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Development of Novel Attention-Aware Deep Learning Models and
Their Applications in Computer Vision and Dynamical System Cal-
ibration

Maede Maftouni

(ABSTRACT)

In recent years, deep learning has revolutionized computer vision and natural language pro-

cessing tasks, but the black-box nature of these models poses significant challenges for their

interpretability and reliability, especially in critical applications such as healthcare. To

address this, attention-based methods have been proposed to enhance the focus and inter-

pretability of deep learning models. In this dissertation, we investigate the effectiveness of

attention mechanisms in improving prediction and modeling tasks across different domains.

We propose three essays that utilize task-specific designed trainable attention modules in

manufacturing, healthcare, and system identification applications. In essay 1, we introduce

a novel computer vision tool that tracks the melt pool in X-ray images of laser powder bed

fusion using attention modules. In essay 2, we present a mask-guided attention (MGA) clas-

sifier for COVID-19 classification on lung CT scan images. The MGA classifier incorporates

lesion masks to improve both the accuracy and interpretability of the model, outperform-

ing state-of-the-art models with limited training data. Finally, in essay 3, we propose a

Transformer-based model, utilizing self-attention mechanisms, for parameter estimation in

system dynamics models that outpaces the conventional system calibration methods. Over-

all, our results demonstrate the effectiveness of attention-based methods in improving deep

learning model performance and reliability in diverse applications.
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Their Applications in Computer Vision and Dynamical System Cal-
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Maede Maftouni

(GENERAL AUDIENCE ABSTRACT)

Deep learning, a type of artificial intelligence, has brought significant advancements to tasks

like recognizing images or understanding texts. However, the inner workings of these models

are often not transparent, which can make it difficult to comprehend and have confidence

in their decision-making processes. Transparency is particularly important in areas like

healthcare, where understanding why a decision was made can be as crucial as the decision

itself. To help with this, we’ve been exploring an interpretable tool that helps the computer

focus on the most important parts of the data, which we call the “attention module”. Inspired

by the human perception system, these modules focus more on certain important details,

similar to how our eyes might be drawn to a familiar face in a crowded room. We propose

three essays that utilize task-specific attention modules in manufacturing, healthcare, and

system identification applications. In essay one, we introduce a computer vision tool that

tracks a moving object in a manufacturing X-ray image sequence using attention modules.

In the second essay, we discuss a new deep learning model that uses focused attention on

lung lesions for more accurate COVID-19 detection on CT scan images, outperforming other

top models even with less training data. In essay three, we propose an attention-based deep

learning model for faster parameter estimation in system dynamics models. Overall, our

research shows that attention-based methods can enhance the performance, transparency,

and usability of deep learning models across diverse applications.
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Chapter 1: Introduction

Deep learning is a subfield of artificial intelligence that has made remarkable strides in recent

years, revolutionizing computer vision and natural language processing. Its groundbreaking

performance has revolutionized tasks such as image classification, video segmentation, and

captioning in computer vision, while in NLP, deep learning has enabled machines to process

human language with remarkable accuracy and efficiency, achieving significant advance-

ments in tasks such as machine translation, sentiment analysis, question-answering, and

text summarization. These achievements have opened up new possibilities for developing

cutting-edge technologies that have the potential to impact various industries and fields.

Despite the remarkable results that deep learning methods have achieved in various domains,

their black-box nature presents a significant limitation. This characteristic makes it chal-

lenging to interpret how the models arrive at their decisions, raising concerns about the

reliability of the models, especially in critical healthcare applications where transparency

and interpretability are crucial.

In an attempt to address the interpretability limitation of deep learning, novel complemen-

tary techniques such as saliency mapping and feature visualization, have been proposed. By

visualizing the pixel locations that majorly contribute to the decision, these techniques aid in

understanding deep learning’s prediction logic and resolving failure modes. Nonetheless, it is

important to note that these techniques primarily serve as visualization tools for the predic-

tion results of deep learning and do not create a meaningful, human-like focusing behavior

in the learning process. Improving the focus can be achieved by attention-based methods

inspired by the human perception system, assigning higher weights to specific surrounding

attributes important for decision-making.

Attention-based methods first emerged in the field of natural language processing, where they

1



Introduction 2

were used to improve the performance of recurrent neural networks by selectively attending

to different parts of input sequences. Since then, attention-based methods have become

a powerful technique to improve the performance of deep learning models in a variety of

tasks, particularly those involving long sequences or variable-length inputs. These methods

generate attention-aware features that focus on the most informative parts of the input

data, leading to improved accuracy and robustness of the models. Moreover, attention-

based methods create attention maps that resemble human attention behavior, enhancing

the interpretability of deep learning models by providing valuable insights into the regions of

input that contribute most to the model’s decision-making process. Overall, attention-based

methods offer a promising approach to improving both the performance and interpretability

of deep learning models in a range of applications.

Our three-essay dissertation investigates the effectiveness of attention mechanisms for im-

proving prediction and modeling tasks across diverse domains. Specifically, we aim to deter-

mine how task-specific attention mechanisms can improve deep learning model performance

and reliability in diverse applications.

In Essay 1, we introduce a novel computer vision tool that leverages attention modules to

automatically track the melt pool in X-ray images of laser powder bed fusion. The melt pool

tracking task is challenging due to factors like high noise level, illumination fluctuation over

time, and lack of sharp image boundary between the molten pool and solid hot metal. We

propose a video object segmentation system to track the changing size melt pool in a highly

noisy background and improve the tracking accuracy through spatiotemporal attention mod-

ules. The tracked melting pool can then be used for understanding the thermomechanical

behaviors of the final manufactured product. We validate the effectiveness of our attention

mechanism through ablation studies on annotated X-ray image sequences from the additive

manufacturing inspection dataset. The impact of the added attention mechanisms on the
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general video object segmentation performance can be further investigated on the standard

benchmark datasets, such as DAVIS and YouTube-VOS.

The use of efficient computer-aided medical diagnosis has never been more critical, given

the global extent of Covid-19 and the consequent depletion of hospital resources. Artificial

intelligence (AI) powered COVID19 detection can facilitate an early diagnosis of this highly

contagious disease and further reduce the infectivity and mortality rates. The preferred

imaging option for COVID19 screening and diagnosis is computed tomography (CT). In

Essay 2, we present a robust COVID19 classifier on lung CT scan images. Our deep learning

model is a mask-guided attention (MGA) classifier that simultaneously learns to focus on

lesions to improve both the accuracy and interpretability of the model, outperforming state-

of-the-art models with limited training data. Additionally, we built a large and diverse Covid-

19 CT scan dataset by combining open-source datasets to improve the trained network’s

generalizability. Extensive experimental evaluations on the dataset illustrate the improved

performance and data efficiency of our proposed model. Future research could enhance the

proposed methodology by incorporating clinical and paraclinical examination results and

extending it to analyze CT scan volumes rather than slices.

System dynamics provides transparent models that facilitate human decision-making by

enabling the modeling of the behavior of a system. Calibrating the low-level parameter

values in dynamic systems is challenging due to complex nonlinear interactions. Despite the

extensive application and significant time demand of parameter estimation, there are limited

efficient and accurate tools for parameter estimation in system dynamics. In this regard,

in Essay 3, we propose a Transformer-based model, utilizing self-attention mechanisms, for

parameter estimation in system dynamics models. The approach can compete with the

conventional system calibration methods of Powell and Markov Chain Monte Carlo in terms

of accuracy while having a lower time requirement when used frequently. We provide a
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proof-of-concept example using the Epidemic modeling of Covid-19 and show the potential

of DL techniques in solving the inverse problem (parameter estimation) in SD modeling.

The proposed approach is especially promising when applied to large-scale complex models,

noisy data, and frequent calibration needs. Future work for the proposed DL-based calibrator

includes its transformation into a model-generic software package integrated into existing SD

software like Vensim, leveraging active learning to enhance implementation efficiency, and

studying the interpretability of the parameter estimation by exploring the model’s attention

using saliency techniques.

As summarized in Figure 1, the shared use of attention-aware deep learning models among

these essays explores the impact of attention-based learning in solving complex problems

across various fields, from additive manufacturing to medical diagnosis and system identifi-

cation. As attention-aware deep learning models continue to evolve, they offer a promising

solution to a diverse range of complex problems and hold significant potential for future

research and applications.

Figure 1: A high-level overview of dissertation chapters.



Chapter 2: Attention-Aware Melt Pool Video

Segmentation

Abstract

Laser powder bed fusion (LPBF) is the most extensively used technique for metal additive

manufacturing (AM). In LPBF, a laser is used to heat the metal powder sufficiently to

form a molten pool, known as the melt pool. The size and shape of the melt pool play

a critical role in determining the microstructure in additively manufactured metals. High-

speed X-ray imaging has been used to study the subsurface melt pool phenomena in real

time. The melt pool segmentation in X-ray images is challenging due to the high noise level,

change in illumination over time, and lack of sharp image boundary. The typical methods

to segment the melt pool boundary from X-ray data include manual annotating, which is

time-consuming, and basic image processing techniques, which lack sufficient accuracy and

robustness to noise. This paper implements a video object segmentation (VOS) deep learning

model to automatically segment and track the melt pool in the X-ray image sequence for

the first time in the literature. The proposed model is semi-supervised, only requiring the

manual annotation of the melt pool boundary at the first frame to predict it for the rest

of the video. The proposed model incorporates spatiotemporal attention modules to learn

the correlations in X-ray image sequences effectively. The experimental results indicate that

adopting attention modules improves the melt pool segmentation accuracy. Furthermore, by

only training the model on single spot melt printing, our proposed method shows excellent

extrapolation results when testing on data from other scan cases, such as linear scan printing.

5
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1. Introduction

Metal additive manufacturing (AM) technologies have become an emerging technique to

produce complex, functional components in small runs. Laser powder bed fusion (LPBF) is

a common AM technique that has many applications in biomedical, aerospace, automobile,

and defense [1]. Specifically, a part is printed layer-wise during the LPBF process, and

each layer is filled with either hatch patterns by line scanning laser or random patterns by

spot melting laser. The former is the current general practice, and the latter is a newly

emerging technique that can create a preferred microstructure [2]. LPBF is complex by

extreme thermal conditions from repeated layer-by-layer melting, cooling, and solidification.

The complex nature of the LPBF process makes mathematical modeling of the relationship

between controllable parameters and printing quality infeasible. The practical solution is to

monitor the laser keyhole’s interactions with the surrounding material and previous layers in

realtime. To that end, different types of vision and thermal cameras such as Charge-coupled

device (CCD), complementary metal-oxide-semiconductor (CMOS), 3D scanner, High speed

or high-resolution IR camera, DIC, X-ray, and fiber optics are used for additive manufac-

turing in-situ monitoring. Figure 2 shows one of our lab’s setups for LPBF monitoring.

The molten metal region generated by laser irradiation on the powder bed surface is referred

to as a melt pool. In the literature, there are different types of in-situ monitoring systems

to study melt pool dynamics. The formation, behavior, and solidification of the melt pool

impact the material microstructure and, thus, greatly influence the resultant properties and

performance of the AM parts [3]. For example, the defects such as porosity, rough surface,

residual stress, and phase grain structures in the finished parts may relate to melt pool

geometries [4]. Therefore, it is vital to characterize the size and shape of melt pools during

laser melting.
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Figure 2: The LPBF layout with Multi sensing capabilities in our lab.

The imaging equipment can capture the melt pool’s size, shape, consistency, and temperature

distribution. This information helps to identify the uneven melt pool, unfocused laser power,

and material powder contamination. High-speed visible cameras [5, 6], and infrared (IR)

cameras [7] are conventional in-situ characterization tools. However, as depicted in Figure 3,

they can only capture the surface of the melt pool since they cannot measure the interior of

parts. LPBF is a rapid melting and cooling process (around 1000 mm/s in line scan mode and

0.5-2 ms dwell time in spot melting mode [2]), and the melt pool is relatively small (typically

less than 200 µm in width or diameters). This brought tremendous challenges to in-situ melt

pool monitoring due to the limited speed and spatial resolution, as well as the inability to

measure the melt pool interior of the sensors. Synchrotron X-ray imaging is a unique in-situ

technique to observe the solid-liquid interface beneath the surface of the melt pool during

laser melting. Figure 4(a) shows one unprocessed X-ray image using the high-speed X-ray

imaging system of the Advanced Photon Source (APS) at Argonne national laboratory. Due
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to the low-density difference between solid and liquid phases, it is also challenging to identify

the solid-liquid interface in the X-ray image, as shown in Figure 4(a).

Figure 3: Imaging the surface temperature by IR camera vs the part’s interior by X-ray [2].

Some preprocessing techniques [2, 8, 9] were applied to enhance the melt pool boundary

before its annotation. For example, the processed X-ray image in Figure 4(b) is obtained by

subtracting the X-ray image captured four frames earlier from the current one, followed by

contrast enhancement. This operation can enhance the melt pool boundary, as marked in red

in Figure 4(c), which can be more easily detected in the preprocessed image. However, the

improved boundary contrast comes at the expense of more noise being introduced, which

challenges boundary detection and segmentation accuracy. Therefore, there is a need for

fast, accurate, and automatic segmentation methods for melt pool boundary detection. To

this end, this paper develops a deep learning model capable of melt pool segmentation from

highly noisy and low-contrast X-ray videos.

Figure 4: (a) Unprocessed X-ray image monitoring the melt pool; (b) Processed X-ray
image; (c) Processed X-ray image with the manually annotated solid-liquid interface (Yellow
rectangle boxes in (a-c) are the regions of the melt pool, the red boundary in (c) is the
solid-liquid interface) [10].
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Although image analysis automation for monitoring similar tasks such as laser welding has

been studied in the past [5, 11, 12, 13], manual annotations and image interpretation are the

typical choices in current industry practice, which is time-consuming and highly subject to

human errors. This essay aims to improve the accuracy and speed of melt pool segmentation

on X-ray images. For that purpose, we propose a semi-supervised deep learning structure

capable of object segmentation from highly noisy and low contrast videos. Video-based

segmentation algorithms have several theoretical advantages over image-based algorithms,

incorporating both the video’s spatial and temporal information.

The use of deep learning segmentation to make melt pool extraction automatic has not

been investigated on LPBF X-ray images to the best of our knowledge. This is the first

work on attention-based deep semantic segmentation in additive manufacturing, while the

popular implementations are in the medical field, augmented reality, and self-driving cars.

Concretely, the main contributions of our paper are as follows:

1. A novel automatic melt pool segmentation model is developed to facilitate the melt pool

boundary detection in an X-ray sequence. The proposed method is a semi-supervised

video object segmentation (VOS) that utilizes the spatiotemporal attention modules

to effectively track the melt pool in both spatial and temporal domains.

2. The case study indicates that our model is robust to noise and can extract the melt

pool accurately. Furthermore, by only training on single spot melt printing X-ray

videos, our proposed method shows excellent extrapolation performance when testing

the melt pool data with different scan cases, such as linear scan printing.

The next section will cover the related work to additive manufacturing segmentation and

state of the art in video object segmentation. Next, I will present the dataset used in our

study, our proposed segmentation method, and the results.
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2. Related Works

In the following subsections, the related literature on melt pool monitoring and video object

segmentation, aligned with the topic of melt pool segmentation, is reviewed.

2.1 Melt Pool Monitoring

Studies show a strong correlation between the solid/liquid boundary velocity and material

microstructure [14]. The microstructure is directly correlated with the material’s mechanical

properties such as hardness and yield strength [15]. Therefore, segmenting out the melt pool

streamlines the subsequent analysis of structural evolution during the laser-metal interaction.

In most previous related papers, the melt pool is monitored from CCD/CMOS axial melt

pool images through binary thresholding or machine learning methods [5]. CCD and CMOS

are less costly than other imaging equipment and can capture light in the visible range and

only above the powder bed surface. On the other hand, to observe the melt pool solid/liquid

boundary velocity, high-speed (over 10 kHz) and high-spatial-resolution (2 µm) X-ray is

needed because the melt pool cooling time is short (less than 0.5 ms) and the size is small

(less than 200 µm in diameter). As depicted in figure 5, segmentation of melt pool from side

view X-ray images provides information on the melt pool morphology, melt flow velocity,

keyhole dynamics, powder ejection velocity, and solidification rate. Therefore, there is a high

demand for rapid, reliable, and automatic segmentation methods that can in turn improve

the workflow efficiency in material science discovery of additive manufacturing processing.

