre-Training Generator]
Initialize: epoch=1
while epoch ≤ P-Epoch do
Sample a batch of m samples from Xr

Train auto-encoder (θg)
epoch + +

end while
[Alternating Optimization]
Initialize: epoch=1
while epoch ≤ A-Epoch do
Sample m samples from Xr, Z, Yg, Ym

Train a discriminator (θd) by minimizing Eq. (3.4)
Sample m samples from Z, Yg

Train a generator (θg) by minimizing Eq. (3.6)
Sample m samples from Xr

Sample mg from Z, Yg of abnormal states to
balance the batch
Train a classifier (θc) by minimizing Eq. (3.7)
epoch + +

end while

Melting (EBM) processes, are utilized in Sections 3.3.3 and 3.3.4, respectively, to demon-

strate the effectiveness of the proposed method in an actual AM process. The performance

is evaluated by the classification results from the imbalanced training data set. The frame-

work of all case studies is Keras with TensorFlow backend. The studies are performed by an

NVIDIA Tesla P4 GPU with 8GB memory.

1) Benchmark Methods: For the benchmark methods, both the sampling-based and

GAN-based approaches are used. In the sampling-based methods, SMOTE [21], B-SMOTE

[52], and ADASYN [54], which are implemented in the imbalanced-learn library in python,
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are adopted. For the GAN-based approaches, two state-of-the-art methods, CDRAGAN

[57], and BAGAN-GP [57] are selected. In addition, Cooperative GAN [25], which jointly

optimizes GAN and the classifier, is determined as one of the benchmark methods. Fi-

nally, classification performance without any data augmentation method is provided as the

baseline.

2) Hyperparameters and Experimental Settings: The optimizer for the proposed

method is the Adam algorithm [64] with a learning rate of 0.0002 and momentums of 0.5

and 0.9 [57]. To make the networks in the proposed method irrespective of the image size, all

the image inputs are resized as 64×64×channels. The dimension of the random noise (z) is

128. The coefficient of cross-entropy loss in the generator (α in Eq. (3.6)) is set to one based

on the grid search in the case studies. Since the proposed method deals with image data,

the auto-encoder with convolution layers is used for pre-training [57]. The discriminator

consists of the convolutional layers to judge whether the images are actual or generated.

In contrast, the generator layer uses transposed convolution layers to generate the images

from the random noise. For the classifier, Convolutional Neural Network (CNN) is utilized

in the case studies since CNN extracts the features from the raw data directly, resulting

in superior performance in image classification [32]. For a fair comparison, the CNN with

the same hyperparameters is utilized to all the methods. In addition, there exist unique

hyperparameters of each method, such as the scheduling parameter in the Cooperative GAN

[25]. These hyperparameters are searched within a specific range following the guidelines

provided in the literature and determined with the values that showed the best performance.

The proposed method has a unique hyperparameter compared to the benchmark methods,

which is the coefficient of cross-entropy loss in the generator (α in Eq. (3.6)). The coefficient

is optimized based on the grid search in the case study. The detailed hyperparameters of

the generator, discriminator, and classifier are provided in Appendix A.3.
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3) Performance Evaluation Measure: The classification performance is evaluated by

the value of the F-score, Precision, and Recall [104]. Precision and Recall are related to the

level of type I and type II errors, respectively. F-score can be formulated by Eq. (3.8), which

is the combination of Precision and Recall.

F-score = 2× Precision× Recall
Precision+ Recall . (3.8)

Since this paper aims to improve the classification accuracy with the imbalanced training

data, case studies with various balanced ratios are provided. The balanced ratio refers to the

proportion of the training data size for the minority and majority classes. All the case studies

were repeated ten times, and the average of all classes’ performances from ten repetitions

was provided as the performance measure.

3.3.1 Ablation Studies

The ablation study is conducted with MNIST fashion data [135]. From the 1000 images

of each of the three labels, namely, T-shirt, Pullover, and Dress, imbalanced training data

is constructed as described in Table 3.1. To provide the challenging task, the balanced

ratio between the majority and minority classes is 0.10. The remaining images are used as

testing data. The study is conducted through a step-by-step process of integrating each

Table 3.1: Imbalanced training data samples in ablation studies.

Data
Set

Majority
Class

Minority
Class

Balanced
Ratio

Majority Class
Training Samples

Minority Class
Training Samples

MNIST fashion T-shirt Pullover, Dress 0.10 800 80

ablation component since each component is dependent on the previous ones and cannot

be implemented independently. The importance of each component is validated by the
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ablation of a baseline and three variants, as illustrated in Table 3.2. Baseline trains classifier

with imbalanced training data without any data augmentation. Instead, Variant 1 uses a

conditional version of standard GAN (i.e., CGAN [96]) to provide balanced training data

of the classifier by generating additional minority class samples (G(z, yg) in Section 3.2).

Furthermore, Variant 2 jointly trains the classifier and CGAN by providing cross-entropy

losses (yglog(C(G(z, yg))), and yalog(C(xa)) in Section 3.2) so that the generator in the

CGAN produces distinctive samples among the process states. Finally, Variant 3, which is

the proposed method, adds the terms (∥∇D(x̂, ya)∥2, and D(xa, ym) in Section 3.2) that are

related to stabilizing the learning process in the objective function of the discriminator in

Variant 2. In addition, the coefficient of cross-entropy loss in the generator (α = (γ)
100

epochs ,

where γ ∈ (0, 1] in Eq. (3.6)) is optimized in Variant 3. γ is searched by the grid size

with intervals of 0.1 in the range. The validation data consists of 100 and 10 samples

from majority and minority classes from Table 3.1. Finally, γ is optimized to one by the

classification performance (F-score) of the validation data set.

Table 3.2 shows the results of the ablation study. In addition to F-score, Precision, and

Recall, Frechet Inception Distance [38] (FID) is used as an additional performance measure

in the ablation study. FID is a metric used to evaluate the quality of images generated

by GAN. Specifically, it is a metric between two multidimensional Gaussian distributions

that are the distribution of neural network features from the actual and generated images,

respectively. FID is computed from the mean and the covariance of the activation function

of the network as follows:

FID = ∥µa − µg∥2 + Tr(Σa + Σg − 2(ΣaΣg)
1/2),

where µa and Σa are the mean and standard deviation from actual images, respectively;

likewise, µg and Σg are those from generated images, respectively. The smaller FID represents

that the generated images follow the distribution of actual images resulting in better quality



30
CHAPTER 3. ANOMALY DETECTION IN ADDITIVE MANUFACTURING PROCESSES USING SUPERVISED

CLASSIFICATION WITH IMBALANCED DATA BASED ON GENERATIVE ADVERSARIAL NETWORK

and diversity [23]. In Table 3.2, the FID scores of each label are presented. 1500 images of

each label from actual and generated images, respectively, are used to calculate the FID.

Table 3.2: Performance evaluation in ablation studies.

G(z, yg)
yalog(C(xa)),

yglog(C(G(z, yg)))

∥∇D(x̂, ya)∥2,
D(xa, ym)

Precision Recall F-score FID
T-shirt

FID
Pullover

FID
Dress

Baseline 7 7 7 0.784 0.872 0.782 NA NA NA
Variant1 ✓ 7 7 0.789 0.878 0.791 190.7 222.9 232.6
Variant2 ✓ ✓ 7 0.804 0.892 0.816 185.9 238.1 233.2
Variant3

(Proposed)
✓ ✓ ✓ 0.818 0.904 0.836 108.5 134.6 176.7

The performance of all the measures of Variant 1 improves compared to the baseline. It

shows the effectiveness of GAN for supplementing imbalanced training data. In Variant 2,

an improvement in the performance of most of the measures is achieved compared to the first

ablation. These results show that joint training of GAN and classifier guides the generator to

generate samples beneficial to the classifier, that is, both realistic and state-distinguishable

samples. It consequently improves the performance of the classifier. Finally, when both

terms stabilizing the learning process of GAN are added, which is the proposed method

(Variant 3), the performances are significantly improved since stable training enables the

generator to generate more realistic and state-distinctive samples. The classification results

of each label in Table 3.2 are provided in Appendix A.1. In addition, Table 3.3 shows the

p-value of the paired t-test [109] of each measure, where the alternative hypothesis is that

the average results in Table 3.2 are better than the previous ablations. The results indicate

that joint optimization of GAN and classifier and terms stabilizing the learning process of

GAN significantly improve the classification performance at a 95% significance level.

Figure 3.3 compares the log scale norm for the gradient of the generator (log(∇∥LG(Z, Yg)∥)

between Variant 2 and the proposed method. The results show the jointly optimization

between GAN and classifier (Variant 2) suffers from the explosion of the generator’s gradient,

resulting in unstable learning and low-quality generated samples [5]. However, the gradient
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Table 3.3: P-value of paired t-test in the ablation studies.

Precision Recall F-score
Variant1 ≥ Baseline 0.067 0.047 0.025
Variant2 ≥ Variant1 0.020 0.019 0.014
Variant3 ≥ Variant2 0.012 0.012 0.014

of the proposed method decreases with the small variance.

Figure 3.3: Comparison of the gradient of the generator.

Figure 3.4 shows the quality of generated images in each step of the ablation study. Figure 3.4

(a) represents the actual images from each label. Figures 3.4 (b), (c), and (d) illustrate the

generated images of each label from Variant 1, 2, and the proposed method, respectively.

Like the results of the FID score in Table 3.2, the quality of generated samples significantly

improves in the proposed method.

Beyond the image quality and FID score, Figure 3.5 shows the effectiveness of the generated

samples from the proposed method based on the comparison between the feature of gen-
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(a) (b)

(c) (d)

Figure 3.4: Samples of T-shirt, Pullover, and Dress from (a) actual images, (b) generated
images from Variant 1, (c) generated images from Variant 2, and (d) generated images from
Variant 3 (Proposed method).

erated and actual samples. Specifically, Figure 3.5 represents the t-distributed Stochastic

Neighbourhood Embedding (t-SNE) of the feature from the intermediate layer of the classi-

fier in the proposed method. t-SNE is a tool for visualizing high-dimensional data [33]. It is
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Figure 3.5: t-SNE of the feature from the intermediate layer of the classifier from the pro-
posed method in epochs (a) 0 and (b) 300.

a nonlinear dimensionality reduction technique suitable for incorporating high-dimensional
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data into lower-dimensional data (2-D or 3-D) for visualization. ‘•’ and ‘×’ in Figure 3.5

denote the feature in the intermediate layer of classifiers from actual and the generated sam-

ples in the balanced training batch, respectively. For a balanced training batch, the minority

class has many ‘×’ in each batch. Figure 3.5 (a) shows the distribution alignments of actual

and generated samples are different at epoch 0. Since the proposed method learns to gener-

ate realistic and distinctive samples for the classifier, Figure 3.5 (b) shows that the features

of generated samples (‘×’) correctly follow those of actual samples (‘•’) according to their

respective labels at epoch 300. In addition, features from each label are clearly separated. It

validates the authentic and state-distinguishable properties of the generated samples of the

proposed method. The balanced training data with these properties let the proposed method

achieve high classification performance. t-SNE results from the several epochs in Figure 3.5

are provided in Appendix A.2 to show that the generated samples from the proposed method

follow the features of actual data in the classifier as the epoch increases.

3.3.2 Open-Source Data Case Study

The open-source image data set is used for the comparative study in this section. MNIST

fashion [135], which is widely used for the evaluation of image-based classifiers, is selected.

In MNIST fashion data, three labels related to upper clothes are selected for analysis. This

step provides high similarity among the classes to make a challenging problem [25]. In each

label of MNIST fashion, 1000 images are collected, respectively. Then, imbalanced training

data is provided in Table 3.4. The balanced ratios are determined as 0.10. This is because

the balanced ratios with less than these values provide poor performance that is meaningless

for the comparison. The remaining data sets are used as testing data.

Table 3.5 shows the performance evaluation of the proposed and benchmark methods. The
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Table 3.4: Imbalanced training data samples in open-source data case study.

Data
Set

Majority
Class

Minority
Class

Balanced
Ratio

Majority Class
Training Samples

Minority Class
Training Samples

MNIST fashion T-shirt Pullover, Dress 0.10 800 80

proposed method achieves the best performance in most measures in both data sets. Com-

pared to a baseline using imbalanced training data to train the classifier, the sampling-based

method such as SMOTE [21], B-SMOTE [52], and ADASYN [54] generally achieves similar

or worse performance. Since this case study has a small number of minority data, the

Table 3.5: Performance evaluation in open-source data case study.

MNIST fashion
Precision Recall F-score

Baseline 0.784 0.872 0.782
SMOTE 0.780 0.867 0.774
B-SMOTE 0.778 0.864 0.771
ADASYN 0.780 0.866 0.774
CDRAGAN 0.800 0.891 0.809
BAGAN-GP 0.797 0.888 0.805
Cooperative GAN 0.800 0.890 0.811
Proposed 0.818 0.904 0.836

sampling-based method has limitations in generating various data that can cover the test-

ing data. In contrast, the GAN-based techniques usually achieve better performance than

sampling-based methods since their generators learn the actual distribution and produce

various training data for the classifier. Especially, the generator from the proposed method

provides more diverse and better quality images by jointly optimizing the classifier with

stabilizing techniques, resulting in improvements in classification results.
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3.3.3 Polymer Additive Manufacturing Process Data Case Studies

A Hyrel System 30M 3-D printer equipped with a 0.5 mm extruder nozzle is used for this

case study. Figure 3.6 (a) shows a front view of the printer. Acrylonitrile butadiene styrene

(ABS) is used as material (filament) in this case study. Specifically, the diameter of ABS is

1.75 mm. This study uses a digital microscope camera for high-quality image acquisition at

a sampling frequency of 1 Hz. The camera is mounted near the extruder to collect images

of the surface that is being printed (Figure 3.6 (b)). Based on the design of experiments

(a) (b) (c)

Figure 3.6: (a) Front view of Hyrel system 30M; (b) Digital Microscope Camera; (c) Software
Controller.

in [83], the surface images for normal state, under-fill caused by feed rate and under-fill

caused by the cooling fan, as described in Figure 3.7, can be achieved by configuring the

software controller with particular machine parameters (Figure 3.6 (c)). Two process states

which are the under-fill caused by feed rate and under-fill caused by the cooling fan, are the

abnormal states that cause quality deterioration in the FFF process [83, 114]. To increase

the size of image samples, the region of interest is one-third of each image in Figure 3.7 with

the size of 460 × 213 × 3. Therefore, each image collected from a microscope provides three

image samples. In total, there are 915 samples from the normal process state and 591 and

459 samples from under-fill caused by feed rate and cooling fan, respectively. This section

provides case studies with various balanced ratios between normal and abnormal states of
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(a) (b) (c)

Figure 3.7: (a) Normal; (b) Under-fill caused by feed rate; (c) Under-fill caused by a cooling
fan. The red rectangle represents the regions of interest in each image.

the FFF process to see the performance change according to ratio changes. The balanced

ratios of training data are provided in Table 3.6, where the minority classes are denoted as

the cause of abnormal states in the process. Specifically, the balanced ratios provide the

performances of F-score, Precision, and Recall that are applicable in practice are utilized.

The remaining images in each process state are used as testing data.

Table 3.6: Imbalanced training data samples in Polymer AM case studies.

Majority
Class

Minority
Class

Balanced
Ratio

Majority Class
Training Samples

Minority Class
Training Samples

Normal Under-feed, Under-fan 0.10 800 80
Normal Under-feed, Under-fan 0.15 800 120
Normal Under-feed, Under-fan 0.20 800 160

Figure 3.8 shows the performance evaluation of the proposed and benchmark methods in

various balanced ratios. The performances of all the methods are improved when the num-

ber of training samples in minority classes increases (i.e., the balanced ratio increases). This

is because a large number of samples provides more information for the generator to learn

the actual distribution. In every balanced ratio, the proposed method achieves the best

performance in all the measures, which shows the effectiveness of the realistic and state-

distinguishable generated samples in the AM process. Specifically, the proposed method
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Figure 3.8: F-scores, precisions, and Recalls in FFF process case studies under different
balanced ratios.

improved 3%∼13%, 3%∼10%, and 2%∼10% of the performance of the benchmark meth-

ods regarding their F-score, Precision, and Recall, respectively. In addition, the proposed

method performs better than cooperative GAN, which also jointly optimizes GAN and clas-

sifier but follows the basic objective function of the discriminator in GAN. This demonstrates

the effectiveness of stable learning through regularizing the gradient of the discriminator and

an additional task provided to the discriminator in the proposed method. Sampling-based

methods show worse performance than GAN-based methods in general since the methods

only consider the local information resulting in limited diverse generated images [37]. Ta-

ble 3.7 represents the p-value of the relative t-test, where the alternative hypothesis is that

the performance of the proposed method in Figure 3.8 is better than the method that achieves

the best performance among the benchmark methods in each balanced ratio. The results

indicate the proposed method is better than the benchmark method at a 95% significance

level in all cases.

Figure 3.9 shows the t-SNE of the feature from the intermediate layer of classifiers from the

proposed method in epochs 0 and 300 when the balanced ratio is 0.20. Like Figure 3.5, ‘•’ and

‘×’ represent features of actual and generated samples, respectively. The colors differentiate
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Table 3.7: P-value of paired t-test in Polymer AM case studies.

Precision Recall F-score
Balanced Ratio: 0.10 0.000 0.000 0.000
Balanced Ratio: 0.15 0.001 0.002 0.000
Balanced Ratio: 0.20 0.008 0.029 0.007

each process state in the FFF process. To make a balanced training data, two abnormal
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Figure 3.9: t-SNE of the feature from the intermediate layer of classifiers from the proposed
method in epochs (a) 0 and (b) 300 in the FFF process when the balanced ratio is 0.10.

states in the FFF process have adequate generated samples (‘×’) than actual samples (‘•’)

in each batch. Compared to epoch 0 (Figure 3.9 (a)), features in epoch 300 (Figure 3.9 (b))

show that the features from generated samples (‘×’) of abnormal states of the FFF process

follow those of actual samples (‘•’) correctly to each process state. Based on these balanced

training data in the FFF process, the classifier achieves the best prediction results compared

to benchmark methods. Figure 3.10 shows the samples of actual and generated images

denoted as ‘•’ and ‘×’ in Figure 3.9 (b), respectively. The generated images (Figure 3.10
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(b)) are realistic and distinguishable among process states based on both adversarial and

cooperative learning in the proposed method.

(a) (b)

Figure 3.10: Samples of each process state in the FFF process from (a) actual; (b) generator
when the balanced ratio is 0.2.

3.3.4 Metal Additive Manufacturing Process Data Case Studies

The machine ARCAMQ10 plus is utilized to print samples from the EBM process using

Ti-6A1-4V powder. The dimensions of the printed sample are 15 mm × 15 mm × 25 mm.

In the EBM process, there exist three different scan strategies as shown in Figure 3.11,

including Random, Dehoff, and Raster [65]. Distinct scanning techniques produce varied

surface patterns on the printed samples. After printing three AM samples with each scan

strategy, a 3-D scanner captures detailed 3-D information about the top surface (15 mm ×

15 mm) quality [128].

(a) (b) (c)

Figure 3.11: (a) Raster. (b) Dehoff. (c) Random; The yellow square indicates the region of
interest.
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In this case study, the aim of classification is to recognize the scanning strategies used based

on the surface images. The size of each image in Figure 3.11 is 824 × 1118 × 3. For training

samples, 322 images with sizes of 120 by 120 are collected from the upper part of each image

(300 × 1118 × 3) since the bottom parts of the surface image with letters and numbers

have many defects, such as porosity. Specifically, the collected images are highly overlapped

in the horizontal directions (114 pixels) to have plenty of samples. Since the Raster scan

strategy is commonly used and similar to the common AM bi-directional path, the strategy

is considered a majority class [100, 112]. Therefore, the scan strategies with Dehoff and

Random are determined as minority classes in these case studies. From the 322 images from

each scan strategy, the various balanced ratios of training data are designed as in Table 3.8.

As with polymer AM case studies in Section 3.3.3, the balanced ratios that provide the

reasonable F-score, Precision, and Recall applicable in practice are utilized in case studies.

The remaining images in each scan strategy are used as testing data.

Table 3.8: Imbalanced training data samples in Metal AM case studies.

Majority
Class

Minority
Class

Balanced
Ratio

Majority Class
Training Samples

Minority Class
Training Samples

Raster Dehoff, Random 0.3 150 45
Raster Dehoff, Random 0.4 150 60
Raster Dehoff, Random 0.5 150 75

Figure 3.12 shows the performance evaluation of the proposed and benchmark methods in

the EBM process. In this case study, most sampling-based methods perform better than

the baseline, but the GAN-based methods usually represent worse results than the baseline.

This might be caused by the highly overlapped actual samples. Compared to the polymer

AM case study, the number of actual images is small and highly overlapped since we only

have a single image of the top surface. Therefore, it does not provide enough information
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Figure 3.12: F-scores, Precisions, and Recalls in EBM process case studies under different
balanced ratios.

for the GAN-based methods to learn the actual distribution. Relatively, the sampling-based

methods show better performance because the actual images are highly overlapped with

each other. Still, the proposed method achieves the best results compared to benchmark

methods by generating balanced training samples that are both realistic and scan strategy-

distinguishable. Specifically, the F-score, Precision, and Recall of the proposed method were

improved by 4%∼15%, 2%∼8%, and 3%∼8% over those of benchmark methods, respectively.

Table 3.9 represents the p-value of the relative t-test, where the alternative hypothesis is

that the performance of the proposed method in Figure 3.12 is better than the method

that achieves the best performance among the benchmark methods in each balanced ratio.

The results indicate the proposed method is better than the benchmark method at a 95%

significance level in most of the cases.

Table 3.9: P-value of paired t-test in Metal AM case studies.

Precision Recall F-score
Balanced Ratio: 0.3 0.044 0.003 0.000
Balanced Ratio: 0.4 0.041 0.109 0.009
Balanced Ratio: 0.5 0.002 0.132 0.028
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t-SNE results in Figure 3.13 show similar results to the FFF process in Figure 3.9. In epoch

300, the features from generated samples follow those of corresponding scan strategies from

actual samples. Figure 3.14 shows the actual and generated samples of all the scan strategies

from the proposed method denoted as ‘•’ and ‘×’ in Figure 3.13 (b), respectively. Compared

to the actual images in Figure 3.14 (a), the generated images in the EBM process (Figure 3.14

(b)) are realistic. In addition, the generated images are distinguishable according to each

scan strategy, which is validated by the superior classification performance of the proposed

method.
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Figure 3.13: t-SNE of the feature from the intermediate layer of classifiers from the proposed
method in epochs (a) 0 and (b) 300 in the EBM process when the balanced ratio is 0.3.
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(a) (b)

Figure 3.14: Samples of each scan strategy in the EBM process from (a) actual; (b) generator
when balanced ratio is 0.3.

3.4 Biomaterial Application
In this section, we addressed the supervised classification problem using the imbalanced bio-

material data to show the generalizability of the proposed method. Spectral data associated

with the ‘solution (water)-gel (solid)’ phase classification of Pluronic F127-water mixtures

are utilized [141]. Specifically, spectral data of the Pluronic F127-water mixture are col-

lected by varying the concentration ratio of the mixture. Figure 3.15 shows the phase angle

spectral data of Pluronic F127-water mixtures by varying their concentration ratio [141].

Each spectral data is labeled ‘solution’ or ‘gel.’ The spectral data convert to the image data

for usage in the case study. Among 288 spectral data, 181 data are labeled as gel, and the

remaining 107 data are labeled as the solution. Imbalanced training data for binary super-

vised classification problem is provided in Table 3.10. The balanced ratios are determined

as 0.016. This is because baseline achieves the satisfactory classification performance when

the balanced ratios are higher than 0.016.

Table 3.10: Imbalanced training data samples in the biomaterial case study.

