
Empirical Investigations of More Practical Fault Localization
Approaches

Tung Dao

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Applications

Na Meng, Chair

Taejoong Tijay Chung

Muhammad Alir Gulzar

Bo Ji

Xiaoyin Wang

September 29, 2023

Blacksburg, Virginia

Keywords: Software Engineering, Testing, Debugging, Fault Localization, Spectrum-based,

Information Retrieval, Slicing, Coverage, Execution Information, Abstract State Machine,

Cloud Computing

Copyright 2023, Tung Dao

Empirical Investigations of More Practical Fault Localization Ap-
proaches

Tung Dao

(ABSTRACT)

Developers often spend much of their valuable development time on software debugging and

bug finding. In addition, software defects cost software industry as a whole hundreds or even

a trillion of US dollars. As a result, many fault localization (FL) techniques for localizing

bugs automatically, have been proposed. Despite its popularity, adopting FL in industrial en-

vironments has been impractical due to its undesirable accuracy and high runtime overhead

cost. Motivated by the real-world challenges of FL applicability, this dissertation addresses

these issues by proposing two main enhancements to the existing FL. First, it explores dif-

ferent strategies to combine a variety of program execution information with Information

Retrieval-based fault localization (IRFL) techniques to increase FL’s accuracy. Second, this

dissertation research invents and experiments with the unconventional techniques of Instant

Fault Localization (IFL) using the innovative concept of triggering modes. Our empirical

evaluations of the proposed approaches on various types of bugs in a real software devel-

opment environment shows that both FL’s accuracy is increased and runtime is reduced

significantly. We find that execution information helps increase IRFL’s Top-10 by 17–33%

at the class level, and 62–100% at the method level. Another finding is that IFL achieves

as much as 100% runtime cost reduction while gaining comparable or better accuracy. For

example, on single-location bugs, IFL scores 73% MAP, compared with 56% of the conven-

tional approach. For multi-location bugs, IFL’s Top-1 performance on real bugs is 22%, just

right below 24% that of the existing FL approaches. We hope the results and findings from

this dissertation help make the adaptation of FL in the real-world industry more practical

and prevalent.

Empirical Investigations of More Practical Fault Localization Ap-
proaches

Tung Dao

(GENERAL AUDIENCE ABSTRACT)

In software engineering, fault localization (FL) is a popular technique to automatically find

software bugs, which cost a huge loss of hundreds of billions of US dollars on the software

industry. Despite its high demanding and popularity, adopting FL in industrial software

companies remains impractical. To help resolve this applicability problem, this dissertation

proposed enhanced techniques to localize bugs more accurately and with less overhead run-

time expenses. As a result, FL becomes more practical and efficient for software companies.

Dedication

To my family: Chinh, Toan, and Cat Tien

v

Acknowledgments

I still can’t believe that I am making to the end of my very long Ph.D journey. Now reflecting

back, there are so many people I would like to thank sincerely, to help make this impossible

a reality. First and foremost, I would like to express my deepest appreciation to my advisor

Na Meng. I came to her after many failed attempts doing research with many amazing

professors. I still remembered my first meeting with her, she did not hesitate accepting me

as her student. Though I failed her many times, she was still so kind to give me the second

and many more chances. My research direction was shaped by her guidance, patience, and

hard-work. She spent a countless number of meetings and discussions with me, whether it was

about forming a research idea, or editing papers. Sure, she gave me tough time, but one said

it is tough time that creates strong men. I am so fortunate to be her student. I am thankful

to my other advisory research committee members, Taejoong Tijay Chung, Muhammad

Alir Gulzar, Bo Ji, and Xiaoyin Wang for their encouraging and insightful comments and

feedbacks. I would like to thank Max Wang, who saw the potential value of my research in

industry, and strongly encouraged me to finish my Ph.D research. Without him, I would

perhaps have never had a chance to see the light at the end of the tunnel (as he used to

say so). Other persons I am deeply grateful to are Vu Nguyen and his wife, Ha Nguyen.

Vu helped ”drag” me to the finish line, while Ha provided us with her delicious food, when

we worked on my paper. I am also deeply indebted to my Cvent co-workers, especially, my

manager, Pradeep for his encouragement, support, and understanding. It won’t be complete

if I don’t mention Bill and Hal, my previous bosses at the Assistive Technologies lab. I would

like to thank Bill and Hal for providing me many years of graduate funding. Last but not

least, I dearly thank my family, my wife, Chinh for her love, patience and sacrifices; and the

vi

love of my life, my little son, Toan, and cutie little baby daughter, Cat Tien.

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Background 4

2.1 IR-Based Fault Localization (IRFL) . 4

2.1.1 The baseline technique . 4

2.1.2 The state-of-the-art techniques . 5

2.2 Execution Information and Its Collection . 6

2.2.1 Coverage information and its collection 6

2.2.2 Slicing information and its collection 7

2.2.3 Spectrum information and its collection 7

2.3 Spectrum-Based Fault Localization (SBFL) 9

3 Definition 10

3.1 Fault Classification . 10

3.1.1 Single-Location Bugs . 10

viii

3.1.2 Multi-Location Bugs . 11

3.2 SBFL and Triggering Modes . 12

3.2.1 Program and its Spectra . 12

3.2.2 Fault Localization Workflow . 12

3.2.3 Ranking Formulae . 13

3.2.4 Triggering Modes . 13

3.3 Effectiveness Metrics . 16

3.3.1 Recall at Top N (Top-N) . 16

3.3.2 Mean Average Precision (MAP) . 16

3.3.3 Mean Reciprocal Rank (MRR) . 17

3.4 Adopting SBFL at Cvent . 17

3.4.1 Continuous Integration/Continuous Delivery (CI/CD) 17

3.4.2 Integrating SBFL with CI/CD . 17

3.4.3 Collecting Code Coverage in CI/CD 19

4 Improving Fault Localization with Information-Retrieval and Execution

Information 21

4.1 Motivation . 21

4.2 Contributions . 23

4.3 Approach . 24

4.3.1 Combining Execution Information with IRFL 24

ix

4.3.2 Search Space Reduction . 24

4.3.3 Rank Tuning . 25

4.3.4 Four Combination Variants . 26

4.4 Research Questions . 27

4.5 Evaluation . 27

4.6 Results and Analysis . 28

4.6.1 RQ1: How does coverage information help with IRFL? 28

4.6.2 RQ2: How does slicing information help with IRFL? 31

4.6.3 RQ3: How does spectrum information further improve FL over IRc

and IRs? . 32

4.6.4 RQ4: How do our simple combinations compare with the state-of-the-

art hybrid technique AML? . 35

4.7 Discussion . 36

4.8 Threads to Validity . 37

4.9 Summary . 38

5 Triggering Modes in Spectrum-Based Single-Location Fault Localization 43

5.1 Motivation . 43

5.2 Contributions . 45

5.3 Approach . 46

5.4 Research Questions . 47

x

5.5 Evaluation . 47

5.5.1 Data Sets . 47

5.6 Results and Discussion . 49

5.6.1 Comparison between IFLS’s Triggering Modes 49

5.6.2 IFLS’s Sensitivity to SBFL Formulas 57

5.7 Threads to Validity . 59

5.8 Summary . 60

6 Triggering Modes in Spectrum-Based Multi-Location Fault Localization 62

6.1 Motivation . 62

6.2 Contributions . 64

6.3 Approach . 65

6.4 Evaluation . 66

6.4.1 Datasets . 66

6.4.2 RQ1: Comparing IFLM’s Triggering Modes 69

6.4.3 RQ2: IFLM’s Sensitivity to SBFL Formulae 75

6.5 Threats to Validity . 79

6.6 Summary . 80

7 Related work 81

7.1 Spectrum-Based Fault Localization (SBFL) 81

xi

7.2 Information Retrieval-Based Fault Localization (IRFL) 83

7.3 Empirical Studies on Fault Localization Techniques 83

7.4 Test Optimization and Generation . 84

7.5 Enhanced SBFL Techniques . 86

7.6 Effectiveness and Applicability of SBFL . 87

7.7 Fault Localization in Cloud-based Environments 87

8 Future Work 89

8.1 Fault Localization with Abstract State Machine 90

8.2 Research Questions . 96

8.3 Approach . 96

8.4 Evaluation Plan . 97

8.5 Summary . 98

9 Conclusions 99

Bibliography 100

xii

List of Figures

3.1 CI/CD and SBFL Integration Outline. 18

3.2 Collecting coverage profiling data with Clover. 19

4.1 Effectiveness of IRcp at the class level (a-f) and method level (g-l). The x-

axis represents α. The y-axis of (a)-(c) and (g)-(i) represents MAP, while the

y-axis in (d)-(f) and (j)-(l) is MRR. 33

4.2 The MAP of IRsp with the baseline IR technique 34

5.1 Overview of IFLS . 46

5.2 IFLS converts per-test statement coverage to per-statement test coverage . . 47

5.3 IFLSk
f ’s effectiveness when different formulas were used 50

5.4 IFLSk
p’s effectiveness when different formulas were used 51

5.5 IFLSk
t ’s effectiveness when SBFL is triggered every two minutes 54

6.1 Effectiveness of IFLMk
f using different SBFL formulae: Goodman, Hamann,

Euclid. 72

8.1 Abstract State Machine to Localizing Faults in A Cloud-based System . . . 91

8.2 Compound State . 92

8.3 State Partitioning . 92

xiii

8.4 Single Transition . 93

8.5 Compound Transition . 94

8.6 CFA Overall Workflow . 94

xiv

List of Tables

3.1 The investigated 25 SBFL formulas . 14

4.1 Dataset . 28

4.2 F-I vs. I-F at class level . 39

4.3 IR vs. IRc fault localization . 40

4.4 IRc vs. IRs fault localization . 41

4.5 Fault localization comparison with AML at method level 42

5.1 The number of failed tests triggered by different injected or real bugs 48

5.2 Comparison between IFLS1 and IFLSA in terms of effectiveness and runtime

overhead . 49

5.3 IFLSk
f ’s effectiveness when IFLSk

f reranked locations after each extra test fail-

ure (12 injected and 7 real bugs) . 51

5.4 IFLSk
p’s effectiveness when the data of 1–10 more passed tests was also included 53

5.5 The effectiveness of IFLS1 and IFLSA when different formulas were used . . . 57

6.1 The Defect4J dataset: 174 real bugs and 37 artificial bugs from 5 open-source

projects. 67

6.2 Distribution of number of failed tests in Defect4J. 68

6.3 Effectiveness of 25 ranking algorithms . 70

xv

6.4 Comparing IFLM1 and IFLMA (RO/IO = Real/Artificial Defects4J bugs, RC

= Real Cvent bugs). 71

6.5 Effectiveness of IFLMk
f with k=1–5 (RO/IO = Real/Artificial Defects4J bugs,

RC = Real Cvent bugs). 73

6.6 Effectiveness of IFLMk
p when k = 1–10 (RO/IO = Real/Artificial Defects4J

bugs, RC = Real Cvent bugs). 74

6.7 The effectiveness of IFLM1 and IFLMA using all 25 different formulae on

Defects4J’s real bugs. 75

6.8 The effectiveness of IFLM1 and IFLMA using all 25 different formulae on

Defects4J’s artificial bugs. 76

6.9 The effectiveness of IFLM1 and IFLMA using all 25 different formulae on Cvent

bugs. 77

xvi

Chapter 1

Introduction

Software bugs (defects and faults are used interchangeably) are prevalence and remains

expensive and time-consuming to tackle. Software debugging (i.e., localizing and fixing

bugs) takes an estimate of 50% of developers’ work time and costs the whole economy more

than $300 billion to $1 trillion annually [3, 63]. Before bugs are fixed, they must be accurately

and quickly localized. The software defect localization itself is often the more difficult and

time-consuming part of the two [18, 19, 20, 24, 34, 116, 121]. No matter how skillful and

careful a developer is, he or she is always prone to introduce bugs at some point of a time

during their software development. Thus, well-designed, continuous and thorough software

testing is still the main hope to catch bugs. Unfortunately, however, in reality, a significant

number of bugs are often leaked and uncovered into production. Therefore, the damage and

consequences are far costlier and detrimental.

The major challenges for current fault localization (FL) techniques and tools in the real-

world software development include:

(1) Undesirable Accuracy Performance: An enterprise-typed software application

may well contain millions of lines of code (LoC), and tens of thousands of testcases.

Test execution against the application generates a large amount of profiling data for

FL to analyze and identify fault locations (e.g., line, method, class or file), when failing

testcases happen. In addition to the dynamic execution information, static resources,

1

2 Chapter 1. Introduction

such as, bug reports, textual representation of application code and testcases should

also be taken into consideration to localize faults for a better performance. Existing

fault localization techniques often utilize either execution profiling information (i.e.,

spectrum), or static bug reports. Techniques that rely on spectrum to localize faults

are called spectrum-based fault localization (SBFL) [18, 21, 50, 55, 56, 69, 77, 81, 105,

109]. Ones use the later are called information retrieval (IR-based) fault localization

(IRFL) [25, 53, 62, 64, 65, 71, 78, 80, 83, 100, 121]. Analyzing either of the two

spectrum or textual representation will cause a localization technique to search in a

much larger searching space, resulting in lower performance in terms of accuracy.

(2) Impractical Applicability in Industry: SBFL techniques require all tests are ex-

ecuted before bugs are localized. It is common that a real-world application contains

thousands of complex tests (e.g., unit tests, integration tests), whose execution often

takes much time to complete (i.e., hours or days). In a highly agile software develop-

ment environment, this expensive runtime overhead cost spent to execute all the tests

so SBFL can be applied, is impractical if not unacceptable.

In this dissertation, we present our research to improve the state-of-the-art of FL by ad-

dressing the two aforementioned challenges with the following approaches:

Integration between IR-based techniques with execution information: To cope

with the challenge 1, we propose to facilitate IR techniques with runtime execution infor-

mation. In this research, we study and develop techniques that combine both spectrum

(coverage and slicing profiling data) and textual representation information. We then con-

duct empirical studies to find out the best strategies for the combination, and how much

accuracy improvement the proposed combination techniques achieve compared with the ex-

3

isting approaches. Our results show that our combining strategies increase, for example,

Top-10 by 17–33% at the class level, and 62–100% at the method level.

Instant Spectrum-based Fault Localization (IFL) with triggering modes: To ad-

dress the challenge 2, we study how to shorten fault localizing time, while achieving the

same or better accuracy, for SBFL. In particular, we propose the novel concept of trigger-

ing modes, to instantly rank and output faulty locations based on a partial coverage spec-

trum data. We then integrated these proposed triggering mode-based SBFL techniques in a

real-world software development environment using a continuous integration and continuous

delivery (CI/CD) pipeline. Our empirical evaluation of this approach on both open-sourced

and real-world close-sourced bug datasets shows that IFL achieves as much as 100% runtime

cost reduction while gaining comparable or better accuracy. For example, on single-location

bugs, IFL achieved 73% MAP, compared with 56% of the conventional approach. For multi-

location bugs, IFL’s Top-1 performance on real bugs is 22%, just right below 24% that of

the existing SBFL approaches.

The rest of the dissertation is organized as follows. Chapter §2 introduces relevant back-

ground for our research in this dissertation. Chapter §3 gives more formal definition of

related concepts used in the dissertation. Chapter §4 discusses our research on improving

IRFL using execution information. Chapter §5 presents our proposed IFL and Triggering

Modes for single-location bugs fault localization. Chapter §6 describes our proposed IFL

and Triggering Modes for multi-location bugs fault localization. Chapter §7 reviews related

work. Chapter §8 discusses our future work to improve SBFL in cloud-based applications.

Finally, chapter §9 summarizes and concludes the dissertation.

Chapter 2

Background

In this section (Section 4.3.1), we first present the background of IR-based fault localization,

and then discuss different execution information and how we collected them. Finally, we

explain our four ways of combining execution information with IR-based techniques.

2.1 IR-Based Fault Localization (IRFL)

Given a bug report, IRFL treats the report as a query, and considers source code elements

as a document collection. It ranks elements according to their textual similarity with the

report [65, 70, 70, 72, 78, 82, 83, 89, 99, 100, 121]. In this section, we summarize the baseline

IR-based technique, two widely used IR-based tools (BugLocator [121] and BLUiR [82]),

and AML—a hybrid approach combining an IR-based technique with spectrum execution

information.

2.1.1 The baseline technique

applies the IR framework Indri [92] directly without any optimization. Given a bug report

and a buggy program, it preprocesses the data in three steps. First, it extracts all words

except for stop words (e.g., “a”, “at”, and “which”), and programming language keywords

(e.g., while, for). Second, it applies camel case splitting (IsSigned → {“Is”, “Signed”}) and

4

2.1. IR-Based Fault Localization (IRFL) 5

stemming [54] (“Signed” → “sign”) to split and stem code identifiers. Third, it indexes

all documents (i.e., classes or methods) by terms, and computes the term frequency (TF)

for individual documents. After the preprocessing, Indri takes in the bug report query and

document corpus, retrieves query-relevant documents, and ranks the documents by relevance.

For our study, we used the default VSM (i.e., TF-IDF) model of Indri to do experiments.

2.1.2 The state-of-the-art techniques

BugLocator

BugLocator [121] improves the baseline with two specializations. First, instead of using the

default VSM, BugLocator builds a revised VSM (rVSM) to calculate the query-document

similarity differently. The specialization is based on the tool builders’ observation that

longer files are more likely to be buggy than shorter ones. Second, when ranking documents,

BugLocator also considers bug history. Hypothetically, similar bug reports may indicate

similar bug locations. If a new report is similar to some reports whose bugs are already

located, then BugLocator highly ranks those bug locations. According to the evaluation with

more than 3000 real bugs in prior work [121], these two customizations enabled BugLocator

to outperform the known baseline techniques [73, 80].

BLUiR

BLUiR [82] improves the baseline by considering structure information. Different from prior

approaches, BLUiR observes document structures and program structures. Given a bug

report, it assigns more weight to terms in titles than those in summaries, because report

titles usually provide more relevant information. Given a program, BLUiR assigns more

weight to names of classes and methods, but less to variable names and comments, because

6 Chapter 2. Background

it assumes class and method names are more important.

Prior work [82] showed that BLUiR outperformed BugLocator and BugScout [78].

AML

AML [66] is a hybrid approach to combine spectrum execution information (see Section 2.2)

with an IR-based technique. It consists of three components: AMLText (the IR-based tool),

AMLSpectra (the spectrum information), and AMLSuspWord. These components independently

calculate suspiciousness scores of every program element, and AMLdfdfd then computes a

weighted sum of the scores to rank program elements. Although AML outperforms the

state-of-the-art IR-based technique, it is still unclear whether the outperformance is due to

the approach design or extra dynamic information.

2.2 Execution Information and Its Collection

In this section, we overview the three most widely used types of execution information:

coverage, slicing, and spectrum. We also explain why they may help FL, and how we

collected them.

2.2.1 Coverage information and its collection

Coverage describes all entities (i.e., classes or methods) covered by a program execution.

This information can help FL because if a test fails, the failure run should cover some buggy

entities. To collect the information, we used ASM bytecode manipulation framework [1] to

instrument the entry and exit of each method. This allows us to record which methods are

executed at runtime, and to identify the executed classes that own the executed methods.

2.2. Execution Information and Its Collection 7

We used Java Agent to insert code instrumentation on-the-fly during class loading time.

2.2.2 Slicing information and its collection

Slicing [101] describes all classes or methods that may affect the state of a program point.

This information can be helpful because when a test fails, only statements responsible for

the failure can be buggy. In other words, given a failure witness statement (i.e., the failed

assertion or the statement that threw an uncaught exception), only statements on which it

is transitively control or data dependent are responsible for the failure. Slicing information

can be collected statically or dynamically [41, 95, 101]. We used JavaSlicer [2], a dynamic

slicing tool, to instrument every instruction for trace collection, and to perform backward

slicing from the failure witness statement in each trace [95].

We chose the tool for two reasons. First, we prefer dynamic slicing to static slicing, because

dynamic slicing identifies all code elements that actually affect the failure state. Second,

unlike other dynamic slicing tools, JavaSlicer is publicly available and widely used [107,

119]. Although it outputs all instructions responsible for a failure state, in our study, we

mapped them to their owner methods or classes for method-level or class-level slices, be-

cause IRFL ranks buggy methods or classes. Specifically, if one method or class has at least

one instruction in the failure-relevant slice, we include the entity into the method-level or

class-level slice.

2.2.3 Spectrum information and its collection

Spectrum (formally defined in ??) can be used to formulate how suspicious a program element

is when the program fails. The higher suspiciousness score a code element gets, the more

likely it is buggy. Intuitively, if a code element is executed solely by failed tests but never

8 Chapter 2. Background

by passed tests, the element may be buggy. Spectrum information can help IRFL, because

it provides a complementary approach to localize faults.

In our study, with the ASM bytecode instrumentation mentioned above, we got both method-

level and class-level coverage information by passed tests and failed tests. Then we tried

four widely-used formulae to separately compute the spectrum information: Tarantula [56],

Ochiai [20], Jaccard [19], and Ample [33]. Formally, given a buggy program and a set of

tests, we use nf and np to represent the total number of failed and passed tests. For each

program element e, whether it is a class or a method, we use ef and ep to denote the number

of failed and passed tests executing e.

All four formulae are shown below:

Tarantula =

ef
ef+nf

ef
ef+nf

+ ep
ep+np

(2.1)

Ochiai =
ef√

(ef + ep)(ef + nf)
(2.2)

Jaccard =
ef

ef + ep + nf

(2.3)

Ample = | ef
ef + nf

− ep
ep + np

| (2.4)

2.3. Spectrum-Based Fault Localization (SBFL) 9

2.3 Spectrum-Based Fault Localization (SBFL)

SBFL automatically identifies and ranks potential buggy locations when a program P fails

the execution of its test suite T [57]. To use a typical SBFL approach, developers usually

take three steps.

1. Given a buggy program P and its test suite T , developers instrument either the source

code or compiled code (e.g., Java byte code) to monitor which program element (e.g.,

Java class, method, or statement) is covered by the execution of which test case.

2. Developers execute P with T , so that the instrumented code can dynamically gather

and log the execution coverage of each passed/failed test. We use nf and np to denote

the total number of failed and passed tests by P . For each program element e, we use

ef and ep to represent the number of failed/passed tests executing e.

3. Based on the logged data, an SBFL formula is used to compute the suspiciousness

score of each program element, and to rank all elements in the descending order of

those scores.

Chapter 3

Definition

3.1 Fault Classification

Listings 1 and 2 use two simplified real bug examples from Cvent to demonstrate single-

and multi-location bugs. Lines marked with minus (-) in red represent buggy locations, and

their corresponding fixes are marked with plus (+) in green.

3.1.1 Single-Location Bugs

A single-location bug has only one single line of code responsible for the bug. Listing 1 is a

single-location bug (incorrect predicate to check cache expiry).

1 private final long validDays = 7L;
2 - private final Predicate<LocaDate> expired = cachedAt ->

cachedAt.plusDays(validDays). isAfter (LocaDate.now());↪→

3 + private final Predicate<LocaDate> expired = cachedAt ->
cachedAt.plusDays(validDays). isBefore (LocaDate.now());↪→

Listing 1: Single-location Bug Example

10

3.1. Fault Classification 11

1 Response<DatasetResolvedForTestUse> response =
2 - client.getDatasetForTestUse (datasetId, env) .execute();
3 + client.getDatasetForTestUse (datasetId, env, false) .execute();// don't increment usage

count↪→

4 //...
5 public Object getOrCreateDatasetMinimalBlocking(String datasetId, String env,

DatasetReusePolicy policy, List<DatasetDependency> dependencies,
BiFunction<ResolvedDependencyCollection, DatasetHelper, List<Object>
datasetCreationFunction) throws IOException, InterruptedException {

↪→

↪→

↪→

6 Reponse<DatasetResolvedForTestUse> response =
7 - client.getDatasetForTestUse (datasetId, env) .execute();
8 + client.getDatasetForTestUse (datasetId, env, true) .execute(); // do increment usage

count↪→

9 //...
10 }

Listing 2: Multi-location Bug Example

3.1.2 Multi-Location Bugs

A multi-location bug contains more than one buggy location, compared with a single-location

bug that has only one single line of code responsible for the bug. Listing 2 shows a multi-

location bug involving in two buggy locations, i.e., lines 2 and 7 (faulty in tracking dataset

usage).

