Utilizing Docker and Kafka for Highly Scalable Bulk Processing of Electronic Theses and Dissertations (ETDs)

ECE 5904: Project and Report
By Dhanush Dinesh

Chair: Dr. Edward Fox

Committee Members:
Dr. Creed Jones
Dr. Nektaria Tryfona
Dr. Prashant Chandrasekar

May 9, 2023 Virginia Tech MEng Defense
Blacksburg, VA 24061
Introduction

- Introduction to Electronic Thesis and Dissertation (ETD) data
- Cloud computing and Container as a Service (CaaS)
- Advantages of containerization and platform-agnostic software
- Challenges in managing large infrastructure with numerous interconnected Docker containers [1]
- Overview of previous system architecture [2, 3]
- Challenges in processing bulk ETD data
Introduction

- Introduction to Kafka
- Advantages of Kafka
 - High performance
 - Low latency
 - High availability
- Role of Zookeeper
 - Tracking the status of Kafka nodes
 - Elects a leader of a specific partition and topic
Previous pipeline architecture

Goals

Segmentation
Text extraction
Classification
Clear Up

Upload API
Upload API
Upload API

Airflow

ETD ID

Kubernetes managed by Rancher
Developing a Pipeline for ETD Data Processing

- Overview of previous pipeline and limitations
 - Large set up time (6-8 min)
 - Serial processing of ETD
 - Processing one ETD at a time
- Need for a pipeline to process bulk ETD data
- Utilizing Kafka as an intermediary between services to enable parallel processing
Current pipeline architecture

Kafka

Producer

Zookeeper

Segmentation Q
Text Extraction Q
Summarize Q
Classification Q

Segmentation
Parse and clean
Summarization
Classification

Kubernetes managed by Rancher
Live Demo - Propagation of ETD Data through the Pipeline

cloud.cs.vt.edu
Advantages of current system

- Fast deployment and scalability
- Faster migrations
- Achieving parallel processing
- Significantly reducing processing times (one set up time)
- Bulk processing
- Decoupling of services
Conclusion

● Utilized Docker and Kafka for a high-performance and scalable bulk processing of ETD data pipeline

● Future scope for further improvements and optimization of the pipeline
 ○ Pipeline
 ○ CI/CD
 ○ User Interfaces
Questions ?
Thank You

2. Harish Babu, Manogaran Pallavi Sisodiya, Yuze Li, Aaron Travasso, Anmol Shukla. 2022. Team 5 final submission CS 5604: Information storage and retrieval. URL: http://hdl.handle.net/10919/114078

3. Suraj Gupta, Xingyu Long, Yash Mahajan, Mohit Thazhath, Hsinhan Hsieh, Alex Hicks, Cherie Poland. 2020. INT team final submission CS5604: Information storage and retrieval. URL: http://hdl.handle.net/10919/101544
2022 teams system architecture
2020 teams system architecture

Fig: System diagram for information retrieval and analysis system 2020 [3]
Discovery cluster - Rancher

Fig: Rancher architecture as used in discovery cluster