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aiWATERS: An Artificial Intelligence Framework for the Water
Sector

Darshan Vekaria

(ABSTRACT)

The ubiquity of Artificial Intelligence (AI) and Machine Learning (ML) applications has led

to their widespread adoption across diverse domains like education, self-driving cars, health-

care, and more. AI is making its way into the industry, beyond research and academia.

Concurrently, the water sector is undergoing a digital transformation, driven by challenges

such as water demand forecasting, wastewater treatment, asset maintenance and manage-

ment, and water quality assessment. Water utilities are at different stages in their journey

of digital transformation, and its decision-makers, who are non-expert stakeholders in AI

applications, must understand the technology to make informed decisions. The non-expert

stakeholders should know that while AI has numerous benefits to offer, there are also many

challenges related to data, model development, knowledge integration, and ethical concerns

that should be considered before implementing it for real-world applications. Civil engi-

neering is a licensed profession where critical decision-making is involved. Failure of critical

decisions by civil engineers may put their license at risk, and therefore trust in any decision-

support technology is crucial for its acceptance in real-world applications. This research

proposes a framework called aiWATERS (Artificial Intelligence for the Water Sector) to

facilitate the successful application of AI in the water sector. Based on this framework, we

conduct pilot interviews and surveys with various small, medium, and large water utilities

to capture their current state of AI implementation and identify the challenges faced by

them. The research findings reveal that most of the water utilities are at an early stage of



implementing AI as they face concerns regarding the blackbox nature, trustworthiness, and

sustainability of AI technology in their system. The aiWATERS framework is intended to

help the utilities navigate through these issues in their journey of digital transformation.



aiWATERS: An Artificial Intelligence Framework for the Water
Sector

Darshan Vekaria

(GENERAL AUDIENCE ABSTRACT)

The widespread adoption of Artificial Intelligence (AI) and Machine Learning (ML) in vari-

ous industries like education, self-driving cars, healthcare, and more has spurred interest in

its potential application in the water sector. As the water sector undergoes a digital trans-

formation to address challenges such as water demand forecasting, wastewater treatment,

asset management, and water quality assessment, water utilities need to understand the

benefits and challenges of AI technology. Automating water sector operations through AI

involves high risk as it has a huge ecological, economic, and sociological impact on society.

Water utilities are non-expert end users of AI and they should be aware of its challenges

such as data management, model development, domain knowledge integration, and ethical

concerns when implementing AI for real-world applications. To address these challenges,

this research proposes a framework called aiWATERS (Artificial Intelligence for the Water

Sector) to help water utilities successfully apply AI technology in their system. We conduct

pilot interviews and surveys with small, medium, and large water utilities across the United

States to capture their current AI practices and challenges. The research results led us to

find that water utilities are still at an early stage of adopting AI in their system and are

faced with issues such as blackbox nature of the technology, its trustworthiness for real-world

application, and sustainability at the utilities. We believe that aiWATERS will serve as a

relevant guide for water utilities and will help them overcome current AI-based challenges.
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Chapter 1

Introduction

With the advancement in sensory technologies, understanding of long-term performance of

various civil infrastructure assets and developments in the field of computation and pro-

cessing, the water sector is evolving rapidly, and various advancements are taking place in

the way water is managed and used. Utilities deal with several issues related to water, like

conservation of water resources, optimal energy management, reducing water consumption,

recovery of nutrients in water and wastewater, separation of wastewater resources, control

and automation [2]. Utilities are in the pursuit of keeping up with the latest technologies to

efficiently and sustainably manage their watershed. The use of these technologies has also

led to generation of huge volumes of unstructured and complex asset data during their life-

cycle. However, dealing with this data is not a straightforward task as the data generated in

real-world is complex and contains a variety of issues like lack of standardization, metadata,

and validity, among other issues.

The era of internet, big data and machine learning has led the water utilities to undergo a

digital transformation. The proliferating use of AI across various industries has also found

its presence in the water sector. Water utilities can leverage AI and big data analytics to

make intelligent data driven decisions. A study by International Water Association (IWA)

suggests that digitalization will enable this transition and AI will be the key technology to

digitalize the water utilities [3]. The scope of AI for water utilities is huge. AI can enable

intelligent decision making for the conventional processes taking place at the utilities (pipe

1



failure prediction, water demand forecasting, wastewater treatment, etc). AI can also help

the utilities in achieving enhanced business intelligence by providing assistance in tasks like

data integration, smart visualizations, human resource management [4].

Thus, there are arguments in favor of using AI and Machine learning (ML) in the water

sector to find the complex nonlinear patterns in the data and support decisions. It can

be found that various other industries like healthcare, self driving cars, education, security

etc have made significant progress in terms of implementing AI in their system. Relatively,

water sector is still in nascent stage of adopting AI in its system. This can be attributed to

the fact that many AI models developed in literature are black-box models [5] and do not

offer insights into how the algorithm reached a particular result.

Civil engineering is a licensed profession and therefore, trust in any decision support model is

critical for acceptance in real-world applications. License of practice for engineers can be at

risk if any decision taken by AI leads to a legal issue. Therefore, it is important to identify and

discuss the true capabilities of AI. This will help the decision makers realize opportunities,

challenges, and risks of implementing AI for modeling different processes within a water

cycle.

Most of the open source literature publicly available talks about the state of the art AI

models and corresponding results achieved for water utility operations like asset performance

management, water demand forecasting, wastewater treatment process, etc. However, these

are academic experiments and there are very few resources which describes how a utility uses

AI in their system. Water utilities also collaborate with AI vendors and academic institutes

to achieve AI driven goals. While such collaborations may provide short term benefits to the

utilities, in-house knowledge of AI is also important in order for the utilities to understand

the shortcomings of AI technology and to optimally integrate domain knowledge in the AI

models.



aiWATERS, the framework proposed in this work, provides a guide for the water utilities

which can help them to understand key concepts, benefits, limitations, challenges of AI

and how they correlate to the water sector. The framework is built based on seven pillars

of AI: Understanding AI and its Benefits, Data Readiness, Knowledge Integration, Model

Development, Decision Support and Implementation.

Based on this framework, we also conduct pilot interviews and survey with water utilities of

different scales to capture their AI practices and assess their maturity of AI implementation.

Our goal is to not only capture current AI practices of water utilities, but to also help them

improve their maturity in AI through aiWATERS.

1.1 Background

Civil engineering is a broad field that encompasses numerous subdomains, such as structural

engineering, transportation engineering, geotechnical engineering, environmental engineer-

ing, and water resources engineering. Each subdomain deals with unique challenges, but all

share a common goal of designing, constructing, and maintaining infrastructure that sup-

ports the needs of society. Of these subdomains, water infrastructure engineering focuses on

the management and distribution of water resources, an essential element for the survival of

human beings, wildlife, and the ecosystem.

The importance of water infrastructure in civil engineering is undeniable. Water infrastruc-

ture is responsible for delivering clean water to homes, businesses, and industries, as well

as for collecting and treating wastewater. The failure of water infrastructure can result in

severe consequences, making it crucial to implement state-of-the-art technology to manage

and maintain water systems.



The emergence of artificial intelligence (AI) has created new opportunities for water utilities

to improve the efficiency and effectiveness of their operations. AI can be applied to various

aspects of water infrastructure, such as leak detection, water quality monitoring, predictive

maintenance, demand forecasting, and optimization of energy consumption. However, the

adoption of AI in the water sector is not without challenges, such as the availability of data,

the integration of domain knowledge, the development of accurate models, and the need for

human in the loop.

This report proposes a theoretical framework (and not algorithm) that aims to addresses

the challenges faced by water utilities in adopting AI technology. It will help those from

the AI domain who seek to understand the unique challenges of applying AI to the water

sector, and those from the civil engineering domain who seek to implement AI in the water

infrastructure. The proposed framework aims to bridge the gap between these two domains

by providing a comprehensive understanding of AI applications in the water sector.

1.2 Goals and Objectives

The goal of this report is to facilitate the successful application of artificial intelligence (AI)

in the water sector.

Water infrastructure is vast as it has various components such as drinking water, wastewater,

stormwater, and others. We study the AI applications across each of these components by

dividing their applications in the category of Natural Subsystem, Built Subsystem and Socio-

Economic Subsystem of the water infrastructure. We carry out an extensive literature and

practice review to capture the current challenges and limitations of AI in the water sector.

The aiWATERS framework proposed in this report is based on the challenges identified in

the literature and practice review. We use this framework to conduct pilot interviews with



various water utilities to answer our research questions which revolve around the current

state of AI implementation in the utilities and finding the digital divide between, small,

medium and large utilities.

1.2.1 Research Questions

The analysis based on our pilot interviews and surveys with water utilities will enable us to

answer the following research questions:

• RQ1: Are water utilities willing to develop AI across their system for de-

cision making?

Through this question, we aim to find what is the degree at which utilities want to

integrate AI within their system. Do they wish to apply AI at each and every process

within the utility with a human in the loop?

• RQ2: How do water utilities of different size compare to each other in terms

of AI implementation?

We divide piloting utilities into three size: small, medium and large utilities, based

on the population they serve. The level of AI implementation and the best practices

followed by them may differ based on their focus area, available expertise and prior

experience with AI. We try to capture any pattern of differences observed within these

3 categories of utility.

• RQ3: What aspects of the AI technology are considered as the major chal-

lenges by water utilities?

For this research question, we try to find what according to the water utilities are the

major challenges for implementing AI in their system. It will also help us to find which



pillars of aiWATERS are more important for the utilities.

1.2.2 Methodology

The aiWATERS framework was developed through the following steps, also mentioned in

Figure 1.1

Figure 1.1: Research Methodology for aiWATERS

1. Literature Review: We conducted a comprehensive literature review by manually

reviewing more than 100 articles published by water organizations, research papers

from conferences and journals. The literature review captured various features of

the work done by researchers, such as the domain of application in the water sector,

types of AI models used and their purpose, reasoning for selecting a particular model,

hyperparameter combinations tested for the model, validation process for the selected

model, datasets used for training and testing, data collection and preprocessing steps

followed, and programming languages/libraries used.

2. Connecting with real-world utilities for Practice Review: We observed that



most of the AI applications discussed in the literature are academic, and hence, to

capture real-world AI practices in the water sector, we connected with some water

utilities (mentioned in section 2.2) to find references of their existing AI applications.

3. Building aiWATERS Fraemwork: Our literature review and practice review helped

us identify the challenges of implementing AI in the water sector. We identified seven

key aspects of AI, which we call the seven pillars of AI, that can address the AI chal-

lenges to the water community. The pillars include understanding AI, its benefits and

challenges as a technology, defining AI application goals, preparing AI-ready data, in-

tegrating domain knowledge in AI systems, model development, decision support and

strategic planning, and implementation of AI. We named these seven pillars as our

framework, aiWATERS (Artificial Intelligence for Water Sector).

4. Piloting with Jacobs Engineering: To ensure the framework’s efficacy, we piloted

with Jacobs Engineering during a three-day working meeting and obtained feedback

from a water domain expert’s perspective.

5. Preparing the Questionnaire: Once we finalized the framework, we prepared a

questionnaire based on the 7 pillars of aiWATERS to capture water utilities’ current

practices in AI.

6. Feedback sessions with large scale utilities: We conducted a working meeting

with HRSD and Houston water utilities to obtain feedback on the questionnaire from

a utility’s perspective and incorporated their suggestions. We added an extra op-

tion ‘other’ for each question to capture any practices that are not covered in the

aiWATERS framework.

7. Pilot interviews and response from Utilities: Finally, we sent the questionnaire to

various utilities to gather their current AI practices. We also conducted pilot interviews



with small, medium, and large scale utilities to understand their perspectives on the

current challenges and future of AI at their utility.

The rest of this report is structured as follows: In section 2, we discuss about the various

applications of AI in the water sector which are currently found in the literature. We discuss

the limitations of these applications and suggest how aiWATERS can enable the developers

in water sector to follow AI best practices and understand AI challenges in order to achieve

an ideal digital transformation. In section 3, we discuss the aiWATERS framework which is

built upon the 7 key pillars of AI. In section 4, we talk about the response received on the

questionnaire survey sent to various water utilities and corresponding pilot interviews with

them, to capture their AI practices and compare water utilities of small, medium and large

scale with respect to their AI implementation. Section 5 talks about the inferences we make

through our findings in the results section. We suggest possible future work in this research

through section 6. Lastly, section 7 talks about the conclusions of this study.



Chapter 2

Literature and Practice Review

The application of Artificial Intelligence (AI) in the water sector has been rapidly growing

in recent years, with many researchers and practitioners exploring its potential to improve

the efficiency and effectiveness of water management. In this section, we will review both

academic literature and real-world examples of AI applications in the water sector. By

examining the current state of research and practice, we hope to gain insights into the

strengths and limitations of AI in water management, as well as identify areas for future

research and development.

2.1 Literature Review

The use of AI in the water sector is spread across the Built, Natural and Social subsystems,

which makes the larger water system. Each of these sub-systems contain multiple components

and elements. We define the categorization of the water system as follow:

• Built Subsystem: The built sub-system includes the human-made components devel-

oped for wastewater collection, stormwater capture, and treatment infrastructure. The

main components of this subsystem include household/commercial/industrial, wastew-

ater, and stormwater infrastructure.

• Natural Subsystem: The natural sub-system comprises all the naturally occurring

9



resources/ elements that exist and influence sewershed characteristics like the water,

land, and climate.

• Social Subsystem: The social sub-system comprises the factors affecting societal

aspects and having an economic impact on a sewershed and can be categorized into

the community, policy, financial and economic components.

There are various AI applications associated with the component of these subsystems. The

ever increasing research efforts of AI applications lacks a comprehensive study of AI on each

of these subsystems. In this section, we present a summary of various applications of AI in

water sector available in the literature. We also intend to highlight the limitations of these

literature references to discuss how aiWATERS can help the water utilities in approaching

their AI based solutions.

2.1.1 AI applications in Built Subsystem

Water Pipe Failure Prediction

Pipe failure analysis has been a frequently used application of AI techniques in the category

of built water infrastructure. Some of the early works in this category, like survival analysis

of water distribution pipes which is done by Part et al. [6] explored the use of proportional

hazards modeling approach to obtain the survival probability of pipes. Their modeling

results showed that the failure times of all the categories of iron pipes have the Weibull

distribution. However, they didn’t disclose the dataset used in this work.

Aslani et al. [7] used Boosted Regression Tree to predict pipe failure rate using the main

breaks data in Tampa, Florida between the years 2015 to 2020. They identified the vulnerable

areas in the city using spatial clustering analysis. The result of this analysis was translated



into a categorical independent variable named hotspot level in the modeling phase.

Various parameters are used by researchers to represent pipe failure. For instance, Almheiri

et al. [8] used risk index to represent and predict pipe failure for the city of London, Ontoario,

Canada. They trained an Artificial Neural network on 2000 samples of this city. Their data

contained about 70% censored data, which means that these pipes are yet to experience

failure event. Using a model which is trained on only 2000 samples, with uncertainty in

the nature of pipes (as these samples are yet to experinece failure) may not be ideal for

translating this academic model for real world application.

A group a researchers from Iran, Shirzad et al. [9], compared the performance of Artificial

Neural Network (ANN) and Support Vector Regression (SVR) for predicting Pipe Burst

Rate in Mashhad and Mahabad districts in Iran. They found that SVR was less precise

than ANN, but more robust in terms of sensitivity to input variables, allowing to capture a

better system behavior. While their worked described in detail the input parameters that

were tested for predicting pipe burst rate, they didn’t discuss the number of samples used

for training the models.

Kabir et al. [10] used probabilistic technique like Bayesian Model Averaging (BMA) to find

failure probability of various pipes like Cast Iron, ductile iron, copper, cementitious and high-

density polyethylene. They found that BMA outperformed classical regression analysis when

limited pipe failure data are available. However, their data for experimentation was limited

to 306 records from Greater Vernon Water, British Columbia, Canada and 199 records from

City of Kelowna, Canada.

Hybrid models have also led the researchers to achieve better accuracy in their predictions.

Farmani et al. [11] found that combining Evolutionary Polynomial Regression (EPR) with

K-means clustering leads to improved prediction accuray for pipe failures when compared to



compared to the non-clustered EPR approach.

Sewer Pipe Condition Assessment

Water pipes and Sewer pipes require individual analysis as there are many various factors

in the environment in which both of them operates that demands an individual study of

both. The content and chemicals flowing through water pipes and sewer pipes may differ

significantly. This can impact the rate at which these types of pipes fail. For example, acidic

content in wastewater may corrode pipes faster than non-acidic content in drinking water.