Data
Set

Majority
Class

Minority
Class

Balanced
Ratio

Majority Class
Training Samples

Minority Class
Training Samples

Pluronic F127-water mixtures gel solution 0.016 120 2

Table 3.11 shows the test performance. Compared to the baseline that only uses extremely

imbalanced training data, all methods achieve better performance by augmenting the data
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Figure 3.15: Phase angle spectral data of Pluronic F127-water mixtures by varying the
concentration ratio [141].

from the minority class (i.e., solution). Specifically, the proposed method provides the best

performance in all measures. The results indicate that the proposed method can effectively

apply to biomaterial data to address the imbalanced supervised classification problem.

Table 3.11: Performance evaluation in the biomaterial case study.

Pluronic F127-water mixtures
Precision Recall F-score

Baseline 0.845 0.861 0.824
SMOTE 0.937 0.953 0.938
B-SMOTE 0.923 0.941 0.924
ADASYN 0.926 0.943 0.927
CDRAGAN 0.933 0.951 0.936
BAGAN-GP 0.890 0.914 0.889
Cooperative GAN 0.910 0.924 0.905
Proposed 0.948 0.961 0.951
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3.5 Conclusions

This paper proposes a novel GAN-based data augmentation method to deal with the imbal-

anced training data issue in manufacturing processes. The method consists of three-player,

namely, generator, discriminator, and classifier, jointly optimized. Through the adversarial

learning between the generator and the discriminator, the generator generates realistic sam-

ples of abnormal states in the manufacturing process. At the same time, the cooperative

learning between the generator and classifier enables the generator to generate the state-

distinguishable samples of the manufacturing process. The generated samples are added

to actual samples and provided as a balanced training batch for a classifier. In addition,

the method regularizes the gradient of the discriminator and provides an additional task

to the discriminator compared to standard GAN. It prevents the gradient exploding of the

generator resulting in a better quality of generated samples. The iterative learning process

among these three players finally provides a classifier with high performance in classifica-

tion results. The effectiveness of the proposed method is validated in both open-source and

actual AM process data. Specifically, the method achieves the best performance compared

to benchmark methods in the various balanced ratio of training data between normal and

abnormal states in both the FFF and EBM processes. The outstanding results of the pro-

posed method validated from the statistical hypothesis tests would contribute to mitigating

the process defects timely, providing high reliability and yields of products in the processes.

The usage of the proposed method is not limited to image data. The method can be applied

to signal data from various sensors, including microphone and acceleration sensors, widely

used for process monitoring in manufacturing. Specifically, the signal data can be converted

into image data by considering the temporal correlation of the signal [45] and can be applied

to the proposed method. In addition, the proposed method can be directly applied to
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any manufacturing processes that suffer from imbalanced data for process monitoring. For

example, the number of defective wafers in semiconductor manufacturing is much smaller

than that of non-defective wafers. The reason for this is that wafer fabrication is carried

out within an environment that is both highly automated and free of dust[130]. In addition,

the subtractive manufacturing [56] and automobile industries [106] also suffers from the

imbalanced training data to achieve the effective process prognostic methods. Therefore, the

proposed method can contribute to other advanced manufacturing processes in their process

monitoring. Finally, the proposed method can be applied to various domains, including

biomaterial data, as demonstrated in Section 3.4.



Chapter 4

A Novel Sparse Bayesian Learning

and Its Application to Fault Diagnosis

for Multistation Assembly Systems

The focus of this paper is on addressing the challenge of detecting process faults in multista-

tion assembly systems. Fault diagnosis is to identify process faults that cause the excessive

dimensional variation of the product using dimensional measurements. For such problems,

the challenge is solving an underdetermined system caused by a common phenomenon in

practice; namely, the number of measurements is less than that of the process errors. To

address this challenge, this paper attempts to solve the following two problems: (1) how to

utilize the temporal correlation of measurement samples and (2) how to apply prior knowl-

edge regarding which process errors are more likely to be process faults. A novel sparse

Bayesian learning method is proposed to achieve the above objectives. The method consists

of three hierarchical layers. The first layer has parameterized prior distribution that exploits

the temporal correlation of multiple measurement samples. Furthermore, the second and

third layers achieve the prior distribution representing the prior knowledge of process faults.

Then, these prior distributions are updated with the likelihood function of the measure-

ment samples from the process, resulting in the accurate posterior distribution of process

faults from an underdetermined system. Since posterior distributions of process faults are

47



48
CHAPTER 4. A NOVEL SPARSE BAYESIAN LEARNING AND ITS APPLICATION TO FAULT DIAGNOSIS

FOR MULTISTATION ASSEMBLY SYSTEMS

intractable, this paper derives approximate posterior distributions via Variational Bayes in-

ference. Numerical and simulation case studies using an actual autobody assembly process

are performed to demonstrate the effectiveness of the proposed method.

4.1 Introduction

Multi-station assemblies refer to the systems that perform assembly operations to assemble

a final product. The final product’s quality is reliant on several components referred to

as key control characteristics (KCCs) or process errors [12]. The positioning accuracy of

fixture locators is KCC in the multistation assembly [9]. Fixture locators carry out the

clamping of parts during the assembly process. Therefore, any deviation from their intended

position can lead to dimensional quality issues in the final product. Thus, it is imperative to

identify process errors that have mean shifts and/or large variance increases from their design

specifications, namely, process faults [10]. Hence, fault diagnosis in multistation assemblies

estimates the mean and variance of process errors, namely, the variations of fixture locators.

This paper focuses on the process fault of the mean shift.

Because of the unduly cost and physical constraints, the dimensional variation of KCCs,

namely, fixture locators, cannot be directly monitored using sensors in multistation assem-

blies [75]. Instead, key product characteristics (KPCs), namely, the key measurements from

the final product, can be used to estimate the KCCs and, consequently, identify process

faults among process errors. A fault-quality linear model of multistation process represents

the relationship between KPCs and process errors as follows [58, 59]:

y = Φx + v, (4.1)
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where y ∈ RM×1represents M dimensional measurements (i.e., KPCs), x ∈ RN×1denotes

N process errors (i.e., KCCs), Φ ∈ RM×N is a fault pattern matrix. The matrix contains

all the process information of multistage process [34], and v ∈ RM×1 denotes the noise.

Although the relationship between KPCs and KCCs is nonlinear in many manufacturing

processes, a fault-quality linear model is used in general as the nonlinear relationship could

be approximated to a linear model utilizing Taylor series expansion because the variations

of KCCs are small, and the relationship between KCCs and KPCs is smooth and without

sharp changes [35, 75, 115]. Since process errors indicate the mean deviations of the fixture

locators, process faults refer to nonzero elements in x, namely, process errors with nonzero

mean shifts [12].

Following the fault-quality model in Eq. (4.1), some research on fault diagnosis for manufac-

turing systems has been investigated [35, 144]. All these methods assume that the number

of measurements (M) is greater than that of process errors (M) (i.e., N < M). However,

this assumption may not always hold in actual manufacturing applications, as using an ex-

cessive number of sensors (measurements) will result in undue costs [12]. These approaches

are unsuitable if this assumption is violated. This is because Eq. (4.1) becomes an under-

determined system that results in the non-existence of a unique solution. To overcome the

challenge, the sparse solution assumption [36] that x in Eq. (4.1) has a minimal number

of nonzero elements is required. In the context of the fault diagnosis problem, it denotes

the sparsity of process faults in the fault-quality linear model. This is reasonable since it

is likely to have a few process faults in practice [9]. Among the several sparse estimation

methods, the Bayesian method called sparse Bayesian learning has received much atten-

tion recently because of its superior estimation performance guaranteed from the several

theoretical properties [19, 121, 142].

Several studies have used sparse Bayesian learning for fault diagnosis in manufacturing sys-
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tems [9, 12, 75, 80]. These studies successfully identified process faults by providing prior

distribution of process errors (i.e., x in Eq. (4.1)) to promote the sparsity of process faults.

Especially, the work in [12] applied Bayesian learning to diagnose mean shift fault, which

is the most relevant work to our study. In [12], multiple KPCs samples have been used to

estimate the mean deviation of fixture locators. Specifically, given the average of multiple

KPCs samples, which is y in Eq. (4.1), the mean deviation of the fixture locators (namely,

x in Eq. (4.1)) can be estimated. However, this work does not consider the characteristics of

multiple KPCs samples where they are collected sequentially. In practice, time series data of

each process error from the multiple KPCs samples may have a strong temporal correlation

in the multistation assembly process. For example, the locator position of the fixture system

could have a drifting due to wear [144], causing dimensional quality issues in the samples.

Specifically, [24, 61] investigated the effect of pin wear over time and dimensional variation

in the multistage assembly process. If the process faults are not mitigated immediately,

the effect of fixture deviation is auto-correlated in terms of time due to the degradation of

wear of production tooling over time [115]. Similarly, the dimensional variability caused by

machine-tool thermal distortions in the multistation processes is highly correlated between

the samples assembled in a certain period [1]. Therefore, the temporal correlation of each

process error causes product samples manufactured over a period of time to exhibit the

same patterns of faults by a specific source of variation [85]. The relationship between the

sequentially collected multiple KPCs samples and their process errors can be formulated as

the following multiple measurements vectors (MMV) model [27] that extends from Eq. (4.1):

Y = ΦX + V, (4.2)

where Y = [Y·1, ...,Y·L] ∈ RM×L is a measurement matrix consisting of L KPCs samples,

and Y·i ∈ RM×1 is a vector that denotes the ith KPCs sample. X = [X·1, ...,X·L] ∈ RN×L is
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a process error matrix, where X·i ∈ RN×1 is a vector that represents process errors (KCCs)

of the ith KPCs sample. V ∈ RM×L is a noise matrix. Since L KPCs samples have the

same process faults, all columns of X share the index of nonzero rows called support. It

is called a common support assumption in the MMV model [27]. In addition, L elements

in the jth row of X, representing the time series data of the jth process error, are highly

correlated as nonzero values if the jth process error is process fault. However, the dynamic

changes of process faults due to the complexity of the manufacturing process can easily

violate the common support assumption in a large number of KPCs samples. Therefore,

this paper focuses on the small number of KPCs samples (L) to satisfy the common support

assumption. Utilizing a small number of KPCs samples is also efficient in fault diagnosis of

process faults in the multistation assembly process for time and cost reduction.

Beyond the common support assumption and temporal correlation in the time series data of

each process error, utilizing prior knowledge of process faults is an additional way to improve

the identification of sparse process faults [75]. Specifically, the prior knowledge regarding

which process errors are more likely to be process faults than others. This knowledge can

be obtained from domain-specific knowledge from practitioners or collected based on the

fault diagnosis at the past time stamps. For example, the manufacturing engineers in an

assembly line usually know that some fixture locators may malfunction more frequently

than others based on their experiences. In practice, the prior knowledge provides only

part of the actual process faults. In addition, the knowledge may contain some erroneous

information as to process faults, which are actually not. Therefore, the prior knowledge

provides partial and even erroneous information about process faults. However, utilizing the

prior knowledge is expected to improve the identification of process faults if the correct and

erroneous information can be properly distinguished.

In the sparse Bayesian learning literature, there exist studies that consider the temporal
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correlation of rows in matrix X in Eq. (4.2) based on the common support assumption

[53, 86], and the work that utilizes the partial with some erroneous prior knowledge of

support to improve the performance of sparse estimation [40, 50], separately. However,

these studies did not integrate these aspects to improve the sparse estimation.

To address this challenge, this paper aims to develop a novel sparse Bayesian hierarchical

learning method that simultaneously utilizes the temporal correlation in the time series data

of each process error, as well as prior knowledge, which may contain erroneous information.

The new method, namely, support knowledge aided with temporally correlated process error

sparse Bayesian learning (SA-TSBL), is proposed to achieve this objective. The contributions

of this work are summarized as follows:

• From the methodological point of view, this paper proposes a novel sparse Bayesian

learning that considers both temporal correlation in the time series data of each process

error and prior knowledge of process faults to improve the sparse estimation. This

method also derives an approximate posterior distribution of the sparse solution via

Variational Bayes inference [103] to address the intractable computational challenge.

• From the application perspective, the proposed method is applied to fault diagnosis

in the multistation assembly systems. The method mitigates the dimensional quality

issues in the assembly operation by effectively identifying the fixture locators with

excessive mean shifts. The effectiveness of the proposed method is validated in real-

world simulation case studies that use an actual auto body assembly process.

The subsequent sections of this paper are structured in the following manner. The proposed

methodology is presented in Section 4.2, followed by numerical case studies to validate its

effectiveness in Section 4.3. Section 4.4 offers real-world case studies on fault diagnosis

problems in the multistation assembly process. Finally, conclusions and future work are
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discussed in Section 4.5.

4.2 Proposed Research Methodology

This section proposes a novel sparse Bayesian hierarchical method: support knowledge aided

temporally correlated process error SBL (SA-TSBL). The proposed SA-TSBL is described

in Section 4.2.1, followed by Bayesian inference of the proposed method in Section 4.2.2.

4.2.1 Proposed Methodology

The proposed methodology is a sparse Bayesian hierarchical model using multiple KPCs

samples that have the same process faults. The method considers the correlation in the time

series data of each process error, and utilizes prior knowledge of process faults to improve

the sparse estimation. To exploit the temporal correlation in the time series data of each

process error, the proposed method transforms the MMV model in Eq. (4.2) to the following

block single measurement vector model [142], where Vec(A) is a vectorization of the matrix

A, IL is an Identity matrix with the size L × L, and A ⊗ B is Kronecker product of the

matrices A and B.

y = Dx + v, (4.3)

where y =Vec(Y⊤) ∈ RML×1,D = Φ ⊗ IL,x =Vec(X⊤) ∈ RNL×1. Assume noise vector v

follows Gaussian distribution with zero mean and variance λ. Eq. (4.3) can be rewritten as

y = [ϕ1 ⊗ IL, ..., ϕN ⊗ IL][x⊤1 , ..., x⊤N ]⊤ + v, (4.4)
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where ϕi is the ith column in Φ, and xi consists of the ith process errors of L KPCs samples

(i.e., x⊤i = (x̃i1, x̃i2, ..., x̃iL), where x̃ij denotes the element in the ith row and the jth column

of matrix X in Eq. (4.2)). In other words, xi ∈ RL×1 is the ith block of x in Eq. (4.2), as

illustrated in Figure 4.1. Therefore, K nonzero rows in X in Eq. (4.2) are represented as

Figure 4.1: Block structure of x.

K nonzero blocks in x in the proposed method. It implies that there exist K process errors

that shifted from the design specification, namely, process faults. Since xi consists of the

time series data of ith process error from L KPCs samples, the proposed method exploits the

correlation between the L elements of xi. Since noise vector v follows Gaussian distribution

with zero mean and variance λ, the Gaussian likelihood is provided for the block model in

Eq. (4.3) as follows:

p(y|x;λ) ∼ N(Dx, λIML).

The proposed method consists of the following three layers. The prior distribution in the first

layer is provided to exploit the correlation of the time series data of each KCC. The second

and third layers consist of prior distribution representing the prior knowledge of process

faults among process errors. A graphical representation of the proposed method is shown in

Figure 4.2.

In the first layer of the hierarchical model in Figure 4.2, the Gaussian distribution is provided
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Figure 4.2: Graphical representation of the proposed method. A circle indicates a random
variable or hyperparameter that needs to be estimated. A dashed circle and square represent
an observation and a constant, respectively.

as the prior distribution for process error (x). This is because the Gaussian distribution is

widely used as prior distribution for process errors in the literature and practice [9, 75]. The

prior distribution is given by

p(x|α;B) ∼ N(0,Σ0),

where Σ0 is

Σ0 =


α−1
1 B−1

1 · · · 0

... . . . ...

0 · · · α−1
N B−1

N

 ,

α = {α1, ..., αN}, and B = {B1, ...,BN}. Since xi consists of the time series data of ith

process error from L KPCs samples, α−1
i controls the sparsity of the ith process error (xi).

For example, when α−1
i converges to zero, the associated block xi will be driven to zero [122].

Bi is a positive definite matrix that captures the correlation of the time series data of ith

process error. The proposed method assumes the independence between process errors (e.g.,

different fixture locators), which is a common assumption in the literature [10, 75, 80]. It
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results in the block diagonal matrix Σ0.

The second layer in Figure 4.2 specifies Gamma prior distributions over α. The distributions

have an individual rate parameter bi for each parameter αi, namely,

p(α|b) =
N∏
i=1

Gamma(αi|a, bi) =
N∏
i=1

Γ(a)−1baiα
a−1
i e−biαi , (4.5)

where b = {b1, ..., bN}. Eq. (4.5) effectively integrates the prior information of process faults

into the SBL framework. Basically, a and bi are set to be very small values (e.g., 10−4)

to provide a large variance of a prior distribution over αi in SBL [122]. It encourages the

large values of αi, and promotes the ith process error as non-process faults (i.e., xi = 0 in

Eq. (4.4)) [40]. Specifically, the marginal distribution of the time series data of ith process

error, namely, p(xi) =
∫
p(xi|αi,B)p(αi|a, bi)dαi, follows multivariate student-t distribution

which the probability is concentrated at zero [122]. Suppose set P consists of the indexes

of process errors that are likely to be process faults based on prior knowledge. Then, the

corresponding rate parameters {bi, i ∈ P} are set as a relatively large value (e.g., 1) to

provide a small variance of the prior distribution over αi [40]. The prior distribution allows

the small value of αi, and encourages the ith process error as process faults (i.e., xi ̸= 0 in

Eq. (4.4)). However, assigning a fixed value to bi in Eq. (4.5) has limitations to deal with

the situation when the set P has some erroneous information of process faults.

To address this issue, the third layer in Figure 4.2 assigns a prior distribution over {bi, i ∈ P}

[79]. Gamma distribution is assigned because of the support of the variable. In addition, the

distribution enables users to derive the closed form of the approximate posterior distribution

of {bi, i ∈ P}, which will be described in the following section. The prior distribution over

{bi, i ∈ P} is provided as follows:
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Gamma(bi|p, q) = Γ(p)−1qpbp−1
i e−qbi , i ∈ P. (4.6)

p and q in Eq. (4.6) are specified to characterize prior distribution. These two values in the

proposed method can be adjusted by the users to satisfy the following two conditions as

follows.

• First, the values are set to provide a large mean value of the prior distribution of

{bi, i ∈ P}.

• Second, the values are determined to have a large variance in the prior distribution of

{bi, i ∈ P}.

The first condition encourages the ith process error as process faults based on prior knowledge.

Compared to a small fixed value of bi = 10−4 that promotes the large αi in previous research

[40, 122], the large mean value of the prior distribution of {bi, i ∈ P} lets the small αi. The

small αi provides a prior distribution that ith process error is likely to be process faults of

the mean shift.

The second condition is designed to deal with the case when erroneous prior knowledge is

provided. Assume incorrect prior knowledge that the ith process error may be a process fault

is provided. If the variance of the prior distribution of {bi, i ∈ P} is small, the ith process

error is likely to be misdiagnosed as process faults because of the large mean value of the

prior distribution of {bi, i ∈ P} from the first condition. However, if the variance of the

prior distribution of {bi, i ∈ P} is large, {bi, i ∈ P} is not significantly affected by the prior

distribution. Instead, {bi, i ∈ P} is highly affected by the data itself, where the ith process

error is not the process fault. This allows {bi, i ∈ P} to be learned as a small value from

data and provides the sparsity prior to the ith process error [40].

For {bi, i ∈ P c} in the proposed method, the parameters are set to a fixed small value of
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10−4 as in the previous study [122].

4.2.2 Bayesian Inference of the Proposed Methodology

The proposed method in Section 4.2.1 has several hidden variables that need to be estimated,

that is, the process errors (x), the variable controlling the sparsity of process errors (α), and

the variable used to provide prior knowledge of process faults (bi, ∀i ∈ P ). In addition, there

are hyperparameters related to temporal correlations in the time series data of ith KCCs

(Bi) and noise (λ), which also require estimation. To avoid too many parameters to being

estimated, causing a challenging task in sparse estimation, the proposed method sets Bi = B

(∀i) [142].

However, the posterior distribution of hidden variables in the proposed method (Eq. (4.7))

does not have a closed form because of the complexity of the proposed hierarchical model

in Section 4.2.1. Specifically, the denominator in Eq. (4.7) cannot be calculated as closed

form. Let bi (i ∈ P ) as b̄ for convenience.

P (x,α, b̄|y) = P (y,x,α, b̄)∫
···

∫
x,α,b̄

P (y,x,α, b̄) dx dα db̄
(4.7)

To overcome this challenge, this paper derives approximate posterior distributions of hidden

variables via Variational Bayes inference (VBI). Specifically, Variational Bayes Expectation

Maximization (VBEM) [103] is utilized to estimate hidden variables and hyperparameters

in the proposed method to identify mean shifts process faults. VBEM consists of (1) E-step:

Variational Bayesian expectation step to estimate hidden variables x,α, b̄ by approximating

the posterior distribution of hidden variables; and (2) M-step: Variational Bayesian maxi-

mization step to update hyperparameters B and λ by maximizing the expected value of the
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logarithm of the complete likelihood.

Let θ be a vector with all hidden variables in the proposed method (i.e., θ = (x,α, b̄)).

VBI approximates the posterior distribution of θ, denoted as q(θ), by minimizing Kullback-

Leibler (KL) divergence between q(θ) and the true posterior distribution, namely, p(θ|y)

(i.e., DKL(q(θ)||p(θ|y))). q(θ) is factorized as

q(θ) = q(x)q(α)q(b̄)

by the mean-field approximation [26], that all the variables are independent. The approxi-

mate posterior distribution q(θi), where θi is the ith element in the set θ is derived as follows

by minimizing the DKL(q(θ)||p(θ|y) under the mean-field approximation.

ln q(θi) = E[ln p(θ,y)]θ\θi + const, (4.8)

where Eθ\θi denotes the expectation taken with the set θ without θi. const can be obtained

through normalization. The detailed derivation of Eq. (4.8) is provided in Appendix B.1.

Eq. (4.8) is used in the following E-step of VBEM to approximate the posterior distributions

of hidden variables.

E-step of VBEM: The posterior distributions of hidden variables that are related to process

errors (x), sparsity of process errors (α), and prior knowledge of process faults (b̄) are

approximated by Eq. (4.8), respectively, as follows.

ln q(x) = E[ln p(y,x,α, b̄)]q(α)q(b̄) + const

= E[ln p(y|x;λ)p(x|α;B)]q(α) + const, (4.9)
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ln q(α) = E[ln p(y,x,α, b̄)]q(x)q(b̄) + const

= E[ln p(x|α;B)p(α|b̄)]q(α) + const, (4.10)

ln q(b̄) = E[ln p(y,x,α, b̄)]q(x)q(α) + const

= E[ln p(α|b̄)p(b̄)]q(α) + const. (4.11)

Based on the statistical inference, the posterior distributions of hidden variables can be

derived as

q(x) = N(x|µx,Σx), (4.12)

q(α) =
N∏
i=1

Gamma(αi|ã, b̃i), (4.13)

q(b̄) =
∏
i∈P

Gamma(bi|p+ a,E[αi] + q). (4.14)

Based on the mean-field approximation, q(θ) is the multiplication of Gaussian and Gamma

distributions from Eqs. (4.12), (4.13), and (4.14). Let diag{α1, ..., αm} is a diagonal matrix

with principal diagonal elements being α1, ..., αm and Tr(A) is a trace of matrix A. Then,

the expectations and moments of distributions in Eqs. (4.12), (4.13), and (4.14) are

µx =
1

λ
ΣxD⊤y, (4.15)

E[αi] =
a+ L

2
Tr[(Σxi+E[xi]E[xi]⊤)B]

2
+ E[bi]

, (∀i), (4.16)

E[bi] =
p+ a

q + E[ai]
, (i ∈ P ), (4.17)

Σx = (
1

λ
D⊤D + E[AB])−1, (4.18)
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where E[AB] = diag[E[α1]B, ...,E[αN ]B]. The estimator of the time series data of ith process

error (E[xi]) can be obtained from µx in Eq. (4.15) as follows.