The common practice for melt pool characterization and monitoring in X-ray data applies

image processing techniques [1, 4, 8, 9]. Zhao et al. [4] studied LPBF X-ray images to find

the characteristics of conduction and keyhole melting modes and how they are related to

laser power. They used simple image processing techniques such as dividing the images by

the frame at time zero (when no melting occurs) for contrast enhancement. The authors
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Figure 5: Visualization of melt pool morphology, solidification rate, generation of keyhole
pore, melt flow velocity, and powder ejection velocity on X-ray images [1].

then used the image intensity profile for melt pool segmentation approximation and the fast

compressive tracking technique for finding the powder ejection trajectory. [8] used X-ray

images from the LPBF process to investigate the property variation of parts produced under

constant input energy density. The authors showed the separate role of scan speed and

laser power in shaping the melt pool, basing their analysis on the average melt pool length,

width, and depth under different settings. ImageJ software was used to enhance the contrast

of the solid-liquid interface by dividing frames. They characterized four melt pool modes: no

melt pool, conduction, transition (or shallow depression), and keyhole (or deep depression),

showing that depression zone depth is connected to laser power and its width depends on

scan speed.

Image processing techniques for edge detection employ user-defined algorithms, which are

tailored methods devised or selected by users to adeptly tackle challenges such as noise,

varying contrast, and object complexity. These algorithms demonstrate considerable sensi-

tivity to parameter choices and are highly dependent on the particular application context.

Additionally, they are not robust to the low and variable edge contrast, low signal-to-noise

ratio, and discontinuities of image edge. On the other hand, the recent deep learning seg-

mentation techniques make it possible to directly learn a robust set of visual features for the

task and require less fine-tuning of hyper-parameters. However, melt pool edge detection is
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challenged by the low-density difference between the liquid and the solid, resulting in low

edge contrast. Therefore, there is a need to streamline the melt pool segmentation and

tracking by an automatic computer vision tool.

So far, the deep learning-based melt pool segmentation has not been widely investigated on

LPBF X-ray images. However, some work has applied the machine learning approach in their

melt pool analysis of other image types. For example, Ref. [5] presented a machine learning-

based in-situ melt pool classifier on visible light high-speed camera images. The authors used

Scale Invariant Feature Transform (SIFT) for feature extraction and Histogram of Oriented

Gradients (HOG) to build visual fingerprints for both spatters and melt pools, and SVM

for classification of melt pool appearances. They note that improved representation learning

is possible using Deep Learning techniques. pools. Ref. [16] developed a deep learning-

based melt pool classification method to predict melt pool size. Based on a convolutional

neural network, a classifier was trained with melt pool images captured from a high-speed

camera. In [7], the melt pool boundary was extracted on the coaxial infrared images using

the temperature gradient distribution of Ti-6Al-4V. Then, the average melt pool width was

predicted based on the extracted melt pool. They denoised their highly noisy images using

Fast non-local means. [17] presented a convolutional neural network to predict laser power

on high-speed camera melt pool image. Khanzadeh et al. [18] proposed in-situ monitoring

of melt pool thermal profile images for porosity prediction. They clustered melt pools based

on the similarity of their thermal distributions, and mark the cluster with a small number

of melt pools as the anomalies, assumed equivalent to the microstructure anomalies.

2.2 Video Object segmentation

Convolutional Neural Network (CNN) has been revolutionary in the computer vision field,

first proved successful in the image classification task. CNN is composed of two main parts:

representation learning (feature extraction) and fully connected layers for classification. CNN
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is powerful because it can automatically learn the most relevant features at different levels of

representation. These features can be fine-tuned for tasks other than classification, including

object detection and segmentation.

Semantic segmentation can be thought of as a dense pixel-wise classification. The challenge

in semantic segmentation is that it requires classification, localization, and exact boundary

detection all at the same time. Classification should be transformation-invariant while lo-

calization should be transformation-sensitive [19]. This contradictory network requirement

makes semantic segmentation more challenging than either of the tasks.

Long et al. paper [20] on Fully Convolutional Network (FCN) sparked a breakthrough in

image semantic segmentation exceeding the state-of-the-art accuracy and computational ef-

ficiency. They formulated the dense feature extractor idea in [21] to substitute the fully

connected portion of CNN with convolutional layers to make large feature maps. The fully

convolutional network will keep spatial information and learns the representation that suits

the pixel-wise dense prediction task. The FCN network structures often consist of two parts:

the encoder that successively reduces the feature map’s spatial dimension to learn the con-

textual features and the decoder that gradually reconstructs the segmentation mask image

through the upsampling and deconvolution layers. To retain fine features and location infor-

mation lost in the feature extraction process, skip connections connects the corresponding

convolutional layers between the encoder and the decoder.

One-Shot Video Object Segmentation introduced by S. Caelles et al. [22], is the first FCN

architecture used for video object segmentation and has inspired many following works in

recent years. One-shot VOS is a semi-supervised segmentation approach that proposes to

train an FCN on the general task of separating the foreground object from the background

and then fine-tune the trained model for a specific object we are interested in at the test

time. The trained model will be further trained (fine-tuned) on the first frame of its ground
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truth mask (hence the name one-shot) and then tested on the rest of the sequence. The

user is free to choose the trade-off between accuracy and speed by selecting the level of fine-

tuning. They simplify video segmentation into processing frames independently without the

explicit use of time information. They argue that this approach avoids propagating errors

temporally, especially in occlusions and abrupt motion.

Recent advancements in computer vision, potential applications in self-driving cars, aug-

mented reality, and the appearance of publicly available annotated benchmark datasets

(such as SegTrack (2013), DAVIS (2016, 2017), and Youtube-VOS (2018)) have led to a

surge of interest in Video Object Segmentation (VOS). These segmentation challenges aim

at separating an object of interest from the background in an entire video as accurately as

possible. Video Object Segmentation can be categorized from different aspects into semi-

supervised (given the first frame ground truth mask)[22, 23, 24, 25, 26, 27] vs. unsupervised,

Considering the temporal dimension vs. processing frames independently [22, 26, 28], fully

end-to-end trainable vs. requiring post-processing, multiple vs. single object segmentation,

and relying on object proposals vs. attention-based.

The simplified approach to VOS is to segment the object in each frame separately. U-Net

architecture [30] is a widely used light-weight image segmentation network, mainly applied in

the medical field. U-Net has skip connections between the encoder and decoder to combine

low-level location and higher-level semantic information and give a more precise pixel-level

localization. U-Nets offer good performance even on low contrast noisy images. They also

have lower training data requirements and use GPU memory efficiently [31]. Using the

convolutional part of a pretrained on ImageNet classification network such as VGG-11 (

depicted in Figure 6), VGG-16, and ResNet [29, 32] as the encoder has proven successful to

improve performance and reduce the required data.

While early VOS work did not consider the video’s temporal aspect, different approaches
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Figure 6: U-net with VGG-11 encoder (pre-trained on ImageNet)[29].

have been proposed to leverage temporal information. In [33, 34, 35], optical flow models

temporal dependencies, which slows down the computation. Alternatively, 3D convolutional

[36] and Recurrent Neural Networks (RNNs) [37, 38], can learn spatio-temporal features

from the video sequence in an end-to-end manner.

An alternative approach to incorporate temporal information is to propagate some of the

previous frames and their predicted masks as an additional resource for current frame mask

prediction. Figure 7 illustrates possible approaches to VOS from the perspective of learning

from previous frames. One approach (Figure 7(a))) is only to propagate the last predicted

mask as a guide to gain temporal coherence [24, 39]. The problem in such approaches is error

propagation. Next approach (Figure 7(b))) is to use the first frame to guide object detection

[22, 40]. In contrast to the previous one, this method cannot work when there is a drastic

change in object appearance over time. Using both the previous and first frame as a guide
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for object mask in the current frame has been proven successful in [27, 39] (Figure 7(c)),

improving accuracy and reducing the run time. They reached temporal consistency while

avoiding error propagation in time by consolidating mask propagation with representation

learning by using both the last predicted mask and the first frame embedding for the current

frame mask prediction. The most recent trend is to use the memory from more frames

(possibly all the frames) (Figure 7(d)). This approach uses spatio-temporal attention to

decide which frames, and where inside those frames, are the most relevant for the current

frame segmentation.

Figure 7: Comparing possible approaches to VOS based on the use of previous frames [41].

There exists an emerging trend of incorporating the attention mechanism in the area of image

semantic segmentation [42, 43] as well as video object segmentation [44, 45]. The attention

mechanism’s successful implementation first emerged as an additional weight module over

the encoder decoder-based neural machine translation system in natural language process-
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ing (NLP) [46, 47]. Focusing on specific regions is a desirable feature in many applications

and is consistent with the human selectively attending perception generated in the pre-

frontal cortex. After showing promising results in NLP, various attention mechanisms were

quickly adopted in image captioning, action recognition, and generative adversarial network.

Attention mechanisms were used inside convolutional networks in [48, 49]. In the video

object segmentation, the commonly used attention mechanisms can be categorized into four

approaches: co-attention (capture the correlation across different frames) [45], spatial atten-

tion (prioritization of an area within the visual field and overlooking the background clutter)

[44, 50], Channel Attention (for selecting semantic attributes such as motion information)

[51], human visual attention (using human visual gaze with eye-tracking)[52], and temporal

attention (directing attention to specific point in time) [41].

Given the excellent performance of VOS, we propose a semi-supervised deep learning struc-

ture capable of melt pool segmentation from highly noisy and low-contrast X-ray videos.

The locality of features, high noise level, and lack of sharp melt pool boundary, especially at

the end of the video, call for well-focused and spatiotemporal attention-aware features. In

the rest of this essay, our new semi-supervised mask propagating video object segmentation

framework, incorporating attention modules, is presented and applied for melt pool tracking.

3. Our Dataset

The X-ray data used in this work were collected at the 32-ID-B beamline of the Advanced

Photon Source (APS), Argonne National Lab [53]. APS is a synchrotron facility that can

generate powerful X-ray irradiation for high-speed in-situ monitoring. Beamline 32-ID-B is

equipped with a laser powder bed fusion simulator that can perform single-layer melting.

During the experiment, a YAG laser beam with 1070 nm wavelength was shot on the top

of a 3 mm (H) × 50 mm (L) × 0.5 mm (T) sample made of Ti-6Al-4V (Ti 64) to simulate

the selective laser melting (SLM) process. At the same time, the X-ray beam was projected
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through the thickness side of the sample to monitor the melt pool generated by the laser.

The X-ray can distinguish the melt pool and substrate because the density between the liquid

and solid material is different. After penetrating the substrate, the X-ray then illuminates a

scintillator, and the resulting pattern is collected by a high-speed camera with 2µm spatial

resolution at 70 kHz [2].

Table 1 specifies the dataset split between training, validation, and testing used in Section

5. The method uses single spot melt videos for training. We included the line scan videos

in the test split to assess the generalizability of our model. Additionally, data augmentation

methods, including random flipping, random cropping, and reversal of the sequence, are

applied to the training set to avoid overfitting.

Table 1: Number of images from each of the classes in each of the splits.

Train Validation Test

Type Video Frame Video Frame Video Frame

Single Spot Melt 9 1,001 1 129 2 147
Line Scan - - - - 2 408

4. Method

The overall proposed methodology consists of two steps, as outlined in Figure 8. Step 1

(Section 4.1) applies a set of preprocessing steps on the image sequence to improve the melt

pool edge contrast. Step 2 (Section 4.2) develops a segmentation model to track the melt

pool in the processed X-ray image sequence.

4.1 X-ray Frames Preprocessing

The preprocessing step aims to enhance the melt pool boundary contrast as it is barely

visible in the original x-ray image. As illustrated in the upper part of Figure 8, we are

applying the following five transformations on the raw X-ray frames:
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Figure 8: The two main steps of the proposed method.

1. Divide by First frame: all images in the sequence are divided by the first frame (back-

ground frame) to enhance the melt pool features.

2. Frame Subtraction: For each image Xt at timestep t from Step 1, the new image is

obtained by the subtraction operation, namely, Yt = Xt −Xt−4, with the 4-frame lag

determined through ablation studies for optimal performance.

3. Normalization: All the Yt frames have their pixel values normalized between 0 and 1.

4. Histogram Equalization: Histogram equalization is applied on under-exposed and low-

contrast images to gain a higher contrast by stretching out the image intensity range.

5. Filter Protection Gas Area: In the absence of physical filtering, a thick metal piece

that blocks the X-ray, the protection gas area filtering, should be applied to the image.

The procedure involves several common image processing techniques that are aimed at im-

proving image quality and extracting relevant information from the images. These techniques

include dividing the image sequence by the first frame to enhance contrast, frame subtrac-
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tion to highlight changes over time, normalization to standardize pixel values, histogram

equalization to enhance contrast, and filtering to remove artifacts. These techniques are

widely used and proven effective in various image processing applications.

4.2 Melt pool Segmentation in the X-ray Video

Segmentation may be thought of as a pixel-wise classification that performs object local-

ization and boundary detection tasks simultaneously. As shown in Figure 8, the melt pool

segmentation model takes the preprocessed X-ray image sequence from the first step and

the melt pool segmentation mask of the first frame, annotated by the user. Therefore, our

proposed segmentation model is a semi-supervised model that allows high prediction perfor-

mance from a small amount of training data. Inspired by [39], our melt pool segmentation

model, shown in Figure 9, employs a Siamese encoder-decoder network structure consisting

of the following components.

4.2.1 Siamese Encoder

The Siamese encoder consists of two identical ResNet50 networks. The upper stream is the

target stream, taking the current frame and previously predicted mask as the input. The

previous masks are from the earlier predictions of the model, except the first frame, which

is the ground truth. The lower stream is the reference stream, taking the first frame and its

corresponding mask as the input. These two streams help the model simultaneously learn

from both the previously predicted and the first frame masks. The encoder weights are

initialized from the ImageNet pre-trained model. They are modified to take four channels

(three of them from the frame image and one from the mask) at the first convolution. Each

stream consists of 5 residual blocks that spatially downsample its input and learn more filters,

according to the scales and number of channels denoted in Figure 9. The feature embedding

at a scaled-down image size can localize the melt pool, while fine edges are better captured

at a scaled-up image size.
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Figure 9: Attention-based reference-guided mask propagating video object segmentation

4.2.2 Co-Attention Module

The Co-Attention module [45] learns to encode the correlations between the resultant embed-

ding tensors from the flattened target (Va) and reference (Vb) representations and leverages

their similarity matrix (S) to encode their correlations. Specifically, the co-attention module

encodes the correlations between Va and Vb and outputs the co-attention enhanced feature

as follows:

S = V T
b WVa = V T

b P−1DPVa (1)

Sc = Softmax(S) , Sr = Softmax(ST ) (2)

Za = VbS
c , Zb = VaS

r (3)

where W is a square weight matrix decomposed into an invertible matrix (P) and a diag-
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onal matrix (D). Co-attention takes the two encoder branches’ feature maps, Va and Vb

and learns their correlations (S, Equation 1). The similarity matrix S is then normalized

row-wise (Sr) and column-wise (Sc) with a Softmax function to generate attention weights

(Equation 2), and multiplied by the flattened embedding tensor (Va, Vb) to generate the

co-attention enhanced features (Zb, Za) (Equation 3).

4.2.3 Global Convolution Block

The global convolution block (GCB) [19] performs the global feature matching to localize

the object in the current frame. GCB utilizes a combination of 1×k + k×1 and k×1 + 1×k

convolutional layers to enlarge the receptive field for better localization.

4.2.4 Decoder

Finally, the decoder, consisting of attention blocks [31], produces the target mask. The

attention block amplifies and upsamples the object mask’s relevant features and details by

combining the GCB output with skip-connected target encoding at three scales. Finally, a

convolutional layer produces the current frame mask prediction from the output of the last

attention block. The final predicted mask is 1/4 of the image size. Improving the output

resolution can improve the melt pool edge and is a future direction to be considered.

Instead of the commonly used cross-entropy loss function (Equation 4), we have used Lovasz-

Softmax loss function ([54], Equation 8). Cross entropy loss evaluates the class predictions

pixel-wise and outputs their average:

CE Loss(f) = −1

p

p∑
i=1

logfi(y∗i ) (4)

fi(c) = Softmax(Fi(c)) =
eFi(c)∑

c′∈C eFi(c)
∀i ∈ [1, p], ∀c ∈ C. (5)

Where f represents fi(c) a vector of Softmax normalized class probabilities outputted by

the network(Equation 5), p denotes the number of pixels, y∗i is the ith pixel’s ground truth
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class in a given image, and fi(y
∗
i ), is the probability assigned to the correct pixel’s class.

Jaccard index or intersection-over-union (IOU) is a segmentation performance measure.