Similarly, pipes located in coastal areas may corrode faster due to saltwater exposure.

Rayhana et al. [12] have described the traditional pipe inspection methods for sewer pipe

condition assessment. The inspection of the inaccessible pipes is acheived by using artifical

arms and robots which are assisted with a camera and sensor. The cameras record the

internal condition of the pipes. The videos are passed to the inspection operator for survey

and fault identification. Eventually, the traditional image inspection was followed by AI

based condition assessment. The success of Convolutional Neural Networks (CNN) for image

processing and classification tasks led researchers to explore this technique and its variants

for sewer pipe condition assessment [13]. Kumar et al. [14] used Deep CNN (DCNN) over

twelve thousand images of sewer pipelines to classify the Root intrusion, cracks and deposits.

Further studies by Meijer et al. [15] on using DCNN for sewer pipe image classification

found that the AI technique was able to outperform human operators for identifying defects

in pipes.

Damaged sewer pipes are also found to be a cause of sinkholes. Kim et al. [16] applied

logistic regression to predict sinkhole susceptibility in Seoul, South Korea. They found that

length, age, elevation, burial depth, size, slope, and material of sewer pipe were the major



determinants in predicting the sink hole susceptibility.

Wastewater Treatment

Wastewater treatment plants carry out various operations like effluent prediction, corrosion

control, odor monitoring, effluent quality control, nutrient removal, spill event identification,

removal of natural organic matter etc which can be assisted by AI techniques.

Manu et al. [17] used support vector machine (SVM) and adaptive neuro-fuzzy inference

system (ANFIS) to predict effluent Kjeldahl Nitrogen. They used the time series data of

Kavoor wastewater treatment plant (WWTP) located in Mangalore, which served a popula-

tion of 440000. The data captured by them was for the period June 2014 – September 2014.

However, their dataset was really small (training data had 65 data points, dated between

June to August and testing data had 23 datapoints, coming from the month of September.)

Thus, this application may only be considered for short term predictions.

We found that odor monitoring and control has been used in both, academia and industry.

Cangialosi et al. [18] used Random Forest (RF) and ANN for classification and quantification

of odor. Through various performance measures like R2̂, Root Mean Square Error (RMSE)

and Normalized RMSE, then found RF outperformed ANN. However, their overall dataset

was small, featuring 600 data points, which were split in a 80:20 ratio for training and testing

respectively. They used data smoothing to clean the signals received from instrumental odor

monitoring systems (IOMS).

A working meet with one of the officials from Metropolitan Water Reclamation District

(MWRD) of Greater Chicago led us to their AI application of determing the optimal dosage

of sodium hypochlorite (NaOCl) to curtail corrosion and odor by H2S. Given the amount

of available data, they divided the tasks into three modules and assigned an ML model



to solve each of the individual module. In Module 1, a recurrent neural network (RNN)

was designed to predict wastewater characteristics. In Module 2, a random forest (RF)

classifier and a support vector machine (SVM) classifier were built with the information

from Module 1 along with other datasets to predict the concentrations of VFAs and H2S,

respectively. Finally, in Module 3, with the information obtained from Module 2, another RF

classifier was developed to predict NaOCl dosage to reduce H2S but keeping VFAs within the

target range [19]. Their dataset contained 17 years of historical influential data. To predict

H2S and VFA concentration, they collected online instrument data (flow, ORP (oxidation

reduction potential), pH, wastewater temperature, tunnel pumping, and tunnel elevation)

from SCADA system and daily precipitation data. As a part of data prepossessing, they

used techniques like interpolation and oversampling for handling missing data points and

class imbalance. They used Min-Max normalization for scaling their input features. They

used the set of features with highest correlation with each other as the input parameters.

Correlation may not be the best technique while deciding the input features and two highly

correlated feature may represent the same thing and introduce redundancy in the input

parameter set. All of their Machine Learning and Deep Learning analyses to predict NaOCl

content for waste water plants were performed through Python, which is an open-source

software, using free software packages and libraries, for example, Tensor Flow and Keras.

Water Pumping Stations

Researchers have investigated AI techniques to optimally control the flow of water at the

pumping stations. Ostogin et al. [20] used Fuzzy logic to find the required change in control

of water pumps (number of pumps to be stopped/started). They considered rate of change

of level in the wet well (at interval of 5 mins), and the level in the well as the input features of

their fuzzy logic. They performed this experiment on Anglian Water (UK) data. Similarly,



Yagi et al. [21] used a combination of Fuzzy logic and genetic algorithms to determine

the storm and sanitary pumping rates, but with additional input parameters like rainfall

intensity, sewer water level, river water level, sewer water quality.

The latest research on pumping stations has also explored the use of deep learning techniques

like CNN and LSTM (Long short term memory) to achieve water level prediction in pumping

stations [22]. Zhnag et al. used the historical data of the pumping station project provided by

the Tuancheng Lake Management Office of Beijing South-to-North Water Diversion Project

for their experiment. They found that a hybrind CNN-LSTM model was able to give better

results than CNN and LSTM individually. They also provided the value of hyper parameters

like batch size, epochs, learning rate, dropout rate, k-fold, decay steps and decay rate for

their CNN-LSTM model, making their model development reproducible by others. However,

they didn’t describe in detail about the feature importance and feature selection.

Accumulation of fat, oil and grease (FOG) in wastewater pumping stations is a common

failure cause of failure for this infrastructure. Deep learning techniques like CNN have been

explored by Moreno et al. [23] for estimation of FOG layer cover. The performance of

their CNN architecture was found to be comparable to human classification. They used the

openCV python library for camera calibration and perspective rectification of images. The

CNN network was built using TensorFlow.

Green Roofs

Green roofs reduce the storm water outflows and also enables reduction in urban heat island

effect, preserving the cities ecosystems and improving the urban visual amenity [24].

Tsang et al. [25] worked on developing a optimal irrigation strategy using machine learning,

wherein they used real-time weather data to predict the soil moisture. They covered the



weather data near their experimental site for the duration of August 2011 to February 2012

from the Hong Kong Observatory. They have applied ANN and Fuzzy network to predict

the soil moisture content. However, there is no description about the data pre-processing

methods, and model development and testing, making it difficult to reproduce this work and

the models proposed in it.

One of the recent works for the Green Roof infrastructure presented by Abdalla et al. [26] is

relatively descriptive. They compared 4 machine learning models (ANN, LSTM, KNN and

M5 model tree) to simulate storm-water runoff from 16 extensive green roofs located in four

Norwegian cities across different climatic zones. While they haven’t described the amount

of data and corresponding preprocessing techniques used for making it AI ready, they have

explained their hyperparameter tuning and model testing for all 4 models in detail and found

that LSTM demonstrated a better performance than other state of the art techniques.

Sludge Management

Sludge management is necessary for the utilities dealing with wastewater water treatment.

Facchini et al. [27] used ANN with determining features as plant capacity, typology of

secondary treatment of the Wastewater treatment, and the configuration of the sewage sludge

treatment plant to find the optimal sewer sludge treatment process to be adopted. They

are not descriptive enough about the data being used as they say that the data collected for

their research was extracted from literature. The authors state that they tested their ANN

model for 20 different scenarios to suggest a most effective sludge-management strategy in

economic terms.

Djandja et al. [28] states that rising volume of sewage sludge in recent years has become a

threat to the environment and that Hydrothermal carbonization (HTC) an enhance organic



contaminants removal. They use feed forward neural network for predicting the nitrogen

content of the hydrochar. For this work, they compiled data from 26 published papers on

HTC and split it to 80:20 ratio for training and testing. They detail their neaural network

model configuration as a two-layer perceptron (with one hidden layer). The limitation here

is this work is limited to an academic experiment and these models may not work in real

world scenario.

2.1.2 AI applications in Natural Subsystem

AI is becoming increasingly important in the management of water’s natural subsystem,

which includes elements such as rivers, groundwater, irrigation, and other related natural

water resources. Researchers are exploring various applications of AI in Natural subsystem

such as nitrogen content prediction, groundwater level and salinity prediction, surface water

quality assessment and smart irrigation systems, which will be discussed in this subsection.

High concentration of nitrogen in surface water and groundwater pose a threat to humans

and environment. Knoll et al. [29] applied AI techniques such as Regression trees, Random

forest, and Boosted Regression trees for predicting groundwater nitrogen concentration for

the state of Hesse in Germany. The authors discuss about how they have integrated data

from various sources to collect data points for parameters like Land Use (Urban land, Arable

Land, Grassland, Forest etc), Hydrology (Seepage water rate, nitrate concentration in seep-

age, nitrate concentration in groundwater discharge), and soil conditions (soil groups, field

capacity etc). MAE, RMSE and R2 are the measures used to evaluate the performance of

ML techniques and found that Random Forest achieved highest predictive performance.

Various operations of irrigation, urbanism and industrial work are associated with ground-

water and scarcity of fresh groundwater has given rise to groundwater modeling [30] [31].



Recent advances in technology has led to a shift from the traditional, time consuming and

expensive approaches like drilling for groundwater prediction towards digital methods like

GIS (Geographic Information System), remote sensing technology and mathematical mod-

eling. Mosavi et al. [32] explore the bagging and boosting methods for building ensemble

methods for groundwater potential modeling. They conduct their study on the Dezekord-

Kamfiruz watershed which is a part of the Fars Province in Iran. This area contains 339

groundwater resources which supply water for irrigation and drinking water purposes. The

divided the groundwater resource points into a ratio of 70:30 for training and validation

purposes. Recursive Feature Elimination (RFE), which is a random forest based modeling

approach [33], was used in the feature selection process by the authors. The authors identi-

fied that redundant data and attributes can create problems in model performance and thus,

opted for efficient feature selection process like RFE. They used Caret Package [34] in R for

programming purposes. The authors found that Bagging Models (RF and Bagged CART)

had a higher performance than Boosting models (AdaBoost and GamBoost).

Since ensemble learning combines multiple ML models to improve the prediction accuracy

and provides room to improve an individual model’s weakness [35], it has attracted more

researchers in leveraging this AI techniques in their applications. Sarkar et al. [36] have

also used ensemble modeling for groundwater potential prediction in Teesta sub-catchment,

Bangladesh. The authors used RF and Random Subspace models to estimate groundwater

potential, with Area Under Curve (AUC) as the performance parameter. They also found

that Distance to river, slope, curvature, elevation, LULC (land use land cover) and SPI

(stream power index) were the determinant factors for estimating groundwater potential.

Natural subsystem also incorporates rainfall and runoff modeling in which models are used

for runoff prediction and flood forecasting. Damavandi et al. [37] found that deep learning

techniques likes LSTM provided better performance than physical models like CaMa-Flood



[38] for predicting short term daily streamflow using current day’s streamflow and climatic

data for a Texas watershed.

Surface water sources like streams, lakes, rivers are highly susceptible to pollution. They

resources are of great value as a lot of needs such as irrigation, hydroelectricity generation,

drinking water etc are dependent on them. Thus, surface water quality assessment becomes

extremely important. Shah et al. [39] caputred 30 years of historical water quality data of

Indus River, to model total dissolved solids (TDS) and specific conductivity (EC) though

techniques like ANN, LR and gene expression programming (GEP). Their model approach is

explainable and reproducible as they have provided the hyperparameter values for the mod-

els they have used. Their dataset contained various parameters like Calcium, magnesium,

sodium, chloride, sulphate, pH, bicarbonate, and TDS and EC. All the other seven parame-

ters were considered as input parameters to predict TDS and EC. The authors state that all

the input parameters had high correlation with the output parameter. Their dataset records

(about 360 data points), were split into 70:30 ratio for training and testing respectively. The

performance of GEP was the most accurate followed by ANN. While this study brings out

the model development process in detail, the authors could have provided more depth into

data preprocessing and feature selection.

2.1.3 AI Applications in Socio-Economic Subsystem

Cost and demand prediction, risk analysis are some commonly use cases of AI applications

across various industries [40] [41] [42]. Water system consists of similar applications in form

of various socio economic operations like water demand forecasting, energy cost modeling,

flood risk assessment etc. Water demand forecasting is critical for anticipating changes

in demand and adjusting operations accordingly. It enables the stakeholders in to make



better decisions regarding water allocation, pipe capacity, water usage, pumping operations,

pricing, etc [43]. Energy cost modeling helps utilities identify opportunities to improve

energy efficiency, reduce costs, and reduce their carbon footprint. Flood risk assessment is

essential for managing the risks associated with flooding, which can cause significant damage

to water systems and infrastructure. By incorporating these elements into their operations,

water utilities and other stakeholders can ensure the availability of clean water, minimize

energy costs, and mitigate the risks associated with flooding.

Time series forecasting has been a widely used category of AI applications and thus, many

researchers have worked in this category while exploring water demand forecasting. Guo et al.

[44] used Gated Recurrent Unit Network (GRUN) deep learning method to make short term

water demand forecasts with a 15-min time step.They compared their deep learning based

apprach with artificial neural network (ANN) model (ML based) and seasonal autoregressive

integrated moving average (SARIMA) model (Statistics based). Due to the stochastic and

non linear nature of data, the authors found that the deep learning technique outperformed

the ML and statistical model. To decide the model’s input parameters based on domain

knowledge, the authors select historical water demand at 15 mins time stamps as the only

input, since they are making short term predictions. Population, economic development,

pricing policies can be considered for medium term and long term predictions. The authors

use the data of two district metered area (which are part of water distribution network from

northeast of Changzhou and southwest of Changzhou) in China. The authors also provide

the model configuartions for ANN and GRUN, where they achieved optimal configurations

through 3 and 7 dense layers for ANN and GRUN respectively. The authors do not provide

any specific details about the data preprocessing techniques used in their experiment.

Deep learning techniques like LSTM (Long Short Term Memory) have also performed well

when used for short term water demand prediction. Kuhnert et al. [45] used LSTM model



to predict water demands for next 24 hours using hourly historical Water Consumption and

calendar Information as the input parameter. The authors state that their work is a research

experiment and how it can be brought into real production environment is a future scope.

Water demand prediction is a globally used application of AI over across the globe. Brentan

et al. [46] applied Support Vector Regression (SVR) to predict hourly water demand (in

litre/second) for a DMA in Franca, Brazil. To overcome the challenge of identifying non

linear patterns in data, the authors used a hybrid SVR + Adaptive fourier series approach.

The Fourier series layer coupled with SVR output was used to better adjust the minimum

and maximum demand peaks and capture parts of the time series periodicity that SVR

cannot reproduce.

Water utilities also focus on optimizing their operational costs. Plant managers are inter-

ested in investing towards energy management at wastewater treatment plants due to high

operational costs and considerable saving potential. Wastewater treatment plants are esti-

mated to contribute about 1% of a country’s total energy consumption [47]. Torregrossa

et al. [48] used a database containing data of 317 wastewater treatment plants for their

experiment on calculating the relation between wastewater processes and corresponding en-

ergy consumption using Neural Network and Random Forest techniques. However, in this

research, the authors mention did not mention some key details regarding their experiment,

for instance, the split ratio of training and testing data, model configuration and data pre-

processing methods used in their ML cycle.

Zhang et al. [47] also used a Random Forest model to predict unit electricity consumption

by using the data obtained from 2015 Urban Drainage Yearbook of China. They performed

typecasting of the data attributes to convert integer data type to float, non-numerical data

(like strings) to object type, and converted all the default data to NaN (not a number). Since

the RF model is good at dealing with outliers, they didn’t work on eliminating the outliers.



2.2 Practice Review

2.2.1 Metropolitan Water Reclamation District (MWRD) of Greater

Chicago

We had setup a working meeting with the MWRD Chiacgo to capture their AI practices at

their wastewater treatment plant.

MWRD treats wastewater and provides stormwater management for residents and businesses

in their service area which encompasses 882.1 square miles and includes Chicago and 128

suburban communities throughout Cook County. The MWRD serves approximately 12.72

million people each day, including 5.16 million residents. This case study focuses on the im-

plementation of AI techniques for supporting wastewater operations, specifically controlling

odors and corrosion in WRRF for MWRD Greater Chicago (GC). Yang et al. [19] developed

an ML application to find the optimal dosage of sodium hypochlorite to supress the odor

and corrosion cause by H2S in their wastewater treatment plant.