E[xi] = µx((i− 1)L+ 1 : iL), i = 1, ..., N. (4.19)

Detailed derivations of Eqs. (4.12), (4.13), and (4.14) are provided in the Appendices B.2, B.3,

and B.4.

M-step of VBEM: Temporal correlations in the time series data of each KCC (B) and noise

(λ) are estimated in this step. Let θ̃ = {B, λ}. Posterior distributions of x,α, b̄ obtained

in Eqs. (4.12), (4.13), and (4.14) are denoted as q(x; θ̃OLD
), q(α; θ̃

OLD
), and q(b̄; θ̃

OLD
)

respectively. θ̃ can be updated by maximizing the complete likelihood as follows:

θ̃
NEW

= argmax
θ̃

E[ln p(y,x,α, b̄; θ̃)]
q(x;θ̃OLD

)q(α;θ̃
OLD

)q(b̄;θ̃
OLD

)

= argmax
θ̃

E[ln p(y|x; θ̃)p(x|α; θ̃)]
q(x;θ̃OLD

)q(α;θ̃
OLD

)
.

Let Q(θ̃) = E[ln p(y|x; θ̃)p(x|α; θ̃)]
q(x;θ̃OLD

)q(α;θ̃
OLD

)
, which results in

Q(B, λ) = E[ln p(y|x;λ)]
q(x;θ̃OLD

)q(α;θ̃
OLD

)
+ E[ln p(x|α;B)]

q(x;θ̃OLD
)q(α;θ̃

OLD
)

= E[ln p(y|x;λ)]
q(x;θ̃OLD

)
+ E[ln p(x|α;B)]

q(x;θ̃OLD
)q(α;θ̃

OLD
)
. (4.20)

B and λ are estimated as Eqs. (4.21) and (4.22), respectively, by maximizing the Eq. (4.20).

B = [
1

N

N∑
i=1

E[αi](Σxi
+ E[xi]E[xi]⊤)]−1. (4.21)

λ =
[∥y−Dµx∥22 + λ̂[NL− Tr(ΣxEq(α;θ̃

OLD
)
(Σ−1

0 ))]]

ML
, (4.22)
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where ∥x∥p denotes ℓp norm of the vector x. Detailed derivations of Eqs. (4.21) and (4.22)

are described in the Appendices B.5 and B.6.

Algorithm 4.1 shows the procedure of the proposed SA-TSBL method. Given the multiple

KPCs samples (y) and fault pattern matrix (Φ), the proposed method estimates the following

variables and parameters in E and M steps, respectively.

• E-step: Process errors (µx), the variable related to the sparsity of process errors (α),

and the variable that is used to provide prior knowledge of process faults (b̄).

• M-step: Temporal correlations in the time series data of each KCC (B) and noise (λ).

These steps iterate until the estimator of process errors (µx) is rarely updated, namely,

∥µt−1
x − µt

x∥∞ < γ, where ∥·∥∞ indicates infinity norm and γ is a user-defined threshold

(e.g., γ = 10−6) or it reaches the maximum number of iterations (T). Then, the mean

deviation of process errors, which is the output of Algorithm 4.1, are calculated by the

following procedure.

• Step 1: The matrix µ̃x is defined in which the ith row represents Eq. (4.19) derived

from µx.

• Step 2: The average of each row of matrix µ̃x, that is, a vector ¯̃µx is provided as the

output of Algorithm 4.1, indicating the mean deviation of process errors.

Therefore, nonzero values in a vector ¯̃µx are process faults of the mean shifts.
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Algorithm 4.1 Proposed SA-TSBL method
Input: Multiple KPCs samples (y), Fault pattern matrix (Φ).
Set a = bi (i ∈ P c) = 10−4. p and q are set based on two conditions in Section 4.2.1.
Initialize B = IL, λ = 1, bi (i ∈ P ) = 1, , t = 1.
While ∥µt−1

x − µt
x∥∞ ≥ γ or t ≤ T do

E-step of VBEM:
Update µx using Eq. (4.15)
Update α using Eq. (4.16)
Update b̄ using Eq. (4.17)

M-step of VBEM:
Update B using Eq. (4.21)
Update λ using Eq. (4.22)

t = t+ 1
End
Output: Mean deviations of process errors ¯̃µx.

4.3 Numerical Case Studies

This section provides three scenarios to compare the performance between the proposed

method and benchmark methods.

• Section 4.3.1 shows the performance evaluation by varying the temporal correlation.

This study is to validate the effectiveness of strong temporal correlation in sparse

estimation.

• Section 4.3.2 provides the numerical study to investigate the impact of the number

of KPCs samples (i.e., measurement samples) on the performance of process faults

identification.

• Section 4.3.3 illustrates the sparse estimation performance by varying the ratio between

the number of measurements and process errors (i.e., the severity of the underdeter-

mined systems).

All the numerical case studies consist of 100 independent trials. p and q in Eq. (4.7) are de-
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termined as 1 and 0.1, respectively, in the case studies to satisfy the two conditions provided

in Section 4.2.1. The code of the proposed SA-TSBL algorithm is implemented in Matlab

2021a. The CPU processor employed in this research is Intel® Xeon® E-2286M 2.40 GHz

Processor.

The benchmark methods selected in this study are as follows, which are widely used in sparse

Bayesian learning.

• MSBL proposed in [133] is a basic SBL method for the MMV model that assumes

independence in the time series data of each KCC.

• T-MSBL proposed in [142] is a typical SBL method for the MMV model that considers

temporal correlation in the time series data of each KCC.

• SA-MSBL proposed in [137] is the SBL method that considers prior knowledge of

support in the MMV model. It assumes independence in the time series data of each

KCC.

• SCBL proposed in [12] is the SBL method that considers the spatial correlation of

process error (i.e., fixture locators) in the single measurement vector (SMV) model.

The average of multiple KPCs samples is used to estimate the mean deviation of

process errors.

• SA-SBL proposed in [40] and [79] is the SBL method that considers prior knowledge

of process faults in the SMV model.

• [75] proposed the SBL method that considers prior knowledge of the support in the

MMV model. It assumes independence in the time series data of each KCC and uses

Gibbs sampling for the Bayesian inference. The total number of iterations and burn-in

period are referred from [75].
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Data Generations: The data generation process is summarized in Figure 4.3. The solution

matrix Xtrue ∈ RN×L is randomly generated with K nonzero rows. Indexes of the nonzero

rows are randomly chosen in each trial. The nonzero rows in Xtrue are generated as AR(1)

process that initiates from the standard Gaussian distribution since AR(1) processes are suf-

ficient to represent the temporal structure of the small number of measurement samples (L)

[142]. The AR coefficient, defined as β, represents the temporal correlation. A dictionary

matrix Φ ∈ RM×N is constructed with columns drawn from the surface of a unit hyper-sphere

uniformly [36]. Finally, the measurements matrix is built by Y = ΦXtrue + V in the final

step of Figure 4.3, where V is a Gaussian noise matrix with zero-mean [142]. The variance of

the noise matrix is chosen to meet the determined value of the signal-to-noise ratio (SNR).

SNR is defined by SNR(dB):= 20(log10(∥ΦXtrue∥F/∥V∥F )) [142].

Figure 4.3: Flowchart of the data generation process.

Performance Evaluation: Since the objective of this paper is to diagnose the mean devi-



66
CHAPTER 4. A NOVEL SPARSE BAYESIAN LEARNING AND ITS APPLICATION TO FAULT DIAGNOSIS

FOR MULTISTATION ASSEMBLY SYSTEMS

ation of process errors, the target of the proposed method is to accurately estimate X̄true,

which is the row-wise mean of Xtrue.

Two performance measures are used in this paper. One is the failure rate defined in [79].

It measures the accuracy of detecting process fault, which are the nonzero rows in X̄true.

Assume that the number of process faults K is given. Then, the row indexes of the K

largest ℓ2-norms from ¯̃µx in Algorithm 4.1 are identified. If the indexes are different from

the indexes of nonzero rows in X̄true, it is considered a failed trial. The failure rate is the

percentage of failed trials in the total trials. The other performance measure is a normalized

mean squared error (NMSE) that is defined by ∥ ¯̃µx − X̄true∥2F/∥X̄true∥2F , where ∥A∥F is a

Frobenius norm of the matrix A. Averages of failure rate and NMSE from 100 trials are used

as performance measures. In addition, the standard deviations and quantile statistics of the

two measures are provided in Appendix B.7.

Remark 4.1. (Performance Evaluations of SA-TSBL, SA-MSBL, SA-SBL, and

[75])

The SA-MSBL, SA-SBL, [75], and the proposed SA-TSBL have several cases based on the

set of prior knowledge (i.e., P in Eq. (4.6)) even in the same problem. Both correct and

erroneous information of support exists in the set P as prior knowledge. To differentiate

between the correct and erroneous information of support, two subsets, namely, PC and PE

are defined. PC consists of the indexes of nonzero rows obtained from prior knowledge among

true nonzero rows in X̄true. In contrast, PE consists of the indexes of nonzero rows in prior

knowledge but are actually zero in X̄true. The cardinalities of PC and PE in this paper are

assumed to satisfy two conditions. The first condition is the cardinality of set PC and PE

should be less than or equal to 75% and 50% of the number of nonzero rows in X̄true (i.e.,

K), respectively. For example, if K is 4, the cardinality of PC and PE are less than or equal

to 4 and 3, respectively. The first condition illustrates the cardinality of prior knowledge is
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similar to K. The condition enables the performance evaluation of the proposed method in

comprehensive situations. Since the cardinality of PC is less than or equal to 4, the prior

knowledge is partial (i.e., PC misses some rows that are actually nonzero in X̄true) in all

cases. In addition, the cases with a cardinality of PE greater than zero show the situations

when the erroneous prior knowledge (i.e., PE contains the rows that are actually zero in

X̄true) exist. The second condition is the cardinality of PC is greater than or equal to that

of PE. The second condition prevents erroneous prior knowledge from being dominant prior

knowledge. Therefore, performances of these three methods are evaluated as the average of

all cases with different cardinalities of PC and PE, where each case consists of 100 trials.

4.3.1 Performance Evaluation in Various Temporal Correlations

This case study shows the performance of all methods in various temporal correlations when

SNR is 100dB. The size of the dictionary matrix Φ is 5×40. The number of nonzero rows of

X̄true (K), and measurement samples (L) are 4 and 4, respectively. Temporal correlation (β)

varies among 0.0, 0.3, 0.6, 0.9, and 0.95. The proposed method shows the best performance

in all temporal correlations, as shown in Table 4.1.

Table 4.1: Performance comparison with various temporal correlations (β).

Failure Rate NMSE
β 0.0 0.3 0.6 0.9 0.95 0.0 0.3 0.6 0.9 0.95

T-MSBL 0.38 0.34 0.36 0.25 0.20 0.81 0.73 0.70 0.52 0.32
MSBL 0.64 0.68 0.74 0.95 0.96 0.80 0.86 0.92 1.27 1.32

SA-MSBL 0.96 0.96 0.96 0.97 0.96 0.71 0.71 0.75 0.76 0.75
SA-SBL 0.97 0.97 0.97 0.97 0.96 0.73 0.73 0.76 0.77 0.76
[75] 0.93 0.93 0.95 0.99 0.99 0.70 0.69 0.74 0.87 0.95

SCBL 0.94 0.96 0.96 0.99 1.0 1.24 1.31 1.35 1.42 1.45
SA-TSBL

(Proposed) 0.23 0.24 0.23 0.18 0.14 0.46 0.48 0.41 0.34 0.24
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Figure 4.4: The boxplot for (a) failure rate and (b) NMSE in all cases of SA-TSBL in various
temporal correlations.

Specifically, the failure rate and NMSE of the proposed method and T-MSBL tend to decrease

as β increases since these two methods capture the temporal correlation. In contrast, both

measures of MSBL, SA-MSBL, and [75] show the opposite trend as the three methods assume

independence among samples.

The performance evaluations of the proposed method with different cardinalities of PC and

PE are represented as boxplots in Figure 4.4. Since the number of nonzero rows is 4, each

correlation has 9 cases designed under the two conditions of Remark 4.1. In each boxplot,

the horizontal line represents the minimum, the first quartile, median, the third quartile, and

maximum value sequentially from the bottom, respectively. The minimum value denotes the

smallest value within the 1.5 × interquartile range (IQR) below the first quartile. Similarly,

the maximum value is defined as the largest value that is within the 1.5 × IQR above the

third quartile. A blue square in Figure 4.4 shows the performance of the proposed method

without any prior knowledge (i.e., |PC | = |PE| = 0), and the black dot represents the average

of all cases used as a performance evaluation measure of the proposed method. The trend

of black dots shows the performance improvements of the proposed method as temporal
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correlation (β) increases. In addition, boxplots in Figure 4.4 represent most cases with

partial and some erroneous prior knowledge achieve better performance in both measures

than those without prior knowledge. The results show the effectiveness of prior knowledge

in the proposed method, which successfully distinguishes the correct and incorrect prior

knowledge in various temporal correlations.

4.3.2 Performance Evaluation in the Various Numbers of Mea-

surement Samples

This case study’s aim is to compare the performance of all methods using the various numbers

of measurement samples (L). The size of the dictionary matrix Φ is 7×55, and the number of

nonzero rows in X̄true (K) is 4. SNR and temporal correlation (β) are set as 35dB, and 0.95,

respectively. The number of measurement samples varies from 2 to 4. Table 4.2 shows that

the proposed method achieves the best performance in all cases. In addition, the results

Table 4.2: Performance comparison with various number of measurement samples (L).

Failure Rate NMSE
L 2 3 4 2 3 4

T-MSBL 0.59 0.17 0.13 0.76 0.19 0.14
MSBL 0.83 0.77 0.52 1.10 1.04 0.64

SA-MSBL 0.88 0.90 0.90 0.68 0.67 0.66
SA-SBL 0.89 0.90 0.90 0.70 0.67 0.70
[75] 0.71 0.50 0.49 0.63 0.52 0.56

SCBL 0.97 0.92 0.93 1.25 1.29 1.17
SA-TSBL

(Proposed) 0.45 0.12 0.11 0.52 0.13 0.09

in Table 4.2 illustrate that most of the MMV models achieve performance improvements

as the number of measurement samples increases because of common support assumption
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[27]. Figure 4.5 shows the performance evaluation of the proposed method with various sizes

Figure 4.5: The boxplot for (a) failure rate and (b) NMSE in all cases of SA-TSBL in various
numbers of measurement samples.

of PC and PE. Especially, the performance of T-MSBL and the proposed method without

prior knowledge (blue square in Figure 4.5) is similar. However, the proposed achieves

better performance than T-MSBL by utilizing partial and some erroneous prior knowledge.

Specifically, the performance of the proposed method improves from 3% to 32% of those

without any prior knowledge (an average of relative improvement from square to dots in

Figure 4.5) in the various numbers of measurement samples.

4.3.3 Performance Evaluation in Various Ratios between the Num-

ber of Measurements and Process Errors

Results in Table 4.3 illustrate the performance of all methods by varying the ratio between

the number of measurements and process errors (i.e., underdetermined ratio). In this study,

the number of measurements (M) is fixed at 10, and the underdetermined ratio (N/M) is

selected from 3, 5, 7, and 9 with 25dB for SNR, respectively. The number of nonzero

rows in X̄true (K) and measurement samples (L) are set as 4, 3, respectively. The temporal
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Table 4.3: Performance comparison with various underdetermined ratio (N/M).

Failure Rate NMSE
N/M 3 5 7 9 3 5 7 9

T-MSBL 0.09 0.28 0.26 0.31 0.05 0.32 0.33 0.42
MSBL 0.29 0.56 0.64 0.69 0.30 0.61 0.77 0.86

SA-MSBL 0.31 0.55 0.64 0.74 0.24 0.43 0.49 0.56
SA-SBL 0.59 0.78 0.82 0.85 0.37 0.53 0.57 0.60
[75] 0.11 0.22 0.43 0.52 0.10 0.24 0.55 0.68

SCBL 0.45 0.79 0.83 0.92 0.48 0.88 1.01 1.15
SA-TSBL

(Proposed) 0.06 0.17 0.19 0.20 0.02 0.17 0.23 0.23

correlation (β) is 0.99. As the underdetermined ratio increases, it becomes more challenging

to identify the sparse process faults. However, capturing temporal correlation and utilizing

the partial and some erroneous prior knowledge enable the proposed method to achieve the

best performance even in a high underdetermined ratio. Figure 4.6 shows prior knowledge

of support is still valuable in various underdetermined ratios. This study shows that the

proposed algorithm can be applied to applications such as neuroimaging in that highly

underdetermined systems exist.

Figure 4.6: The boxplot for (a) failure rate and (b) NMSE in all cases of SA-TSBL in various
underdetermined ratio.
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4.4 Real-World Simulation Case Studies

An assembly operation from an actual auto-body assembly process is used as a real-world

case study. Figure 4.7 describes the floor pan of a car which is the assembled product from

this process. The assembled product consists of four parts, including the right bracket, left

bracket, right floor pan, and left floor pan. Figure 4.8 shows the process assembly procedure

Figure 4.7: Floor-pan assembly model [9].

consisting of three stations. During the assembly process, the parts are held by fixtures,

which are the KCCs in this process [10]. KPCs are measured from four points, namely,

M1, M2, M3, and M4, respectively, as shown in Figure 4.7. Every part has a designated

location for measuring. For instance, part 1 has M1, part 2 has M2, part 3 has M3, and

part 4 has M4. These measurements can be taken at each station once the relevant part has

been assembled in the preceding stations. For example, M4 on part 4 cannot be measured

in station 1 because part 4 has not yet been assembled at station 1 [10]. In addition, KPCs

are measured in three directions (X, Y, and Z) at each point. In this assembly process,

thirty-three process errors, which are fixture locator dimensional errors, exist [12]. The
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dimension of the fault pattern matrix is 12×33, and is established based on the literature

[10, 58, 70]. Since the variations of KCCs can be propagated to deviations of other KCCs in

the subsequent stations, the transfer and accumulation of KCCs deviations between multiple

stations are considered in the formulation of the fault pattern matrix Φ [10, 34]. The matrix

is provided in Appendix B.8. Since the number of measurements (12) is less than the number

of process errors (33), it causes an underdetermined system in the fault quality linear model.

It requires sparse estimation to identify process faults.

Figure 4.8: Floor-pan assembly procedure from three assembly stations [9].

To generate the multiple KPCs samples from the auto body assembly process, the time

series data of each process fault is generated from AR (1) process initiated from the standard

Gaussian distribution as in Section 4.3. The generated temporal correlated process faults

(Xtrue) and fault pattern matrix provide the multiple KPCs samples (Y), as in Figure 4.3.

In addition, performance evaluation measures, benchmark methods, and the values of p and

q in Eq. (4.6) used in Section 4.3 are still utilized in Section 4.4. Prior knowledge of process

faults is also provided in the same way as Section 4.3. Sections 4.4.1 and 4.4.2 show the

performance evaluation by varying the number of KPCs samples, and temporal correlation
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β, respectively.

4.4.1 Performance Evaluation in the Various Number of KPCs

Samples

This case study aims to demonstrate the effectiveness of sparse estimation of process faults

by varying the number of KPCs samples (L) when a strong correlation exists (β=0.99). The

number of KPCs samples varies from 2 to 4, and SNR is 50dB. Three process faults (K)

are determined among 33 process errors randomly. The proposed method shows the best

performance in all various numbers of KPCs samples, as shown in Table 4.4. All methods

Table 4.4: Performance comparison by varying the number of KPCs samples.

Failure Rate NMSE
KPCs samples 2 3 4 2 3 4

T-MSBL 0.60 0.64 0.47 0.34 0.32 0.25
MSBL 0.66 0.62 0.49 0.36 0.33 0.24

SA-MSBL 0.50 0.56 0.48 0.35 0.36 0.31
SA-SBL 0.54 0.60 0.54 0.37 0.38 0.36
[75] 0.92 0.94 0.96 3.80 3.09 3.72

SCBL 0.65 0.71 0.49 0.42 0.40 0.30
SA-TSBL

(Proposed) 0.42 0.49 0.35 0.28 0.29 0.20

except SA-SBL generally tend to improve performance in both measures as the number

of KPCs samples increases. However, the performances of all methods do not improve

significantly as the number of KPCs samples increases, compared to Section 4.3.2. The

reason could be the fault pattern matrix in this multistation assembly process, which is very

structured compared to the random design matrix Φ in Section 4.3. The random matrix

achieves an accurate sparse estimation based on some theoretical properties of the random
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matrix, such as low mutual coherence that measures the highest correlation between columns

of Φ [19]. In contrast, if the mutual coherence is high, it causes inaccurate sparse estimation.

As shown in Appendix B.8, the columns of fault pattern matrix Φ in the assembly process

are highly correlated, and mutual coherence is 1, causing the challenging sparse estimation

task than Section 4.3.2. Therefore, the results in this section are not significantly improved

compared to Section 4.3.2, which uses a random matrix with low mutual coherence, even if

the number of KPCs samples is increased. Figure 4.9 shows that utilizing prior knowledge

of process faults is still effective in the proposed method for failure rate and NMSE, even

in the structured design matrix Φ. The property lets the proposed method obtain a more

accurate sparse estimation than T-MSBL, MSBL, and SCBL that cannot incorporate the

prior knowledge of process faults.

Figure 4.9: The boxplot for (a) failure rate and (b) NMSE in all cases of SA-TSBL in the
various number of KPCs samples.

4.4.2 Performance Evaluation in Various Temporal Correlations

This case study presents the performance of all methods in various temporal correlations β,

when there exist five KPCs samples (L). Temporal correlation varies among 0.0, 0.3, 0.6,

0.9, and 0.99. The study has three process faults (K) with noise level 80dB. Table 4.5 shows
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the proposed method achieves the best performance, and the performance of other methods

exhibit similar trends to the case in Section. 4.3.1. The performance of the proposed

Table 4.5: Performance comparison by varying temporal correlations (β).

Failure Rate NMSE
β 0.0 0.3 0.6 0.9 0.99 0.0 0.3 0.6 0.9 0.99

T-MSBL 0.60 0.61 0.53 0.54 0.54 0.19 0.21 0.21 0.19 0.20
MSBL 0.60 0.55 0.58 0.61 0.63 0.18 0.20 0.21 0.24 0.30

SA-MSBL 0.57 0.58 0.55 0.54 0.54 0.29 0.30 0.29 0.31 0.35
SA-SBL 0.78 0.76 0.74 0.68 0.62 0.46 0.46 0.42 0.38 0.40
[75] 1.0 0.99 0.99 0.99 0.98 30.53 18.19 8.79 4.69 3.50

SCBL 0.71 0.73 0.68 0.69 0.66 0.27 0.32 0.29 0.32 0.32
SA-TSBL

(Proposed) 0.52 0.51 0.48 0.46 0.38 0.17 0.19 0.19 0.16 0.17

method and T-MSBL improves in general as β increases, and MSBL and SA-MSBL show

the opposite trends since they assume the independence in the time series data of each process

error. [75] shows poor performance, which might be caused by the high mutual coherence of

the fault pattern matrix. Figure 4.10 illustrates the prior knowledge of process faults is still

effective in various temporal correlations even with the structured matrix Φ.

Figure 4.10: The boxplot for (a) failure rate and (b) NMSE in all cases of SA-TSBL in
various temporal correlations.
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4.5 Conclusions

This paper proposes a novel sparse hierarchical Bayesian method, SA-TSBL, to effectively

identify the sparse process faults in multistation assembly systems. The method identifies

process faults by considering the temporal correlation of each KCC and utilizing partial with

some erroneous prior knowledge of process faults. Since posterior distributions of process er-

rors in the proposed method are computationally intractable, this paper derives approximate

posterior distributions of process errors via Variational Bayes inference. The effectiveness of

the proposed method is validated by both numerical cases and real-world simulation appli-

cation that uses an actual auto body assembly system. Based on these studies, it is evident

that the direct use of multiple KPCs samples in the proposed SA-TSBL is more effective

to process mean shift identification than in a previous study using the average of multiple

KPCs samples in the single measurement vector model (Eq. (4.1)). This is because the

proposed method can fully utilize multiple KPCs samples without any information loss. In

addition, the results in case studies represent the proposed method achieves high perfor-

mance in process faults estimation when the time series data of each KCC have a strong

temporal correlation. Furthermore, utilizing the prior knowledge of process faults improves

the performance of the proposed method in the case studies, even if the knowledge has some

erroneous information. This is possible through the Bayesian framework in the proposed

method that distinguishes between the correct and incorrect prior knowledge. Practically,

the proposed method improves at least 27% and 28% of the failure rate and NMSE of [12, 75],

the state-of-the-art sparse Bayesian diagnosis method for the process faults in the multistage

assembly process in real-world simulation case studies.