Given the vector of ground truth y∗ and predicted ỹ labels, the Jaccard index of class c

and its corresponding risk function are defined as in Equations 6 and 7. Equation 8 is

Lovasz-Softmax loss function, which is the continuous and convex surrogate function of the

Jaccard index. mi(c) is the per-pixel errors and ∆ is the tight convex closure of ∆. Jaccard

is chosen here for its superior performance, especially for small objects.

Jc(y
∗, ỹ) = −|{y∗ = c} ∩ {ỹ = c}|

|{y∗ = c} ∪ {ỹ = c}|
(6)

∆Jc(y
∗, ỹ) = 1− Jc(

∗, ỹ) (7)

Lovasz-Softmax loss(f) = 1

C

∑
c∈C

∆Jc(m(c)) (8)

mi(c) =


1− fi(c), if c = y∗i ,

fi(c), otherwise
(9)

5. Results

Figure 10 provides the qualitative comparison of the predicted masks on a test video se-

quence. The ground truth masks are obtained by manually marking the visible boundary

of the melt pool in the X-ray images using an image annotation tool. To evaluate the ef-

fectiveness of our proposed attention-based model, we compared its performance with the

Reference-Guided Mask Propagation (RGMP) model proposed in [39], as the base model

without the attention and co-attention modules. To further examine the impact of the at-

tention module, we performed an ablation study by modifying the RGMP architecture with

two changes: replacing the refinement modules with attention blocks and incorporating the

co-attention module before concatenating the embeddings of the two branches.We observe
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Figure 10: The melt pool segmentation results of different networks over the video sequence

that, our proposed model with co-attention and attention blocks generate masks that more

closely resemble the ground truth masks, as shown in Figure 10. Additionally, quantitative

metrics, such as the IOU (Equation 10), Dice coefficient (Equation 11), and frame per second

(FPS), are used to benchmark the models’ performance, which are averaged over the test

set and summarized in Table 2. Our experimental results confirm that incorporating the

attention module in our proposed model leads to improved melt pool boundary prediction

capabilities compared to the baseline models.

Jaccard Index =
TP

TP + FP + FN
(10)

Dice score = 2× TP

(TP + FP ) + (TP + FN)
(11)

All the model were trained using an Adam optimizer with a learning rate of 1e-5 and trun-

cated back-propagation through time (BPTT) with step 5 and length 25. We used a batch
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Table 2: Melt Pool segmentation performance Comparison (the best performance in each
metric is in red).

Model IOU (%) Dice (%) FPS

RGMP Model [39] 71.39 82.67 60
RGMP Model with Attention Block 77.44 86.93 56
RGMP Model with Co-Attention and Attention Block (Proposed) 78.29 87.60 55

size of 1 and trained the network for 100 epochs, saving the weights with the best validation

IOU performance. These hyperparameters are tuned using Bayesian Optimization. We used

1 NVIDIA GeForce RTX 2080 Ti GPU and Pytorch library to train our models.

Figure 11: The melt pool segmentation results over a line scan video sequence

Our results show the high accuracy and speed of our proposed deep learning network for

melt pool segmentation from highly noisy and low contrast X-ray videos for the first time.

Our video-based segmentation model’s high performance results from incorporating both

the spatial and temporal information in the video. Additionally, our model shows a good

generalization performance when tested on a video sequence from a different experimental

setup. Specifically, Figure 11 shows the segmentation results of our method on the video of

3D printing using a line scan. Even though our model has been trained on single spot melt

videos, it could successfully extrapolate to predict the melt pool in the line scan videos.



Conclusion and Future Direction 26

Figure 12: The velocity maps calculated from the (a) ground truth and (b) prediction masks.

The proposed method can be applied to extract the solidification (Solid/liquid boundary)

velocity from the melt pool boundary and provide a reliable approach for microstructure

prediction. The melt pool boundary can be characterized by the lower part of the predicted

mask boundary. Since X-ray images are time-series data, we first use the ”locally weighted

scatter plot smooth” method from the Curve Fitting Toolbox in MATLAB to fit a 3D

surface. Next, the solidification velocity can be calculated following the same approach as

[4]. The velocity maps calculated from the ground truth mask and prediction mask are

shown in Figures 12(a) and 12(b), respectively. The two velocity maps look almost the

same visually. Cooling down velocity is pointed to the keyhole center in both cases.To

compare them quantitatively, relative root error (RRE), namely, ∥X−X̂∥
F

∥X∥F
, is used. The

RRE calculated based on the locations where both velocity maps have non-zero values is

0.0966. This result validates that using our predicted melt pool boundary can provide a

very close melt pool characterization as the work-intensive manual annotation.

6. Conclusion and Future Direction

Monitoring the melt pool’s size and shape is significant for the fabrication quality control

and microstructure prediction of complex parts through LPBF process. This essay presents

an automatic segmentation method to track the melt pool boundary in an SLM process

sequence of X-ray images. The speed, accuracy, and robustness of our proposed automatic
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segmentation method can significantly improve workflow efficiency in additive manufactur-

ing analysis. Our method utilizes a semi-supervised VOS approach that only requires the

melt pool annotation in the first frame to segment the melt pool boundary throughout the

X-ray sequence. Our proposed network incorporates the first frame and the previous frame

embeddings in output mask prediction in tandem. The promising performance and gener-

alization of our proposed method demonstrated the significant potential of using the VOS

recent advancements for additive manufacturing.

The future work includes investigating the impact of the encoder backbone choice and incor-

poration of plug-in modules (such as Atrous Spatial Pyramid Pooling (ASPP) and feature

pyramid network (FPN)) on the video object segmentation performance, resolution, and

speed. The work can also be expanded to simultaneously segment the melt pool on IR and

X-ray images, to correlate the melt pool shape with the thermal characteristics in real time.
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Chapter 3: A Mask-guided Attention Deep Learning

Model for COVID-19 Diagnosis based on an Integrated

CT Scan Images Database

(This chapter draws from the paper “A Mask-Guided Attention Deep Learning Model for

COVID-19 Diagnosis Based on an Integrated CT Scan Images Database” by Maftouni, M.,

Shen, B., Law, A. C. C., Yazdi, N. A., Hadavand, F., Ghiasvand, F., and Kong, Z., published

in IISE Transactions on Healthcare Systems Engineering (2022): 1-18.)

Abstract

The global extent of COVID-19 mutations and the consequent depletion of hospital resources

highlighted the necessity of effective computer-assisted medical diagnosis. COVID-19 detec-

tion mediated by deep learning models can help diagnose this highly contagious disease and

lower infectivity and mortality rates. Computed tomography (CT) is the preferred imaging

modality for building automatic COVID-19 screening and diagnosis models. It is well-known

that the training set size significantly impacts the performance and generalization of deep

learning models. However, accessing a large dataset of CT scan images from an emerging dis-

ease like COVID-19 is challenging. Therefore, data efficiency becomes a significant factor in

choosing a learning model. To this end, we present a multi-task learning approach, namely, a

mask-guided attention (MGA) classifier, to improve the generalization and data efficiency of

COVID-19 classification on lung CT scan images. The novelty of this method is compensat-

ing for the scarcity of data by employing more supervision with lesion masks, increasing the

sensitivity of the model to COVID-19 manifestations, and helping both generalization and

classification performance. Our proposed model achieves better overall performance than

the single-task (without MGA module) baseline and state-of-the-art models, as measured

35
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by various popular metrics. In our experiment with different percentages of data from our

curated dataset, the classification performance gain from this multi-task learning approach

is more significant for the smaller training sizes. Furthermore, experimental results demon-

strate that our method enhances the focus on the lesions, as witnessed by both attention

and attribution maps, resulting in a more interpretable model.

1. Introduction

The coronavirus pandemic has struck the world since late 2019, causing a global crisis and

countless deaths. As of January 11th, 2021, the World Health Organization has reported more

than 308.46 million confirmed cases and 5.49 million deaths due to this virus. Furthermore,

COVID-19 mutations have significantly constrained hospitals’ capacity resulting in delayed

care and increased risks for patients suffering from other critical conditions. COVID-19’s

global reach has brought together experts from a wide range of fields to combat the disease.

One of the ongoing research topics has been to improve the COVID-19 diagnosis. Early

diagnosis has two main benefits: (1) lowering the infectivity rate by isolating patients; and

(2) reducing the fatality rate through early intervention.

While the reverse transcription-polymerase chain reaction (RT-PCR) test, which falls under

the category of nucleic acid amplification tests (NAATs), has become the gold standard for

detecting COVID-19, it has drawbacks such as limited sensitivity to the new variants, short

supply of testing kits, and lengthy wait time for results [1, 2, 3, 4]. Alternatively, lung

computed tomography (CT) has proven to be a rapid and relatively accurate method of

detecting COVID-19 and severity assessment [2, 3, 4, 5]. Infected patients’ lung CT scans

may exhibit distinctive characteristics such as ground-glass opacification, bilateral involve-

ment, and diffuse distributions [3, 4, 6]. However, interpreting CT scans is a complex task

requiring extensive radiology expertise. The number of radiologist experts is limited, and

they face a heavy workload during an outbreak, increasing the risk of human errors. There-
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fore, transferring expert knowledge into intelligent models is valuable in order to improve

healthcare accessibility, reduce the medical specialists’ workload, and unnecessary exposure.

Deep learning has become one of the most extensively used approaches for building intelligent

models, which can learn the underlying representation of images and classify them in a time-

efficient manner. Notably, deep learning approaches have been successful for COVID-19

diagnosis in lung CT scans. [7] proposed an AI system that can identify COVID-19 markers

and lesion properties using an extensive CT database of 3,777 patients. [8] used a mix of CT

scans, lung, and lesion masks to train a COVID-19 diagnosis model leveraging multi-task

and self-supervised learning. [9] presented a fast, accurate, and fully automated method

for COVID-19 diagnosis from the patient’s chest CT scan images. There have been several

other studies on deep learning-based COVID-19 diagnosis [10, 11, 12, 13]. Most of the work

uses a single-task approach and devotes the learning model to only one task. On the other

hand, jointly learning multiple related tasks, namely, multi-task learning (MTL), has been

shown to overcome over-fitting and improve generalization by implicit data augmentation,

attention focusing, and regularization [14].

Despite the promising learning ability of deep models, the generalization power of the trained

network depends on the size, distribution, and quality of the training dataset. Inadequate

training datasets can easily lead to over-fitted deep learning models that cannot generalize

well on a new dataset. Some COVID-19 datasets have been made publicly available [8, 9, 15,

16, 17, 18, 19, 20]. [8] introduced the COVID-CT dataset, which includes 349 COVID-19 CT

images from 216 patients and 463 non-COVID-19 (a mix of normal cases and patients with

other diseases). [6] reported improving classification performance by categorizing negative

COVID-19 cases into specific groups and creating the COVID-19 CT Radiograph Image Data

Stock dataset with careful data split. [15] built an open-sourced dataset named COVID-CT-

MD, comprising COVID-19, Normal, and community-acquired pneumonia (CAP) cases. The



Introduction 38

COVID-CT-MD is accompanied by lobe-level, slice-level, and patient-level labels to aid in

developing deep learning methods. Notwithstanding, researchers continue to require more

data for deep learning models’ training in order to provide better insights and generalization

performance. To this end, our COVID-19 lung CT-scan dataset is curated from seven open-

source datasets.

Our proposed method applies a deep learning model with an attention module, which is

a state-of-the-art technique in machine learning, to improve the performance of COVID-19

detection. For an image input, the attention module infers the attention map, which is a

collection of pixel-level weights, to prioritize the image features by the level of importance for

the task [21]. It attempts to mimic human visual perception that focuses on specific locations,

objects, and attributes in the scene by filtering out irrelevant information. For example, an

expert radiologist knows precisely where to focus in a CT scan to find a particular pathology.

So, intuitively, the attention map learns which areas on the image are more relevant to the

performed task, such as medical diagnosis. The use of attention modules in deep learning

networks originated and proved successful in neural machine translation [22, 23]. Moti-

vated by this success and its consistency with human perception, visual attention modules

were adopted in different computer vision applications such as image captioning [24], visual

question answering [25], and image classification [26]. The Residual Attention Network in

[26] achieved state-of-the-art object recognition performance on several benchmark datasets

and showed improved robustness against noisy labels. Later, Woo et al. [21] proposed a

lightweight convolutional block attention module (CBAM) that could be integrated into any

convolutional neural network (CNN) architecture to infer and refine attention. They showed

that integrating CBAM inside various state-of-the-art CNN models improves the classifica-

tion and detection performance. Accordingly, CBAM is incorporated into our model for

enhanced performance through attention map learning and feature refinement.
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To summarize, the objective of this paper is to improve the generalization and performance

of COVID-19 detection deep learning models. Specifically, the main contributions of our

paper are as follows:

• A large and broadly representative lung CT scan dataset for COVID-19 detection is

built by curating seven open-source datasets. To the best of our knowledge, this is the

largest publicly available COVID-19 CT dataset, accompanied by patient metadata.

The dataset includes cases from 13 countries and has three classes: COVID-19, Normal,

and CAP. The dataset also consists of COVID-19 frames with corresponding lesion

masks merged from three of the datasets.

• A novel mask-guided attention (MGA) classifier for COVID-19 diagnosis is developed

that improves classification performance, data efficiency, and interpretability. Our

experimental results demonstrate the proposed method’s superior performance over

the baseline and improved focus on the COVID-19 lesions.

The remainder of this paper is organized as follows. In Section 2, a brief review of related

research work on COVID-19 diagnosis, lesion segmentation, MGA methods, and multi-task

learning is provided. Next, the proposed research methodology is summarized in Section 3.

Section 4 introduces our curated CT scan dataset. Our proposed MGA deep learning model

for COVID-19 diagnosis is detailed in Section 5, followed by the experimental results and

ablation studies in Section 6. Finally, the conclusions and future directions are discussed in

Section 7.

2. Related Work

The related works in deep learning-based COVID-19 diagnosis and lesion segmentation on

CT scans is reviewed first in Section 2.1. Next, the multi-task learning related to COVID-19

are introduced in Section 2.2. The research gap is identified in Section 2.3.
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2.1 COVID-19 Diagnosis and Lesion Segmentation on CT Scans

Deep learning has been the method of choice in most existing works on diagnosing COVID-

19 infection from CT scans [9, 10, 11, 12, 20]; owing to the success of deep learning methods

in image classification. [20] tested seven state-of-the-art deep classification models including

VGG-16 [27], ResNet18, ResNet-50 [28], DenseNet-121, DenseNet-169 [29], EfficientNet-b0,

and EfficientNet-b1 [30]. They integrated contrastive self-supervision [31] into the transfer

learning process to further improve the performance of deep classification algorithms. In

[9], a two-stage system was proposed for detecting COVID-19. The first stage filtered out

those CT frames in which the inside of the lung is not properly observable. At the next

stage, they applied a new feature pyramid network designed for classification problems using

a ResNet-50V2 baseline [28], allowing the model to investigate different resolutions of the

image and maintain the data from small objects. [10] proposed a light Convolutional Neural

Network design, based on the SqueezeNet model [32], for the efficient differential diagnosis

of COVID-19 CT scans from other community-acquired pneumonia infections and healthy

CT scans. [11] proposed a novel transfer learning-based and uncertainty-aware framework

for reliable detection of COVID-19 cases from X-ray and CT images. In [12], the attentional

convolution network [26] is proposed to focus on the infected areas of the chest so that the

network can provide a more accurate prediction. [33] proposed an optimized CNN model,

named OptCoNet, for the automatic screening of COVID-19 patients based on X-ray images

and used Grey Wolf optimizer for CNN hyperparameter optimization. [34] compared the

performance of five pre-trained convolutional neural network models (ResNet50, ResNet101,

ResNet152, InceptionV3, and Inception-ResNetV2) for COVID-19 classification on X-ray

images and reports ResNet50 to have the best overall performance. In [35], the human-

machine collaborative strategy is applied to design a deep convolutional neural network

tailored to detect COVID-19 on chest X‐ray images with improved sensitivity. They also
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introduce COVIDx, their large and public benchmark dataset of COVID‐19 X‐ray images.

Lesion segmentation is another task on CT scan images that is well suited for deep learn-

ing [36, 37, 38, 39, 40]. Generally, this task entails automatically predicting binary lesion

masks, assigning the same label to all types of lesions. The problem can be expanded to

the semantic segmentation of different types of lesions and within and outside lung regions

if a sufficient number of lesion-specific ground truth masks are available. Nonetheless, the

binary lesion masks are adequate for assessing the extent of involvement and manifestations

of the disease in the lung of a confirmed or suspected COVID-19 patient [41]. [36] proposed

to automatically segment ground-glass opacities (GGO) and areas of consolidation together

using a DenseUNet [42]. [37] proposed CovidENet: an ensemble of 2D and 3D CNNs based

on AtlasNet [43] for binary lesion segmentation and achieved human-level segmentation per-

formance in terms of Dice Score and Hausdorff distance. [38] proposed the NormNet, a

voxel-level anomaly modeling network to recognize normal voxels from possible anomalies.