In theory, SBFL is designed to work for both cases, though finding multi-location bugs is

more challenging because SBFL needs to find those locations equally well. In the example,

the two buggy locations should be ranked as first and second, in which case the accuracy of

SBFL is 100%. However, if SBFL ranks them as second and fifth, then its accuracy would

be reduced to 45% (see §3.3 for definitions of accuracy metrics).

12 Chapter 3. Definition

3.2 SBFL and Triggering Modes

3.2.1 Program and its Spectra

SBFL aims to identify bug locations or entities (e.g., statement, method, class) of a buggy

program using coverage information (spectra). Let the program under investigation P =

{e|e = entity} be represented as a set of its entities. Let P ’s test set, T = Tf ∪ Tp, and

nf = |Tf |, np = |Tp|, where Tf and Tp are the set of failed and passed tests, respectively. For

an entity e ∈ P , let ef and ep be the numbers of distinct failed tests ∈ Tf and passed tests

∈ Tp that cover e, respectively. Then, e’s spectrum is defined as espectrum = (ef , ep, nf , np).

P ’s spectra, Pspectra, is {espectrum}, a set of all e’s spectrum for all e ∈ P .

3.2.2 Fault Localization Workflow

SBFL uses the four steps below to identify and rank buggy locations:

Instrumentation: P and T are instrumented by techniques that modify the source code

directly or indirectly via their compiled code (e.g., Java byte code), so that Pspectra can be

recorded and collected. Tools such as SonarQube [16], Clover [5], Jacoco [13], Corbetura [11]

are often used in industry for this purpose. We use Clover in this dissertation.

Test Execution: T is run against the instrumented P using automated test runner or

framewor, such as Maven [15], TestNG [10], JUnit [14]. Once the test execution is finished,

Pspectra is all recorded.

3.2. SBFL and Triggering Modes 13

Suspiciousness Score Calculation: For each entity e ∈ P , its buggy suspiciousness

score, escore, is calculated using espectrum, (ef , ep, nf , np). There are numerous spectrum-

based formulae proposed to compute escore, such as, Dice =
2∗ef

ef+ep+nf
, Goodman =

2∗ef−nf−ep
2∗ef+nf+ep

,

Hamann =
ef+np−ep−nf

ef+ep+nf+np
, and Euclid =

√
ef + np. In this dissertation we used 25 popular

formulae shown in Tab. 3.1.

Ranking: Entities in P are ranked based on their suspiciousness scores in decreasing order,

where the most likely buggy locations are on top. The ranked list of P ’s entities are the final

result of the bug localization process.

3.2.3 Ranking Formulae

The 25 SBFL common ranking formulae used in this dissertation are defined below:

3.2.4 Triggering Modes

A triggering mode is a temporal concept defined as the moment during a program’s test

execution at which SBFL is invoked. This dissertation defines and explores the five following

triggering modes:

First-Failure Triggering (IFLS1) invokes SBFL right after the first test failure. This is

the minimal requirement for SBFL to work as it requires at least 1 failed test. While this

mode uses minimal time and computing resources, it also collect fewer coverage (spectrum)

information.

14 Chapter 3. Definition

Table 3.1: The investigated 25 SBFL formulas

Name Formula Name Formula

Ample | ef
ef + nf

− ep
ep + np

| Anderberg ef
ef + 2 ∗ ep + 2 ∗ nf

Dice 2 ∗ ef
ef + ep + nf

Euclid √
ef + np

Goodman 2 ∗ ef − nf − ep
2 ∗ ef + nf + ep

Hamann ef + np − ep − nf

ef + ep + nf + np

Hamming ef + np Jaccard ef
ef + ep + nf

Kulczynski1 ef
nf + ep

Kulczynski2 1

2
∗ (ef

ef + nf

+
ef

ef + ep
)

M1 ef + np

nf + ep
M2 ef

ef + np + 2 ∗ nf + 2 ∗ ep
Ochiai ef√

(ef + ep) ∗ (ef + nf)
Ochiai2 ef ∗ np√

(ef + ep) ∗ (nf + np) ∗ (ef + np) ∗ (ep + nf)

Overlap ef
min(ef , ep, nf)

RogersTanimoto ef + np

ef + np + 2 ∗ nf + 2 ∗ ep
RussellRao ef

ef + ep + nf + np

SimpleMatching ef + np

ef + ep + nf + np

Sokal 2 ∗ ef + 2 ∗ np

2 ∗ ef + 2 ∗ np + nf + ep
SφrensenDice 2 ∗ ef

2 ∗ ef + ep + nf

Tarantula

ef
ef + nf

ef
ef + nf

+
ep

ep + np

Wong1 ef

Wong2 ef − ep Zoltar ef

ef + ep + nf + 10000 ∗ nf ∗
ep
ef

Wong3 ef − h, where h =

2 + 0.1 ∗ (ep − 2) if 2 < ep <= 10

2.8 + 0.01 ∗ (ep − 10) if ep > 10

ep otherwise
Note: nf and np separately represent the total number of failed and
passed tests by a program. For any executed program element e, ef and
ep separately represent the number of failed and passed tests covering e.

Multi-Failure Triggering (IFLSk
f) initiates SBFL after every kth (k=1–5) test failures.

As k increases, more spectrum information was collected. However, this mode requires more

time and computing resources.

Failure-Pass Triggering (IFLSk
p) activates SBFL after the first test failure, and subse-

quently k extra passed tests (k = 1–10). Compared to IFLS1, IFLSk
p spends more time and

3.2. SBFL and Triggering Modes 15

resources to collect coverage data. Here we can study the trade-off between gained accuracy

and time and resources required for executing more tests.

Frequency-Based Triggering (IFLSk
t) IFLSk

t periodically calls SBFL to localizes faults

at a predefined interval (e.g., every 2 minutes). With such periodic updates, we can observe

how ranking is adjusted as more coverage data is available. One possible limitation is that

when few failures happen, IFLSk
t may waste time to unnecessarily rerank locations.

Complete Execution Triggering (IFLSA) is the conventional SBFL, which ranks bug

locations after executing all available tests. IFLSA is thus expensive and might not be ap-

plicable in the real world, e.g., at Cvent with many tests.

In its essence, each triggering mode corresponds to a different approach for selecting a subset

of tests from the complete test set. Our goal is to collect a partial set of spectrum data that is

sufficient for SBFL to function effectively. By experimenting with these different triggering

modes, we explore the trade-offs between effectiveness of SBFL and its runtime cost. Note

in our study that all tests were executed sequentially in a fixed order, determined by the test

executor (Maven-Clover plugin). This fixed ordering ensures deterministic results throughout

our study. In addition, all triggering modes use instrumented tests. While instrumentation

adds overhead, it is generally not a concern in practice, as companies (e.g., Cvent) often run

instrumented tests to at least measure code coverage metrics, as part of code quality control

procedure.

16 Chapter 3. Definition

3.3 Effectiveness Metrics

3.3.1 Recall at Top N (Top-N)

This measures the percentage of buggy entities that are included in the top N ranked loca-

tions. For example, if an entity is ranked third, its Top-1 recall rate would be 0% (as it is

not ranked first) and its Top-5 recall rate would be 100% (as it is within the top five ranks).

In general, a higher Top-N recall means better performance.

3.3.2 Mean Average Precision (MAP)

This measures the accuracy and ranking quality of FL in identifying the (faulty) entities.

Higher MAP value is better. The Average Precision (AP) of an FL task is:

AP =
M∑
k=1

P (k)× pos(k)

number of positive instances
× 100% (3.1)

Suppose that FL ranked M statements and one of them is positive (i.e., buggy), then the

number of positive instances is equal to 1. For each value of k, where k varies from 1 to

M , P (k) is the percentage of positive instances among the top k instances, and pos(k) is a

binary indicator of whether or not the kth statement is positive. Namely, pos(k) = 1 if the

kth statement is positive, otherwise pos(k) = 0. For example, if four statements are ranked,

and the 3rd and 4th are positive, then AP is (1
3
+ 2

4
)/2 × 100% = 42%. On the other hand,

if the 1st and 2nd of the ranked list are buggy, then AP = (1
1
+ 2

2
)/2× 100% = 100%.

3.4. Adopting SBFL at Cvent 17

3.3.3 Mean Reciprocal Rank (MRR)

This measures precision in a different way. Given a set of fault localization tasks, it calculates

the mean of reciprocal rank values for all tasks. Overall, higher MRR value indicates better

the precision. The Reciprocal Rank (RR) of a single task is defined as:

RR =
1

rankbest
× 100% (3.2)

where rankbest is the rank of the first actual bug located. For example, for 4 ranked state-

ments with the 3rd and 4th being buggy, RR is 1
3
× 100% = 33%.

3.4 Adopting SBFL at Cvent

3.4.1 Continuous Integration/Continuous Delivery (CI/CD)

A CI/CD build pipeline to manage its software development and operations, including build,

test, and deploy stages. This reduces human effort and allows for easy and automated tasks to

handle changes, integration, implementation, and delivery of software features. For example,

when code changes are committed, a CI/CD script is invoked to automate tasks including

compiling, running tests, packaging, and deploying. Fig. 3.1 outlines the CI/CD workflow

at Cvent.

3.4.2 Integrating SBFL with CI/CD

Without SBFL, test failures require manual inspection to find bugs. However, with SBFL

integration, bugs are automatically localized using code coverage profiling data. This ac-

18 Chapter 3. Definition

Legend

Deploy

Build

Test

Change

SBFL

Developers

CI/CD
Loop

SBFL-
based

Debugging
Loop

Ranked List of
buggy locations

Shared cloud-based
infrastructure

Code coverage
DB

Infrastructure

CI/CD
activity

CI/CD
loop

Code coverage
profiling DB

SBFL

SBFL
integration

Figure 3.1: CI/CD and SBFL Integration Outline.

3.4. Adopting SBFL at Cvent 19

Figure 3.2: Collecting coverage profiling data with Clover.

celerates the debugging process for developers as manually localizing bugs, especially multi-

location ones, is highly time-consuming and difficult.

However, with thousands of CPU hours spent daily running tests and an average failure

rate of around 7%, waiting for all test executions to finish before applying SBFL becomes

impractical. In this scenario, IFLS appears to be a more suitable alternative to SBFL for

scaling to our level of operations.

3.4.3 Collecting Code Coverage in CI/CD

The CI/CD build pipeline at Cvent uses the open-source Clover tool [5] to collect profiling

data.

20 Chapter 3. Definition

Code coverage is the percentage of code that is covered by test execution. Code coverage

measurement reflects which program elements are executed through a test run, and which

elements are not [4].

Clover is an open-source code profiling tool, to gather coverage data. To collect the cov-

erage information, Clover injects profiling logic to Java source code, and compiles the code

with normal compilers to produce instrumented .class files. When instrumented code is

executed, the profiling data (e.g., executed statements) is saved to Clover’s database.

Fig. 3.2 illustrates how Clover collects code coverage from profiling data of a Java-based

microservice application. Activities related to the application (under investigation) are rep-

resented by green boxes: (1) configuring the app’s pom.xml, (2) instrumenting application

code to enable code coverage tracking, (3) packaging the instrumented application into a

deployable and executable file, and (4) deploying the application.

Activities related to testing are marked in red: (5) configuring the test’s pom.xml file, (6)

instrumenting the test code, (7) executing the tests, (8) running the application in a cloud-

based environment, (9) shutting down the application JVM once tests are completed, (10)

merging coverage databases generated by the application and the tests into a shared coverage

data, and (11) finally, obtaining per-test coverage profiling data for both of the tests and

the application. Of course, in the CI/CD build pipeline this is achieved automatically with

build scripts (using Groovy at Cvent).

Chapter 4

Improving Fault Localization with

Information-Retrieval and Execution

Information

4.1 Motivation

Given a bug report and a buggy program, developers may spend tremendous time and effort

understanding the bug description and code to locate faults. To facilitate fault compre-

hension and accelerate fault finding, researchers have proposed various information retrieval

(IR) based fault localization (IRFL) techniques [78, 80, 82, 121]. By treating the bug report

as a query, and the source code files as plain documents, these techniques rank software

entities (i.e., classes or methods) based on their relevance or similarity to the query. The

more relevant a program entity is, the higher it is ranked as a potential bug location.

These IR-based techniques can facilitate fault localization and program comprehension, be-

cause they help developers focus effort on fault-relevant code elements. In particular, Zhou

et al. proposed BugLocator to use a specialized Vector Space Model (VSM), called rVSM, by

considering file lengths and bug history [121]. They demonstrated that rVSM outperformed

other IR models on real bugs from four open-source projects. Saha et al. further proposed

21

22
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

BLUiR [82] to use another revised VSM by considering code constructs, such as class and

method names. Their experiments showed that BLUiR even outperformed BugLocator.

In spite of an enormous number of various IRFL techniques, their application and accuracy

are inadequate. We hypothesize that the execution information of buggy programs can

further help fault localization and program comprehension. Le et al. proposed the first tool,

AML, to combine IRFL with spectrum execution information [66]. They used a hybrid

model to encode both spectrum and textual information into a specialized VSM. They

found that AML outperforms Learning-to-rank [108] (a state-of-the-art IRFL technique), and

MULTRIC [106] (a state-of-the-art spectrum-based fault localization technique). However,

it is still unknown how various types of execution information can generally help with IRFL.

To systematically investigate the impact of various execution information on IRFL tech-

niques, we performed an extensive study on three kinds of execution information, and three

state-of-the-art IRFL techniques, using an existing dataset of 157 real bugs. More specif-

ically, we investigated the following three types of information: (1) coverage—the classes

or methods covered by failed tests, (2) slicing—the classes or methods in the dynamic

slice [101] of each failure witness statement (i.e., a failure assertion or an exception-throwing

statement), and (3) spectrum—the suspiciousness score of each executed class or method,

which describes the coverage ratio between passed and failed tests [56]. Hypothetically, cov-

erage and slicing may help with IRFL techniques by refining the search space. The reason

is if an entity (i.e., class or method) is not covered by a failed test or does not occur in the

slice of a failure witness statement, it is unlikely to be buggy. Spectrum information may

further help by ranking program entities purely based on suspiciousness scores. Its ranking

can complement the ranking by IRFL techniques.

In this study, we experimented with three existing IRFL techniques: the baseline, Bu-

gLocator [121], and BLUiR [82]. To assess the impact of different execution information

4.2. Contributions 23

on IRFL techniques, we combined IRFL techniques and execution information in four ways:

• IRc: coverage and IR

• IRs: slicing and IR

• IRcp: coverage and spectrum and IR

• IRsp: slicing and spectrum and IR

Our experiments revealed a number of interesting findings. First, we observed that cov-

erage information can effectively reduce the search space of IR-based techniques, and thus

significantly improve fault localization at both class and method levels. In particular, for

all three IRFL techniques, the number of actual bug locations ranked within Top 10 was

increased by 17–33% at class level, and by 62–100% at method level. This combination strat-

egy even outperformed state-of-the-art hybrid technique AML [66] in most cases. Second,

slicing information can further improve fault localization. Compared with coverage, slicing

further increased the number of actual bug locations among Top 10 by 1–43% at class level,

and by 9–30% at method level. Third, the additional usage of spectrum information further

improved fault localization at method level. Our study shows that dynamic execution in-

formation can generally bring considerable improvement to IRFL. Some future approaches

that delicately combine various execution information with IRFL techniques may further

facilitate fault localization and program comprehension.

4.2 Contributions

This research makes the following contributions:

24
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

• We investigated four ways to combine execution information with IRFL by exploring

three kinds of information, and three IRFL techniques.

• Our quantitative analysis shows that coverage and slicing information effectively helps

with IRFL at both the class and method levels, while spectrum information further

helps at method level.

• This empirical study shows for the first time that execution information can generally

bring considerable improvement to IRFL, even when the combination strategies are

simple and easy to understand.

4.3 Approach

4.3.1 Combining Execution Information with IRFL

Given a bug report, a buggy program, the program’s passed tests and failed tests, we aim

to improve IRFL with execution information using two heuristics: search space reduction

and rank tuning. We systematically investigated four approaches to combine the two types

of information. Intuitively, the combination approaches should always lead to considerable

improvement, since both static and dynamic information is used. However, we do not know

how effectively execution information can help improve IR-based techniques.

4.3.2 Search Space Reduction

According to the Propagation, Infection, and Execution (PIE) model [98], faults are triggered

when a buggy element is executed. Given a buggy program and failed tests, we use coverage

information of the failed tests to reduce the search space of IR-based techniques. If an element

4.3. Approach 25

is not covered by any failure run, it is always irrelevant to failures, and gets excluded from

the scope.

Similarly, slicing information can also be used to refine the search space of IR-based tech-

niques, because only elements affecting the runtime state of a fault witness statement may

be buggy. If an element is not in any failure-relevant slice, it is unrelated to the reported

bug.

4.3.3 Rank Tuning

Given a ranked list by an IR-based technique, coverage or slicing information always shortens

the list, but does not change the relative ranking among covered or sliced elements. If

two failure-relevant elements A and B are ranked in a wrong order, neither coverage nor

slicing can correct the mistake. In comparison, spectrum information maps each element

to a suspiciousness score based on execution coverage. According to the suspiciousness

scores, spectrum may rank code elements very differently from IR-based techniques. When

combining the two ranked lists together, we may correct the ordering mistake mentioned

above in an IR-based list. Formally, given a class or method whose source code is represented

as d, if its IR-based score is denoted as Score(d, q), and spectrum-based score is Susp(d),

we define a combination factor α to control their separate weights when synthesizing an

adjusted score Score′(d, q) as follows:

Score′(d, q) = (1− α) ∗ Score(d, q) + α ∗ Susp(d) (4.1)

where α is configured to vary from 0 to 1, with 0.1 increment. In this way, we are able to

experiment with different configurations to identify the optimal combination.

26
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

4.3.4 Four Combination Variants

We experimented four ways of combining dynamic execution information with IR-based

techniques.

IRc: Coverage information is used to refine the search space of IR-based techniques by fil-

tering out un-executed entities (i.e., classes or methods). Ideally, the filtering can be

applied either before or after IR-based techniques, namely (1) Filter-then-IR or (2) IR-

then-Filter. If filtering is applied first, IR-based techniques only focus on documents

covered by failed tests. Otherwise, IR-based techniques are applied to the whole code-

base, and then coverage is used to remove entities from the ranked lists of IR-based

techniques. Intuitively, both approaches should work equally well. However, accord-

ing to our experiments (Chapter §4.6.1), approach (2) is generally better, so we used

IR-then-Filter by default.

IRs: Similar to IRc, slicing information is used to refine the search space of IRFL.

IRcp: Coverage information is first used to refine an IR-based list. Spectrum information is

then applied to synthesize a tuned ranked list.

IRsp: Slicing information is first used to refine an IR-based list. Spectrum information is

then used to tune the ranked list.

To systematically compare different combination approaches, we evaluated their effectiveness

at both class and method levels. For class-level evaluation, we check whether an approach

localizes the buggy class(es). For method-level evaluation, we verify whether an approach

identifies the buggy method(s). Note that since IRFL suggests buggy classes and methods,

our investigated combinations also rank class- or method-level bug locations.

4.4. Research Questions 27

4.4 Research Questions

In this empirical study, we aim to answer the following research questions:

RQ1: How does coverage information help with IRFL? Intuitively, by refining search space,

coverage information should help. However, it is unclear how effectively coverage

information achieves improvement.

RQ2: How does slicing information help with IRFL? We are curious how slicing information

helps with IRFL by reducing the search space.

RQ3: How does spectrum information further improve FL over IRc and IRs? Hypothetically,

by integrating spectrum with IRc and IRs, we should localize faults more effectively.

The reason is coverage and slice only focus on the execution of failed tests, but spectrum

also takes passed tests into consideration. With more execution information included,

we may achieve improvement in FL effectiveness. However, it is unclear how much

improvement we can get.

RQ4: How do our simple combinations compare with AML? We are curious how well our

combination approaches work in comparison with the state-of-the-art hybrid technique.

If our approaches work equally well or even better, it means that dynamic information

generally helps IR-based techniques, no matter how simply the combination is done.

4.5 Evaluation

We experimented with the existing benchmark suite published by Le et al. [66]. As shown

in Tab. 4.1, the dataset consists of 157 real bugs extracted from 4 open source Java projects:

AspectJ, Ant, Lucene,and Rhino. For each bug, the dataset includes a bug report, a set

28
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

Table 4.1: Dataset

Class Method
Project #Bug #Total #Buggy #Total #Buggy
AspectJ 41 4,157 67 14,218 88

Ant 53 1,063 96 9,624 197
Lucene 37 2,737 158 10,220 311
Rhino 26 191 58 4,839 145

Overall 157 8,148 379 38,901 741

of test cases including passed and failed tests, a buggy program,and a fixed version of the

program. The bug report is used by IR-based techniques to locate bugs. The test cases

are used for execution information collection. The actual bug fix, which is the textual diff

between the buggy program and its revised version, serves as the ground truth to evaluate

whether a bug is located correctly. As a bug fix may involve changes to a single or multiple

classes or methods, if we consider all modified code elements as buggy locations, we have

157 bugs mapped to 379 buggy classes, or 741 buggy methods.

4.6 Results and Analysis

In this section, we first show how effectively coverage and slicing can improve IR-based tech-

niques (Chapter §4.6.1 and §4.6.2). Then we describe the effectiveness of spectrum (Chap-

ter §4.6.3). Finally, we compare our combination approaches with AML (Chapter §4.6.4).

4.6.1 RQ1: How does coverage information help with IRFL?

We compared IRc with the original IR-based techniques at both class and method levels.

Since coverage can be used to refine the search space either before or after IR-based tech-

niques, we first investigated which order always produces better results.

4.6. Results and Analysis 29

Filter-then-IR (F-I) vs. IR-then-Filter (I-F). The former one first uses coverage infor-

mation to scope a list of entities (i.e. classes or methods) executed by failed tests, and then

applies IR-based techniques to rank entities relevant to a given bug report. The latter one

takes the two steps in a reverse order. To understand which option is better, we tried both

options to localize faults at class and method levels, and observed that I-F performed better

in most cases. Due to the space limit, we only show the class-level results in Tab. 4.2. One

possible reason is that I-F leverages the whole codebase to build corpus for IR techniques,

while F-I only uses the executed classes or methods. With a larger document corpus, I-F

better identifies both important and unimportant words, and thus ranks executed docu-

ments more precisely. Therefore, by default, we used I-F to integrate coverage or slicing

with IR-based techniques.

Finding 2.1: Compared with Filter-then-IR, IRFL-then-Filter worked better to refine

the search space of IRFL with execution information.

Class-level FL identifies buggy classes. Tab. 4.3 (a) shows the comparison between IR-

only and IRc for class-level fault localization. Under each IR-based technique (Baseline,

BugLocator, or BLUiR), there are two columns: IR and IRc. Each column “IR” shows the

original technique’s results, while column “IRc” presents the results of the hybrid approach.

Surprisingly, coverage information alone greatly boosted the overall effectiveness for all IR-

based techniques. In particular, the MAP value of BugLocator was significantly improved

from 0.28 to 0.49, while the MRR value was improved from 0.34 to 0.54. Among the three

techniques, BLUiR had the best effectiveness, which conformed with the findings in prior

work [82]. When augmented with coverage information, BLUiR outperformed others for all

metrics except for Top 1.

However, the effectiveness improvement by coverage did not evenly distribute among dif-

30
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

ferent projects. For example, compared with Baseline, IRc improved the Top-1 metric of

AspectJ from 4 to 6 with 50% improvement, but did not improve the metric for Rhino. We

examined Rhino’s source code, and found that the actual buggy classes were usually ranked

very low (e.g., below Top 100). Therefore, even though coverage could effectively shorten

ranked lists, it was not capable of removing hundreds of unexecuted classes to promote any

buggy class to Top 1.

Finding 2.2: At class level, coverage consistently improved all studied IR-based tech-

niques. On average, MAP was increased from 0.34 to 0.49 with 44% increment, and

MRR was increased from 0.40 to 0.53 with 33% increment.

Method-level FL isolates buggy methods for developers to examine. Compared with class-

level FL, this approach can save more manual effort, because it does not leave a whole class

body for developers to delve into [66]. Tab. 4.3 (b) presents the results. Compared with

class level, all three original techniques worked more poorly at method level, meaning that

locating buggy methods is generally harder than locating classes. Two reasons can explain

the difficulty. First, each method contains fewer terms to index, and may become less

relevant to random queries. Second, there are many more methods to rank than classes,

which makes it harder to rank the actual buggy methods high.