In this work, all fixture locators are assumed to be independent, which is a common assump-

tion in the literature. However, the fixture locators in the multistation assembly process have



78
CHAPTER 4. A NOVEL SPARSE BAYESIAN LEARNING AND ITS APPLICATION TO FAULT DIAGNOSIS

FOR MULTISTATION ASSEMBLY SYSTEMS

some spatial correlation with each other if the locators are in the composite tolerance mode

[68]. Therefore, considering the spatial correlation among the process errors is a promising di-

rection for future work. In addition, instead of utilizing the Gamma distribution in Eq. (4.5)

enforcing the sparsity of process error in the proposed method, other distributions such as

Laplacian distribution can also be considered as prior distribution since the probability of

these distributions is concentrated at zero.



Chapter 5

Reinforcement Learning-based Defect

Mitigation for Quality Assurance of

Additive Manufacturing

Additive Manufacturing (AM) is a powerful technology that produces complex 3D geometries

using various materials in a layer-by-layer fashion. However, quality assurance is the main

challenge in AM industry due to the possible time-varying processing conditions during AM

process. Notably, new defects may occur during printing, which cannot be mitigated by

offline analysis tools that focus on existing defects. This challenge motivates this work to

develop online learning-based methods to deal with new defects during printing. Since AM

typically fabricates a small number of customized products, this paper aims to create an

online learning-based strategy to mitigate the new defects in AM process while minimizing

the number of samples needed. The proposed method is based on model-free Reinforcement

Learning (RL). It is called Continual G-learning since it transfers several sources of prior

knowledge to reduce the needed training samples in the AM process. Offline knowledge is

obtained from literature, while online knowledge is learned during printing. The proposed

method develops a new algorithm for learning the optimal defect mitigation strategies proven

the best performance when utilizing both knowledge sources. Numerical and real-world case

studies in a fused filament fabrication (FFF) platform are performed and demonstrate the

79
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effectiveness of the proposed method.

5.1 Introduction

Additive Manufacturing (AM), also known as “3D printing”, makes a three-dimensional

shape from a digital model. The Fused Filament Fabrication (FFF) process is one of the

most widely used AM technologies attributed to its low cost and material flexibility [78, 101].

FFF uses a movable head that heats a thermoplastic filament to melting temperatures and

then extrudes onto a substrate. This extruded material solidifies and subsequently bonds

to the previous layers [15, 136]. During this repeated solidifying and bonding phase, some

defects such as voids, over-fill, and under-fill may occur [2, 102]. These defects can cause

a severe discrepancy in geometrical tolerance, loss of internal structure precision, and poor

surface quality of AM products [62, 124]. Aiming to mitigate defects of AM products, many

research efforts have been reported in the literature, such as post-processing [18, 74], design

of experiments (DOE) [108], and mathematical optimization methods [77].

However, these methods mentioned above are primarily offline analysis tools, and they cannot

identify and correct defects during printing. For example, Figure 5.1 shows the limitation of

DOE in the AM process. Figure 5.1 (a) illustrates the CAD model for a printed part using

the predetermined offline optimal process parameters based on the DOE. Figures 5.1 (b) and

(c) show the surface quality of the 3rd and 30th layers of the part, respectively. The surface

quality of the 30th layer shows under-fill defects due to the accumulation of uncertainties

from the complex process, such as machine vibration, ambient temperature, and humidity

[83]. Therefore, online adjustments of the process parameters are necessary. To fulfill this

need, [83] proposed a method based on closed-loop quality control for the FFF process using

a PID controller to mitigate defects via online process parameter adjustments. However,
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this method can only handle the defects identified and trained by the controller beforehand.

It cannot deal with new defects during printing that was not recognized by the system.

Figure 5.1: (a) CAD model for a printed part with units of mm; (b) Normal printing in 3rd

layer based on predetermined optimal parameter based on the DOE; (c) Under-fill defects
observed in 30th layer during printing.

This limitation motivates the online learning-based method to deal with new defects that did

not occur during the previous printing. Specifically, the online learning-based method needs

to learn the new process parameter adjustments to mitigate the new defects. Compared to

conventional manufacturing that produces a large number of parts, AM processes usually

fabricate a small number of customized products [132]. Thus, the training samples are

relatively limited when used for modeling purposes. Several existing methods address this

issue by transfer learning (TL) in shape deviation analysis [110, 111]. They built a statistical

model first based on an AM process (e.g., shape deviation model) and then transferred it to

a new process. However, they did not study the online defect mitigation problem.

This paper aims to develop an online learning-based method to mitigate the new defects

in AM process with a limited number of samples. The baseline of the proposed method

is a model-free Reinforcement Learning (RL) method, namely, G-learning [43], that does

not require any model of AM process, which is challenging to develop due to its complexity

and uncertainties. G-Learning can incorporate prior knowledge to reduce training samples of

model-free RL [43]. However, it can transfer only one source of prior knowledge, but multiple



82
CHAPTER 5. REINFORCEMENT LEARNING-BASED DEFECT MITIGATION FOR QUALITY ASSURANCE OF

ADDITIVE MANUFACTURING

sources may exist in the AM process. For example, offline knowledge can be obtained from

literature or previous experiments, while online knowledge can be learned during printing.

The utilization of multiple sources of offline and online knowledge is beneficial for quickly

learning how to mitigate new defects. To transfer both sources of prior knowledge to the

current AM process, the proposed method, namely, Continual G-Learning, is developed in

this paper. Specifically, the method provides an algorithm that learns the optimal defect

mitigation strategy while utilizing both sources of prior knowledge. To demonstrate the

effectiveness of the proposed method, a real-world case study in the FFF platform is con-

ducted. To the best of our knowledge, this is the first work that uses a model-free RL-based

method with various sources of knowledge for defect mitigation in AM processes.

The remainder of this paper is structured in the following manner. The overall research

framework is introduced in Section 5.2. The proposed research methodology is presented

in Section 5.3, followed by the case studies to validate the proposed method in Section 5.4

and Section 5.5. Finally, the conclusions of this research and future research directions are

summarized in Section 5.6.

5.2 Research Framework

The overall research framework of online learning-based defect mitigation in AM process is

provided in Figure 5.2. The framework iterates the following three steps:

• Step 1: Collect surface images in the FFF 3D printing process;

• Step 2: Detect surface defects using an image-based classifier (e.g., one-class support

vector machine (SVM) [87]);

• Step 3: Mitigate the defects by learning how to adjust process parameters (e.g., printing
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speed, layer height, flow rate multiplier, etc.).

This study uses a Hyrel System 30M 3D printer (Hyrel 3D, Norcross, GA, USA), an FFF

machine, as shown in Figure 5.2. In Step 1, a digital microscope collects online surface

images, and ABS is the printing material. An image-based classifier is implemented to

classify the surface images and detect defects in Step 2. Once a defect is detected, it is

mitigated in Step 3 through our proposed method, namely, Continual G-Learning, to adjust

process parameters. Continual G-Learning is based on RL and utilizes several sources of prior

knowledge to learn the optimal decisions to mitigate the defects accurately and quickly. Step

3 in the framework with the proposed method is described in detail in Section 5.3.

Figure 5.2: The proposed research framework.
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5.3 Integration of RL and TL for AM Defect Mitiga-

tion

This section presents the proposed research methodology, which integrates RL and TL for

AM defect mitigation. RL can be used as a tool for learning decisions to mitigate a new

defect in AM process, described in Section 5.3.1. G-Learning [43] is a representative TL

method in RL applied to reduce the number of training samples in Section 5.3.1. Finally,

a new approach, namely, Continual G-learning, is proposed in Section 5.3.2 to integrate the

two types of prior knowledge (i.e., offline and online) in the AM process to further reduce

the needed training samples.

5.3.1 Application of RL and TL for Defect Mitigation in AM Pro-

cesses

Once a defect is detected and identified as a new one during the printing process, there are

no available solutions to mitigate it. The control system needs to identify a possible solution

quickly to mitigate the new defect. The key here is the decision on the change of process

parameters currently being used, by which the new defect will be mitigated.

RL is applied here for such purpose, based on the Markov decision process (MDP). MDP is a

4-tuple (S,A, P,R collection of states that describe the feasible processes parameter setting

(e.g., printing speed, layer height, flow rate multiplier, etc.), and st ∈ S is the state at time

t; A is an action set that consists of increasing or decreasing the level of process parameters

(i.e., parameter adjustments), and at ∈ A is an action performs at time t; P is a transition

probability between states, with P (st+1|st, at) denoting the probability of transition to state
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st+1 from state st when action at is taken; R(st, at, st+1) represents reward function depending

on the states and actions, which is determined based on the surface quality improvement

or deterioration in the AM process, and rt (i.e., R(st, at, st+1)) is the reward incurred at

time t in the process. The surface defects cause a deficiency in mechanical properties of the

final product, such as density, tensile strength, and compressive strength [51]. Therefore,

the defects need to be mitigated promptly to prevent quality losses in the AM process. To

achieve this, RL learns the decisions that can mitigate the defect as soon as possible when

it occurs. In other words, the goal of RL is to learn an optimal decision (i.e., policy used in

the following context) that maximizes the total expectation of reward (rt) incurred in the

AM process based on the surface quality. The total expected reward in RL, namely, V (s),

is formulated as a state value function as follows [16]:

V (s) =
∑
t≥0

γtEπ

[
rt|s0 = s

]
, (5.1)

where γ and π denote discount factor and policy, respectively, and the discount factor is in

the range of 0 ≤ γ ≤ 1 which specifies the weights of future rewards. The policy, π, is a

probability distribution of actions in each state. Specifically, a policy is a probability dis-

tribution of process parameter adjustments in the current parameter setting in AM process.

rt is provided as a positive value when the defect is successfully mitigated from the AM

process; otherwise, rt is zero. RL learns the policy that maximizes Eq. (5.1), by which the

shortest sequence of process parameter adjustments will be generated to mitigate the defect.

If the transition probability P (st+1|st, at) and reward function R(st, at, st+1) is known, the

optimal policy that maximizes Eq. (5.1) can be obtained by model-based RL [6]. However,

it is challenging to estimate the accurate transition probability and reward function in AM

process because of the high complexity and uncertainties of the process.

Model-free RL [131] learns optimal policy without estimating the transition probability and
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the reward function of AM process. Instead, it learns an optimal policy directly based on

the samples (st, at, rt, st+1) that obtained from the interaction with AM process. Q-Learning

is a representative model-free RL [131]. The objective of Q-Learning is to learn policy π at

maximizes the total expected reward, which is quantified as state-action value function Q

follows:

Q(s, a) =
∑
t≥0

γtEπ

[
rt|s0 = s, a0 = a

]
. (5.2)

Q-Learning updates Q value from time t to t+ 1 based on Eq. (5.3) as follows [13, 131]

Qt+1(st, at) = (1− αt(st, at))Qt(st, at) + αt(st, at)(rt + γmax
a

Qt(st+1, at)), (5.3)

where 0 ≤ αt(st, at) ≤ 1 is the learning rate in time t in state st with action at. Eq. (5.3)

shows that the Q value is updated with the reward (rt) measured by the surface quality

and the maximum expected reward starting with subsequent process parameter settings

(max
a

Qt(st+1, a)). Since Q-Learning is a model-free RL method, the transition probability is

not required in Eq. (5.3). In addition, rt which is obtained from AM process is directly used

for updating Q value, instead of using the estimated reward function. The optimal policy

π in state s is the parameter adjustment (i.e., action) that results in the maximum Q value

described as follows:

π(a|s) = argmax
a

Q(s, a).

Q-Learning assumes there is no prior knowledge about defect mitigation, so it learns the

policy from scratch. However, in actual AM processes, some general knowledge can be

obtained from our previous experience or literature, such as the melting temperature range

or printing speed of each material in AM process for the target surface quality. Utilizing

this prior knowledge will improve the effectiveness and efficiency of the learning process for

AM. As one of the most representative TL approaches in RL, G-Learning [43] can utilize
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the prior knowledge, which is applied as the baseline for this study. The prior knowledge

is used as a prior policy in G-Learning. Denote ρ(a|s) and π(a|s) as a prior policy and a

policy to be learned, respectively. The divergence between ρ(a|s) and π(a|s) is defined as

the information cost as follows [43]:

gπ(s, a) = logπ(a|s)
ρ(a|s)

. (5.4)

The expectation of the information cost represents the Kullback-Leibler divergence (KL-

divergence) between both policies as follows:

Eπ[g
π(s, a)|s] = DKL[π||ρ]. (5.5)

Eq. (5.5) represents the divergence between the policy to be learned and prior knowledge in

AM process. By considering both reward incurred in the AM process and the information

cost, the total expected reward of G-Learning is represented as GV (s) as follows [43]:

GV (s) =
∑
t≥0

γtEπ[rt +
1

β
gπ(st, at)|s0 = s], (5.6)

where β < 0 a coefficient of information cost. By maximizing Eq. (5.6), G-Learning learns

the optimal policy that maximizes the reward of the AM process while penalizing the policy

that diverges from prior knowledge of the AM process.
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5.3.2 The Proposed Continual G-learning using More Prior Infor-

mation

In this section, a new approach named Continual G-learning that integrates both offline

and online prior policies is developed. Compared to the G-Learning that only uses one

source of prior knowledge, the proposed method aims to transfer prior knowledge from two

sources. Specifically, it can transfer both offline knowledge and online knowledge simultane-

ously. Offline prior knowledge is the knowledge that can be acquired before printing, such

as knowledge that can be obtained from literature or previous experiments. In contrast,

online knowledge is the knowledge that is learned during printing. When G-Learning in

Section 5.3.1 completes to learn the optimal policy by utilizing the offline prior policy in

the AM process, an image-based classifier of the proposed framework in Section 5.2 provides

a positive reward. However, when the properties of the process, such as the geometry of

the part being printed changes at different layers, the classifier would provide a zero reward

in the same process parameters since the parameters are not optimal in a new geometry.

This provides a signal for the transition from G-Learning to Continual G-Learning in the

proposed framework. Then, the optimal policy learned from G-Learning becomes the online

prior knowledge in the proposed method, allowing the proposed method to utilize both prior

knowledge sources.

Let ρ1(a|s), ρ2(a|s) as offline and online prior policies in AM process, respectively. Instead

of Eq. (5.4), the information cost of π(a|s) is defined as

gπ1 (s, a) + gπ2 (s, a) = log π(a|s)
ρ1(a|s)

+ log π(a|s)
ρ2(a|s)

, (5.7)

where gπ1 (s, a) = log π(a|s)
ρ1(a|s) , g

π
2 (s, a) = log π(a|s)

ρ2(a|s) . The expectation of Eq. (5.7) provides KL
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divergence between prior policies and π(a|s):

Eπ[g
π
1 (s, a) + gπ2 (s, a)|s] = DKL[π||ρ1] +DKL[π||ρ2].

Considering both information cost from offline and online prior policies and the reward

earned from the AM process, the total expected reward in Continual G-Learning is defined

as its state value function as follows:

CGV (s) =
∑
t≥0

γtEπ[rt +
1

β
gπ1 (st, at) +

1

β
gπ2 (st, at)|s0 = s], (5.8)

where β1 < 0 and β2 < 0 are the coefficients of information cost of each prior knowledge,

respectively. To derive the optimal policy of the proposed Continual G-Learning, state-action

value function of the proposed method is required and defined as,

CG(s, a) =
∑
t≥0

γtEπ[rt +
1

β
gπ1 (st+1, at+1) +

1

β
gπ2 (st+1, at+1)|s0 = s, a0 = a]. (5.9)

By plugging Eq. (5.9) into Eq. (5.8), the state value function in Eq. (5.8) can be reformulated

as follows:

CGV (s) =
∑
a

π(a|s)[ 1
β1

log π(a|s)
ρ1(a|s)

+
1

β2

log π(a|s)
ρ2(a|s)

+ CG(s, a)]. (5.10)

By maximizing Eq. (5.10) with constraint
∑

a π(a|s) = 1, Continual G-Learning learns the

policy that maximizes the reward incurred from the AM process by penalizing the deviations

from both prior policies (i.e., knowledge). It represents that both offline and online prior

knowledge guide the learning direction of π(a|s) in the learning procedure. Therefore, the

knowledge aids the proposed method to learn how to mitigate defects quickly. Based on the
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method of Largrange multipliers [116], the policy in Eq. (5.10) is derived as

π(a|s) = ρ1(a|s)
β2

β1+β2 ρ2(a|s)
β1

β1+β2 e
−CG(s,a)

β1β2
β1+β2∑

a ρ1(a|s)
β2

β1+β2 ρ2(a|s)
β1

β1+β2 e
−CG(s,a)

β1β2
β1+β2

. (5.11)

Compared to Q-Learning starts from the policy that selects the action randomly (i.e., ran-

dom policy), π(a|s) in Eq. (5.11) is initialized with various sources of prior knowledge

about defect mitigation since state-action value, namely, CG(s, a) is initialized as zero. The

proposed Continual G-Learning provides an update rule of state-action value (CG(s, a)) in

Eq. (5.12). Based on this rule, the value converges to the optimal state-action value proven

theoretically by Theorem 5.2 that is described later in this section, and the optimal state-

action value leads to optimal policy π(a|s) in Eq. (5.11). The update rule of state-action

value from time t to t+ 1 can be written as follows:

CGt+1(st, at) = (1− αt(st, at))CGt(st, at) + αt(st, at)(rt − γ
β1 + β2

β1β2

×

log(
∑
a′

[ρ1(a
′|st+1)

β2
β1+β2 ρ2(a

′|st+1)
β1

β1+β2 e
−CG(st+1,a′)

β1β2
β1+β2 ]),

(5.12)

where the learning rate αt(st, at) is defined as nt(st, at)
−w. nt(st, at) is the number of times

that the pair (st, at) is visited until time t, and w ∈ (0.5, 1] learning rate hyperparame-

ter. Eq. (5.12) represents that the state-action value in the proposed method is updated

by the reward (rt) and the subsequent process parameter settings (st+1) that obtained by

process parameter adjustment (at). Specifically, the value is updated by both the reward (rt)

in time t, and the maximum expected reward starting from st+1 and follows policy π(a|s)

in Eq. (5.11) (−γ β1+β2

β1β2
log(

∑
a′ [ρ1(a

′|st+1)
β2

β1+β2 ρ2(a
′|st+1)

β1
β1+β2 e

−CG(st+1,a′)
β1β2
β1+β2 ])). The algo-

rithm of the proposed Continual G-Learning is summarized in Algorithm 5.1. Starting from

an initial process parameter settings in AM process, Continual G-Learning adjusts process

parameters based on the policy in Eq. (5.11) (line 6 in Algorithm 5.1). Based on the parame-
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ter adjustments, the method reaches subsequent process parameter settings and receives the

reward based on the surface quality in the AM process (line 7 in Algorithm 5.1). Then, the

state-action value in Continual G-learning is updated by Eq. (5.12) (line 10 in Algorithm 5.1).

The value is used to update policy in Eq. (5.11). This algorithm iterates until the method

achieves the optimal process parameter settings (i.e., terminal state) to mitigate the defects

or reach the maximum number of iterations. The entire procedure is named an episode.

The episode (from line 3 to line 13 in Algorithm 5.1) is repeated until the state-action value

converges to optimal, eventually learning the shortest number of parameter adjustments to

mitigate the defects.

Algorithm 5.1 Continual G-Learning
Continual G-Learning
Require: State S, Action A, Coefficient β1, β2, Discounting factor γ ∈ [0, 1], Maximum
number of iterations in an episode (itermax), Learning rate hyperparameter (w)
1 Initialize CG0(s, a) = n0(s, a)

−w = 0, ∀s, a.
2 While CG00(s, a) = n0(s, a)

−w = 0, ∀s, a.
3 Start from the initial state st ∈ S, iter = 0.
4 While state st ∈ S is not terminal state or iter ≤ itermax

5 Calculate π(a|st) as in Eq. (5.11)
6 Choose at ∈ A using policy derived from π(a|st)
7 Obtain st+1, rt
8 nt(st, at) = nt(st, at) + 1
9 αt(st, at) = nt(st, at)

−w

10 Calculate CGt+1(st, at) based on Eq. (5.12)
11 t← t+ 1
12 iter ← iter + 1
13 Return CGt(s, a), ∀s, a.

The theoretical convergence of state-action value to the optimal state-action value based

on Algorithm 5.1 is provided as follows. To begin with, necessary definitions and results

to build the convergence of Algorithm 5.1 are introduced. Let CG∗(st, at) be the optimal

state-action value of state st and action at. Subtracting the quantity CG∗(st, at) from both
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sides of Eq. (5.12) and letting

∆t(s, a) = CGt(s, a)− CG∗(s, a),

yields

∆t+1(st, at) = (1− αt(st, at))∆t(st, at) + αt(st, at)Ft(st, at),

where Ft(st, at) = (rt − γ β1+β2

β1β2
log(

∑
a′ [ρ1(a

′|st+1)
β2

β1+β2 ρ2(a
′|st+1)

β1
β1+β2 e

−CG(st+1,a′)
β1β2
β1+β2 ]) −

CG∗(st, at)) ∆t+1(s, a) represents the difference between a state-action value in time t+

and optimal state-action value in state s and action a. To prove the convergence of state-

action value in the proposed method, it is sufficient to prove Theorem 2 in [94] that a random

iterative process ∆t+1(st, at) converges to zero w.p. 1 under the following assumptions:

1. 0 ≤ αt(s, a) ≤ 1,
∑

t αt(s, a) =∞ and
∑

t αt(s, a)
2 <∞, ∀s ∈ S, a ∈ A;

2. ||E[Ft(s, a)|Ut]||∞≤ γ||∆t||∞, with γ < 1;

3. var[Ft(s, a)|Ut] ≤ K(1 + ||∆t||2∞), for K > 0,

where Ut = {∆t,∆t−1, ...,∆0, Ft−1, ..., F0}.||·||∞ refers to supremum norm, and, and K is a

constant. For any policy π, operator Bπ[CG(s, a)] is defined as follows:

Bπ[CG(s, a)] = kπ(s, a) + γ
∑
s′,a′

p(s′|s, a)π(a′|s′)CG(s′, a′), (5.13)

where

kπ(s, a) = Ep[r(s, a, s
′)] + γ

∑
s′,a′

p(s′|s, a)π(a′|s′)[ 1
β1

log π(a
′|s′)

ρ1(a′|s′)
+

1

β2

log π(a
′|s′)

ρ2(a′|s′)
].

To prove the convergence of our proposed algorithm, Lemma 5.1 is used to prove the second
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assumption above.

Lemma 5.1. For any policy π, the operator Bπ[CG(s, a)] is a contraction under the supre-

mum norm over s, a. That is, for any CG1(s, a) and CG2(s, a), it follows

||Bπ[CG1(s, a)]− Bπ[CG2(s, a)]||∞≤ γ||CG1(s, a)− CG2(s, a)||∞.

proof. The proof is provided in Appendix C.1.

Based on Lemma 5.1, the main theorem about the convergence of proposed Continual G-

Learning can be stated as follows.

Theorem 5.2. Supposed that 0 < ρmin ≤ ρ1(a|s), ρ2(a|s) ≤ ρmax < 1 for all (s, a) and

αt(st, at) = nt(st, at)
−w for w ∈ (0.5, 1]. Then, three assumptions in Theorem 2 in [29] are

satisfied where γ is the discount factor and K = max{K ′ + max
s∈S,a∈A

CG∗(s, a)2, 64γ2}. K ′ is

defined as 2E[R(s, a, s′) − CG∗(s, a)]2 + 4γ2( β1β2

β1+β2
)2[2(log|A|)2 + 4(logρmin)

2 + 4(logρmax)
2.