A decision boundary for normal contexts of the NormNet was learned by separating healthy

tissues from the diverse synthetic “lesions,” which can segment COVID-19 lesions without

training on any labeled data. To focus more on the lesion areas, a novel lesion attention

module was developed to integrate the intermediate segmentation results.

2.2 Multi-task Learning (MLT)

In general, MTL is known as a machine learning approach that assimilates information

from correlated tasks to improve the generalization capability of the overall learning model

[44]. There are two approaches in multi-task learning: hard parameter sharing and soft

parameter sharing of hidden layers [14]. The hard parameter sharing is commonly found in

the literature, in which multiple tasks (networks) share some hidden layers while keeping

their separated output layers. Soft parameter sharing is when each task has its separate

model and respective parameters, but the parameters from the tasks are jointly regularized.
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MTL has been adopted for COVID-19 diagnosis improvement. [45] proposed end-to-end

multi-task learning to detect and assess the severity of COVID-19 cases with improved per-

formance using only a relatively small dataset of 1329 CT scans. [46] developed a multi-task

deep learning model with three tasks of classification, segmentation, and reconstruction from

chest CT images. [47] deployed a two-task deep learning model to identify COVID-19 cases

and quantify the disease severity. [39] developed a novel Joint Classification and Segmenta-

tion (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis. [40]

developed a dual-branch combination network (DCN) for COVID-19 diagnosis to simultane-

ously achieve individual-level classification and lesion segmentation. These papers reported

an improvement over the single-task benchmark models. Furthermore, multi-task learning

has improved the performance of smaller datasets more significantly [48, 49].

Another form of MTL is MGA models that extend the attention convolutional neural net-

works. The attention weights that the model assigns to each input element are generally

learned without dedicated supervision; therefore, they might also converge to irreverent

parts of the image for the task. For example, in classifying lung CT scans, the main focus

should be on the inside lung manifestations, and assigning high attention weights to outside

lung pixels is useless. Accordingly, recent research adopts extra supervision on attention

map training. For instance, [50] designed a contrastive attention model guided by binary

masks. It can generate a pair of body-aware and background-aware attention maps, which

can produce features of body and background for Person Re-Identification. [51] introduced

a novel MGA network that fits into popular pedestrian detection pipelines. The attention

network emphasizes visible pedestrian regions while suppressing the occluded parts by mod-

ulating full body features. [52] proposed an MGA model that provides auxiliary supervision

from predicted masks from a pre-trained segmentation model for discriminative and patchy

representation learning.
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2.3 Research Gap

The research gaps in the COVID-19 diagnosis approaches listed in Sec. 2.1 and Sec. 2.2 are

identified as: (1) most proposed COVID-19 diagnosis methods are single-task, which may

be more susceptible to over-fitting; (2) Training an accurate COVID-19 diagnosis model

requires a large amount of broadly representative sample data, which many of the existing

research efforts lack; and (3) Some COVID-19 diagnosis applications using a multi-task

approach demonstrated improved performance over the single-task model; however, their

models lack explainable choices of diagnosis results. In summary, there is a need for a

novel approach to improve the generalization, interpretability, and data efficiency of the

deep learning model for COVID-19 diagnosis applications. Therefore, in this work, a multi-

task COVID-19 detection model, jointly supervising the attention maps and class labels,

is developed to fill the aforementioned research gaps. The multi-task learning approach is

implemented through an MGA module integrated inside the COVID-19 classifier to supervise

its attention map with segmented lesions. Additionally, one of the strengths of our model is

that it is trained and tested on a more broadly representative dataset, which promotes its

generalizability.

3. Proposed Research Methodology

This work aims to develop a data-efficient deep learning model for COVID-19 diagnosis based

on chest CT scan slices, with good generalization and interpretability. The performance of

the deep learning model is highly dependent on the training data. However, a comprehensive

CT scans dataset for COVID-19 is not publicly available to the researchers in the current

literature. To fill this gap, a new CT scans dataset for COVID-19 is created and introduced

in Section 4.

A CT scan cross-section or slice is reconstructed from the measurements of attenuation
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coefficients (intensity reduction) of x-ray beams as it passes through the tissues. Tissues

with higher attenuation (such as bones) are bright, whereas tissues with little attenuation

(such as air and water) appear dark. Since a normal lung looks dark in the CT scan, the

abnormal increase in the attenuation in an inside lung area points at lesions related to

different diseases (e.g. COVID-19 or CAP). Radiologists have characterized the key lung

lesion patterns, or lesion types, for COVID-19 diagnosis. Our dataset contains the marking

of these patterns as follows,

1. ground-glass opacities (hazy gray opacities that do not obscure the underlying vessels),

2. consolidation (areas of increased attenuation that obscure the underlying vessels), and

3. pleural effusion (excess fluid build-up between the lung and chest cavity).

These patterns are revealed through the lesion annotations manually marked by radiologist

experts. As depicted in Figure 13, the lesion annotations are employed to derive the binary

lesion masks of each image. Namely, black pixels are non-lesion while white ones are lesions.

Therefore, in this paper, all different COVID-19 lesion types are combined as one type used

in the classification analysis for COVID-19 diagnosis.

Our idea is to fully utilize the available domain knowledge through the COVID-19 lesion

patterns to improve the deep learning model performance while lowering its data requirement.

The overall proposed model architecture, depicted in Figure 14, is a two-step approach:

• Step 1 (Section 5.1): A lesion segmentation model based on Hierarchical Multi-scale

Attention Network [53] (HMSANet) is implemented to automatically create lesion

masks for the images that radiologists did not mark with lesion masks since manual

marking is costly and time-consuming. The lesion masks are then used in the MGA

module to supervise the spatial attention map (created by CBAM in Step 2) for the

purpose of assigning higher attention weights to the pixels resembling lesions.
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Figure 13: Example of Deriving binary lesion mask from radiologist annotations on a chest
CT scan slice. (a) The chest CT scan slice (b) The radiologist annotation from [19]. Red,
yellow, and green colors indicate ground-glass opacities, consolidation, and pleural effusion
lesion types, respectively. (c) Semantic segmentation mask that maps non-lesion pixels to
black and assigns each lesion type to a different class (level of gray) (d) Binary (black and
white) lesion mask, after mapping all lesion types to the general category of lesions. Black
represents non-lesion, and white represents lesion.

• Step 2 (Section 5.2): The deep learning classification model is applied to classify the

input CT image, guided with the lesion mask generated in Step 1, and provides the

diagnosis result, namely, Normal, COVID-19, or CAP case. Our classification model

uses CBAM and MGA modules to enhance the model’s focus on lesion locations.

Particularly, the spatial attention map created by CBAM is guided towards the lesions

through the MGA module during training.

These two steps introduced above are integrated through the hard parameter sharing multi-

task learning model (namely, the share of some hidden layers). The first task, accomplished

through the MGA module, directly supervises the network’s attention map using the lesion
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Figure 14: The proposed method architecture with two main parts: Lesion segmentation
and classification

masks predicted in Step 1. The second task, implemented in the second step, applies super-

vision on the class predictions with the ground-truth class labels. This multi-task learning

model has the following advantages.

1. First, the increased focus on the lesion regions, which are the COVID-19 manifes-

tations, improves the accuracy of COVID-19 diagnosis and alleviates over-fitting by

lowering the effective dimensionality of the data.

2. Second, it lowers the training data requirement. Our experiments show that the pro-

posed model offers fewer training data sample requirements by utilizing additional

supervision through the lesion data.

3. Third, the model prediction is more interpretable and reliable when focusing on the

lesions instead of the entire image with many irrelevant parts to the illness.

4. Dataset Creation

CT scans show promise in providing COVID-19 screening and testing accurately and quickly

[8]. We created a large lung CT scan dataset for COVID-19 to aid in developing the diagnosis



Dataset Creation 47

models. The dataset includes curated data from [8, 9, 15, 16, 17, 18, 19]. Each of the

seven datasets is illustrated by an example image in Figure 15. These datasets have been

utilized publicly in COVID-19 diagnosis literature and have proven effective in deep learning

applications. As a result, the combined dataset is expected to increase the generalization

capacity of deep learning models by learning from all of these resources together.

Figure 15: (a) An example lung CT frame from the seven open-source datasets included
in our dataset; (b) Same images after initial preprocessing, including background removal,
cropping, and normalization on the foreground segment.

Our objective is to provide a large dataset of axial chest CT scan slices with three labels,

namely, (1) COVID-19, (2) Normal, and (3) CAP, together with their corresponding meta-

data and lesion masks if available.

Our study integrates seven public datasets of CT images from different sources across multi-

ple countries. In this regard, the datasets are quite heterogeneous in terms of the operational

parameters of the generation, resolution, and formatting (e.g., NIfTI, DICOM, TIFF, PNG,

and JPG). Some datasets consist of class labeled CT slices (CT scan cross-sections, also

referred to as frames or images). In contrast, Other datasets include 3D CT scan volumes

(slices stacked on top of each other) with slice-level annotations. Section ?? details the steps

to preprocess these heterogeneous datasets into our unified dataset of consistent format.

It should be noted that not all of the 3D CT volumes in the dataset were annotated with
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class labels at the slice level, and we worked with our radiologist to annotate the remaining

CT images. To ensure the dataset quality, we excluded the chest slices that do not carry

information about inside lung manifestations, as well as the adjacent slices with almost

identical appearances. Additionally, we removed images lacking clear class labels or patient

information. We have collected 7,593 COVID-19 images from 466 patients, 6,893 normal

images from 604 patients, and 2,618 CAP images from 60 patients in total. Our CAP images

are all from the dataset [15], in which 25 cases are already annotated. Our radiologist has

annotated the remaining 35 CT scan volumes.

Table 3 summarizes the number of frames from COVID-19 and normal classes, the availability

of specific metadata and masks, and the initial data format of each of the seven datasets.

As previously stated, all of the cases have patient ID, necessary for data splitting. As listed

in the table, three of the datasets have lesion masks [17, 18, 19], providing us with 2,729

COVID-19 lesion masks (36% of the COVID cases) to be used to train the mask segmentation

model, explained in Section 5.1. The distinct categories of lesions in [19] are mapped to a

binary lesion mask for consistency across datasets.

Figure 16 depicts multiple statistics from the dataset. The country and gender distributions

on the entire dataset are shown in the subfigures (a-b). Figure 16(a) indicates that the

cases come from 13 countries, with Iran, Russia, and China ranking first through third.

According to Figure 16(b) most of the cases are male, and this male dominance holds for all

Normal, COVID-19, and Cap classes. Figure 16(c) compares the age distribution of the three

classes and shows that all the age groups are represented in the dataset. The median age of

Normal, COVID-19, and CAP classes are 50, 49, and 59, respectively. Figure 16(d) compares

the prevalence of distinctive CT characteristics in the 796 COVID-19 cases with CT scan

reports, highlighting that ground-glass opacities, bilateral involvements, and consolidation

have frequently been reported. And patterns attributed to higher severity, such as diffuse
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distribution [54], are also present. These statistics indicate that the dataset population is

broad and representative, having cases from various ages, gender, nationality, and severity

groups.

Figure 16: (a) Country and (b) Gender distribution of images in our dataset (c) Comparison
of the three classes’ age ranges (d) The proportion of critical COVID-19 manifestations in
the available CT scan reports.

The combination of datasets from diverse sources may introduce heterogeneity in the re-

sulting dataset, thereby necessitating data preprocessing. To address this issue in our CT

COVID-19 dataset, we have implemented a data preprocessing approach, comprising two

steps.

• Convert all of the CT volumes data into labeled frames. For the CT volumes, we used

their slice-level annotations to extract the label of each frame. All the extracted frames

are then converted to 8-bit PNG file format for better uniformity and accessibility for
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the deep learning analysis. A few examples of extracted frames are shown in Figure 15.

• A series of image transformations have been applied, including background removal,

cropping lung area, image normalization, and resizing to 224 pixels by 224 pixels.

The background is removed to prevent artifacts and appearance differences between

datasets from impacting the COVID-19 diagnosis. The lung area is cropped out since

it is our region of interest. Figures 15 (a) and (b) are CT scans before and after

transformation, respectively. Image normalization and resizing are applied to create a

uniform style of different images.

This paper uses a random resized crop of scale (0.5, 1), random image rotation with a max-

imum of 10 degrees, and horizontal flipping with a probability of 0.5 for training set aug-

mentations.

5. COVID-19 Diagnosis Using Deep Learning with MGA

Model

This section presents the multi-task learning model using MGA in detail, consisting of two

steps (See Figure 14). Step 1: in Section 5.1, a lesion mask prediction model is implemented

based on the 2729 COVID-19 available lesion masks and then applied to generate the lesion

mask in all the images that were not annotated with lesions. Step 2: in Section 5.2, a

classification model is developed to classify if the input image is Normal, COVID-19 or

CAP. Additionally, the significance and method of interpreting the model predictions is

introduced in Section 5.3.

5.1 Segmentation Model for Lesion Mask Prediction

Semantic segmentation is to classify every pixel in the image into one of the classes of

interest. The problem in this paper is simplified to binary segmentation when the aim is to
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separate out a single class, namely, lesions. Segmentation may be thought of as a pixel-wise

classification that requires object localization and boundary detection at the same time.

Localization and boundary detection require different image resolutions and network recep-

tive fields (the extent of an image exposed to a single neuron within the model). Predicting

object location is better handled at a scale-down image size because the network’s recep-

tive field can observe more of the image context. In contrast, detecting fine edges and thin

structures is better handled at a scaled-up image size, leading to a smaller receptive field.

Therefore, multi-scale inference is an effective means to address both of these underpinning

segmentation requirements. The challenge is how to combine the multiple-scale predictions

effectively. The simplest way is to combine the results with averaging or max pooling. A

more effective approach is to find the weighted average of the multiple scale-level predictions

based on pixel-level weight maps learned within the model. HMSANet [53] uses the second

approach and hierarchically combines the multiple scale predictions using the learned weight

map, also called attention map. This model can learn the relative weighting between adja-

cent scales during training and enables the inclusion of other scales during inference on the

test images.

HMSANet is adopted in this study for the lesion segmentation because its multi-scale and

high resolution learning facilitates lesion localization and accurate boundary detection, es-

pecially as lesions appear in different sizes and shapes. Additionally, our results presented

in 6.1 shows that HMSANet outperforms other segmentation methods on the lesion seg-

mentation task.

The way that the HMSANet model is adopted for lesion segmentation is shown in Figure

14 (upper part), which is the first step of the proposed methodology. HMSANet model

structure is depicted in Figure 17 in which the lesion mask is inferred using three frame

scales. These image scales pass through a network trunk for both scale-level lesion mask and
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Figure 17: The lesion segmentation model (the adopted HMSANet module [53] structured
in Figure 14). HMSANet infers the lesion mask of the same size as the input image by
hierarchically combining predictions at multiple scales, weighted by the hierarchically learned
attention weights. Lower scales determine the general lesion location, while higher scales
refine its details and edges.

attention map inference. The High-Resolution network Object-Contextual Representations

(HRNet-OCR) model with ResNet-101 baseline [55] is the best-performing scale-level trunk

for the HMSANet model showing competitive performance on several semantic segmentation

benchmarks. As shown in Figure 17, these scale-level mask predictions are combined to

generate the final lesion mask by applying a chain of element-wise multiplication between

the attention maps (αn) and the mask predictions (Mn), followed by element-wise addition

among the multiple scales. The chain starts at the lowest scale of the image, namely scale

1 in Figure 17, which captures the most global features, and is further refined for details

at the following higher scales in order (Scale 2 and 3). Since lower scales take precedence,

they take out their contribution share (0 < αn(i, j) < 1), higher (whiter) at the pixels of
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increased confidence, and pass the remaining attention (1− αn(i, j)) to the following higher

scales. Specifically, the final predicted mask (M) is calculated by Equation (12), in which

U is bilinear upsampling and D is downsampling.

M = U(α1 ⊗ M1) + U(1− α1)⊗ [(α2 ⊗ M2) + ((1− α2)⊗ D(M3))] (12)

The HMSANet model is trained using the cross-entropy loss function, batch size of 1 per

GPU, image scales of 0.5 (scaled down to half the size) and 1.0, stochastic gradient descent

optimizer with the learning rate of 0.01, the momentum of 0.9, and the weight decay of 5e−4.