There were several challenges which motivated the authors to explore AI techniques for this

task. Oxygen Reduction Potential (ORP) was used earlier for identifying the dosage of

sodium hypochlorite. However, the use of this method led to more overdosing. Another way

adopted by them was using Hydrogen Sulphide online sensors and trying to do feedback

control dosing through it. However, in this case, sensor accuracy and reliability were a

concern. Thus, MWRD Chicago switched to AI in order to determine the optimal dosage of

sodium hypochlorite.

Data Collection, Storage and Management: To predict H2S and VFA (Volatile Fatty

Acids) concentration, they collected online instrument data regarding flow, ORP (oxidation

reduction potential), pH, wastewater temperature, tunnel pumping, and tunnel elevation



from SCADA system and daily precipitation data. No new sensor installation was required

specifically for this project. Their project used 17 years of influential historical data. For

storing their data, they used district servers. They are internal servers only accessible to

operating staff. Since district servers have limited access, they have created the copy of this

database in the form of Enterprise Data Management System (EDS), so that this data can

be accessible to engineering and research staff as well.

MWRD Chicago stores their CSV data into the RTDS (Real Time Decision System) in order

to fit it into the AI model. Since data transfer to the RTDS comes with security concerns,

their team of consultants (Xylem) used a Data Splitter at the sensors (of PH, ORP, and other

parameters). For the data signal coming from the device/sensor, the data splitter splits the

signal and passes it on to RTDS. While this setup costs overhead in terms of finances, it

will save them from transferring data from district servers which might not be fully secured.

Given the high cost of maintenance, they will consider not using Data Splitter and find a

secure way to transfer data from district servers directly.

Data Preprocessing: For handling missing data points and class imbalance, they use

techniques like interpolation and oversampling respectively. Detection of outliers in the data

was achieved by domain knowledge. Min-Max Normalization data normalization was applied

to all variables before feeding them to ML models. For the sparse and imbalanced datasets,

they used random oversampling, synthetic minority oversampling, and adaptive synthetic

sampling for data augmentation and and nonlinear data quantization (to remove skewness

and make it a multi class problem). They split their data into the 80:20 ratio for training

and testing purpose respectively.

Model Selection and Hyperparameter Tuning: Their model selection was driven by

the type and amount of data they had. In order to select the data attributes to train

an AI model, they used a correlation map. The features showing highest correlation with



each other were used and fed to the model. Domain knowledge along with the correlation

mapping was also considered to select the most relevant data attributes. Given the highly

diverse datasets, three subproblems were formulated, and three cascaded ML modules were

developed accordingly. In Module 1, influent wastewater characteristics were predicted using

historical wastewater characteristics data. In Module 2, the predicted results from Module

1 together with online sensor data were used to predict H2S and VFAs (volatile fatty acids)

levels. The predicted results from Module 2 were used as input for Module 3, which predicted

the NaOCl dosage. A grid search with cross-validation was used to tune the hyperparameters

of each model.

Details of their AI model experimentation:

• RNN: Tested with epoch values in the range 10 - 60, batch size values 16, 32 and 64,

number of hidden neurons with values 16, 32, 64.

• Random Forest: Number of trees with values ranging from 10 to 100, maximum number

of features considered for splitting a node with values 1 - 5, and number of levels in

decision tree with values 4 - 32.

• SVM: soft margin constant with values 1, 10, 100, and 1000, the type of kernels with

values “linear polynomial” and “RBF”; and kernel parameter gamma with values 0.01,

0.001, and 0.000

For predicting wastewater characteristics, the RNN using LSTM presented the best perfor-

mance due to (i) the 17-year long-term data, (ii) the learning capability from the internal

LSTM structure in RNN, and (iii) the perfect matching between the available data and the

model capacity. The ARIMA performed the worst due to its limited learning capability from

its linear statistical model nature.



Potential limitations of this experiment: The authors mentioned that they selected

the highly correlated parameters as the input to the AI models. However, this may not be

the best method as two highly correlated parameters may also represent the same attribute

of data.

2.2.2 Clean Water Services, Oregon

This case study is based on Utilizing Soft Sensor System for Process Control and Optimiza-

tion which was submitted as a solution to The LIFT Intelligent Water Systems Challenge

by Clean Water Services [49].

Clean Water Services (CWS) is a special service district that provides wastewater treatment,

stormwater management, stream restoration and water resources management services to

more than 620,000 residents and business in urban Washington County, Oregon.

A multidisciplinary team was formed between Clean Water Services and Princeton University

to facilitate effective management of nitrification at the facilities. An AI framework for soft

sensor development driven by data based decision making was developed and applied in this

project.

Lu et al. [49] states that the existing ML lacks a framework for water and wastewater opera-

tion. Thus, they develop a framework which is applied to the Rock Creek facility to predict

influent wastewater flow and its receiving river flow. Clean water service benefits through

this framework as it helps them to achieve reduced chemical and energy consumption.

Objectives of the project: (i) Predict influent flows for the Rock Creek facility one day

(and three days) in advance. (ii) Predict the next calendar month average Tualatin River

flow. (iii) Develop a simple, easy-to-use dashboard to visualize the predictions of future

influent flow and monthly average river flow and process control tools.



Data Collection: They used 11 years (2010-2020) of historical data to develop soft sensors

for predicting the next day’s influent wastewater flow. They conducted preliminary data

analyses to understand potential problems like temporal resolution (15-min, hourly, daily

data), missing data points, etc. For prediction of the next month’s average river flow,

they used data from two USGS river monitoring sites (Farmington and West Linn) and

40 NOAA meteorological sites based on eight ZIP areas for 81 years (10/1939 – 12/2020).

Average values of available data from the 40 sites were used as preprocessed daily data,

and were later converted to monthly data for all meteorological variables. For wastewater

flow prediction, 11 years of daily data were first split into training (2010-2017) and testing

(2018-2020) datasets. For future river flow prediction, the 81 years of monthly data were

divided into training (1939-1999) and testing (2000-2020) datasets.

Data Storage: The authors used SQL servers for data storage.

Data Preprocessing: The authors used data preprocessing techniques like feature scaling,

feature selection, cross-validation. They integrated data from various sources through the

Clean Water Services’ Power BI visualization. Conventional standard deviation and box plot

based detection can overestimate the number of outliers thus, they used a distance-based

detection heuristic to identify outliers. Technical outliers were identified based on domain

knowledge (e.g., flow > 0), and statistical outliers were detected based on a distance-based

heuristic method.All variables (regressors) were scaled to the range of [0, 1] based on their

corresponding maximum and minimum values.

Model Selection:

• Prediction of Next Day’s influent wastewater flow: The authors found that ETR (Extra

trees regression), KRR (Kernel ridge regression), and SVR (Support vector regression)

achieved good results for this task.



• Prediction of Next Month’s influent wastewater flow: KNN, ETR, and KRR were the

three methods that generated best candidates from the 999 tested models.

Prediction performance of all models was evaluated based on four typical metrics, adjusted

R2, mean absolute percentage error (MAPE), root mean squared error (RMSE), and mean

absolute error (MAE).

Tools for Decision Support: Once the model accuracy was accepted by the utility team,

the dashboard was developed with Power BI as a decision support tool.

2.2.3 Hampton Roads Sanitation District (HRSD), VA

HRSD has partnered with DC Water, MWRD Colorado, University of Michigan, Ann Ar-

bor, Northwestern University, Oak Ridge National Laboratory to work on a project titled

”Crossing the Finish Line: Integration of Data-Driven Process Control for Maximization of

Energy and Resource Efficiency in Advanced Water Resource Recovery Facilities”. This is

an ongoing project and the team has outlined the vision they want to achieve using machine

learning tools. They aim to treatment goals like reduce energy and chemical inputs, maxi-

mize energy and nutrient recovery. Through this project, they want to (i) achieve maximum

energy and resource efficiency, (ii) achieve performance goals; and (iii) better manage the

risk of implementing new technologies in the water sector. The team intends to share the

benefits of this project across the water sector through the development and demonstration

of a Toolbox. Much like a cookbook, the Toolbox will illustrate how generic statistical and

ML tools can be applied, given plant-specific data synthesis and blending approaches, ad-

vanced data analysis techniques and the code associated with specific examples, hardware

(e.g. control network servers, DCS/SCADA), and data management software configurations.

The team is currently in the planning and scheduling phase and thus, precise technical details



are not available at the time of writing this report. However, the project goals of this team

clearly describe how the utilities are intending to switch towards AI to maximize benefits

and operational efficieny in the water sector.

2.3 Various Use Cases of AI in the Water Sector

The current state of AI in the water industry is helping the water sector decision makers to

guide the utilities towards a digital transformation. Following is a list of use cases for which

AI is playing a key role in changing the water industry:

• Process Automation: AI is used to automate and optimize various processes involved

in water management, such as water treatment, pump flow operations, and wastewater

treatment. It can help in automating routine tasks, improving operational efficiency,

and reducing human error.

• Asset Management and Maintenance: AI is being used for several tasks such as deter-

mining effluent Nitrogen, odor and corrosion control, pipe defect classification, iden-

tifying potential leaks, reduce water loss, and optimize maintenance strategies to help

decision makers better manage and maintain their water and processes at the utility.

• Retaining Domain Knowledge: Domain experts with years of experience play a key

role in making decisions at the utilities. Integrating AI systems with their domain

knowledge helps the utilities in retaining and capturing the knowledge which makes

crucial decisions, even after the experts leave the organization.

• Energy Efficiency: AI techniques can be employed to optimize energy usage in water

treatment and distribution processes. By analyzing data and patterns, AI algorithms



can identify opportunities for energy conservation, recommend efficient operational

strategies, and enable the integration of renewable energy sources.

• Customer Experience: AI-powered smart metering systems, chatbots for capturing

customer complaints, and related customer analytics are examples of how AI is used

to improve customer engagement and satisfaction.

• Enhancing Traditional Methods: AI-based systems are enhancing some existing tra-

ditional methods adopted in the water sector. For instance, AI is used to optimize

irrigation practices by analyzing weather data, soil moisture levels, and plant charac-

teristics. By considering these factors, AI algorithms can recommend optimal irriga-

tion schedules, reduce water waste, and ensure efficient water usage in agricultural and

landscaping applications.

• Demand Response and Demand Management: AI helps utilities manage water demand

more effectively by analyzing historical usage patterns, customer behavior, and external

factors. By understanding demand fluctuations, AI can assist in demand forecasting,

load balancing, and implementing demand response programs to optimize water supply

and reduce costs.

• Risk Assessment to avoid emergency events: Emergency events like pipe burst can

prove to be costly to the utilities in terms of resource allocation and finances. AI

enabled risk assessment strategies help the utilities to obtain various analysis like risk

index of pipe failure, vulnerable areas in the city prone to pipe failure, susceptibility

for sink holes, etc.

• Resource Optimization: AI techniques help optimize the use of water resources by an-

alyzing data on supply-demand patterns, weather conditions, population growth, and



other factors. This enables utilities to make informed decisions about water allocation,

demand management, and conservation strategies.

• Water Quality Management: AI is employed to monitor and manage water quality

parameters, including pH levels, dissolved oxygen, turbidity, and contaminant detec-

tion. AI algorithms can analyze data from various sources, such as sensors, satellite

imagery, and historical records, to identify water quality trends, detect anomalies, and

enable proactive measures for maintaining water safety.

• Decision Intelligence to Operator: AI-based decision support systems assist water util-

ities and decision-makers in making informed choices. These systems utilize AI algo-

rithms to analyze complex data, assess risks, optimize resource allocation, and recom-

mend suitable actions. It helps in capturing patterns like pipe age vs failure count,

annual variation in number of failures, pipe bursts detected vs network length covered,

etc., to let the operators make intelligent decisions.

• Predictive Analytics: AI techniques have been employed to analyze historical and real-

time data, enabling predictive modeling for various water-related parameters. This in-

cludes predicting pipe failures, pumping rate, water demand, water quality, flow rates,

erosion rates, and other critical factors. By identifying potential issues in advance,

proactive measures can be taken to prevent or mitigate them.

• Water Network Optimization: AI techniques can be applied to optimize the design and

operation of water distribution networks. By analyzing network topology, hydraulic

models, and real-time data, AI algorithms can optimize pump scheduling, pressure

management, leak detection, and pipe network layout to improve overall network effi-

ciency.



2.4 Data Driven & Model Driven Models in the Water

Sector

Model-driven models and data-driven models are two different approaches in machine learn-

ing and artificial intelligence.

Model-driven models are built based on prior knowledge and domain expertise. These models

rely on explicit rules, equations, or algorithms to represent the relationships and behavior

of the system being modeled. The model is designed based on an understanding of the

underlying principles and mechanisms governing the problem domain. Model-driven models

typically require less data to train and can provide interpretable and explainable results.

However, they may struggle with complex and nonlinear patterns that are difficult to capture

with predefined rules. Examples of model-driven models include decision trees, rule-based

systems, and expert systems.

Data-driven models, on the other hand, are built by learning patterns and relationships

directly from data. These models do not rely on predefined rules or equations but instead

use algorithms to automatically extract patterns and make predictions or classifications.

Data-driven models are trained on large datasets and can discover complex patterns and

nonlinear relationships that may be difficult to capture with explicit rules. However, they

may require a significant amount of labeled data for training and can be less interpretable

compared to model-driven models. Examples of data-driven models include neural networks,

support vector machines, and random forests.

Based on our extensive literature and practice review, we found that there exist a mix of data

driven, model driven and hybrid models (which has both the elements) when applying AI in

the water sector. Commonly used data driven models were ANN, LSTM, Genetic Algorithms,



AutoML, SARIMA, RNN, Linear Regression, Logistic Regression, KNN, K-means, PHM

based survival, with ANN being the most popular technique. Model driven applications

included techniques like Fuzzy Logic, SVR, Adaptive Fourier Series, SVM, Random Forest,

Multivariate adaptive regression splines (MARS), Ensemble Decision Trees, Bayesian model

averaging (BMA), Naive Bayes, XGBoost, Regression Trees, Naive Bayes, AdaBoost, Markov

Chain Model. Tree based algorithms were found to be the most commonly used model

driven models. Adaptive neuro-fuzzy inference system (ANFIS), Boosted Regression Trees,

Gradient-Boosted Tree, Dynamic Bayesian Network, Gradient Boosting Machine (GBM)

were the Hybrid techniques found in literature, with ANFIS being the most popular. Some of

the works explored both Model Driven and Data Driven techniques. Most of the publications

found Data Driven techniques outperforming Model Driven techniques in terms of accuracy.

In total, 46 publications explored Data Driven models, 39 explored Model Driven models

and 14 explored hybrid techniques.

Since several literature references used Data Driven models (many of which also outper-

formed model driven models), indicates a high emphasis on utilizing available data to make

predictions or classifications rather than relying solely on predefined models. Moreover, the

prevalence of data driven models highlights the significance of data in the water sector. It

indicates that practitioners in the field recognize the value of leveraging data to gain insights,

make accurate predictions, and address water-related challenges effectively. The presence

of hybrid models indicates that the water sector is increasingly recognizing the benefits of

combining both model driven and data driven approaches in the water sector. Hybrid models

can leverage the strengths of both approaches to enhance accuracy, robustness, and inter-

pretability. This suggests a growing interest in developing more comprehensive and adaptive

solutions that integrate prior knowledge and available data.



2.5 Limitations of AI in the Water Sector

The extensive literature review presented in the previous subsection detailed various appli-

cations of AI in the water sector and the AI techniques implemented for various usecases.

We have reviewed more than 70 papers to capture the AI practices taking place over the

years in the water sector.

There are several limitations observed in AI practices studied across literature and practice

which remains unaddressed. One of the major concerns is reproducibility of models. We

find that many researchers mention about the techniques and AI models which they used in

their application but do not mention the model and experimentation configurations in details

which provided them the optimal output. It makes reproducing the outcomes of a research

difficult for other researchers in this domain. We also found that most of the research is

inclined towards sequence prediction and regression tasks. However, this can be attributed

to the fact that most of the data in water sector received from sensors and instruments is

sequential data.

The scale at which these AI experiments are achieved is an another limitation. We saw

that most of the papers were experimenting with a considerably small dataset (whereas,

in practice review we saw the utilities working on years of historical data). The models

developed in literature are academic models and can’t be scaled to real world scenario, as

they have been tested on very small dataset, which may not be representative of all real

world scenarios. Models in real world settings are dense and complex are they are trained

upon huge volume of data. The AI models proposed in literature were relatively simpler

and thus, their implementation can’t be translated to real world settings. The authors also

did not explain any steps taken to overcome underfitting and overfitting scenarios faced

while developing the AI solution. Generalization of AI models is very important and thus,



providing details about what model settings work and do not work shall provide insights to

other researchers.