Therefore,

lim
t→∞

∆t(s, a)
w.p.1−−−→ 0

Proof. The proof is provided in Appendix C.2.

Based on Theorem 5.2, Algorithm 1 is guaranteed to converge to optimal state-action value.

Since optimal state-action value provides optimal policy from Eq. (5.11), the proposed Con-

tinual G-Learning learns the shortest parameter adjustments sequences to mitigate the defect

by transferring offline and online prior knowledge in AM process.
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5.4 Numerical Case Study

A numerical case study is performed in this section to evaluate the proposed Continual

G-Learning performance. The Grid world-based simulation [119] is used for illustration

of the effectiveness of the proposed Continual G-Learning. Random-Policy selecting the

action randomly without any learning process and Q-Learning [131] and G-Learning [43] in

Section 5.3.1 are selected as benchmark methods to compare with the proposed Continual

G-Learning. To compare the performance of our proposed method with the benchmark

methods, a total number of actions to complete a certain number of episodes is used as

performance metrics, which is widely adopted in the RL algorithms as performance measures

[31, 118]. The smaller number of actions to complete the episodes represents that method

learns the optimal policy more quickly.

5.4.1 Description of Grid World

In the grid world, the unavailable squares are occupied by walls, shown in black in Figure 5.3.

An episode starts from an initial state (st ∈ S in Section 5.3) and terminates when reaching

a goal state in Figure 5.3 or reaching the maximum number of iterations (i.e., itermax ).

Each method repeats a number of episodes to learn the optimal policy. At each square, a

method moves one square in any of the four directions, namely, left, right, up, and down

(at ∈ A in Section 5.3). If a move is blocked by the wall or the edge of the board, it stays in

the same place.

Arrows in Figure 5.3 denote actions with the highest probability in a prior policy in each

state. For example, in Figures 5.3 (a) and (b), blue arrows point the right direction in

an initial state. It implies the prior policy of moving to the right has a higher probability
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Figure 5.3: Grid world domain with prior policies. (a) Case with all the prior policies
following the optimal policy; (b) Case with not all the prior policies following the optimal
policy. Arrows represent actions with the highest probability in a prior policy in each state.

(i.e., 0.9) than the probability of the other three directions (i.e., 0.03 in each direction) in

the initial state. The policy is called an informative prior policy. On the other hand, if

all directions of prior policy have the same probability as 0.25, it is called random prior

policy. The prior policy in G-Learning (ρ(a|s) in Eq. (5.4)) uses the informative policy in

states with blue arrows and random policy in the remaining states. The first prior policy

in Continual G-Learning (ρ1(a|s) in Eq. (5.7)) is defined as the same policy as the prior

policy in G-Learning. The second prior policy in the proposed method (ρ2(a|s) in Eq. (5.7))

consists of informative policy in states with green arrows and random policy in the remaining

states. Detailed information of prior policy is illustrated in Appendix C.3. In this study,

two cases are investigated, namely, (a) all the prior policies correspond to optimal policies

(i.e., all the arrows in Figure 5.3 (a) have the same direction with optimal policy), (b) there

exists a state with a prior policy that disagrees with the optimal policy that can hinder the
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learning process (e.g., blue arrows in a state with orange color in Figure 5.3 (b)).

5.4.2 Performance Evaluation

The average number of actions to complete 100 episodes in 50 replications is used as a

performance evaluation measure. Hyperparameters used in this study are provided in Ta-

ble 5.1. The learning rate hyperparameter (w) is chosen as 0.6 to meet the first condition

of Theorem 2 in [94]. The reward is provided as 1 when a method reaches the goal state.

Otherwise, the reward is assigned as zero. The discount factor (γ) selected as 0.9 which is

a typical value used in RL when the reward provided in the terminal state is larger than

other states like in this simulation study [91]. β and β1, β2 are the negative values which

are the coefficients of information cost of each prior policy in G-Learning and Continual

G-Learning, respectively. When the coefficients are small, both methods learn the policy

that approaches prior knowledge since information cost in Eqs. (5.6) and (5.8) are dominant.

As shown in Figure 5.3, there exist prior policies that correspond to the optimal policies.

However, many prior policies, such as random policies, disagree with the optimal policies.

Therefore, the coefficients are determined by tuning, and grid search [82] is used for tuning

in this case study. To reduce the computational burden in a grid search, β1 and β2 in the

proposed method are assumed to be equal. The coefficients are searched at intervals of 100

in the range of -500 to -3000.

Hyperparameters Value
w 0.6

r (reach to goal state / otherwise) 1 / 0
γ 0.9

β = β1 = β2 -2×103
itermax 1000

Table 5.1: Hyperparameters in the numerical case study.
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Figures 5.4 (a) and (b) show the performance evaluation of all methods in Cases (a) and

(b), respectively. Continual G-Learning has the smallest number of actions to complete

episodes in both Cases (a) and (b). After several episodes, the proposed method converges

to the optimal policy, which is the validation of Theorem 5.2 in Section 5.3.2. Performance

of G-Learning is significantly degraded in Case (b) compared to Case (a) since there exist

prior policies that can hinder the learning process. The performance is similar to that of

Q-Learning, which does not utilize any prior knowledge. However, Continual G-Learning

overcomes this challenge by utilizing an additional source of prior policy that corresponds to

optimal policy (i.e., green arrow in the state with orange color in Figure 5.3 (b)). Therefore,

Continual G-Learning has a similar performance in both Cases (a) and (b). Random-Policy

shows the worst performance among the benchmark methods. As shown in Figure 5.4,

the performance of Random-Policy does not have improvements over episodes since this

approach is not learning-based. To demonstrate the performance of the proposed method

Figure 5.4: The number of actions to complete episodes when state size is 6×6 with the (a)
prior policies corresponding to optimal policies and (b) prior policies do not follow optimal
policies, respectively.

with different sizes of state space, the general rule is designed to provide blue and green

arrows in Cases (a) and (b) when state size is n× n. Let (i, j) as an index of the state. For
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both Cases (a) and (b), an initial state is (1,1), and a goal state is (n, n). Unavailable states

are (2, j), where j = 1, ..., n − 1, and (4, j), where j = 2, ..., n. A blue rightward pointing

arrow is provided to states (i, 1), where i = 1, ..., n − 1. A green leftward pointing arrow is

used to states (3, j), where j = 2, ..., n. A green downward pointing arrow is allowed to a

state (3,1). In addition, blue upward and leftward pointing arrows are provided to a state

(3,4) in Case (b). The arrows represent the prior policy that can hinder the learning process.

Table 5.2 summarizes the performance evaluations of all methods in different sizes of state.

Since Random-Policy and Q-Learning do not utilize any prior policies, the results of Cases

(a) and (b) are the same. Compared to the result in Case (a), the performance of G-Learning

in Case (b) in all different state sizes is significantly deteriorated because of the prior policy,

which hinders the learning process. However, the proposed Continual G-Learning shows

similar results in both cases in every size of states, and it shows the best performance

compared to benchmark methods.

Case (a) Case (b)
State size RP QL GL CGL RP QL GL CGL
6× 6 55323.8 8459.0 4766.7 2786.4 55323.8 8459.0 8633.5 2832.8
7× 7 65441.6 14163.7 7128.5 3693.8 65441.6 14163.7 13607.2 3750.4
8× 8 74680.9 22752.7 10162.1 4686.3 74680.9 22752.7 21952.9 4690.6
9× 9 82648.3 34426.3 15018.4 6104.7 82648.3 34426.3 30385.1 6193.8
10× 10 88494.9 50000.2 20524.1 7823.5 88494.9 50000.2 42515.1 7829.6

Table 5.2: The average number of actions to complete 100 episodes in 50 replications by
varying the size of the state in Cases (a) and (b). RP, QL, GL, and CGL denote Random-
Policy, Q-Learning, G-Learning, and Continual G-Learning, respectively.
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5.5 Real-World Case Study

This section shows a real-world case study based on the FFF platform to test our proposed

Continual G-Learning. The part has two different geometries that are printed sequentially

(Figure 5.5 (a)):

• 1) Geometry 1: a cuboid with size 30 mm×30 mm×6 mm on the bottom, and

• 2) Geometry 2: a cuboid with size 15 mm×15 mm×18 mm on the top.

For clarity, the bottom and top parts of the print are denoted as Geometry 1 and Geometry

2, respectively. This case study aims to learn the optimal process parameter adjustments

(i.e., policy) in both geometries to meet the target surface quality by mitigating defects, as

shown in Figure 5.5 (b). Specifically, compared to the benchmark methods, the proposed

method quickly learns the shortest sequence of decisions from current process parameters

to the optimal process parameters. This real-world case study uses the same benchmark

methods except for Random-Policy because of its poor performance that was validated in

Section 5.4. The performance evaluation criterion used in Section 5.4 is utilized in this case

study. Section 5.5.1 describes the AM experimental platform used in this case study. In

Section 5.5.2, state (st ∈ Sin Section 5.3), action (at ∈ A in Section 5.3), and reward (rt in

Section 5.3) are defined for our AM application. Description of experiments and performance

evaluation are provided in Sections 5.5.3 and 5.5.4, respectively. Finally, the printed part

with optimal parameter setting is illustrated in Sec 5.5.5.
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Figure 5.5: (a) CAD model for print in case studies with units of mm; (b) Target surface
quality.

5.5.1 Experimental Platform

A Hyrel System 30M 3D printer (Hyrel 3D, Norcross, GA, USA) equipped with a 0.5mm

extruder nozzle is used for this case study. Figure 5.6 (a) shows a front view of the printer.

ABS (Hatchbox, Pomona, CA, USA) is used for printing with a diameter of 1.75mm. In

every episode, the temperature of the extruder starts from 245◦C which is in the printing tem-

perature range for ABS [7]. An Opti-Tekscope Digital Microscope Camera (Opti-Tekscope,

Chandler, AZ, USA) is utilized for online image acquisition (18 Hz) of surface quality, as

shown in Figure 5.6 (b). The camera is mounted near the extruder to collect images of the

surface that are being printed. A cooling fan is installed next to the extruder to cool down

the surface of the printed part. Figure 5.6 (c) shows an open communication-based software

controller. It allows the proposed Continual G-Learning to adjust the process parameters

(in the form of G-code) during printing. A virtual serial port (RS-232) is used to commu-

nicate between the 3D printer controller and the external program that runs the proposed
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Continual G-learning algorithm. Defect detection and mitigation are executed based on the

surface images acquired from the camera and the proposed method.

Figure 5.6: (a) Front view of Hyrel system 30M; (b) Digital Microscope Camera; (c) Software
controller.

5.5.2 Description of State, Action, and Reward in the FFF Appli-

cations

Three process parameters, namely, flow rate multiplier, printing speed, and cooling fan, are

adjusted in this case study. The printing speed denotes the speed of the extruder head in

(mm/min). The flow rate multiplier indicates how much plastic the printer is to extrude. For

example, a flow rate with a multiplier of 1.0 indicates the extruder would deposit material

at normal flow (mm3/s) while a multiplier of 0.8 or 1.2 indicates the extruder would deposit

20% less or 20% more material. The cooling fan can be controlled in terms of the operation

of the fan. Each process parameter in this case study has two levels, as shown in Table 5.3.

The action is defined as tuning the level of a single process parameter from the current

setting. The state is defined as the combinations of levels of each parameter in Table 5.3.
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Parameter
Level 1 2

Flow rate multiplier 0.5 1.0
Printing speed (mm/min) 4500 2500
Cooling fan Off On

Table 5.3: Level representation of each process parameter.

The reward is provided as a positive value when the printed part achieves the target surface

quality. Otherwise, the reward is assigned as zero. To measure surface quality, the offline

trained one-class support vector machine (SVM) [87] is utilized as an image-based classifier.

The classifier is trained with the features of target surface quality images (Figure 5.5 (b))

extracted by a pooling layer of pre-trained ResNet, which is a standard feature extraction

method in many vision applications [88, 93]. This offline trained classifier, named a target

classifier, predicts the quality of the surface image captured online by the digital microscope

as target surface quality or an anomaly that is not. To collect the surface image data, a

window-based approach is used. A window size of 21 is utilized. Namely, the 21 consecutive

surface images are captured by a digital microscope with a sampling frequency of 5Hz.

Surface quality is determined by voting from the classification results of 21 images from

the target classifier. The window size and sampling frequency are determined to provide a

robust classification result to unintended noise in the process, and they are validated from

the previous printing. The reward is provided as a positive value if the surface quality is

classified as the target surface, otherwise provides zero. Hyperparameters used in the real-

world case study are presented in Table 5.4, and they are selected for the same reasons

provided in Section 5.4.
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Hyperparameters Value
w 0.6

r (reach to goal state / otherwise) 1 / 0
γ 0.9

β = β1 = β2 -7×102
itermax 50

Table 5.4: Hyperparameters in the real-world case study.

5.5.3 Description of Experiments

Three experiments are performed in this case study. Since the printed part consists of

two different geometries (i.e., Geometry 1 and Geometry 2, respectively), each experiment

consists of combinations of two methods summarized in Table 5.5. Additionally, the prior

knowledge that transferred in each geometry is illustrated in Table 5.5. For offline knowl-

edge, observation from [83] that surface defects are minimized when flow rate multiplier

approaches one is used. The knowledge encourages methods with offline prior knowledge

to select flow rate multiplier as one in high probability. Online knowledge is the optimal

policy learned from Geometry 1. Detailed information of prior policy is illustrated in Ap-

pendix C.3. Experiment 1 uses G-Learning in Geometry 1 with offline knowledge. Then,

it uses the proposed Continual G-Learning in Geometry 2 by transferring both offline and

online knowledge. Experiments 2 and 3 start to print Geometry 1 without offline prior

knowledge. Therefore, they use Q-Learning in Geometry 1. In Geometry 2, experiment 2

transfers offline prior knowledge by G-Learning, and experiment 3 uses Q-Learning.

Geometry 1 Geometry 2
Experiment 1 G-Learning (Offline) Continual G-Learning (Offline, Online)
Experiment 2 Q-Learning (None) G-Learning (Offline)
Experiment 3 Q-Learning (None) Q-Learning (None)

Table 5.5: Experiments description based on which prior knowledge (in the parenthesis) is
used in each geometry.
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5.5.4 Performance Evaluation

In Geometry 1, the cooling fan is excluded from the process parameters since the temperature

of the extruder (245◦C) is in the range of printing temperatures of ABS (220◦C∼270◦C)

[7]. The initial state of Geometry 1 is the state with a flow rate multiplier of 0.4 and

a printing speed of 7500 mm/min that causes surface defects, named as Defect 1. Since

Defect 1 is classified as an anomaly from the target classifier, it is identified as a new defect.

Several images of Defect 1 are collected to train the one-class SVM, denoted as the Defect 1

classifier. The classifier is used to identify new defects in further printing. After the training

the classifier, the proposed Continual G-Learning starts to learn the parameter adjustments

to mitigate the new defect. The episode in the proposed method starts from the initial

state and terminates when it reaches the optimal parameter setting that produces the target

surface quality. Figure 5.7 (a) shows the performance evaluations in Geometry 1. Based

on offline knowledge, G-Learning learns the sequences of decisions from the initial state to

the optimal parameter setting that flow rate multiplier of 1.0 and printing speed of 2500

mm/min in the 1st episode. It performs the same parameter adjustments in the 2nd and 3rd

episodes. Therefore, the number of layers in Geometry 1 for each episode is constant, as

shown in Figure 5.7 (b). The Q-Learning that does not use prior knowledge needs several

more actions in the 1st episode to learn the optimal policy.

Due to the printing sequence, the episode’s initial state in Geometry 2 is the optimal process

parameter setting learned from Geometry 1. However, the surface quality from Figure 5.8 (b)

shows that the optimal setting in Geometry 1 is no longer optimal in Geometry 2 anymore,

and the surface quality is classified as an anomaly from the target classifier representing it

as the defect. In addition, the surface is classified as an anomaly in the Defect 1 classifier,

indicating that the surface is a new defect. It implies the learned process parameter adjust-
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Figure 5.7: (a) Number of actions needed to reach the target surface quality in Geometry 1
using G-Learning; (b) Corresponding layers of Geometry 1 in each episode using G-Learning.

ments from Geometry 1 is not suitable to mitigate this defect, and the new optimal process

parameters need to be learned. This new defect in Geometry 2 is caused by insufficient time

for layers to solidify before reheating due to the small size of Geometry 2 [140]. Therefore,

the cooling fan becomes one of the process parameters that need to be adjusted in Geometry

2. If the temperature of the extruder is below 220◦C the fan is turned off irrespective of

parameter setting to avoid the nozzle from being clogged [7].

Figure 5.9 (a) shows the performance evaluations in Geometry 2. Continual G-Learning needs

fewer actions to learn the optimal parameter adjustments than other methods by using offline

and online prior knowledge. The knowledge encourages the flow rate and printing speed to

set 1.0 and 2500 mm/min, respectively. The proposed method learns the optimal parameter

adjustments from the 3rd episode based on the knowledge. The optimal process parameter

setting in Geometry 2 is a flow rate multiplier of 1.0, printing speed of 2500 mm/min, and

turning on the cooling fan. Figure 5.8 (c) shows the surface quality in Geometry 2 with

the optimal parameter setting. It offers a similar surface quality to Figure 5.8 (a), the
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Figure 5.8: (a) Surface quality in Geometry 1 with optimal parameter setting for Geometry
1 (target surface quality); (b) Surface quality in Geometry 2 with optimal parameter setting
for Geometry 1; (c) Surface quality Geometry 2 with optimal parameter setting for Geometry
2.

target surface quality collected in Geometry 1. Figure 5.9 (b) shows that the number of

layers in Geometry 2 that need to be completed is reduced over episodes. It shows the

proposed method learns the optimal policy as the episode increases. Experiment 1 with

the proposed Continual G-Learning needs the least number of actions to learn the optimal

parameter adjustments to meet the target surface quality in both geometries by transferring

both sources of prior knowledge. Table 5.6 shows the number of actions needed in Geometries

1 and 2 to complete 3 and 6 episodes, respectively. Table 5.7 illustrates the optimal process

parameters for defect mitigation learned from each geometry.

Geometry 1 Geometry 2 Total
Experiment 1 G-Learning (6) Continual G-Learning (12) 18
Experiment 2 Q-Learning (9) G-Learning (16) 25
Experiment 3 Q-Learning (9) Q-Learning (24) 33

Table 5.6: The number of actions (in the parenthesis) required to complete three episodes
in Geometry 1 and six episodes in Geometry 2 for each experiment.
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Figure 5.9: (a) Number of actions needed to reach the target surface quality in Geometry 2
using Continual G-Learning; (b) Corresponding layers of Geometry 2 in each episode using
Continual G-Learning.

Flow rate multiplier Printing speed (mm/min) Cooling fan
Geometry 1 1.0 2500 Off
Geometry 2 1.0 2500 On

Table 5.7: Optimal process parameters for defect mitigation in each geometry.

5.5.5 Verification of the Learned Optimal Parameter Setting

Figure 5.10 shows a newly printed part using the learned optimal parameter settings in Ge-

ometries 1 and 2, listed in Table 5.7. The optimal parameter setting of Geometry 1 is flow

rate multiplier with one and printing speed with 2500 mm/min. The optimal parameter set-

ting for Geometry 2 is the same as Geometry 1 while turning on the cooling fan. Figure 5.10

shows defect-free print by optimal parameter settings in both geometries.
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Figure 5.10: Printed part with learned optimal parameter settings in both geometries.

5.6 Conclusions

This paper proposed an online learning-based method, namely, Continual G-Learning, to

mitigate the new defects in AM process with limited samples. The proposed method ad-

dresses the challenge of limited samples in AM process by transferring offline and online

prior knowledge into the current AM process. The proposed method develops an algorithm

for learning the optimal defect mitigation strategies when utilizing both knowledge sources.

Both numerical and real-world case studies show the effectiveness of the proposed method.

In the real-world case study, the proposed method learned optimal process parameter ad-

justments for a printed part with two different geometries in the fewest number of actions

(18 actions) compared with two benchmark methods, which need 25 and 33 actions, respec-

tively. The results demonstrate that this proposed method significantly improves online

defect mitigation in the AM process.

The future work is focused on two directions. One direction is to investigate a decision

rule to determine whether the transferred knowledge has positive or negative effects on the

target process. It prevents negative knowledge transfer that can hinder the learning process.



5.6. CONCLUSIONS 109

The other direction is to apply the proposed method to the multi-material AM process.

Multi-material AM has various processing conditions by varying the composition and types

of materials used in printing [18, 105]. Therefore, it demands a learning-based method to

deal with new defects in various process conditions.



Chapter 6

Conclusions and Future Work

The contribution of this dissertation is to develop three machine learning methodologies

assisted by physics knowledge for process monitoring and control to achieve quality assurance.

Specific contributions and conclusions of each chapter are summarized as follows:

1. In Chapter 3, a new Generative Adversarial Network (GAN)-based method is proposed

to detect the process anomalies with imbalanced process data due to different ratios of

occurrence between process states. Specifically, the proposed method jointly optimizes

the GAN and classifier to augment the realistic and state-distinguishable images to

provide balanced data. The method enables using the features of the normal process

state to generate images of the abnormal process state effectively. In addition, the

method stabilizes the training process by regularizing the gradient of the discriminator

and providing additional tasks to the discriminator. The efficacy of the suggested

approach has been confirmed in both polymer AM and metal AM processes.

2. In Chapter 4, a novel sparse Bayesian learning (SBL) is proposed to diagnose process

faults with a limited number of sensors caused by the physical constraints in the

multistage assembly process. The method is based on a practical assumption that it

will likely have a few process faults (sparse). In addition, the temporal correlation

of sensor data and the prior knowledge of process faults are considered through the

Bayesian hierarchical model. Since the posterior distributions of process faults are

110
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intractable, this work derives approximate posterior distributions using Variational

Bayes inference [103]. Based on the proposed method, process faults can be accurately

identified with limited sensors.

3. In Chapter 5, a novel Reinforcement Learning (RL)-based algorithm is proposed to

achieve online defect mitigation of new defects that occurred during the printing due

to the complexity of the AM process. The proposed method is to learn the machine

parameter adjustment to mitigate the new defects during the printing. The method

transfers knowledge learned from various sources in the AM process to RL in a proba-

bilistic manner. Therefore, with a theoretical guarantee, the proposed method learns

the mitigation strategy with fewer training samples than traditional RL. The effec-

tiveness of the proposed method has been validated in a closed-loop control system

implemented at an actual polymer AM process.

Based on the promising research outcomes in this dissertation, future research will focus on

developing novel machine learning methods that can address practical issues in advanced

manufacturing processes. I plan to pursue the following three research directions.

1. Cybersecurity for digital manufacturing. While advancement in sensing, artifi-

cial intelligence, and wireless technologies enables a paradigm shift into digital man-

ufacturing, paradoxically, cyber-attacks caused by these technologies pose significant

threats to the digital manufacturing process. To detect the process anomalies caused

by cyber-attacks, building a monitoring system isolated from the network is neces-

sary. Therefore, developing the unsupervised learning method utilizing air-gapped

side-channel measurements would be a promising direction.

2. Physics-informed machine learning for limited data. The unprecedented amount

of data plays a crucial role in the success of machine learning. However, the high cost
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of the actual experiments and the simulations hinders providing extensive data in

many advanced manufacturing processes. Therefore, a lack of data in advanced man-

ufacturing may seriously deteriorate the performance of the pure data-driven machine

learning approach. To address this issue, I will focus on developing physics-informed

machine learning that utilizes physical principles to overcome the limited data issue in

advanced manufacturing processes.