These segmentation model hyperparameters are determined based on their values in the base

paper [53], achieving a new state-of-the-art performance, and showed the best performance

on our validation set. We used four NVIDIA GeForce RTX 2080 Ti GPUs and Pytorch

library to train the model. The 2729 COVID-19 frames and their ground truth lesion masks

are split into the training, validation, and test sets in sizes of 2329, 200, and 200, respectively.

After evaluating the segmentation performance, the trained segmentation model is employed

to predict COVID-19 lesions masks on all the images without lesion masks, regardless of

their class. Then, all the images are paired with their corresponding masks to be used as the

ground-truth of the network’s attention map in the MGA module, as laid out in the next

section.

5.2 Classification Model for COVID-19 Diagnosis

The lightweight Residual Network [28] with 18 layers (ResNet18) is selected in this work to

serve as the backbone of our COVID-19 classification architecture. The residual networks re-

solve the vanishing gradient and performance degradation problems of deep networks through

skip connections, also known as residual connections. Specifically, Resnet18 is chosen for its

lightweight architecture, computational efficiency, and competitive performance in COVID-

19 diagnosis [56, 57]. The ResNet18 architecture is our baseline model but without attention.
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We have embedded CBAM [21] as the attention module in the ResNet18 architecture to en-

hance the activation of discriminate parts of the input image. For the second step of the

proposed methodology, namely, the lower part of Figure 14, the more detailed structure is

shown in Figure 18.

Figure 18: (a) The classification model’s network structure (b) CBAM structure

our classification model’s network structure consists of the following components:

1. a convolutional layer (with 7×7 filter size, 64 filters, and stride of 2) to learn 64 filters,

2. a max pooling layer (with 3×3 filter size, and stride of 2) to reduce the input spatial

size,

3. four residual stages (four successive convolutional layers with two residual connections

and the same number of filters, distinguished by the color in Figure 18), to allow the

information flow between layers while gradually reducing the spatial size and learning

more filters. CBAM is embedded only in the first three residual stages to save the

computation,

4. an average pooling layer, to spatially down-sample the feature map into a vector, and

5. a fully connected layer at the end for classification.
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Each convolutional layer outputs a 3D tensor called a feature map with (height, width)

as the spatial axes and multiple-output channels (C) based on the number of filters. The

feature maps of convolutional layers in each residual stage have the same dimension. From

one residual stage to the next, the feature maps’ height and width are halved (noted by /2

in Figure 18) by convolution stride, and the output channels are doubled (64, 128, 256, and

512, respectively). The attention module’s role is to reweight the feature map. Since the

feature maps are 3D tensors, the feature map re-weighting can be performed spatially (by

spatial attention module) or on the channels (by channel attention module). The spatial

attention module assigns higher weights to more informative parts of the input, while the

channel attention module weights the channels based on their relevance and importance by

multiplying the channel weights with the feature map. CBAM has a consecutive channel

and spatial attention (sub)modules, which is shown to be the best performing combination.

The ResNet18 model with embedded CBAM is our baseline with attention but without

direct supervision of attention map learning. In addition to applying attention reweighting,

our proposed model uses an MGA module to directly supervise the spatial attention map of

one of the three CBAMs by the predicted masks. This extra supervision makes our method

multi-task learning because we are jointly optimizing the two tasks of classification and

attention to lesions through two distinct loss functions specified in the following paragraphs.

Figure 18 shows our classification model’s network structure when the MGA module is placed

at the third residual stage. The optimal placement of the MGA module has been studied in

Section 6.3.

In order to create the spatial attention map, the spatial attention module average-pools

and maximum-pools the channel-attended feature map of dimension (H,W,C) to aggregate

and squeeze its channel information into two (H,W,1)-dimensional tensors. Then, these

two poolings are concatenated in the channel dimension (H,W,2), and transformed into the
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spatial attention map via a convolutional layer with one channel output, padding of 3, filter

size of 7×7 (f 7×7), and a sigmoid activation function (σ), as formulated in Equation (13).

Therefore, the spatial attention map is a one-channel tensor with the same height and width

as its corresponding feature map (H,W,1) in which all the values are between zero and one.

SA(fi) = σ(f 7×7([AvgPool(fi);MaxPool(fi)])) (13)

As indicated by Equation (14), the image features extracted at the jth residual stage denoted

by fj ⊆ RH×W×C are spatially multiplied by the spatial attention map SA1 ⊆ RH×W to

construct the attended features fjatt. H,W , and C denote height, weight, and the number

of channels, respectively. In the element-wise multiplication of the broadcasted (copied)

one-channel spatial attention map with multi-channel features, i signifies the channel index.

fj
att(i) = fj(i)⊗ SA(fj(i)) (14)

We directly supervise one of the spatial attention maps (SA) with the same sized predicted

lesion mask (M) from Step 1 (section 5.1) by minimizing the pixel-wise mean squared error

loss function Latt:

Latt =
1

H ×W

H∑
i=1

W∑
j=1

∥Mi,j − SAi,j∥ (15)

The MGA module is intended to direct the spatial attention map emphasis to the inside

lung manifestations and give extra attention to lesions and lung parts that resemble lesions.

Since the predicted masks might not completely match the ground truth lesion masks, it is

critical that our model performance is not overly sensitive to them. The residual connection

right after the CBAM module (see Figure 18) facilitates the flow of unattended features via

the skip connections and helps prevent the error propagation from inaccurate masks. The

sensitivity of classification performance to the predicted masks has been further studied in

Section 6.3.
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The classification task is supervised with the cross-entropy loss between the predicted class

probabilities (ŷ) and one-hot encoded ground truth class labels (y) of the three classes as

stated in Equation (16).

Lce(ŷ, y) = −
3∑
k

y(k)log ŷ(k) (16)

Our proposed classifier is therefore applying supervision over two tasks, namely, the attention

map using the attention mean squared error loss (Latt) and supervision over the class label

predictions using classification cross-entropy loss (Lce). As represented in Equation (17), we

adopted learning with uncertainty loss weighting [58] between the Lce and Latt because it

has shown superior performance over using fixed weights [49]. This weighting scheme lets

the model adjust the weight of each loss by learning the observation noise parameters σ1

and σ2 alongside the model weights (W). Smaller values of the observation noise parameter

will increase the contribution of its associated loss function. These noise parameters are

regularized to avoid very large values, which diminishes the contribution of each of the

tasks.

L(W,σ1, σ2) =
1

2σ2
1

Lce(W ) +
1

2σ2
2

Latt(W ) + logσ1 + logσ2 (17)

The model is trained using an Adam optimizer with a learning rate of 0.0001, a cosine

annealing scheduler, a batch size of 32, and 100 epochs with early stopping with the patience

of 10. These hyperparameters are tuned using Bayesian Optimization [59]. We used four

NVIDIA GeForce RTX 2080 Ti GPUs and Pytorch library to train our models.

Table 4 specifies one example dataset split between training, validation, and testing. Since

the images from a single patient are naturally dependent, all the data splits are made in

a patient-aware manner to avoid performance overestimation from the data leak [60, 61].

Patient-aware splitting keeps images from each unique patient together in one of the train,
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validation, or test splits. On the other hand, having multiple slices from each patient in the

training set is not problematic because it can have a similar effect as data augmentation.

We also applied stratification in our splitting which means that the splits have relatively the

same proportion for each of the classes. Patient-aware splitting must be strictly adhered to.

Limited by the patient-aware splitting, stratification is performed as much as feasible.

Table 4: Train, Validation, and Test splits distribution.

Data Split COVID-19 Normal CAP Total

Train 5,563 4,643 1,773 11,979
Validation 1,508 1,736 643 3,887

Test 522 514 202 1,238

5.3 Interpreting the Model’s Prediction

So far, we have introduced our proposed classification model that provides the COVID-19

diagnosis prediction but without interpretability. Achieving highly accurate but uninter-

pretable decisions makes deep learning models less trustable and has an adverse impact

on their clinical applications. Although deep learning has a black box nature, much re-

cent work has investigated the flow of information and input-output connections in deep

neural networks to shed light on how it predicts. Such explanation methods help increase

trust in the model when it predicts correctly and identifies the failure modes (such as data

corruption and learning wrong patterns) when wrong. The gradient-based attribution meth-

ods [62, 63, 64, 65] provide input-specific explanations of the deep learning predictions by

assigning an attribution value to each input feature. Each gradient-based attribution method

has a slightly different formulation for identifying the contribution of each feature to the

model’s output through backpropagating the output prediction and decomposing it on the

input image. The result is an attribution map, an image with the same size as the input
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containing the pixel level contribution scores.

Attribution maps are often shown as heatmaps, representing the attribution map with colors.

For instance, red indicates features that contribute positively to the activation of the target

output; the blue color distinguishes features that have a suppressing effect on it; and the

white color indicates the insignificance for the derived output. In this work, we use two

prominent attribution methods called Integrated Gradient [64] and DeepLIFT [65] methods

to highlight disease features in the CT images. The Integrated Gradient method calculates

the integral of gradients of each feature along the path from a baseline (such as a black

image) to input, while DeepLIFT is its faster approximation.

6. Results and Discussion

This section presents the performance of the lesion mask segmentation method (Section 6.1)

and the proposed classification model with attention (Section 6.2). Additionally, Section 6.3

covers the ablation studies to determine the placement of the MGA module, the effectiveness

of MGA classification with different training set sizes, and sensitivity of the classification

performance to the predicted masks. Next, Section 6.4 presents the interpretability of the

decisions of our deep learning model. Finally, Section 6.5 discusses our work from the

physician’s perspective.

6.1 Segmentation Performance

The HMSANet architecture, presented in Section 5.1, is employed as the mask prediction

method because of its state-of-the-art segmentation performance. We compared the HM-

SANet’s performance with UNet [42], SegNet [66], and DeepLabV3 [67] architectures, which

are among the most widely used segmentation methods in the literature. As reported in

Table 5, HMSANet achieves the highest intersection over union (IOU), Dice coefficient, pre-

cision, and recall on the test set (consisting of 200 COVID-19 frames). The segmentation
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models’ complexity is assessed by their number of trainable parameters and floating-point

operations (FLOPs). These columns point to the trade-off between the model’s computa-

tional cost and accuracy. Figure 19 provides the qualitative comparison of the predicted

masks on five sample test images. According to this figure, HMSANet predicted masks most

closely resemble the ground truth masks and are our best choice for the lesion prediction.

Figure 19: Lesion mask prediction comparison on five test images. HMSANet most closely
resembles the ground truth.

Table 5: Lesion segmentation performance Comparison (the best performance in red).

Method IOU (%) Dice (%) Precision (%) Recall (%) Parameters (M) FLOPs (G)

SegNet 43.48 60.60 50.00 76.92 39.87 79.89
UNet 54.05 70.17 68.50 71.94 31.06 16.59

DeepLabV3 70.42 82.64 81.96 83.33 60.99 121.06
HMSANet 74.63 85.47 84.03 86.96 72.12 151.32

6.2 Classification Performance

Table 6 compares our proposed classification model (Section 5.2) with two baseline models

without and with CBAM attention modules (ResNet18 and ResNet18 + CBAM), and four

state-of-the-art benchmark models (ResNet50, MobileNetV2, VGG16, and DenseNet121).
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For the sake of consistency, all the models are trained from scratch. The performance

metrics are the average over three random patient-aware stratified test splits (one of which

is reported in Table 4). The four benchmark architectures are among the most used deep

learning architectures, showing the best performance on our dataset. ResNet50, VGG16,

and DenseNet121 are also reported to achieve high COVID-19 diagnosis accuracy from CT

scan by [20]. MobileNetV2 by [68] is included in the comparison for its competitive speed-

accuracy trade-off, which is useful for mobile applications. For our medical application,

achieving the highest diagnosis accuracy and F1 score takes precedence over training speed.

According to table 6, our proposed approach achieves the highest accuracy, F1 score and

recall at a reasonable speed. Particularly, the recall, also known as sensitivity, has shown

significant improvement since the better focus on the lesions has boosted the detection of

COVID-19 cases. Regarding the average recall, our model is the best and outperforms the

second and third best-performing methods by 2.06% and 3.34%, respectively. The average

COVID-19 prediction accuracy of our model for each country in the test split is 92.35 (Iran),

90.35 (Russia), 91.30 (China), and 87.5 (Italy). Please note that these per country accuracy

scores are reported based on the COVID-19 cases since our dataset does not have all three

classes (CAP, COVID-19, and Normal) per country.

Table 6: Classification averaged performance results (the best performance in red).

Method Accuracy (%) F1 score (%) Recall (%) Precision (%) ROC AUC (%) time (s) Parameters (M) FLOPs (G)

ResNet18 93.01 91.16 85.80 97.23 97.82 0.31 11.69 1.81
ResNet50 93.62 92.02 87.41 97.14 97.62 0.59 25.56 3.86

MobileNetV2 93.11 91.25 85.61 97.68 97.62 0.17 3.3 0.42
VGG16 93.25 91.70 87.04 96.89 97.92 0.76 138.36 15.5

DenseNet121 93.54 91.81 87.09 97.06 97.95 1.05 7.89 2.88
ResNet18 + CBAM 94.07 92.45 88.37 96.92 98.11 0.62 11.76 1.82

Proposed 94.98 93.64 90.43 97.09 98.33 0.68 11.76 1.82

The ROC curve measures the true-positive rate (sensitivity) and false-positive rate (1 –

specificity) trade-off, and its area under the curve (ROC AUC, also referred to as AUC) has

meaningful interpretation for disease classification and is extensively used in medical diagno-
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sis. F1 score, which is the harmonic mean of recall and precision, is another reported metric.

Our model’s enhanced AUC and F1 score metrics indicate that the increased sensitivity did

not come at the expense of more false positives. The proposed multi-task learning improves

generalization by leveraging the domain-specific knowledge contained in the training data

and makes it capable of learning a more meaningful representation.

Table 6 also reports the measured minibatch training time using four NVIDIA GeForce

RTX 2080 Ti GPUs, the number of parameters, and FLOPs of a single forward pass. While

the time column compares the speed of the models during training, FLOPs measures the

computational overhead at the inference time. According to this Table, the proposed model

notably improves the classification performance while keeping the number of parameters

and FLOPs at the same level as the simple ResNet18 model. Moreover, despite training

two tasks, our approach is 35% quicker than the DenseNet121 model, which is less memory

efficient due to the dense concatenation operations.

6.3 Ablation Studies

Since the attention supervision can be applied inside any residual stage (Figure 18), the first

ablation study determines the best placement of the MGA module.

The results in Table 7 indicate that the best performance is achieved by placing the MGA

module at the third residual stage. One possible explanation from the perspective of multi-

task learning is that increasing the number of shared hidden layers between the highly related

tasks helps the performance [69] and representation learning. Since the number of parameters

and forward pass FLOPs is not impacted by the MGA module placements, all the reported

models in Table 7 have the same values for these columns as the ones in the proposed row

of Table 6. However, the backward pass FLOP slightly increases as the MGA module moves

to deeper residual stages. Consequently, the training time of the third residual stage model

has slightly increased. Additionally, comparing the results in Table 7 with the other models’
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performance in Table 6 shows that using the MGA module in any location improves the

overall classification performance.

Table 7: Comparison of different MGA module placements (the best performance in red).

Method Accuracy (%) F1 score (%) Recall (%) Precision (%) ROC AUC (%) time (s)

First Residual Stage 94.65 93.49 90.86 96.29 98.08 0.66
Second Residual Stage 94.82 93.71 91.25 96.3 98.56 0.67
Third Residual Stage 95.15 94.07 91.05 97.3 98.59 0.68

The second experiment investigates the effectiveness of MGA classification for different train-

ing set sizes. We simplified the model and ran this experiment on a ResNet18 base model

with only one embedded CBAM at the first residual stage to save the computation. Specif-

ically, the single-task and multi-task models are identical, except that the spatial attention

map of the CBAM is supervised with the predicted lesion masks for the multi-task learning.

Figures 20 (a) and (b) show the test classification performance comparison, and (c) is the

IOU between the lesion masks and their binarized attention maps of the single and multi-

task classification for different train set sizes. While the test set is separated and fixed, the

remaining data is split between the train and validation according to the train data size.

It is worth noting that the percentages are not exact since the data should be divided in a

patient-aware and stratified manner. Consistent with the literature [48, 49], the results in

subfigures (a-b) show that multi-task learning improves performance, especially when the

training data is small and sufficient for the learning to happen. We can see that from 20%

to 60% there is the most improvement. 10% is too small for learning, and for the large

train sets, there is less difference in performance, yet the generalization and interpretability

advantages remain. In other words, the proposed multi-task learning stands out in the model

performance when the train set size is sufficient but relatively small. Moreover, a 70-30 data

split between the train and validation has given the best performance; therefore, it is the
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ratio we used for comparing all the models.