Another drawback from a high level view is the absence of a standard dataset. Most studies

acquired data from a particular region or utility, depending on their needs. If researchers

can come up with globally accepted dataset (for example Iris, ImageNet datasets) that can

act as a benchmark for research in AI for water sector, it can enable quicker development

of state-of-the-art models. As the researchers use one-off datasets, it becomes difficult for

researchers to build upon the existing models and take the state of the art methods to next

stage [50].

Adding to that, many researchers also did not provide insights regarding their technical

decisions. For instance, ANN was a commonly used algorithm in most of the research works.

However, many publications lacked reasoning behind the choice of one ML technique over

the other. Researchers did not discuss what characteristics of a given model makes it more

desirable than others for their given use case.

Through practice review, we saw that the water utilities are collaborating with academic

institutes and consultants as they don’t have full in house expertise. Developing in house

expertise is favorable for utilities as academia and consultant will not have domain knowledge

as good as that of utility to effectively integrate it in the AI applications.

While the ML applications in water sector are centered around optimization and modeling,

the majority of these efforts are constrained within academic boundaries and haven’t made

it to the decision making tools [2]. Moreover, while we were able to capture the utility

practices by piloting with them, it is difficult to find non academic ML applications in water

sector within research publications, which makes it difficult to capture the best practices

followed in the industry. Real world AI applications in water sector are an intersection



of civil engineering and computer science, which requires an interdisciplinary effort from

domain experts of various fields. The experts from these domains need to come together to

work collaboratively to ensure successfully application of AI in the water sector, which has

not been emphasized by the academic publications.

2.6 Framework Validation and Verification

2.6.1 aiWATERS Framework Verification

To identify the appropriate building blocks for holistic AI implementation in the water sec-

tor, we started by carrying out a literature review of current AI practices in the water sector.

We reviewed literature articles published in various conferences, journals, water research or-

ganizations and publicly available documentation of water utilities. To understand the best

practices followed in the industry and real world, we conducted a practice review which com-

prised of publications and literature articles discussing AI practices in real world watershed

and sewer shed system. We pilot interviewed 3 large utilities to find their AI applications

and best practices. Based on the literature and practice review, we analyzed the progress

and limitations of AI in the water sector. This analysis and review helped us in laying the

foundations of the building blocks of AI. Later, the building blocks were iteratively revised

based on feedback from Jacobs Engineering, a large consulting firm, providing technical and

scientific services for government and private sector projects. Jacobs has years of real-world

experience in guiding hundreds of water utilities. We also held an in-person two day brain

storming session with Jacobs for the revision of building blocks. We also collected inputs

from the Intelligent Water Infrastructure Network (iWIN) Committee, which comprises of

technical domain experts from Oak Ridge National Lab (ORNL), Jacobs, Arcadis, DC Wa-



ter, City of Houston, MWRD Chicago, Clean Water Services and Virginia Tech. Involving

domain experts of water sector from various organizations helped us to verify that the build-

ing blocks proposed in this framework are complete and didn’t miss out on capturing any

other details.

To find current AI practices of large, medium and small utilities, we created a questionnaire.

The questions were prepared based on the building blocks of aiWATERS. We did a dry run

of the initial version of the questionnaire with two large utilities. We conducted a feedback

meeting with them to capture their input on improving the questionnaire and making it easy

to comprehend for experts in the water sector. The suggestions and approval of the large

utilities verified our questionnaire to be effective for capturing AI practices at water utilities.

2.6.2 aiWATERS Framework Validation

We sent the questionnaire to 100+ utilities across United States, Canada and UK. We also

pilot interviewed some of those utilities through video meetings to find out about their

current AI practices and future plans. The questionnaire captured that some of the utilities

are already applying AI in-house, and collectively follow similar steps as proposed in the

aiWATERS framework. We captured the responses of all the participating utilities and have

analysed them in the Results and Discussion sections. The findings obtained from their

response helped us to validate our framework.



Chapter 3

aiWATERS: The Framework

Many utilities aim to pilot AI in their systems to augment their capabilities through scalable

and learnable decision support systems. However, the criticality of the services provided

by the water sector warrants caution to ensure that appropriate safeguards are in place to

mitigate any potential risks associated with AI.

There are various challenges and struggles can be associated with deploying AI in a system.

A survey conducted by International Data Corporation (IDC) [51] revealed that more than

50% of 2000 technology buyers struggle with various factors like lack of skilled personnel,

lack of ML operations tools and techniques, lack of adequate volume and quality of data,

and trust and governance issues associated with AI. Considering various challenges found

in literature review and reports, we aim to provide a framework called aiWATERS: AI for

water sector, that provides the foundation, necessary steps, and path that utilities can follow

to effectively apply AI into their systems.

3.1 Pillars of aiWATERS

We provide a framework to help utilities successfully navigate the issues associated with the

application of AI in the water sector. The framework considers various issues associated with

AI applications and is built on seven pillars of AI: Understanding Benefits and challenges,

Application Goals, Data Readiness, Knowledge Integration, Model Development, Decision

37



Support, and Implementation, as shown in Figure 3.1.

Figure 3.1: Seven Pillars of aiWATERS.

This framework contains recommendations based on best practices identified during an ex-

tensive review of academic literature of AI in the water sector and other domains, discussions

with real-world practitioners from water utilities, and a review of industry best practices re-

garding AI applications.

The seven pillars presented in this framework also explore the major research domains of

AI across industries. The whole life cycle of AI can be envisioned into 3 parts; the left part

which involves what can be considered an input to the AI model - Data and knowledge;

the middle part which process and computes the input, i.e. AI model development; and the

right part which is the output/decision of the AI model. We define these as AI Left Domain

Pillars, AI Middle Domain Pillar and AI right domain pillar as shown in Figure 3.2.

Before carrying out data collection and model development to make AI driven decisions, we

encourage the utilities to understand the AI technology, its benefits and challenges and have

defined goals for their application. We categorize understating AI and defining application

goals as the AI Top domain pillars. The complete structure of aiWATERS Framework is

shown in Figure 3.2.

Based on our comprehensive literature review, it is evident that a significant amount of



Figure 3.2: Architecture of aiWATERS.

attention has been devoted to the middle domain of AI, which involves the development

of advanced algorithms and their optimization for publication and real-world applications.

However, it is equally essential to address the left and right domains of AI, namely the

data and knowledge domain and the decision-making domain, respectively. To tackle the

issues related to data input, researchers are exploring cutting-edge technologies such as

synthetic data generation and knowledge-guided machine learning approaches. Ensuring the

trustworthiness of AI output has been a contentious issue for several years, as incorrect

output generated by AI can pose significant risks to society. Therefore, researchers are

actively developing frameworks to ensure the reliability and trustworthiness of AI output.



Therefore, the suggestions presented this section will also aim to discuss recent research

advancement across AI left, middle and right domain pillars. Moreover, It is essential to

recognize that each water utility function is unique, with its own specific challenges and

issues that must be addressed to ensure sustainable and resilient service delivery. This

framework is designed to offer a generalized perspective that can be applied across different

types of utilities and benefit all stakeholders.

Following is a brief about the seven pillars of this framework:

1. AI Understanding, Benefits, and Challenges: The first pillar on understanding

AI and its benefits focuses on briefly explaining the different foundational concepts of

AI, difference between AI in academia and industry, benefits and challenges.

2. AI Application Goals: The second pillar describes how AI should be applied and

discusses topics like the application at different levels of the studied system, how to

deploy AI in various categories, and the different modes of building AI

3. AI Data Readiness: The third pillar describes how to evaluate the quality and

quantity of collected data and how to preprocess data to make it ready for AI

4. AI Knowledge Integration: The fourth pillar explains how the knowledge in the

minds of the utility experts can be integrated into AI modeling frameworks to build

more robust models

5. AI Model Development: The fifth pillar discusses how to develop accurate and

reliable AI models.

6. AI Decision Support: The sixth pillar explains methods to improve the trustwor-

thiness of AI models and how to develop “human-in-the-loop” models.



7. AI Implementation: The seventh pillar on AI implementation explains methods for

ensuring successful AI application in the real-world and continuous improvement of

models.

The following subsections will discuss each of the seven pillars in detail.

3.2 aiWATERS Understanding and Benefits

Ever since the boom of AI technology, terms like AI, machine learning and deep learning have

become buzzwords and it raises questions about whether these studies attempt to exploit the

keywords, using the term ‘deep learning’ to take advantage of the current scientific zeitgeist.

Therefore, it essential for the water utilities to understand AI as a technology and its corre-

sponding benefits and challenges. Artificial Intelligence (AI) is the broader field of computer

science that deals with the development of intelligent machines that can perform tasks that

typically require human intelligence. AI encompasses several subfields, including Machine

Learning (ML) and Deep Learning (DL). Machine Learning (ML) refers to the process of

enabling machines to learn from data without being explicitly programmed. Deep Learning

(DL) is a specific subset of ML that is based on artificial neural networks that are designed to

mimic the structure and function of the human brain. DL is particularly suited for process-

ing complex data types, such as images and speech, and has been used in many applications,

including computer vision, speech recognition, and natural language processing [52].

Understanding the differences between AI, ML, and DL is important for the water industry

because it allows water professionals to identify the appropriate techniques and tools for

solving different types of problems. By understanding the differences between AI, ML, and

DL, water professionals can determine which approach is most suitable for a given task,



taking into account factors such as the nature of the data, the desired outcome, and the

available resources.

Table 3.1: AI in Academia vs Industry

Key Factors Research/Academia Industry
Requirements State of the art model per-

formance (which is optimal as
recommended by existing lit-
erature) on benchmark (stan-
dard) dataset. Major focus is
to meet publication standards
of conference and journals

Different stakeholders have
different requirements. Mod-
els should be trustworthy as
licensed professionals are re-
sponsible for the model deci-
sions. It should adhere to the
legal requirements

Computational Priority Fast Training, high through-
put

Fast inference, low latency

Data Limited (Clean, well format-
ted and limited data)

Large datasets, which can be
noisy and unstructured

Fairness Often not a focus, as model is
not yet used for real world ap-
plications. The major focus is
often the accuracy and output
of the model.

Must be considered, since the
model must be used for real
world applications

AI Interpretability Often not focused much. ML
models are built using pro-
gramming libraries and there
is lack of reasoning behind
using a particular model, its
structure, parameters and per-
formance compared to other
techniques, as the major goal
is to generate low error output.

Must be considered. Adequate
experimentation and knowl-
edge of the ML models is nec-
essary to justify the decisions
taken

Continuous Model Learning Not a major focus. The mod-
els may not be used in real
world after publication and
thus addressing how to keep
the model updated over time
is not of much interest to the
researchers

Real world settings are dy-
namic with changing data and
knowledge which drives the
model. Timely updates to
model is required

AI implementation in the industry, especially water sector, is in its early stages. There are

many academic literature references available that can be referred by the utilities to gain



deeper insights into how AI can be implemented in the water sector. However, utilities need

to aware about various differences that exist in AI implementation within academia and

industry [53], as shown in Table 3.1.

The current state of Artificial Intelligence is not comparable to super intelligence [54] and

thus, stakeholders from the water sector should be aware of it’s limitations like data ac-

quisition (data quality and availability are necessities for AI capabilities), limited knowledge

(water sector needs AI domain experts to integrate AI in their system), computing power and

resources (like GPUs, funds etc), blackbox nature AI models are often not interpretable),

legal concerns (accountability of AI decisions). At the same time, AI technology also of-

fers various benefits like includes increased efficiency and productivity, improved accuracy

and precision, easily identifies trends and patterns, continuous learning and improvement,

drives down the performance time and enables multi-tasking and eases workload, can handle

multi-dimensional and multi-variety data, and supports decision intelligence.

Owing to certain limitations of AI, the water utilities should adopt a human in the loop

approach for their solutions and should not treat AI as an autonomous technology.

Therefore, the stakeholders and decision makers from the water sector should be well versed

with the AI technology, it’s benefits and challenges when integrating it in their system for

real world water applications.

3.3 aiWATERS Application Goals

AI applications currently existing within the utilities are minimal and limited to a specific

and isolated to process or infrastructure. The System of Systems approach encourages water

utilities to move towards expanding their internal AI applications and achieve a fully AI-



driven functionality for all processes taking place in the utility at a system level [55].

The water system is a highly complex and interconnected system comprising of several

subsystems, including the natural, built, and social subsystems, as illustrated in Figure 3.3.

These subsystems consist of numerous elements and processes, and their interrelationships

contribute to the complexity of the entire system. For instance, the built subsystem contains

components such as pipes and wastewater treatment plants, which involve complex processes

such as pipe failure prediction and wastewater treatment. On the other hand, the natural

subsystem includes components such as groundwater and river water, which have numerous

associated processes like surface water quality assessment and nitrogen content prediction.

Additionally, the social subsystem involves processes such as energy cost modeling and water

demand forecasting. Therefore, understanding the complexities and interdependencies of the

various subsystems is crucial for effective management of the water system.

Figure 3.3: Water System of Systems



3.3.1 Using AI at Different Levels of System

Water utilities worldwide are at different stages when it comes to implementing AI within

their system. The existing use of AI in water system is focused on either a specific process

(for example, reducing nitrogen content from water) or an infrastructure component (for

example, focused particularly on failure of water pipe infrastructure). Therefore, the current

presence of AI within the utilities is limited and isolated. Figure 3.3 captures the various

processes and infrastructure components at which AI/ML is currently applied within various

subsystems of the water system. The implementation of AI within a utility can be categorized

hierarchically as follows (as shown in Figure 3.4):

1. No AI application

2. Component and problem specific application

3. Sub-system level application

4. System level application

Figure 3.4: Different levels of AI Applications



In the current water utility landscape, some utilities still adhere to conventional practices

where most of their operations are carried out manually. Consequently, such utilities opt for

a No AI implementation approach.

Moving one step above are the utilities who apply AI techniques on specific components or

problem within their system, such as utilizing AI to predict water pipe failure in their built

sub-system or forecasting monthly energy costs. However, these utilities still rely on manual

efforts to govern the rest of their processes and assets.

In the sub-system level application, AI is deployed at various components of the sub-system

like built, natural, or socioeconomic sub-system. Here the aim is to use AI for multiple

applications. Further, this implementation may also be extended to achieve a hybrid imple-

mentation so that isolated AI applications can interact with each other and the output from

one application can be used to benefit another AI process within the system.

The highest level in the AI implementation hierarchy is the system-level application, where

AI governs all processes in the system. In this case, AI operates all infrastructure and assets

of the sub-systems, while a human is present to monitor the flow of operations. If AI is

deployed at the system level, it can learn the system behavior, which can improve the op-

erators’ decision-making process. Deploying AI across the system can bring several benefits

to utilities, including efficient and optimal energy usage of devices, reduced manual effort,

increased automation and advanced technology, and improved maintenance of infrastructure

components and elements.

3.3.2 Various Categories of AI Deployment

From our understanding, AI can be deployed in various categories within the system, which

can be defined as per the degree of automation associated with the AI output. The three



categories are listed as follows:

• Manual Output: Calculations from model used for manual actions and decision

making. No automation involved.

• Semi Automated Output: Functioning of the system components is partially op-

erated by the AI output. For example, a pump operator controlling the flow of water

through pipes based on real time water demand prediction.

• Fully Automated Output: When human is observing the the process and all com-

ponents are automated and operated by AI.

Each of these categories involves a different level of human interaction and engagement.

In manual output, a high degree of manual interaction is involved as the human reads

the AI output and accordingly carries out further processes that involve manual efforts.

No automation is associated with the results given by AI. In semi-automated output, the

machines are operated and controlled by the AI-based output to some extent. Lastly, a

fully automated, AI-based deployment is envisioned through which the human observes the

functioning of the machines that will be fully governed by AI-based decisions and outputs.

The role of the human in this case would be to take an action in case the AI-based decisions

operating the machines seems to be off track and doubtful.

3.3.3 Different Modes of Building AI

Three majors modes of building AI applications within the utility are:

• In-house AI applications: The AI applications and models are developed within

the utility.



• Vendor Based AI applications: Utilities collaboarte with vendors and consultants

to integrate AI in their system.

• Hybrid AI Application: Utilities build in-house AI applications with the guidance

of vendors and consultants.