3. Material synthesis using artificial intelligence. In order to accelerate the de-

velopment of advanced materials, material synthesis in the minimum number of trials

is of paramount importance. The conventional synthesis methods based on empirical

trial and error require numerous trials and ridiculous costs. To address these chal-

lenges, I plan to propose machine learning methods based on Bayesian optimization

and Monte Carlo Tree Search. This research framework is expected to provide a wide

range of opportunities for collaboration with researchers majoring in material science

and chemical engineering.



Bibliography

[1] José V Abellan-Nebot, Jian Liu, Fernando Romero Subirón, and Jianjun Shi. State

space modeling of variation propagation in multistation machining processes consider-

ing machining-induced variations. Journal of Manufacturing Science and Engineering,

134(2):021002, 2012.

[2] Mukesh K Agarwala, Vikram R Jamalabad, Noshir A Langrana, Ahmad Safari,

Philip J Whalen, and Stephen C Danforth. Structural quality of parts processed by

fused deposition. Rapid prototyping journal, 1996.

[3] R Anitha, S Arunachalam, and P Radhakrishnan. Critical parameters influencing the

quality of prototypes in fused deposition modelling. Journal of Materials Processing

Technology, 118(1-3):385–388, 2001.

[4] Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation gener-

ative adversarial networks. arXiv preprint arXiv:1711.04340, 2017.

[5] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative

adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[6] Christopher G Atkeson and Juan Carlos Santamaria. A comparison of direct and

model-based reinforcement learning. In Proceedings of international conference on

robotics and automation, volume 4, pages 3557–3564. IEEE, 1997.

[7] Michele Angelo Attolico, Caterina Casavola, Alberto Cazzato, Vincenzo Moramarco,

and Gilda Renna. Effect of extrusion temperature on fused filament fabrication parts

orthotropic behaviour. Rapid Prototyping Journal, 2020.

113



114 BIBLIOGRAPHY

[8] Yaser Banadaki, Nariman Razaviarab, Hadi Fekrmandi, and Safura Sharifi. Toward

enabling a reliable quality monitoring system for additive manufacturing process using

deep convolutional neural networks. arXiv preprint arXiv:2003.08749, 2020.

[9] Kaveh Bastani, Zhenyu Kong, Wenzhen Huang, Xiaoming Huo, and Yingqing Zhou.

Fault diagnosis using an enhanced relevance vector machine (rvm) for partially diag-

nosable multistation assembly processes. IEEE Transactions on Automation Science

and Engineering, 10(1):124–136, 2012.

[10] Kaveh Bastani, Zhenyu Kong, Wenzhen Huang, and Yingqing Zhou. Compressive

sensing–based optimal sensor placement and fault diagnosis for multi-station assembly

processes. IIE Transactions, 48(5):462–474, 2016.

[11] Kaveh Bastani, Prahalad K Rao, and Zhenyu Kong. An online sparse estimation-based

classification approach for real-time monitoring in advanced manufacturing processes

from heterogeneous sensor data. IIE Transactions, 48(7):579–598, 2016.

[12] Kaveh Bastani, Babak Barazandeh, and Zhenyu James Kong. Fault diagnosis in multi-

station assembly systems using spatially correlated bayesian learning algorithm. Jour-

nal of Manufacturing Science and Engineering, 140(3), 2018.

[13] Dimitri P Bertsekas et al. Dynamic programming and optimal control 3rd edition,

volume ii. Belmont, MA: Athena Scientific, 2011.

[14] Nagaraj N Bhat, Samik Dutta, Tarun Vashisth, Srikanta Pal, Surjya K Pal, and Ranjan

Sen. Tool condition monitoring by svm classification of machined surface images in

turning. The International Journal of Advanced Manufacturing Technology, 83(9):

1487–1502, 2016.



BIBLIOGRAPHY 115

[15] Harry Bikas, Panagiotis Stavropoulos, and George Chryssolouris. Additive manufac-

turing methods and modelling approaches: a critical review. The International Journal

of Advanced Manufacturing Technology, 83(1):389–405, 2016.

[16] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforcement

learning and dynamic programming using function approximators. CRC press, 2017.

[17] Hong-Seok Byun and Kwan H Lee*. Determination of the optimal part orientation in

layered manufacturing using a genetic algorithm. International journal of production

research, 43(13):2709–2724, 2005.

[18] Yi Cai, Yi Wang, and Morice Burnett. Using augmented reality to build digital twin

for reconfigurable additive manufacturing system. Journal of Manufacturing Systems,

56:598–604, 2020.

[19] Emmanuel J Candès and Michael B Wakin. An introduction to compressive sampling.

IEEE signal processing magazine, 25(2):21–30, 2008.

[20] Dariusz Ceglarek and Jianjun Shi. Fixture failure diagnosis for autobody assembly

using pattern recognition. Journal of manufacturing science and engineering, 118(1),

1996.

[21] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

Smote: synthetic minority over-sampling technique. Journal of artificial intelligence

research, 16:321–357, 2002.

[22] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special issue on learning

from imbalanced data sets. ACM SIGKDD explorations newsletter, 6(1):1–6, 2004.

[23] Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, and ZhangyangWang. Data-efficient



116 BIBLIOGRAPHY

gan training beyond (just) augmentations: A lottery ticket perspective. Advances in

Neural Information Processing Systems, 34, 2021.

[24] Yong Chen, Jionghua Jin, and Jianjun Shi. Integration of dimensional quality and

locator reliability in design and evaluation of multi-station body-in-white assembly

processes. IIE transactions, 36(9):827–839, 2004.

[25] Hyun-Soo Choi, Dahuin Jung, Siwon Kim, and Sungroh Yoon. Imbalanced data clas-

sification via cooperative interaction between classifier and generator. IEEE Transac-

tions on Neural Networks and Learning Systems, 2021.

[26] Ido Cohn, Tal El-Hay, Nir Friedman, and Raz Kupferman. Mean field variational ap-

proximation for continuous-time bayesian networks. The Journal of Machine Learning

Research, 11:2745–2783, 2010.

[27] Shane F Cotter, Bhaskar D Rao, Kjersti Engan, and Kenneth Kreutz-Delgado. Sparse

solutions to linear inverse problems with multiple measurement vectors. IEEE Trans-

actions on Signal Processing, 53(7):2477–2488, 2005.

[28] Wenyuan Cui, Yunlu Zhang, Xinchang Zhang, Lan Li, and Frank Liou. Metal additive

manufacturing parts inspection using convolutional neural network. Applied Sciences,

10(2):545, 2020.

[29] Harold Davenport. On a principle of lipschitz. Journal of the London Mathematical

Society, 1(3):179–183, 1951.

[30] Eric V Denardo. Contraction mappings in the theory underlying dynamic program-

ming. Siam Review, 9(2):165–177, 1967.

[31] Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Battaglia, and Nando



BIBLIOGRAPHY 117

De Freitas. Learning to perform physics experiments via deep reinforcement learning.

arXiv preprint arXiv:1611.01843, 2016.

[32] Anamika Dhillon and Gyanendra K Verma. Convolutional neural network: a review

of models, methodologies and applications to object detection. Progress in Artificial

Intelligence, 9(2):85–112, 2020.

[33] George Dimitriadis, Joana P Neto, and Adam R Kampff. t-sne visualization of large-

scale neural recordings. Neural computation, 30(7):1750–1774, 2018.

[34] Yu Ding, Dariusz Ceglarek, Jianjun Shi, et al. Modeling and diagnosis of multi-

stage manufacturing processes: part i state space model. In Proceedings of the 2000

Japan/USA symposium on flexible automation, pages 23–26. Ann Arbor, MI, 2000.

[35] Yu Ding, Dariusz Ceglarek, and Jianjun Shi. Fault diagnosis of multistage manufac-

turing processes by using state space approach. J. Manuf. Sci. Eng., 124(2):313–322,

2002.

[36] David L Donoho. For most large underdetermined systems of linear equations the

minimal ℓ1 norm solution is also the sparsest solution. Communications on Pure and

Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical

Sciences, 59(6):797–829, 2006.

[37] Georgios Douzas and Fernando Bacao. Effective data generation for imbalanced learn-

ing using conditional generative adversarial networks. Expert Systems with applications,

91:464–471, 2018.

[38] DC Dowson and BV666017 Landau. The fréchet distance between multivariate normal

distributions. Journal of multivariate analysis, 12(3):450–455, 1982.



118 BIBLIOGRAPHY

[39] Eyal Even-Dar, Yishay Mansour, and Peter Bartlett. Learning rates for q-learning.

Journal of machine learning Research, 5(1), 2003.

[40] Jun Fang, Yanning Shen, Fuwei Li, Hongbin Li, and Zhi Chen. Support knowledge-

aided sparse bayesian learning for compressed sensing. In 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3786–3790.

IEEE, 2015.

[41] Yasmin Fathy, Mona Jaber, and Alexandra Brintrup. Learning with imbalanced data

in smart manufacturing: A comparative analysis. IEEE Access, 9:2734–2757, 2020.

[42] William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir Mo-

hamed, and Ian Goodfellow. Many paths to equilibrium: Gans do not need to decrease

a divergence at every step. arXiv preprint arXiv:1710.08446, 2017.

[43] Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning

via soft updates. arXiv preprint arXiv:1512.08562, 2015.

[44] Luigi Maria Galantucci, Fulvio Lavecchia, and Gianluca Percoco. Experimental study

aiming to enhance the surface finish of fused deposition modeled parts. CIRP annals,

58(1):189–192, 2009.

[45] Gabriel Rodriguez Garcia, Gabriel Michau, Mélanie Ducoffe, Jayant Sen Gupta, and

Olga Fink. Temporal signals to images: Monitoring the condition of industrial assets

with deep learning image processing algorithms. Proceedings of the Institution of

Mechanical Engineers, Part O: Journal of Risk and Reliability, 236(4):617–627, 2022.

[46] Christian Gobert, Edel Arrieta, Adrian Belmontes, Ryan B Wicker, Francisco Medina,

and Brandon McWilliams. Conditional generative adversarial networks for in-situ lay-



BIBLIOGRAPHY 119

erwise additive manufacturing data. In 2019 International Solid Freeform Fabrication

Symposium. University of Texas at Austin, 2019.

[47] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Ad-

vances in neural information processing systems, 27, 2014.

[48] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of wasserstein gans. Advances in neural information

processing systems, 30, 2017.

[49] Jianwen Guo, Jiapeng Wu, Zhengzhong Sun, Jianyu Long, and Shaohui Zhang. Fault

diagnosis of delta 3d printers using transfer support vector machine with attitude

signals. IEEE Access, 7:40359–40368, 2019.

[50] Yan Guo, Baoming Sun, Ning Li, and Dagang Fang. Variational bayesian inference-

based counting and localization for off-grid targets with faulty prior information in

wireless sensor networks. IEEE Transactions on Communications, 66(3):1273–1283,

2017.

[51] Musab Hajalfadul and Martin Baumers. Building a quality cost model for additive

manufacturing. University Of Khartoum Engineering Journal, 11(1), 2021.

[52] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-

sampling method in imbalanced data sets learning. In International conference on

intelligent computing, pages 878–887. Springer, 2005.

[53] Ningning Han and Zhanjie Song. Bayesian multiple measurement vector problem with

spatial structured sparsity patterns. Digital Signal Processing, 75:184–201, 2018.



120 BIBLIOGRAPHY

[54] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic

sampling approach for imbalanced learning. In 2008 IEEE international joint confer-

ence on neural networks (IEEE world congress on computational intelligence), pages

1322–1328. IEEE, 2008.

[55] Daniel Horvath, Rafiq Noorani, and Mel Mendelson. Improvement of surface roughness

on abs 400 polymer using design of experiments (doe). In Materials science forum,

volume 561, pages 2389–2392. Trans Tech Publ, 2007.

[56] Wen Hou, Hong Guo, Bingnan Yan, Zhuang Xu, Chao Yuan, and Yuan Mao. Tool

wear state recognition under imbalanced data based on wgan-gp and lightweight neural

network shufflenet. Journal of Mechanical Science and Technology, 36(10):4993–5009,

2022.

[57] Gaofeng Huang and Amir Hossein Jafari. Enhanced balancing gan: Minority-class

image generation. Neural Computing and Applications, pages 1–10, 2021.

[58] Wenzhen Huang, Jijun Lin, Zhenyu Kong, and Dariusz Ceglarek. Stream-of-variation

(sova) modeling ii: a generic 3d variation model for rigid body assembly in multistation

assembly processes. Journal of Manufacturing Science and Engineering, 129(4), 2007.

[59] Wenzhen Huang, Jijun Lin, Michelle Bezdecny, Zhenyu Kong, and Dariusz Ceglarek.

Stream-of-variation modeling—part i: A generic three-dimensional variation model for

rigid-body assembly in single station assembly processes. Journal of Manufacturing

Science and Engineering, 140(3), 2018.

[60] Zhen Jia, Zhenbao Liu, Chi-Man Vong, and Michael Pecht. A rotating machinery

fault diagnosis method based on feature learning of thermal images. Ieee Access, 7:

12348–12359, 2019.



BIBLIOGRAPHY 121

[61] Jionghua Jin and Yong Chen. Quality and reliability information integration for design

evaluation of fixture system reliability. Quality and Reliability Engineering Interna-

tional, 17(5):355–372, 2001.

[62] Yuan Jin, Jianke Du, and Yong He. Optimization of process planning for reducing

material consumption in additive manufacturing. Journal of Manufacturing Systems,

44:65–78, 2017.

[63] Zeqing Jin, Zhizhou Zhang, and Grace X Gu. Autonomous in-situ correction of fused

deposition modeling printers using computer vision and deep learning. Manufacturing

Letters, 22:11–15, 2019.

[64] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[65] Michael M Kirka, Yousub Lee, Duncan A Greeley, Alfred Okello, Michael J Goin,

Michael T Pearce, and Ryan R Dehoff. Strategy for texture management in metals

additive manufacturing. Jom, 69(3):523–531, 2017.

[66] Dani Kiyasseh, Girmaw Abebe Tadesse, Louise Thwaites, Tingting Zhu, David Clifton,

et al. Plethaugment: Gan-based ppg augmentation for medical diagnosis in low-

resource settings. IEEE journal of biomedical and health informatics, 24(11):3226–3235,

2020.

[67] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and

stability of gans. arXiv preprint arXiv:1705.07215, 2017.

[68] Zhenyu Kong, Ramesh Kumar, Suren Gogineni, Yingqing Zhou, and Dariusz Ceglarek.

Mode-based tolerance analysis in multi-station assembly using stream of variation

model. Trans. NAMRI/SME, 34:469–476, 2006.



122 BIBLIOGRAPHY

[69] Zhenyu Kong, Dariusz Ceglarek, and Wenzhen Huang. Multiple fault diagnosis method

in multistation assembly processes using orthogonal diagonalization analysis. Journal

of manufacturing science and engineering, 130(1), 2008.

[70] Zhenyu Kong, Wenzhen Huang, and Asil Oztekin. Variation propagation analysis for

multistation assembly process with consideration of gd&t factors. Journal of Manu-

facturing Science and Engineering, 131(5), 2009.

[71] Ruben Bayu Kristiawan, Fitrian Imaduddin, Dody Ariawan, Zainal Arifin, et al. A

review on the fused deposition modeling (fdm) 3d printing: Filament processing, ma-

terials, and printing parameters. Open Engineering, 11(1):639–649, 2021.

[72] Ohyung Kwon, Hyung Giun Kim, Min Ji Ham, Wonrae Kim, Gun-Hee Kim, Jae-Hyung

Cho, Nam Il Kim, and Kangil Kim. A deep neural network for classification of melt-

pool images in metal additive manufacturing. Journal of Intelligent Manufacturing,

31(2):375–386, 2020.

[73] Kiryong Kyeong and Heeyoung Kim. Classification of mixed-type defect patterns in

wafer bin maps using convolutional neural networks. IEEE Transactions on Semicon-

ductor Manufacturing, 31(3):395–402, 2018.

[74] Amirali Lalehpour and Ahmad Barari. Post processing for fused deposition modeling

parts with acetone vapour bath. IFAC-PapersOnLine, 49(31):42–48, 2016.

[75] Jaesung Lee, Junbo Son, Shiyu Zhou, and Yong Chen. Variation source identification

in manufacturing processes using bayesian approach with sparse variance components

prior. IEEE Transactions on Automation Science and Engineering, 17(3):1469–1485,

2020.



BIBLIOGRAPHY 123

[76] Xian Yeow Lee, Sourabh K Saha, Soumik Sarkar, and Brian Giera. Automated de-

tection of part quality during two-photon lithography via deep learning. Additive

Manufacturing, 36:101444, 2020.

[77] Aijun Li, Zhuohui Zhang, Daoming Wang, and Jinyong Yang. Optimization method

to fabrication orientation of parts in fused deposition modeling rapid prototyping. In

2010 International conference on mechanic automation and control engineering, pages

416–419. IEEE, 2010.

[78] Hao Li, Zhonghua Yu, Feng Li, Qingshun Kong, and Jie Tang. Real-time polymer flow

state monitoring during fused filament fabrication based on acoustic emission. Journal

of Manufacturing Systems, 62:628–635, 2022.

[79] Hongbin Li, Yuan Jiang, Jun Fang, and Muralidhar Rangaswamy. Adaptive subspace

signal detection with uncertain partial prior knowledge. IEEE Transactions on Signal

Processing, 65(16):4394–4405, 2017.

[80] Shan Li and Yong Chen. A bayesian variable selection method for joint diagnosis of

manufacturing process and sensor faults. IIE transactions, 48(4):313–323, 2016.

[81] Yuxuan Li, Zhangyue Shi, Chenang Liu, Wenmeng Tian, Zhenyu Kong, and Christo-

pher B Williams. Augmented time regularized generative adversarial network (atr-gan)

for data augmentation in online process anomaly detection. IEEE Transactions on Au-

tomation Science and Engineering, 2021.

[82] Petro Liashchynskyi and Pavlo Liashchynskyi. Grid search, random search, genetic

algorithm: A big comparison for nas. arXiv preprint arXiv:1912.06059, 2019.

[83] Chenang Liu, Andrew Chung Chee Law, David Roberson, and Zhenyu James Kong.



124 BIBLIOGRAPHY

Image analysis-based closed loop quality control for additive manufacturing with fused

filament fabrication. Journal of Manufacturing Systems, 51:75–86, 2019.

[84] Chenang Liu, Zhenyu Kong, Suresh Babu, Chase Joslin, and James Ferguson. An

integrated manifold learning approach for high-dimensional data feature extractions

and its applications to online process monitoring of additive manufacturing. IISE

Transactions, 53(11):1215–1230, 2021.

[85] Jian Liu. Variation reduction for multistage manufacturing processes: a comparison

survey of statistical-process-control vs stream-of-variation methodologies. Quality and

Reliability Engineering International, 26(7):645–661, 2010.

[86] Martin Luessi, S Derin Babacan, Rafael Molina, and Aggelos K Katsaggelos. Bayesian

simultaneous sparse approximation with smooth signals. IEEE Transactions on Signal

Processing, 61(22):5716–5729, 2013.

[87] Hanna Lukashevich, Stefanie Nowak, and Peter Dunker. Using one-class svm outliers

detection for verification of collaboratively tagged image training sets. In 2009 IEEE

International Conference on Multimedia and Expo, pages 682–685. IEEE, 2009.

[88] Arpana Mahajan and Sanjay Chaudhary. Categorical image classification based on

representational deep network (resnet). In 2019 3rd International conference on Elec-

tronics, Communication and Aerospace Technology (ICECA), pages 327–330. IEEE,

2019.

[89] Mohamad Mahmoudi, Ahmed Aziz Ezzat, and Alaa Elwany. Layerwise anomaly de-

tection in laser powder-bed fusion metal additive manufacturing. Journal of Manufac-

turing Science and Engineering, 141(3), 2019.



BIBLIOGRAPHY 125

[90] America Makes and ANSI Additive Manufacturing Standardization Collaborative.

Standardization roadmap for additive manufacturing. February), Public Draft, 2017.

[91] Patrick Mannion, Jim Duggan, and Enda Howley. An experimental review of reinforce-

ment learning algorithms for adaptive traffic signal control. Autonomic road transport

support systems, pages 47–66, 2016.

[92] Giovanni Mariani, Florian Scheidegger, Roxana Istrate, Costas Bekas, and Cris-

tiano Malossi. Bagan: Data augmentation with balancing gan. arXiv preprint

arXiv:1803.09655, 2018.

[93] David McNeely-White, J Ross Beveridge, and Bruce A Draper. Inception and resnet

features are (almost) equivalent. Cognitive Systems Research, 59:312–318, 2020.

[94] Francisco S Melo. Convergence of q-learning: A simple proof. Institute Of Systems

and Robotics, Tech. Rep, pages 1–4, 2001.

[95] Agnieszka Mikołajczyk and Michał Grochowski. Data augmentation for improving

deep learning in image classification problem. In 2018 international interdisciplinary

PhD workshop (IIPhDW), pages 117–122. IEEE, 2018.

[96] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784, 2014.

[97] Sampa Misra, Donggyu Kim, Jongbeom Kim, Woncheol Shin, and Chulhong Kim. A

voting-based ensemble feature network for semiconductor wafer defect classification.

Scientific Reports, 12(1):16254, 2022.

[98] Mohammad Montazeri and Prahalada Rao. Sensor-based build condition monitoring in

laser powder bed fusion additive manufacturing process using a spectral graph theoretic

approach. Journal of Manufacturing Science and Engineering, 140(9), 2018.



126 BIBLIOGRAPHY

[99] William Mycroft, Mordechai Katzman, Samuel Tammas-Williams, Everth Hernandez-

Nava, George Panoutsos, Iain Todd, and Visakan Kadirkamanathan. A data-driven

approach for predicting printability in metal additive manufacturing processes. Journal

of Intelligent Manufacturing, 31(7):1769–1781, 2020.

[100] Peeyush Nandwana and Yousub Lee. Influence of scan strategy on porosity and mi-

crostructure of ti-6al-4v fabricated by electron beam powder bed fusion. Materials

Today Communications, 24:100962, 2020.

[101] Fuda Ning, Weilong Cong, Jingjing Qiu, Junhua Wei, and Shiren Wang. Additive man-

ufacturing of carbon fiber reinforced thermoplastic composites using fused deposition

modeling. Composites Part B: Engineering, 80:369–378, 2015.

[102] AnHua Peng and XingMing Xiao. Investigation on reasons inducing error and measures

improving accuracy in fused deposition modeling. Advances in Information Sciences

and Service Sciences, 4(5), 2012.

[103] Kaare Brandt Petersen, Ole Winther, and Lars Kai Hansen. On the slow convergence

of em and vbem in low-noise linear models. Neural computation, 17(9):1921–1926,

2005.

[104] David MW Powers. Evaluation: from precision, recall and f-measure to roc, informed-

ness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

[105] NE Putra, MJ Mirzaali, I Apachitei, Jie Zhou, and AA Zadpoor. Multi-material

additive manufacturing technologies for ti-, mg-, and fe-based biomaterials for bone

substitution. Acta biomaterialia, 109:1–20, 2020.

[106] Gishan Don Ranasinghe and Ajith Kumar Parlikad. Generating real-valued failure

data for prognostics under the conditions of limited data availability. In 2019 IEEE



BIBLIOGRAPHY 127

International Conference on Prognostics and Health Management (ICPHM), pages 1–8.

IEEE, 2019.

[107] Prahalad K Rao, Jia Peter Liu, David Roberson, Zhenyu James Kong, and Christopher

Williams. Online real-time quality monitoring in additive manufacturing processes

using heterogeneous sensors. Journal of Manufacturing Science and Engineering, 137

(6), 2015.

[108] Vijeth Reddy, Olena Flys, Anish Chaparala, Chihab E Berrimi, V Amogh, and

Bengt Göran Rosen. Study on surface texture of fused deposition modeling. Pro-

cedia Manufacturing, 25:389–396, 2018.

[109] Amanda Ross, Victor L Willson, Amanda Ross, and Victor L Willson. Paired samples

t-test. Basic and Advanced Statistical Tests: Writing Results Sections and Creating

Tables and Figures, pages 17–19, 2017.