(a)

(b)

(c)

Figure 20: The Single-task vs. Multi-task classification performance of the simplified model
measured by (a) Accuracy (b) AUC and (c) attention map and mask IOU on the test set for
different train set sizes

Figure 20 (c) employs intersection over union as a measure to quantify and compare the
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focus on the lesions. Each point is calculated by averaging the IOU results of test images

with non-zero masks. We can see that the IoU of the proposed method is significantly

better than the baseline. Additionally, increasing the train data has improved the focus of

both learners. The same patterns can be observed from the attention map visualizations in

Figure 21. This figure corroborates that, as the train data increases, the attention map of

both the single-task learner and the multi-task learner converges to the lesions. However, the

latter one starts to converge using only 30% of the data, while the improved focus emerges

in the former after using 80% of the data. Therefore, attention supervision can help the fast

convergence of the attention map with a smaller required train data size.

Figure 21: The Single-task vs. Multi-task attention maps of two example frames when
different percentages of training data is used. The color changes from blue to red as the
pixel’s attention weight increases. While attention maps of both methods converge to highly
score the lesions, the supervised attention maps in the multi-task classification converge
using considerably less training data (20%). The unsupervised attention map takes a lot
more data, 80% in our case, to focus on the lesions.

Our last experiment interrogates the impact of the error propagation from the segmentation
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step into the downstream classification task. We test this impact by applying the following

transformations to the predicted lesion masks:

• Erosion: shrinking the lesion mask by removing pixels on the boundaries (of size 9)

• Dilation: expanding the lesion mask by adding pixels to lesion boundaries (of size 9)

• Shifting: displacing the lesion mask (by 9 pixels downwards)

Our overall results reported in Table 9 show that the model is not sensitive to the exact

boundaries of the lesions, and the mask guidance results in performance gain using masks

that point to the overall location of the mask. According to Table 9, the performance gain is

higher for the dilated predicted masks. On the other hand, a comparison between the results

in Table 6 and Table 9 indicates that high levels of mask erosion result in only slightly better

performance and mask shifting in the same level of performance as the single-task model.

Table 8: The impact of the predicted mask transformations on the classification performance
of our proposed method.

Mask Transformation Accuracy (%) F1 score (%) Recall (%) Precision (%) ROC AUC (%)

Shifted Mask 94.00 92.62 89.28 96.22 98.5
Eroded Mask 94.98 93.87 91.57 96.29 98.52
Dilated Mask 95.15 94.07 90.52 97.91 98.62

This robustness to mask changes is attributed to the residual connections right after the

CBAM module that facilitates the flow of unattended features (features before attention

weights are applied). These skip connections may prevent the error propagation from inac-

curate masks. Also, using uncertainty loss weighting between the classification cross-entropy

and attention mean squared error losses equips the network with enough flexibility to adjust

the weights of each loss function and gloss over the attention loss if it is not consolidat-
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ing the classification task. Therefore, using an imperfect mask doesn’t reduce performance

compared to single-task learning, and its only downside is delayed convergence.

6.4 Interpretability using Attribution Maps

Figure 22 compares the attribution maps of our model with the other models for five COVID-

19 frames, using 22a DeepLIFT (Rescale) [65] and 22b Integrated Gradient attribution [64]

methods. We can see that the red and blue regions (pointing to influential features) of our

model’s attribution map highly overlap with the lesion regions (represented with red color in

the lesion mask). In other words, the lesion regions highly contribute to our model decision

while other models are less focused on the lesions. This visualization further emphasizes

our multi-task learning approach’s effectiveness in improving the model’s attention to the

relevant regions. This is because, compared to the single-task (classification), the two inte-

grated tasks (namely, attention supervision and classification) can provide evidence for the

relevance or irrelevance of specific features.

Moreover, DeepLIFT (Rescale) and Integrated Gradients have generated highly correlated

attribution maps, consistent with past works, while DeepLIFT is considerably faster to

execute. Current attribution methods do not explain how the network combines the features

to produce the answer and scores them independently, but DeepLIFT (RevealCancel) method

takes dependencies into account. For future exploration, it would be interesting to derive

and compare the DeepLIFT (RevealCancel) attribution maps, which claimed to outperform

the two other techniques when Pytorch support is available.

6.5 Physician’s Perspective

Chest CT scans can help COVID-19 diagnosis in patients with a high clinical suspicion of the

infection and pulmonary involvement [70, 71]. They are also helpful for assessing the disease

severity and guiding its management [72]. The understanding of COVID-19-related abnor-
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(a)

(b)

Figure 22: (a) DeepLIFT (Rescale) and (b) Integrated Gradient attribution comparison
between different models.
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malities in CT images has evolved since the onset of the pandemic. Employing intelligent

systems that can accumulate and share knowledge about emerging diseases like COVID-19

across the globe may expedite understanding of the disease and facilitate its diagnosis and

management. The current work showcases the possibility of accumulating knowledge about

CT scan findings into intelligent machines and using them to make interpretable diagnoses

by focusing on the abnormalities.

Even though CT scans can differentiate between most cases of CAP, COVID-19, and Normal,

differential diagnosis of a broader range of disease classes necessitates the inclusion of clinical

and paraclinical examination results [73]. Deep learning models can distinguish between

many class labels and learn from various data formats (e.g., images, text, and tabular data)

if an adequate dataset is available. Therefore, building a comprehensive and integrated

database of patients’ information (CT scans, clinical and paraclinical results, etc.) is a

requirement for creating more practical systems that can address the following challenges:

• Cases with non-typical CT findings: when the signs in the CT scan are non-typical

or non-specific, accompanying clinical and paraclinical symptoms are required.

• Cases with multiple medical conditions: Usually, the high-risk patients simul-

taneously present various medical conditions (e.g., diabetes, cardiovascular disorders,

immunosuppressive therapy, etc.). Therefore, such cases require identifying more than

one complication.

7. Conclusion and Future Direction

This paper presented the MGA-based classification model, a novel multi-task learner for

COVID-19 diagnosis based on CT scan images. Specifically, the proposed model leveraged

the predicted lesion masks to impose extra supervision on the classifier’s attention mod-

ule. Since attention supervision and classification are consolidatory tasks, their multi-task
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learning yielded a significant performance improvement over the single-task baseline (i.e.,

the baseline model without MGA module) and the state-of-the-art deep learning methods

in image classification.

Our experiments also showed that the proposed method benefits from improved data effi-

ciency and interpretability, which are especially valuable in the medical domain in which

data may be often limited, and reliability is paramount. Additionally, in this work, a large,

nationally diverse, and broadly representative COVID-19 CT slice classification dataset has

been curated for conducting experiments and serving as a benchmark dataset for the research

community. The quality of our dataset is ensured using slices with patient identification and

precise labels.

This research could be extended to include an MGA module that segments both the lungs

and the lesions to improve the overall inside lung learning, especially for normal cases.

Additionally, as only two groups of COVID-19 and non-COVID-19 are examined in most of

the literature, the effect of having more precisely categorized disease classes on COVID-19

detection could be further investigated.

Data Availability Statement

The data that support the findings of this study are available in Kaggle. These data were

curated from the following resources available in the public domain: [8, 9, 15, 16, 17, 18, 19].
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Chapter 4: A Deep Learning Technique for Parameter

Estimation in System Dynamics Models

Abstract

We propose a deep learning method for parameter estimation in system dynamics models.

Our method relies on training a deep learning model with synthetic data, that ultimately

receive a real-world trend (e.g., daily cases of an infectious disease) and produces parameter

values of a system dynamics model that represents the trend (e.g., normal contact rate of an

epidemic model). We demonstrate the performance of the method using a formerly validated

behavioral epidemic model, and compare our estimation accuracy and speed against two

conventional estimation methods of Powell and Markov Chain Monte Carlo. The analysis

includes various scenarios of stochasticity and data generating models. The results show that

our method can outperform the others in speed and accuracy when the level of stochasticity

increases. This is especially promising when large-scale complex models are used, data are

noisy, and model calibration is needed to be performed frequently and quickly.

Keywords: parameter estimation, machine learning, deep learning, transformer, system

dynamics, epidemic modeling

1. Introduction

Accurate parameter estimation is essential in complex dynamic models to ensure that simula-

tion results effectively capture and represent the real-world system being modeled. Advances

in computing power and access to large volumes of data have made it more feasible to col-

lect and process large data volumes and inform such models. As a result, an increasing
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emphasis is made on model estimation techniques and data-driven modeling. Without these

approaches, simulation models can fall substantially short of making accurate predictions,

and suggest misleading policy recommendations.

Several formal approaches for parameter estimation of complex dynamic models exist. Many

of these approaches rely on statistical techniques to minimize the error between the model’s

predictions and the observed data. Statistical estimation methods arrive at the point esti-

mates of the unknown parameters by minimizing a measure of fit between the simulation

results and the available data or maximizing the likelihood of observing the data given the

model. Minimizing the measure of fit is typically done through iterative optimization algo-

rithms (e.g., Powell’s method [1]) at multiple random starting points. On the other hand,

Bayesian statistical approaches, such as Markov Chain Monte Carlo (MCMC) (Metropolis

et al. [2]), treat the parameters as random variables with prior probability distributions

and assess the posterior distribution by incorporating the new information brought by the

observed data.

The conventional approaches, especially the Powell method and MCMC are powerful tech-

niques for parameter estimation, but they have certain limitations that can inhibit their

performance. The Powell method is a local optimization technique, sensitive to the starting

point, and thus can get trapped in local optima. In addition, it does not provide estimates

of confidence intervals. On the other hand, MCMC is computationally intensive and can be

challenging in practice for users. It also requires several tuning parameters that can affect

the accuracy of estimates. Both methods can also suffer from data noises, and can become

slow when dealing with large volumes of data and high-dimensional models.

The most recent experience of the COVID-19 pandemic and the need for offering timely

model-based projections for policymakers perfectly depicts the challenge of timely parameter

estimation in complex models. For example, one of the well-developed, feedback-rich models
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of the pandemic that offered timely estimations of COVID-19 spread in 92 nations was by

Rahmandad, Lim and Sterman[3]. When asked about the process of modeling and the main

challenges, Rahmandad indicates: “The COVID-19 model went through 79 versions; driven

by comparing the match between the model and different aspects of data, from waves of the

pandemic to fatality rates and findings from statistical analyses, across over 90 countries.

Iterations were thus driven by calibrating a model with over 2000 parameters against data.

Even with parallel computation over 40+ cores, each calibration cycle could take multiple days

to complete. Overall, figuring, implementing, and fine-tuning the calibration process was

easily the most time-consuming component of this project.” The statement clearly describes

data-driven modeling challenges. Particularly, in situations like this, depending solely on

traditional methods of modeling and parameter estimation can hinder the primary objective

of the model.

Less attention has been paid to the potential application of machine learning techniques

for the calibration of dynamic models (exception, [4, 5, 6]). Generally, machine learning

algorithms can be trained to match patterns in data and make predictions or decisions based

on these patterns [7]. For parameter estimation, these algorithms can be used to estimate

the relationship between parameter values and model outcome, and once it is trained, the

algorithm can be used to offer a quick estimation of parameter values [8]. Among such

methods, deep learning is the state-of-the-art technique that can quickly learn the repre-

sentation of the data with more flexibility. Deep learning is a subset of machine learning

that uses a deep neural network architecture to learn and recognize patterns directly from

the data without requiring explicit feature engineering [9]. Deep learning algorithms have

achieved state-of-the-art results in pattern recognition from a wide range of data formats,

including images, text, speech, and time series data [10, 11, 12]. Transformer, a type of

deep learning architecture [13], revolutionized tasks involving sequential data, such as natu-
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ral language processing (NLP) and speech recognition by learning longer-term dependencies

without recurrent connections.

In this paper, we investigate the potential of using deep learning (DL) models for the parame-

ter estimation of system dynamics (SD) models. There have been considerable advancements

in DL given the increase in the available computational resources and labeled data [9, 10].

We propose the utilization of DL architectures as surrogate models for SD parameter cali-

bration. We argue and provide evidence from a pilot test that, once the surrogate model is

built, it can be used to quickly and accurately calibrate the model parameters by learning its

dynamic patterns, and the estimate values, if not better, are often as good as conventional

approaches. The remainder of this paper is organized as follows. Next, we provide a review

of parameter estimation techniques and advancements in DL with applications in dynamical

system modeling. Then, our proposed methodology is detailed, followed by our experimental

design of testing the proposed method. Lastly, the results of our analysis are reported and

discussed.

2. Parameter Estimation Techniques

Parameter estimation, also referred as model calibration, involves finding the best values

for certain model parameters of a model by comparing the model’s behavior to that of the

actual system it represents. It is important to note that model calibration is only one of

many required approaches for building trust in models, and the parameter calibration process

will only produce reliable results if the model structure is adequate and passes the common

validation and verification tests [14, 15, 16, 17].

Choosing the calibration method heavily depends on the available data type (time series

vs. statistical moments), the complexity of the model, and statistical inference approaches

(Frequentist vs. Bayesian). Minimizing a measure of the fit error (e.g., mean squared
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error, mean absolute error, mean absolute percentage error) between the observed data and

the values predicted by the model is the common way for finding the point estimates of the

parameters. A common approach to finding the optimal parameter values is the Powell (1964)

optimization algorithm. A built-in feature in many software, including Vensim, the Powell

method starts by choosing a set of initial parameter values, calculating the objective function

for those values, and then searching for the best values through hill-climbing algorithms. The

method is commonly used in system dynamics for parameter estimation (e.g., [18, 19, 20, 21]).

Another commonly used, but computationally more intensive, approach, is MCMC. MCMC

is often employed in Bayesian inference to generate samples from the posterior distribution

of parameters by performing a random walk on the likelihood surface. In Bayesian inference,

probability distributions represent degrees of belief and incorporate prior knowledge about

parameter values by using prior probability distributions. The method updates the prior

distribution based on observed data, obtaining the most credible interval and plausible pa-

rameter value from the posterior distribution. Not as commonly as Powell, but still there are

system dynamics models that employ MCMC for parameter estimation (e.g., [3, 22, 23, 24]).

In their recent work, Andrade et al. [25] suggest Hamiltonian Monte Carlo as a more efficient

algorithm for Bayesian parameter inference in system dynamics, and provide a detailed work-

flow for effectively communicating the outcomes of model calibration using an SEIR model

calibration as an example.

The Method of Simulated Moments [26] is also a well-established estimation method in

econometrics and is applied to SD models [27, 28]. The central idea behind this method is to

define a set of appropriate statistical moments (e.g., mean (first moment), variance (second

moment), etc.) of empirical data and then find the parameters by minimizing the weighted

difference between these moments calculated on data and their simulated counterparts. This

method can use not only time-series data but also cross-sectional population statistics. The
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greater availability of cross-sectional data opens many opportunities for dynamic modelers

to work on domains traditionally dominated by regression models. Moreover, the indirect

inference method proposed in [29] is very similar to the Method of Simulated Moments in

essence. However, it provides more flexibility by relaxing the constraint of choosing the

statistics from statistical moments and states that a more comprehensive set of functions

(not just statistical moments) can be matched for estimating the parameters. Hosseinichimeh

et al. [30] offers a detailed guide for applying indirect inference calibration to SD models.

More recent advancements include filtering techniques to better calibrate models when data

are noisy. Kalman filtering [31] for example is a mathematical technique that enables the

estimation of a system’s state by leveraging noisy measurements. It is widely used in a

variety of applications, including control systems, signal processing, and navigation. The

fundamental concept behind Kalman filtering involves a recursive algorithm that considers

the system’s noisy measurements to adjust and improve its estimation of the state. The

Kalman filtering algorithm is composed of two main steps. The first step, referred to as the

prediction step, involves forecasting the upcoming state of the system based on the prior

state estimate and the SD model. The second step, the update step, utilizes the current

measurements to refine and update the state estimation. Kalman filtering is used in SD to

improve parameter calibration by reducing the effect of noise in the data [32, 33].

Recently, to a limited extent, machine learning techniques have been applied to support and

automate SD validation testing and calibration tasks. Mert Edali [4] proposes a random

forest meta-model for automated and interpretable analysis of input-output relationships in

system dynamics models, illustrated through case studies. In their previous work [5], Edali

and Yücel implemented the proposed explainable meta-model procedure with active learn-

ing sampling design on an influenza epidemic case study, demonstrating its effectiveness in

assessing various intervention strategies and identifying transitions between different model
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behavior modes. In his work [8, 34], Duggan employs the R programming language to provide

a clear and practical illustration of how machine learning techniques can be effectively uti-

lized to analyze time series outputs from a system dynamics model. The paper [6] proposes a

novel policy design method for system dynamics models based on recurrent neural networks,

which can search in both the system structure and parameter space simultaneously.