Utilities can build in-house models or can use the vendor-based model. Each option has its

own set of advantages and disadvantages. In-house models are developed by water domain

experts, which can be integrated with domain knowledge, and thus can provide effective

learning for the given problem. In addition, in-house models can incorporate utility-specific

scenarios and conditions accurately. However, building in-house models requires a significant

investment of time and resources, as they also need an in-house AI domain expert who can

collaboratively work with water domain experts. Vendor-based models may have advanced

and latest techniques that can be used as they are created by AI professionals. However,

they may not be able to integrate the utility-specific scenarios and conditions as accurately

as the in-house models. Utilities can also follow a hybrid approach where they build in-house

models under the guidance of collaborating consultants and AI vendors.

3.4 aiWATERS Data Readiness

“Garbage In, Garbage Out” is a popular saying in the field of computing that emphasizes

the importance of high-quality input data. The quality of output from a machine learning

or AI system depends on the quality of data fed into the system. If the input data is flawed

or biased, the output produced by the system will also be inaccurate and biased [56]. As

the water sector begins to transform itself through AI and Digital Transformation, creating

this “AI-ready” data will be a key determinant of success. A lot of research is focused on



improving state of the art AI models, however, creating AI ready data is equally important

[57]. A data-enrichment platform for data scientists, CrowdFlower, conducted a survey of 80

data scientists and found that data processing and cleaning accounts for almost 60% time

of their daily tasks as shown in Figure 3.5 [58]. Therefore, data readiness is a challenging

aspect of AI applications across various sectors. Utilities should be well versed with the

tasks involved in cleaning, organizing, and processing data to optimize the huge investment

of time in making the data AI ready.

Figure 3.5: Time consumption for various tasks in building AI models

3.4.1 Evaluating Quality and Quantity of Collected Data

The quality of collected data can be determined by several factors such as data source, data

integrity, data timeliness, and data relevance [59].

Data Source: Quality of data can highly correlate to the source from which data are col-

lected. Utilities should evaluate the reliability of the data before using it for AI applications.

Data reliability can be ranked based on the source from which data have been collected.



Utilities can rank the reliability of sources in the following order (highly reliable to least reli-

able): ground sampling and LIMS (Laboratory Information Management System) > utility

database (SCADA, EAM, GIS) > derived indirectly (static pressure calculation, C Factor es-

timation) > educated guess (high confidence, moderate confidence, low confidence) as shown

in Figure 3.6

Figure 3.6: Hierarchy of Data Source Reliability

Data Integrity: Data integrity is the accuracy, completeness, and consistency of the data as

maintained over the time and across formats. For example, a water utility may collect data

on water quality parameters such as pH, temperature, and dissolved oxygen levels to ensure

the water is safe for consumption. Questions to determine data integrity in this case could

include: Are the instruments used to measure these parameters calibrated and accurate?,

Are the sampling techniques appropriate for capturing the spatial and temporal variations

in water quality?, and Is the data consistent across different laboratories and measurement



methods?

Data timeliness: Data timeliness refers to how up to date the collected data are. For

instance, a water utility may collect data on water demand and supply to optimize the

operation of its water treatment plant. If the data are not up to date, the utility may end

up over- or under-producing water, which can result in wastage or shortages. Therefore, the

utility should ensure that the data being worked on are the latest version available to make

appropriate interpretations.

Data Relevance: Data relevance is also critical for ensuring that the analysis is valuable

and actionable. For example, a water utility may collect data on customer complaints about

water quality to identify the most pressing issues and prioritize infrastructure investments.

Gathering irrelevant information, such as customer complaints about billing, would be a

waste of time and resources. Therefore, the utility must ensure that the data being collected

are relevant to the problem statement being considered.

There is no fixed rule for how much data is enough for ML applications, as it depends on

the specific problem domain, data sources, and ML algorithms used. The 5V’s of big data

(Volume, Variety, Velocity, Veracity and Value) are considered to be a relevant parameter

when determining the the quantity of data required for an AI or ML application [60] [61] as

shown in Figure 3.7.

Following is a description of the 5V’s of big data for the water sector:

Volume: Volume refers to the size of the collected data. Having enough samples, features,

and amount of data will provide the ML model with better scope to learn the patterns in

the data.

Velocity: Velocity refers to the rate at which data are collected at the utility. Real-time

monitoring systems can provide high-velocity data that can help utilities respond quickly to



Figure 3.7: 5Vs of Big Data

changing conditions.

Variety: Variety refers to different forms of data, i.e., structured data (e.g., customer

billing information), semi-structured data (e.g., maintenance logs), and unstructured data

(images of pipe defects). Not all of the collected data will be in the structured/tabular

form. Collecting a variety of data can help utilities gain a more comprehensive view of their

operations and identify patterns that may not be apparent in structured data alone.

Veracity: Veracity is the inconsistency and uncertainty observed in the data. Big Data

can be variable and highly dimensional. For instance, data in bulk could create confusion

whereas less data could convey incomplete information. Water data can be subject to various

sources of uncertainty, such as measurement errors or missing data. Ensuring the veracity

of the data is important for avoiding biased or incorrect conclusions.

Value: Value refers to the usefulness of the collected data in generating insights or support-

ing decision-making. For example, water quality data can be used to optimize treatment

processes and ensure compliance with regulations. Collecting and analyzing data that gen-



erates actionable insights can help utilities improve their operations and better serve their

customers.

3.4.2 Data Preprocessing

We have listed some of the commonly used data preprocessing techniques in this subsection

which are applied across a wide range of AI applications. It should be noted that utilities

may not require to follow each of these steps in the list depending on the their tasks and

data.

Data extraction, compilation and typecasting: Extract data from relevant sources and

check if any of the attributes requires a type conversion. For example, image classification

involves matrix multiplication, which cannot be performed with string data types. In this

case, columns which represent numeric values but are in the string data type should be

converted to integer/long/float data type format.

Categorical data transformation: Categorical data transformation is the process of con-

verting categorical variables (i.e., variables that take on a limited number of values, such as

colors, categories, or labels) into numerical values that can be used in data analysis. Cate-

gorical data transformation is required because many machine learning algorithms can only

work with numerical data, and cannot directly process categorical variables. There are vari-

ous techniques for categorical data transformation, such as one-hot encoding, label encoding,

and target encoding. For instance, in the process of predicting water quality, the categorical

variables might include different types of water sources (e.g., river, lake, well), different wa-

ter treatment technologies (e.g., reverse osmosis, chlorination), and different water quality

standards (e.g., drinking water, irrigation water). By converting these categorical variables

into numerical values, machine learning algorithms could be trained to predict water quality



based on the combination of these variables.

Handling missing values and outliers: Datasets may contain missing values, incom-

plete feature information, or missing feature columns. Missing values can be handled by

eliminating data objects, estimating missing values, or ignoring missing values. Outliers are

data points that significantly differ from the rest of the observations in the dataset. Outliers

can also be useful and may form a new class for the dataset. Domain knowledge should be

used to identify which data points are outliers. The data points can also be compared with

statistics like mean or median to determine if they deviate significantly from the behavior

of the majority of data.

Flag inconsistent and duplicate values: Inconsistent values are those that do not truly

represent the dataset to which they belong, while duplicate values add redundancy to the

dataset. These values should be identified and addressed through expert domain knowledge.

For example, consider a dataset that contains measurements of water quality parameters,

such as pH, temperature, dissolved oxygen, and conductivity, at different monitoring stations

in a river. However, upon inspecting the dataset, we notice that there are some inconsistent

and duplicate values in the dataset that need to be removed. Inconsistent values might

include data that fall outside of a certain range or have extreme values that are not possible

for the given parameter. For example, a pH value of 15 or a temperature of -50°C might be

considered inconsistent values. These values could be removed from the dataset to ensure

the accuracy of the remaining data.

Dimensionality Reduction: Complex datasets may have many features that make pro-

cessing the model difficult. Dimensionality reduction reduces the dimensions of the dataset,

making the newly transformed data relatively simpler. This helps avoid overfitting, as more

complex data may lead to overfitting. Principal component analysis (PCA) is one of the

commonly used technique for dimensionality reduction.



Discretization and Binarization: Discretization and binarization are both techniques

used in data preprocessing to transform continuous data into categorical data, which is

often easier to analyze using certain machine learning algorithms. Discretization involves

dividing continuous data into discrete intervals or categories. This can be done using various

techniques, such as equal width binning (dividing the data into intervals of equal width),

equal frequency binning (dividing the data into intervals with equal number of data points),

or clustering (dividing the data based on cluster analysis). Discretization can help to sim-

plify the data and reduce the noise in the data. Binarization, on the other hand, involves

converting continuous data into binary data, which takes on only two values (usually 0 and

1). This can be done by setting a threshold value and assigning a value of 1 to all data points

that are above the threshold and a value of 0 to all data points that are below the threshold.

Binarization can be useful in cases where only the presence or absence of a certain feature

is important.

Data Normalization: Data normalization is the process of scaling numeric data to a

standardized range of values, typically between 0 and 1. The purpose of data normalization

is to ensure that all numeric variables are on a similar scale and have a similar influence on

the analysis. Data normalization can be important in many machine learning algorithms, as

some algorithms may be sensitive to differences in the scales of input features. For example,

in distance-based algorithms such as k-nearest neighbors or clustering, features with larger

scales may dominate the distance calculations, making the contribution of other features

less important. Similarly, in gradient descent-based algorithms such as linear regression or

artificial neural networks, large differences in the scales of input features may make it difficult

to converge to a minimum loss.

Data Distribution: To ensure the quality and accuracy of data used to train AI models,

utilities must consider the type of data distribution and skewness required for their prob-



lem statements. For example, predicting the cost of data collection instruments for yearly

budgeting requires different levels of accuracy depending on the cost of the instrument. An

error of 10% in predicting a cheap instrument may be acceptable, but the same error for an

expensive instrument could have a significant impact on operations budget. Therefore, it is

crucial to check the data distribution and sample the relevant and important data points.

Thus, data should be finely distributed and have required samples as per the use case. Noisy

features, such as erroneous labels or input attribute errors, should also be considered. Model

developers must be aware of these factors and take measures to ensure data quality.

Feature Representation: To ensure accurate output for a problem statement, it is crucial

to have all relevant features present in the dataset with sufficient sample size to learn the

patterns within the data. However, in some cases, the actual data may not fully represent

all important features. For instance, when predicting pipe failure, cracks can be a crucial

feature, but different types of cracks such as fatigue, circumferential, and longitudinal may

exist. Having enough data samples of each type of crack is essential for the model to learn

and analyze all crack patterns present in a pipe.

Based on our discussion with consultants, we found that Data Extraction and Visualization

are widely used steps by the utilities. We divide various preprocessing steps shown in Figure

3.8 in three columns, the left, middle and right columns depict the steps that are preliminary,

intermediate and advanced in terms of complexity.

3.4.3 Data Augmentation and Class Imbalance

Data augmentation is a technique commonly used in machine learning and deep learning to

artificially expand the size and diversity of a training dataset. It achieves this by generating

new modified versions of the original data. The primary aim of data augmentation is to



Figure 3.8: Data Preprocessing Steps

produce new training examples that retain the characteristics of existing ones while also

incorporating enough variation to capture a broad range of real-world scenarios that the

model may encounter.

Imbalanced data samples for a class can reduce data representativeness and introduce bias

in AI models trained on such data. In such cases, developers should use class imbalance

techniques to address this issue. The sensitivity of class imbalance varies with the complexity

of the problem, with multiclass problems being more challenging than binary classification.

Although a good model should learn to address class imbalance, deploying such a model can

be challenging. Therefore, it is important to rely on class imbalance techniques to ensure

model performance.

Some of the popularly used techniques to handle class imbalance are these:

• Data level methods (resampling): Under sampling (reducing samples of majority

class) and oversampling (creating copies of minority class) are some of the popular and

conventional sampling techniques.

• Synthetic Data: Synthetic data refers to artificially manufactured information, gen-

erated algorithmically instead of being derived from real-world events. Although syn-



thetic data is commonly used to handle class imbalance, it is also a rapidly developing

field of research in data analytics. Synthetic data offers several benefits, including the

ability to reduce constraints when using sensitive or regulated data, customize data

to specific conditions that may not be attainable with authentic data, and generate

datasets for software testing and quality assurance. There are several methods to

generate synthetic data, such as variational autoencoders, GAN models, and neural

radiance fields.

Utilities can benefits in several ways by the generation of synthetic Data as it has various

organizational and technical benefits, as described below:

Machine Learning Usecases:

• Evaluation and Comparison of ML Algorithms: As found in the literature,

advanced algorithms are constantly being tested in the water industry to improve

performance compared to existing approaches. However, it is important to evaluate

and compare the performance of new algorithms against previous ones on realistic

datasets. Synthetic data provides the advantage of generating unlimited sample sizes

to explore the impact of sample size on model performance. This is particularly useful

when the total amount of available data is limited.

• Preventing Privacy Attacks on ML Models: Utilities often handles sensitive

customer data and privacy attacks pose a data security risk to ML models by exposing

the training data. Training models using synthetic data can eliminate concerns about

protecting the training data and minimize privacy risks. This approach enables the

sharing of models within the scientific community to optimize utility and learning.

Software Testing: Utilities may use various softwares for controlling and checking the flow

of water operations. Real-world data of these applications may not always create a particular



flow of action on a software, and thus, synthetic data may help test the application with all

edge cases.

Education and Training: Synthetic data can be used as an effective training and onboard-

ing tool, particularly for employees who need to understand how to handle personal data.

They can also use synthetic data in their hiring process, where they want the candidate to

solve a problem based on utility’s data characteristics without using the actual data.

Data Retention: To reduce costs associated with managing resources, infrastructure, and

processes, industrial firms retain customer data for a limited time. However, some data are

important and could be reused if privacy concerns are addressed. Synthetic data techniques

can be used to retain data without privacy concerns, but storage costs and data relevance

over time must be considered. Utilities should make informed decisions about which data to

retain.

Data Sharing with Vendors: Some utilities collaborate with vendors and third-party

consultants to implement AI in their operations. While collaboration can help meet busi-

ness needs, sharing sensitive data with outside entities poses a risk to the organization.

Synthetic data generation provides an alternative that mitigates privacy concerns. Further-

more, sharing personal data with vendors involves legal contracts and paperwork, which

can be time-consuming and resource-intensive. Using synthetic data avoids these challenges,

reducing overhead costs.

3.5 aiWATERS Knowledge Integration

Along with data, integrating domain knowledge is equally important to make effective AI

applications. Science-based models, based on scientific theory, are used alongside ML mod-



els for modeling problem statements. While ML models heavily depend on data and are

a black box, science-based models come with the limitation of having a large number of

parameters/states and incomplete or missing physics/process knowledge. Scientific models

are useful for discovering knowledge and predictive analysis. However, inferring parameters

and state variables is a cumbersome process, and they are not as agile as ML models. On the

other hand, ML models work well when they have a large set of representative samples but

may show poor generalization performance with limited data and are not rooted to scientific

knowledge.

Another problem with ML models is that they are not designed to discover new knowledge.

They may be good at making predictions but, in many scientific problems, the goal is not

to stop at prediction but to understand the phenomenon resulting in those predictions.

Explainability or interpretability is a major goal in science. Through knowledge-guided ML,

which makes use of both knowledge and data as displayed in Figure 3.9, patterns from

data can be extracted without ignoring the knowledge accumulated in scientific research.

Knowledge can also be induced in the ML models tuning how they make decisions at each

stage of processing (for example, defining the rules for a fuzzy logic model detecting pipe

failure timeline).

To effectively integrate domain knowledge in AI applications for water utilities, collabora-

tion is required among experts from various fields, including data scientists, water experts,

environment experts, and legal experts. For example, when modeling wastewater treatment

to predict effluent release, environment experts must determine whether the ML model’s

predictions will impact natural bodies such as rivers, streams, and lakes. Similarly, legal

experts must assess the legality and adherence to guidelines of the AI-based decision-making

envisioned by the utility. Figure 3.10 illustrates the need for knowledge integration across

multiple domains in AI for water utilities.



Figure 3.9: Knowledge and Data driven Models

3.5.1 Extracting Domain Knowledge for AI Applications

Domain knowledge can essentially be obtained from people, data, and experiments as de-

scribed below:

Extracting Knowledge from Domain Experts: Experts with decades of experience in

the utilities industry possess practical knowledge of the process and factors that influence

it. Survey forms and interviews with domain experts can also provide valuable information

for studying the problem statement. In addition, experts can provide structural knowl-

edge, which is the basic problem-solving knowledge that describes the relationship between

concepts and objects associated with the problem statement. Such knowledge, known as

heuristic knowledge [62], is derived from domain and subject matter experts. Conferences,

seminars, workshops, and industry events are also excellent resources where domain experts

can be found discussing various challenges, opportunities, and research trends in the water

sector.