Compared with class level, the improvement by coverage was more significant at method

level. For BLUiR, the overall MAP and MRR improvements were 114% (from 0.14 to 0.30)

and 84% (from 0.19 to 0.35), while the class-level improvements in Tab. 4.3 (a) were 30%

(from 0.40 to 0.52) and 24% (from 0.45 to 0.56). Across all subjects, coverage effectively

improved IR-based techniques in most cases.

As shown in Tab. 4.3 (b), among different techniques, BLUiR performed the worst without

4.6. Results and Analysis 31

coverage information. This observation complements the findings in prior work [82], be-

cause Saha et al. only evaluated BLUiR’s performance at class level. The reason why the

observations at class level and method level do not match may be that BLUiR puts more

emphasis on referred program entity names than ordinary description in bug reports. If a

bug report refers to multiple bug-irrelevant methods, BLUiR is misguided to rank methods

wrongly. However, once augmented with coverage, BLUiR achieved the highest MAP and

MRR values, meaning that coverage improved BLUiR’s effectiveness the most significantly.

Finding 2.3: Coverage improved IRFL more significantly at method level than at

class level. The average method-level MAP and MRR improvements were 107% and

79%.

4.6.2 RQ2: How does slicing information help with IRFL?
We experimented with IRs, and compared their results with those of IRc. Although JavaSlicer [2]

is the best dynamic slicing tool we can use, it has not been maintained for several years. It

may not work well for programs requiring features newly introduced in recent JDK versions.

Among all the 157 bug fixes, JavaSlicer [2] only ran successfully with 64 examples. For

the other examples, JavaSlicer failed for three reasons. First, it threw an out-of-memory

exception even though we allocated 8GB memory to JVM. Second, it generated huge traces

without termination, violating our 100GB space limit for each subject. Third, the slicing

result did not include the actual buggy element due to the tool’s limitation when tracing

native methods, standard library classes, and multithreaded applications1.

Therefore, we compared IRs and IRc on those 64 bugs for fairness.

Tab. 4.4 (a) and (b) show the comparison between IRc and IRs at both class and method

1The limitations are also listed on JavaSlicer homepage [2].

32
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

levels. Slicing was more powerful than coverage when improving IRFL. The reason is slicing

removed more irrelevant entities from the IR-based list, and further upgraded ranks of the

relevant ones. Similar to the observations in Chapter §4.6.1, we found that the improvement

at method level was more significant than that at class level. For BLUiR, the average MAP

and MRR improvements of IRs over IRc at method level were 42% and 35%, while the im-

provements at class level were both 22%. Again, BLUiR achieved the best MAP and MRR

when augmented with slicing.

Finding 2.4: Slicing was more helpful than coverage in improving IR-based techniques.

The average MAP and MRR improvements of IRs over IRc were both 15% at class

level, with 40% and 30% at method level.

4.6.3 RQ3: How does spectrum information further improve FL over

IRc and IRs?

To evaluate the impact of spectrum on IRc and IRs, we enumerated all possible combinations

between the four kinds of spectrum information (Chapter §2.2) andIRc or IRs. All three basic

IR-based techniques were explored for complete comparison. We changed the combination

factor α from 0 to 1, with 0.1 increment, to investigate how FL effectiveness varies with α.

For IRcp, as shown in Fig. 4.1, we leveraged both coverage and spectrum to improve IR-

based techniques. We evaluated MAP and MRR at both class and method levels. X-axis

represents α. Y-axis represents MAP in Fig. 4.1 (a-c) and (g-i), and represents MRR in

Fig. 4.1 (d-f) and (j-l). Both MAP and MRR vary within [0, 1]. Intuitively, when α = 0,

4.6. Results and Analysis 33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(f) BLUiR - Class - MRR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) BLUiR - Class - MAP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(e) BugLocator - Class - MRR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) BugLocator - Class -MAP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(d) Baseline - Class - MRR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) Baseline - Class - MAP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(l) BLUiR - Method - MRR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(i) BLUiR - Method - MAP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(k) BugLocator - Method - MRR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(h) BugLocator - Method - MAP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(j) Baseline - Method - MRR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(g) Baseline - Method - MAP

Figure 4.1: Effectiveness of IRcp at the class level (a-f) and method level (g-l). The x-axis
represents α. The y-axis of (a)-(c) and (g)-(i) represents MAP, while the y-axis in (d)-(f)
and (j)-(l) is MRR.

the values are reported for IRc. When α = 1, the reported values are purely from spectrum

information. We observed that IRc always worked better than spectrum, because IRc utilized

both static and dynamic information, while spectrum was only dynamic information. The

optimal combination between IRc and spectrum always worked better than either component.

Tarantula worked better than other spectrum information.

34
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Baseline - Class - MAP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Baseline - Method - MAP

Figure 4.2: The MAP of IRsp with the baseline IR technique

At class-level, IRcp at most worked slightly better than IRc. The reason may be that the

class-level spectrum describes execution too coarsely: A class can contain many methods.

Whenever a method is executed by a test, the whole class is considered covered. Such

class-level spectrum makes suspiciousness scores less helpful.

When using Tarantula with α = 0.7 for method-level FL, IRcp significantly outperformed

IRc. As shown in Fig. 4.1(g-i) and Fig. 4.1(j-l), MAP was increased by 14–22%, while

MRR was increased by16–211%. In particular, RHINO-519692 and its corresponding buggy

method only shared one word in common: transformNewExpr(), so IRc ranked the buggy

method as 12th, with a low score of 0.28. However, Tarantula considered the method as

the most suspicious one, because both of the two tests executing it failed. Therefore, IRcp

effectively improved the method’s rank as Top 1 by properly combining IRc with Tarantula

spectrum.

We also experimented with IRsp, and made similar observations. With the baseline IR-based

technique, IRsp did not improve over IRs at class level (on the left), but achieved noticeable

improvement at method level (on the right) (Fig. 4.2).

4.6. Results and Analysis 35

Finding 2.5: Spectrum information was effective to improve IRFL at method level

instead of at class level. With Tarantula and α = 0.7, IRcp and IRsp almost always

achieved the best effectiveness.

4.6.4 RQ4: How do our simple combinations compare with the

state-of-the-art hybrid technique AML?

We directly took the AML results in prior work [66], and did similar experiments using our

hybrid approaches IRc and IRcp. We experimented with the same dataset of 157 examples

as AML for fair comparison. Since BLUiR always outperformed other tools when combined

with execution information, it was used as the basic IR-based technique in the compari-

son. IRcp was configured to use Tarantula spectrum with α = 0.7, because the setting was

demonstrated the best in Chapter §4.6.3.

As shown in Tab. 4.5, we found that AML ranked more Top-1 entities correctly than IRc (31

vs. 29). Other than that, IRc worked better in terms of Top-5, Top-10, and MAP metrics.

The overall values of IRcp were better than AML for all metrics. Although we did not

compare IRs and IRsp directly with AML due to the JavaSlicer limitation, it is reasonable to

expect both of them to perform better than AML. The reason is compared with coverage,

slicing always identifies failure-relevant entities more precisely, and refines IR-based ranked

lists more effectively. Our experiments with a subset of the data did demonstrate that IRs

worked better than IRc, and IRsp worked better than IRcp.

The fact that our simple combination approaches worked better than AML reveals two

things. First, all kinds of dynamic information can effectively improve IRFL. Second, a

complex combination approach is not always necessary to better localize faults.

36
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

Finding 2.6: IRc outperformed AML in all metrics but one, while IRcp outperformed

AML. Our simple approaches worked better than AML’s more complicated approach,

showing that various execution information can effectively help with IRFL.

4.7 Discussion

Our empirical study demonstrates that various kinds of execution information can effectively

improve IRFL, as long as the information usage is proper, but not necessarily complex. In the

study, there are still bug reports whose bugs are not located by any investigated approach.

We further examined these reports and their bugs.

Among the 157 bug reports, 18 reports contain no clue about where the bug is, 77 reports

mention bug-relevant code elements, such as fields or methods inside the buggy classes, and

62 reports have the exact buggy class names explicitly mentioned. For those reports without

any clue of bug locations, a bug reporter usually describes the bug-triggering input(s) or bug

symptoms, and the execution information does not help reveal bugs, either. Although such

bugs do not count much in our dataset, they may be prevalent in reality, and require more

advanced novel solutions.

For some reports with either buggy classes explicitly mentioned, or bug-relevant information

(i.e., fields or methods in buggy classes) included, the investigated approaches failed for

two reasons. First, some mentioned buggy entity names are so widely used that they are

not distinctive, such as “set” and “method”. Second, when test cases or call stacks include

many entities to describe the problems, the noisy location information confuses IR-based

techniques.

4.8. Threads to Validity 37

In the future, we will integrate static analysis-based fault prediction [48] techniques to better

localize faults. For example, when a buggy method has a popular name like “set”, and is

covered by both passed and failed tests, neither the bug report nor execution information

is helpful. We can use fault prediction to calculate various metrics (e.g., fan-in/fan-out2)

to measure how likely each method is buggy. By ranking methods based on their fault

prediction scores, we will obtain a ranked list, which can be further combined with the list

produced by a hybrid approach of IRFL and execution information.

4.8 Threads to Validity

We reused an existing dataset of 157 real bugs from 4 open source projects to evaluate dif-

ferent fault localization techniques. The evaluation results may not generalize to other bugs

or other open source projects. The collected execution information also strongly depends on

the quality and availability of test cases.

We collected slicing information with JavaSlicer [2], because the tool is the only publicly

available dynamic slicing tool based on our knowledge. The limitation of the tool may affect

the generalizability of our observations. Besides, we used four most popular formulae to

calculate spectrum, and used three IRFL techniques. The limited number of investigated

formulae and IR-based techniques may also affect the generalizability.

2Fan-in denotes the number of methods invoking the method, while fan-out denotes the number of meth-
ods invoked by the method.

38
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

4.9 Summary

It is challenging to locate bugs given bug reports. In this empirical study, we investigated how

various dynamic execution information (e.g., coverage, slicing, and spectrum information)

can help with IRFL. We found that through refining the ranked list of suspicious locations

produced by IR-based techniques, coverage and slicing information can effectively help im-

prove fault localization. Spectrum information can further improve method-level FL by

merging its suspicious location list with the coverage-refined or slicing-refined IR-based list.

Our investigation with the three types of execution information demonstrates that dynamic

information can effectively improve IRFL, even though the information is integrated in simple

ways. By comparing our combination approaches with a state-of-the-art hybrid technique

of IRFL and spectrum, we observed that our simple approaches almost always worked better.

It means that a combination approach does not have to be complicated for effective fault

localization. When examining bugs that none of the investigated techniques can handle, we

found it promising to conduct and combine static analysis-based fault prediction to further

better fault localization.

4.9. Summary 39

Table 4.2: F-I vs. I-F at class level

Metric Project Baseline BugLocator BLUiR
F-I I-F F-I I-F F-I I-F

Top 1

AspectJ 7 6 4 6 4 5
Ant 29 32 31 33 27 31

Lucene 14 14 12 15 11 14
Rhino 3 4 3 9 8 11

Overall 53 56 50 63 50 61

Top 5

AspectJ 18 18 16 16 17 19
Ant 54 59 54 55 59 60

Lucene 45 47 50 48 53 51
Rhino 16 18 20 19 19 20

Overall 133 142 140 138 148 150

Top 10

AspectJ 27 25 21 25 25 28
Ant 63 64 62 63 65 68

Lucene 61 59 67 59 72 68
Rhino 25 26 25 28 26 25

Overall 176 174 175 175 188 189

MAP

AspectJ 0.25 0.23 0.22 0.25 0.22 0.25
Ant 0.63 0.73 0.70 0.71 0.67 0.72

Lucene 0.50 0.49 0.49 0.54 0.50 0.55
Rhino 0.33 0.40 0.34 0.47 0.50 0.55
Mean 0.43 0.46 0.44 0.49 0.47 0.52

MRR

AspectJ 0.28 0.27 0.24 0.29 0.24 0.29
Ant 0.67 0.75 0.73 0.76 0.69 0.75

Lucene 0.60 0.59 0.55 0.61 0.58 0.64
Rhino 0.32 0.40 0.36 0.51 0.51 0.56
Mean 0.47 0.50 0.47 0.54 0.51 0.56

40
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

Table 4.3: IR vs. IRc fault localization

Metric Project
(a) Class Level (b) Method Level

Baseline BugLocator BLUiR Baseline BugLocator BLUiR
IR IRc IR IRc IR IRc IR IRc IR IRc IR IRc

Top 1

AspectJ 4 6 2 6 3 5 3 3 2 4 2 3
Ant 27 32 22 33 26 31 9 12 10 13 6 13

Lucene 12 14 6 15 11 14 4 7 3 9 5 7
Rhino 4 4 5 9 11 11 4 6 4 6 5 6

Overall 47 56 35 63 51 61 20 28 19 32 18 29

Top 5

AspectJ 13 18 7 16 12 19 4 8 3 8 4 7
Ant 48 59 44 55 45 60 21 33 20 36 16 36

Lucene 34 47 32 48 41 51 14 30 15 33 16 32
Rhino 15 18 13 19 19 20 7 10 8 14 7 15

Overall 110 142 96 138 117 150 46 81 46 91 43 90

Top 10

AspectJ 18 25 14 25 20 28 5 12 6 16 6 12
Ant 55 64 49 63 59 68 30 47 29 51 25 54

Lucene 53 59 51 59 59 68 24 37 30 44 24 42
Rhino 21 26 18 28 23 25 9 14 10 21 10 22

Overall 147 174 132 175 161 189 68 110 75 129 65 130

MAP

AspectJ 0.15 0.23 0.10 0.25 0.14 0.25 0.08 0.11 0.07 0.14 0.06 0.10
Ant 0.55 0.73 0.50 0.71 0.54 0.72 0.17 0.34 0.23 0.37 0.15 0.36

Lucene 0.34 0.49 0.26 0.54 0.39 0.55 0.13 0.36 0.09 0.32 0.15 0.38
Rhino 0.34 0.40 0.28 0.47 0.51 0.55 0.17 0.29 0.18 0.32 0.19 0.34
Mean 0.35 0.46 0.29 0.49 0.40 0.52 0.14 0.28 0.14 0.29 0.14 0.30

MRR

AspectJ 0.18 0.27 0.12 0.29 0.17 0.29 0.09 0.12 0.07 0.16 0.07 0.12
Ant 0.61 0.75 0.55 0.76 0.59 0.75 0.24 0.40 0.27 0.43 0.19 0.41

Lucene 0.49 0.59 0.35 0.61 0.50 0.64 0.23 0.44 0.20 0.46 0.28 0.48
Rhino 0.35 0.40 0.32 0.51 0.54 0.56 0.20 0.34 0.20 0.36 0.23 0.37
Mean 0.41 0.50 0.34 0.54 0.45 0.56 0.19 0.33 0.19 0.35 0.19 0.35

4.9. Summary 41

Table 4.4: IRc vs. IRs fault localization

Metric Project
(a) Class Level (b) Method Level

Baseline BugLocator BLUiR Baseline BugLocator BLUiR
IRc IRs IRc IRs IRc IRs IRc IRs IRc IRs IRc IRs

Top 1

Ant 15 17 14 16 13 17 4 6 3 4 3 6
Lucene 5 6 6 11 2 6 3 5 5 6 3 5
Rhino 3 3 2 3 3 4 0 0 0 0 0 0

Overall 23 26 22 30 18 27 7 11 8 10 6 11

Top 5

Ant 26 26 23 26 23 25 12 17 12 18 10 17
Lucene 27 28 16 28 22 24 13 14 12 15 11 13
Rhino 15 18 7 9 10 13 0 0 0 1 0 0

Overall 68 72 46 63 55 62 25 31 24 34 21 30

Top 10

Ant 27 27 24 28 25 25 16 18 18 24 17 18
Lucene 32 33 19 34 27 28 16 16 15 18 14 15
Rhino 20 20 8 11 13 13 0 1 0 1 0 1

Overall 79 80 51 73 65 66 32 35 33 43 31 34

MAP

Ant 0.71 0.79 0.71 0.75 0.71 0.85 0.37 0.52 0.33 0.34 0.35 0.52
Lucene 0.50 0.58 0.44 0.62 0.44 0.54 0.30 0.45 0.35 0.45 0.34 0.46
Rhino 0.47 0.50 0.50 0.50 0.48 0.58 0.02 0.04 0.02 0.11 0.02 0.04
Mean 0.56 0.62 0.55 0.62 0.54 0.66 0.23 0.34 0.23 0.30 0.24 0.34

MRR

Ant 0.75 0.80 0.75 0.78 0.73 0.86 0.40 0.52 0.38 0.41 0.36 0.52
Lucene 0.53 0.61 0.49 0.68 0.43 0.57 0.37 0.49 0.44 0.51 0.39 0.50
Rhino 0.46 0.49 0.50 0.53 0.48 0.58 0.02 0.03 0.02 0.11 0.02 0.034
Mean 0.58 0.63 0.58 0.66 0.55 0.67 0.26 0.35 0.28 0.34 0.26 0.35

42
Chapter 4. Improving Fault Localization with Information-Retrieval and Execution

Information

Table 4.5: Fault localization comparison with AML at method level

Metric Project IR IRc IRcp AML

Top 1

AspectJ 2 3 8 7
Ant 6 13 14 9

Lucene 5 7 6 11
Rhino 5 6 8 4

Overall 18 29 36 31

Top 5

AspectJ 4 7 14 13
Ant 16 36 39 22

Lucene 16 32 23 22
Rhino 7 15 22 14

Overall 43 90 98 71

Top 10

AspectJ 6 12 19 13
Ant 25 54 57 31

Lucene 24 42 30 29
Rhino 10 22 27 19

Overall 65 130 133 92

MAP

AspectJ 0.06 0.10 0.22 0.19
Ant 0.15 0.36 0.37 0.23

Lucene 0.15 0.38 0.30 0.28
Rhino 0.19 0.34 0.50 0.24

Overall 0.14 0.30 0.35 0.24

Chapter 5

Triggering Modes in Spectrum-Based

Single-Location Fault Localization

5.1 Motivation

Software debugging is challenging. On average, up to 50% of developers’ time is spent

on finding and fixing bugs, and software bugs cost the economy $312 billion per year [3].

To simplify software debugging, various techniques have been introduced to automatically

locate bugs or faults in programs [34, 57, 59, 61, 67, 82, 90, 116]. For instance, information

retrieval (IR)-based fault localization (IRFL) approaches apply IR techniques to any given

bug report and the corresponding buggy program, in order to retrieve and rank software

entities (e.g., classes and methods) that are relevant to the report. Spectrum-based fault

localization (SBFL) techniques instrument programs to (1) collect the execution coverage

of each passed or failed test, and (2) compute the suspiciousness score for each executed

program element (i.e., class, method, or statement).

However, existing work is insufficient to localize software bugs in industry. Specifically, IRFL

works only when a report explicitly mentions the actual bug location [34, 99]. In reality,

however, the bug location is not always mentioned in a report, and some serious buggy pro-

grams even require developers to urgently fix bugs before filing any report. Although SBFL

tools are not limited by the availability of bug reports, they identify and rank suspicious (i.e.,

43

44 Chapter 5. Triggering Modes in Spectrum-Based Single-Location Fault Localization

potentially buggy) locations only after executing all test cases. In the highly agile develop-

ment environment of software companies, the runtime overhead of such all-test execution is

not always acceptable. This is because there can be hundreds of thousands of tests, whose

execution can last for hours or days. By waiting for SBFL to suggest any suspicious location,

developers may miss the best time to fix bugs and deliver software releases.

To provide instant feedback on potential buggy locations when a program fails one or more

tests, we were curious whether SBFL can be triggered before all tests to complete their execu-

tion. In this research, we conducted a comprehensive empirical study on (1) different SBFL

techniques and (2) various modes to trigger SBFL. Specifically, we used an off-the-shelf

tool—Clover [5]—to instrument source code, and to gather the statement-level coverage of

each test. With the collected data for all tests, we applied 25 widely used SBFL formulas,

computed the suspiciousness score of each statement, and ranked those statements accord-

ingly.

In particular, we developed a framework—Instant Fault Localization for Single-Location

Bugs (IFLS)—to locate bugs in five distinct modes: (i) IFLS1 triggers SBFL right after

the initial test failure; (ii) IFLSk
f triggers SBFL after every test failure (k=1–3); (iii) IFLSk

p

triggers SBFL after the initial failure and several additional passed tests (k=1–10); (iv)

IFLSk
t triggers SBFL at a fixed frequency/time (e.g., every k = 2 minutes); and (v) IFLSA

triggers SBFL after executing the all or complete suite.

In our study, we applied IFLS to a software product in Cvent. The product contains 35,091

lines of code (LOC) for implementation and has 1,295 test cases (with 48,982 LOC). We

constructed two data sets of bugs. The first set includes 28 injected bugs (i.e., the logical

errors we manually introduced), while the second set has 13 real bugs. We experimented

IFLS with different triggering mechanisms and various SBFL formulas, and evaluated the

outputs by different settings in terms of precision (i.e., MAP), recall (i.e., Top-1 and Top-5),

5.2. Contributions 45

and runtime overhead.

Based on our experiments, IFLS1 outperformed the other four modes when using Ample [33]

as its default SBFL formula. Among the 25 formulas, for injected bugs, IFLSA obtained

56% MAP and 66% Top-5 recall, and spent 663 seconds executing all tests on average. In

comparison, IFLS1 achieved 73% MAP and 86% Top-5 recall, and spent only 135 seconds

executing roughly 20% of tests. For real bugs, IFLSA acquired 46% MAP and 56% Top-

5 recall based on all-test execution; while IFLS1 achieved 76% MAP and 92% Top-5 recall

after executing test cases for only 106 seconds. With both data sets, we consistently observed

considerable improvements of IFLS1 over IFLSA in terms of the quality of suggestions and

runtime overhead.

5.2 Contributions

This research makes the following contributions:

• We built IFLS, a tool infrastructure that can trigger SBFL in 5 alternative modes using

25 distinct formulas.

• We applied IFLS to a close-sourced software project, and comprehensively evaluated

the fault localization effectiveness by enumerating different combinations between trig-

gering modes and calculation formulas.

• We made two interesting observations in our exploration. First, among the five modes,

IFLSA did not outperform the others although its runtime cost was the highest. Second,

IFLS1 worked equally well when using certain formulas.

We open-sourced IFLS at https://github.com/idf-icst/idfl-package.

https://github.com/idf-icst/idfl-package

46 Chapter 5. Triggering Modes in Spectrum-Based Single-Location Fault Localization

5.3 Approach

We built a tool infrastructure—IFLS—to investigate the best mode of triggering SBFL. As

shown in Fig. 5.1, IFLS has three components. The first component is Clover [5]; we config-

ured it to instrument every Java statement and to record per-test statement coverage,

i.e., which statement(s) are covered by a given test.

Test
cases

Faulty
program IFL

Clover Coverage
Converter

Rank
Calculator

Ranked
suspicious
statements

Figure 5.1: Overview of IFLS

Coverage Converter controls the frequency at which per-test statement coverage is converted

to per-statement test coverage, i.e., which tests cover a particular statement. This

conversion is necessary because all SBFL formulas require for the element-level coverage

measurement (i.e., ef and/or ep). Fig. 5.2 illustrates the conversion process with a simple

example. As shown in the figure, Clover stores per-test coverage data in a JSON file such that

for any executed test (e.g., t1), we can easily retrieve the statements (e.g., s1) covered by that

execution. IFLS reorganizes the data in a different JSON file such that given any statement

(e.g., s1), we can obtain the number of passed or failed tests covering the statement.

Rank Calculator is invoked by Coverage Converter after each round of data conversion.

This component applies an SBFL formula to the collected per-statement coverage data, in

order to identify and rank suspicious locations. Essentially, the frequency at which Coverage

Converter transforms data determines how SBFL is applied to partial execution data (i.e.,

code coverage). Coverage Converter can apply SBFL in the following five distinct ways:

IFLS1, IFLSk
f , IFLSk

p, and IFLSk
t , and IFLSA.