Supervised machine learning is the task of learning to map a set of inputs (xi) to their corre-

sponding outputs(yi) given an adequate number of training examples {(x1, y1), .., (xN , yN)}.

Based on the universal approximation theorem [35], a single-layered artificial neural network

(ANN) with a sufficient number of neurons and certain activation functions can approximate

any continuous function to a reasonable accuracy. Given that, a properly trained ANN net-

work can be used as a surrogate for any SD model. There is a limited number of works in

the literature that use ANNs for approximating the nonlinear mapping of the SD outputs

and input parameters. In [36], neural networks are employed as parameter estimators of a

parameterized model structure, where the model structure is utilized to generate training

examples. More specifically, the system response (output of the system) is used as the ANN

model input and its associated SD model parameters, selected at random from a range, as

the ANN output. Consequently, the ANN model is trained on the task of estimating the

model parameters from the observed data. The authors intentionally introduce some noise

to their simulation outputs in order to improve the robustness of their learning method and

test their model for identifying the processing delay in an online controller.

In a study, three machine learning approaches, including multi-layer perceptron, convolu-

tional neural network (CNN), and long short-term memory (LSTM), were tested by [37]

to estimate the reproduction number, latent period, and recovery rate parameters of a res-

piratory virus, formulated as a supervised regression problem. First, they use their SEIR

individual-based model to generate simulations for random parameters. Next, they train
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their machine learning models to learn the mapping between simulated daily infected and

the corresponding parameters. An ANN with time encoding is reported to outperform Re-

current and convolutional neural networks in terms of both accuracy and computational

speed by [37].

As stated, the traditional methods of model calibration have several limitations which influ-

ence their effectiveness. Particularly, most of the methods are computationally intensive and

time-consuming, sensitive to noise in data, and inaccurate when dealing with large volumes

of data and high-dimensional models. Our purpose is to contribute to calibration methods by

applying a DL technique and examining its performance against two conventional methods.

Our proposed method is described in the next section.

3. Proposed DL-based Calibration Method

The SD simulation model generates the output or dynamic behavior of a system, given

the model parameters. Thus, it can be viewed as a forward problem. On the other hand,

the process of parameter calibration for an SD model (and for any other models) aims to

determine the input parameters of the model that yield the best match between the simulated

behavior of the model and the observed behavior of the system. This process can be seen as

an instance of the inverse problem, where the input parameter is inferred from the observed

output (Figure 23). A common approach to the inverse problem is optimization, that is,

minimizing a function that depicts error. Our proposed idea includes offering a learning

model (instead of an optimization model) that takes the dynamic trend of interest (input)

and produces model parameters for the SD model (output). Such a learning model should be,

first, trained to map the observed outputs to underlying model parameters, making them a

promising approach for calibrating SD parameters. Once a model that maps dynamic trends

to parameter values is trained, then it can be used for parameter estimation purposes.
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Figure 23: SD VS DL model

Our proposed DL calibrator requires the following steps:

• Employing the SD model to generate a large amount of data with various model

parameters and noise streams to be used for DL model training.

• Training the DL model on the generated data to learn the mapping of the model’s

output to their corresponding model parameters.

• Applying the trained DL model to predict the model parameters given new input data.

We particularly propose a transformer-based deep network that is well-suited for capturing

complex and nonlinear relationships between input and output sequences. The parallel

processing capabilities of the transformer model further improve its performance, making it

a promising choice for our application.

• Transformer Network

Transformers, a type of neural network architecture initially introduced for machine trans-

lation tasks in [13], has quickly revolutionized many DL tasks, especially natural language

processing and sequence learning. DL networks have long been dominated by convolutional

or recurrent layers, with an appended attention mechanism in recent years. The Transformer,

however, is built solely on self-attention mechanisms to weigh the importance of different

elements of an input sequence. This allows for better long-range dependencies modeling and

the avoidance of vanishing gradient problems. Additionally, transformers are highly par-

allelizable, making them well-suited for modern hardware architectures. These advantages

have made transformer-based models the go-to solution for learning from sequential data.
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In contrast to a recurrent neural network, which decodes the output sub-sequences through

a general learned representation from the whole input sequence, the Transformers’ attention

function creates a learning mechanism for the decoder to pick the input part to pay closer

attention to. As a result, an attention function can model the input and output dependencies

irrespective of their distance in the sequence because the information’s path length is shorter.

The transformer has the conventional encoder-decoder structure in which the encoder takes

the input and learns its representation or context (left branch of the Transformer structure

in Figure 24), and the decoder generates the output sequence one step at a time based on

the encoded representation (right branch of the Transformer structure in Figure 24). N is

the number of repeating and stacking of encoder and decoder layers. The Input and Output

Embedding part is specific to natural language processing (NLP) and transforms words

into numerical vectors. Since the model has no recurrence or convolution, the positional

information of the sequence is lost. Positional Encoding is to retain the sequence’s order by

encoding and adding it back into the vectors. This way, the network can still tell the relative

positions of sub-sequences when weighting them.

More specifically, the encoder of the input sequence builds key(K), value(V) pairs, and the

previous decoder layer makes the queries(Q). The attention function maps the query to the

output at the next step, computing the next output as a weighted sum of the values, with

the weight assigned based on the similarity of the query with the corresponding keys:

Attention(Q,K, V ) = softmax
(
Q.KT

√
dk

)
.V (18)

This function is depicted in the Scaled Dot-Product Attention part of Figure 24. dk denotes

the keys and queries dimension. The scaling factor of 1√
dk

is shown to improve the dot

product attention performance for larger dks.

In addition to the encoder-decoder attention function explained above (the top right multi-
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head attention in Figure 24), there are also self-attention modules in the encoder and decoder

to assign importance weights to their sub-sequences. In a self-attention layer, the keys, values

pairs are all the current encodings, and the queries are the output of the previous layer. The

only difference in the decoder’s self-attention is that only the so far produced outputs are

used, and there is no leak of information from the future.

Instead of attending to just one part of the input, the multi-head attention, depicted on the

left side of Figure 24, performs h attention functions in parallel on the linearly projected

lower-dimensional key, value, and queries. The head outputs are then concatenated and

projected to produce the output values.

Figure 24: The Transformer - model architecture [13]

The Transformer network has proven to be a powerful tool for modeling and forecasting time-

series data. In particular, [38] demonstrated that their modified Transformer network could

effectively capture intricate patterns and dynamics in time-series data, as well as accurately

forecast system state variables using time delay embeddings.

While the Transformer network has shown promise in various time-series modeling tasks,
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it has not yet been widely used for parameter estimation of SD models. However, there

are several reasons why the Transformer network could be advantageous for this task. For

example, its flexible nature allows for updating parameters over time and adapting to new

observations. Additionally, it can handle variable input and output time series lengths, and

exhibit a more interpretable and human-like focusing behavior in the sequence structure,

compared to other neural network architectures, such as recurrent neural networks. Finally,

the Transformer network allows for significantly more parallelization than recurrent neural

networks, which can greatly reduce training time and improve scalability.

4. Method

The common approach to evaluate an SD parameter calibration framework is to test it on

synthetic data generated by the SD model, known parameters, and added autocorrelated

noise [3, 39]. Following this approach, we compare the performance of our DL calibrator

against the Powell and MCMC methods on the SD-simulated data.

• Step 1: Synthetic data generation

We generate synthetic data employing a stochastic SEIRb model. The SEIRb model, pro-

posed by Rahmandad et al. [18], builds upon the traditional SEIR framework, which divides

the population into Susceptible (S), Exposed (E), Infected (I), and Removed (R) compart-

ments, flowing from left to right over time through the following differential equations:

N = S(t) + E(t) + I(t) + R(t) (19)
dS

dt
= −βS

I

N
= −(cβ0)S

I

N
(20)

dE

dt
= βS

I

N
− E

γe
(21)

dI

dt
=

E

γe
− I

γi
(22)

dR

dt
=

I

γi
(23)
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where N is the total population, β is the infectious contacts depending on the disease infec-

tivity (β0) and the average number of contacts (c), γe indicates the average duration between

exposure and symptom onset, and γi denotes the average infection period from symptom

onset to death or recovery.

Figure 25: SEIRb model [18] with three noise generators. The circled variables denoted in
green are dynamic trends of interest and the four parameters, denoted in red, are calibrated.

The SEIRb model, depicted in Figure 25, captures human risk response to an evolving

pandemic through a behavioral feedback loop to improve the predictive power of the basic

SEIR model. In this model, as the risk of death increases, people decrease their contacts

which decreases the spread of the disease and risk of death, forming a balancing feedback loop.

This feedback loop is argued to be essential in modeling the spread of an infectious disease [40,

41, 42]. In the model, specifically, the population’s perception of the death rate is formulated
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as a lagged variable of observed daily deaths (f) (as shown in Equation 25). As the mortality

rate increases, risk perception rises, leading to decreased social interactions (as shown in

Equation 26) and, consequently, a decline in the number of cases. The new behavioral

loop includes three parameters denoted as IFR (infection fatality ratio), α (sensitivity to

death), and γp (time to perceive risk). The SEIRb model has been previously validated as a

competitive predictive model for COVID-19 trajectories when compared to the best models

in the Centers for Disease Control and Prevention (CDC) forecasting model set [42].

f = IFR× dR

dt
(24)

df
′

dt
=

f
′ − f

γp
(25)

β = cβ0 = e−αf
′

β0 (26)

The model parameters used for calibration in this work are as follows:

• Infection Fatality Rate (IFR): proportion of infected who die from the infection.

• Time to Perceive (γp): average lag time to perceive to the confirmed death cases.

• Sensitivity to Death (α): average public sensitivity to perceived death.

• Normal Contact Rate (c): pre-epidemic average number of contacts per person.

The two time-series inputs to our calibration models are daily reported infected cases (Ob-

served Onset Rate) and daily reported death cases (Observed Death Rate). The error in the

reports is modeled by auto-correlated noise (pink noise). Through SD simulations on the

SEIRb model and randomly choosing the four parameters using the Latin Hypercube sam-

pling [43] method, we generated 100,000 synthetic onset and death rates time series datasets

that were employed to train and validate the DL calibrator. The model’s remaining fixed

parameters and initial values are set as follows:
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Table 9: Model parameters.

Parameter Unit Value

Population (N) Person 1,000,000

Initial Susceptible (S0) Person 999,999

Initial Exposed (E0) Person 1

Initial Infected (I0) Person 0

Initial Removed (R0) Person 0

Correlation time Day 15

Noise standard deviation (σ) Dimensionless (0 - 0.45)

Infectivity (β0) Dimensionless 0.05

Time to onset (γe) Day 6

Time to removal (γi) Day 10

• Step 2: Training DL

We translated our Vensim model to Python using the PySD library [44] to streamline the

simulations, data manipulation, and storage. Data generation took about 30 minutes. First,

we split the 40,000 simulated data into training and validation using the split ratio of 90:10.

Then, we separately generated 100 test data points with unique auto-correlated noise pa-

rameters to be used for comparing the DL and iterative optimization calibrators. We kept

the test set relatively small as the benchmark iterative calibrator is time-intensive.

The DL calibrator network architecture, illustrated in Figure 26 (a), is designed to accurately

estimate the four specified parameters from the two time series inputs. The Time2Vec block

introduced in [45] and depicted in Figure 26 (c) learns the time embedding of the two inputs,

which is essential for capturing the temporal dynamics in the data. Next, the concatenated

input and time embedding is fed to the Transformer block (Figure 26 (b)) to capture the

complex dynamics in the inputs and model their dependencies over time through its multi-
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Figure 26: (a) DL calibrator network architecture, taking the dynamic trends as input and
predicting the model parameters (b) Transformer block (c) Time2Vec Block for capturing
time embedding

head attention mechanism. The transformer block outputs of the two branches are then

concatenated and processed by a series of convolutional and dense layers. The last dense

layer is branched out to output each of the four parameters. Incorporating the Time2Vec and

Transformer blocks into our DL calibrator network architecture yielded improved calibration

performance. This improvement can be attributed to these blocks’ capacity to capture the

temporal dynamics and intricate dependencies in the data while effectively handling the

noise in the input.
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The model was trained using an Adam optimizer with a learning-rate warm-up for greater

stability and a mean square error loss function. We selected a batch size of 16 and trained

the network for 50 epochs, saving the epoch’s weights with the best validation performance.

We used 1 NVIDIA GeForce RTX 2080 Ti GPU and Keras library to train our model.

• Step 3: Test DL

The trained DL model can be then employed as the surrogate model of the inverse SD model

to estimate the unknown parameters of unseen simulated data at a much higher speed

compared to the optimization-based methods. As shown in Figure 25, auto-correlated noise

generators are embedded in the SEIRb model to generate the process and measurement noises

to make the synthetic data more realistic. The auto-correlated noise parameters (standard

deviation and correlation time) are also selected randomly to account for the unknown noise

processes. All other model parameters were fixed.

5. Experimental Design

We conduct three general assessments to evaluate the performance of our proposed method

against the conventional Powell and MCMC calibrations. For Powell and MCMC, we em-

ployed Vensim’s calibration tool to minimize the fit error between the observed and simulated

data. We assigned weights to the two data streams, onset and death rates, based on the

inverse standard deviation of each stream to account for their varying scales and spreads.

The first experiment evaluates the ability of our method to replicate the dynamic trends in

the onset and death rate over ten randomly generated synthetic datasets. The experiment is

conducted by first generating the synthetic data with low-level noise (σ <0.15), then asking

each method to predict the parameters. The parameters are then used to produce the onset

and death rates given the model structure with the noise generator turned off. We turn off

the noise generator at this stage because the actual noise generator is unknown, and we used
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it initially to make the synthetic data more similar to real-world data. We use the averaged

mean absolute error (MAE) of each of the rates as our performance metric.

The second assessment examines the accuracy of the predicted parameters in matching their

ground truth values under different levels of stochasticity. This experiment includes 12 con-

ditions (3 estimation methods X 4 noise levels). We are specifically interested in comparing

our method against two other methods of Powell optimization and MCMC, under four dif-

ferent levels of stochasticity. We defined four levels of noise based on the standard deviation

(σ) of the noise, categorized as low (σ <0.15), medium (0.15 < σ <0.25), high (0.25 < σ

<0.35), and very high (0.35 < σ <0.45). Figure 25 depicts the SEIRb model with embedded

auto-correlated noise generators used to generate both process and measurement noises.

Lastly, we set up an experiment to examine the impact of the model’s accuracy on the

calibration performance. For this, we utilized the SEIR model as the model structure to

train the DL calibrator. Then, we evaluated its performance by testing it on data generated

from the SEIRb model. This approach enabled us to determine the impact of the differences

between the model structure and the actual system on the calibration performance.

6. Results

6.1 Relative Performance of DL

We compare the effectiveness of three calibration methods (the proposed DL, Powell, and

MCMC) in capturing the onset and death rate trends on randomly generated synthetic

datasets. Figure 27 shows an example of calibration results from three different methods

for a specific set of parameter values with a low level of noise in synthetic data. As shown

all methods are fairly replicating the data. In order to systematically compare the methods

under various noise levels, we repeated the test 10 times. Table 10 presents the average mean

absolute error between the synthetic data and the dynamics generated using the calibrated
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Figure 27: (a) Simulated death rate (b) Simulated onset rate, with ground truth parameters
and low-level noise (green), the proposed DL method (red), Powell (grey), and MCMC (blue)
calibrated parameters and no noise

parameters over the 10 datasets. Both qualitative and quantitative evaluations indicate that

our proposed DL calibrator can capture the dynamic trends at a level that is comparable to

the Powell and MCMC methods.

Furthermore, the proposed DL calibrator requires significantly less calibration time than

the other two methods, as reported in Table 10. While Powell and MCMC rely on iterative

optimization at multiple random starts to avoid local optima, the DL calibrator only requires

a pre-trained function evaluation. However, it is worth noting that, unlike the other methods,

the DL approach necessitates two additional steps of data generation and model training.

Nonetheless, these steps are only required once per model, unlike the calibration time that
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must be repeated for each new calibration.

Table 10: Evaluating the proposed DL calibrator against Powell and MCMC averaged over
10 randomly generated synthetic data.