[110] Arman Sabbaghi and Qiang Huang. Predictive model building across different process

conditions and shapes in 3d printing. In 2016 IEEE International Conference on

Automation Science and Engineering (CASE), pages 774–779. IEEE, 2016.

[111] Arman Sabbaghi and Qiang Huang. Model transfer across additive manufacturing

processes via mean effect equivalence of lurking variables. The Annals of Applied

Statistics, 12(4):2409–2429, 2018.

[112] Alec I Saville, Sven C Vogel, Adam Creuziger, Jake T Benzing, Adam L Pilchak,

Peeyush Nandwana, Jonah Klemm-Toole, Kester D Clarke, S Lee Semiatin, and Amy J

Clarke. Texture evolution as a function of scan strategy and build height in electron

beam melted ti-6al-4v. Additive Manufacturing, 46:102118, 2021.



128 BIBLIOGRAPHY

[113] Luke Scime, Derek Siddel, Seth Baird, and Vincent Paquit. Layer-wise anomaly detec-

tion and classification for powder bed additive manufacturing processes: A machine-

agnostic algorithm for real-time pixel-wise semantic segmentation. Additive Manufac-

turing, 36:101453, 2020.

[114] Bo Shen, Weijun Xie, and Zhenyu James Kong. Clustered discriminant regression

for high-dimensional data feature extraction and its applications in healthcare and

additive manufacturing. IEEE Transactions on Automation Science and Engineering,

18(4):1998–2010, 2020.

[115] Jianjun Shi. In-process quality improvement: Concepts, methodologies, and applica-

tions. IISE transactions, 55(1):2–21, 2023.

[116] Samuel D Silvey. The lagrangian multiplier test. The Annals of Mathematical Statistics,

30(2):389–407, 1959.

[117] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles

Sutton. Veegan: Reducing mode collapse in gans using implicit variational learning.

Advances in neural information processing systems, 30, 2017.

[118] Peter Stone and Richard S Sutton. Scaling reinforcement learning toward robocup

soccer. In Icml, volume 1, pages 537–544, 2001.

[119] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[120] Song Tao and Jia Wang. Alleviation of gradient exploding in gans: Fake can be

real. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1191–1200, 2020.



BIBLIOGRAPHY 129

[121] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[122] Michael E Tipping. Sparse bayesian learning and the relevance vector machine. Journal

of machine learning research, 1(Jun):211–244, 2001.

[123] Ngoc-Trung Tran, Tuan-Anh Bui, and Ngai-Man Cheung. Dist-gan: An improved gan

using distance constraints. In Proceedings of the European conference on computer

vision (ECCV), pages 370–385, 2018.

[124] L Villalpando, Hasti Eiliat, and Ruth Jill Urbanic. An optimization approach for

components built by fused deposition modeling with parametric internal structures.

Procedia Cirp, 17:800–805, 2014.

[125] Chao Wang, Zhibin Yu, Haiyong Zheng, Nan Wang, and Bing Zheng. Cgan-plankton:

Towards large-scale imbalanced class generation and fine-grained classification. In 2017

IEEE International Conference on Image Processing (ICIP), pages 855–859. IEEE,

2017.

[126] Hui Wang and Qiang Huang. Error cancellation modeling and its application to ma-

chining process control. IIE transactions, 38(4):355–364, 2006.

[127] Hui Wang, Qiang Huang, and Reuven Katz. Multi-operational machining processes

modeling for sequential root cause identification and measurement reduction. Journal

of manufacturing science and engineering, 127(3):512–521, 2005.

[128] Rongxuan Wang, Andrew C Law, David Garcia, Shuo Yang, and Zhenyu Kong. Devel-

opment of structured light 3d-scanner with high spatial resolution and its applications

for additive manufacturing quality assurance. The International Journal of Advanced

Manufacturing Technology, 117(3):845–862, 2021.



130 BIBLIOGRAPHY

[129] Rui Wang and Nan Chen. Wafer map defect pattern recognition using rotation-

invariant features. IEEE Transactions on Semiconductor Manufacturing, 32(4):596–

604, 2019.

[130] Yitian Wang, Yuxiang Wei, and Huan Wang. A class imbalanced wafer defect classi-

fication framework based on variational autoencoder generative adversarial network.

Measurement Science and Technology, 34(2):024008, 2022.

[131] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):

279–292, 1992.

[132] Christian Weller, Robin Kleer, and Frank T Piller. Economic implications of 3d print-

ing: Market structure models in light of additive manufacturing revisited. International

Journal of Production Economics, 164:43–56, 2015.

[133] David P Wipf and Bhaskar D Rao. An empirical bayesian strategy for solving the

simultaneous sparse approximation problem. IEEE Transactions on Signal Processing,

55(7):3704–3716, 2007.

[134] Ming-Ju Wu, Jyh-Shing R Jang, and Jui-Long Chen. Wafer map failure pattern recog-

nition and similarity ranking for large-scale data sets. IEEE Transactions on Semi-

conductor Manufacturing, 28(1):1–12, 2014.

[135] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[136] Zehao Ye, Chenang Liu, Wenmeng Tian, and Chen Kan. In-situ point cloud fusion for

layer-wise monitoring of additive manufacturing. Journal of Manufacturing Systems,

61:210–222, 2021.



BIBLIOGRAPHY 131

[137] Dongping Yu, Yan Guo, Ning Li, and Meng Wang. Sa-m-sbl: An algorithm for csi-

based device-free localization with faulty prior information. IEEE Access, 7:61831–

61839, 2019.

[138] Jianbo Yu and Jiatong Liu. Two-dimensional principal component analysis-based con-

volutional autoencoder for wafer map defect detection. IEEE Transactions on Indus-

trial Electronics, 68(9):8789–8797, 2020.

[139] Jiangquan Zhang, Sun Yi, GUO Liang, GAO Hongli, HONG Xin, and SONG

Hongliang. A new bearing fault diagnosis method based on modified convolutional

neural networks. Chinese Journal of Aeronautics, 33(2):439–447, 2020.

[140] Jie Zhang, Xin Zhou Wang, Wang Wang Yu, and Yu He Deng. Numerical investigation

of the influence of process conditions on the temperature variation in fused deposition

modeling. Materials & Design, 130:59–68, 2017.

[141] Junru Zhang, Yang Liu, Manjot Singh, Yuxin Tong, Ezgi Kucukdeger, Hu Young

Yoon, Alexander P Haring, Maren Roman, Zhenyu James Kong, Blake N Johnson,

et al. Rapid, autonomous high-throughput characterization of hydrogel rheological

properties via automated sensing and physics-guided machine learning. Applied Mate-

rials Today, 30:101720, 2023.

[142] Zhilin Zhang and Bhaskar D Rao. Sparse signal recovery with temporally correlated

source vectors using sparse bayesian learning. IEEE Journal of Selected Topics in

Signal Processing, 5(5):912–926, 2011.

[143] Longhui Zhou, Hongfeng Tao, Wojciech Paszke, Vladimir Stojanovic, and Huizhong

Yang. Pd-type iterative learning control for uncertain spatially interconnected systems.

Mathematics, 8(9):1528, 2020.



132 BIBLIOGRAPHY

[144] Shiyu Zhou, Yong Chen, and Jianjun Shi. Statistical estimation and testing for vari-

ation root-cause identification of multistage manufacturing processes. IEEE Transac-

tions on Automation Science and Engineering, 1(1):73–83, 2004.

Publication Statement

The major content of Chapter 4 was accepted by Taylor & Francis in IISE Transactions on

3/24/2023, available online https://www.tandfonline.com/doi/full/10.1080/24725854.2023.2199813.

Similarly, the major content of Chapter 5 was published by Elsevier in the Journal of Man-

ufacturing Systems on 11/13/2022.



Appendices

133



Appendix A

Appendix of Chapter 3

A.1 Classification Results of Each Label in the Abla-

tion Study

The classification results of each label in Table 3.2 are provided in Table A.1. The F-

score of all labels in the proposed method achieves the best performance in the ablation

studies. The proposed method significantly improves the precision of the majority class and

recall of minority classes where the imbalanced training data in the baseline degrades the

performances. Since all the remaining data except the training data are used as testing data,

a relatively small number of T-shirt than Pullover and Dress exist in testing data. It causes

the overall low results of T-shirts in Precision and F-score.

Table A.1: Performance evaluation of each label in the ablation studies.

MNIST fashion
Precision Recall F-score

T-shirt Pullover Dress T-shirt Pullover Dress T-shirt Pullover Dress
Baseline 0.393 0.978 0.981 0.972 0.875 0.769 0.560 0.923 0.862
Variant1 0.408 0.977 0.980 0.972 0.883 0.778 0.574 0.927 0.867
Variant2 0.465 0.974 0.973 0.963 0.887 0.827 0.625 0.928 0.893
Variant3

(Proposed) 0.505 0.973 0.974 0.952 0.905 0.853 0.660 0.938 0.909
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A.2 T-SNE Results in the Ablation Studies

Figure A.1 shows the t-SNE of the feature from the intermediate layer of the classifier

from the proposed method in several epochs in the ablation studies. The results represent

that the generated samples from the proposed method follow the features of actual data

in the classifier as the epoch increases. It validates the authentic and state-distinguishable

properties of the generated samples of the proposed method.
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Figure A.1: t-SNE of the feature from the intermediate layer of the classifier from the
proposed method in several epochs.
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A.3 Structure and Hyperparameters in the Methods

The detailed structure and hyperparameters of the proposed and benchmark methods are

provided. Table A.2 provides the hyperparameters of each method.

Table A.2: Hyperparameters of each method.

Methods Parameters Value
SMOTE, ADASYN Nearest K samples 5

B-SMOTE Type 1
Nearest K samples 5

CDRAGAN
BAGAN-GP

Cooperative GAN
Proposed

Number of epochs 300
Optimizer Adam

Learning rate 0.0002
Momentum β1 = 0.5, β2 = 0.9

Hidden layers (Discriminator) 4 blocks of[
Conv2D, LeakyRelu

]
Hidden layers (Generator)

4 blocks of[
Conv2D-Transpose, LeakyRelu,

BatchNormalization
]

Number of Kernels in each block
(Discriminator)

(64,128,128,256)

Number of Kernels in each block
(Generator)

(128,128,64,Number of channel)

Kernel sizes (4,4)
Strides (2,2)
Padding Same

Activation functions LeakyRelu, Tanh
Kernel initializer Random Normal(sd=0.02)

Slope of Leaky Relu 0.2
CDRAGAN, BAGAN-GP

Proposed
Gradient Penalty Coefficient 10

Cooperative GAN Range of scheduling parameter [0.1,0.9]
BAGAN-GP, Proposed Epochs in pre-training 300

The gradient penalty coefficient is determined as 10 as suggested by [57, 67]. The scheduling

parameter in the Cooperative GAN, is searched within a specific range ([0.1, 0.9]) following

the guidelines provided in the literature [25] and selected with the values that showed the best
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validation performance. A batch size (m in Algorithm 4.1) varies along the number of actual

samples in each case study to consider the computational time. Specifically, batch sizes are

100 in Section. 3.3.1, 100 in Section. 3.3.2, 60 in Section. 3.3.3, and 50 in Section. 3.3.4.

Table A.3 shows the hyperparameters of the classifier in case studies. Convolutional Neural

Network is used for the classifier. For a fair comparison, all the methods use the same

classifier as described in Table A.3.

Table A.3: Hyperparameters of the classifier.

Parameters Value
Number of epochs 300

Optimizer Adam
Learning rate 0.0002
Momentum β1 = 0.5, β2 = 0.9

Hidden Layers 4 blocks of[
Conv2D, LeakyRelu

]
Number kernels in each block (32,32,128,256)

Kernel sizes (4,4)
Strides (2,2)
Padding Same

Activation functions Leaky Relu, Softmax
Kernel initializer Random Normal (sd=0.02)

Slope of Leaky Relu 0.2
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Appendix of Chapter 4

B.1 Derivation for Eq. (4.8)

Let θ denote all hidden variables in the proposed method (i.e., θ = (x,α, b̄)). Variational

Bayes Inference minimizes the Kullback-Leibler (KL) divergence between q(θ) and true pos-

terior distribution, p(θ|y) given by

min
q(θ)

KL(q(θ)||p(θ|y)) =
∫

q(θ) ln q(θ)

p(θ|y)dθ.

Equivalently, it can be reformulated as follows.

max
q(θ)
−KL(q(θ)||p(θ|y)) =

∫
q(θ) ln p(θ,y)

q(θ)p(y)dθ. (B.1)

The right side of Eq. (B.1) can be reformulated as follows.

∫
q(θ) ln p(θ,y)

q(θ)p(y)dθ =

∫
q(θ)[ln p(θ,y)− ln q(θ)− ln p(y)]dθ

=

∫
q(θ)[ln p(θ,y)− ln q(θ)]dθ −

∫
q(θ) ln p(y)dθ

=

∫
q(θ)[ln p(θ,y)− ln q(θ)]dθ − ln p(y). (B.2)
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Since ln p(y) in Eq. (B.2) is irrelevant with q(θ), the problem is reformulated into maximizing

the first two terms in Eq. (B.2) (L(θ)) under the mean-field approximation as follows.

L(θ) =

∫ ∏
k

q(θk)[ln p(θ,y)−
∑
k

ln q(θk)]dθ

=

∫ ∏
k

q(θk) ln p(θ,y)
∏
k

dθk −
∑
k

∫ ∏
j

q(θj) ln q(θk)
∏
j

dθj (B.3)

=

∫
q(θk)[ln p(θ,y)

∏
j ̸=k

(q(θj)dθj)]dθk −
∑
k

∫
q(θk) ln q(θk)dθk (B.4)

=

∫
q(θk)[ln p(θ,y)

∏
j ̸=k

(q(θj)dθj)]dθk −
∫

q(θk) ln q(θk)dθk −
∑
j ̸=k

∫
q(θj) ln q(θj)dθj.

(B.5)

Eq. (B.4) is derived from Eq. (B.3) since
∫
q(θj)dθj = 1, ∀j. Define a new distribution as

follows.

ln p̃(θk,y) = E[ln p(θ,y)]θ\θk + C,

where the expectation Eθ\θk is taken about the set θ with θk removed. C is constant and

can be obtained through normalization. Then, Eq. (B.5) can be reformulated as follows.

L(θ) =

∫
q(θk) ln p̃(θk,y)dθk −

∫
q(θk) ln q(θk)dθk −

∑
j ̸=k

∫
q(θj) ln q(θj)dθj + C

= −KL(q(θk)||p̃(θk,y))−
∑
j ̸=k

∫
q(θj) ln q(θj)dθj + C. (B.6)

Clearly, Eq. (B.6) is maximized with respect to q(θk) when the KL distance is zero, which is

the case for q(θk) = p̃(θk,y). Consequently, the expression of the optimal posterior approxi-

mation qk(θk) with other variables fixed is

ln q(θk) = E[ln p(θ,y)]θ\θk + C.
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B.2 Inference for Eq. (4.12)

Based on Eq. (4.9), ln q(x) = E[ln p(y|x;λ)p(x|α;B)]q(α) + const. Therefore,

ln q(x) ∝ E[ln p(y|x;λ)p(x|α;B)]q(α)

= E[ln (N(y|Dx, λIML)
N∏
i=1

N(xi|0, (αiB)−1)]q(α)

∝ E[− 1

2λ
(y−Dx)(y−Dx)⊤ − 1

2
x[AB]x]q(α)

where AB = diag[α1B, ..., αNB]. Therefore, Eq. (4.12) is derived, and q(x) follows Gaussian

distribution as follows:

q(x) ∼ N(x|µx,Σx),

where µx = 1
λ
ΣxD⊤y, Σx = ( 1

λ
D⊤D + E[AB])−1

B.3 Inference for Eq. (4.13)

Based on Eq. (4.10), ln q(α) = E[ln p(x|α;B)p(α|b̄)]q(x)q(b̄) + const. Therefore,

ln q(α) ∝ E[ln p(x|α;B)p(α|b̄)]q(x)q(b̄)

= E[ln (
N∏
i=1

N(xi|0, (αiB)−1)
N∏
i=1

Gamma(αi|a, bi)]q(x)q(b̄)

∝ E[ΣN
i=1 lnαi

L
2 − (

α

2
x⊤i Bxi) + lnαa−1

i − biαi]q(x)q(b̄)

∝ lnα
L
2
+a−1

i − αi

2
E[x⊤i Bxi]− E[bi]αi,
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where

E[x⊤i Bxi] = E[Tr(x⊤i Bxi)]

= E[Tr(x⊤i xiB)]

= Tr(E[x⊤i xi]B)

= Tr[(Σxi
+ E[xi]E[xi]⊤)B].

Therefore, Eq. (4.13) is derived, and q(αi), i ∈ P follows Gamma distribution as follows:

q(αi) = Gamma(αi|
L

2
+ a,

Tr[(Σxi
+ E[xi]E[xi]⊤)B]

2
+ E[bi]).

For q(αi), i ∈ P c follows Gamma distribution as follows:

q(αi) = Gamma(αi|
L

2
+ a,

Tr[(Σxi
+ E[xi]E[xi]⊤)B]

2
+ bi).

B.4 Inference for Eq. (4.14)

Based on Eq. (4.11), ln q(b̄) = E[ln p(α|b̄)p(b̄)]q(x)q(α) + const. Therefore,

ln q(b̄) ∝ E[ln p(α|b̄)p(b̄)]q(x)q(α)

= E[ln
∏
i∈P

Gamma(αi|a, bi)
∏
i∈P

Gamma(bi|p, q)]q(x)q(α)

∝ Σi∈P (−biE[αi] + a ln bi + (p− 1) ln bi − qbi)

= Σi∈P ((p+ a− 1) ln bi − (q + E[αi)bi).
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Therefore Eq. (4.14) is derived, and q(bi), ∀i ∈ P follows Gamma distribution as follows:

q(bi) = Gamma(bi|p+ a,E[αi] + q), ∀i ∈ P.

B.5 Inference for Eq. (4.21)

To estimate B, let the second term in Eq. (4.20) as follows:

Q(B) = E[ln p(x|α;B)]
q(x;θ̃OLD

)q(α;θ̃
OLD

)
.

Let Γ=diag(α−1
1 , ..., α−1

N ). It can be shown that

ln p(x|α;B) = −1

2
ln (|Γ−1|L|B−1|N)− 1

2
x⊤(Γ⊗ B)x

= −1

2
ln |Γ−1|L − 1

2
ln |B−1|N − 1

2
x⊤(Γ⊗ B)x. (B.7)

Q(B) can be calculated by taking the expectation to Eq. (B.7). Then, taking derivative

Q(B) with respect to B leads to

∂Q(B)
∂B =

N

2
B−1 − 1

2

N∑
i=1

E[αi](Σxi
+ E[xi]E[xi]⊤). (B.8)

By letting Eq. (B.8) equals to zero, B is estimated as follows:

B = [
1

N

N∑
i=1

E[αi](Σxi
+ E[xi]E[xi]⊤)]−1
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B.6 Inference for Eq. (4.22)

To estimate λ, let the first term in Eq. (4.20) as follows:

Q(λ) = E[ln p(y|x;λ)]
q(x;θ̃OLD

)q(α;θ̃
OLD

)
.

It can be shown that

Q(λ) ∝ −ML

2
lnλ− 1

2λ
E

q(x;θ̃OLD
)q(α;θ̃

OLD
)
∥y−Dx∥22

= −ML

2
lnλ− 1

2λ
E

q(x;θ̃OLD
)q(α;θ̃

OLD
)
[∥y−Dµx∥22 + Tr(ΣxD⊤D)]

= −ML

2
lnλ− 1

2λ
[∥y−Dµx∥22 + λ̂E

q(α;θ̃
OLD

)
Tr(Σx(Σ

−1
x − Σ−1

0 ))] (B.9)

= −ML

2
lnλ− 1

2λ
[∥y−Dµx∥22 + λ̂[NL− E

q(α;θ̃
OLD

)
Tr(Σx(Σ

−1
0 ))]

= −ML

2
lnλ− 1

2λ
[∥y−Dµx∥22 + λ̂[NL− Tr(ΣxEq(α;θ̃

OLD
)
(Σ−1

0 ))], (B.10)

where Eq. (B.9) follows Eq. (4.18), and λ̂ denotes the estimated λ in the previous iteration.

By setting the derivative of Eq. (B.10) over λ to zero, λ can be estimated as follows:

λ =
[∥y−Dµx∥22 + λ̂[NL− Tr(ΣxEq(α;θ̃

OLD
)
(Σ−1

0 ))]]

ML
.

B.7 Standard deviations and quantile statistics in each

case study.

The standard deviations and quantile statistics of failure rate and NMSE in the case studies

Sections 4.3 and 4.4 are provided. The failure rate is the percentage of failed trials with mis-
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classified process faults from the total trials. Specifically, failed trials denote one; otherwise,

zero. Tables B.1 to B.5 represent standard deviations and 0.25, 0.5, and 0.75 quantile results

of each method of Tables 4.1 to 4.5. The proposed method provides a large standard devia-

tion in most cases compared to the benchmark methods. This is because the distributions of

both measures from the repetitive trials of the proposed method are highly skewed to zero.

Since the zero FR and NMSE represent the perfect performance, these results represent the

low failure rate and NMSE of the proposed method. Specifically, the quantile statistics of

the proposed method achieve the lowest value in most case studies compared to benchmark

methods. In addition, the proposed method provides the lowest median and interquartile

range in most case studies.

Table B.1: Standard deviations and quantile statistics (in the parenthesis) of Table 4.1.

β 0.0 0.3 0.6 0.9 0.95

TMSBL FR
NMSE

0.49, (0, 0, 1)
1.30, (0.0, 0.0, 1.63)

0.48, (0, 0, 1)
1.23, (0.0, 0.0, 1.57)

0.48, (0, 0, 1)
1.05, (0.0, 0.0, 1.60)

0.44, (0, 0, 0)
1.11, (0.0, 0.0, 0.26)

0.40, (0, 0, 0)
0.70, (0.0, 0.0, 0.0)

MSBL FR
NMSE

0.49, (0, 1, 1)
0.75, (0.0, 0.74, 1.5)

0.47, (0, 1, 1)
0.73, (0.0, 1.0, 1.44)

0.44, (0, 1, 1)
0.73, (0.0, 1.02, 1.47)

0.22, (1, 1, 1)
0.55, (0.89, 1.26, 1.68)

0.20, (1, 1, 1)
0.55, (0.97, 1.33, 1.62)

SA-MSBL FR
NMSE

0.20, (1, 1, 1)
0.37, (0.40, 0.72, 0.97)

0.21, (1, 1, 1)
0.37, (0.43, 0.70, 0.96)

0.20, (1, 1, 1)
0.38, (0.48, 0.71, 1.0)

0.18, (1, 1, 1)
0.33, (0.52, 0.74, 0.96)

0.19, (1, 1, 1)
0.34, (0.50, 0.73, 0.93)

SA-SBL FR
NMSE

0.17, (1, 1, 1)
0.40, (0.40, 0.73, 1.00)

0.18, (1, 1, 1)
0.40, (0.44, 0.72, 0.99)

0.16, (1, 1, 1)
0.39, (0.48, 0.71, 0.98)

0.18, (1, 1, 1)
0.34, (0.52, 0.74, 0.96)

0.20, (1, 1, 1)
0.34, (0.52, 0.73, 0.94)

[75] FR
NMSE

0.25, (1, 1, 1)
0.30, (0.51, 0.72, 0.89)

0.26, (1, 1, 1)
0.29, (0.49, 0.73, 0.89)

0.22, (1, 1, 1)
0.31, (0.54, 0.76, 0.93)

0.11, (1, 1, 1)
0.30, (0.69, 0.84, 1.0)

0.10, (1, 1, 1)
0.36, (0.74, 0.89, 1.06)

SCBL FR
NMSE

0.24, (1, 1, 1)
0.69, (0.82, 1.36, 1.67)

0.20, (1, 1, 1)
0.62, (0.99, 1.4, 1.69)

0.20, (1, 1, 1)
0.63, (1.09, 1.32, 1.69)

0.10, (1, 1, 1)
0.48, (1.12, 1.43, 1.64)

0.0, (1, 1, 1)
0.49, (1.13, 1.45, 1.76)

SA-TSBL
(Proposed)

FR
NMSE

0.42, (0, 0, 0)
0.99, (0.0, 0.0, 0.0)

0.43, (0, 0, 0)
0.98, (0.0, 0.0, 0.0)

0.42, (0, 0, 0)
0.84, (0.0, 0.0, 0.0)

0.38, (0, 0, 0)
0.80, (0.0, 0.0, 0.0)

0.35, (0, 0, 0)
0.64, (0.0, 0.0, 0.0)



B.7. STANDARD DEVIATIONS AND QUANTILE STATISTICS IN EACH CASE STUDY. 145

Table B.2: Standard deviations and quantile statistics (in the parenthesis) of Table 4.2.