5.4. Research Questions 47

Test Covered
Statements

Test
Outcome

t1 s1, s2, … P
t2 s1, s3, … F

Statements # of Passed
(P) Tests

of Failed
(F) Tests

s1 1 1
s2 1 0

s3 0 1
… … …

Figure 5.2: IFLS converts per-test statement coverage to per-statement test coverage

5.4 Research Questions

This study investigates the following two research questions:

RQ1 How sensitive is IFLS to different SBFL triggering modes?

RQ2 How sensitive is IFLS to the leveraged SBFL formulas?

5.5 Evaluation

This section first introduces our data sets (Chapter §5.5.1). Next, it presents the effectiveness

comparison between different triggering modes of IFLS (Chapter §5.6.1). Finally, it explains

our exploration of IFLS’s sensitivity to the used SBFL formulas (Chapter §5.6.2).

5.5.1 Data Sets

For evaluation, we leveraged a closed-sourced software system in industry. We chose this

software because (1) there are a lot of test cases (i.e., 1,295) written by developers for quality

assurance, (2) the code size is large (35,091 LOC), and (3) it is from software industry and

may have different program features from open-source projects. We constructed 2 bug sets,

48 Chapter 5. Triggering Modes in Spectrum-Based Single-Location Fault Localization

Table 5.1: The number of failed tests triggered by different injected or real bugs

of Failed Tests # of Injected Bugs # of Real Bugs
1 16 6
2 6 3
4 1 4
9 3 0

12 1 0
15 1 0

including a set of 28 injected bugs and a set of 13 real bugs. All these bugs are single and

semantic faults, each of which fails at least one test case. Specifically, as shown in Tab. 5.1,

there are 16 injected bugs and 6 real bugs that fail single tests. Each of the remaining bugs

fail at least two tests.

To inject the 28 bugs, we first consulted with developers concerning what are the frequent

bugs and usual buggy locations in their programs. Based on developers’ inputs, we then

manually crafted buggy programs by either substituting operators (e.g., “&&” replaced with

“||”), changing constant values (e.g., “0” replaced by “1”), modifying function calls (e.g.,

“Math.min()” replaced with “Math.max()”), or swapping function arguments of the same

data type. We decided not to use mutation testing to generate buggy programs for two

reasons. First, the generated mutants may be very different from real bugs [47]. Second,

the effectiveness of mutation operations can vary with the subject programs. Due to our

discussion with the owner developers, we have more domain knowledge about the recurring

bugs in the subject program. Therefore, the bugs we manually injected are more likely to

reflect real bugs in the project.

We identified 13 real bugs by searching for single-line fixes in the software version history.

Specifically, if a commit has a single-line change and contains keywords like “bug” or “fix” in

the commit message, we checked out the program snapshot before that commit as a buggy

program. These real bugs are mainly about incorrectly used variable names, division by

5.6. Results and Discussion 49

Table 5.2: Comparison between IFLS1 and IFLSA in terms of effectiveness and runtime
overhead

Mode Top-1 (%) Top-5 (%) MAP (%) Time Cost (second)
I R I R I R I R

IFLS1 64 62 86 92 73 76 135 105
IFLSA 57 31 89 69 70 50 663 655

zero, incorrect calculation formulas, unhandled exceptions, and incorrect condition checks

for variables’ lower bounds.

5.6 Results and Discussion

5.6.1 Comparison between IFLS’s Triggering Modes

To compare the fault localization effectiveness of different triggering modes, we used the

Ample formula [33] as the default ranking formula in IFLS. This is because our other exper-

iment (see Chapter §5.6.2) shows that Ample generally achieved a better trade-off among

Top-1, Top-5, and MAP values than the other formulas.

Effectiveness of IFLS1 and IFLSA Tab. 5.2 presents the results by IFLS1 and IFLSA,

where the highest value of each effectiveness measurement is highlighted in bold. Because

each of these two modes triggers SBFL only once during the whole execution of any buggy

program version, the table has only one row to report the average effectiveness measure-

ments for each mode. As shown in the table, IFLS1 outperformed IFLSA by executing fewer

tests and locating bugs more effectively. Specifically with the injected bugs, IFLS1 spent on

average 135 seconds and acquired 64% Top-1, 86% Top-5, and 73% MAP values; however,

IFLSA spent on average 663 seconds and obtained 57% Top-1, 89% Top-5, and 70% MAP

50 Chapter 5. Triggering Modes in Spectrum-Based Single-Location Fault Localization

0

20

40

60

80

100

1 2 3 4

Zoltar

0

20

40

60

80

100

1 2 3 4

Tarantula

0

20

40

60

80

100

1 2 3 4

Hamann

of
failed
tests

Percentage (%)

of
failed
tests

Percentage (%)

of
failed
tests

Percentage (%)

Top-1 Top-5 MAP

(a) Injected bugs

0

20

40

60

80

100

1 2 3 4

Zoltar

0

20

40

60

80

100

1 2 3 4

Tarantula

0

20

40

60

80

100

1 2 3 4

Hamann

of
failed
tests

Percentage (%)

of
failed
tests

Percentage (%)

of
failed
tests

Percentage (%)

(b) Real bugs

Figure 5.3: IFLSk
f ’s effectiveness when different formulas were used

values. Additionally, with the real bugs, IFLS1 spent 105 seconds and got 62% Top-1, 92%

Top-5, as well as 76% MAP values; IFLSA spent 655 seconds but acquired 31% Top-1, 69%

Top-5, and 50% MAP values.

Finding 3.1: Compared with IFLSA, IFLS1 located bugs with much lower runtime

overhead but a better trade-off between MAP, Top-1, and Top-5 values. It means

that triggering SBFL right after the initial test failure can significantly improve fault

localization.

Effectiveness of IFLSk
f In our data set, there are six injected bugs and four real bugs

that fail at least four test cases. To evaluate the effectiveness of IFLSk
f , we triggered SBFL

after one–four failed tests and reported the average measurements among these multi-failure

bugs in Tab. 5.3. Hypothetically, as the number of failed tests increases, more execution

5.6. Results and Discussion 51

Table 5.3: IFLSk
f ’s effectiveness when IFLSk

f reranked locations after each extra test failure
(12 injected and 7 real bugs)

of
Failed Top-1 (%) Top-5 (%) MAP (%) Time Cost (second)

Tests I R I R I R I R

1 50 50 100 100 67 71 151 106
2 50 25 100 100 64 54 153 108
3 50 25 100 100 64 54 154 110
4 50 25 100 100 67 54 155 113

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Zoltar

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Tarantula

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Hamann

of extra
passed
tests

Percentage (%) Percentage (%)

of extra
passed
tests

Percentage (%)

of extra
passed
tests

Top-1 Top-5 MAP

(a) Injected bugs

of extra
passed
tests

Percentage (%) Percentage (%)

of extra
passed
tests

Percentage (%)

of extra
passed
tests

0

20

40

60

80

100

0 2 4 6 8 10 12

Hamann

0

20

40

60

80

100

0 2 4 6 8 10 12

Tarantula

0

20

40

60

80

100

0 2 4 6 8 10 12

Zoltar

Top-1 (Real) Top-5 (Real) MAP (Real)

(b) Real bugs

Figure 5.4: IFLSk
p’s effectiveness when different formulas were used

52 Chapter 5. Triggering Modes in Spectrum-Based Single-Location Fault Localization

information is collected and thus it is possible that SBFL can work better. However, sur-

prisingly, Tab. 5.3 shows that the effectiveness measurements do not necessarily increase

with the number of failed tests.

In particular, when more test failures were triggered by each injected bug, both Top-1 and

Top-5 values remained the same while MAP first decreased and then increased. Among the

real bugs, as the number of failed tests increased, both Top-1 and MAP values decreased

while the Top-5 value remained. Between the first and fourth failures, on average, the

runtime overhead of IFLSk
f increased from 151 seconds to 155 seconds for injected bugs, and

increased from 106 seconds to 113 seconds for real bugs.

To validate the generality of our observation, we redid the experiment with IFLSk
f by using

the other 24 SBFL formulas. Since some formulas produced exactly the same results (e.g.,

Hamann and Sokal), in Fig. 5.3, we illustrate IFLSk
f ’s effectiveness measurements for three

representative formulas: Hamann, Tarantula, and Zoltar. As shown in Fig. 5.3, IFLSk
f ’s

effectiveness measurements either decreased or remained the same as the number of failed

tests increased. In particular, with Hamann, all measured values dropped down significantly

at the second test failure. With Tarantula and Zoltar, the measured values were almost

unchanged for injected bugs; however, as the number of failed tests increased, the measured

values dropped considerably for real bugs. One possible reason is that although the oc-

currence of more failed tests can strengthen the suspiciousness signals of faulty locations,

the existence of a lot more passed tests can weaken those signals, and even harm IFLSk
f ’s

effectiveness in some scenarios.

5.6. Results and Discussion 53

Table 5.4: IFLSk
p’s effectiveness when the data of 1–10 more passed tests was also included

of Ad-
ditional Top-1 (%) Top-5 (%) MAP (%) Time Cost (second)

Passed
Tests I R I R I R I R

1 64 46 86 92 73 69 135 106
2 64 46 89 92 73 66 136 107
3 64 38 89 92 73 61 137 107
4 61 38 89 92 72 59 137 108
5 61 38 89 85 72 59 138 108
6 61 38 89 77 72 59 139 109
7 61 38 89 77 71 58 139 110
8 57 38 89 77 69 58 140 110
9 57 38 89 77 69 58 141 111
10 57 38 89 77 69 54 141 112

Finding 3.2: Compared with IFLS1, IFLSk
f incurred more runtime overhead by pro-

filing more execution and ranking locations multiple times. However, IFLSk
f does not

work better when more tests fail, due to the extreme imbalance between passed and

failed tests.

Effectiveness of IFLSk
p Tab. 5.4 presents our evaluation results for IFLSk

p, which triggered

data processing after the initial test failure together with 1–10 additional passed tests. As

shown in the table, when more passed tests were executed after the initial failure, the runtime

overhead increased as expected (i.e., from 135 seconds to 141 seconds for injected bugs, and

from 106 seconds to 112 seconds for real bugs).

Hypothetically, as more execution data is available, IFLSk
p should localize bugs more effec-

tively. However, different from our expectation, both Top-1 and MAP values decreased; the

Top-5 values for injected bugs increased while those values for real bugs decreased.

One possible reason to explain the unexpected trend is the leveraged Ample formula: Ample =

54 Chapter 5. Triggering Modes in Spectrum-Based Single-Location Fault Localization

0

20

40

60

80

100

0 120 240 360 480 600 720 840

Timestamp
(second)

Percentage (%)

Top-1 (Injected) Top-5 (Injected) MAP (Injected)

Figure 5.5: IFLSk
t ’s effectiveness when SBFL is triggered every two minutes

| ef
ef+nf

− ep
ep+np

|.

After the initial test failure, there are two types of locations that are likely to be highly

ranked:

• Type-I (fail-dominant) statements covered by the failed test but rarely covered by

any passed test (e.g., 1
2
=

ef
ef+nf

� ep
ep+np

),

• Type-II (pass-dominant) statements that are covered by many passed tests but not

covered by the failed test (e.g., ep
ep+np

� ef
ef+nf

= 0).

For better fault localization, we desire to see more Type-I but fewer Type-II statements

included in top ranks. However, as one or more passed tests are provided after the initial

failure, it is likely that fewer fail-dominant statements but more pass-dominant statements

are highly ranked, compromising the effectiveness of IFLSk
p. Notice that in all the experiments

show in Tab. 5.4, IFLSk
p achieved better trade-offs than IFLSA, which fact also evidences that

the execution profile of more passed tests usually does not help improve fault localization

effectiveness.

5.6. Results and Discussion 55

For generality, we also configured IFLSk
p to use all of the remaining 24 ranking formulae (be-

sides Ample). Due to the space limit, here we only visualize IFLSk
p’s effectiveness with three

representative SBFL formulas: Hamann, Tarantula, and Zoltar. Fig. 5.4 (a) and Fig. 5.4

(b) separately present the measurements based on injected bugs and real bugs. As more

extra passed tests are added, all metric values related to Hamann go down. For Tarantula

and Zoltar, although the Top-5 values increase in some scenarios (i.e., for injected bugs),

both Top-1 and MAP values decrease. With different formulas explored, we observe a typ-

ical trend: the effectiveness of IFLSk
p does not increase with the number of extra passed tests.

Finding 3.3: Compared with IFLS1, IFLSk
p is more likely to raise the ranking of non-

buggy locations and lower the ranking of buggy ones, due to its usage of the extra data

for passed tests after the initial test failure.

Effectiveness of IFLSk
t Fig. 5.5 illustrates IFLSk

t ’s effectiveness when the ranking of sus-

picious locations is updated every 2 minutes (i.e., 120 seconds). With IFLSk
t , we explored

how SBFL behaves when it is triggered at a fixed frequency. As shown in the figure, most

measured values increase between the 120th and 240th seconds and decrease or remain the

same afterwards. The only outlier is Top-1 for real bugs, whose value decreases in the range

[120, 240] and then remains the same.

Three possible reasons can explain the relative poor results at the 120th second. First,

insufficient failure data was gathered during the first 120 seconds. We found that 15 injected

bugs and 3 real bugs did not fail any test in that period. Due to the lack of failed tests, IFLSk
t

could not effectively locate bugs for its initial trial. Second, all faulty programs obtained

the initial test failures before the 240th second. The related data of failed tests boosted

most measurements for IFLSk
t . As a result, IFLSk

t acquired the peak measurement values for

56 Chapter 5. Triggering Modes in Spectrum-Based Single-Location Fault Localization

injected bugs, i.e., 57% Top-1, 89% Top-5, and 70% MAP; it obtained the highest Top-5 and

MAP values for real bugs (i.e., 77% and 53%).

Third, after the 240th second, even though more execution data was available, most faulty

versions caused no more failed test. The extremely unbalanced increase between passed and

failed tests brought no improvement for IFLSk
t ’s effectiveness.

By comparing IFLSk
t ’s peak performance against that of IFLS1, we found that IFLS1 worked

better even though IFLSk
t profiled more data and ranked locations repetitively. Similar to

what we observed for IFLSk
f , the extra execution data and reranking effort did not enable

IFLSk
t to outperform IFLS1. Additionally, IFLSk

t seems to outperform IFLSA at certain time

points (e.g., 240th second) before the completion of whole-suite execution. However, since

different programs and distinct bugs may have failed tests executed at different time points,

it is almost impossible to conclude what is the best frequency to trigger SBFL for IFLSk
t and

at which triggering point IFLSk
t is likely to work best.

Finding 3.4: Similar to IFLSk
f and IFLSk

p, IFLSk
t worked worse than IFLS1 even if it

leveraged more execution data and dynamically computed ranking more often.

Among the five investigated variants, IFLS1 worked best in terms of efficiency and effective-

ness. Although IFLS1 triggered SBFL only once right after the initial test failure, it localized

bugs with the best trade-off among Top-1, Top-5, and MAP values. Both IFLSk
f and IFLSk

p

worked less effectively than IFLS1 but better than IFLSA. The execution profile of addi-

tional failed tests and/or passed tests does not help improve fault localization, but usually

harms the effectiveness. Finally, IFLSk
t did out outperform IFLSA. By triggering SBFL at a

fixed fixed frequency, IFLSk
t might invoke SBFL so early that no test failure was available to

facilitate fault localization, or invoke SBFL so late that too many passed tests were available

5.6. Results and Discussion 57

Table 5.5: The effectiveness of IFLS1 and IFLSA when different formulas were used

Variants of IFLS1 Top-1 (%) Top-5 (%) MAP (%) Variants of IFLSA Top-1 (%) Top-5 (%) MAP (%)
I R I R I R I R I R I R

IFLS1-Ample 64 62 86 92 73 76 IFLSA-Ample 57 31 89 69 70 50
IFLS1-Anderberg 64 62 86 85 73 74 IFLSA-Anderberg 57 38 86 69 68 53
IFLS1-Dice 64 62 86 85 73 74 IFLSA-Dice 57 38 86 69 68 53
IFLS1-Euclid 68 54 68 54 68 54 IFLSA-Euclid 68 69 68 69 68 69
IFLS1-Goodman 64 62 86 85 73 74 IFLSA-Goodman 57 38 86 69 68 53
IFLS1-Hamann 57 54 61 69 59 60 IFLSA-Hamann 39 31 43 38 41 36
IFLS1-Hamming 68 54 68 54 68 54 IFLSA-Hamming 68 69 68 69 68 69
IFLS1-Jaccard 64 62 86 85 73 74 IFLSA-Jaccard 57 38 86 69 68 53
IFLS1-Kulczynski1 64 62 86 85 73 74 IFLSA-Kulczynski1 57 38 86 69 68 53
IFLS1-Kulczynski2 0 0 0 0 0 0 IFLSA-Kulczynski2 0 0 0 0 0 0
IFLS1-M1 57 54 61 69 59 60 IFLSA-M1 39 31 43 38 41 36
IFLS1-M2 64 54 86 92 73 71 IFLSA-M2 57 31 89 69 70 49
IFLS1-Ochiai 64 62 86 85 72 74 IFLSA-Ochiai 57 38 86 69 68 54
IFLS1-Ochiai2 64 62 86 85 72 72 IFLSA-Ochiai2 57 38 86 62 68 53
IFLS1-Overlap 0 0 0 0 0 0 IFLSA-Overlap 0 0 0 0 0 0
IFLS1-RogersTanimoto 57 54 61 69 59 60 IFLSA-RogersTanimoto 39 31 43 38 41 36
IFLS1-RussellRao 64 54 86 85 73 70 IFLSA-RussellRao 57 31 89 69 70 49
IFLS1-SimpleMatching 57 54 61 69 59 60 IFLSA-SimpleMatching 39 31 43 38 41 36
IFLS1-Sokal 57 54 61 69 59 60 IFLSA-Sokal 39 31 43 38 41 36
IFLS1-SφrensenDice 64 62 86 85 73 74 IFLSA-SφrensenDice 57 38 86 69 68 53
IFLS1-Tarantula 64 62 86 85 72 73 IFLSA-Tarantula 54 38 79 69 65 53
IFLS1-Wong1 68 54 68 54 68 54 IFLSA-Wong1 68 69 68 69 68 69
IFLS1-Wong2 61 54 68 69 64 62 IFLSA-Wong2 46 31 57 54 52 40
IFLS1-Wong3 61 54 71 77 65 65 IFLSA-Wong3 50 31 68 62 59 45
IFLS1-Zoltar 64 62 86 85 72 72 IFLSA-Zoltar 54 38 86 54 66 51

to weaken the signals raised by any test failure.

5.6.2 IFLS’s Sensitivity to SBFL Formulas

We ran IFLS with all 25 alternative formulas listed in Tab. 3.1 (1) to explore IFLS’s sensi-

tivity to the adopted formulas and (2) to ensure the generalizability of our observation that

IFLS1 outperforms IFLSA (see Chapter §5.6.1). We decided to experiment with 25 distinct

formulas instead of using only a few well-known formulas, in order to make our investigation

comprehensive and systematic.

Tab. 5.5 presents the results by IFLS1 and IFLSA when they used distinct formulas. Accord-

58 Chapter 5. Triggering Modes in Spectrum-Based Single-Location Fault Localization

ing to the table, in the experiments with IFLS1, Ample worked best by obtaining the highest

values for five out of the six measurements. Many formulas worked similarly to each other.

For instance, five formulas produced identical results, including Anderberg, Dice, Goodman,

Jaccard, and Kulczynski1. Three formulas obtained the same highest Top-1 value for in-

jected bugs (i.e., 68%), including Euclid, Hamming, and Wong1. The former group of five

formulas mentioned above outperformed the latter group by achieving a better trade-off

among metrics. Kulczynski2 and Overlap produced pure zero values.

In the experiments with IFLSA, we observed that Euclid, Hamann, and Wong1 worked best

by achieving better trade-offs among metrics than the other formulas. Each of these three

formulas obtained the highest values for four out of the six metrics. Once again, Anderberg,

Dice, Goodman, Jaccard, and Kulczynski1 produced identical results, although this group

of formulas worked less effectively than the three-formula group mentioned above.

Our experiments imply that IFLS is sensitive to the used formula, as the measurement dif-

ference between the most and least effective formulas (e.g., Ample vs. Overlap, or Euclid

vs. Kulczynski2) was huge.

Finding 3.5: Our investigation on SBFL triggering modes is sensitive to the leveraged

formula. The 25 formulas can be split into several groups, each of which contain

formulas generating the same results.

In Tab. 5.5, if we compare IFLS1 with IFLSA for each formula, we observe that IFLS1 outper-

formed IFLSA in the majority of scenarios. For instance, when Anderberg was used, IFLS1

acquired 64% Top-1, 86% Top-5, and 73% MAP for injected bugs; it obtained 62% Top-1,

85% Top-5, and 74% MAP for real bugs. On the other hand, when IFLSA used the same

formula, it achieved 57% Top-1, 86% Top-5, and 68% MAP for injected bugs; it acquired

5.7. Threads to Validity 59

38% Top-1, 69% Top-5, and 53% MAP for real bugs.

IFLSA only outperformed IFLS1 when one of the following three formulas was used: Euclid,

Hamming, and Wong1. Specifically, when Hamming was in use, both IFLSA and IFLS1

achieved 68% for all metrics on the injected bug set; on the real bug set, IFLSA acquired

69% for all metrics while IFLS1 obtained 54%. Finally, when Kulczynski2 and Overlap were

in use, both IFLS1 and IFLSA worked equally poorly, probably because these two formulas

are not effective to locate bugs.

Finding 3.6: Among the 25 investigated SBFL formulas, IFLS1 outperformed IFLSA

for 20 formulas. It means that our observation that IFLS1 usually outperforms IFLSA

is generalizable.

5.7 Threads to Validity

Threats to External Validity Our experiments were conducted based on two data sets of

bugs for a software product system of a company. The evaluation results may not generalize

well to other bugs, other software products of other companies, or open-source projects. Our

observations also depend on the quality and quantity of test cases. In the future, we will

experiment with more buggy programs of more software systems.

Threats to Construct Validity Among the investigated 41 bugs, each bug can be fixed

with a single-line change and the corresponding faulty program version contains a single

bug. In reality, nevertheless, there are complex buggy programs that contain multiple faults

in one version. To fix a bug, developers may need to change multiple lines of code in

60 Chapter 5. Triggering Modes in Spectrum-Based Single-Location Fault Localization

the same source file, and/or even modify configurations in non-source files. Our data set

shares such limitations with prior work [28, 55, 57, 67]. In the future, we will diversify our

approach to generate injected bugs and use more complicated real bugs to better evaluate

fault localization techniques.

Threats to Internal Validity Similar to prior fault localization research [67, 106, 122],

given a bug fix, we treated the location where the fixing change was applied as ground truth.

However, in reality, the place where a bug is fixed is not always the place where a bug is

found. For instance, when a program fails to retrieve any record from a database, the bug

location lies in the code querying the database, while the bug fix may be the SQL file used

to update the database records. Treating patch locations to be equivalent to bug locations

can introduce bias to the evaluated results.

5.8 Summary

This research presents our exploration on the distinct triggering mode of SBFL techniques.

Although researchers extensively investigated the area of (semi-)automatic fault localization,

one practical problem seems to be overlooked: Is it always necessary for SBFL techniques

to wait for all test cases to finish their execution before diagnosing the root cause(s) of failed

tests? With this empirical study, we comprehensively investigated this problem.

Specifically, we built IFLS, a framework that triggers SBFL in five alternative modes: trig-

gering SBFL right after the initial failure (IFLS1), after every failed test (IFLSk
f), after the

initial failure and several extra failed tests (IFLSk
p), at a fixed frequency (IFLSk

t), or after the

execution of all tests (IFLSA). By comparing the Top-1, Top-5, and MAP values achieved

by different triggering modes when SBFL techniques were applied to two data sets, we sur-

5.8. Summary 61

prisingly found that IFLS1 worked best in most scenarios. Namely, triggering SBFL right

after the initial test failure turns out to be more effective and more efficient than triggering

SBFL later when more execution data is available.

Our empirical study indicates that it is neither necessary nor helpful to execute all test cases

before using SBFL formulas to locate bugs. IFLS1 demonstrates the promising adoption

of SBFL for recognizing faults in large-scale systems, even though the test execution of

such systems can last forever. In the CI/CD software practices nowadays, IFLS1 is more

likely to satisfy developers’ need of diagnosing test failures earlier, faster, and better. Our

research will shed light on new research directions, such as agile fault localization based on

the stream data of execution profiles, and periodic health check for software systems that

run continuously without interruption. We plan to pursue these directions in the future.