Figure 3.10: Domain Knowledge Integration in AI

Extracting Knowledge from Data: Extracting domain knowledge from data can provide

valuable insights and understanding for solving complex problems in the water sector. Data

sources include not only sensor data and historical records but also documents, metadata, and

prior decisions and results. For instance, documents can contain expert recommendations,

best practices, and insights from previous problem-solving efforts.

Literature review is an effective approach for identifying and studying relevant research

papers, journals, and industry reports to gain insights into the current state of the art,

challenges, and opportunities in the field. This can help to identify key concepts, techniques,

and areas that require further investigation.

Recent studies suggest that AI techniques can be used to generate scientific understanding

from data. AI can act as a “computational microscope” by providing information that is not

yet attainable through experimental means, or as a “resource of inspiration” that expands the

scope of human imagination and creativity. These dimensions of AI-assisted understanding

require human refinement to develop into a full understanding. AI can also act as an “agent



of understanding” by producing generalized insights from data and applying them to different

tasks, as demonstrated by techniques like transfer learning. Exploring these three dimensions

of AI-assisted understanding may lead to new domains of knowledge and understanding for

the water sector.

Extracting Knowledge from Experiments: Experiments play a vital role in under-

standing the functional insights and the underlying factors that influence a given problem

statement. Conducting experiments can provide procedural knowledge, which involves know-

ing how to perform a task and includes strategies, procedures, and rules. These experiments

can take various forms, including laboratory experiments, field experiments, or scale experi-

ments. Scale experiments are particularly useful when building and testing the actual target

is not feasible due to constraints such as cost, resources, or time. For instance, to test a

bridge design, it may not be viable to build a full-scale bridge at the target location, as it

requires significant effort and money. Instead, a scale model can be built and tested in the

laboratory to evaluate how the bridge would perform in a real-world scenario.

Another example of an experiment is to compare the effectiveness of various methods for

removing contaminants from water, such as filtration, chemical treatment, or ultraviolet

light exposure. The contaminant levels can be measured before and after each technique is

applied to determine which method is most effective. These experiments can help to identify

the best approach to solve a particular problem statement and can guide decision-making in

the water sector.



3.5.2 Knowledge based selection of input and output features for

the AI Application

The context of input parameters here is from the domain knowledge perspective and not the

input for machine learning models. Selecting input parameters for AI applications requires

a thorough understanding of the scientific process guiding the problem statement. The

domain expert should analyze the relevant equations and laws to identify the parameters

that govern the process. Input parameters can take various forms, such as images, variables,

and numeric values. The choice of input parameters should best represent the problem

statement at hand. For instance, when predicting water flow in a natural sub-system like

a river, factors like location and season are crucial. In a mountainous region, precipitation

levels, snow pack, and temperature would be relevant, while in coastal areas, tide levels and

sea surface temperature would be more significant. Additionally, domain knowledge derived

from experience, experiments, and data can help determine which set of parameters will

serve as the input to define the problem statement’s output.

Selecting the right output parameters is critical to the success of an AI application as it

determines its usefulness and effectiveness. Defining the goals of the AI model is essential,

and this involves identifying the specific task or objective that needs to be accomplished.

To select the output parameters, you need to have a clear idea of the desired state of the

output, which could be a specific value, a range of values, or a binary decision. The output

parameters should assist you during the decision-making stage. Output parameters can be

in various forms, such as a scale of 1-5 or a time series graph, depending on the problem

statement. They significantly influence the decision-making process and are the defining

factor of any given problem statement. Domain knowledge complements the selection of

input and output parameters, and it is necessary to identify the desired state of the result



for selecting the parameters that will be representative of this state, which we want to achieve

with the help of the AI model.

3.6 aiWATERS Model Development

Designing and developing an AI/ML model is crucial to the success of an AI system. To

ensure model robustness, it is important to consider factors such as input, output, model hy-

perparameters, training, and testing samples based on the problem statement being solved.

Key considerations when selecting an AI model include problem type, data characteristics,

model complexity, training and prediction time, and model interpretability. For example,

understanding the type of problem to be solved (classification, regression, etc.), the data’s

size and structure, and the time required for training and predictions are critical in se-

lecting an appropriate model. Model complexity and interpretability are other important

considerations, as more complex models may capture intricate relationships but may lead

to overfitting, while simpler models may not capture underlying relationships, leading to

underfitting.

3.6.1 Selecting Input and Output Parameters for the AI Model

To optimize the performance of an AI model, selecting input parameters is a crucial process

that requires experimenting with different parameters and analyzing the correlation between

important attributes collected through domain knowledge.

In the practice review, we found that one of the utility used correlation heatmap to select high

correlated parameters as their input for the mode. However, this may not lead to optimal

model performance for all applications due to feature redundancy. For instance, consider



that a utility is trying to solve the problem of predicting water demand based on various

factors such as temperature, precipitation, day of the week, and holidays. They have a

dataset containing these factors as input features and water demand as the output variable.

Here, temperature and precipitation could be considered redundant if they both provide

very similar information about the water level. For instance, if it is observed that there is

a strong positive correlation between temperature and precipitation in a certain region, it

is likely that they are both capturing the same environmental condition that affects water

level. Thus, one of the features may be enough to represent the environmental condition

affecting water level, and the other feature might not add any additional information or

insights. Thus, including both features may lead to redundancy and can even decrease the

performance of the ML model.

To identify and address feature redundancy, various techniques such as correlation analysis,

principal component analysis (PCA), and feature selection algorithms can be employed.

These techniques can help identify redundant features and select the most informative and

relevant features for the model.

In addition to input selection, the output form is also important. The choice of model

(prediction-based or classification-based) and the output variable (scale, class, or numeric

value) may vary depending on whether a classification-based or numerical/predictive result is

needed. For example, a utility may want to predict the number of years its pipes can survive

(a prediction problem that requires a numeric output/result) or rate the current condition

of a pipe as “good” or “bad” (a classification problem that requires identifying a class as

output). Thus, the output of the AI model should vary based on the problem statement.



3.6.2 AI Model Selection and Hyperparameter Optimization

Developing and selecting the best machine learning (ML) model for a task can be a com-

plex and tedious process due to the numerous available models and parameters that affect

their learning. Additionally, these models are often referred to as black boxes, adding to

the difficulty. A simplified workflow can help guide developers toward selecting the best

models to solve the problem statement. We intend to guide the utilities towards ideal model

development and selection by through a three step process, as depicted in Figure 3.11.

Figure 3.11: Proposed Model Selection Process for Utilities

The three step process involves following seven key tips suggested in Table 3.2 [53], studying

various models and their characteristics, and performing hyperparameter tuning to fetch the

optimal results from the AI model.



Table 3.2: Key Tips for AI Model Development

Key Tips Description
1. Avoid the State-of-
the-Art Trap

AI Model developers can be tempted to prioritize experimenting with
newer models over relying on traditional approaches. It is important
to note that researchers typically evaluate models in controlled aca-
demic settings, where their models may outperform existing models
on a static and limited dataset. This does not necessarily guarantee
that the same model will perform better than other models on a util-
ity’s unique dataset.

2. Start with the sim-
plest model

The principle of ”simple is better than complex” is applicable to ma-
chine learning as well. Simplicity serves three purposes: First, simpler
models are easier to deploy. Second, starting with a simple model and
gradually adding complexity helps developers understand and debug
the model. Third, the simplest model can serve as a baseline for com-
paring more complex models.

3. Avoid Human Bias
in selecting Model

A developer is more excited about a particular architecture or al-
gorithm will likely spend more time experimenting with it. If 100
experiments are being run for a particular architecture, it is not fair
to run a couple of experiments for the architecture being evaluated
against it.

4. Evaluate Good per-
formance now versus
good performance later

The best model now does not mean the best model a few months
later. For example, if less data are available right now, a tree-based
model may work better. However, if after a few months when a great
deal of data are available, a neural network might perform better. A
good way to estimate how model performance will change is to use
a learning curve (e.g., training loss, training accuracy or validation
accuracy). It can give you a sense of whether you can expect perfor-
mance gain at all from more training data

5. Evaluate Trade Offs A more complex model might deliver higher accuracy, but might re-
quire a more powerful machine, for example, a GPU instead of a CPU.
Similarly, a more complex model might give better results, but the
results may be less interpretable

6. Decide among In-
house Vs Academic Vs
Vendor Models

As discussed previously, there are various ways of building models at
water utility. Models developed in-house can be potentially rich with
domain knowledge. Academic models may present advanced tech-
niques that outperform state-of-the-art models, but academic models
are tested on limited data. Vendor-based models might not match
the in-house domain knowledge, but they can present techniques that
have been effective for many in the market. The problem should be
analyzed prior to deciding which model can serve the utility best.

7. Strengthen Data x
Knowledge Integration

ML models are a black box that are heavily dependent on data,
whereas science-based knowledge models revolve around scientific the-
ory. By making use of both knowledge and data, patterns can be
extracted from data without ignoring the knowledge accumulated in
scientific research.



Key Tips to Improve Model Development

Understanding Various Models and their Characteristics

Different models have different characteristics based on the type and nature of data and

the problem statement. For instance, nearest neighbor classifiers are sensitive to noise and

cannot handle missing values, while naïve Bayes classifiers are robust to noise points and

irrelevant attributes. Bayesian networks and logistic regression can manage correlated and

redundant attributes, whereas artificial neural networks fail to handle instances with missing

values. Support vector machines can deal with irrelevant attributes. Deep learning models

are effective in high-dimensional settings [63]. Therefore, based on the problem statement

and data, a few models can be selected and tested through experimentation to identify the

optimal model.

Following is a list of some of the widely used models and their characteritics which can enable

the utilities to select the best technique for their use case:

Nearest Neighbors Classifiers

• Since they consider distance of data points/objects, they are highly susceptible to noise

• Nearest neighbor classifiers can produce decision boundaries of arbitrary shape, and

thus provide more flexible model representation

• Have difficulty handling missing values

• Can handle interacting attributes (i.e the attributes which are interdependent to each

other.)

Naïve Bayes Classifier



• Robust to isolated noise points because such points are not able to significantly impact

the conditional probability estimates

• Can handle missing values

• Robust to irrelevant attributes

• Correlated attributes can degrade the performance

Bayesian Network

• Can easily handle the presence of correlated or redundant attributes as they don’t

consider conditional independence.

• Robust to the presence of noise in the training data

• Can handle missing values during training as well as testing

Logistic Regression

• Can handle irrelevant attributes

• Can handle redundant attributes

• Cannot handle data instances with missing values

Artificial Neural Networks

• Can handle irrelevant attributes

• ANN has a tendency to get stuck in local minima

• Training an ANN is a time consuming process, especially when the number of hidden

nodes is large



• ANN can learn in the presence of interacting variables

Support Vector Machine (SVM)

• Can handle irrelevant attributes

• SVM can be applied to categorical data

Hyperparameter Tuning

Hyperparameter tuning is the process of selecting the optimal values for the hyperparameters

of a machine learning model. Hyperparameters are parameters that are not learned from

the data, but rather set by the user before the training process begins. These include things

like learning rate, regularization strength, and number of hidden layers in a neural network.

Hyperparameter tuning is important because the performance of a machine learning model

can vary significantly based on the hyperparameters chosen. The goal is to find the com-

bination of hyperparameters that results in the best model performance on a validation

set of data. This is typically done using a search algorithm that iteratively tests different

combinations of hyperparameters.

The ideal approach to hyperparameter tuning involves a combination of automated and

manual tuning. Automated methods, such as grid search, random search, and Bayesian

optimization, can quickly test a large number of hyperparameter combinations. However,

manual tuning by an expert with domain knowledge, prior experience and experimentation

can often lead to better results by allowing for more nuanced adjustments.

To start, it’s important to establish a baseline performance with default hyperparameters.

Then, a search algorithm can be used to test a range of hyperparameters in a systematic

manner. This can be done using techniques like grid search, which tests all combinations



of hyperparameters within specified ranges, or random search, which randomly samples

hyperparameters from specified distributions.

Finally, the best performing hyperparameters should be validated on a hold-out test set to

ensure that the model’s performance is not overfitting to the validation set. It is important

to note that hyperparameter tuning should be done on a separate validation set to prevent

overfitting to the test set.

3.6.3 Model Generalization and Maintenance

When the AI model is tested against unseen instances of data (i.e. the test set), one of the

following three scenarios is observed [64]:

• Underfitting: It occurs when a model is not able to learn the underlying relationship

between the input variables and the target variable, resulting in poor performance on

both the training and testing datasets.

• Overfitting: It occurs when a machine learning model is excessively complex, cap-

turing noise and irrelevant information in the training data that is not present in the

testing data or real-world data.

• Ideal Fit: It is achieved when the model has both high accuracy on the training data

and good generalization performance on new, unseen data.

If the utilities find their model to be overfitting or underfitting, they can resort to these

approachs to overcome the same:

In case of underfitting, the developer can take the following steps:

• Increasing model complexity: Increase the complexity of the model to make it deeper,



so that the model is able to capture more patterns. Hyperparameters can be tuned,

such as adding more layers and number of nodes in each layer to effect higher learning

from the data.

• Using a more powerful model: Switching to a more powerful model, such as a deep

neural network, can help overcome underfitting.

• Feature engineering: Engineering more informative features from the raw data can

help improve model performance and overcome underfitting.

Whereas, in case of Overfitting, the following approaches can be followed:

• Regularization: Regularization techniques, such as L1 and L2 regularization, can help

reduce overfitting by adding a penalty term to the loss function that discourages the

model from overfitting to the training data.

• Dropout: Hyperparameter tuning can also be applied in this case, like using dropout

to drop a significant percentage of nodes during the training process, reducing layers

and nodes in the model to decrease the aggressive memorizing nature of the model.

• Early stopping: Monitoring the performance on a validation set during training and

stopping when performance on the validation set starts to degrade can help prevent

overfitting.

• Ensemble methods: Ensemble methods, such as bagging and random forests, can help

reduce overfitting by combining the predictions of multiple models.

To ensure the long-term performance of AI models, maintaining an ideal fit is not enough.

Several factors such as data drifts and continual learning need to be addressed after deploying



the model. Over time, ML models can become stale and sensitive to changes in the data

associated with the problem statement. This is known as data drift, which occurs when

there is a change in the statistical distribution of data from the baseline data used to build

the model. Consequently, model performance can start to degrade, and continuous learning

is crucial to maintain a healthy performance.

Apart from changes in the data, the conditions under which the model’s decisions are applied

can also change over time. Therefore, it is essential to integrate the latest domain knowledge

into the models. This enables the models to make optimal decisions that take into account

changing external conditions. For example, in the water sector, changes in weather patterns,

availability of water sources, and water quality can all lead to changes in the statistical

distribution of data. As a result, models that were once performing well may no longer be

effective without continuous learning and integration of domain knowledge.

3.7 aiWATERS Decision Support

Machine learning systems involve not only technical aspects but also require input from

various stakeholders such as business decision-makers, users, and developers. Although AI

models can provide outputs without human involvement, it is crucial to exercise caution while

trusting them for high-stakes real-world applications. The human-in-the-loop approach is

essential to ensure the reliability of the outputs from trustworthy AI models. The decision-

making process using AI technology involves several elements, such as trustworthiness of the

AI, human involvement, and interpretability of results, which require careful consideration

to make informed decisions. This subsection will delve into these elements in detail.

It is important to note that the impact of AI in water utilities is not limited to the pro-

cesses taking place within the utility. The implementation of AI in water utilities requires



a multi-disciplinary approach that involves experts from various fields. The impact of AI-

based decision-making systems on water resource management is complex and far-reaching,

involving social, environmental, legal, and ethical considerations.

AI systems are not perfect, and some decisions might threaten social and environmental

justice. For example, access to clean and safe water is a basic human right and must not

be compromised by AI-based decisions. Therefore, any AI system implemented by water

utilities must consider the equitable distribution of water resources, ensuring that no social

group is denied access to this essential resource.

Additionally, AI must also consider the environmental impact of its actions. Water utilities

have a significant impact on the environment, and it is crucial that any AI-based decision-

making system prioritizes the preservation of ecosystems and the protection of wildlife. Con-

siderations include minimizing the risk of water pollution, protecting aquatic habitats, and

preserving biodiversity.