L 2 3 4

TMSBL FR
NMSE

0.49, (0, 1, 1)
0.76, (0.0, 0.69, 1.35)

0.38, (0, 0, 0)
0.49, (0.0, 0.0, 0.01)

0.34, (0, 0, 0)
0.41, (0.0, 0.0, 0.01)

MSBL FR
NMSE

0.38, (1, 1, 1)
0.68, (0.73, 1.11, 1.56)

0.42, (1, 1, 1)
0.72, (0.51, 1.13, 1.52)

0.50, (0, 1, 1)
0.71, (0.0, 0.56, 1.22)

SA-MSBL FR
NMSE

0.33, (1, 1, 1)
0.37, (0.40, 0.62, 0.90)

0.30, (1, 1, 1)
0.35, (0.42, 0.61, 0.87)

0.30, (1, 1, 1)
0.32, (0.44, 0.64, 0.87)

SA-SBL FR
NMSE

0.31, (1, 1, 1)
0.36, (0.42, 0.64, 0.91)

0.30, (1, 1, 1)
0.33, (0.42, 0.62, 0.86)

0.29, (1, 1, 1)
0.37, (0.45, 0.65, 0.90)

[75] FR
NMSE

0.46, (0, 1, 1)
0.44, (0.12, 0.73, 0.95)

0.50, (0, 1, 1)
0.60, (0.0, 0.26, 0.96)

0.50, (0, 0, 1)
0.80, (0.0, 0.03, 0.99)

SCBL FR
NMSE

0.17, (1, 1, 1)
0.52, (0.91, 1.27, 1.56)

0.27, (1, 1, 1)
0.61, (0.98, 1.27, 1.62)

0.26, (1, 1, 1)
0.53, (0.89, 1.23, 1.53)

SA-TSBL
(Proposed)

FR
NMSE

0.50, (0, 0, 1)
0.66, (0.0, 0.02, 0.98)

0.32, (0, 0, 0)
0.44, (0.0, 0.0, 0.01)

0.31, (0, 0, 0)
0.31, (0.0, 0.0, 0.01)

Table B.3: Standard deviations and quantile statistics (in the parenthesis) of Table 4.3.

N/M 3 5 7 9

TMSBL FR
NMSE

0.29, (0, 0, 0)
0.21, (0.0, 0.01, 0.01)

0.45, (0, 0, 1)
0.58, (0.0, 0.01, 0.57)

0.44, (0, 0, 1)
0.63, (0.0, 0.01, 0.71)

0.46, (0, 0, 1)
0.74, (0.0, 0.01, 0.89)

MSBL FR
NMSE

0.46, (0, 0, 1)
0.53, (0.0, 0.0, 0.34)

0.50, (0, 1, 1)
0.62, (0.0, 0.63, 1.14)

0.48, (0, 1, 1)
0.67, (0.0, 0.82, 1.26)

0.46, (0, 1, 1)
0.65, (0.01, 1.06, 1.33)

SA-MSBL FR
NMSE

0.46, (0, 0, 1)
0.36, (0.0, 0.02, 0.42)

0.50, (0, 1, 1)
0.40, (0.05, 0.38, 0.73)

0.48, (0, 1, 1)
0.40, (0.11, 0.47, 0.73)

0.44, (0, 1, 1)
0.36, (0.25, 0.54, 0.80)

SA-SBL FR
NMSE

0.49, (0, 1, 1)
0.38, (0.0, 0.25, 0.63)

0.39, (1, 1, 1)
0.34, (0.28, 0.51, 0.73)

0.39, (1, 1, 1)
0.32, (0.34, 0.53, 0.76)

0.36, (1, 1, 1)
0.28, (0.37, 0.55, 0.78)

[75] FR
NMSE

0.31, (0, 0, 0)
0.32, (0.0, 0.0, 0.0)

0.42, (0, 0, 0)
0.48, (0.0, 0.0, 0.0)

0.50, (0, 0, 1)
0.70, (0.0, 0.0, 1.10)

0.50, (0, 1, 1)
0.76, (0.0, 0.51, 1.24)

SCBL FR
NMSE

0.50, (0, 0, 1)
0.62, (0.0, 0.0, 1.01)

0.41, (1, 1, 1)
0.60, (0.57, 0.95, 1.3)

0.38, (1, 1, 1)
0.59, (0.76, 1.05, 1.38)

0.27, (1, 1, 1)
0.49, (0.91, 1.19, 1.44)

SA-TSBL
(Proposed)

FR
NMSE

0.24, (0, 0, 0)
0.11, (0.0, 0.01, 0.01)

0.38, (0, 0, 0)
0.42, (0.0, 0.01, 0.02)

0.39, (0, 0, 0)
0.51, (0.0, 0.01, 0.03)

0.40, (0, 0, 0)
0.50, (0.0, 0.01, 0.02)

Table B.4: Standard deviations and quantile statistics (in the parenthesis) of Table 4.4.

L 2 3 4

TMSBL FR
NMSE

0.49, (0, 1, 1)
0.40, (0.07, 0.17, 0.38)

0.48, (0, 1, 1)
0.39, (0.12, 0.17, 0.34)

0.50, (0, 0, 1)
0.39, (0.0, 0.17, 0.32)

MSBL FR
NMSE

0.48, (0, 1, 1)
0.41, (0.16, 0.18, 0.5)

0.49, (0, 1, 1)
0.40, (0.12, 0.17, 0.35)

0.50, (0, 0, 1)
0.29, (0.0, 0.17, 0.33)

SA-MSBL FR
NMSE

0.50, (0, 1, 1)
0.39, (0.02, 0.19, 0.65)

0.50, (0, 1, 1)
0.37, (0.04, 0.19, 0.64)

0.50, (0, 0, 1)
0.35, (0.01, 0.18, 0.52)

SA-SBL FR
NMSE

0.50, (0, 1, 1)
0.37, (0.06, 0.23, 0.61)

0.49, (0, 1, 1)
0.35, (0.16, 0.25, 0.62)

0.50, (0, 1, 1)
0.34, (0.1, 0.24, 0.52)

[75] FR
NMSE

0.28, (1, 1, 1)
5.20, (1.05, 1.94, 4.42)

0.24, (1, 1, 1)
3.17, (1.07, 2.07, 3.91)

0.19, (1, 1, 1)
4.53, (1.18, 2.32, 4.44)

SCBL FR
NMSE

0.48, (0, 1, 1)
0.47, (0.16, 0.26, 0.63)

0.46, (0, 1, 1)
0.46, (0.16, 0.21, 0.50)

0.50, (0, 0, 1)
0.33, (0.02, 0.18, 0.36)

SA-TSBL
(Proposed)

FR
NMSE

0.49, (0, 0, 1)
0.41, (0.0, 0.17, 0.33)

0.50, (0, 0, 1)
0.40, (0.0, 0.17, 0.33)

0.48, (0, 0, 1)
0.39, (0.0, 0.07, 0.18)
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Table B.5: Standard deviations and quantile statistics (in the parenthesis) of Table 4.5.

β 0.0 0.3 0.6 0.9 0.99

TMSBL FR
NMSE

0.49, (0, 1, 1)
0.24, (0.0, 0.09, 0.32)

0.49, (0, 1, 1)
0.26, (0.0, 0.14, 0.32)

0.50, (0, 1, 1)
0.26, (0.0, 0.15, 0.33)

0.50, (0, 1, 1)
0.19, (0.0, 0.17, 0.31)

0.50, (0, 1, 1)
0.23, (0.0, 0.17, 0.32)

MSBL FR
NMSE

0.49, (0, 1, 1)
0.22, (0.0, 0.09, 0.32)

0.50, (0, 1, 1)
0.23, (0.0, 0.14, 0.32)

0.50, (0, 1, 1)
0.26, (0.0, 0.15, 0.33)

0.49, (0, 1, 1)
0.26, (0.0, 0.19, 0.33)

0.49, (0, 1, 1)
0.33, (0.05, 0.18, 0.34)

SA-MSBL FR
NMSE

0.50, (0, 1, 1)
0.43, (0.01, 0.12, 0.40)

0.49, (0, 1, 1)
0.40, (0.01, 0.18, 0.39)

0.50, (0, 1, 1)
0.37, (0.01, 0.19, 0.39)

0.50, (0, 1, 1)
0.38, (0.01, 0.19, 0.43)

0.50, (0, 1, 1)
0.41, (0.01, 0.19, 0.61)

SA-SBL FR
NMSE

0.42, (1, 1, 1)
0.42, (0.16, 0.4, 0.64)

0.43, (1, 1, 1)
0.39, (0.17, 0.38, 0.61)

0.44, (0, 1, 1)
0.40, (0.15, 0.33, 0.57)

0.47, (0, 1, 1)
0.37, (0.13, 0.29, 0.52)

0.49, (0, 1, 1)
0.37, (0.17, 0.28, 0.6)

[75] FR
NMSE

0.06, (1, 1, 1)
109.6, (3.76, 9.29, 20.97)

0.08, (1, 1, 1)
46.88, (2.89, 6.72, 14.57)

0.09, (1, 1, 1)
15.06, (2.17, 4.53, 9.39)

0.10, (1, 1, 1)
5.45, (1.65, 3.13, 5.89)

0.15, (1, 1, 1)
3.58, (1.38, 2.39, 4.37)

SCBL FR
NMSE

0.46, (0, 1, 1)
0.45, (0.0, 0.14, 0.38)

0.45, (0, 1, 1)
0.42, (0.01, 0.21, 0.41)

0.47, (0, 1, 1)
0.34, (0.01, 0.19, 0.42)

0.46, (0, 1, 1)
0.33, (0.07, 0.22, 0.39)

0.48, (0, 1, 1)
0.35, (0.08, 0.18, 0.38)

SA-TSBL
(Proposed)

FR
NMSE

0.50, (0, 1, 1)
0.23, (0.0, 0.06, 0.26)

0.50, (0, 1, 1)
0.26, (0.0, 0.1, 0.3)

0.50, (0, 0, 1)
0.25, (0.0, 0.1, 0.26)

0.50, (0, 0, 1)
0.18, (0.0, 0.14, 0.25)

0.49, (0, 0, 1)
0.22, (0.0, 0.16, 0.22)
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B.8 Fault pattern matrix Φ in Section 4.4

Figure B.1 shows the fault pattern matrix Φ from previous researches [10, 59, 70] that used

in Section 4.4.

Figure B.1: Fault pattern matrix Φ in Section 4.4 [12].



Appendix C

Appendix of Chapter 5

C.1 Proof of Lemma 5.1

Lemma 5.1 For any policy π, the operator Bπ[CG(s, a)] is a contraction under the supre-

mum norm over s, a. That is, for any CG1(s, a) and CG2(s, a), it follows

||Bπ[CG1(s, a)]− Bπ[CG2(s, a)]||∞≤ γ||CG1(s, a)− CG2(s, a)||∞.

148
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proof.

||Bπ[CG1(s, a)]− Bπ[CG2(s, a)]||∞

= max
(s,a)
|kπ(s, a) + γ

∑
s′,a′

p(s′|s, a)π(a′|s′)CG1(s′, a′)

− kπ(s, a) + γ
∑
s′,a′

p(s′|s, a)π(a′|s′)CG2(s′, a′)|

= max
(s,a)
|γ

∑
s′,a′

p(s′|s, a)π(a′|s′)[CG1(s′, a′)− CG2(s′, a′)]|

≤ max
(s,a)

γ
∑
s′,a′

p(s′|s, a)π(a′|s′)|[CG1(s′, a′)− CG2(s′, a′)]|

≤ max
(s,a)

γ
∑
s′,a′

p(s′|s, a)π(a′|s′)max
(s′,a′)
|[CG1(s′, a′)− CG2(s′, a′)]|

= γ max
(s′,a′)
|CG1(s′, a′)− CG2(s′, a′)|

= γ||CG1(s, a)− CG2(s, a)||∞

where the first equality is based on the definition of the operator in Eq. (5.13), the first

inequality is due to the triangle inequality, the second inequality is based on the property of

the max operator, and the third equality is because of the property of p.m.f. function.

C.2 Proof of Theorem 5.2

Theorem 5.2 Supposed that 0 < ρmin ≤ ρ1(a|s), ρ2(a|s) ≤ ρmax < 1 for all (s, a) and

αt(st, at) = nt(st, at)
−w for w ∈ (0.5, 1]. Then, three assumptions in Theorem 2 in [94] are

satisfied where γ is the discount factor and K = max{K ′ + max
s∈S,a∈A

CG∗(s, a)2, 64γ2}. K ′ is

defined as 2E[R(s, a, s′) − CG∗(s, a)]2 + 4γ2( β1β2

β1+β2
)2[2(log|A|)2 + 4(logρmin)

2 + 4(logρmax)
2.
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Therefore,

lim
t→∞

∆t(s, a)
w.p.1−−−→ 0

According to Theorem 2 in [94], it is sufficient to prove that a random iterative process

convergence of a random iterative process ∆(t+1)(st, at) converges to zero w.p.1 under the

following assumptions:

1. 0 ≤ αt(s, a) ≤ 1,
∑

t αt(s, a) =∞ and
∑

t αt(s, a)
2 <∞, ∀s ∈ S, a ∈ A;

2. ||E[Ft(s, a)|Ut]||∞≤ γ||∆t||∞, with γ < 1;

3. var[Ft(s, a)|Ut] ≤ K(1 + ||∆t||2∞), for K > 0,

where Ut = {∆t,∆t−1, ...,∆0, Ft−1, ..., F0}.||·||∞ refers to supremum norm, and, and K is

some constant.

Proof for Assumption 1:

Learning rate αt(st, at) is defined as nt(st, at)
−w, w ∈ (0.5, 1]. It satisfies the assumption 1

[39].

Proof for Assumption 2:

Let

B∗[CG(s, a)] = min
π

Bπ[CG(s, a)]

where the optimum is achieved at

π(a|s) = ρ1(a|s)
β2

β1+β2 ρ2(a|s)
β1

β1+β2 e
−CG(s,a)

β1β2
β1+β2∑

a ρ1(a|s)
β2

β1+β2 ρ2(a|s)
β1

β1+β2 e
−CG(s,a)

β1β2
β1+β2

. (C.1)
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Then,

E[Ft(s, a)|Ut]

=
∑
s′∈S

p(s′|s, a)[R(s, a, s′)− CG∗(s, a)− γ
β1 + β2

β1β2

log(
∑
a′

ρ1(a
′|s)

β2
β1+β2 ρ2(a

′|s)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ]

= B∗(CGt(s, a))− CG∗(s, a)

where the second equality is obtained by plugging Eq. (C.1) into Eq. (5.13). Therefore,

||E[Ft(s, a)|Ut]||∞ = ||B∗(CGt(s, a))− CG∗(s, a)||∞

= ||B∗(CGt(s, a))− B∗(CG∗(s, a))||∞

≤ γ||CGt(s, a)− CG∗(s, a)||∞

= γ||∆t||∞,

where the second equality comes from the fact that operator B∗ has contraction property

based on Lemma 5.1 and monotonicity property over CGt(s, a). Both properties guarantees

that applying the operator B∗ converges to unique optimal fixed point [30]. First inequality

is based on Lemma 5.1.

Proof for Assumption 3:

Assuming that 0 < ρmin ≤ ρ1(a|s), ρ2(a|s) ≤ ρmax < 1, ∀(s, a).

var[Ft(s, a)|Ut]

≤ E[Ft(s, a)]
2

= E[((R(s, a, s′)− CG∗(s, a)− γ
β1 + β2

β1β2

log(
∑
a′

ρ1(a
′|s)

β2
β1+β2 ρ2(a

′|s)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2]

≤ 2E[R(s, a, s′)− CG∗(s, a)]2 + 2γ2(
β1 + β2

β1β2

)2E(log(
∑
a′

ρ1(a
′|s)

β2
β1+β2 ρ2(a

′|s)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2
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where the first inequality is due to the definition of variance and the second inequality is

based on Cauchy–Schwarz inequality. Next, we will estimate the upper bound for the term

in right hand side of above inequality.

E(log(
∑
a′

ρ1(a
′|s′)

β2
β1+β2 ρ2(a

′|s′)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2

≤ max
s′∈S

(log(
∑
a′

ρ1(a
′|s′)

β2
β1+β2 ρ2(a

′|s′)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2

≤ max
s′∈S

(log(|A|min
a′∈A

ρ1(a
′|s′)

β2
β1+β2 ρ2(a

′|s′)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2

+max
s′∈S

(log(|A|max
a′∈A

ρ1(a
′|s′)

β2
β1+β2 ρ2(a

′|s′)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2

(C.2)

where the first inequality is based on the property of max operator and the second inequality

is derived by considering the range of the value in the square sign. Next, we will try to bound

the first term of the last inequality in Eq. (C.2).

(log([|A|min
a′∈A

ρ1(a
′|s′)

β2
β1+β2 ρ2(a

′|s′)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2

≤ 2(log|A|)2 + 2(log(min
a′∈A

ρ1(a
′|s′)

β2
β1+β2 ρ2(a

′|s′)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2

≤ 2(log|A|)2 + 2(log(min
a′∈A

ρmin(a
′|s′)

β2
β1+β2 ρmin(a

′|s′)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2

+ 2(log(min
a′∈A

ρmax(a
′|s′)

β2
β1+β2 ρmax(a

′|s′)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2

= 2(log|A|)2 + 2(log ρmin + logmin
a′∈A

e
−CGt(s′,a′)

β1β2
β1+β2 )2 + 2(log ρmax + logmin

a′∈A
e
−CGt(s′,a′)

β1β2
β1+β2 )2

≤ 2(log|A|)2 + 4(log ρmin)
2 + 4(log ρmax)

2 + 8(
β1β2

β1 + β2

)2(max
a′∈A

CGt(s
′, a′))2

≤ 2(log|A|)2 + 4(log ρmin)
2 + 4(log ρmax)

2 + 8(
β1β2

β1 + β2

)2 max
a′∈A

CGt(s
′, a′)2

where the first inequality comes from Cauchy–Schwarz inequality, the second inequality is

derived by considering the range of ρ1, ρ2 and the third inequality is due to the Cauchy–

Schwarz inequality. Similarly, for the second term of the last inequality in Eq. (C.2), we
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have

(log([|A|max
a′∈A

ρ1(a
′|s′)

β2
β1+β2 ρ2(a

′|s′)
β1

β1+β2 e
−CGt(s′,a′)

β1β2
β1+β2 ))2

≤ 2(log|A|)2 + 4(log ρmin)
2 + 4(log ρmax)

2 + 8(
β1β2

β1 + β2

)2(max
a′∈A

CGt(s
′, a′))2

≤ 2(log|A|)2 + 4(log ρmin)
2 + 4(log ρmax)

2 + 8(
β1β2

β1 + β2

)2 max
a′∈A

CGt(s
′, a′)2

Therefore,

var[Ft(s, a)|Ut]

≤ 2E[R(s, a, s′)− CG∗(s, a)]2 + 4γ2(
β1 + β2

β1β2

)2

×max
s′∈S

[2(log|A|)2 + 4(log ρmin)
2 + 4(log ρmax)

2 + 8(
β1β2

β1 + β2

)2 max
a′∈A

CG(s′, a′)2]

= K ′ + 32γ2 max
s′∈S,a′∈A

CG(s′, a′)2

≤ K ′ + 64γ2( max
s′∈S,a′∈A

(CG(s′, a′)− CG∗(s′, a′))2 + CG∗(s′, a′)2)

≤ K ′ + 64γ2 max
s∈S,a∈A

CG∗(s, a)2 + 64γ2 max
s′∈S,a′∈A

(CGt(s
′, a′)− CG∗(s′, a′))2

≤ K(1 + ||∆t||2∞)

where K ′ = 2E[R(s, a, s′)−CG∗(s, a)]2+4γ2( β1β2

β1+β2
)2[2(log|A|)2+4(log ρmin)

2+4(log ρmax)
2]

andK = max{K ′+maxs∈S,a∈A CG∗(s, a)2, 64γ2}. The second inequality comes from Cauchy–

Schwarz inequality.

Therefore, the three assumptions in Theorem 2 [94] are satisfied so that the proof of The-

orem 5.2 is finished. For the generalization in terms of number of prior polices, we assume

that there exist M prior polices. The optimal policy can be achieved as follows:

πCG =
H∑
a H

, (C.3)
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where

H = exp( 1∑M
i=1 β

−1
i

(
M∑
i=1

1

βi

log ρi − CG(s, a)))

All the proof that we provided in the appendix can be directly applied to M prior polices

case with the same conclusion by plugging Eq. (C.3) into π(a|s) in Eq. (5.13).

C.3 Prior knowledge in Sections 5.4 and 5.5

Figure 5.3 in Section 5.4 shows the grid world with prior policies of Cases (a) and (b) in the

numerical case study. Prior policies vary from state to state. When the state (s) has a single

arrow, the prior policy in the direction of the arrow (e.g., right) is 0.9 and the remaining

three directions have the same probability of prior policy (i.e., ρ(right|s) = 0.9, ρ(left|s) =

ρ(up|s) = ρ(down|s) = 0.03. When the state (s) has two arrows, the prior policy in both

directions (i.e., up, right) is 0.4 respectively and the remaining two directions have the equal

probability (i.e., ρ(up|s) = ρ(right|s)=0.4, ρ(down|s) = ρ(left|s)=0.1) . If the state (s) has

the random prior policy, it means the probability of selecting all directions are the same with

0.25 (i.e., ρ(up|s) = ρ(down|s) = ρ(right|s) = ρ(left|s) = 0.25)

Table 5.5 in Section 5.5 shows which prior knowledge is used in each geometry in the real-

world case study. The total number of actions in each state is different between geometry 1

(4) and 2 (6) since the cooling fan is excluded from the process parameters in geometry 1.

States in each geometry can be expressed as the level of process parameters in the order of

the flow rate multiplier, printing speed, and cooling fan specified in Table 5.3.

In geometry1 in experiment 1, offline knowledge that encourages to adjust flow rate multiplier

as 1.0 is used. Therefore, in the states with levels of (1,1) and (1,2), 0.9 is set as the prior

probability for the corresponding action, and 0.03 is equally provided to the remaining three
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actions. The states with the remaining levels in offline prior policy at geometry 1 have the

random policy that has the same probability in four actions. In geometry 2 in experiment 1,

online knowledge that is the optimal policy learned from geometry 1 is used. The optimal

policy in geometry 1 is to adjust the flow rate multiplier as 1.0 at the state level (1,1,1)

and printing speed to 2500 mm/min at the state level (2,1,1). The prior probability of the

corresponding action is 0.9 and the probability of the remaining five actions is equal to 0.02.

The states with the remaining levels in online prior policy at geometry 2 have the random

policy that has the same probability in six actions. In geometry 2 in experiment 2, offline

knowledge that recommends adjusting flow rate multiplier as 1.0 is utilized. Therefore, 0.9

is provided to the probability to set flow rate multiplier as 1.0, and 0.02 is provided to the

each of remaining five actions in the states with levels of (1,1,1) and (1,2,1). The states with

the remaining levels in offline knowledge at geometry 2 have the random policy that has the

same probability in six actions.
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