Chapter 6

Triggering Modes in Spectrum-Based

Multi-Location Fault Localization

6.1 Motivation

Debugging software is a well-known and challenging task that consumes a significant amount

of developers’ time. The process is also expensive, and software defects alone cost the US

economy $1.56 trillion in 2020 [63]. To aid debugging, many automatic fault localization

techniques have been proposed. For example, the well-known spectrum-based fault local-

ization (SBFL) technique [19, 57] instruments programs to (i) collect execution coverage of

passed and failed tests, and (ii) compute a suspiciousness score for each program element

such as classes, methods, and statements.

Despite its popularity, SBFL may not be practical for industry deployment because it typi-

cally requires the execution of all or a significant portion of test cases before it can analyze

and rank buggy locations. To further understand and address this limitation, in a previous

work [35], we studied the necessity of this requirement. Specificallly, we explored various

trigger modes, such as applying SBFL after the first test failure or after a combination of

initial failures along with additional failed or passed tests. We evaluated these trigger modes

using a variety of SBFL methods and found that the application of SBFL immediately after

the first test failure appears to be equally effective or even better than other trigger modes,

62

6.1. Motivation 63

including those that execute all tests. These findings are interesting and promising for the

practical uses of SBFL in an industrial setting with a large number of tests.

Recently, we attempted to integrate SBFL in the debugging process of Cvent, a Northern

Virginia-based company that offers meeting and event management software solutions to

clients including event planners, attendees, and hosts. While the study in [35] plays a

crucial role in this decision, considering CI/CD pipeline of Cvent consumes thousands of

CPU hours to execute integration tests, it has a major limitation in considering only single-

location bugs, whose root causes confined to individual lines of code (i.e., the bug can be fixed

by modifying a single line). However, bugs encountered at Cvent often have root causes that

span multiple lines of code (requiring the modification of multiple lines to fix). For instance,

we found that that around 72% of Cvent’s bugs committed and fixed during the development

stage were multi-location bugs. More generally, previous studies, e.g., in [91], found that it

is not practical to assume a program contains only single-location bugs.

Motivated by this challenge, in this work we assess the effectiveness of SBFL for multi-

location bugs. Specifically, we extend our initial study to develop a framework called Instant

Fault Localization for Multi-location Bugs (IFLM) that triggers SBFL in four modes: (i)

IFLM1 invokes SBFL right after the first failed test; (ii) IFLMk
f triggers SBFL after every

k=1–5 test failures (IFLM1 is the special case when k = 1); (iii) IFLMk
p activates SBFL after

the first failed test and subsequently, k additional passed tests (k=1 – 10); and (iv) IFLMA

triggers SBFL after executing all tests.

We conduct the IFLM study using two multi-location bug datasets: (i) the open-source

Defect4J dataset [12], consisting of 174 real bugs and 37 artificial bugs, and (ii) the close-

source Cvent dataset, consisting of 27 real bugs.

Similarly to our prior single-location study, we found that we do not always need to run all

64 Chapter 6. Triggering Modes in Spectrum-Based Multi-Location Fault Localization

test cases for SBFL to be effective for multi-location bugs. This is promising for industrial

environments with a multitude of tests. Specifically, compared to IFLMA, IFLM1 just needs

to run less than 50% of the tests to be almost as effective as IFLMA, which requires running

all tests.

We also found that IFLM1 performed worse over artificial bugs compared to real bugs.

Conversely, IFLMA performed better over artificial bugs compared to real ones. We believe

that artificial bugs could potentially exhibit a bias that favors using IFLMA to evaluate SBFL

techniques.

6.2 Contributions

This research made the following contributions:

• We built IFLM, a tool that can trigger SBFL in four different modes using 25 widely-

used ranking formulae.

• We applied IFLM to Cvent close-sourced software projects (27 real multi-location bugs)

and five Defects4J open-sourced projects (174 real and 37 artificial multi-location

bugs).

• We found that IFLM1 performed almost as effectively as IFLMA, while only needing

to run less than half of the tests.

• We created and provided a dataset comprising 27 real bugs from four programs cur-

rently used at Cvent.

We hope that this study can offer valuable insights into the integration of SBFL within

6.3. Approach 65

existing software processes in an industry environment. IFLM and all experimental data are

available in a Github repository at [17].

6.3 Approach

Our goal is to evaluate SBFL on multi-location bugs at different moments, e.g., after some

or all tests were executed. Our Instant Fault Localization for Multi-location Bugs (IFLM)

framework uses four “trigger modes” to represent these moments.

1. First-Failure Triggering (IFLM1) invokes SBFL right after the first test failure.

This is the minimal requirement for SBFL to work as it requires at least 1 failed test.

While this mode uses minimal time and computing resources, it also collect fewer

coverage (spectrum) information.

2. Multi-Failure Triggering (IFLMk
f) initiates SBFL after every kth (k=1–5) test fail-

ures. As k increases, more spectrum information was collected. However, this mode

requires more time and computing resources.

3. Failure-Pass Triggering (IFLMk
p) activates SBFL after the first test failure, and

subsequently k extra passed tests (k = 1–10). Compared to IFLM1, IFLMk
p spends

more time and resources to collect coverage data. Here we can study the trade-off

between gained accuracy and time and resources required for executing more tests.

4. Complete Execution Triggering (IFLMA) is the conventional SBFL, which ranks

bug locations after executing all available tests. IFLMA is thus expensive and might

not be applicable in the real world, e.g., at Cvent with many tests.

Each triggering mode thus corresponds to a different approach for selecting a subset of tests

66 Chapter 6. Triggering Modes in Spectrum-Based Multi-Location Fault Localization

from the complete test set. Our goal is to collect a partial set of spectrum data that is

sufficient for SBFL to function effectively. By experimenting with these different triggering

modes, we explore the trade-offs between effectiveness of SBFL and its runtime cost. Note

in our study that all tests were executed sequentially in a fixed order, determined by the

test executor (Maven-Clover plugin).

This fixed ordering ensures deterministic results throughout our study. In addition, all trig-

gering modes use instrumented tests. While instrumentation adds overhead, it is generally

not a concern in practice, as companies (e.g., Cvent) often run instrumented tests to at least

measure code coverage metrics, as part of code quality control procedure.

6.4 Evaluation

We use IFLM to investigate the two research questions: (RQ1) how sensitive is IFLM to

different triggering modes? and (RQ2) how sensitive is IFLM to different SBFL formulae?

IFLM and all data in this study are available at [17].

6.4.1 Datasets

We used 238 multi-location bugs, of which 211 are from Defect4J dataset [58] and 27 are

mined from four close-source software products from Cvent. For the Defects4j bugs, we

reused the spectrum data published in [6] to save time.

Defects4J Bugs Defects4J is a widely-used dataset of real bugs in popular open-source

software. Defects4J contains 835 bugs from 17 projects [58]. Out of these bugs, we found

174 multi-location bugs from 6 projects that have spectra data [6].

6.4. Evaluation 67

We also used artificial bugs from [6] in our study. These bugs were injected through mu-

tation into the same open-source programs in Defect4J, causing the logic or semantics of

the program to fail. Our objective is to compare the evaluation results between real bugs

and artificial bugs. If the results were consistent for both bug sets, it would provide more

confidence in using artificial bugs for evaluating SBFL techniques when real bugs are lim-

ited. Noting that while the [6] database contains numerous injected bugs, most of them are

single-location bugs. We were able to identify only 37 multi-location bugs, all of which were

from the Common-Lang project and used in our study.

Table 6.1: The Defect4J dataset: 174 real bugs and 37 artificial bugs from 5 open-source
projects.

Project # of Bugs LOC Exec # Tests 1st Failed IdxR I
Chart 13

0

25–7,057 1–428 1–248
Math 73 68–7,036 3–1,513 1–599
Mockito 26 931–4,252 25–1,111 9–273
Time 21 931–4,252 25–1,111 9–273
Lang 41 37 189–2,817 7–198 1–149
Total 174 37

Tab. 6.1 describes our Defects4J dataset. The first column shows the project names. The

next column shows the # of Bugs (R: real bugs, I: inserted/artificial bugs).

Column LOC Executed shows the code sizes in terms of lines of code (LOC) among buggy

program versions that are covered by test cases. Column # Tests shows the number of

tests executed for each buggy program. The last column, 1st Failed Idx, gives the index of

the first failed test among the tests. Note that values in these columns are given in a range

(e.g., 1–428) because each program has multiple snapshots, each of which corresponds to an

individual bug.

Tab. 6.2 provides additional information for failed tests. Approximately 50% of the bugs

68 Chapter 6. Triggering Modes in Spectrum-Based Multi-Location Fault Localization

Table 6.2: Distribution of number of failed tests in Defect4J.

of Failed Tests Real Bugs Artificial Bugs
% # %

1 101 58 (%) 18 49 (%)
2 41 24 (%) 7 19 (%)
3 5 3 (%) 11 30 (%)
4 8 5 (%) 0 0 (%)

≥ 5 19 11 (%) 1 3 (%)
Total 174 100 (%) 37 100 (%)

have more than 1 failing test. Among these bugs, the majority of them have 2–3 failing tests.

This justifies why in the IFLMk
f , we set k’s upper bound to 5 as bugs having more than 5

failed tests are rare.

Cvent Bug Dataset This dataset consists of 27 real multi-location bugs in 4 close-source

programs from Cvent. These bugs were identified and fixed by developers within Cvent’s

internal CI/CD process. We collected the bugs by analyzing build logs, Git commits, Jira

tickets, and test reports. The ground truths for these bugs were determined based on the

fixes applied by developers. In cases where it was difficult to distinguish between code

modifications made for bug fixing purposes and those made for refactoring, we excluded

those fixes to ensure the accuracy of the dataset.

The four subject programs are written in Java and have a medium size, ranging from 10-20

kLOC. Among these programs, one is an internal tool software developed for Cvent’s own

developers, while the other three are related to Cvent’s business domains, specifically event

management, account provisioning, and planners’ tools, used by Cvent’s external clients. The

test sizes for these programs range from a few hundred to one thousand test cases, consisting

of both unit tests and integration tests. Due to legal constraints, we cannot publish all the

details of the dataset. However, we have made the spectrum data available at [17].

6.4. Evaluation 69

6.4.2 RQ1: Comparing IFLM’s Triggering Modes

We evaluate the effectiveness of different triggering modes for SBFL using Dice (see §3.1

for its definition) as the default ranking formula for IFLM. This is because Dice generally

outperformed other formulae. Tab. 6.3 gives an overview of the performance of each formula

averaged across all bug and triggering mode combinations. The ranking formulae are cate-

gorized into different groups based on their performance: best (green), second (dark-gray),

and the least effective (orange).

Effectiveness of IFLM1 and IFLMA

Tab. 6.4 shows the results from IFLM1 and IFLMA on the 174 real bugs and 37 artificial bugs

from open-source projects in Defect4J dataset, and 27 real bugs from Cvent’s close-source

dataset. The five columns present the performance metrics and test execution cost for real

(R) and injected/artificial (I) bugs.

Contrary to the findings for single-location bugs, IFLMA outperformed IFLM1 on both real

and artificial bugs. For the real open-source bugs, IFLMA performed slightly better than

IFLM1 with metrics such as 12% versus 10% for Top-1, 30% versus 28% for Top-5, 17% versus

13% for MAP, and 22% versus 20% for MRR. Similarly, we see the comparable performance

of the two in the close-source Cvent bugs. However, IFLMA required more than twice test

executions compared to IFLM1. Similarly, for Cvent bugs, in average, IFLM1 takes only 327

seconds, while IFLMA consumes 885 seconds. In other words, empirically, IFLM1 runs more

than twice as fast as IFLMA, as a result of running far more fewer tests.

For artificial bugs, IFLMA demonstrated significant improvement compared to real bugs,

achieving over 100% better performance across all metrics: 27% versus 12% for Top-1, 62%

versus 30% for Top-5, 40% versus 17% for MAP, and 40% versus 22% for MRR. In contrast,

70 Chapter 6. Triggering Modes in Spectrum-Based Multi-Location Fault Localization

Table
6.3:

Effectiveness
of25

ranking
algorithm

s

RealBugs
ArtificialBugs

RankingAlgorithms
#

Instances
Top-1(%)

Top-5(%)
M

AP
(%)

M
RR

(%)
RankingAlgorithms

#
Instances

Top-1(%)
Top-5(%)

M
AP

(%)
M

RR
(%)

DICE
[32]

2040
11

30
15

21
DICE

[32]
466

12
35

23
23

KULCZYNSKI1[76]
2040

11
30

15
21

KULCZYNSKI1KULCZYNSKI1[76]
466

12
35

23
23

SORENSENDICE
[22]

2040
11

30
15

21
SORENSENDICE

[22]
466

12
35

23
23

GOODMAN
[46]

2040
11

30
15

21
GOODMAN

[46]
466

12
35

23
23

ANDERBERG
[22]

2040
11

30
15

21
ANDERBERG

[22]
466

12
35

23
23

JACCARD
[18]

2040
11

30
15

21
JACCARD

[18]
466

12
35

23
23

M2[114]
2040

10
28

14
19

M2[114]
466

12
35

23
23

RUSSELLRAO
[32]

2040
10

28
14

19
RUSSELLRAO

[32]
466

12
35

23
23

AMPLE
[32]

2040
8

25
12

17
AMPLE

[32]
466

12
35

23
23

W
ONG3[38]

2040
6

15
7

10
W

ONG3[38]
466

12
27

20
20

W
ONG2[104]

2040
5

15
7

10
W

ONG2[104]
466

12
27

20
20

SIMPLEMATCHING
2040

5
14

6
9

SIMPLEMATCHING
466

10
22

17
17

HAMANN
[32]

2040
5

14
6

9
HAMANN

[32]
466

10
22

17
17

SOKAL[32]
2040

5
14

6
9

SOKAL[32]
466

10
22

17
17

ROGERSTANIMOTO
[32]

2040
5

14
6

9
ROGERSTANIMOTO

[32]
466

10
22

17
17

M1[114]
2040

5
14

6
9

M1[114]
466

10
22

17
17

EUCLID
[32]

2040
0

5
3

3
EUCLID

[32]
466

0
0

2
2

W
ONG1[104]

2040
0

5
3

3
W

ONG1[104]
466

0
0

2
2

HAMMING
[32]

2040
0

5
3

3
HAMMING

[32]
466

0
0

2
2

OCHIAI2[32]
2040

0
1

1
1

OCHIAI2[32]
466

0
0

1
1

OCHIAI[18]
2040

0
1

1
1

OCHIAI[18]
466

0
0

1
1

TARANTULA
[18]

2040
0

1
1

1
TARANTULA

[18]
466

0
0

1
1

KULCZYNSKI2[32]
2040

0
1

1
1

KULCZYNSKI2[32]
466

0
0

1
1

ZOLTAR
[23]

2040
0

1
1

1
ZOLTAR

[23]
466

0
0

1
1

OVERLAP
[35]

2040
0

0
0

0
OVERLAP

[35]
466

0
0

0
0

6.4. Evaluation 71

Table 6.4: Comparing IFLM1 and IFLMA (RO/IO = Real/Artificial Defects4J bugs, RC =
Real Cvent bugs).

Mode Top-1 (%) Top-5 (%) MAP (%) MRR (%) Cost (% Tests or R.Time)
RO IO RC RO IO RC RO IO RC RO IO RC RO IO RC (s)

IFLM1 10 3 22 28 8 66 13 9 29 20 9 45 44 39 327
IFLMA 12 27 24 30 62 65 17 40 37 22 40 49 100 100 885

IFLM1 performed much worse for artificial bugs compared to real bugs: 3% versus 10% for

Top-1, 8% versus 28% for Top-5, 9% versus 13% for MAP, and 9% versus 20% for MRR.

Overall, for artificial bugs, IFLM1 performed significantly worse than IFLMA with metrics

such as 3% versus 27% for Top-1, 8% versus 62% for Top-5, and 9% versus 40% for both

MAP and MRR. These results highlight the differences in performance between IFLM1 and

IFLMA on artificial bugs compared to real bugs. Additionally, artificial bugs appear biased

towards IFLMA and become challenging for IFLM1. Thus, we do not advise using artificial

bugs to evaluate SBFL on multi-location bugs.

Finding 6.1: For real bugs, IFLM1 performs slightly worse than IFLMA (≈ 2 percent-

age point difference, e.g., Top-1, Top-5, MRR), but it offers a significant advantage

in test execution reduction (≈ 100% better than IFLMA, in terms of runtime and the

number of executed tests). However, for artificial bugs, IFLMA significantly outper-

forms IFLM1, suggesting that artificial bugs might not be suitable for evaluating SBFL

for multi-location bugs.

Effectiveness of IFLMk
f

We evaluated IFLMk
f by triggering SBFL at every kth occurrence of a test failure, where

k= 1–5. Tab. 6.5 shows the average measurements. As can be seen, the effectiveness mea-

72 Chapter 6. Triggering Modes in Spectrum-Based Multi-Location Fault Localization

1 2 3 4 5

10

20

30

40

Failed Tests

P
er
ce
n
ta
g
e(

%
)

Top-1
Top-5
MAP
MRR

Goodman

1 2 3 4 5

10

20

30

40

Failed Tests

P
er
ce
n
ta
g
e(

%
)

Top-1
Top-5
MAP
MRR

Hamann

1 2 3 4 5

2

4

6

8

10

Failed Tests

P
er
ce
n
ta
g
e(

%
)

Top-1
Top-5
MAP
MRR

Euclid

(a) Real Open-Source Bugs.

1 2 3 4 5

10

20

40

60

80

Failed Tests

P
er
ce
n
ta
g
e(

%
)

Top-1
Top-5
MAP
MRR

Goodman

1 2 3 4 5

10

20

30

40

Failed Tests

P
er
ce
n
ta
g
e(

%
)

Top-1
Top-5
MAP
MRR

Hamann

1 2 3 4 5

10

20

30

40

Failed Tests

P
er
ce
n
ta
g
e(

%
)

Top-1
Top-5
MAP
MRR

Euclid

(b) Real Close-Source Bugs.

1 2 3 4 5

20

40

60

80

100

Failed Tests

P
er
ce
n
ta
g
e(

%
)

Top-1
Top-5
MAP
MRR

Goodman

1 2 3 4 5

20

40

60

80

100

Failed Tests

P
er
ce
n
ta
g
e(

%
)

Top-1
Top-5
MAP
MRR

Hamann

1 2 3 4 5

1

2

3

4

5

Failed Tests

P
er
ce
n
ta
g
e(

%
)

Top-1
Top-5
MAP
MRR

Euclid

(c) Artificial Open-Source Bugs.

Figure 6.1: Effectiveness of IFLMk
f using different SBFL formulae: Goodman, Hamann,

Euclid.

6.4. Evaluation 73

Table 6.5: Effectiveness of IFLMk
f with k=1–5 (RO/IO = Real/Artificial Defects4J bugs, RC

= Real Cvent bugs).

Failed
Tests

Top-1 (%) Top-5 (%) MAP (%) MRR (%) Cost (% Tests or R.Time)
RO IO RC RO IO RC RO IO RC RO IO RC RO IO RC (s)

1 10 3 22 28 8 66 13 9 29 20 9 45 44 39 327
2 10 26 23 34 74 70 15 43 32 19 43 47 54 48 415
3 6 42 20 31 75 65 13 53 29 18 53 43 55 62 451
4 11 0 19 37 100 65 16 33 28 23 33 43 57 83 539
5 11 0 18 32 100 62 14 33 26 21 33 41 57 93 574

surements did not consistently improve with an increasing number of failed tests, i.e., we

do not need too many failed tests for SBFL to work. For instance, for real bugs, the Top-1

measurement remained at 10% for both k = 1 and k = 2, but decreased to 6% at k = 3. The

maximum value of Top-1, 11%, was achieved at k = 4, 5, which only slightly differed from

the value at k = 1 (10%). Increasing the Top-1 measurement by 1 percent point required

running 44% of tests with k = 1 and 57% with k = 5 (by 13 percent points). We observed

similar results for artificial bugs.

For generality, we perform the same experiment for IFLMk
f using 3 ranking formulae randomly

selected in 3 corresponding representative groups in Tab. 6.3, namely Goodman, Hamann,

and Euclid (§3.1). Fig. 6.1 (a)(b) shows the results for real bugs for Defects4J and Cvent,

respectively. In Goodman and Hamann, Top-1, Top-5, MAP, and MRR decreased when k

go from 1 to 3. While in Euclid, Top-1 stayed constant against k, for all other metrics, their

values decreased significantly when k reached 5.

Fig. 6.1 (c) shows the results for artificial bugs. For Goodman and Hamann, Top-1, MAP,

and MRR reached optimal values when k was between 2 and 3, then decreased when k was

between 3 and 5. Only Top-5 achieved optimal at k = 5. However, for Euclid, all metrics

got optimal values at k = 3, and then decreased when k approached 5.

74 Chapter 6. Triggering Modes in Spectrum-Based Multi-Location Fault Localization

Table 6.6: Effectiveness of IFLMk
p when k = 1–10 (RO/IO = Real/Artificial Defects4J bugs,

RC = Real Cvent bugs).

Additional
Passed Tests

Top-1 (%) Top-5 (%) MAP (%) MRR (%) Cost (% Tests or R.Time)

RO IO RC RO IO RC RO IO RC RO IO RC RO IO RC (s)
1 11 3 22 28 14 66 14 12 29 20 12 45 46 41 327
2 12 3 22 29 14 66 14 12 29 21 12 45 47 44 329
3 11 3 22 31 22 66 14 13 29 21 13 45 48 46 330
4 12 3 22 30 22 66 15 13 29 21 13 45 48 46 331
5 11 3 22 29 31 61 15 16 26 20 16 45 48 48 333
6 10 11 22 29 39 61 15 23 26 20 23 41 48 50 335
7 11 17 22 31 47 61 16 29 26 21 29 41 49 52 336
8 11 17 20 32 42 60 16 28 26 21 28 41 50 55 339
9 10 17 21 32 42 60 16 29 26 20 29 41 49 57 340

10 11 19 21 34 44 60 17 31 26 22 31 41 49 54 341

Finding 6.2: While increasing the number failed tests costs more to execute and collecting

profiling data, IFLMk
f does not work better with more failing tests.

Effectiveness of IFLMk
p

Tab. 6.6 shows our results for IFLMk
p, which applies SBFL at every occurrence of additional

kth passed tests after the first failed test (k = 1–10). For real bugs, IFLMk
p performed slightly

better with more additional passed tests. However, the increased performance was insignifi-

cant. As shown in Tab. 6.6, Top-1 stayed relatively consistent around 11%; all other metrics

slightly increased: 28–34% in Top-5, 14–17% in MAP, and 20–22% in MRR, while the cost

of running tests increased from 46–49%.

Finding 6.3: Given the execution data of extra passed tests after the initial test failure,

IFLMk
p did not outperform IFLM1 for real bugs.

For artificial bugs, performance gained were significant. When k increases from 1 to 10,

6.4. Evaluation 75

Table 6.7: The effectiveness of IFLM1 and IFLMA using all 25 different formulae on De-
fects4J’s real bugs.

Real Bugs
Formulae Top-1 (%) Top-5 (%) MAP (%) MRR (%)

IFLM1 IFLMA Diff IFLM1 IFLMA Diff IFLM1 IFLMA Diff IFLM1 IFLMA Diff
Ample 10 8 +2 25 25 0 12 12 0 18 16 +2
Anderberg 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Dice 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Euclid 0 0 0 6 6 0 3 3 0 3 3 0
Goodman 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Hamann 5 4 +1 13 10 +3 6 6 0 10 7 +3
Hamming 0 0 0 6 6 0 3 3 0 3 3 0
Jaccard 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Kulczynski1 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Kulczynski2 0 0 0 1 2 -1 1 2 -1 1 2 -1
M1 5 4 +1 13 10 +3 6 6 0 10 7 +3
M2 10 10 0 28 28 0 13 15 -2 20 20 0
Ochiai 0 0 0 1 2 -1 1 2 -1 1 2 -1
Ochiai2 0 0 0 1 2 -1 1 2 -1 1 2 -1
Overlap 0 0 0 0 0 0 1 0 +1 0 0 0
RogersTanimoto 5 4 +1 13 10 +3 6 6 0 10 7 +3
RussellRao 10 10 0 28 26 +2 13 14 -1 20 19 +1
SimpleMatching 5 4 +1 13 10 +3 6 6 0 10 7 +3
Sokal 5 4 +1 13 10 +3 6 6 0 10 7 +3
SφrensenDice 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Tarantula 0 0 0 1 2 -1 1 2 -1 1 2 -1
Wong1 0 0 0 6 6 0 3 3 0 3 3 0
Wong2 5 6 -1 13 11 +2 6 7 -1 10 9 +1
Wong3 5 6 -1 13 13 0 6 8 -2 10 10 0
Zoltar 0 0 0 1 2 -1 1 2 -1 1 2 -1
Average (%) 5 5 0 15 14 1 7 8 -1 10 10 0

performances increased 3% to 19% in Top-1, 14% to 44% in Top-5, 12% to 31% in MAP and

MRR. There was discrepancy between the results of real and artificial bugs, suggesting that

artificial bugs might not be a reliable benchmark for evaluating SBFL.