Therefore, the integration of AI in water utilities must be seen as a cross-disciplinary effort

that involves experts not limited to computer science or civil engineering, but also social sci-

entists, environmental scientists, lawmakers, and others. This holistic approach is essential

for ensuring that the impact of AI-based decision-making by water utilities is thoroughly

understood and that the outcomes are socially, environmentally, legally, and ethically ac-

ceptable.

The rise of AI has also sparked discussions about its potential impact on jobs and the work-

force. There has been a fear of AI replacing the humans for various tasks. While it is true

that AI has the capability to automate certain tasks and processes, its impact on employ-

ment in the water sector, like any other industry, is a complex and nuanced topic. AI can

bring significant benefits by improving operational efficiency, optimizing resource allocation,



and enhancing decision-making processes. It can automate repetitive and mundane tasks,

enabling water utilities to allocate their human resources to more strategic and higher-value

activities.

It is important to note that AI is not necessarily a direct threat to jobs in the water sector.

Instead, it can be seen as a tool that augments human capabilities, leading to a transfor-

mation of job roles rather than outright replacement. While certain routine tasks may be

automated, AI also creates new opportunities for skilled professionals to work alongside AI

systems, leveraging their insights and outputs to make informed decisions. Moreover, the

water sector is inherently complex and requires domain expertise, regulatory compliance,

and direct human intervention for various tasks. AI systems can provide valuable insights

and support decision-making, but human oversight and interpretation remain crucial.

3.7.1 Ensuring Trustworthiness of AI Decision Support

AI systems have advanced significantly, but their increasing complexity and opaque decision-

making can lead to limitations like bias, ethical concerns, and lack of transparency and

accountability. Trusting the AI output is an important topic of discussion as the impact

made by the AI based decisions can be of varying magnitude. For instance, the decisions of

music recommendation application that uses a machine learning algorithm to suggest songs

to a user will not be considered a high impact decision for the user. However, if a water

treatment plant uses AI to optimize the chemical dosing, and if the model is biased towards

certain input variables, it could lead to incorrect dosing and affect water quality which can

have severe consequences for the environment.

We found that the European Union (EU) has developed guidelines for the design and devel-

opment of trustworthy AI systems [65]. The guidelines focus on three key aspects: lawful,



ethical, and robust AI systems, as illustrated in Figure 3.12. In the context of trustworthy

AI, lawful means that the AI system and its decisions should comply with relevant rules

and regulations. Ethical means that the AI system should align with ethical principles that

prioritize human values. Robust means that the AI system should be technically strong and

capable of producing optimal output, even after adhering to the principles of ethics and law.

Figure 3.12: AI Trustworthiness guidelines

These three guidelines are supported by a framework that includes four ethical principles:

Respect for Human Control, Prevention of Harm, Fairness, and Explicability, which are

explained as follow:

Respect for Human Control means that AI systems should complement human decision-

making rather than replace it. Human agency and oversight should be maintained, and

the degree of autonomy should be based on the level of risk involved. For example, an AI

system used in water management can assist operators in decision-making, but the final



decision should always be made by humans.

Prevention of Harm is crucial in building trustworthy AI systems. Technical robustness

and safety should be ensured to prevent errors and outside attacks. Privacy and data

governance should also be maintained, and sensitive data should be protected from misuse.

The AI system should also consider the societal and environmental impact of its decisions.

For instance, a water utility may use AI to analyze customer data to identify who needs water

conservation services. Still, the data usage should be transparent, and customer privacy

should be protected.

Fairness is essential in building trustworthy AI systems. AI should treat all social groups

equally and without discrimination. It should also ensure that AI services are accessible to

all. For example, an AI system used to predict customers who may fail to pay their water

bills should be built without bias towards any social or income group.

Explicability is necessary for building transparent AI systems. AI decisions should be

interpretable and explainable, and the system should be reproducible. For example, an AI

system used to detect water leaks should provide an explanation of how it arrived at a

particular prediction, making it easier to identify and correct errors.

3.7.2 Involving Human in the Loop for Decision Support

The term “human in the loop” refers to the involvement of humans in various roles with AI

systems, including model developers, end-users, and domain experts. This involvement can

be classified into three categories: humans before the loop, humans in the loop, and humans

over the loop, as shown in Figure 3.13 [65].

Humans before the loop are involved in the design phase of the AI system. They contribute

to the planning, designing, and drafting of requirements for the AI system. Developers,



Figure 3.13: Types of Human involvements in an AI System

policy and domain experts, and end-users are “in the loop” to state their requirements.

Humans in the loop are involved in building and developing the AI system. They work on

data collection, data processing, model development, knowledge integration, and continuous

updating of the model. They monitor the flow and AI output at every step, which is

automated by AI, and make required changes if the flow is not as expected.

Human over the loop monitors the output and decisions provided by the AI system and

evaluates the system’s performance. If necessary, they can override the AI-based decision if

it is not suitable for real-world scenarios.

For example, in the water sector, humans before the loop could include water utility managers

and engineers who plan and design the AI system. Humans in the loop could include data

scientists who collect and process data to develop the AI model, as well as domain experts

who provide insights into the water distribution network. Human over the loop could include

regulatory authorities who monitor the performance of the AI system and evaluate its impact

on the water sector.



In the application goals pillar, we defined the AI deployment level as manual, semi-automated,

or fully automated. While manual and semi-automated deployment requires human involve-

ment, humans need to be in the loop at every stage of the process to observe the flow of

decisions made by AI in a fully automated scenario as well. Having humans in the loop will

enable utilities to enhance trustworthiness and transparency in the system.

3.7.3 Using Effective Visualizations for Decision Support

Visualizations are a powerful tool for enhancing decision support in the water sector. They

allow model developers, decision-makers, and other stakeholders associated with AI systems

to draw simple and actionable conclusions. Effective visualizations can impact decision-

making and judgment in the following ways [66]:

Judgement/Decision Accuracy: Well-designed visualizations can help improve problem

comprehension and the quality of inference from data. As a result, better judgments and

decisions can be made. For instance, visualizations of water quality data can help decision-

makers understand patterns and trends that may be difficult to identify from raw data.

Response Time: Information Visualization can speed up the response time in various

judgment and decision tasks since it can highlight patterns and inferences associated with

the data. Effective visualization makes data interpretation simple.

Decision Confidence: Studies have shown that visual decision support systems that de-

pict uncertainty in engineering design can lead to lower decision confidence, compared to

traditional methods omitting uncertainty information.

Willingness to Act: Visualizations of KPIs (key performance indicators) can motivate

managers’ intention to act on information when compared to text



Empower Collaboration: Effective visualizations can make it easier for people to explain

and interpret the results and decisions to officials/stakeholders across the organization, mak-

ing it easier to collaborate with various entities. For instance, visualizations (instead of raw

numerical data) of water demand predictions can help the water utilities communicate their

conservation strategy to policymakers of the city, and can enable the non-technical end user

to get insights into technical findings.

Table 3.3: Stakeholders vs Relevant AI Usecases for Visualizations [1]

Stakeholder Usecase
ML and AI practitioners Better understand how well the model might

work for the intended use cases and track its
performance over time

Model developers Compare the model’s results to other models
in the same space and make decisions about
training their own system

Software developers Working on products that use the model’s pre-
dictions can inform their design and imple-
mentation decisions

Policymakers Understand how a machine learning system
may fail or succeed in ways that impact people

Organizations Make informed decisions about adopting tech-
nology that incorporates machine learning

Table 3.3 provides a summary of what various stakeholders at a utility may require from a

visualizations for decision making usecases [1].

3.8 aiWATERS Implementation

As shown in the various pillars of AI, successful implementation of AI can be fraught with

various challenges affecting the long-term sustainability of AI-based platforms and solutions.



This section addresses the various challenges in successful implementation of AI to ensure

utilities can develop long-term, usable decision-support platforms.

Acceptance of AI Technology:

It is a myth to consider that AI will fully replace the human workforce. In the water

sector, the more productive perspective is to view AI as a tool that can assist humans in

decision-making processes. Utility managers should understand the basic characteristics of

AI and start with small pilot projects to assess its potential benefits and make informed

decisions before full implementation. This approach is particularly relevant in the water

sector, where non-replaceable support staff with licenses at stake are necessary for working

with AI. Currently, utilities lack guidance on identifying where AI-based techniques can

provide the greatest benefit and estimating the financial, staffing, or workflow benefits of

deploying AI-based solutions. Demonstrating and measuring benefits from AI solutions can

help calculate the return on investment and support a business case for deploying advanced

AI analytics solutions for decision-making.

Get Acquainted with AI and ML:

To effectively deploy AI, utilities must understand AI fundamentals and look at success

stories of successful implementation from other utilities or industries. For this purpose,

utilities must share knowledge within and outside their utilities from AI experts who have

successfully implemented AI. Teamwork is vital to this process to enable knowledge sharing

from the AI experts as well as the senior staff who may have the necessary domain knowledge

that could be built into robust AI decision-support systems.

Identify the challenges you face

Not all water utility obstacles and challenges will have the same answer. Challenges can be

seen as opportunities to contribute to the growing AI implementation in the water sector.



There should be some knowledge sharing platforms (like waterid.org) where utility experts

could share success stories and lessons learned through case studies. Usually, vendor-based

AI pilots are difficult to share due to restrictions on sharing the details of the AI platform

from the vendors. However, utilities should strive to understand the complete picture before

accepting or denying any solution. The case studies should focus on the technical, business,

natural, social, and financial aspects of the piloting programs for better understanding and

application of AI.

Define the areas that need AI Application(s)

To define the application areas of AI in the water sector, utilities should ask themselves

several questions:

• Where are the potential applications of AI?

• In what areas do data and technology have a significant impact?

• Which areas are flexible enough to quickly implement innovations?

• What resources are required for AI implementation and what do we currently have?

Although utilities may identify multiple areas where AI can improve processes, it is essential

to focus on top priorities. Priorities should be identified based on the areas that will result

in the following:

• Increased benefits and reduced costs

• Optimized processes critical to business success

• More data-driven initiatives in the utility

• Improved interaction with stakeholders and employees.



Prioritize the main driver(s) of Value

Once the utility defines its business needs, it should identify the potential business and fi-

nancial benefits of the AI project. Consider all possible AI implementations and connect

each initiative with concrete returns by focusing on near-term goals and illustrating either

financial or business value based on cost-benefit analysis. Do not lose sight of value drivers

such as increased value for customers or improved employee productivity. Consider whether

machines could handle specific time-consuming tasks more effectively than people. Avoid

implementing solutions purely based on algorithm popularity. Instead, analyze how a solu-

tion fits into daily workflows, business processes, and services to boost operations over the

long-term.

Strategic Planning before AI Implementation

AI is a powerful tool, but it requires responsible implementation to generate value. Devel-

oping an AI strategy is crucial for ensuring that early efforts add value and lead to future

development and investment. Without a plan, AI initiatives are more likely to fail. The

AI implementation plan should provide architectural and best-practice recommendations

to aid domain experts, data scientists, and ML engineers in developing reliable solutions.

The plan should also focus on selecting applicable technologies to improve strengths and

weaknesses, with a philosophy of continuous improvement for the AI platform. Governance

protocols should be established for updating, verifying, validating, and improving the user

interface/user experience (UI/UX) of the AI model.

Staff the AI Team (Human-in-the-Loop AI)

To ensure successful AI implementation in a utility, a diverse team of managers and experts

should work together to address potential barriers. The responsibility of developing and

applying responsible AI techniques should not be solely on data scientists, but require input



from water sector domain experts, social and environmental scientists, and humanities ex-

perts. Collaborative teams can be formed to advise or take action to ensure the development

of fair and responsible AI. The human-in-the-loop approach shifts the focus from building an

intelligent AI system to incorporating meaningful human interaction and trustworthiness.

Form a Data and Knowledge and Model Development Taskforce

AI can benefit utilities in multiple ways, but it cannot function in isolation. Instead of

operating in vertical business divisions, AI can be used horizontally as an enabler across the

utility. This requires a cross-functional team of experts and stakeholders to support the core

AI implementation team and collaborate with other departments to identify high-impact

initiatives. Combining databases and resolving disagreements are crucial steps to obtain

high-quality data for successful AI implementation.

Set Up a Pilot Project(s) and start small

Before investing valuable resources into the implementation of a new technology, it is crucial

to ensure its benefits. Pilot programs provide a way for utilities to experiment on a small

scale before making large investments. Utilities can either rely on cloud services or construct

their own AI infrastructure when starting out. Many vendors offer tools to assist in the

initial implementation of AI operations. Although cloud options are initially less expensive,

investing in in-house infrastructure might pay off in the long term. It is important to assess

requirements such as scale and resources needed before making a choice, as benefits and

drawbacks vary depending on the utility.

Identify the Gaps in the Process after AI Implementation

AI models must be retrained on a regular basis, with feedback supplied for improvement.

When it comes to deciding where changes are necessary, careful examination and classi-

fication of mistakes can be of great help. Well-developed error analysis and continuous



improvement protocols should allow data scientists to examine a significant number of un-

seen faults and get a thorough knowledge of the types of errors, their distribution, and their

origins in the model.

Evaluate AI Adoption Potential

To reduce operating expenses and boost productivity, many utilities consider automating

internal business operations. AI-driven business operations can be highly beneficial for some

utilities, but a mismanaged AI project can be a waste of resources and discourage the utility

from future AI initiatives. Thus, it puts them behind other utilities that have successfully

implemented AI applications. A poor initial use case for the trial or proof-of-concept is often

blamed for the failure of an AI project. However, a utility should not be deterred from using

AI even if it is challenging to identify the appropriate AI application opportunity.

Keep a Check on Performance and Behavior

AI systems in the water sector are complex and difficult to evaluate. A governance approach

can help. This involves defining performance and behavioral metrics, evaluating models

periodically, and collecting metadata. The impact and benefits of AI implementation can

also be assessed. Monitoring should extend to the training and test stages. AI teams should

incorporate monitoring as an intrinsic part of the utility AI lifecycle and put their findings

into practice to improve models over time.



Chapter 4

Results

In this section, we will answer the research questions mentioned in Section 1 based on our

pilot interviews and questionnaire surveys with various water utilities.

Water and wastewater systems in the United States can have diverse characteristics and

challenges. This diversity can arise due to differences in the number of customers served,

the amount of water produced and distributed, the complexity of the infrastructure, and

the level of regulatory oversight. To capture patterns regarding how the AI implementation

varies based on these characteristics, we divide the utilities into three segements:

• Small Scale Utilities: They serve a population of less than 50,000 and are often located

in rural areas. They tend to have simpler treatment processes and distribution systems,

with fewer wells, pumps, and storage tanks. Small utilities may be operated by local

governments, private companies, or cooperatives, and may face challenges in funding

and maintaining their infrastructure.

• Medium Scale Utilities: They serve a population of 50,000 to 250,000 are located in

suburban areas or smaller cities. They have a more extensive water and wastewater

infrastructure system compared to small utilities, including multiple sources of water

supply, treatment plants, and storage facilities. Medium utilities are typically oper-

ated by public agencies, such as municipal or county governments, and are subject to

regulatory oversight and reporting requirements.
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• Large Scale Utilities: They serve a population which is greater than 250,000 and are

located in larger cities or metropolitan areas. Large utilities have complex treatment

processes and distribution systems, with multiple sources of water supply, treatment

plants, and storage facilities. Due to their size and complexity, large utilities may

face challenges in managing their infrastructure and meeting the needs of a diverse

customer base. They may also have more resources available for implementing new

technologies, such as AI, to improve their operations and decision-making processes.

To ensure diversity in terms of the scale and geography of the utilities, we took response

of 6 large scale utilities, 2 medium scale utilities and 2 small scale utilities, spanning across

various states in the United States, as shown in the Figure 4.1a and 4.1b. However, all the

participating utilities for this research were public utilities.

(a) Scale of Piloting Utilities

(b) Geographic Distribution of Utilities

Figure 4.1: Scale and Geography of Piloting Utilities



4.1 RQ1: Are utilities willing to develop AI solutions

and use it across the system?

The goal of this research question was to understand if the utilities are currently using AI

in their system and if they would continue or like to explore AI solutions in the future.

Eventually, we also want to know if they envision AI to act as a system engine for their

utilities, i.e., AI is applied to each and every process of the system.

As shown in Figure 4.2, only a small portion of medium and Large scale utilities are currently

using AI at component level, i.e. specific to a process (like wastewater treatment, CCTV

image classification, etc). Thus, it is evident that the current usage of AI in the water

industry is limited and fragmented within the utilities.