Calibration approach MAE (Onset Rate) MAE (Death rate) Calibration Time (s) Training Time (s)
Powell 90.08 0.58 87.47 -
MCMC 125.32 0.93 107.12 -
DL (Proposed) 105.29 0.80 0.0024 497.53

6.2 Effect of Stochasticity

To investigate the calibration methods’ robustness to different levels of noise in the data,

we introduce three noise generators (observed onset noise, exposure noise, and death noise)

into the SEIRb model (as demonstrated in Figure 25) to generate data at four levels of

noise. Specifically, we generate onset rate and death rate data with fixed parameter values

but with 100 different random noise streams at each level of noise. The impact of noise on

the calibration methods is evaluated by analyzing the distribution of calibrated parameter

values around the true parameter value.

Figures 28 presents box plots summarizing the results of Powell, MCMC, and DL calibrators

for four parameters across four levels of noise, with the true parameter value shown as a

dashed line. As expected, the increase in noise adversely affects all the methods, leading to

a more widely dispersed distribution of calibrated values. By examining the range of values

in the box plots, it is evident that the DL calibrator displays a lower susceptibility to noise

as compared to the other two techniques.

We also systematically compare the estimations across the methods to examine if DL esti-

mations’ accuracy is statistically different from the other methods. Our analysis reported

in Table 11 shows that DL estimated normal contact rate and time to perceive better than

the other two methods consistently in medium, high, and very high levels of noise (p<0.001)

while not doing worse when the noise level is low (p>0.38). In the case of the Infection
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Figure 28: The effect of stochasticity on the Calibrators

Fatality Rate (IFR), there is no significant statistical difference between the Deep Learning

(DL) estimations and those obtained using Powell and Markov Chain Monte Carlo (MCMC)

methods. However, when it comes to sensitivity to death across low, medium, and high noise

levels, the other methods demonstrate marginally better performance (evidenced by a p-value

of less than 0.001 and an approximate 0.06 improvement in the average absolute estimation

error).

Figure 29 summarizes these results and compares the methods in two metrics. Figure 29

(a) compares the time requirements of the three methods, with DL data generation and
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Table 11: Paired t-tests comparing average absolute parameter estimation errors between DL
and the other two methods (*** p<0.001, ** p<0.01, * p<0.05, with the number of asterisks
indicating the level of statistical significance that the observed difference in performance
occurred by chance).

Parameter Noise Level Pair DL - Benchmark p-value

Time to Perceive Low DL & Powell -0.0772 0.3772
Time to Perceive Low DL & MCMC 0.1165 0.2869
Time to Perceive Medium DL & Powell 0.6574 <0.001***
Time to Perceive Medium DL & MCMC 1.0599 <0.001***
Time to Perceive High DL & Powell 1.4042 <0.001***
Time to Perceive High DL & MCMC 1.4863 <0.001***
Time to Perceive Very High DL & Powell 2.1022 <0.001***
Time to Perceive Very High DL & MCMC 2.4336 <0.001***

Normal Contact Rate Low DL & Powell -0.0410 0.6660
Normal Contact Rate Low DL & MCMC 0.3097 0.0028**
Normal Contact Rate Medium DL & Powell 0.6485 0.0007**
Normal Contact Rate Medium DL & MCMC 0.6295 0.0003**
Normal Contact Rate High DL & Powell 1.1622 <0.001***
Normal Contact Rate High DL & MCMC 0.7592 0.0010**
Normal Contact Rate Very High DL & Powell 2.1530 <0.001***
Normal Contact Rate Very High DL & MCMC 1.8267 <0.001***

Infection Fatality Rate Low DL & Powell 0.0001 0.0982
Infection Fatality Rate Low DL & MCMC 0.0006 0.0168*
Infection Fatality Rate Medium DL & Powell 0.0000 0.5470
Infection Fatality Rate Medium DL & MCMC 0.0002 0.0139*
Infection Fatality Rate High DL & Powell 0.0000 0.9409
Infection Fatality Rate High DL & MCMC -0.0001 0.6800
Infection Fatality Rate Very High DL & Powell -0.0002 0.4990
Infection Fatality Rate Very High DL & MCMC -0.0001 0.5726

Sensitivity to Death Low DL & Powell -0.0393 <0.001***
Sensitivity to Death Low DL & MCMC -0.0307 <0.001***
Sensitivity to Death Medium DL & Powell -0.0612 <0.001***
Sensitivity to Death Medium DL & MCMC -0.0573 <0.001***
Sensitivity to Death High DL & Powell -0.0613 <0.001***
Sensitivity to Death High DL & MCMC -0.0574 <0.001***
Sensitivity to Death Very High DL & Powell -0.0298 0.0229*
Sensitivity to Death Very High DL & MCMC -0.0358 0.0197*
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Figure 29: (a) Calibration time with DL data generation and training time prorated for 60
calibrations, (b) mean absolute percentage error (MAPE), and (c) coefficient of variation at
different levels of noise (averaged over the four calibrated parameters).

training steps prorated for 60 calibrations, demonstrating that even after accounting for

training time, our proposed approach has a lower time requirement when used frequently.

To make a better sense of the efficiency of our model calibration consider a model like the

one developed by Rahmandad et al [3] which is periodically calibrated, every time for 90

regions. In addition to the fact that one round of training can work for estimating 90 regions’

parameters independently, as long as the model structure is not changed the same trained

DL can be used for frequent refining parameter values in possibly a fraction of a second. It is

possible to further reduce the time required for data generation and training steps of the DL

calibrator through parallelization, active learning, and fine-tuning on pre-trained models.

Furthermore, the figure (panels b and c) reports Mean Absolute Percentage Error (MAPE)

and Coefficient of Variation (CV). MAPE computes the average percentage difference be-

tween predicted and actual values, and is used to capture the accuracy, and CV measures

the variability of a data set by dividing its standard deviation by the mean, which is used to

capture the variability of the parameter estimation results given the noise level. Results in

Figure 29 (b) and (c) demonstrate that the proposed DL calibrator outperforms the other

two methods as the noise level increases. The DL calibrator exhibits lower mean absolute
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percentage error and coefficient of variation at High and Very High noise levels.

6.3 Effect of SD Training Model Accuracy

With the considerable accuracy of DL, how important is it to have a proper SD model? To

examine the impact of SD model accuracy used for training DL, we train our DL model with

an “imperfect” SD model of SEIR (imperfect as the test data are generated with SEIRb).

Figure 30: Examining the impact of model accuracy by calibrating the SEIR model on data
generated from SEIRb at a low-level noise (σ = 0.1), Sensitivity to Death 0.1 and time to
Perceive of 10, indicating all calibrators perform poorly when the model structure is wrong.

To that end, we switch the data generation model used to train the DL calibrator from

SEIRb to SEIR, in order to investigate the importance of training the DL with a proper

SD model. The test data is still being generated by SEIRb. Figure 30 compares the per-

formance of the SEIR-trained DL calibrator with Powell and MCMC. Our results indicate

that the performance of all three models depends on the accuracy of the model structure.

An inaccurate model structure particularly hinders the DL calibrator’s ability to replicate

system dynamics, emphasizing the importance of a well-defined model structure. Therefore,



Discussions and Conclusion 105

while DL can enhance calibration efficiency when a well-defined model structure is available,

it cannot replace SD modeling, as it relies directly on the accuracy of the model structure.

7. Discussions and Conclusion

In this paper, we offered a novel DL-based approach for solving the inverse problem, also

known as parameter calibration, in the context of dynamical systems. We tested the method

for calibrating a behavioral epidemic model. Specifically, we demonstrated our proposed

calibration approach through a proof-of-concept example on the SEIRb SD model.

Our results show that the proposed DL calibrator is capable of training a surrogate model for

the inverse problem, allowing us to run parameter calibration with high accuracy while sig-

nificantly reducing computation time compared to existing iterative optimization methods.

Additionally, our proposed approach exhibited better performance in dealing with noisy

or imperfect data. These findings suggest that DL techniques can be a powerful tool for

calibrating SD models.

This work offers methodological contributions to the SD modeling literature. We build upon

the previous works in SD validation testing and calibration tasks, including the approaches

by Mert Edali [4, 5] and Duggan [8, 34] that utilized machine learning techniques. Our study

extends their approaches by incorporating the state-of-the-art deep learning model with the

aim of capturing the nonlinear and complex patterns present in noisy time-series data. Our

study highlights the potential of using DL techniques for solving inverse problems in the

context of dynamical systems, and we hope that our proposed approach can inspire further

research and serve as a valuable tool for SD researchers and practitioners. Furthermore,

by using the SEIRb model as a test case, this study adds to a growing body of health

system dynamics modeling [46], and particularly studies that apply the SEIRb structure to

epidemiology in different contexts [47, 48, 49], or investigate model validation challenges of
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behavioral epidemic models [50].

The DL-based approach proposed in this paper can be transformed into a software package

integrated into existing SD software, such as Vensim. The package can be designed to be

model generic, enabling modelers to calibrate any model structure with observable variables

and parameters of interest efficiently. This would enable SD modelers to efficiently calibrate

their model through a built-in function without having to rely on iterative optimization

methods or manual parameter tuning.

This study has several limitations, which demand future work:

• Our study was focused on one single model from epidemiology. We invite the method

to be applied to other SD models and its performance is evaluated in those cases.

• Leveraging active learning instead of the Latin hypercube sampling can enhance the

implementation efficiency of the proposed method by reducing the data requirement

and implementation time.

• The practical implementation of the proposed technique depends on efficient transfer

learning from the pre-trained DL calibrator on similar SD model structures.

• Incorporating techniques presented by [51] to obtain confidence intervals from the

estimated parameters using the proposed DL method would significantly enhance the

applicability of the approach and enable decision-makers to quantify the uncertainty

in the model’s predictions.

• Using saliency techniques like attribution maps [52] enhances interpretability and ac-

countability of the estimated parameters by providing valuable insights into the model’s

decision-making process.

• The proposed method can be used complementary to the conventional methods by

providing closer initial values to optimal solutions, improving the efficiency and effec-

tiveness of the optimization process.
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Altogether, our study shows that there is a great potential to apply machine learning tech-

niques to SD modeling in general and model calibration in particular. Especially given the

need to use more sophisticated models with large volumes of data, ML techniques can help

improve model accuracy and computational speed. We invite researchers to use the synergic

opportunity and further enhance SD modeling practices.
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Chapter 5: Conclusion

Deep learning has made remarkable progress in computer vision and natural language pro-

cessing, but the interpretability limitations of black-box models have been a major bottleneck

to their practical application. Attention-based models have revolutionized the field of deep

learning by enabling the model to selectively focus on relevant parts of long input sequences,

understand the context, and achieve human-like focusing behavior and performance in a

wide range of applications of natural language processing, speech recognition, and computer

vision. Additionally, they offer interpretability and transparency as attention weights reveal

which parts of the input the model is focusing on, especially important in applications where

the decisions made by the model have significant consequences, such as in healthcare.

This dissertation proposes the use of task-specific designed attention modules in three differ-

ent applications: manufacturing, healthcare, and system identification, which involve video,

medical image, and time series data, respectively. The attention modules are designed to

focus on relevant data features specific to each application, leading to improved accuracy,

transparency, and efficiency.

In Essay 1, we introduced a novel computer vision tool that tracks the melt pool in X-ray

images of laser powder bed fusion (LPBF) additive manufacturing using attention modules.

The proposed model used a semi-supervised video object segmentation (VOS) approach with

spatiotemporal attention modules. This approach enabled automatic segmentation of the

melt pool boundary, with manual annotation only necessary in the first frame, thus improv-

ing efficiency. Our proposed approach provided accurate and robust segmentation results

and demonstrated excellent generalization performance. This work makes a significant con-

tribution to the field of additive manufacturing by demonstrating the potential of using VOS

for melt pool segmentation and tracking. We suggest future investigations on the deep learn-
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ing model architecture including the encoder backbone choice and incorporation of plug-in

modules (such as Atrous Spatial Pyramid Pooling (ASPP) and feature pyramid network

(FPN)) for better performance, resolution, and speed. Furthermore, the model can be ex-

panded to simultaneously segment the melt pool in infrared and X-ray images to correlate

melt pool shape with thermal characteristics in real time.

In Essay 2, we addressed the urgent need for efficient computer-aided medical diagnosis and

the consequent depletion of hospital resources amidst the global COVID-19 outbreak. We

developed an AI-powered COVID-19 detection model to facilitate early diagnosis, aiming to

reduce infectivity and mortality rates. Our multi-task learning approach, the mask-guided at-

tention (MGA) classifier, uses lung CT scan images for COVID-19 diagnosis. The novelty of

our proposed method is the use of lesion masks to compensate for the scarcity of data. This

increases the model’s ability to identify COVID-19 characteristics, and ultimately boosts

both data efficiency and classification performance compared to single-task (ResNet18) and

state-of-the-art models (ResNet50, MobileNetV2, VGG16, and DenseNet121). The MGA ap-

proach offers better interpretability and data efficiency, evident in attention and attribution

maps, especially when training data is limited. We also contributed a large, diverse, and

representative COVID-19 CT slice classification dataset, curated from seven open-source

datasets, as a benchmark for future studies. Potential future research directions include

incorporating lung segmentation masks in the MGA module for better lung analysis, in-

vestigating the impact of more precise disease classes on COVID-19 detection, extending

the methodology to analyze CT scan volumes instead of slices, and integrating clinical and

paraclinical examination results.

In Essay 3, we presented a novel deep learning (DL)-based approach to address the inverse

problem, or parameter calibration, in dynamical systems. Our focus was on calibrating a

behavioral epidemic model. We proposed a Transformer-based calibrator that employs self-
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attention mechanisms, demonstrating its ability to learn a surrogate model for the inverse

problem. This approach resulted in competitive accuracy and significantly reduced compu-

tation time compared to conventional iterative optimization methods, such as Powell and

Markov Chain Monte Carlo. Our experimental results demonstrated that our proposed cal-

ibrator is particularly promising when large-scale complex models are used, data are noisy,

and model calibration is needed to be performed frequently and quickly. By building upon

previous works in system dynamics (SD) modeling and extending their machine learning-

based approaches with cutting-edge DL techniques, our study highlighted the potential for

employing DL to tackle dynamic systems parameter calibration. We further suggest trans-

forming our DL-based approach into a model-generic software package that can be integrated

into existing SD software, allowing modelers to calibrate various model structures more ef-

ficiently. Despite our study’s limitations, including its focus on a single epidemiological

model and the need for further exploration of practical implementation aspects, it repre-

sents a promising direction for incorporating deep learning into SD modeling. By doing

so, we can provide an efficient model structure validation tool that helps researchers and

practitioners calibrate their models efficiently using a software built-in function.

In summary, this dissertation proposed the use of attention-based deep learning models

to tackle significant challenges in various domains, such as manufacturing, healthcare, and

system identification. By leveraging attention modules tailored to specific tasks, the pro-

posed solutions showed improved accuracy, efficiency, and interpretability, contributing to

the advancement of the respective fields. The results obtained demonstrated the potential

of attention-based models in addressing real-world problems and highlighted future research

directions to further improve their scalability and applicability. The attention-based models

possess interpretability advantages and superior performance, which could drive progress in

solving pressing problems across different fields.


	Titlepage
	Abstract
	General Audience Abstract
	Acknowledgements
	Chapter 1 : Introduction
	Chapter 2 : Attention-Aware Melt Pool Video Segmentation
	Abstract
	Introduction
	Related Works
	Melt Pool Monitoring
	Video Object segmentation

	Our Dataset
	Method
	X-ray Frames Preprocessing
	Melt pool Segmentation in the X-ray Video
	Siamese Encoder
	Co-Attention Module
	Global Convolution Block
	Decoder


	Results
	Conclusion and Future Direction
	References

	Chapter 3 : A Mask-guided Attention Deep Learning Model for COVID-19 Diagnosis based on an Integrated CT Scan Images Database
	Abstract
	Introduction
	Related Work
	COVID-19 Diagnosis and Lesion Segmentation on CT Scans
	Multi-task Learning (MLT)
	Research Gap

	Proposed Research Methodology
	Dataset Creation
	COVID-19 Diagnosis Using Deep Learning with MGA Model
	Segmentation Model for Lesion Mask Prediction
	Classification Model for COVID-19 Diagnosis
	Interpreting the Model's Prediction

	Results and Discussion
	Segmentation Performance
	Classification Performance
	Ablation Studies
	Interpretability using Attribution Maps
	Physician's Perspective

	Conclusion and Future Direction
	References

	Chapter 4 : Deep Learning for Parameter Estimation in System Dynamics Models
	Abstract
	Introduction
	Parameter Estimation Techniques 
	Proposed DL-based Calibration Method
	Method
	Step 1: Synthetic data generation
	Step 2: Training DL
	Step 3: Test DL

	Experimental Design
	Results
	Relative Performance of DL
	Effect of Stochasticity
	Effect of SD Training Model Accuracy

	Discussions and Conclusion
	References

	Chapter 5 : Conclusion