6.4.3 RQ2: IFLM’s Sensitivity to SBFL Formulae

We ran IFLM using 25 popular SBFL formulae shown in Tab. 3.1 to ensure the generaliz-

ability of our observation comparing IFLM1 and IFLMA and explore IFLM’s sensitivity to

different SBFL formulae.

76 Chapter 6. Triggering Modes in Spectrum-Based Multi-Location Fault Localization

Table 6.8: The effectiveness of IFLM1 and IFLMA using all 25 different formulae on De-
fects4J’s artificial bugs.

Artificial Bugs
Formulae Top-1 (%) Top-5 (%) MAP (%) MRR (%)

IFLM1 IFLMA Diff IFLM1 IFLMA Diff IFLM1 IFLMA Diff IFLM1 IFLMA Diff
Ample 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Anderberg 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Dice 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Euclid 0 0 0 0 0 0 2 2 0 2 2 0
Goodman 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Hamann 3 14 -11 5 27 -22 7 20 -13 7 20 -13
Hamming 0 0 0 0 0 0 2 2 0 2 2 0
Jaccard 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Kulczynski1 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Kulczynski2 0 0 0 0 0 0 1 1 0 1 1 0
M1 3 14 -11 5 27 -22 7 20 -13 7 20 -13
M2 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Ochiai 0 0 0 0 0 0 1 1 0 1 1 0
Ochiai2 0 0 0 0 0 0 1 1 0 1 1 0
Overlap 0 0 0 0 0 0 0 0 0 0 0 0
RogersTanimoto 3 14 -11 5 27 -22 7 20 -13 7 20 -13
RussellRao 3 27 -24 8 62 -54 9 40 -31 9 40 -31
SimpleMatching 3 14 -11 5 27 -22 7 20 -13 7 20 -13
Sokal 3 14 -11 5 27 -22 7 20 -13 7 20 -13
SφrensenDice 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Tarantula 0 0 0 0 0 0 1 1 0 1 1 0
Wong1 0 0 0 0 0 0 2 2 0 2 2 0
Wong2 3 27 -24 5 51 -46 7 37 -30 7 37 -30
Wong3 3 27 -24 5 51 -46 7 37 -30 7 37 30
Zoltar 0 0 0 0 0 0 1 1 0 1 1 0
Average (%) 2 15 -13 4 32 -28 6 22 -16 6 22 -16

6.4. Evaluation 77

Table 6.9: The effectiveness of IFLM1 and IFLMA using all 25 different formulae on Cvent
bugs.

Formulae Top-1 (%) Top-5 (%) MAP (%) MRR (%)
IFLM1 IFLMA Diff IFLM1 IFLMA Diff IFLM1 IFLMA Diff IFLM1 IFLMA Diff

Ample 22 16 +6 59 54 +5 27 26 +1 40 36 +4
Anderberg 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Dice 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Euclid 12 0 +12 28 13 +15 13 7 +6 13 7 +6
Goodman 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Hamann 11 8 +3 31 22 +9 13 13 0 22 16 +6
Hamming 0 0 0 14 13 +1 7 7 0 7 7 0
Jaccard 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Kulczynski1 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Kulczynski2 0 0 0 2 4 -2 2 4 -2 2 4 -2
M1 11 8 +3 31 22 +9 13 13 0 22 16 +6
M2 22 20 +2 66 61 +5 29 33 -4 45 45 0
Ochiai 11 0 +11 30 4 +26 12 4 +8 13 4 +9
Ochiai2 0 0 0 2 4 -2 2 4 -2 2 4 -2
Overlap 0 0 0 0 0 0 2 0 +2 0 0 0
RogersTanimoto 11 8 +3 31 22 +9 13 13 0 22 16 +6
RussellRao 22 20 +2 66 56 +10 29 30 -1 45 42 +3
SimpleMatching 11 8 +3 31 22 +9 13 13 0 22 16 +6
Sokal 11 8 +3 31 22 +9 13 13 0 22 16 +6
SφrensenDice 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Tarantula 11 7 +4 30 27 +3 13 13 0 21 22 -1
Wong1 0 0 0 14 13 +1 7 7 0 7 7 0
Wong2 11 12 -1 31 24 +7 13 15 -2 22 20 +2
Wong3 11 12 -1 31 28 +3 13 17 -4 22 22 0
Zoltar 0 0 0 2 4 -2 2 4 -2 2 4 -2
Average (%) 13 11 +2 37 32 +5 17 18 -1 25 24 +1

78 Chapter 6. Triggering Modes in Spectrum-Based Multi-Location Fault Localization

The results of IFLM1 and IFLMA are given in Tab. 6.7, and Tab. 6.8 for the Defects4J’s

real, artificial bugs, respectively; and Tab. 6.9 for Cvent bugs. The Diff column shows the

differences of measured values between IFLM1 and IFLMA (larger or equal values are in

bold). A positive or zero diff value (in bold) indicates that IFLM1 performed as well as or

better than IFLMA.

For the real bugs in Defects4J, out of the total 25 formulae, IFLM1 outperformed or achieved

comparable results to IFLMA in Top-1, Top-5, MAP, and MRR in 17, 14, 10, and 14 for-

mulae, respectively (Tab. 6.7). We observe a similar trend in the Cvent dataset, i.e., 17

in Top-1, 22 in Top-5, 12 in MAP, and 15 in MRR (Tab. 6.9). On average, there was

minimal distinction between IFLM1 and IFLMA across all four performance metrics. Thus,

for real bugs, the observation that IFLM1 performed at least as well as IFLMA (in all four

effectiveness metrics) was confirmed in more than 50% of the 25 investigated SBFL formulae.

Finding 6.4: For real bugs, in general, IFLM1 performed equally or better than

IFLMA on more than half of the 25 investigated SBFL formulae, across all of the four

effectiveness metrics.

However, the observation for the Defects4J artificial bugs contradicted that of the real bug

dataset. IFLMA outperformed IFLM1 for 16/25 formulae. The remaining 9 formulae showed

similar performance levels for both IFLM1 and IFLMA. This substantial difference between

the real and artificial bug datasets suggests that artificial bugs may not accurately predict

the performance of SBFL techniques in localizing real bugs.

For sensitivity of IFLM to SBFL formulae, Tab. 6.7 & 6.8 showed that the choice of for-

mulae played a crucial role in accurately localizing both real and artificial bugs. Formulae

such as Ample, Dice, and Jaccard contributed to achieving 28% and 30% Top-5, as well

6.5. Threats to Validity 79

as 20% and 22% MRR for IFLM1 and IFLMA respectively. Conversely, formulae such as

Overlap, Kulczynski2, and Zoltar performed poorly and exhibited inaccuracy. Furthermore,

there was no single formula that consistently outperformed others. Instead, multiple top-

performing formulae demonstrated similar levels of performance for both IFLM1 and IFLMA.

Finding 6.5: SBFL formulae can have significant influence to the performance of

IFLM. There were often multiple formulae that worked equally-well for IFLM.

6.5 Threats to Validity

External Validity Our findings depend on the quality and characteristics of the bug

datasets used in our experiments. However, our benchmark, Defects4J, a well-known dataset

with real Java bugs, and the four current Cvent projects, can help mitigate this threat.

Construct Validity We focused on multi-location bugs, whose ground truths were con-

structed by comparing the buggy and fixed versions of the programs. Locations (except

comment) that were modified (i.e., add, delete, change) were considered locations of the

bug. In reality, developers often mixed between bug fixing and refactoring in a commit, and

it is not trivial to distinct the two, especially in Cvent dataset. However, the first-author

who constructed the dataset is familiar with the selected programs and thus help address

this concern.

Internal Validity Similar to prior fault localization research [67, 106, 122], given a bug

fix, we treated the location where the fixing change was applied as ground truth. However,

in reality, the place where a bug is fixed is not always the place where a bug is found.

80 Chapter 6. Triggering Modes in Spectrum-Based Multi-Location Fault Localization

Another concern was the reliability of the coverage data. This data collection process was

time-consuming and hard to validate.

For the open-source Defects4J dataset, we reused the data published in [6]. For the close-

source Cvent dataset, we modified Clover [5] and ran tests to gather the profiling data. For

accuracy, we repeated the collection process three times. We publish the close-source dataset

in standardized spectrum format and the tool we built on top of Clover in [17].

6.6 Summary

This paper explored opportunities of reducing overhead cost of running tests in SBFL while

maintaining its accuracy. We experiment with the concept of triggering modes proposed

in [35] but focus on multi-location bugs, which are common in real-world settings, e.g., at

our company Cvent. While there were minor disagreements with the single-location study

in [35], our work generally confirms that it is not always necessary to execute all test cases

before using SBFL formulae to locate bugs. The results in this study are useful for Cvent and

hopefully other industrial companies who seek to adopt IFLM into their CI/CD development

pipeline to automate and speedup software debugging. In the future, we plan to conduct a

user study to empirically measure productivity (e.g., developer’s debugging time reduction)

would be actually gained with the integration between IFLM and Cvent’s CI/CD pipeline.

Chapter 7

Related work

In this section, we will discuss related work in spectrum-based fault localization, IR-based

fault localization, and empirical studies on fault localization techniques, and testing opti-

mization.

7.1 Spectrum-Based Fault Localization (SBFL)

SBFL techniques identify bug locations using the execution information of buggy code [19, 33,

55, 77, 106, 109]. For instance, given a buggy program and test cases, Tarantula instruments

code to collect the execution coverage of passed and failed tests, counts the number of

passed/failed tests covering each program element (i.e., class, method, or statement), and

computes suspiciousness scores [57]. Xuan et al. used machine learning to train a model by

combining 25 suspiciousness calculation formulae [106]. Although they did not observe any

single formula to work universally better than the others, the trained model outperforms the

state-of-the-art formulae, such as Tarantula, Ochiai, and Ample.

The SBFL approaches mentioned above only provide a static ranked list after the execution

of all tests. Some researchers further improved SBFL approaches by taking in developers’

feedback on the initial ranked list to dynamically tune ranking accordingly [45, 49, 67]. In

particular, Li et al. leveraged SBFL to rank suspicious methods, and then generated high-

level queries to ask developers about the correctness of specific executions for the most

81

82 Chapter 7. Related work

suspicious methods [67]. If developers determine that a method’s execution is correct, the

approach labels the execution tree rooted at this method invocation node as “correct” instead

of “buggy”, and performs suspiciousness recalculation accordingly.

Our research does not define any new SBFL formula. Instead, we reused 25 existing SBFL for-

mulas. We built a framework—IFLS—to systematically investigate diverse triggering modes

of SBFL, and to understand how each triggering mode balances the effectiveness and effi-

ciency of fault localization. Our exploration compared IFLS’s effectiveness given (1) differ-

ent SBFL formulas and (2) distinct triggering mechanisms for SBFL formulas. By revealing

bug locations early, IFLS1 turned out to be the most effective and efficient way to help

developers fix bugs.

Tarantula [57] was the first SBFL technique that identifies buggy locations by leveraging

the execution information or code coverage profiling data gathered by running tests against

a program under investigation. Since then there have been many other variations of the

SBFL approach, such as, Ochia, Jaccard, Dice [19, 33, 55, 57, 77, 106, 109]. The main

difference among these techniques is how a program spectra are formulated into a metric

called suspiciousness score (i.e., SBFL formula) to predict how buggy each location of the

program is. Lucia et al. [68] and Yoo et al. [111] compared different formulae defined for

SBFL approaches, and concluded that there was no optimal formula that always worked

better than others.

This paper does not define any new SBFL formula but instead reuses 25 existing SBFL

ones. We built the —IFLS framework to investigate diverse triggering modes of SBFL,

and to understand how each triggering mode balances the effectiveness and efficiency of

bug localization. Our exploration compared IFLS’s effectiveness given (i) different SBFL

formulae and (ii) distinct triggering mechanisms for SBFL formulae. Our ultimate goal was

to find optimal triggering modes that worked best with SBFL in industrial settings.

7.2. Information Retrieval-Based Fault Localization (IRFL) 83

7.2 Information Retrieval-Based Fault Localization (IRFL)

IRFL approaches locate bugs based on bug reports [65, 82, 108, 121]. For example, BLUiR

treats a bug report as a document query and considers source code as documents [82]. Given

a bug report, BLUiR searches for program entities that are relevant to the report, and ranks

those entities as candidate bug locations. To better retrieve and rank documents, BLUiR

assigns more weights to bug report titles, and to any class or method name referred to by a

report. Learning-to-rank integrates domain knowledge of bug history and API specification

to train a model for bug location prediction [108].

One limitation of IRFL tools is the implicit assumption that a bug report has certain

document relevance with the buggy code. However, such assumption does not always

hold. To overcome the limitation, some researchers proposed hybrid approaches that com-

bine IRFL with other approaches [34, 122]. For instance, Dao et al. combined IRFL with SBFL

by assigning different weights to the separately generated ranked lists [34]. Zou et al. com-

bined IRFL with another six kinds of techniques: SBFL, mutation-based fault localization,

dynamic program slicing [24], stack trace analysis [102], predicate switching [118], and

history-based fault localization [60]. The combination is achieved via machine learning so

that the results by distinct techniques are given appropriate weights.

Compared with the above-mentioned IR-based approaches, IFLS does not rely on the exis-

tence of any bug report, neither does it require for the execution of all test cases.

7.3 Empirical Studies on Fault Localization Techniques

Researchers empirically studied fault localization techniques in various ways [62, 68, 99, 103,

111]. Specifically, Lucia et al. [68] and Yoo et al. [111] compared different formulae defined

84 Chapter 7. Related work

for SBFL approaches, and concluded that there was no optimal formula that always worked

better than others. Kochhar et al. [62] and Dao et al. [34] independently manually inspected

bug reports whose bugs were either fully, partially, or not localized by IRFL approaches.

They found that the quality of bug reports can substantially impact IRFL results. If bug

reports explicitly contain buggy file names, IRFL techniques are more likely to identify the

bugs. Additionally, Wang et al. conducted user studies with developers to examine how

developers perceived the usefulness of IRFL tools [99]. The study revealed that developers

did not find such tools to be quite useful and were unsatisfied by IRFL techniques.

In our evaluation, we constructed two data sets of bugs and leveraged the known bug locations

as ground truth. By comparing the ranked list by any IFLS variant against the ground truth,

we determined the approaches’ effectiveness. In the future, we will also conduct a user study

with developers to learn about their opinions on IFLS, and design better fault localization

approaches accordingly.

7.4 Test Optimization and Generation

Some approaches were proposed to reduce, prioritize, or generate test cases in order to facil-

itate fault localization [26, 75, 110, 112]. For instance, Masri et al. introduced coincidental

correctness to describe the scenarios where buggy statements are executed but the execution

does not lead to a test failure [75]. The researchers proposed a technique to identify all

coincidentally correct tests in a given test suite, and to remove these tests in order to im-

prove the effectiveness of SBFL approaches. Yu et al. investigated how test-suite reduction

strategies influence the effectiveness of fault localization techniques [112]. When reducing

the number of test cases that cover the same statement, the researchers observed exist-

ing SBFL techniques to usually work worse. Thus, they proposed a new test-suite reduction

7.4. Test Optimization and Generation 85

strategy that reduces the number of test cases covering the same statement set but causes

negligible impacts on fault localization.

Yoo et al. proposed FLINT, an information theoretical approach to prioritize statements

and test cases [110]. In particular, statements are ordered by suspiciousness, while test cases

are ordered by the degree to which they reduce the entropy inherent in fault localization.

Artzi et al. developed a test generation approach to maximize the effectiveness of SBFL [26].

Specifically, they defined a similarity criterion, which is used to measure how similar the

execution characteristics associated with two tests are, and is used to direct concolic execu-

tion towards generating tests whose execution characteristics are similar to those of a given

failed test.

Our research shares the same motivation with all prior work, which is to explore ways to

improve fault localization. However, we did not propose any new approach to selectively re-

duce, prioritize, or generate test cases. Instead, we conducted an empirical study to compare

different SBFL triggering modes, and revealed that triggering SBFL right after the initial

test failure is the most effective and efficient mode. Our research complements prior work.

It can be used together with existing approaches of test reduction, prioritization, or gener-

ation. In the future, we will also explore how distinct triggering modes work with existing

approaches to influence the effectiveness of fault localization.

These topics not only improve fault localization accuracy but also reduce its overhead costs.

Several approaches have been proposed to facilitate fault localization through test case re-

duction, prioritization, and generation [26, 31, 42, 75, 110, 112, 120]. For instance, Masri

et al. introduced “coincidental correctness” to describe scenarios where buggy statements

are executed but do not result in test failures. They proposed a technique to identify and

remove these coincidentally correct tests from a given test suite, aiming to improve SBFL

approaches [75]. Yu et al. investigated the influence of test suite reduction strategies on the

86 Chapter 7. Related work

effectiveness of fault localization techniques. They observed that existing SBFL techniques

tend to perform worse when the number of test cases covering the same statement is re-

duced. They then proposed a new test suite reduction strategy that minimally impacts fault

localization while reducing test case redundancy [112].

Yoo et al. presented FLINT, an information-theoretic approach that prioritizes statements

and test cases. Statements are ordered based on their suspiciousness, while test cases are

ordered by their ability to reduce the inherent entropy in fault localization [110]. Artzi et

al. developed a test generation approach that aims to maximize the effectiveness of SBFL.

They defined a “similarity criterion” to measure the similarity in execution characteristics

between two tests. This criterion guides concolic execution to generate tests with similar

execution characteristics to a given failed test [26].

Our research shares a similar motivation, particularly in exploring methods to reduce the

running cost of SBFL. Our proposed IFLS triggering modes serve as a practical technique

for reducing test execution, and in the future, we plan to investigate test prioritization to

further improve triggering modes in practice.

7.5 Enhanced SBFL Techniques

Unlike standard SBFL methods that use only program’s coverage information and one single

ranking metric, recent enhanced SBFL approaches leverage other program analysis inputs,

such as, dependency and execution graphs, contextual information, types of program entities

(e.g., branch, predicate) to localize bugs more accurately [27, 30, 51, 84, 97, 106]. He

et al. augmented coverage information with test call graph to construct fault inducing or

influencing network, which helps narrow down bug searching space [51]. Beszédes et al. used

snapshots of call stack to assist SBFL to localize buggy functions [30]. Xuan et al. used

7.6. Effectiveness and Applicability of SBFL 87

machine learning to train a model by combining 25 suspiciousness score formulae [106]. Our

study is different in that it focuses on how to reduce the overhead cost of applying the

existing SBFL techniques in the real-world with as minimal accuracy loss as possible.

7.6 Effectiveness and Applicability of SBFL

Many studies have highlighted the insufficiency of SBFL and its limited real-world applica-

tion [44, 52, 62, 68, 84, 85, 96, 99, 103, 111]. Wang et al. conducted user studies involving

developers to assess the usefulness of Information-Based Fault Localization (IBFL) tools,

revealing developers’ dissatisfaction with these techniques [99]. Sarhan et al., in a recent

survey [84], provided reasons for the limited adoption of SBFL, including the unavailability

of supported tools, high cost of collecting execution information, and inaccurate results.

These concerns regarding the overhead cost of collecting spectrum data were shared by our

team at Cvent and served as motivation for our study. However, in contrast to these work

that rely on older open-source datasets for evaluation, we further validated our findings using

an industry-scaled dataset benchmark that is up-to-date.

7.7 Fault Localization in Cloud-based Environments

Despite there have been many approaches proposed to improve FL in cloud-based applica-

tions, the problem remains hard and requires more innovative ideas and research [29, 36, 39,

79, 86, 87, 94, 113]. In this section, we discuss works that are relevant and related to our

research. Most researches introduced for FL in cloud-based applications, uses three different

types of techniques in order to identify abnormalities. More conventional approaches address

the issue by applying statistical models to reason about abnormal cloud operations, using

88 Chapter 7. Related work

data (e.g., logs, metrics) collected over a period of time [88, 93, 123]. The second type of

techniques are based on machine learning algorithms and graph-based theories to localize

faults, have been emerging recently [36, 43, 74]. LOUD [74] used machine learning to dictate

correct executions, just incorrect runs can be then reasoned and referenced from the trained

model, and the tool can be applied to lightweight applications. Errin et al. used support vec-

tor machine (SVM) to predict system failures, such as hard disk errors [43]. UBL [36] applied

unsupervised machine learning algorithms to detect abnormal behaviors in virtualized cloud

systems. In terms of problem domains, most of the proposed approaches focus on individual

areas, such as, infrastructure, configuration, network, security, resources [37, 93, 94, 115, 117].

Sai Zang et al. proposed an statistical analysis model, ConfDiagnoser, to detect and root

causes undesired and problematic configurations in a software system [117].

Chapter 8

Future Work

Enterprise software companies typically have large number of products lines serving various

customers. Each product may well contain millions of lines of code (LoC). The software

is deployed and operates in a large and complex environment. To meet business demand,

companies have to utilize a very complex infrastructure, including a grid of hundreds (if not

thousands) of servers or virtual machines (VM), a huge array of services (microservices),

and complicated ecosystems and tools for automation of build, testing, deployment, and

operation. This complex infrastructure needs to be systematically managed and monitored.

Many specialized tools and software, such as, Splunk [9], New Relic [8], Datadog [7], are

deployed to the IT infrastructure to accomplish this task. In addition to these expensive

tools, a large number of engineers are required to run and monitor the tools. In spite of

these expensive investments and expenses, results are limited. Failing services, unstable VM

capacities, unsuccessful deployments, under-desired load performances, etc., remain difficult

to localize and identify their root causes [29, 37, 39, 39, 40, 86, 87, 113, 117, 123]. In

addition, those faults (e.g., failing services, low VM memory) due to environment will further

complicate localizing faults in software applications.

In this chapter, we will discuss our future research on localizing faults in a cloud-based system

or application using abstract state machine approach. A fault in this context is defined

as an environment related fault, such as, insufficient memory, high CPU usage, network

disconnection, misconfiguration. FL techniques, such as, spectrum-based or information

89

90 Chapter 8. Future Work

retrieval, or their combinations, assume tests are executed under a system’s normal or ideal

condition, i.e., environment. Because under such an abnormal environment, a failing test

case does not necessarily indicate there exist a bug in the system. Thus, these techniques are

often not applicable if the environment is abnormal. In addition, after a system is deployed

and starts operating in a live environment, profiling information in terms of test execution

is no longer available. We need a different technique with different profiling data to detect

and localize environment faults. The need for being able to predict and localize accurately

and quickly such a fault becomes a very challenging and expensive problem for cloud-based

software development and operation companies. They often rely on manual efforts by hiring

a large number of engineers, for example, site reliability, network, quality engineers, who

constantly and manually monitor and analyze the data to tell if there is any abnormal

behavior in the operating environment.

There have been many approaches and techniques proposed by research community to alle-

viate the problem. However, none of them adequately and effectively address the issue, to

best of our knowledge. There are two main essential and inherent challenges need to over-

come. First, data capturing the state of a cloud-based environment is large, composing of a

wide variety of monitoring profiling information, such as a virtual machine (VM)’s health,

database, network, exceptions. Second, the number of states an environment to examine

can be exponentially large. In the following sections, we describe our approach to solve the

problem, what has been done, and what remains to be done.