AI based water meter monitoring, AI based wastewater treatment, AI based stormwater

resiliency, Process Control for Maximization of Energy and Resource Efficiency, Wastewater

Network Optimization and AI based CCTV image encoding were some of the use cases for

which AI was used by the water utilities.

Figure 4.2: Current AI usage in Utilities

However, utilities across various scales have basic understanding of AI and its capabilities

and are willing to adopt it over the next 5 to 10 years as they prepare to undergo a digital

transformation, as shown in Figure 4.3.



Figure 4.3: Willingness to investigate AI solutions in near future

We found that willingness to adopt AI in the future is not directly proportional to the intent

of using AI for each and every process in the utility, as some utilities agreed and some

disagreed on this idea while some of them were unsure if it would be a good move, as shown

in Figure 4.4

Figure 4.4: Intent to use AI for each and every process in the future

Through our pilot interviews and questionnaire responses, we found that there are various

arguments supporting each possibilities. One of the large scale utility argued that using AI

for each process is not a good idea as some of the processes at the utility are so simple that

attempting to integrate AI overcomplicates it. The utilities in favor of implementing this



idea believe that using AI across the system for every process may help in improving the

decision making process at the utility. Some utilities are unsure about how this move would

turn out for them as there are trustworthiness and sustainability issues associated the AI

applications.

4.2 RQ2: How do water utilities of different scale com-

pare to each other in terms of AI implementation?

We found that the utilities, irrespective of their scale, were on the same page in terms of

understanding the AI technology as they were correctly able to identify its benefits and

challenges. However, considering the in-house expertise and resources required to achieve

AI driven goals, there exists a digital divide between the utilities of different scales when it

comes to the implementation of AI.

Comparison on Building AI within the Utility:

As we can see from Figure 4.5, large scale utilities have experience working on all kinds of

AI model development. This is because they have in-house expertise and also the required

resources and funds to collaborate with vendors and academic institutes. Medium scale

utilities are in the beginning of their AI journey and they do not have in-house expertise to

create AI models. Thus, they are dependent on collaborations with vendors and academia.

Small scale utilities have not developed or used any AI models yet.

Some of the utilities also responded to us about the trade offs of using in-house vs vendor

based vs academic AI models. A medium scale and a large scale utility had similar opinions

as they both mentioned that using in-house models requires more time but they are inter-

pretable as the utilities are directly involved in developing them, whereas vendor based and



Figure 4.5: Mode of building AI across utilities

academic models are blackbox for them. Small scale utilities mentioned that since they don’t

have the required in-house resources, they will need to collaborate with vendors. However,

that route is not sustainable for long term goals.

Comparison on Data Readiness:

We found that for almost all the utilities we piloted with considered the source reliability,

data integrity, timeliness and relevance as important parameters to assess the quality of their

collected data, which is in-line with our proposed framework, aiWATERS. However, large

scale utilities follow a more holistic approach for evaluating the quantity of data as they focus

on all the 5V’s of Big Data, unlike small and medium scale utilities, as shown in Figure 4.6.

We found that utilities follow the very basic data preprocessing steps like removing dupli-

cates, handling missing values, data compilation and extraction, etc, and are not involved in

relatively advanced techniques like normalization, dimensionality reduction, class imbalance

etc, as shown in Figure 4.7. This pattern can be attributed to a couple of facts, the first

being many of the utilities are not using AI and thus, may not require steps above the basic

ones, and second, that there are not many in-house AI experts helping utilities achieve the

AI operations.



Figure 4.6: Data Quantity Evaluation by Utilities

There are no votes for handling class imbalance as none of the utilities are using techniques

like sampling or synthetic data generation.

Large scale utilities mentioned that collecting the right data is highly important for their

AI operations and we can say they are on the right path as large scale utilities are following

all steps for quality and quantity evaluation. However, in terms of data preprocessing,

utilities of all scales are not upto the mark as they do not apply some of the important data

preprocessing steps.

Comparison on Domain Knowledge:

Domain experts play an important role at the utilities as we found that utilities are the most

dependent on them, followed by data and experiments for extracting domain knowledge for

their AI applications, as shown in Figure 4.8.

Comparison on Model Development:

Our questions regarding model development found responses mostly from large utilities, as

they develop in-house models and are acquainted with the model development process.



Figure 4.7: Data Preprocessing by Water Utilities

We found that all the large scale utilities prefer using simpler techniques (like linear

regression, fuzzy logic, etc) over state of the art techniques (like, ANN, CNN, LSTM,

etc).

Majority of the large scale utilities mentioned that they start by building most simplest

model and then, work towards improving or making it more complex, as show in Figure 4.9

Along with large scale utilities, the medium scale utilities also provided their view on whether

they are inclined towards experimenting more with their preferred model (like the one which

performed well in the past, has good characteristics according to them, etc) or they put equal

effort towards experimenting multiple potential models. We found that large scale utilities

didn’t have a bias towards the models and experimented equally with all potential models.

One of the large scale utilities mentioned that they haven’t reached this stage where they

can comment on this. Whereas, for some medium scale utilities, we saw that there was a

bias towards selecting a particular model, as depicted in Figure 4.10.

We also found that most of the medium and large scale utilities are aware about the trade-



Figure 4.8: Domain Knowledge Extraction at Utilities of all scales

Figure 4.9: Large scale utility preference for starting point of AI models

offs like resource availability, model complexity, model interpretability since they take it in

account when selecting a particular model, as shown in Figure 4.11.

One out of two medium scale utilities mentioned that they perform hyperparameter tuning

and testing before selecting an AI model. However, one of the responses from the large scale

utility highlighted that this information is proprietary to the vendors, as depicted in Figure

4.12. This shows that some of the large scale utilities are buying vendor based AI models

for their application but not fully aware of how these models are built.

With respect to the important factor of model generalization, we found that all the utilities



Figure 4.10: Model Experimentation Preference

Figure 4.11: Consideration of Model Development Tradeoffs

are facing the problems of poor generalization, as their model performs well on training

data but fails to perform on the unseen instances from test data.

Utilities are also not well versed with model maintenance as we got only 3 responses related

to the question that asked how often do they update the model (i.e. training with new data,

updating hyperparameters, replacing with new algorithm etc). Out of the 3 respondents

from large scale utilities, only one of them mentioned that they update their model once

every month, as shown in Figure 4.13.



Figure 4.12: Do utilities perform hyperparameter tuning and testing?

Figure 4.13: Frequency of Updating AI Models at Large Scale Utilities

Comparison on Decision Support

Since trustworthiness of AI models is a concern, we wanted to capture if the respondents

had complete knowledge about the AI models being used at their utility, on factors like

how the model makes decision, why a particular model was preferred over other models,

advantages/disadvantages of a model. We found a diverse set of response to this question,

with it being more inclined towards the respondent not versed with the AI models used at

their utility, as shown in Figure 4.14.

Our respondents held the following title at their respective utility: Asset Management An-



Figure 4.14: Do respondents have complete knowledge regarding the AI model?

alyst, Manager Water Planning, CMMS Administrator, Asset Manager, Field Services Di-

rector, Supervising Engineer, Strategic Initiatives & Project Delivery Director, Assistant

Director of Engineering, Chief of Data and Technology Operations, Water Quality and In-

novation, Process Engineer, Director of Engineering and GIS, Executive Director. As per

our request to utilities about connecting with the right person for this study, these were the

best point of contact to capture the AI practices at their utility. Lack of data driven roles

in this list of titles represents that there was not many AI experts in the utilities, which can

account for the blackbox nature of the models being used in the utilities.

To check what factors are significant to utilities when defining trustworthiness for an AI

systems, we captured their views on the trustworthiness factors mentioned in the Decision

support pillar of aiWATERS. Eight out of ten participating utilities responded to this ques-

tion, and as per figure 4.15, we can say that all the factors are considered important by some

or the other set of utilities.



Figure 4.15: Trustworthiness Factors for Water Utilities

However, irrespective of their scale, not all utilities have involved experts from multi-

disciplinary fields to ensure, social, technological, ecological and legal acceptance of their

AI and technical decision support systems, as shown in Figure 4.16, who play a crucial role

in ensuring the trustworthiness of AI output. Involving experts from multidisciplinary field

can help the utilities assess if the AI output will be socially acceptable in the long run.

Figure 4.16: Do utilities involve experts from multidisciplinary fields for decision support?

We also found that none of the utilities currently create visualizations specific to the role of



the user (as described in Table 3.3) to enhance the process of AI based decision support in

their utility.

4.3 RQ3: What aspects of the AI technology are con-

sidered as the major challenges by water utilities?

We ask the utilities about what are the major challenges according to them while imple-

menting AI in their system. As per the Figure 4.17, we find that quality data acquisition,

developing AI based workforce and integration of AI in existing system are the top three key

challenges for utilities.

Figure 4.17: Major AI challenges as per water utilities

We also captured the perspective of problems specific to small scale and medium scale utilities

based on our pilot interviews. We found that the sustainability and trustworthiness of AI

are two major concerns for them. Since they are dependent on vendors, the AI solutions

offered to them are blackbox, which makes it difficult for them to trust a system that has



real world implications. Sustainability of the AI solutions offered to them is also difficult as

they don’t have in-house expertise to maintain and improve the performance of AI solutions

over the time. Since the small scale utilities operate on a relatively smaller workforce, they

also fear losing their job to AI technology.



Chapter 5

Discussion

The water sector is at the preliminary stages of adopting AI, as most of the utilities are

not using any AI based solutions in their system. We found through RQ1 that there exist

a digital divide amongst the utilities of different scales as there is no presence of AI in

the small scale utilities while a few large scale utilities are already developing AI solutions.

However, this does not mean that the challenges faced by any particular segment are any less

significant than those of others. Even small-scale utilities have a responsibility to provide

basic water needs to the communities they serve. Therefore, they need to be mindful of the

responsible use of AI as a technology.

Our pilot interviews with the small scale utilities led us to find that they are not against

implementing AI for their system. They have insights into what benefits and challenges AI

provides for them and how AI based decision making can support their operations. Like

their large-scale counterparts, the small-scale utilities are willing to upgrade to AI and use

cutting edge technology for their system. As noted in RQ3, there are various challenges

which they need to address for successfully integrating AI in their system. Since the small

and medium scale utilities do not have AI experts in their team, they rely on consultants

and AI vendors to integrate AI in their system. Although these utilities have the funds and

resources to collaborate with external experts, the sustainability of AI operations within the

utilities is a challenge. Consultants and vendors are not permanent employees of the utilities

and can only help the small-scale utilities to setup and integrate AI in the system. The onus
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of sustaining and monitoring the performance and reliability of AI is on the utilities and

they do not have the required experts who can keep a check on the AI system and maintain

it over time. There is also a general feeling within the small utilities that AI will replace

jobs that involve repetitive tasks such as data entry, customer service, and certain types of

water utility services.

Another issue which is common for all utilities is the reliability of AI output. Since the

utilities deal with real world water operations and provide basic water needs to people, they

need to fully trust the system which they are using for services, as the stakes involved are

high. Utilities haven’t reached a stage where they can fully trust an AI technology instead

of a human for making crucial decisions. This concern can also support the fact that it is

difficult for the utilities to envision AI as a system engine (Figure 4.4 - RQ1).

Through RQ1, we found that there is a small amount of in-house expertise in the large scale

utilities. Perhaps, this can be the reason behind why the large scale utilities turned out

to be better than medium scale utilities in terms of data readiness (Figure 4.6 and Figure

4.7 shows large scale utilities have a more holistic approach in data quantity evaluation and

preprocessing) and AI model experimentation (Figure 4.10 shows large scale utilities do not

any bias or preference towards any AI model).

RQ3 led us to data acquisition as one of the major AI challenges for the utilities. At the same

time, we found through RQ2 that none of the utilities are using techniques like sampling or

synthetic data generation. Perhaps, if utilities start exploring synthetic data applications, it

can aid in overcoming their data acquisition challenges.

One of our observations from RQ2 was that the utility representatives who communicated

with us and responded to our questionnaire were civil engineering domain experts and were

not designated in a AI specific role. These people may have knowledge about AI and might



be leading the in-house AI operations. However, it is possible that they do not have advanced

knowledge about AI techniques, which can be the reason behind why utilities follow basic

data preprocessing (Figure 4.7) techniques and use simpler AI models over state of the art

techniques.

We also found the presence of AI vendors in the water system, who helps the utilities achieve

AI solutions. In fact, one of our respondent from the large scale utilities said that they are

answering our questions based on the practice of past vendors who did pilot previously, as

they don’t have an in-house team. Reliance on vendors may justify why AI models are

blackbox in nature for most of the utilities (Figure 4.14). Vendors may also account for the

fact that many utilities are unaware about the importance and process of hyperparameter

tuning, testing and timely model updation (Figure 4.12 and 4.13), as vendors usually work

on contract bases and thus, do not end up maintaining the AI solutions for the utilities.

The only response which said that the utility updates its AI model once a month and have

basic knowledge about hyperparameters of AI models came from a large utility which uses

in-house AI expertise. We also saw that utilities were not able to generalize their models. If

they are relying on vendor based solutions, achieving generalization can be difficult as the

vendors are not domain experts and may not customize their baseline solutions as per the

utilities’ needs.

Based on our discussions with medium scale utilities, we found that they are making efforts

to build in-house AI expertise within their system. They are one step ahead of the small-scale

utilities in terms of taking proactive measures towards developing an AI driven workforce

for a digital transformation in the future. Currently, medium scale utilities have diversity

and inclusion-driven workforce development programs for new hires to specialize in achieving

the utility’s day-to-day water operations. As the medium scale utilities prepare to enter the

digital era of water, they plan to build a data and AI specialized workforce that can help



them achieve in-house AI solutions for their utility. Medium scale utilities are also aware

of the interdisciplinary requirements of integrating AI in their system and thus, they aim

to bring together Social, Environmental, Legal and AI based domain experts in future to

achieve a holistic and robust AI implementation within their utility.



Chapter 6

Future Work

The participating utilities in this research were all public utilities. In order to get a more

generalized sense of current AI practices and challenges in the water sector, this study should

also be extended to private and federal utilities. Since these utilities have different charac-

teristics in terms of funding, governance, and scale of projects, piloting with these utilities

can lead us to diverse inferences. Water utilities should approach the digital transformation

as a multidisciplinary effort and should include computer, social and environmental, and

legal domain experts to achieve a holistic and trustworthy AI implementation within their

utility.

We saw that many utilities are not currently implementing AI and some are dependent on

AI vendors for the same. The Strategic Implementation pillar of the aiWATERS framework

can be extended to include a guide on how to develop in-house AI expertise for the utilities

by conducting workshops for current employees and developing AI specific hiring plans and

interview process. Moreover, governments and regulatory bodies could develop a regulatory

framework for socially acceptable AI implementation in the water sector. This could help

utilities navigate legal and ethical challenges related to AI and ensure that AI systems are

transparent, fair, and accountable.

We got zero responses on the question which asked if the responding utility look up to some

other utility in terms of implementing AI. It shows that utilities are not aware about how

other utilities are progressing in their AI journey. Considering the digital divide, small and
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medium utilities can pilot and learn from the large utilities about their AI based projects

and plans.



Chapter 7

Conclusions

In this study, we propose aiWATERS, an Artificial Intelligence framework designed to facil-

itate the successful application of AI within the water sector. Through an extensive litera-

ture and practice review, we identified several challenges associated with AI implementation:

Understanding the technology, its benefits and challenges, Data Readiness, Knowledge Inte-

gration, Model Development, Decision Support, and Strategic planning in the water sector

and proposed seven key pillars of AI revolving around these challenges. We conducted pilot

interviews and administered questionnaire surveys with ten public utilities in the United

States to assess their current level of AI implementation. By comparing the maturity of

AI implementation between small, medium, and large utilities, we made several noteworthy

findings. First, utilities in each category are at a different stage in their journey of digital

transformation. Second, most of the utilities lack in-house AI expertise as they are not

implementing AI or rely on AI vendors for integrating digital solutions into their systems.

This reliance leads to the blackbox nature of AI for water utilities which in turn also raises

trustworthiness and sustainability issues for the utilities. Thus, the aiWATERS framework

is intended to provide comprehensive details for utilities to achieve holistic AI implemen-

tation in their system. This research concludes with recommendations for the future. It is

expected that this study is extended to private and federal utilities as well to generalize our

findings for the water sector.
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