8.1 Fault Localization with Abstract State Machine

We explore the idea of applying an abstract state machine (AST) to model the state space of

a cloud-based system to narrow down the exponential number of possible states, if otherwise,

8.1. Fault Localization with Abstract State Machine 91

to find an abnormal state and its transition from a normal counterpart (Fig. 8.1). When a

state is being transitioned from normal to abnormal, we know that a fault is detected. More

importantly, by analyzing the transition, which is composed of multiple individual events,

we are able to identify what is possibly the root cause of the fault with accuracy. Thus, by

utilizing an abstract state machine, we can be able to not only detect and localize a possible

fault, but also identify its root cause effectively.

We define informally below the main conceptual elements of our proposed solution:

• Abstract State Machine: a state machine that captures and models operation of a

cloud-based system. A state is an abstraction of whether a system is working as it is

specified and expected, or it is behaving unexpectedly. In other words, a state captures

the abstract idea of if a system is operating normally, or abnormally. At any point of

time, a state can be either in normal or abnormal, and can be transitioned to either of

them, triggered by time, or some event. A transition that bring a state to normal state

is called a normal transition, and one that bring a state to an abnormal one is call

abnormal transition. The system can be terminated and therefore transitioned to a

Normal State Normal State Normal State

Normal Transition

Abnormal State

Abnormal Transition

Figure 8.1: Abstract State Machine to Localizing Faults in A Cloud-based System

stop state, from either abnormal or normal state. Often, we want to see the system at

a live normal state, however, when it is in an abnormal state, and cannot be recovered,

it will eventually move to a stop state (Fig. 8.1).

92 Chapter 8. Future Work

• Compound State: is the computational modeling or representation of an abstract

state. In other words, an abstract state is an abstraction of its corresponding compound

state. A compound state is a n-component vector, compound state = vc(v1, v2, . . . , vn),

or vc in short, where vi ∈ Vi = {vki , k = 1,mi}, set of all possible mi values of a

connotation component attribute Ai. We define, A = {A1, A2, . . . , An}, thes set of n

...v1 = <A1, V1>

<Ak= Memory in Use, Vk= {0, 1, ..., 100}>

v2 = <A2, V2> vk = <Ak, Vk> vn = <An, Vn>Compound State

Instance of <A, V>

Figure 8.2: Compound State

attribute components constituting a system’s whole internal state semantics. Such an

Ai as, memory, disk, network sent/received, etc. We denote, V = {V1, V2, . . . , Vn}, the

set of domain values of A, or Vi is the set of all all possible values of attribute Ai. For

example, a possible memory in use in percentage can be in the range, [0, 100]. Thus,

a compound state vector vc is an instance of the meta vector < A, V > (Fig. 8.2).

• State Partitioning: The domain space of Vi, corresponding to Ai attribute, in theory

and reality can be infinite, for example, bytes_sent/bytes_received metric can be any

positive value. Therefore, state partitioning is used to map a compound state into

an abstract state. For example, < Vk, Ak >, a domain space of kth component of

<Vk, Ak> Partitioning Rk1 Rk2 Rk3 Rk4

Figure 8.3: State Partitioning

< V,A >, is partitioned into 4 regions, {R1, R2, R3, R4}, where yellow and red colors

mean a possibility of problematic values, and green and blue colors mean normal

8.1. Fault Localization with Abstract State Machine 93

operation possible values (Fig. 8.3). We formally define Pk :< Vk, Ak >
partitioning−−−−−−−→ Rk,

a partition operator on kth component of the meta vector < V,A >k, to partition its

domain value into s regions, or a set Rk of s possible values, where s = |Rk| ≤ |Vk|.

Then, P = {Pk, k = 1, n} :< V,A >
partitioning−−−−−−−→ (R,A), is a partition operator on the

complete meta vector < V,A > is transformed into the abstract meta vector (R,A).

• Abstract State: an abstract state = va(a1, a2, . . . , an) is an instance of the meta

vector (R,A), where ai ∈ Ri, a set of all possible region abstract values of the attribute

Ai. Often, Ri consists of two kinds of regions, one whose values mean something

"normal"– normal or green regions, denoted as Rgreen
i . The other type is composed of

regions, whose values mean "abnormal"– abnormal or red regions, denoted as Rred
i .

• Normal State: is an abstract state, va(a1, a2, . . . , an) , where aj ∈ Rgreen
j , for all j =

1, n.

• Abnormal State: is an abstract state, va(a1, a2, . . . , an) , where ∃j ∈ [1, n], such that, aj ∈

Rred
j .

• Transition: is mapping ts : (R,A)
events−−−→ (R,A), va 7→ ts(va). A transition is normal–

tsgreen, if its destination abstract state is normal, otherwise it is called abnormal, and

denoted as tsred. A transition is defined as single transition if the difference between

...a1 a2 anak

...a1 a2 ana'k

single transition

Source
Abstract

State

Destination
Abstract

State

Time: t

Time: t+1

Figure 8.4: Single Transition

94 Chapter 8. Future Work

destination state and source state happens only one attribute Ak (Fig. 8.4), otherwise,

is called compound transition (Fig. 8.5)

...a1 anaj

...a1 ana'j

Compound Transition
Single Event

Source
Abstract

State

Destination
Abstract

State

Time: t

Time: t+1

ai

a'i

Single Event

Figure 8.5: Compound Transition

• Overall Workflow: This section describes the overall workflow of our proposed so-

lution, called Cloud-based Fault Localization with Abstract State Machine (CFA).

CFA involves in two steps, construction and deployment (Fig. 8.6).

Cloud-based
System

Profiling Data
CollectorFault Injector

Faults

Test Executor

Tests

Profiling
Data

Fault-inducing
Profiling Data

Fault-free
Profiling Data

State Modeling State Partitioning

Abnormal
States

Abnormal
States

Cloud-based
System

Abstract State
Machine

Preprocessing
Component

Preprocessing
Component

Faults and
Root Causes

Tests

Faults

Construction Phase

Deployment and Use Phase

Figure 8.6: CFA Overall Workflow

Design and Implementation Plan This is the process of constructing and training

8.1. Fault Localization with Abstract State Machine 95

an ASM which is then used in the later phase.

1. Fault Injection: Faults are injected into the system via the Fault Injector com-

ponent to make sure the system is faulty. Such faults as, excessive CPU usage,

network connection drop, out-of-memory, etc.

2. Test Execution: For each fault injected, we execute some verification tests until

there are some failing tests to make sure that a fault is really introduced into the

system.

3. Profiling Data Collecting: When the system is in faulty state, its behavior is

collected using a data collector, and labeled with faulty-inducing. When no fault

is injected and all verification tests are passing, data is labeled with fault-free.

All profiling data at this step is raw data in aJSON format.

4. State Modeling: Raw profiling data in JSON format is then modeled into a

compound state vector (Sec. 8.1, Fig. 8.2).

5. State Partitioning: Compound states are partitioned using a k-clustering pro-

cedure to map them into a much smaller space of abstract states (Sec. 8.1,

Fig. 8.3).

6. ASM: The final outcome of this process is the pre-computed or trained ASM

and ready to be deployed and used for detecting faults and analyzing their root

causes.

Deployment Plan Once an ASM is trained, it is deployed to monitor and analyze

in real-time a cloud-based system to localize faults and root causes.

k-State Tuning How states are abstracted by partitioning into k-state with a k-

clustering procedure is the key factor influencing accuracy of the approach. This step

is necessary to find an optimal ASM to best localize faults and root causes.

96 Chapter 8. Future Work

8.2 Research Questions

In this research, we aim to answer the following research questions:

• RQ1: How does CFA help localize faults in a cloud-based system? Is it able to both

localize faults and root causes?

• RQ2: How CFA is compared with the state-of-the-art and baseline tools, in terms of

performance and accuracy ?

8.3 Approach

We have implemented the following components of CFA:

• Implementation: main components of CFA:

(1) Fault Injector: We have collected and classified the most common faults hap-

pened in a real-world cloud-based environment. We then write automated scripts

to inject the faults into the cloud whenever the scripts are executed.

(2) Test Executor: Our cloud system is guarded with a set of tests, called Business

Verification Test (BVT), and Production Verification Test (PVT) which test the

most common behaviors of a cloud-based system, such as, if database is connected,

HTTP requests return 200 status code, etc. All of the tests are executed via the

TestNG framework [10].

(3) Data Collector: We have implemented a data collector that is capable of collect-

ing a cloud-based system profiling data in real-time. The metrics it can collect

include, virtual machine (VM) usage, such as, CPU, memory, and disk usage;

8.4. Evaluation Plan 97

network traffic, such as, bytes_sent, bytes_received; Database metrics, such as,

number of connections, query-processing-time; exceptions or stack-traces thrown

in the environment; and many others.

(4) State Modeling: We have implemented this component which is capable of

cleaning, standardizing, and formatting the profiling data into a format called

compound state vector, that we define above.

(5) State Partitioning: Finally, we have implemented this state partitioning com-

ponent that uses k-clustering algorithms to map compound states to abstract

states.

The code of CFA is open-sourced and can be found in Github 1.

• Experiment data sets: We have prepared a large clean experiment data sets of ten

of GBs of profiling data of a cloud-based system that dictate normal behavior of the

system. The data set can then be used to train and build an ASM for CFA.

8.4 Evaluation Plan

In order to answer the proposed research questions, we have to complete the following work:

• Running Experiments: design and run experiments to evaluate how CFA performs

on a real-world cloud-based system.

• Analyzing Results: collect and analyze the results from the experiments to provide

insights into the proposed research questions.
1The code repository will be open to access when we publish this work.

98 Chapter 8. Future Work

8.5 Summary

In this chapter, we describe the idea and concept of using abstract state machine to localize

faults in a cloud-based system. We discuss how to implement the proposed solution into a

tool called CFA. We summarize what have been done and remained to complete in order to

evaluate the solution and provide answers to our proposed research questions.

Chapter 9

Conclusions

Fault localization remains a challenging, time-consuming, and expensive task. Despite a huge

loss in the software companies due to software defects, adopting automated fault localization

in industry is still difficult and even impractical.

This dissertation research improved fault localization, in terms of increasing accuracy and

reducing runtime overhead cost. In addition, our research aimed at easing the applicability

of fault localization in the software industry. More specifically, this dissertation enhanced

the existing IRFL techniques with dynamic runtime execution information to improve the

accuracy of fault localization. Moreover, this dissertation introduced a novel concept of

triggering mode and Instant Fault Localization (IFL) techniques that significantly reduces

the runtime cost of SBFL, ultimately making its applicability in industry more practical.

We hope the results of this research can be beneficial to research community, especially to

industrial companies who seek to adopt IFL into their development processes to uncover

bugs as efficiently as possible.

Finally, the dissertation planned out the future work to further extend and improve fault

localization techniques to highly complex cloud-based applications using SBFL and the ab-

stract state machine concept.

99

Bibliography

[1] ASM. http://asm.ow2.org.

[2] Javaslicer. https://www.st.cs.uni-saarland.de/javaslicer/.

[3] Cambridge University Study States Software Bugs Cost Economy $312 Billion Per

Year. http://www.prweb.com/releases/2013/1/prweb10298185.htm, 2013.

[4] About Code Coverage. https://confluence.atlassian.com/clover/

about-code-coverage-71599496.html, 2017.

[5] Clover. https://www.atlassian.com/software/clover, 2019.

[6] Defects4j. http://fault-localization.cs.washington.edu, 2020.

[7] Data dog. https://www.datadoghq.com/, 2020.

[8] New relic. https://newrelic.com/, 2020.

[9] Splunk. https://www.splunk.com/, 2020.

[10] Testng. https://testng.org/doc/, 2020.

[11] Cobertura. https://cobertura.github.io/cobertura/, 2023.

[12] fault-localization. https://fault-localization.cs.washington.edu/, 2023.

[13] Jacoco. https://www.jacoco.org/jacoco/trunk/doc/index.html, 2023.

[14] Junit. https://junit.org/junit5/, 2023.

[15] Maven. https://maven.apache.org/, 2023.

100

http://asm.ow2.org
https://www.st.cs.uni-saarland.de/javaslicer/
http://www.prweb.com/releases/2013/1/prweb10298185.htm
https://confluence.atlassian.com/clover/about-code-coverage-71599496.html
https://confluence.atlassian.com/clover/about-code-coverage-71599496.html
https://www.atlassian.com/software/clover
http://fault-localization.cs.washington.edu
https://www.datadoghq.com/
https://newrelic.com/
https://www.splunk.com/
https://testng.org/doc/
https://cobertura.github.io/cobertura/
https://fault-localization.cs.washington.edu/
https://www.jacoco.org/jacoco/trunk/doc/index.html
https://junit.org/junit5/
https://maven.apache.org/

BIBLIOGRAPHY 101

[16] Sonarqube. https://www.sonarsource.com/products/sonarqube/, 2023.

[17] Iflm. https://github.com/idf-icst/sbfl-study, 2023.

[18] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of spectrum-

based fault localization. In Testing: Academic and Industrial Conference Practice and

Research Techniques - MUTATION (TAICPART-MUTATION 2007), pages 89–98,

Sep. 2007. doi: 10.1109/TAIC.PART.2007.13.

[19] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. On the accuracy of spectrum-

based fault localization. In Testing: Academic and Industrial Conference Practice

and Research Techniques - MUTATION, 2007. TAICPART-MUTATION 2007, pages

89–98, Sept 2007. doi: 10.1109/TAIC.PART.2007.13.

[20] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation of simi-

larity coefficients for software fault localization. In Proceedings of the 12th Pacific

Rim International Symposium on Dependable Computing, PRDC ’06, pages 39–46,

Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2724-8. doi:

10.1109/PRDC.2006.18. URL http://dx.doi.org/10.1109/PRDC.2006.18.

[21] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. A practical

evaluation of spectrum-based fault localization. J. Syst. Softw., 82(11):1780–1792,

November 2009. ISSN 0164-1212. doi: 10.1016/j.jss.2009.06.035. URL http://dx.

doi.org/10.1016/j.jss.2009.06.035.

[22] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J.C. van Gemund. A prac-

tical evaluation of spectrum-based fault localization. Journal of Systems and Soft-

ware, 82(11):1780–1792, 2009. ISSN 0164-1212. doi: https://doi.org/10.1016/

j.jss.2009.06.035. URL https://www.sciencedirect.com/science/article/pii/

S0164121209001319. SI: TAIC PART 2007 and MUTATION 2007.

https://www.sonarsource.com/products/sonarqube/
https://github.com/idf-icst/sbfl-study
http://dx.doi.org/10.1109/PRDC.2006.18
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1016/j.jss.2009.06.035
https://www.sciencedirect.com/science/article/pii/S0164121209001319
https://www.sciencedirect.com/science/article/pii/S0164121209001319

102 BIBLIOGRAPHY

[23] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. Simultaneous debugging of

software faults. Journal of Systems and Software, 84(4):573–586, 2011. ISSN 0164-1212.

doi: https://doi.org/10.1016/j.jss.2010.11.915. URL https://www.sciencedirect.

com/science/article/pii/S0164121210003183. The Ninth International Confer-

ence on Quality Software.

[24] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localization using

execution slices and dataflow tests. In Proceedings of Sixth International Symposium

on Software Reliability Engineering. ISSRE’95, pages 143–151, Oct 1995. doi: 10.

1109/ISSRE.1995.497652.

[25] Mohammad Alshayeb and Wei Li. An empirical study of system design instability

metric and design evolution in an agile software process. J. Syst. Softw., 74(3):269–274,

February 2005. ISSN 0164-1212. doi: 10.1016/j.jss.2004.02.002. URL http://dx.doi.

org/10.1016/j.jss.2004.02.002.

[26] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test generation for

effective fault localization. In Proceedings of the 19th International Symposium on

Software Testing and Analysis, ISSTA ’10, pages 49–60, New York, NY, USA, 2010.

Association for Computing Machinery. ISBN 9781605588230. doi: 10.1145/1831708.

1831715. URL https://doi.org/10.1145/1831708.1831715.

[27] Rawad Abou Assi, Wes Masri, and Chadi Trad. Substate profiling for enhanced fault

detection and localization: An empirical study. In 2020 IEEE 13th International

Conference on Software Testing, Validation and Verification (ICST), pages 16–27,

2020. doi: 10.1109/ICST46399.2020.00013.

[28] G. K. Baah, A. Podgurski, and M. J. Harrold. The probabilistic program depen-

https://www.sciencedirect.com/science/article/pii/S0164121210003183
https://www.sciencedirect.com/science/article/pii/S0164121210003183
http://dx.doi.org/10.1016/j.jss.2004.02.002
http://dx.doi.org/10.1016/j.jss.2004.02.002
https://doi.org/10.1145/1831708.1831715

BIBLIOGRAPHY 103

dence graph and its application to fault diagnosis. IEEE Transactions on Software

Engineering, 36(4):528–545, July 2010. ISSN 0098-5589. doi: 10.1109/TSE.2009.87.

[29] Eric Bauer and Randee Adams. Reliability and Availability of Cloud Computing. Wiley-

IEEE Press, 1st edition, 2012. ISBN 1118177010.

[30] Árpád Beszédes, Ferenc Horváth, Massimiliano Di Penta, and Tibor Gyimóthy. Lever-

aging contextual information from function call chains to improve fault localization. In

2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), pages 468–479, 2020. doi: 10.1109/SANER48275.2020.9054820.

[31] Yiqun T. Chen, Rahul Gopinath, Anita Tadakamalla, Michael D. Ernst, Reid Holmes,

Gordon Fraser, Paul Ammann, and René Just. Revisiting the relationship between

fault detection, test adequacy criteria, and test set size. In 2020 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 237–249,

2020.

[32] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C. Tappert. A survey of binary sim-

ilarity and distance measures. Journal on Systemics, Cybernetics and Informatics, 8:

43–48, 2010. URL https://api.semanticscholar.org/CorpusID:15289045.

[33] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight bug localiza-

tion with ample. In Proceedings of the Sixth International Symposium on Automated

Analysis-driven Debugging, 2005.

[34] Tung Dao, Lingming Zhang, and Na Meng. How does execution information help with

information-retrieval based bug localization? In Proceedings of the 25th International

Conference on Program Comprehension, ICPC ’17, pages 241–250, Piscataway, NJ,

USA, 2017. IEEE Press. ISBN 978-1-5386-0535-6. doi: 10.1109/ICPC.2017.29. URL

https://doi.org/10.1109/ICPC.2017.29.

https://api.semanticscholar.org/CorpusID:15289045
https://doi.org/10.1109/ICPC.2017.29

104 BIBLIOGRAPHY

[35] Tung Dao, Max Wang, and Na Meng. Exploring the triggering modes of spectrum-

based fault localization: An industrial case. In 2021 14th IEEE Conference on

Software Testing, Verification and Validation (ICST), pages 406–416, 2021. doi:

10.1109/ICST49551.2021.00052.

[36] D. Dean, Hiep Nguyen, and Xiaohui Gu. Ubl: unsupervised behavior learning for

predicting performance anomalies in virtualized cloud systems. In ICAC ’12, 2012.

[37] D. J. Dean, H. Nguyen, P. Wang, X. Gu, A. Sailer, and A. Kochut. Perfcompass: On-

line performance anomaly fault localization and inference in infrastructure-as-a-service

clouds. IEEE Transactions on Parallel and Distributed Systems, 27(6):1742–1755, 2016.

doi: 10.1109/TPDS.2015.2444392.

[38] Vidroha Debroy and W. Eric Wong. On the consensus-based application of fault lo-

calization techniques. In 2011 IEEE 35th Annual Computer Software and Applications

Conference Workshops, pages 506–511, 2011. doi: 10.1109/COMPSACW.2011.92.

[39] W. Eberle and L. Holder. Applying graph-based anomaly detection approaches to the

discovery of insider threats. In 2009 IEEE International Conference on Intelligence

and Security Informatics, pages 206–208, 2009. doi: 10.1109/ISI.2009.5137304.

[40] Peter Feiler, Kevin Sullivan, Kurt Wallnau, Richard Gabriel, John Goodenough,

Richard Linger, Thomas Longstaff, Rick Kazman, Mark Klein, Linda Northrop, and

Douglas Schmidt. Ultra-Large-Scale Systems: The Software Challenge of the Future.

Software Engineering Institute, Carnegie Mellon University, 2006.

[41] Margaret Ann Francel and Spencer Rugaber. The value of slicing while debug-

ging. Sci. Comput. Program., 40(2-3):151–169, July 2001. ISSN 0167-6423. doi: 10.

1016/S0167-6423(01)00013-2. URL http://dx.doi.org/10.1016/S0167-6423(01)

00013-2.

http://dx.doi.org/10.1016/S0167-6423(01)00013-2
http://dx.doi.org/10.1016/S0167-6423(01)00013-2

BIBLIOGRAPHY 105

[42] Wenhao Fu, Huiqun Yu, Guisheng Fan, and Xiang Ji. Test case prioritization approach

to improving the effectiveness of fault localization. In 2016 International Conference

on Software Analysis, Testing and Evolution (SATE), pages 60–65, 2016. doi: 10.1109/

SATE.2016.17.

[43] Errin W. Fulp, Glenn A. Fink, and Jereme N. Haack. Predicting computer system

failures using support vector machines. In Proceedings of the First USENIX Conference

on Analysis of System Logs, WASL’08, page 5, USA, 2008. USENIX Association.

[44] Mojdeh Golagha, Alexander Pretschner, and Lionel C. Briand. Can we predict the

quality of spectrum-based fault localization? In 2020 IEEE 13th International Con-

ference on Software Testing, Validation and Verification (ICST), pages 4–15, 2020.

doi: 10.1109/ICST46399.2020.00012.

[45] Liang Gong, Hongyu Zhang, Lingxiao Jiang, and David Lo. Interactive fault localiza-

tion leveraging simple user feedback. In Proceedings of the 2012 IEEE International

Conference on Software Maintenance (ICSM), ICSM ’12, pages 67–76, Washington,

DC, USA, 2012. IEEE Computer Society. ISBN 978-1-4673-2313-0. doi: 10.1109/

ICSM.2012.6405255. URL http://dx.doi.org/10.1109/ICSM.2012.6405255.

[46] Leo A. Goodman and William H. Kruskal. Measures of Association for Cross Clas-

sifications, pages 2–34. Springer New York, New York, NY, 1979. ISBN 978-1-

4612-9995-0. doi: 10.1007/978-1-4612-9995-0_1. URL https://doi.org/10.1007/

978-1-4612-9995-0_1.

[47] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they to real faults?

In 2014 IEEE 25th International Symposium on Software Reliability Engineering, pages

189–200, Nov 2014. doi: 10.1109/ISSRE.2014.40.

http://dx.doi.org/10.1109/ICSM.2012.6405255
https://doi.org/10.1007/978-1-4612-9995-0_1
https://doi.org/10.1007/978-1-4612-9995-0_1

106 BIBLIOGRAPHY

[48] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A system-

atic literature review on fault prediction performance in software engineering. Software

Engineering, IEEE Transactions on, 38(6):1276–1304, 2012.

[49] D. Hao, L. Zhang, H. Mei, and J. Sun. Towards interactive fault localization using test

information. In 2006 13th Asia Pacific Software Engineering Conference (APSEC’06),

pages 277–284, Dec 2006. doi: 10.1109/APSEC.2006.59.

[50] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. An empirical investigation

of program spectra. SIGPLAN Not., 33(7):83–90, July 1998. ISSN 0362-1340. doi:

10.1145/277633.277647. URL http://doi.acm.org/10.1145/277633.277647.

[51] Hongdou He, Jiadong Ren, Guyu Zhao, and Haitao He. Enhancing spectrum-based

fault localization using fault influence propagation. IEEE Access, 8:18497–18513, 2020.

doi: 10.1109/ACCESS.2020.2965139.

[52] Simon Heiden, Lars Grunske, Timo Kehrer, Fabian Keller, André van Hoorn, Antonio

Filieri, and David Lo. An evaluation of pure spectrum‐based fault localization tech-

niques for large‐scale software systems. Software: Practice and Experience, 49:1197 –

1224, 2019.

[53] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22Nd

Annual International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval, SIGIR ’99, pages 50–57, New York, NY, USA, 1999. ACM. ISBN

1-58113-096-1. doi: 10.1145/312624.312649. URL http://doi.acm.org/10.1145/

312624.312649.

[54] David A. Hull. Stemming algorithms: A case study for detailed evaluation. J. Am.

Soc. Inf. Sci., 47(1):70–84, January 1996. ISSN 0002-8231. doi: 10.1002/(SICI)

http://doi.acm.org/10.1145/277633.277647
http://doi.acm.org/10.1145/312624.312649
http://doi.acm.org/10.1145/312624.312649

BIBLIOGRAPHY 107

1097-4571(199601)47:1<70::AID-ASI7>3.3.CO;2-Q. URL http://dx.doi.org/10.

1002/(SICI)1097-4571(199601)47:1<70::AID-ASI7>3.3.CO;2-Q.

[55] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula auto-

matic fault-localization technique. In Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering, ASE ’05, pages 273–282, New York,

NY, USA, 2005. ACM. ISBN 1-58113-993-4. doi: 10.1145/1101908.1101949. URL

http://doi.acm.org/10.1145/1101908.1101949.

[56] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information

to assist fault localization. In Proceedings of the 24th International Conference on

Software Engineering, 2002.

[57] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information

to assist fault localization. In Proceedings of the 24th International Conference on

Software Engineering, ICSE ’02, pages 467–477, New York, NY, USA, 2002. ACM.

ISBN 1-58113-472-X. doi: 10.1145/581339.581397. URL http://doi.acm.org/10.

1145/581339.581397.

[58] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of existing

faults to enable controlled testing studies for java programs. In Proceedings of the 2014

International Symposium on Software Testing and Analysis, ISSTA 2014, New York,

NY, USA, 2014. Association for Computing Machinery. ISBN 9781450326452. doi:

10.1145/2610384.2628055. URL https://doi.org/10.1145/2610384.2628055.

[59] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo. A critical

evaluation of spectrum-based fault localization techniques on a large-scale software

system. In 2017 IEEE International Conference on Software Quality, Reliability and

Security (QRS), pages 114–125, July 2017. doi: 10.1109/QRS.2017.22.

http://dx.doi.org/10.1002/(SICI)1097-4571(199601)47:1<70::AID-ASI7>3.3.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097-4571(199601)47:1<70::AID-ASI7>3.3.CO;2-Q
http://doi.acm.org/10.1145/1101908.1101949
http://doi.acm.org/10.1145/581339.581397
http://doi.acm.org/10.1145/581339.581397
https://doi.org/10.1145/2610384.2628055

108 BIBLIOGRAPHY

[60] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting faults from

cached history. In 29th International Conference on Software Engineering (ICSE’07),

pages 489–498, May 2007. doi: 10.1109/ICSE.2007.66.

[61] Feyzullah Koca, Hasan Sözer, and Rui Abreu. Spectrum-based fault localization for

diagnosing concurrency faults. In Hüsnü Yenigün, Cemal Yilmaz, and Andreas Ul-

rich, editors, Testing Software and Systems, pages 239–254, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg. ISBN 978-3-642-41707-8.

[62] Pavneet Singh Kochhar, Yuan Tian, and David Lo. Potential biases in bug localization:

Do they matter? In Proceedings of the 29th ACM/IEEE International Conference

on Automated Software Engineering, ASE ’14, pages 803–814, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-3013-8. doi: 10.1145/2642937.2642997. URL http:

//doi.acm.org/10.1145/2642937.2642997.

[63] Herb Krasner. The cost of poor software quality in the us: A 2020 report. Proc.

Consortium Inf. Softw. QualityTM (CISQTM), pages 1–46, 2021.

[64] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Combining deep learning

with information retrieval to localize buggy files for bug reports (n). In Automated Soft-

ware Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pages

476–481, Nov 2015. doi: 10.1109/ASE.2015.73.

[65] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. Combining

deep learning with information retrieval to localize buggy files for bug reports (n). In

Myra B. Cohen, Lars Grunske, and Michael Whalen, editors, ASE, pages 476–481.

IEEE, 2015. ISBN 978-1-5090-0025-8.

[66] Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. Information retrieval and spec-

trum based bug localization: Better together. In Proceedings of the 2015 10th Joint

http://doi.acm.org/10.1145/2642937.2642997
http://doi.acm.org/10.1145/2642937.2642997

BIBLIOGRAPHY 109

Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 579–590,

New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3675-8. doi: 10.1145/2786805.

2786880. URL http://doi.acm.org/10.1145/2786805.2786880.

[67] Xiangyu Li, Marcelo d’Amorim, and Alessandro Orso. Iterative User-Driven Fault

Localization, pages 82–98. Springer International Publishing, Cham, 2016. doi: 10.

1007/978-3-319-49052-6_6.

[68] Lucia, David Lo, Lingxiao Jiang, and Aditya Budi. Comprehensive evaluation of

association measures for fault localization. In Software Maintenance (ICSM), 2010

IEEE International Conference on, pages 1–10, Sept 2010. doi: 10.1109/ICSM.2010.

5609542.

[69] Lucia, David Lo, and Xin Xia. Fusion fault localizers. In Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,

pages 127–138, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3013-8. doi:

10.1145/2642937.2642983. URL http://doi.acm.org/10.1145/2642937.2642983.

[70] Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. Bug localization using

latent dirichlet allocation. Information and Software Technology, 52(9):972 – 990, 2010.

ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2010.04.002. URL http://

www.sciencedirect.com/science/article/pii/S0950584910000650.

[71] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-

guage Processing. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-13360-1.

[72] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

Information Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN

0521865719, 9780521865715.

http://doi.acm.org/10.1145/2786805.2786880
http://doi.acm.org/10.1145/2642937.2642983
http://www.sciencedirect.com/science/article/pii/S0950584910000650
http://www.sciencedirect.com/science/article/pii/S0950584910000650

110 BIBLIOGRAPHY

[73] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-code

traceability links using latent semantic indexing. In Proceedings of the 25th Interna-

tional Conference on Software Engineering, 2003.

[74] L. Mariani, C. Monni, M. Pezzé, O. Riganelli, and R. Xin. Localizing faults in cloud

systems. In 2018 IEEE 11th International Conference on Software Testing, Verification

and Validation (ICST), pages 262–273, 2018. doi: 10.1109/ICST.2018.00034.

[75] Wes Masri and Rawad Abou Assi. Prevalence of coincidental correctness and mitigation

of its impact on fault localization. ACM Transactions on Software Engineering and

Methodology (TOSEM), 23, 02 2014. doi: 10.1145/2559932.

[76] Lee Naish and Hua Jie Lee. Duals in spectral fault localization. In 2013 22nd Australian

Software Engineering Conference, pages 51–59, 2013. doi: 10.1109/ASWEC.2013.16.

[77] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model for spectra-based

software diagnosis. ACM Trans. Softw. Eng. Methodol., 20(3):11:1–11:32, August

2011. ISSN 1049-331X. doi: 10.1145/2000791.2000795. URL http://doi.acm.org/

10.1145/2000791.2000795.

[78] Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar M. Al-Kofahi, Hung Viet Nguyen, and

Tien N. Nguyen. A topic-based approach for narrowing the search space of buggy files

from a bug report. In Perry Alexander, Corina S. Pasareanu, and John G. Hosking,

editors, ASE, pages 263–272. IEEE Computer Society, 2011. ISBN 978-1-4577-1638-6.

URL http://dblp.uni-trier.de/db/conf/kbse/ase2011.html#NguyenNANN11.

[79] Caleb C. Noble and Diane J. Cook. Graph-based anomaly detection. In Proceedings

of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’03, page 631–636, New York, NY, USA, 2003. Association for

http://doi.acm.org/10.1145/2000791.2000795
http://doi.acm.org/10.1145/2000791.2000795
http://dblp.uni-trier.de/db/conf/kbse/ase2011.html#NguyenNANN11

BIBLIOGRAPHY 111

Computing Machinery. ISBN 1581137370. doi: 10.1145/956750.956831. URL https:

//doi.org/10.1145/956750.956831.

[80] Shivani Rao and Avinash Kak. Retrieval from software libraries for bug localization:

A comparative study of generic and composite text models. In Proceedings of the 8th

Working Conference on Mining Software Repositories, MSR ’11, pages 43–52, New

York, NY, USA, 2011. ACM. ISBN 978-1-4503-0574-7. doi: 10.1145/1985441.1985451.

URL http://doi.acm.org/10.1145/1985441.1985451.

[81] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program

profiling for software maintenance with applications to the year 2000 problem. In Pro-

ceedings of the 6th European SOFTWARE ENGINEERING Conference Held Jointly

with the 5th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, ESEC ’97/FSE-5, pages 432–449, New York, NY, USA, 1997. Springer-

Verlag New York, Inc. ISBN 3-540-63531-9. doi: 10.1145/267895.267925. URL

http://dx.doi.org/10.1145/267895.267925.

[82] R.K. Saha, M. Lease, S. Khurshid, and D.E. Perry. Improving bug localization using

structured information retrieval. In Automated Software Engineering (ASE), 2013

IEEE/ACM 28th International Conference on, pages 345–355, Nov 2013. doi: 10.

1109/ASE.2013.6693093.

[83] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Commun. ACM, 18(11):613–620, November 1975. ISSN 0001-0782. doi: 10.1145/

361219.361220. URL http://doi.acm.org/10.1145/361219.361220.

[84] Qusay Idrees Sarhan and Árpád Beszédes. A survey of challenges in spectrum-

based software fault localization. IEEE Access, 10:10618–10639, 2022. doi: 10.1109/

ACCESS.2022.3144079.

https://doi.org/10.1145/956750.956831
https://doi.org/10.1145/956750.956831
http://doi.acm.org/10.1145/1985441.1985451
http://dx.doi.org/10.1145/267895.267925
http://doi.acm.org/10.1145/361219.361220

112 BIBLIOGRAPHY

[85] Yui Sasaki, Yoshiki Higo, Shinsuke Matsumoto, and Shinji Kusumoto. Sbfl-suitability:

A software characteristic for fault localization. In 2020 IEEE International Conference

on Software Maintenance and Evolution (ICSME), pages 702–706, 2020. doi: 10.1109/

ICSME46990.2020.00076.

[86] Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, and Karama Kanoun. Anomaly

Detection and Root Cause Localization in Virtual Network Functions. In 27th Inter-

national Symposium on Software Reliability Engineering (ISSRE 2016), Proceedings of

the 27th International Symposium on Software Reliability Engineering (ISSRE 2016),

pages 196 – 206, Ottawa, Canada, October 2016. doi: 10.1109/ISSRE.2016.32. URL

https://hal.archives-ouvertes.fr/hal-01419014.

[87] Abhishek B. Sharma, Haifeng Chen, Min Ding, Kenji Yoshihira, and Guofei Jiang.

Fault detection and localization in distributed systems using invariant relationships.

In 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), Budapest, Hungary, June 24-27, 2013, pages 1–8. IEEE Computer

Society, 2013. doi: 10.1109/DSN.2013.6575304. URL https://doi.org/10.1109/

DSN.2013.6575304.

[88] Kai Shen, Christopher Stewart, Chuanpeng Li, and Xin Li. Reference-driven perfor-

mance anomaly identification. SIGMETRICS Perform. Eval. Rev., 37(1):85–96, June

2009. ISSN 0163-5999. doi: 10.1145/2492101.1555360. URL https://doi.org/10.

1145/2492101.1555360.

[89] Bunyamin Sisman and Avinash C. Kak. Incorporating version histories in information

retrieval based bug localization. In Proceedings of the 9th IEEE Working Conference

on Mining Software Repositories, MSR ’12, pages 50–59, Piscataway, NJ, USA, 2012.

https://hal.archives-ouvertes.fr/hal-01419014
https://doi.org/10.1109/DSN.2013.6575304
https://doi.org/10.1109/DSN.2013.6575304
https://doi.org/10.1145/2492101.1555360
https://doi.org/10.1145/2492101.1555360

BIBLIOGRAPHY 113

IEEE Press. ISBN 978-1-4673-1761-0. URL http://dl.acm.org/citation.cfm?id=

2664446.2664454.

[90] Higor Souza, Danilo Mutti, Marcos Chaim, and Fabio Kon. Contextualizing spectrum-

based fault localization. Information and Software Technology, 94, 10 2017. doi:

10.1016/j.infsof.2017.10.014.

[91] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. Threats to the validity and

value of empirical assessments of the accuracy of coverage-based fault locators. In

Proceedings of the 2013 International Symposium on Software Testing and Analysis,

ISSTA 2013, page 314–324, New York, NY, USA, 2013. Association for Computing

Machinery. ISBN 9781450321594. doi: 10.1145/2483760.2483767. URL https://doi.

org/10.1145/2483760.2483767.

[92] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: A language model-based

search engine for complex queries. Proceedings of the International Conference on

Intelligence Analysis, 2004.

[93] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan. Prepare: Predic-

tive performance anomaly prevention for virtualized cloud systems. In 2012 IEEE 32nd

International Conference on Distributed Computing Systems, pages 285–294, 2012. doi:

10.1109/ICDCS.2012.65.

[94] Yongmin Tan, Xiaohui Gu, and Haixun Wang. Adaptive system anomaly prediction for

large-scale hosting infrastructures. In Proceedings of the 29th ACM SIGACT-SIGOPS

Symposium on Principles of Distributed Computing, PODC ’10, page 173–182, New

York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781605588889.

doi: 10.1145/1835698.1835741. URL https://doi.org/10.1145/1835698.1835741.

http://dl.acm.org/citation.cfm?id=2664446.2664454
http://dl.acm.org/citation.cfm?id=2664446.2664454
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1145/1835698.1835741

114 BIBLIOGRAPHY

[95] Frank Tip. A survey of program slicing techniques. Technical report, Amsterdam, The

Netherlands, The Netherlands, 1994.

[96] Béla Vancsics, Attila Szatmári, and Árpád Beszédes. Relationship between the ef-

fectiveness of spectrum-based fault localization and bug-fix types in javascript pro-

grams. In 2020 IEEE 27th International Conference on Software Analysis, Evolution

and Reengineering (SANER), pages 308–319, 2020. doi: 10.1109/SANER48275.2020.

9054803.

[97] Béla Vancsics, Ferenc Horváth, Attila Szatmári, and Árpád Beszédes. Call frequency-

based fault localization. In 2021 IEEE International Conference on Software Anal-

ysis, Evolution and Reengineering (SANER), pages 365–376, 2021. doi: 10.1109/

SANER50967.2021.00041.

[98] J. M. Voas. Pie: a dynamic failure-based technique. IEEE Transactions on Software

Engineering, 18(8):717–727, Aug 1992. ISSN 0098-5589. doi: 10.1109/32.153381.

[99] Qianqian Wang, Chris Parnin, and Alessandro Orso. Evaluating the usefulness of ir-

based fault localization techniques. In Proceedings of the 2015 International Symposium

on Software Testing and Analysis, ISSTA 2015, pages 1–11, New York, NY, USA,

2015. ACM. ISBN 978-1-4503-3620-8. doi: 10.1145/2771783.2771797. URL http:

//doi.acm.org/10.1145/2771783.2771797.

[100] Shaowei Wang and David Lo. Version history, similar report, and structure: Putting

them together for improved bug localization. In Proceedings of the 22Nd International

Conference on Program Comprehension, ICPC 2014, pages 53–63, New York, NY,

USA, 2014. ACM. ISBN 978-1-4503-2879-1. doi: 10.1145/2597008.2597148. URL

http://doi.acm.org/10.1145/2597008.2597148.

http://doi.acm.org/10.1145/2771783.2771797
http://doi.acm.org/10.1145/2771783.2771797
http://doi.acm.org/10.1145/2597008.2597148

BIBLIOGRAPHY 115

[101] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on

Software Engineering, 1981.

[102] C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei. Boosting bug-report-

oriented fault localization with segmentation and stack-trace analysis. In 2014 IEEE

International Conference on Software Maintenance and Evolution, pages 181–190, Sep.

2014. doi: 10.1109/ICSME.2014.40.

[103] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault

localization. IEEE Transactions on Software Engineering, 42(8):707–740, Aug 2016.

ISSN 2326-3881. doi: 10.1109/TSE.2016.2521368.

[104] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on

software fault localization. IEEE Transactions on Software Engineering, 42(8):707–740,

2016. doi: 10.1109/TSE.2016.2521368.

[105] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. A theoretical

analysis of the risk evaluation formulas for spectrum-based fault localization. ACM

Trans. Softw. Eng. Methodol., 22(4):31:1–31:40, October 2013. ISSN 1049-331X. doi:

10.1145/2522920.2522924. URL http://doi.acm.org/10.1145/2522920.2522924.

[106] J. Xuan and M. Monperrus. Learning to combine multiple ranking metrics for fault lo-

calization. In Software Maintenance and Evolution (ICSME), 2014 IEEE International

Conference on, pages 191–200, Sept 2014. doi: 10.1109/ICSME.2014.41.

[107] Jifeng Xuan and Martin Monperrus. Test case purification for improving fault lo-

calization. In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 52–63, 2014.

[108] Xin Ye, Razvan Bunescu, and Chang Liu. Learning to rank relevant files for bug reports

http://doi.acm.org/10.1145/2522920.2522924

116 BIBLIOGRAPHY

using domain knowledge. In Proceedings of the 22Nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2014, pages 689–699, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-3056-5. doi: 10.1145/2635868.2635874.

URL http://doi.acm.org/10.1145/2635868.2635874.

[109] Shin Yoo. Evolving human competitive spectra-based fault localisation techniques. In

Proceedings of the 4th International Conference on Search Based Software Engineering,

SSBSE’12, pages 244–258, Berlin, Heidelberg, 2012. Springer-Verlag.

[110] Shin Yoo, Mark Harman, and David Clark. Fault localization prioritization: Com-

paring information-theoretic and coverage-based approaches. ACM Transactions on

Software Engineering and Methodology (TOSEM), 22, 07 2013. doi: 10.1145/2491509.

2491513.

[111] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Harman. No

pot of gold at the end of program spectrum rainbow: Greatest risk evaluation formula

does not exist. Technical report, University College London and Swinburn University,

2014.

[112] Y. Yu, J. Jones, and M. J. Harrold. An empirical study of the effects of test-suite

reduction on fault localization. In 2008 ACM/IEEE 30th International Conference on

Software Engineering, pages 201–210, 2008.

[113] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng Zhang, Yi-Min Wang, and Wei-Ying

Ma. Automated known problem diagnosis with event traces. In Proceedings of the 1st

ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, EuroSys

’06, page 375–388, New York, NY, USA, 2006. Association for Computing Machinery.

ISBN 1595933220. doi: 10.1145/1217935.1217972. URL https://doi.org/10.1145/

1217935.1217972.

http://doi.acm.org/10.1145/2635868.2635874
https://doi.org/10.1145/1217935.1217972
https://doi.org/10.1145/1217935.1217972

BIBLIOGRAPHY 117

[114] Abubakar Zakari, Sai Peck Lee, and Ibrahim Abaker Targio Hashem. A single

fault localization technique based on failed test input. Array, 3-4:100008, 2019.

ISSN 2590-0056. doi: https://doi.org/10.1016/j.array.2019.100008. URL https:

//www.sciencedirect.com/science/article/pii/S2590005619300086.

[115] Hui Zhang, Junghwan Rhee, Nipun Arora, Sahan Gamage, Guofei Jiang, Kenji Yoshi-

hira, and Dongyan Xu. CLUE: system trace analytics for cloud service performance

diagnosis. In 2014 IEEE Network Operations and Management Symposium, NOMS

2014, Krakow, Poland, May 5-9, 2014, pages 1–9. IEEE, 2014. doi: 10.1109/NOMS.

2014.6838348. URL https://doi.org/10.1109/NOMS.2014.6838348.

[116] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. Boosting spectrum-

based fault localization using pagerank. In Proceedings of the 26th ACM SIG-

SOFT International Symposium on Software Testing and Analysis, ISSTA 2017,

pages 261–272, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5076-1. doi:

10.1145/3092703.3092731. URL http://doi.acm.org/10.1145/3092703.3092731.

[117] S. Zhang and M. D. Ernst. Automated diagnosis of software configuration errors. In

2013 35th International Conference on Software Engineering (ICSE), pages 312–321,

2013. doi: 10.1109/ICSE.2013.6606577.

[118] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults through automated

predicate switching. In Proceedings of the 28th International Conference on Software

Engineering, ICSE ’06, pages 272–281, New York, NY, USA, 2006. ACM. ISBN 1-

59593-375-1. doi: 10.1145/1134285.1134324. URL http://doi.acm.org/10.1145/

1134285.1134324.

[119] Yucheng Zhang and Ali Mesbah. Assertions are strongly correlated with test suite

https://www.sciencedirect.com/science/article/pii/S2590005619300086
https://www.sciencedirect.com/science/article/pii/S2590005619300086
https://doi.org/10.1109/NOMS.2014.6838348
http://doi.acm.org/10.1145/3092703.3092731
http://doi.acm.org/10.1145/1134285.1134324
http://doi.acm.org/10.1145/1134285.1134324

118 BIBLIOGRAPHY

effectiveness. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE, pages 214–224, 2015.

[120] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, and Xin Xia. Improving fault

localization using model-domain synthesized failing test generation. In 2022 IEEE

International Conference on Software Maintenance and Evolution (ICSME), pages

199–210, 2022. doi: 10.1109/ICSME55016.2022.00026.

[121] Jian Zhou, Hongyu Zhang, and D. Lo. Where should the bugs be fixed? more ac-

curate information retrieval-based bug localization based on bug reports. In Software

Engineering (ICSE), 2012 34th International Conference on, pages 14–24, June 2012.

doi: 10.1109/ICSE.2012.6227210.

[122] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang. An em-

pirical study of fault localization families and their combinations. IEEE Transactions

on Software Engineering, 2019.

[123] Ma łgorzata Steinder and Adarshpal S. Sethi. A survey of fault localization techniques

in computer networks. Science of Computer Programming, 53(2):165 – 194, 2004.

ISSN 0167-6423. doi: https://doi.org/10.1016/j.scico.2004.01.010. URL http://www.

sciencedirect.com/science/article/pii/S0167642304000772. Topics in System

Administration.

http://www.sciencedirect.com/science/article/pii/S0167642304000772
http://www.sciencedirect.com/science/article/pii/S0167642304000772

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	IR-Based Fault Localization (IRFL)
	The baseline technique
	The state-of-the-art techniques

	Execution Information and Its Collection
	Coverage information and its collection
	Slicing information and its collection
	Spectrum information and its collection

	Spectrum-Based Fault Localization (SBFL)

	Definition
	Fault Classification
	Single-Location Bugs
	Multi-Location Bugs

	SBFL and Triggering Modes
	Program and its Spectra
	Fault Localization Workflow
	Ranking Formulae
	Triggering Modes

	Effectiveness Metrics
	Recall at Top N (Top-N)
	Mean Average Precision (MAP)
	Mean Reciprocal Rank (MRR)

	Adopting SBFL at Cvent
	Continuous Integration/Continuous Delivery (CI/CD)
	Integrating SBFL with CI/CD
	Collecting Code Coverage in CI/CD

	Improving Fault Localization with Information-Retrieval and Execution Information
	Motivation
	Contributions
	Approach
	Combining Execution Information with IRFL
	Search Space Reduction
	Rank Tuning
	Four Combination Variants

	Research Questions
	Evaluation
	Results and Analysis
	RQ1: How does coverage information help with IRFL?
	RQ2: How does slicing information help with IRFL?
	RQ3: How does spectrum information further improve FL over IRc and IRs?
	RQ4: How do our simple combinations compare with the state-of-the-art hybrid technique AML?

	Discussion
	Threads to Validity
	Summary

	Triggering Modes in Spectrum-Based Single-Location Fault Localization
	Motivation
	Contributions
	Approach
	Research Questions
	Evaluation
	Data Sets

	Results and Discussion
	Comparison between IFLS's Triggering Modes
	IFLS's Sensitivity to SBFL Formulas

	Threads to Validity
	Summary

	Triggering Modes in Spectrum-Based Multi-Location Fault Localization
	Motivation
	Contributions
	Approach
	Evaluation
	Datasets
	RQ1: Comparing IFLM's Triggering Modes
	RQ2: IFLM's Sensitivity to SBFL Formulae

	Threats to Validity
	Summary

	Related work
	Spectrum-Based Fault Localization (SBFL)
	Information Retrieval-Based Fault Localization (IRFL)
	Empirical Studies on Fault Localization Techniques
	Test Optimization and Generation
	Enhanced SBFL Techniques
	Effectiveness and Applicability of SBFL
	Fault Localization in Cloud-based Environments

	Future Work
	Fault Localization with Abstract State Machine
	Research Questions
	Approach
	Evaluation Plan
	Summary

	Conclusions
	Bibliography

